DISPERSION RELATIONS FOR A MAGNETOACTIVE FINITE TEMPERATURE PLASMA

By:
H. C. HSIEH

GPO PRICE $\$$ \qquad
September, 1966
CFSTI PRICE(S) $\$$ \qquad

ELECTRON
 PHYSICS LABORATORY

Hard copy (HC) \qquad
Microfiche (MF) \qquad ff 853 July 65

DEPARTMENT OF ELECTRICAL ENGINEERING THE UNIVERSITY OF MICHIGAN, ANN ARBOR

CONTRACT WITH:
OFFICE OF SPACE SCIENCE AND APPLICATIONS, NATIONAL AERONAUTICS AND SPACE ADMINISTRATION, WASHINGTON, D. C. RESEARCH GRANT NO. NsG 696.

THE UNIVERSITY OF MICHIGAN ANN ARBOR, MICHIGAN

Technical Report No. 95

Electron Physics Laboratory Department of Electrical Engineering

By

H. C. Hsieh

Project 06621
RESEARCH GRANT NO. NsG 696
OFFICE OF SPACE SCIENCE AND APPLICATIONS
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGION, D. C. 20546

September, 1966

The dispersion relation for a finite temperature magnetoactive plasma is derived in a form particularly suitable for the study of the effects of transverse static electric and magnetic fields upon the coupling between the transverse and longitudinal modes. The derivation is based on the coupled Boltzmann-Vlasov-Maxwell equations under the one-dimensional small-signal assumptions.

The time-varying parts of the particle distribution functions for a two-component plasma are divided into three parts; namely, those associated respectively with the right-hand and left-hand circularly polarized transverse waves and that associated with the longitudinal mode.

The mode coupling equation, which relates the dynamic electric fields of these modes, is derived in terms of the time-independent part of the distribution function for two cases: (a) longitudinal propagation in the presence of a transverse static electric field, and (b) oblique propagation in the absence of static electric field.

If the time-independent portions of the distribution functions are taken to be Maxwellian it is shown that in the low-temperature limit the dispersion relationship reduces to the familiar expression for the cold plasma. Possible applications of the derived dispersion relationship are briefly discussed.
Page
ABSTRACT iii
LIST OF ILLUSTRATIONS v
I. INTRODUCTION 1
II. MATHEMATICAL FORMULATION 2
III. DERIVATION OF DISPERSION RELATIONSHIPS 8
IV. TIME-INDEPENDENT DISTRIBUTION FUNCTIONS 17
V. MAXWELLIAN PLASMA 21
VI. SPECIAL CASES 28
VII. CONCLUDING REMARKS 31
APPENDIX A. DERIVATION OF VARIOUS EQUATIONS 33
A. 1 Derivation of Eqs. 27 and 29 33
A. 2 Determination of $R_{p, q}$ (for Case 1 with Weak Transverse Static Electric Field 36
A. 3 Determination of $R_{p, q}$ 46
A. 4 Derivation of Eqs. 70 55
LIST OF REFERENCES 59
Figure Page
$1 \quad$ Quadrant Diagram for the $\alpha_{n}(\operatorname{sgn} k)$ Plane. 26

I. INTRODUCTION

Wave phenomena in plasmas have been studied by many authors ${ }^{1-6}$ under a variety of assumptions and, in general, coupling between transverse and longitudinal modes is neglected. The longitudinal and transverse oscillations in plasmas are strictly uncoupled only in the case of a nonrelativistic plasma and in the absence of any external magnetic fields and temperature or density gradients. The presence of an external magnetic field ${ }^{7}$ or inhomogeneities in plasma density ${ }^{8}$, 9 and/or temperature result in the coupling of the longitudinal and transverse modes.

It is also a well-known fact that in the absence of a transverse magnetostatic field there exist two purely transverse and two purely longitudinal waves. The existence of a transverse magnetostatic field introduces a coupling between the transverse and longitudinal motion of the particles. Thus there appear mixed modes having both transverse and longitudinal components. This fact has been demonstrated theoretically; for example, by Denisse and Delcroix ${ }^{2}$ for a uniform, unbounded twocomponent plasma based on a macroscopic description which uses Maxwell's equations together with the continuity equation and the equation of momentum conservation. They assume that the thermal velocity is negligible compared to the phase velocity of the wave and, of course, develop a linear theory.

It is the purpose of the present report to derive the dispersion relationship for a magnetoactive finite temperature plasma in a form
which is suitable for the study of the coupling of transverse and longitudinal modes due to the presence of transverse static electric and magnetic fields. The derivation uses Maxwell's equations together with the Boltzmann-Vlasov equation and the effect of particle thermal motions is taken into account.

