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The dispersion relation for s finite temperature magnetoactive
plasma is derived in a form particularly suitable for the study of the
effects of transverse static electric and magnetic fields upon the
coupling between the transverse and longitudinal modes. The derivation
is based on the coupled Boltzmann-Vlasov-Maxwell equations under the
one-dimensional small-signal assumptions.

The time-varying parts of the particle distribution functions
for a two-component plasma are divided into three parts; namely, those
associated respectively with the right-hand and left-hand circularly
polarized transverse waves and that associated with the longitudinal
mode.

The mode coupling equation, which relates the dynamic electric
fields of these modes, is derived in terms of the time-independent
part of the distribution function for two cases: (a) longitudinal
propagation in the presence of a transverse static electric field, and
(b) oblique propagation in the absence of static electric field.

If the time- independent portions of the distribution functions
are taken to be Maxwellian it is shown that in the low-temperature limit
the dispersion relationship reduces to the familiar expression for the
cold plasma. Possible applications of the derived dispersion rela-
tionship are briefly discussed.
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DISPERSION RELATIONS FOR A MAGNETOACTIVE FINITE TEMPERATURE PLASMA

I. INTRODUCTION

Wave phenomena in plasmas have been studied by many authors®~®

under a variety of assumptions and, in general, coupling between trans-
verse and longitudinal modes is neglected. The longitudinal and
transverse oscillations in plasmas are strictly uncoupled only in the
case of a nonrelativistic plasma and in the absence of any external
magnetic fields and temperature or density gradients. The presence of
an external magnetic field” or inhomogeneities in plasma density's’9
and/or temperature result in the coupling of the longitudinal and
transverse modes.

It is also a well-known fact that in the absence of a transverse
magnetostatic field there exist two purely transverse and two purely
longitudinal waves. The existence of a transverse magnetostatic field
introduces a coupling between the transverse and longitudinal motion of
the particles. Thus there appear mixed modes having both transverse and
longitudinal components. This fact has been demonstrated theoretically:
for example, by Denisse and Delcroix® for a uniform, unbounded two-
component plasma based on a macroscopic description which uses Maxwell's
equations together with the continuity equation and the equation of
momentum conservation. They assume that the thermal velocity is
negligible compared to the phase velocity of the wave and, of course,
develop a linear theory.

It is the purpose of the present report to derive the dispersion

relationship for a magnetoactive finite temperature plasma in a form
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which is suitable for the study of the coupling of transverse and
longitudinal modes due to the presence of transverse static electric
and magnetic fields. The derivation uses Maxwell's equations together
with the Boltzmann-Vlasov equation and the effect of particle thermal

motions is taken into account.

II. MATHEMATICAL FORMULATION

Consider a two-component plasma in which collision effects are
assumed to be negligible. The electron distribution function f(;isit)
and the ion distribution function F(?%%it) for this plasma are governed
by the Boltzmann-Vliasov equation:

q
%%+?r’-<7f-3(E+§?x§’)-Vf = 0
m v
and
oF

&L 4 For +§ (E’+V’x§’)-vvF

ot

I
O

(1)

where m and M are the electron and ion mass respectively and e is the
electronic charge taken as a positive quantity. The electromagnetic

fields in the plasma are governed by Maxwell's equations:

-
V X i? = - %% s

- - éﬁ
VxxH = J+ >

-
v:D = p ,

VB = 0 , (2)

where the electric displacement vector?g and the magnetic flux density
E’are, respectively, related to the electric field intensity'f'and the

magnetic field intensity ﬁ'in the following manner:




- - -
= ¢F and B = nH , (3)

where €, and o denote the permittivity and the permeability of the
_9
vacuum. The convection current density J and the charge density p may

be written in terms of the distribution functions as

_9

J = e/V(F-f)dsv and p = ef(F-f)dsv . (4)
Consider that all quantities of interest are composed of a

time- independent part denoted by the subscript O and a time-dependent

part denoted by the subscript 1:

=]

— = >
B = o(?) + Bl(r,t) y

)
1l

B @ +E (&)

o
I

T E T (F)

._)
p = oo(?)ﬂ“pl(r,t) )
f = fo(?)?;) +fl(?;-‘?:t) )
Fo= FEV) P EVE) (5)

Upon substituting Egs. 5 into Egs. 1, 2 and 4, the following time-
independent set of differential equations (Eqs. 6) and the time-

dependent set of equations (Egs. 7) are obtained:

.% e ._9 ﬁ .
. - - + ¢ =
v Vfo (ﬁg v x BO) vao o , (6a)
e =
F o+ = + 7 =
VvEs + M (Ez v X Bo) vFo 0, (6v)



and

of

—=+v.vr -2
ot 1 m

-
foo= o ,
-3
fo'fo=JO 5
P
oF = o |
o} €
o
v5§; = 0 ,
7 = ef?r)(F-f)dsv s
o oo

= i fﬁ;-+ G?;cii)]-vvfl ,

e - 2 e - 2
+ . = .
y E +VxB)wF +g B +VxE)VF

Il

B -We [ﬁl * G’)x-ﬁ)l)].vvFl ’

=1
2,
ot ’

(6¢)

(64)

(6e)

(6r)

(6g)

(6n)

(7a)

(7o)

(Te)

(74)

(7e)

(7£)




v

_5_
3)1 = ef ?(Fl-fl)df‘v , (7g)
p, = ef(Fl—fl)dsv . (Th)

In the present report the following assumptions are made and a
rectangular coordinate system is employed:

1. Small amplitude conditions are satisfied so that the terms
involving the products of time-dependent quantities gre regarded as
negligible.

2. All quantities vary only with one spatial variable, =z.

5. All time-dependent quantities in the system have the ej(am-kz)

time and distance dependence.

By Assumption No. 2 Egs. 6¢c and 6e imply that

oF p (z)
07 0
E = constant , E = constant and = , (8)
ox oy oz €
and Eqs. 6d and 6f yield
ox aBo
Sz = “oJoy y —SEX = = “oJox and BOZ = constant . (9)

Under the above-mentioned assumptions, Egs. 7a and Tb become,

respectively,
of of
. e
jlo-kv )f ——-[E +vB_ -VvB )+ - —
z’71 m ( ox ¥ oz Z oy) avk (Eoy'+ ViBox VkBoz) v
y
of 3
iy
+ (B +v - 1 e 0
oz X oy g ox) oV ] m [(Elx t Blz TV 1y) OV
X
/ afo / 3 Bfo 1 110)
+ (E 4+ v N - v T YV 0 o - —_— 10
Yiy © Yzhax T YxPiz/ v AR, F By T Py ov, I
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and
e aFl aFl
i (- + = + -vB )=—+ (E_+ - —
i@ kvz)Fl M [(on VyBoz vy oy) avx ( oy szox VxBoz v
OF oF
1 -e o)
+ - ) = —— E + v B -V B S
+ (B, VB vyBoX) 5, J v [( S 1y) 5.
aFo aFo
- —_— + + -v3B - . 11
+ (Ely * szlx VkBlz) avy (Elz kaly vy 1x) 8vz ] (11)
Equations Tc and Tf give
OB
_ k _ k iz _
ix w Ely > Ciy By and oz ° (12)
which implies that
+ =
1xB1x ElyBly ° (13)

which in turn suggests that the transverse time-varying electric field
is perpendicular to the magnetic field. On the other hand Egs. 7c and

7d can be combined to give

vE, + S F -v@E) = w3, (1)

where ¢ = 1/'Juoeo is the speed of light in vacuum. Equation 14 can be

written in its component form as

O%E >
1X _(1_)_ = . (153,)
S3z2 o2 T1x JOHC 0
52E1 o2
—_—Y 4 — = ! 15b
dz2 c® Ely Jm“inY (150)
and
2
o .
5B, = dowg . (15¢)

e Asma AmA GEE SN AESE GENA SENE BER ABR AN SEE BEE Gl GE BN GE N G
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Now consider a transformation of velocity coordinates as given

by

]

v, v, cos g , vy = v, sin ¢ and v, =V, (16)

_)
and, for convenience of discussion, define the quantities ai and a as

2, 2 (28,) wa 78 (20) (an)

Then Eq. 10 can be transformed into the following, using Eg. 12;

’:J'((D - kvz) o, 9 ] £

oP
Bfl 1 Bfl v, Bfl jo
—[a_ —a—v:+J'—l—a—5>+‘—l_:a)_'$+J(D_D(fl)]e
of of v of . of
1 .1 1 z R R =J9 _ —
e WL'J%IE)*VT“’%@ jo, 202, | "2 v,
of of

= £ o , & -io L & <2 _ & 92 8
~ n M_(fo)E_ e’ + m,M+(fo)E+ € *u ElZ avz m Bl op '’ (18)

where

E = X (E._ + jE ) (19a)

+ 2 YT1x 1y’
B, = =(B,_ *jB_) (190)

* 2 YTix T iy’ 7
© = L (w * jo ) (19¢)

+ 2 Vx v’
a., = % (a t3a) (194)

+ 2 V'x y
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Ry = & wcy = a%_ y O, = o, (19¢)
kv of . of fv, of
_ _ /4 o _J__ [e] 1 o

M+(fo) B [ <l w >< ov, * v, Bcp> "o BVZ] ’ (191)
kvz afo i afo kvl afo

M-(fo) B [(l B (D> ov, B ;r: Bcp> T BVZJ ’ (192)

and the differential operator D is defined as
p & <v 3 ., 2
L ov z ov
Z €
It should be noted that E_ and E+ appearing in Eq. 18 correspond
to the electric fields of the left-hand and right-hand circularly
polarized waves respectively. Furthermore, from Eq. 12, Blz is a con-
stant, and for the present one-dimensional analysis, from Eq. Tc, it

must be zero.

IIT. DERIVATION OF DISPERSION RETLATTONSHIPS

Consider the time-dependent electron distribution function fl as

consisting of three parts as indicated below:

_j +3
fl(z,t,vl,vz,cp) = f+(z,t,vl,vz)e Py f_(z,t,vl,-vz)e IP 4 g(z,t,vl,vz) ,

(20)

where the first, second and third terms of Eq. 20 can be regarded as
the distribution of these electrons associated with the right-hand
circularly polarized, left-hand circularly polarized and longitudinal

waves, respectively. Since Eq. 18 must be valid for an arbitrary value




’ .
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of @, the substitution of Eq. 20 into Eq. 18 yields the following system

of equations:

of _ 1 v,
a_ 57 -3 f_>+ Jo_ !:D(f_) = f_] = 0 , (21a)
L 4 4
Bf \ v
-a—v-———f - oo, [D(f)+-v—f]=0, (21v)
J_ L
3 2 e
J(U.)-kvz+a)z)f_ - a &-; - jwDd(g) - a_ S = -M_ (£ )E. , (21c)
. Bf‘+ og e
Jlokv -0 )f, - a >, + jo(g) - a, v, = — M (£ )E, (214)
and
. o8 Bf 1 Ve
J(a)—kvz)g - a, v, a_ gv_ + -——L f > Jo_ [D(f+) - :’: f_'_]

af

of . v, e
T+—f>+Jw+[D(f-)--v—f—:l = —-a—V—E . (21e)

1

It is of interest to note that when the transverse static

electric and magnetic fields are absent, i.e., a

+ - 2. + - ’

the system of equations (Eqs. 21) reduces to the following set of

equations:

of

J(a)—kvz+a>z)f_ - a, -a-i

of
jlokv o )f, - a ~—
z z'™+ Z gvz

o8

ok Jg - a, 5~ =

= £

= mM_(fo)E_ ,

= £

= mM+(fO)E+ R

. afo

m v Elz ’ (22)
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which clearly suggests that no coupling between the transverse and
longitudinal modes can take place. However, it is obvious that the
presence of either electric or magnetic transverse static fields will
lead to coupling between the modes.
In the present analysis two cases are considered:
Case 1. Absence of static transverse magnetic field and longitudinal
electric field: QQ+ =w_=0,a = 0).

Case 2. Absence of electrostatic field: (a+ =a_=a, = 0).

For these cases, it is possible to solve Egs. 25 for f_, f and g

explicitly in terms of E_, E,, and ElZ which can be expressed as

+7

follows (see Appendix A for details):

£ = k,E +k E +k E_ ,
£, = k21E- R T kESElz ?
g = k, B +k E +k E , (23)
where for Case 1
k. = n (%) k= 0, k. = — v, N Oy
11 j(b+wz) R §- > ™18 b(b+mé) ’
R S8, 9O af_o
= +
) =M (£) m "+ ov, \ ov,
k. =0, k _ = =-T—om0 | k__ = ’
21 22 j(b-wz) 23 b(b-a) )
e a+ e &
-2 Ev—l M_(fo) -2 ITlTlM+(fO)
k.. = k=
31 b(b+w ) ? ez b(o-w_) ’
Z z
e Bfo e a & 3 afo
m ov -“4+ m ov ov
k = z + L z (21")
33 jb v b(b=-a?) ’




+
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A
with b = (w-kvz), and for Case 2

M (f) 1 20 ww
k. = 200 [ . -b(b-mz):! ,

‘ eMo(fo)/waa)\
12 m S \b» /7

_ kv Bf
Kig = _m?% [D ( > ] [cn_(b—wz)]

2
. e M (f 5 ) / 2w 2w
21 m ) b
. _ e M ( £ ) [ 20w X
22~ m B b -b (b+a>z) ’

1 afo ka_ af

p(s2)e= 52 | o
o M A(f) v

o n;a 060 [2a)+<-‘7JZ-_>(b—(DZ)] 5

M(f) v
- ie_l 050 [2m_<f>(b+wz)] ,

b
1l
|

o
|

with

A
5 = [jp(af-p®) + jhaw 0]

G BN N 0B O D U A B T i S Bk A aw s W = =
>
V)
o]
I
Blo
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Similarly by writing the ion distribution function as

j i
Fl(z,t,vl,vz,¢) = F_(z,t,vl,vz)e P+ F+(z,t,vL,vZ)e IP 4 G(z,t,vl,vz) s

(26)
and in view of the fact that Egq. 11 has exactly the same form as Eqg. 10,
the substitution of Eq. 26 into Egq. 11 results in a system of equations
governing F_, F and G, similar to the system (Egs. 21). By defining

-4
?fand A as
=2 A e = - A [-e
0 = <—MBO> and A = Mi’o> , (27)

F, F,_ and G can be expressed as

= +
F_ KllE- K12E+ + KlaElz ,
F, = K21E~ * K22E+ * Kstlz ?
G = Ky E_ +KgE +K,E (28)
where for Case 1
oF
e e o 0
- & — A 2
K _ MM_(FO) M - aV_L :;;
11 J(b+Q ) 4 K12 = 0 ’ K18 = z 5
z b(b+a, )
© 1 ( Ea 9 <’EEQ >
K, = 0 i (o) M¥ oV \ov
21 ? K22 i(b-0 ) » Koy = z ’
J . b(b—QZ)
A
A
e
2 = — e -
P, M_(F) 2= v M, (F_)
o2 slr,) 7 fe2 T Tpmgy
Z
oF
-£ .0 e 9 aFo
K M v 4A+A_ M avl sz
33 5 -J 2
ib v, b(b2—Q§) ’ (29)

B .
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and for Case 2

e 1 oF kv, OF
Yo T EZ[D<’§$;>+T‘&§] [o_(o-9,)1

_ EMO(FO) 20,0 w
22 M~ A b

BFO kv, SFO

(3) 2% Jawn

e MB(FO) Yy
31 M~ A [294' <V__L-> (b—QZ)J ’

-Q MO(FO) <VZ
sz M A (:EQ- ;I) (b+Qz):| ?

. —e 1 aFO ( 2 24y ) + ( <

KSS—EZT ﬂz-b QQ QQ E

M (F)) = [

- b(b+QZ)] )

N
]

=l
D>l

sl
It

~
{

oF
§3+{§D(fo>] : (30)

L

vhere A £ [jb(Qi—bz) + k.0 o],
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A1 .
= - +
Qi 5 (QX + JQy), and
Al
= - + 5
A, 5 (AX + JAy).