II. MATHEMATICAL FORMULATION

Consider a two-component plasma in which collision effects are assumed to be negligible. The electron distribution function $f(\vec{r}, \vec{v}, t)$ and the ion distribution function $F(\vec{r}, \vec{v}, t)$ for this plasma are governed by the Boltzmann-Vlasov equation:

$$
\frac{\partial f}{\partial t}+\vec{v} \cdot \nabla f-\frac{e}{m}(\vec{E}+\vec{v} \times \vec{B}) \cdot \nabla_{v} f=0
$$

and

$$
\begin{equation*}
\frac{\partial F}{\partial t}+\vec{v} \cdot \nabla f+\frac{e}{M}(\vec{E}+\vec{v} \times \vec{B}) \cdot \nabla_{v} F=0 \tag{1}
\end{equation*}
$$

where m and M are the electron and ion mass respectively and e is the electronic charge taken as a positive quantity. The electromagnetic fields in the plasma are governed by Maxwell's equations:

$$
\begin{align*}
\nabla \times \overrightarrow{\mathrm{E}} & =-\frac{\partial \overrightarrow{\mathrm{B}}}{\partial t} \\
\nabla \times \vec{H} & =\vec{J}+\frac{\partial \vec{D}}{\partial t} \\
\nabla \cdot \vec{D} & =\rho \\
\nabla \cdot \vec{B} & =0 \tag{2}
\end{align*}
$$

where the electric displacement vector \vec{D} and the magnetic flux density \vec{B} are, respectively, related to the electric field intensity \vec{E} and the magnetic field intensity $\overrightarrow{\mathrm{H}}$ in the following manner:

$$
\begin{equation*}
\vec{D}=\epsilon_{0} \vec{E} \text { and } \vec{B}=\mu_{0} \vec{H} \tag{3}
\end{equation*}
$$

where ϵ_{0} and μ_{0} denote the permittivity and the permeability of the vacuum. The convection current density \vec{J} and the charge density ρ may be written in terms of the distribution functions as

$$
\begin{equation*}
\vec{J}=e \int \vec{v}(F-f) d^{3} v \text { and } \rho=e \int(F-f) d^{3} v \tag{4}
\end{equation*}
$$

Consider that all quantities of interest are composed of a
time-independent part denoted by the subscript 0 and a time-dependent part denoted by the subscript l:

$$
\begin{align*}
& \vec{B}=\vec{B}_{O}(\vec{r})+\vec{B}_{I}(\vec{r}, t) \\
& \vec{E}=\vec{E}_{O}(\vec{r})+\vec{E}_{I}(\vec{r}, t) \\
& \vec{J}=\vec{J}_{0}(\vec{r})+\vec{J}_{I}(\vec{r}, t) \\
& \rho=\rho_{0}(\vec{r})+\rho_{I}(\vec{r}, t) \\
& f=f_{0}(\vec{r}, \vec{v})+f_{I}(\vec{r}, \vec{v}, t) \\
& F=F_{0}(\vec{r}, \vec{v})+F_{I}(\vec{r}, \vec{v}, t) \tag{5}
\end{align*}
$$

Upon substituting Eqs. 5 into Eqs. 1, 2 and 4, the following timeindependent set of differential equations (Eqs. 6) and the timedependent set of equations (Eqs. 7) are obtained:

$$
\begin{align*}
& \vec{v} \cdot \nabla f_{0}-\frac{e}{m}\left(\vec{E}_{0}+\vec{v} \times \vec{B}_{0}\right) \cdot \nabla_{v} f_{0}=0, \tag{6a}\\
& \vec{v} \cdot \nabla F_{0}+\frac{e}{M}\left(\vec{E}_{0}+\vec{v} \times \vec{B}_{0}\right) \cdot \nabla_{v} F_{o}=0, \tag{6b}
\end{align*}
$$

$$
\begin{gather*}
\nabla \times \vec{E}_{0}=0, \tag{6c}\\
\nabla \times \vec{H}_{0}=\vec{J}_{o}, \tag{6d}\\
\nabla \cdot \vec{E}_{0}=\frac{\rho_{0}}{\epsilon_{0}}, \tag{6e}\\
\nabla \cdot \vec{B}_{0}=0, \tag{6f}\\
\vec{J}_{0}=e \int \vec{v}\left(F_{o}-f_{o}\right) d^{3} v \tag{6~g}\\
\rho_{0}=e \int\left(F_{0}-f_{o}\right) d^{3} v \tag{6h}
\end{gather*}
$$