Since the time-dependent distribution function is now explicitly
expressed in terms of the time-varying electric field, the convection
current density 3; and the space-charge density p, can be expressed in
terms of the electric field with the aid of Egs. Tg and Th, respectively.
On the other hand, the electric field is related to the current density

by Egs. 15. Consequently the electric field can be written as

o k2)E. = j f T 29 (¢ _r WvPagav ¢ (31a)
2 2 - + = prbe e Fl— IV @dvl v, 31a
@ 0 O

and

o 25
(

o«
- Je -
E, = e f f f F, fl)vachpdvlde . (31b)

0o O

Upon substituting Fl and fl given by Egs. 26 and 20 respectively

into Egs. 31 the following set of equations is obtained:

= +
E_ RllE_ R12E+ + RlsElz s
B, = RzlE— * R22E+ * R28E1z ?
= +
Elz Rle— BooBy ¥ RSSElz ? (52)
where
R = P(8 3 = 1, 2 = 1, 2
D, (p,q) s P s s 4 y 25 3

Q(Sp,q) 5 p o= 3 ;g

l) 2’ 5 b (53)

in which the integration operators P and Q are defined as
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. me>
J ?— 00 3]
= —— 9 2
P(s) = P (Pc?i®) f / S(V_L’vz)vldVJ_dvz ,
-00 (O
[+ o] o]
Q(s) = w—‘J;e- [ [ S(VL’VZ)vaZdVlde (34)
° 0
and
25
= - - -j2o - -3
S11 f (:(Kll kll) *+ (Kzl k21)e + (K81 k:n)e ]dq) ’
0
2 -
- R N ~j2p _ -Jo
12 f [(Klz k) + (K k )e * (Kypkgy)e | dp ,
0
25 -
- - - ~J29 -Jo
518 = f [(Kls kls) * (Kzs kq)e + (Kas‘kss)e ] do ,
0
25
= - Jeo - _ Jo
Spp = f [(Kll kn)e * (Kzl kzl) * (KS.'L kSl)e ] dp
0
2n
- _ Jeg . - Jo
S,p = / [(Kl_2 kyplet ™+ (K -k ) + (K -k )e ]dq; ,
0
2n
= - Jee . . Jo
S2a f [(Kls kls)e * (Kzs kas) * (Kss kss)e ] dp
0
2
= - Jo _ -Jo -
SS:L B f [(Kll k:|.1>e * (K21 kzl)e * (Ksl ksl) do ,
0
2y
S i® -Jo
Sa2 = f [(Klz‘kle)e * (K22-k22)e * (Ksz—ksz)] dp
0
2n
Sag = / .l:(K1 q-km)eJCP + (Kgs_kzs)e'JCP + <K33'k33)] dp . (35)
hd = == -
0
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Therefore the dispersion relationship for the system under consideration

is given, from Egs. 32, as

(R,-1) Ry R a
d(wk) = | Ry, (R,-1) R, = 0 . (36)
Ra Rsa (R83_l)

It should be observed that once the time- independent distribution

functions fo and FO are known, the parameters k and Kp q are spec-
4

b

ified so that the Rp,q integrals can be evaluated. Then a detailed
study of dispersion relation (36) can be made to obtain the
propagation characteristic of waves in the system.

Before considering the time-independent distribution functions,
it is of interest to observe that for Case 2 the parameters K and

P,q

kp q are independent of @, as shown in Appendix A, and Egs. 35 are

’

reduced to

S = 2n(K -k ; = 1, 2, 3; = 1, 2 .
ba (K, gkp o) 5 P » 2, 35 a » 2, 3 (57)
Furthermore, if BOX = BOy =0, i.e., w, =Q, = O, then %b = 0 for

p # d, which implies that Ep(l= O for p # q- In other words, the
i
off-diagonal elements of the determinant in dispersion relationship

(36) vanish, so that Eq. 36 gives

W, -1) (W ,-1) (W ,-1) = 0 (38)

where W11 = Rll, W22 = R22 and Wa3 = Rss for the case mE =0 =0.

Equation 38 implies that

W, o= 1, W,, = 1 and Wg; = 1 , (39)
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which represent the dispersion relationships for the left-hand and
right-hand circularly polarized modes, and the longitudinal mode

respectively:

<w€> [ F[’%*??FOHEMO@O)T o

v-2d-v- av = 0 ) (h‘ a)
\w c‘k‘ J b+ bt | LTz
- O
<w€> S A rsM@FE) Su ()
M oV o m oo -
@om2) f f[ 5.0 @ ]_Ldvldvz = 0  (4ob)
-0 O z
and
2ne s l/e aFo af
l+a?/fg<ﬁ87 mav V'V'dVdV = 0 , (h—OC)
z
-0 O

in which Egs. 40a and 40b are the same as those given by Montgomery and

Tidman?.

IV. TIME-INDEPENDENT DISTRIBUTION FUNCTIONS

The time-independent distribution functions fo and FO nust
satisfy Eqs. 6a and 6b respectively. It is not difficult to show that

the solution of Eq. 6a has the form
fo(Eisﬁ = ?;(w) s (41)

where w = (l/2)mr?]2—e®C?), in which the electric scalar potential
<I>G:)) is related to the electrostatic field Eo (?) by

E = -vo . (42)
Similarly the solution of Eq. 6b has the form

FEY) = F W),
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where
Wo= ZM[F[E+eo(r) . (43)
It should be noted that the electrostatic field E;, appearing in
Eqs. 6a and 6b, in general consists of two parts; i; B i% +-i;} where i;
is the externally applied static electric field and i; is the space-
charge field which must also satisfy Eq. be.
For a one-dimensional analysis in a Maxwellian plasma fo and Fo

can be written as

a\3/2
r,= o (=) emlay) (1)
and ,
ai alz2
r - No<? exp (-0, (45)
where

w & (BB -2

e 1 Z m
A 2e
R T O
A m A M
G = KT e = KT, (46)

in which K is the Boltzmann constant, n, and Te are the concentration
and the temperature of the electron respectively, and No and Ti are the

concentration and the temperature of the ion respectively. In view of

the fact that both f and F  are expressed as even functions of v, y

and v, in Egs. L6, Eq. 6g gives Iox = Yoy = oz = O. Then from Egs. 9,

the magnetostatic field must be constant, i.e., Box’ Boy and BOZ are

all independent of z.

On the other hand, Eq. 6h gives

ed(z) ed(z)

po(z) = eN_e i en e € . (¥7)
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If electrostatic fields EOX and Eoy,are constant, then EOz can be
determined from Eqs. 8 and 47. For the one-dimensional analysis under
consideration the x- and y-components of the space-charge field ES are
absent. For the two cases under consideration, the assumption a, = 0
implies that E , = O which wil'l be the case if (99/0z) = 0. In other
words, ® is independent of z, which is equivalent to requiring that fo
and Fo be independent of z and the plasma under consideration be homo-
geneous. If the space-charge potential ®(z) is set equal to zZero,
Eq. 47 suggests that o = e(NO-no) and since Eos must be zero, p_ is
zero. Consequently No =1 when the condition of electrical neutrality
is met.

It is of interest to note that for a homogeneous plasma pervaded
by a uniform static electric field E; and magnetic field ﬁ;, Eq. 6a

becomes
- =2
+ . =
E +¥x3B)vr o, (48)

and fo can be given in the form

a a/2
fo = no<-;e- exp(—aelw—r)—ﬁ)lz) , (49)

where the drift velocity'ﬁ is given by

5 E xB)
u o= —2—2 . (50)

Since the drift velocity depends neither on the ratio e/m nor on the
initial velocities, it is the same for ions and electrons regardless of

their energy. Crossed magnetic and electric filelds produce a collective
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displacement of all of the electrical charges in the direction of

ﬁ; X ﬁ;- Thus FO can be also given by

o s/2
_ % . [732]2
Fo= N, (‘ﬂ exp ( ailv ul®) . (51)

It should also be noted that the distribution functions fO and
F_ glven by Egs. 44 and 45, respectively, are adequate for the study of
the case where there is no externally applied electrostatic field; since
v, = -ZOlefo_\? and (30/dz) = -E_, it can easily be shown that f , given
by Eq. 44, indeed satisfies Eq. 6a. However, for the case where the
externally applied electrostatic field is present, fo’ given by Eq. U4k,
is not adequate since it does not satisfy Eq. 6a and must be modified.