and

$$
\begin{align*}
\frac{\partial f_{1}}{\partial t}+\vec{v} \cdot \nabla f_{1}-\frac{e}{m}\left(\vec{E}_{0}+\vec{v} \times \vec{B}_{0}\right) \cdot \nabla_{v} f_{I} & -\frac{e}{m}\left(\vec{E}_{I}+\vec{v} \times \vec{B}_{1}\right) \cdot \nabla_{v} f_{0} \\
& =\frac{e}{m}\left[\vec{E}_{I}+\left(\vec{v} \times \vec{B}_{I}\right)\right] \cdot \nabla_{v} f_{I} \tag{7a}
\end{align*}
$$

$$
\frac{\partial F_{1}}{\partial t}+\vec{v} \cdot \nabla F_{1}+\frac{e}{M}\left(\vec{E}_{0}+\vec{v} \times \vec{B}_{0}\right) \cdot \nabla_{v} F_{1}+\frac{e}{M}\left(\vec{E}_{1}+\vec{v} \times \vec{B}_{1}\right) \cdot \nabla_{v} F_{0}
$$

$$
\begin{equation*}
=\frac{-e}{M}\left[\vec{E}_{I}+\left(\vec{v} \times \vec{B}_{I}\right)\right] \cdot \nabla_{v} F_{I} \tag{7b}
\end{equation*}
$$

$$
\begin{equation*}
\nabla \times \overrightarrow{\mathrm{E}}_{I}=-\frac{\partial \overrightarrow{\mathrm{B}}_{1}}{\partial t} \tag{7c}
\end{equation*}
$$

$$
\begin{equation*}
\nabla \times \vec{H}_{1}=\vec{J}_{1}+\frac{\partial \vec{D}_{I}}{\partial t} \tag{7~d}
\end{equation*}
$$

$$
\begin{equation*}
\nabla \cdot \vec{E}_{I}=\frac{\rho_{I}}{\epsilon_{0}} \tag{7e}
\end{equation*}
$$

$$
\begin{equation*}
\nabla \cdot \vec{B}_{1}=0 \tag{7f}
\end{equation*}
$$

$$
\begin{align*}
& \vec{J}_{1}=e \int \vec{v}\left(F_{1}-f_{1}\right) d^{3} v, \\
& \rho_{1}=e \int\left(F_{1}-f_{1}\right) d^{3} v \tag{7g}
\end{align*}
$$

In the present report the following assumptions are made and a rectangular coordinate system is employed:

1. Small amplitude conditions are satisfied so that the terms involving the products of time-dependent quantities are regarded as negligible.
2. All quantities vary only with one spatial variable, z.
3. All time-dependent quantities in the system have the $e^{j(\omega t-k z)}$ time and distance dependence.

By Assumption No. 2 Eqs. 6 c and 6 e imply that

$$
\begin{equation*}
E_{o x}=\text { constant }, E_{o y}=\text { constant and } \frac{\partial E_{o z}}{\partial z}=\frac{\rho_{0}(z)}{\epsilon_{0}} \text {, } \tag{8}
\end{equation*}
$$

and Eqs. 6d and 6f yield

$$
\begin{equation*}
\frac{\partial B_{o x}}{\partial z}=\mu_{0} J_{o y}, \frac{\partial B_{o y}}{\partial z}=-\mu_{0} J_{o x} \text { and } B_{O Z}=\text { constant. } \tag{9}
\end{equation*}
$$

Under the above-mentioned assumptions, Eqs. 7a and 7b become, respectively,

$$
\begin{array}{r}
j\left(\omega-k v_{z}\right) f_{1}-\frac{e}{m}\left[\left(E_{o x}+v_{y} B_{o z}-v_{z} B_{o y}\right) \frac{\partial f_{1}}{\partial v_{x}}+\left(E_{o y}+v_{z} B_{o x}-v_{x} B_{O z}\right) \frac{\partial f_{1}}{\partial v_{y}}\right. \\
\left.+\left(E_{o z}+v_{x} B_{o y}-v_{y} B_{o x}\right) \frac{\partial f_{1}}{\partial v_{z}}\right]=\frac{e}{m}\left[\left(E_{1 x}+v_{y} B_{1 z}-v_{z} B_{1 y}\right) \frac{\partial f_{o}}{\partial v_{x}}\right. \\
\left.+\left(E_{1 y}+v_{z} B_{1 x}-v_{x} B_{1 z}\right) \frac{\partial f_{o}}{\partial v_{y}}+\left(E_{1 z}+v_{x} B_{1 y}-v_{y} B_{1 x}\right) \frac{\partial f_{o}}{\partial v_{z}}\right] \quad(10) \tag{10}
\end{array}
$$