- - - - - -
Suppose that E = iE _ + jE _+ kE and B = kB are considered, where
o ax ay s o} o}
E:E?and ¥ are the unit vectors along the coordinate axes respectively,
E and E are the components oflf , and E_is the space-charge field.
az ay a S

Then it is not difficult to show that the irollowing form of fo satisfies
Eq. 6as
q &2
£, = n <‘:§ exp-{-ae [(vx—u.x)2 + (vy—uy)2 + viJ + 20 ﬁ @(z)}- ,
(52)

where U = G)ux + ?uy) is the drift velocity as defined by Eg. 50.

For the consideration of the case where interpenetrating plasmas
such as electrons drifting through ions to form the configuration of a
plasma carrying a current along the lines of force, the drift velocity
along the direction of static magnetic field must be taken into account.
If this drift velocity U, is much greater than the transverse drift

velocity due to the transverse electrostatic field, which is the case
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for wesk static fields, then w,, assoclated with f_ of Eg. 4, can be

expressed as

v, o= P+ ()2 - 2eE) o (53)

e

Thus the time-independent distribution functions f0 and F0 must be

properly chosen according to the type of problem under consideration.

V. MAXWELLTAN PLASMA

The two cases defined in Section III are examined for a homo-
geneous plasma. As an illustration of the method of analysis a
homogeneous Maxwellian plasma is considered in this section. fo and

FO can be written as

a \3/2
= = -
£ n <’ﬂ exp ( aewe) (54)
and
ai a/2
o= 0 (2) e oy (55)
For Case 1:
= - 27 ., - 2 _ 2
Ye T [vi * (vz uoe) 1 Yy [vl * (vz uoi) 1. (56)
For Case 2:
v, = (B+vB) = ow . (57)
Having specified the form of fo and F_, the coefficients Kﬁ a
H
and kp q in Egs. 24, 25, 29 and 30 now can be determined. For the
2

forms of f_ and F_ given by Egs. 54 and 55, these coefficients are

independent of @, and the evaluation of the Rp a integrals can be car-
2

ried out. Thus dispersion relationship (36) gives, for Case 1 and

Case 2 respectively, (see Appendix A for details):
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For' Case 1:
aB, e B_
R (RN O [

[®,2,G (U,) + rzg (u) - 11 ,

np>

where D

+

>

(dz‘l) ’

>

U
Z R2 [ﬁo(Uo—ubi)Gb(Ub) * 3 — ] + T [Uo(Uo_uoe)go(Uo)

Vo,
1
UO
],

va,

A - -
a, £ FRZ (U6 (U,) - UG (U] F rz [ue (u,)-Ug (U)I ,
B, & R, @, [U,-u_;)c (U,) - (U -u ;)6 (U )] F ra [(ui—ube)
g (u,) - (U -u Je (U)] ,
A ( e (U,) ( )G (U) -
71_ = R2ai Ui Ui-uOi GO Ui - UO Uo-uoi Go UO * J
Vo x
Jo,
tr o [ui(ui-ube)go(ui) - UO(UO_uoe)gO(UO) * ‘Ja; k ] ’
2 2
N ;(on+EoX
=3 B2 ’
0z
A . r 4xi(vz— 01)2
J e
G (Y) £ —= d
o( ) \ﬁ; | (VZ-Y) Yz
. g _ae(vz-.uoe)z
() & e av (59)
o N (VZ-Y) z

-00

. v
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For Case 2: 2 2 [(B2 +B2 )/Biz] << 1:

oX ~ oy
= .2 _ 2 (M2 _m2
DD = v (D (D 4D, )(M M) + 2N, [D M +viw(MZ-MZ)]
- 2N _[pM_+ vioME-mM2)1} ,  (60)
here D, £ [RG (U,) - r g (u,) - 1]
where + - Lo lgo + »

n>

D, [R2<U§GO(UO) +J —}_3; > *r, (Uigo(Uo) +J jgl; > - 1] ’

Q
é _ 2 2 . 1 _Z = 2
N, = ¥R, [UtGO(Ui) - vse (U)) £ 3 —J_OZ k} Fr, [uigo(ui)
w
1 Z
e s =]
0”0 0 Ip k
Ote
A R1 ry
M, = o [6,(U) -6 (U) £4A] Yo, (e, (u,) - g (U) £l ,
Z
-C,
A Qz e ez
A= ( U )2 de »
Nk v v,T
® ey,
A Z /
A= 5 dv 5
3 Vr k e (v,-u,) z
A d e-o,i z
g (vy) = f dv
N A
-0
[o] - 7
e
g (¥) 4 4 j c dv
: G J o
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The R's and U's in Egs. 58 and 59 are defined as

02 0}
N~ T - o) (o
1 3oy (@2-c2x2) <k> B 32“/5‘—1“1<w3<k> ’

i, (2)E)

wh
4
o - (25

>

=
1l

R
il
np>

2
w
AL T o w
1 I N9 (w®-c®k?) <k> » Te

.

* k

. winz g - (o
+ k ’ o  \k

u . u
7 = - ot 2 - L€
o < U 7 %o < U

o}

Tt should be noted that integrals G (Y) and g (Y) defined in
Egs. 59 have been discussed in detail by Stix® and his results can be
applied in the present investigation. Y, appearing in Eqs. 59, may be
complex in general and takes the values (wtﬂz/k), (a)iwz/k) and (a/k).
Let

t2 = ai(vz-uoi)z . (61)

G, may be written, for Im(w) < 0, as follows:

(o]

. -£2
_ J e
f = Jx :[ 6o, * (62)

where

The contour of integration may be deformed and analytic contin-

uation used to evaluate this integral in such a way that it is valid

over the entire w-plane:

Y
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o0

. _CZ .\/_
o d e 1 k o
6. - ——GP_[——wndu e (B (63)

n

where the principal value integration is to be carried through the pole
ac an-

On the other hand, when S(¢) is written as

o 2

_ 1 e "
s(e) = QGPJT+EdT, (64)

the asymptotic expansion of S(g) exhibits a Stokes phenomenon; that is,
different asymptotic expansions are required for validity in different
portions of the t-plane. The Stokes phenomenon is a characteristic of

the asymptotic expansion of analytic functions. For the expansion of

s(e),
s(e) = 2(e) +ue) , (65)
where
- L 1 1-3 1-3-5
() = o +22§3+23§5+ 2t g7 + ...
u(e) = 0, for [ree| > [mel ,
—. —2
= ‘%ﬁeg sgn (Im¢) , for [Ret| < [mme| . (66)
It should be noted that in Eq. 63, the Gaussian term in G,
diverges whenever |Re anl < lIm.anI. However, relation (62) for G,

shows that G, in fact, converges to zero as [ Tm Ghl'l in the unstable
half-plane (Im w < 0). It is the U(t) term in S(t) which reconciles
this apparent difference. The entire result is best summarized with

the aid of a quadrant diagram for the o (sgn k) plane (see Fig. 1).
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Im[an(sgn k)]

f—

Re[an(sgn k)]

FIG. 1 QUADRANT DIAGRAM FOR THE dh (sgn k) PLANE.
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The following asymptotic expansions for GO are appropriate in the
quadrants indicated:

Quadrants A and B:

D

k

€xXp (—06121) = jo(an) 2

O
=

"

>

Quadrant D:

Quadrant C:

¢, = -ira) . (67)

In Quadrant D, G0 diverges as 05.—9 o, Equation.65 shows that
the Gaussian term may be neglected in Quadrants A and B because it is
small for large values of ah, and it is noted that this term is
rigorously absent in Quadrant C.

If G, is expanded in the first few terms of its asymptotic

expansion in Quadrants A, B and C, i.e.,

(o) = | e () - L

then various factors appearing in dispersion equations (58) and (60)

can be determined and, in principle, a detailed study of the' propagation
characteristics of various waves can be made. It should be noted that
in Eq. 68 the three terms on the right-hand side represent, respectively,
the Landau or cyclotron damping term, the cold plasma, and that due to

a finite thermal spread.



VI. SPECTAL CASES

Suppose that the differerice between the phase velocities of
various modes in the system and the drift velocity are large in compar-
ison to the electron thermal velocity (l/\/G—G), which is also greater
than the ion thermal wvelocity (l/\/a;), so that GO (Y) and g, (Y) may be

approximately written as

R

s 1 1
G, (¥) ~d Ja. (Y-u .) [l * 2ai(Y-uoi)2] ’

i ol

. _j 1 —r | .
g (Y) = -j Ta (ra) [1+2ae(Y_uoe)2J (69)

Then the various factors appearing in Eq. 58 can be written as follows:

02 (w-ku ]
D+ - 2 2 i 1) <l ' 2>
+ - +0 - -
(w c“k )(a)_QZ ku i) 20&__.L(Ui u i)

o (w-ku ) <1 . 1 > 1} ., (70a)

2_.21.2) (b - 2a - 2
(0=-c3k2) (w @, kuoe) e(ui uoe)

0 a®
D = P + b - 1] , Ob
2 f: (w-ku .)2  (w-ku )2 (700)
oi oe

-08-
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Q2 (U -u_,) |
o = o0 _P.>l:_°__2_1.U<1+ 1 >
* T <’a? (Ui-uog t 2ai(Ui-uoi)2
602
o, () [ (2)
(¢] 2ai (UO _uoj- ) 2 e (D2
N (
o oe 1 1
| —2_oc 1+ -U (1+
[ (ui~uoe) Ut 2O‘e(ui-uoe)z> © gae(Ub-ube)g> J ’
(70¢)
2
8. = 3 Y, 1 i 1 )
+ 2(w®-c2k2) (Ui—ubi)e (Uo—uoi)z
Q;Uo 1 1
2(eP-c%3) \ (u,-u_ )® ) (Ub-uoe)%> ’
(704)
(’22 2 U, U,
7i ) ai (D> Uo [ (Ui-uOi)z ) <UO-uOi)2:'
W \2 u, U
o (D), | o =]
eNe (ui-uoe) (Ub‘ube)
(70e)

It should be noted that when the static transverse electric field
is absent, u = O and Eq. 58 becomes (D_D+DZ) = 0. Then the dispersion
equation for the uncoupled longitudinal mode is given by D, = 0, i.e.,

02 =

_ 2 _ 2
(w kubi) (o kube)

s (71)

which is the familiar expression for a two-stream system.
Similarly the various factors appearing in Eq. 60 can be written

as
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2 1
wwll + ——5
an) P < 2a U2 >
D <i + 1 + e+ -1
* (0®-c%k?) (wtq ) 2a,U% (6P-c2k®) (wto ) ’
2 2
D = &i + (i -1
z o2 o ?
ﬂp Z Uo (DP Z Uo
= — - — + — - —
(B 6R).
2
- e (4G s 6o (D3]
+ 2_c2K2 U 2 )1 2 /JT\ & /L2
0, (0%-c®k%) L U, 20, U% U, 20, U2 k/us

2
+_OJ£_UO_[1_<]_+ 1 >_i<l+__1;_>+<%>i]
2 2,2 u 2 U 2 - k o
o (a®-c%k=) Ly 20 u? ° 2a US Uz

(72)

It should be observed that when a transverse static magnetic field is
absent, v = 0 and Eq. 60 becomes (D_D+DZ) = 0. Then the dispersion

equations for the uncoupled transverse modes are given by D, = 0, i.e.,

2 >
L oo <§ .1 >.+ wf (} .1 >
= 5.V g 3 - A YA p—]
(0®-c2k )(w_QZ) 2o, U3 (w®-c%k )Qn_ag) 20 u3

(73)

Furthermore if |Q&v§| >> 1, and Iaeuil >> 1, then Eq. 73 becomes

2 2
me abw

PP o) | P eta) | (74)

which is a familiar expression in the cold-plasma theory. Equation Tk

is that given by Denisse and Delcroix® and is simply the Appleton-Hartree
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equation of the magnetoionic theory. It should be noted from Eq. 17 and
Eq. 27 that @ 1is opposite in sign to ®,, i.e., @, = [(e/m) Boz] and

Q, = [-(e/M) Bl

With the aid of the coupled Boltzmann-Vlasov-Maxwell equations,
under a small-signal, one-dimensional analysis, the dispersion relation
for a finite temperature, homogeneous, magnetoactive plasma has been
derived. Equation 36 is applicable to the case of longitudinal propa-
gation in the presence of a transverse static applied electric fileld,
as well as to the case of oblique propagation in the absence of a
static electric field. Once the time-independent parts of the distri-
bution functions of constituent plasma particles and applied static
electric and magnetic fields are known, the R ,q elements of the
determinant in Eq. 36 are specified and the dispersion equation can be
solved for the propagation constants.

Although various forms of the time-independent distribution
functions may be considered and used in the evaluation of the elements
of the determinants in Eq. 36, the present report considers a Maxwellian
distribution function. For a homogeneous Maxwellian plasma the dis-
persion equations for Cases 1 and 2 are given by Egs. 58 and 60,
respectively.

It should be pointed out that the formulation of the dispersion
relations in the form given by Eg. 36 has certain advantages since the
various characteristic modes (i-e., the right-hand and left-hand
circularly polarized transverse modes and the longitudinal modes) can

easily be identified and their possible mutual coupling caused by the
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presence of static transverse electric and magnetic fields is clearly
indicated. Furthermore, a detailed study of these derived dispersion
relations should provide useful information with regard to: (a) the
effect of transverse static electric or magnetic fields on the propa-
gation characteristics of electromagnetic waves in a magnetoactive
plasma, as well as on the polarization of the wave, and (b) the
question of energy conversion between the modes (with the aid of

Egs. 32).

The dispersion relation given in Eq. 36 is particularly suitable
for the study of the coupling of the longitudinal mode to the transverse
modes due to the transverse static electric or magnetic field present
in the system. A natural important question then arises as to how
effective is this type of coupling. This question is being investigated
presently and will be discussed in a future report. For example, by
this type of coupling mechanism, the energy carried by a longitudinal
plasma oscillation may be converted into the transverse electromag-
netic wave energy in the solar corona, thus leading to the escape of
solar radio noise from the solar corona.

There are also phenomena found in the earth's ionosphere, e.g.,
the cutoff, amplification, and Landau damping of a whistler propagation
in the ionospheric plasma, which may be explained by this type of
coupling mechanism. In addition, the triggering of VLF emissions by a
whistler in the ionospheric plasma, recently observed by Helliwelll©,
might also be explained. Finally this type of coupling mechanism may be
at work in some laboratory devices involving the interaction of the

transverse cyclotron wave and longitudinal space-charge waves.
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APPENDIX A. DERIVATION OF VARIOUS EQUATIONS

A.1 Derivation of Egs. 27 and 29

From Eq. 25, for Case 1 QQ+ =w =0 and a, = 0):
of of
- 1 + 1
55 = v f. oed 5 0= —f,, (A.1)
L vy avL v, *
: . 2
J(otw )f_ - a_ v, T nMO-(fo)E_ ,
; - - S
jlb-w )£, - a, S = W, (fE,.
L +
2a_ 2a+ Bfo
jog - ——f, -—f = n5-EF, , (a.2)
1 L b4
where b = (w-kvz) and 1 = (e/m).