and

$$
\begin{align*}
& j\left(\omega-k v_{z}\right) F_{I}+\frac{e}{M}\left[\left(E_{o x}+v_{y} B_{o z}-v_{z} B_{o y}\right) \frac{\partial F_{1}}{\partial v_{x}}+\left(E_{o y}+v_{z} B_{o x}-v_{x} B_{o z}\right) \frac{\partial F_{1}}{\partial v_{y}}\right. \\
& \left.+\left(E_{o z}+v_{x} B_{o y}-v_{y} B_{o x}\right) \frac{\partial F_{1}}{\partial v_{z}}\right]=\frac{-e}{M}\left[\left(E_{1 x}+v_{y} B_{1 z}-v_{z} B_{x y}\right) \frac{\partial F_{o}}{\partial v_{x}}\right. \\
& \left.+\left(E_{1 y}+v_{z} B_{1 x}-v_{x} B_{1 z}\right) \frac{\partial F_{o}}{\partial v_{y}}+\left(E_{1 z}+v_{x} B_{1 y}-v_{y} B_{1 x}\right) \frac{\partial F_{o}}{\partial v_{z}}\right] . \tag{11}
\end{align*}
$$

Equations 7 c and 7 f give

$$
\begin{equation*}
B_{1 x}=-\frac{k}{\omega} E_{1 y}, \quad B_{1 y}=\frac{k}{\omega} E_{1 x} \text { and } \frac{\partial B_{1 z}}{\partial z}=0 \tag{12}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
E_{1 x} B_{1 x}+E_{1 y} B_{1 y}=0, \tag{13}
\end{equation*}
$$

which in turn suggests that the transverse time-varying electric field is perpendicular to the magnetic field. On the other hand EqS. 7c and 7 d can be combined to give

$$
\begin{equation*}
\nabla^{2} \vec{E}_{1}+\frac{\omega^{2}}{c^{2}} \vec{E}_{1}-\nabla\left(\nabla \cdot \overrightarrow{\mathrm{E}}_{1}\right)=j \alpha_{0} \vec{J}_{1} \tag{14}
\end{equation*}
$$

where $c=I / \sqrt{\mu_{0} \epsilon_{0}}$ is the speed of light in vacuum. Equation 14 can be written in its component form as

$$
\begin{align*}
& \frac{\partial^{2} E_{1 x}}{\partial z^{2}}+\frac{\omega^{2}}{c^{2}} E_{1 x}=j \omega \mu_{0} J_{1 x}, \tag{15a}\\
& \frac{\partial^{2} E_{1 y}}{\partial z^{2}}+\frac{\omega^{2}}{c^{2}} E_{1 y}=j \omega \mu_{0} J_{1 y} \tag{15~b}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{\omega^{2}}{c^{2}} E_{1 z}=j \omega \mu_{0} J_{1 z} \tag{15c}
\end{equation*}
$$

Now consider a transformation of velocity coordinates as given by

$$
\begin{equation*}
v_{x}=v_{\perp} \cos \varphi, \quad v_{y}=v_{\perp} \sin \varphi \text { and } v_{z}=v_{z} \tag{16}
\end{equation*}
$$

and, for convenience of discussion, define the quantities $\vec{\omega}_{c}$ and \vec{a} as

$$
\begin{equation*}
\vec{w}_{c} \triangleq\left(\frac{e}{m} \vec{B}_{o}\right) \text { and } \vec{a} \triangleq\left(\frac{e}{m} \vec{E}_{o}\right) \tag{17}
\end{equation*}
$$