When the fact that b/avl(ﬁ+/vl) = 0 and a/avl(f_/vl) = 0 is used,
with the aid of Eq. A.1l, differentiation of Eq. A.2 with respect to v,
gives (Bg/avl) = (n/jb)(B/avl)(afo/évz)Elz so that Eq. A.2 can be

written as

_33 -
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3 afo
M (£,) na_ 5 < S
- 1
- J'(b+mz) E_- b(b+wz) E1z

nMO+(fO) na, g— < e >

e R S e PR
&y
-2<V—L>HMO_(fO) ( = ), (2,
€~ b(b+w_ ) b(b-a) Fe
5 afo afo
ha a_ K S;I <'5;; > L 5;; (a.3)
J 2 2 M Bz - A3
vJ_ b(b —(Dz> J
For Case 2 (a+ =a_=a = 0), from Egs. 25,
VZ
p(f,) = —;Ift ,
jlo+w )f_ - jod(g) = M (£)E_ , (a.4)
Jlo-w )f, + jo,D(g) = M (£ )E, (a.5)
and
. VZ VZ afO
Jbg+jw_2<v—>f+-ja>+2<v—>f_ = 157 B, - (A.6)
L L zZ
Using the fact that
VZ
D<-v—ft> = f, eand D(bg) = - (kvl)g+bD(g) , (A.7)
L
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and then operating D on Eq. A.6 yields

kv W w of
2@ - (gera(Pr-2(F)e -0 (52,
2

O

(A.8)

Substituting Eq. A.8 into Egs. A.4 and A.5, and solving algebraically

for £, f+ and g in terms of E , E, and Elz gives

£ = k E +k E +k E _,,
f+ = k21E- * k22E+ * kesElz’ ’
g8 = KguE_ *+k B +KkgFE ,, (A.9)
where kll = (bll/Ab)[(wé;b)bz + 2w ],
k, = (b, /6 ) (20fw),
kg = (b /8 )[(0,-b)b?] + (b_ b )Mo (kv )b(b-w, )]
kpy = (b,./8,) (20fw),
kyy = (b /A )[-bF(b+w) + 20,0 wl
Ky = (-bea/Ao)[b2(b+wZ) - o o] - (bss/Ao)[w+(ka)b(b+<nz)],
ky, = (—bll/Ao)[2w+b(b-wz)],
kg = (b /A )[20 b(b+w )],
Kes = (/8 ))[-2b) 0% + 20, 0 2] + (b, /A)DZ(0%wl-boow )],
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where
= .2 2 .2 = p2
s, = bEhww o+ (6)-b%)b] b%_

afo

b, = -pM(f) , b =0, b = -:103_71]3(?z ’
of

b21 = 0 , b22 = - JbT]MO(fO) P b23 U)T]D <W s

v, Bfo
by, = 0 5 bgy = 0, Dby = JT‘(?’;)E

A.2 Determination of Rp q (for Case 1 with Weak Transverse Static
oL , =

Electric Field)

Assuming that

2, 2
Se - +
e[(vz uoe) VL]
f = ne 5

2, .2
4xi[(vz-uoi) +vl]

F = Ne s (A.10)
then
afo afo
S;; . 2ae(vz_uoe)fo ’ SVI = -aayv it o,
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Furthermore,
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13

21
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from Eq. 28,

kuoe
2a <1 - > (vlfo)

i (o+w,)

g (2ae )2 a_ (vz-uoe) (vao )

b (b+a>z)

kuoe
20te“e( T Tw >(V¢fo)

AICE) ’

n,(2a )% a, (v -u)(v £)
b(b-a)Z) ’

g kuoe
llaenea+ <l - )fo

can be obtained by replacing fo, O!e, Ner» U

)
b(b-lwz)
ku
ha n a ( - Oe> f
ele - w o]
J
b(b+u>z)
- - 2 -
20[ene(vz uoe)fo +j ha+a_ne(2ae) (vz uoe)fo (A 1
jb b(bz—wj)

oe? i and W, by Fo’ 04

., A, and QZ respectively in Eq. A.11. Let

1)

i)
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. we
=(2)
R = = 2 = 1 2
pa  (0P-cBx?) pya 0 T e » 50
- j2ne _ -
_(DeorP)Q>P"3’q L, 25,
with
%
™p,4q = f p,q(Vz)dv 5 p= 1,2 35 q = 1,2, 3
-0
o0
Efvznp,(v)dv 5 p = 3 3 q = 1,2, 3,
- 00
where
[ee]
— 2
v —
gp,q( Z) f L( P,q p,q) Voo
0
(o)
v = v -C dv
Ny, q0%%) f (€57, 0,
0
and let
0 vy
£, = wonol(vz)e ,
-0y ve
FO = WONOL(VZ)e ’
in which
<ae 3/2 e(D/KTe _ <ai 3/2 -(e@/KTi)
WO = _— e s W = - e b4
T (o] id
-a (v -u )? -a, (v_-u ,)®
Mv) = e 2 | p(v) = e L 2ol

(a.12)

(A.13)

(A.1ka)

(A.1kp)

a
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Define

the integral

_59_
—_ m
¢, = 2XT_ oy
2
A _a
av = EE , I
2
-aevld 1 .
vy 2a
e
o0
QO[Y] =

-00

]

3i

i

f Y(v,)av,

05V b =
oo 7
- 2
“Wioo. 1
1 2Oti

Then substituting Eqs. A.1l into Egs. A.1l4, with the aid of Egs. A.12

and A.13, yields

11l

12

13

21

22

ku . L(v_)
.oty Q
<. @ > 10 ['b+9
O I
(v_=u ,)L(v_)
jaaiA D Q { z ol Z
=310 b(b+QZ)
O 2
( ) kuoi> ] L(vz)
w 1Qo b-QZ

ZZJ,L(J_ ;

kuoe
w > deo

] + J2aea_deo [

(o] e

(A.15p)

(a1 3
b(bmz) ’

(A.15¢)

(A.154)
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where

Let

-L0-

. (VZ_uOi)L(vZ) . (vz—uoe)l(vz)
JeaiA+D1Qo [ b(b-Qz) ] * Jgaea+d1Qo [ b(b—ooz) :‘ ’

(A.15%)
. kuoi VZL<VZ ) . kuoe
-3 <l alm 2A+D2Qo [b(bﬂlz)] - J < T >2a+d2QO

.[VZI(VZ)J , (A.15g)

b(bmz)
. < kuoi VZL<VZ) . kuoe
-jl1 - > 2A_D2QO [b(b—Qz):l -J < "% >2a_d2Qo
v l(v )
Z b4
[ b(b-wz)] ;o (Ae25h)
v (v_-u .)L{v ) v (v -u )a(v)
oi z 'z oe Z
Don !: b J+ szo [ b :’ - 80LiA+A—Don
Vz(v -uoi)L(Vz):; {i Vz(vz-uoe)l(vz)} .
[ b(bZ-Qi) + 80 a8 d.Q b(bz—ai) , (A.151)
2 2
N (&aiwolsi)wnp I (uﬂaiwolli)op
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Since

where

I+

and

I+

‘
LR [
- o [vzwzbuoi)L] =g [! <vz: eﬁ} ,
o[ gbzozmi v (v

NAEE N <1-f:-e-> oy

(&) - (&)

[(D2T + dgT) - 1]

[(ZoDth + zodlki) - 1]

V and v can be written as

Vo=V +V_
= 1 2p (L .
= 2% [VZL <bi-Q
= 1 2 1
= 3% [sz (gﬁw

Egs. A.15 can be written as

and
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where

(o_+1) ,
Jeu, B_

-J2u oy,
'J'2H20«'_ s

(D, + 1) + b p (7,

0]

+
2 (oziD2V L tady,

+y ), (A.16)

(ZODasi + zodgst) ,

(aiDlec + oﬁedl]?i) ’

) . (A.17)

Substitution of Egs. A.16 into Eq. 36, with the aid of Egs. A.1l7, yields

DOD, = -hpp DMy -ap)+d Dy, -ap6)] , (a.18)

which 1s Eq. 58.
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Define the integrals Gp(Y)\and gp(Y) as

W = L [ 7
Gp Y) = 7_; J —(TY)-G.VZ s
- J > vil(vz)
SP(Y) = —«/—; -(VTY—)de ’

8

which has been discussed by stix®. By simple manipulation of the

integrand in Egs. A.19 it can be shown that

1

G, (YY) = j—+vc (v) ,
lY J Ja—i Y.O
G(Y) = j(¥+u,) —2—+y? ,
2 JY uOl \/az-'- GO(Y)
g (¥) = §——+71g(v) ,
1 \/‘a_ (@]
e
g, (¥) = j(x+u ) \/la_ﬂ‘Yago(Y) ,

(A.19)

(A.20)




Sl
so that
K, = j-i‘/:’;-eo(ug .
S, = ¥ J%E [v,6 (u,) - UG (U] ,
P, = ¥ ié: (v,-u )6, (v,) - (U -u e (U)]
o gk - - -u )+ 5 (U0 ) —=— | ,
v, = 3% [Ut(Ui u ;)6 () - U (U -u )6 (U ) + 3 (U,-U JE; J
U
R GG R Sy
1
K - e
s, = 730 e () - U (W)
p, = ¥ ;éi [Cuy-u Je, (u,) - (U -u_ e (U)DT
v, = ] —g [:ut(ui—uoe)go(ui) U (Uo-uoe)go(U ) + J(u -Ug ) —,\/E:J ’
e
. ‘\/; . UO (A 21)
T = i [Uo(Uo—uoe)go(Uo) Y= ] : :

(0]
e

Upon substituting Eqs. A.21 into Egs. A.16 and A.17,

. -
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UO
D, = {Rz [Uo(Uo—uoi)Go(Uo) t 75:1 J *r, [Uo(Uo_uoe)g (U )
U
2]
Jo_
e
D, = {Rl [z G (U] + r [z (u)] - l} )
a, = ¥RZ[U,6.(U,) - UG,(U)] 7 rz [ue () - Ve ()]

Bi - +R a [(U u_s el (U+) - (U - )G (U )] F rlae[(ut-uoe)go(ui)

- (Uo-uoe)go (UO)] ,

Q
- - - U-u_ e (U)+j z
71 Reai {:U (U u ')G (U Uo( o ol"70o' o
~lai k
wz
+ rzae [ui(ui-uoe)go(ui) - Uo(Uo-uoe)go(Uo) 3 \/Ct— Kk :, ? (A.22)
e
where
R = s _\./—1- D = J <>
AN i (o® c2k2

0
1]
7N
Ca.
=&
[wr]
N NS
1l

s20y oy W, <o.>&z><%> ’

33 v, -czke><>

o
1]
o
<l

e
N
It

Jz .
_ (. N=x _ / = @
r, = \J = d2> = JEOLi Oti W <ua2 ><k> 5
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with
-(e®/KTi) (e@/KTe)
i = e and w1 = e

and for a homogeneous plasma ¢ is independent of z.

A.3 Determination of Rp’q

For Case 2,

(24 ?)

f = nw s
o o1
-a; (v + v))
F, = NW e ,
of of
=2 = -2c v T —2 = -2a v
sz ez o0 ’ BVJ_ el 0
3 Bfo o
a:(w) = ()R vvg, s Dg) =0,
Then from Egs. 25,
joan (v £)
— ele' 170 B2 4+
k %, [(a)Z b)b 2oww]
jean (v £)
_ ele' 170 >
k12 - bd (2“)—“)) ’
o
jean (v £)
ele’ 170
kls - b 6 [(D_(D(Cbz-b ) ] )
o
jea n (v £)
_ ele* 1 0
k21 N bao (2“3:21-“)) ’
-j2a n (v £ )
k= St bR re) - 200 0]

22 bd
o

(A.23)

—eaevif’o

(A.2ha)

(A.24D)

(A.2h¢)

(a.24a)

(A.24e)
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jean (v £ )w

_ e'e Lo +
k,, = N [a)(b+wz)] , (A.24r)
-jea n (v f)
k, = eae 20 [2a)+(b-a>z)] R (A.2hg)
o

jQOtene (VZI’:‘O)
sz = 5, [20_(b+w )] (A.2kn)

-jaa 7 (v £)
= €€ 20 2_,2
k,, = 5, (b —a)z) , (A.241)

where

8, = [(a)i-bz)b + ho,o o]

Kp,q can be obtained by replacing fo’ O!e, Ng» @y @ and 80 by

Fo» G4 -nys Q,, 0, and A in Egs. A.2k. TLetting
-a_v2 -, v2

l(vz) = e % ana L(vz) = ¢ 12

in Eq. A.14b, and defining

o]

= 2
vk -k av. = 1, 2 ; = 1, 2
P,q j l(p,q p,q)l’ P ’ > 4 » &3
0

ve
it

]

v (K -k )dv
p,q of 1 ,q Kp, g% 5 P

Il
W
-

qQ = 1, 2,3 ,

)
1l

with the aid of Egs. A.12 and A.13, gives



I
) ) ) (o, 2
= - + + -
11 DlQ'o { Ab [(Qz b)b 294'9-&] deo { 50b &, b)b I
+ 2a>+w_a>]} I
L(vz)2sfa> [ l(vz)abfu) I
= —_— |+ —_———
Rlz D:LQ‘O l: Ob ] de'o ESOb :’ ?
L(v,) 1) |
R, = D.Q [ < Q_w(Qz-b)J + deO 5.b a)_a)(cnz-b)] ,
. . 1
1o L(vz)29+a) aa l(vz)2a>+a>
R21 . 10 Ab 10 Bob ? l
2y) e [b2(b+ )
R,, = -DlQo{ 5 [© (b+9 - 20, 0 w]r- d,Q) 8b w, l
- 2a)+a)_m] } '
L(v, )Q t(v, I
R, = DlQO{ oF [wb (b+0 )]} d,Q { = [ab (b+o )]}
L(v,) le(vz) 7 I
R, = =D [——A—— 20, (b-0 ) | - a8 5 2cn+(b—mz)J ’ l
V2L, Vi, |
Rzgp = DaQ‘o [ A 29-(b+QZ)J * d2Q‘o _go—_— 2(‘D-(b-'-wz) 1’ l
viL(vz) 2 42 vil(vz) 2 2
Ryg = D8, [—z——— (o -QZ)] - 4.9 [’_a;— (b -wz)] , (A.25) l
where Q‘o’ Dl, D2, dl and d2 are as defined previously in Egs. A.15. It I
should be observed that the integrand of Rp @ p,q =1, 2, 3 in Egs. A.25,
2
has singularities at v, for which b = 0, A= 0 or 80 =0, i.e., I
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3_ 0% -Llg Q0w = O (A.263)
Z + -
and
b° - afb - boww = O (A.26D)

which are the cubic equations in b, whose discriminants are given,

respectively, by

D>
1

27 (ka0 @) - 4(a2)® (A.272)
and

5 = 27(MQ¢DJD) - b (o )3 . (A.27b)

It is not difficult to see that Eqs. A.26a and A.26b have
either only one real root and two complex conjugate pair roots or
three real roots according to whether A, > 0 or A, < O, and 6, > 0.

or 82 < 0, respectively; in other words, according to whether

O N2 /o, N2
108( > > <5—> > 1 or < 1 (A.28a)
o .
w w
108 <v ~

Suppose that the following conditions are satisfied:

and

> 1 or < 1 . (A.28b)

< > ( > <B—°3-‘—+B§I> < 1 . (A.29)
Then
A = b(Qi-bz) and B = b(wi-bz) . (A.Bo)
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then Eqs. A.25 can be written as
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- o [m2] )
o, [ s
o [ B |
o [ ]
QO[VEI;WZ)J ,
(9,/0) = (/o)
(a/8,) = (o /o)

[((p,B, +4ab,) -1]
[(D2H + d2h) - 11 ,

[(D,B_ +dap_) - 1]

)

I+

1

£(
Q'O

0.)2
Q | =

(A.31)

3
’
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R, = (o, +1) -2vv el ,
R, = -2v2 ol
R:L3 = v, wM+ s
R, = -2v2 ol
R,, = (D_+1)-2vyv ol ,
R,, = v, ®0M + 2va2 ®Q
R, = 2v, N,
Rgp = ~2v,N_
R, = (DZ +1) , (A.32)
where
I = (ch + dlc) ,
M, = (o, x, + dlxi) ,
N, = (0,6, +de)
Q = (F +af) . (A.33)

Substitution of Egs. A.32 into Eq. 43 yields
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2.2
(D+ - 2vlv2wI)[DZ(D_ - 2v1v20>I) - 2v v aMN_ + )-Lvlvza) QN ]

2 1 (oy2 + .82
+ 2v2wI( 2vla>I D, EVfwM_N_I_ hvlvza)QN+)

2 -
+ v2a>M+ (hvlvawIN_ - 2le_1\I+ + lwl%gwIN_l_) = 0,
= + -
DD D, v v [D (D, +MN) +D (D, +MN_) - 2v v QDN ]
- hvagbz {(N+ + N_) [I(M4 + M_) + 2vlv2;Q]3 . (A.34)

Tt should be noted that since

QL
) z 11 _ 1 i
¢ - Qo[%a<b-nz b+92>] =3 K-x)

and

QL
- z_ |1 1 2L y_1 - 1 -
Fos Qo{b2 [2(10-9 +b+nz> b]} =z LX) - H,

2

where

QéL
By = Q0<b3 > ’

I and Q can be written as

1
I = 50 -M)
and
1
Q = 5 M +mM)-H |, (a.35)
where
H' = (D.H +dh)
3 13 13

Since 4v1v2 << 1 is assumed, and M_ and Q are of the same order

of magnitude, Eqs. A.34 can be reduced with the aid of Egs. A.35 to
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DD, = vyvo[DM(N -D)-pM (N -D)+D (DM -DM)I]
taviZe® [ - ¥3) (v, +w )] , (a.36)

which is Eq. 60 for vZ = (vlvz).

On the other hand, with the aid of Egs. A.19, X, can be written

as
x = o |ERA- 2 )] - o () _-Bfy(r. 2
+ - % |5 \p " o e = % \33) "% b ~ bro ’
z 7, 2
so that
LR U USSR
where
= L
H2 —Q'O b2> )
Similarly
_ = _ _
X = kQ, [GO(U—) Go(Uo)] H, >

where the Go's are as defined in Egs. A.19.

However, since

G = 9 [VZL G_ lz >J ) jk\/; e, (0,) - o (U]

then from Egs. A.20,

. 4w [ e 1y -
G, = 5 [UOGO(UO) vie (U,) + = (U, U+)J
i
Similarly,
G = J;/; [U‘_?GO(U_) - v36_(U) + 3 — (- UO):I
Vo4
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Furthermore,
B, = j—‘l/{—;-Go(Ui)
and
= J%E [Uscb(Uo) *d _—i_'Uo]

Substituting these expressions of X, Gi, etc., into Eqs. A.32 and

A.33 gives
Uo Y
D = {? [UZG (U) + j —= J +r [Uzg (U)+3 J - }' ’
z 2 |0 0 0 2 | 0% ‘o
T Iz
p, = [RG(u)+re(u)-11,
- o o + 3 L Qzﬁ - 25 (u,)
N, = +R2 UiGo(Ui-) —UoGo(Uo) —J_\/—&———E T, U8\ Uy
i
I
2 . L z
-Ug(U)ta————J p
o°0' o k
Vo,
R, Ty
M, = g [e (W) -6 (U)DT + = [g (w,) - g (u)] £ (DH, +dh) .
2,

Z

Since Rl = (j \/;/k)Dl and r = (3 ’\/;/k)dl, and by defining

(o]
Q L{v. )
A = z h/\ —2 a4y s

_ 2 Z
-0 (vZ UO )

00

1(v_)
A = .wz f—_—z av_ (a.37)

2 z
(vZ—Uo)

M, camn be expressed as
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Z

A.4 Derivation of Egs. 70

From Egs. 69

Gy (Ui)

g, (u,)
and

R,Z G, (u i)

rIZOgO(ui)

Therefore

R r
M, = 'Q—l' [Go(Ui) - Go(Uo) + Al +0.)_1 [go(ui) - gO(UO) Al

R
!
.

oi

1 1

1 1+ 1 ,
Vo, (U, - u ;) [ 20, (U, - uy,)* ]

K J&—e (o, - u ) [l " 2o (u, -u )® }

R

QS Uo uoi
(w®-c2k®) \ U u b 2o, (U
+ ol i‘t

2
w U -u
= ( 2_p2k2) < > = > [l +2a ( x
we-c u, u RCH

oe

Py = {(wg-

a.%(a)—kuoe) 1
* (w2-cZk2) (a)irwz-kuoe) [l * Eae(ui_ -u_ )% ] B } ’

R2 [Uo <Uo -uo i

2
QP(w—kuoi) []_ " 1 :’
02k2)(a)inz—kuoi) gozi(Ui - uoi)2

U %
1
i e o] o B
oo 2 _ 2
ai k (Uouoi)
2
_ > __ 1
o' o o0e’"o' o 2 _ 2
\/ae k (Uouoe)

rl[U(U-u g (U ) + 3 UO]

(A.38)
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and consequently

3 %

Pz = [ (w-ku_,)® ¥ (@-ku_ )® i lJ ’

I

2 <QP >{ (I(JU': )[)I [ * 2ai(Uil-uoi)2

1
- U [l + N
o o0 - 2 J}
1 (U, u )

RZ, [u Kl (u i) - UG, (UO )]

rzzo[uigo(ui) - Uogo(Uo)]

2 (wp >{ (I(Ju_lju )u [ ¥ 2<xe(uil-uoe)2

1
o _ 2
20le(Uo uoe)

QSU
R, @, [(U,-u_ )6 (U,) - (U -u,)G (U )] = 2((132-c2k2) [ © _111 NE
+ o
N S
(Uo-uoi)2 }
2y
r,lcxe[(ui_-uoe)go(u ) - (Uo—uoe)go(Uo = 2((;?;%{2) [ (a _111 E
+ “oe

]

]

LY
CEEE SEEh GEEE IR ER R EE EEEm O BEE OB =B O B OB .y»>™:

] [ [ ) [ 3
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Q
i z
Rzai[Ui(Ui_uoi)Go (Ui) - U (Uo_uoi)Go (Uo> 1 ]

= %% (m&z >[ (U:-Ililoi)2 ) (Uol'jzoi)z ] ’

®
. 2
rzae[ut(ut-uoe)go (ui) - U, (Uo'uoe)go (Uo) £ :’

2 u+ 5
= au, <—2}—; > [ (u{‘:oe)z - (Uot-luoe)z :, . (A.39)

Upon substituting the above expressions into Eq. 58, Egs. 70 are obtained:

Q
1 Z
R[Ufc; (u,) -U% (U ) + §j —— _]
2 "+t70o % c o' o \/&—l k
2
=2&.<&>U [U <l+ l>_U<1+ 1 ;f&
i\Nw?/ ol o, U2 o 20, U2 k
i+ i’o
— — A.403a
<w2> U, >’
2
w U
2 - 2 'L —_Z- = ﬁ .—.9_ .O
r2[uigo(ui) UZg (U) * = k] w2> 5, >, (A.40Db)
e
-0 Vo
Q > O.'iv‘; jn 2a v e 1z
zZ e z i Z
A = f—(————)-é-dvz = -(——U—)dvz ’
im0 Gx J G
Qz
- 2ai<Y>Gl(Uo) ?
<QZ>[ J ( )} (A.40c)
= 20, \ =— + U G (U , A LOc
i k \/ai— 00 o0




-58-

R
1

5 [e (u,) - G (u)) £ A]

1 fp 1 1 1 1 @\ 1
= =2y L (1+r—=)-=(1+ (2% |,
Q, (o®-c22) © LY, 20, U Us 20, U2 k/ 8

1%
(A.404)
I‘1
3, [g (u,) - g, (U)) £ A]
2
1% [_1_<1+;>__1_<1+__1__>+<&>i]
o, (w®-c%k®) o |u, 2aeui U, 2an§ k Ug
(A.40e)

Substituting Eqs. A.4tO into Eq. 60 yields Eqs. T72. D, and Dz appearing
in Egs. T2 are obtained by setting Uy = = 0 in D, and Dz, given by

Egs. T0.
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