Then Eq. 10 can be transformed into the following, using Eq. 12;

$$
\begin{align*}
& {\left[j\left(\omega-k v_{z}\right)+\omega_{z} \frac{\partial}{\partial \varphi}\right] f_{1}} \\
& -\left[a_{-}\left(\frac{\partial f_{I}}{\partial v_{\perp}}+j \frac{I}{v_{\perp}} \frac{\partial f_{I}}{\partial \varphi}\right)+\frac{v_{z}}{v_{\perp}} \omega_{-} \frac{\partial f_{I}}{\partial \varphi}+j \omega_{-} D\left(f_{I}\right)\right] e^{j \varphi} \\
& -\left[a_{+}\left(\frac{\partial f_{I}}{\partial v_{\perp}}-j \frac{I}{v_{\perp}} \frac{\partial f_{I}}{\partial \varphi}\right)+\frac{v_{z}}{v_{\perp}} \omega_{+} \frac{\partial f_{1}}{\partial \varphi}-j \omega_{+} D\left(f_{1}\right)\right] e^{-j \varphi}-a_{z} \frac{\partial f_{I}}{\partial v_{z}} \\
& =\frac{e}{m} M_{-}\left(f_{o}\right) E_{-} e^{j \varphi}+\frac{e}{m} M_{+}\left(f_{o}\right) E_{+} e^{-j \varphi}+\frac{e}{m} E_{I z} \frac{\partial f_{O}}{\partial v_{z}}-\frac{e}{m} B_{I z} \frac{\partial f_{O}^{\prime}}{\partial \varphi}, \tag{18}
\end{align*}
$$

where

$$
\begin{align*}
& E_{ \pm}=\frac{1}{2}\left(E_{1 x} \pm j E_{1 y}\right), \tag{19a}\\
& B_{ \pm}=\frac{1}{2}\left(B_{1 x} \pm j B_{1 y}\right), \tag{19b}\\
& \omega_{ \pm}=\frac{1}{2}\left(\omega_{x} \pm j \omega_{y}\right) \tag{19c}\\
& a_{ \pm}=\frac{1}{2}\left(a_{x} \pm j a_{y}\right) \tag{19d}
\end{align*}
$$

$$
\begin{gather*}
\omega_{c x} \triangleq \omega_{x}, \omega_{c y} \triangleq \omega_{y}, \omega_{c z} \triangleq \omega_{z}, \tag{19e}\\
M_{+}\left(f_{0}\right)=\left[\left(1-\frac{k v_{z}}{\omega}\right)\left(\frac{\partial f_{0}}{\partial v_{\perp}}+\frac{j}{v_{\perp}} \frac{\partial f_{0}}{\partial \varphi}\right)+\frac{f v_{\perp}}{\omega} \frac{\partial f_{o}}{\partial v_{z}}\right], \tag{19f}\\
M_{-}\left(f_{0}\right)=\left[\left(1-\frac{k v_{z}}{\omega}\right)\left(\frac{\partial f_{0}}{\partial v_{\perp}}-\frac{j}{v_{\perp}} \frac{\partial f_{0}}{\partial \varphi}\right)+\frac{k v_{\perp}}{\omega} \frac{\partial f_{0}}{\partial v_{z}}\right], \tag{19g}
\end{gather*}
$$

and the differential operator D is defined as

$$
D \triangleq\left(v_{\perp} \frac{\partial}{\partial v_{z}}-v_{z} \frac{\partial}{\partial v_{\perp}}\right)
$$

It should be noted that E_{-}and E_{+}appearing in $E q \cdot 18$ correspond to the electric fields of the left-hand and right-hand circularly polarized waves respectively. Furthermore, from Eq. $12, \mathrm{~B}_{1 z}$ is a constant, and for the present one-dimensional analysis, from Eq. 7c, it must be zero.

III. DERIVATION OF DISPERSION RELATIONSHIPS

Consider the time-dependent electron distribution function f_{1} as consisting of three parts as indicated below:
$f_{1}\left(z, t, v_{\perp}, v_{z}, \varphi\right)=f_{+}\left(z, t, v_{\perp}, v_{z}\right) e^{-j \varphi}+f_{-}\left(z, t, v_{\perp}, v_{z}\right) e^{+j \varphi}+g\left(z, t, v_{\perp}, v_{z}\right)$,
where the first, second and third terms of Eq. 20 can be regarded as the distribution of these electrons associated with the right-hand circularly polarized, left-hand circularly polarized and longitudinal waves, respectively. Since Eq. 18 must be valid for an arbitrary value
of φ, the substitution of Eq. 20 into Eq. 18 yields the following system of equations:

$$
\begin{gather*}
a_{-}\left(\frac{\partial f_{-}}{\partial v_{\perp}}-\frac{I}{v_{\perp}} f_{-}\right)+j \omega_{-}\left[D\left(f_{-}\right)+\frac{v_{z}}{v_{\perp}} f_{-}\right]=0, \tag{21a}\\
a_{+}\left(\frac{\partial f_{+}}{\partial v_{\perp}}-\frac{I}{v_{\perp}} f_{+}\right)-j \omega_{+}\left[D\left(f_{+}\right)+\frac{v_{z}}{v_{\perp}} f_{+}\right]=0, \tag{21b}\\
j\left(\omega-k v_{z}+\omega_{z}\right) f_{-}-a_{z} \frac{\partial f_{-}}{\partial v_{z}}-j \omega_{-} D(g)-a_{-} \frac{\partial g}{\partial v_{\perp}}=\frac{e}{m} M_{-}\left(f_{o}\right) E_{-}, \tag{21c}\\
j\left(\omega-k v_{z}-\omega_{z}\right) f_{+}-a_{z} \frac{\partial f_{+}}{\partial v_{z}}+j \omega_{+} D(g)-a_{+} \frac{\partial g}{\partial v_{\perp}}=\frac{e}{m} M_{+}\left(f_{o}\right) E_{+} \tag{2ld}
\end{gather*}
$$

and
$j\left(\omega-k v_{z}\right) g-a_{z} \frac{\partial g}{\partial v_{z}}-a_{-}\left(\frac{\partial f_{+}}{\partial v_{\perp}}+\frac{1}{v_{\perp}} f_{+}\right)-j \omega_{-}\left[D\left(f_{+}\right)-\frac{v_{z}}{v_{\perp}} f_{+}\right]$
$-a_{+}\left(\frac{\partial f_{-}}{\partial v_{\perp}}+\frac{1}{v_{\perp}} f_{-}\right)+j \omega_{+}\left[D\left(f_{-}\right)-\frac{v_{z}}{v_{\perp}} f_{-}\right]=\frac{e}{m} \frac{\partial f_{o}}{\partial v_{z}} E_{I Z} .(2 l e)$

It is of interest to note that when the transverse static electric and magnetic fields are absent, i.e., $a_{+}=a_{-}=\omega_{+}=\omega_{-}=0$, the system of equations (Eqs. 21) reduces to the following set of equations:

$$
\begin{gather*}
j\left(\omega-k v_{z}+\omega_{z}\right) f_{-}-a_{z} \frac{\partial f_{-}}{\partial v_{z}}=\frac{e}{m} m_{-}\left(f_{o}\right) E_{-}, \\
j\left(\omega-k v_{z}-\omega_{z}\right) f_{+}-a_{z} \frac{\partial f_{+}}{\partial v_{z}}=\frac{e}{m} m_{+}\left(f_{o}\right) E_{+}, \\
j\left(\omega-k v_{z}\right) g-a_{z} \frac{\partial g}{\partial v_{z}}=\frac{e}{m} \frac{\partial f_{o}}{\partial v_{z}} E_{1 z}, \tag{22}
\end{gather*}
$$

which clearly suggests that no coupling between the transverse and longitudinal modes can take place. However, it is obvious that the presence of either electric or magnetic transverse static fields will lead to coupling between the modes.

In the present analysis two cases are considered:
Case 1. Absence of static transverse magnetic field and longitudinal
electric field: $\quad\left(\omega_{+}=\omega_{-}=0, a_{z}=0\right)$.
Case 2. Absence of electrostatic field: ($a_{+}=a_{-}=a_{z}=0$).
For these cases, it is possible to solve Eqs. 25 for f_{-}, f_{+}and g explicitly in terms of E_{-}, E_{+}, and $E_{1 Z}$ which can be expressed as follows (see Appendix A for details):

$$
\begin{align*}
& f_{-}=k_{11} E_{-}+k_{12} E_{+}+k_{13} E_{1 Z}, \\
& f_{+}=k_{21} E_{-}+k_{22} E_{+}+k_{23} E_{1 Z}, \\
& g=k_{31} E_{-}+k_{32} E_{+}+k_{33} E_{1 Z}, \tag{23}
\end{align*}
$$

where for Case 1

$$
\begin{gather*}
k_{11}=\frac{\frac{e}{m} M_{-}\left(f_{o}\right)}{j\left(b+\omega_{z}\right)}, k_{12}=0, k_{13}=\frac{-\frac{e}{m} a-\frac{\partial}{\partial v_{\perp}}\left(\frac{\partial f_{o}}{\partial v_{z}}\right)}{b\left(b+\omega_{z}\right)}, \\
k_{21}=0, k_{22}=\frac{\frac{e}{m} M_{+}\left(f_{0}\right)}{j\left(b-\omega_{z}\right)}, k_{23}=\frac{-\frac{e}{m} a_{+} \frac{\partial}{\partial v_{\perp}}\left(\frac{\partial f_{o}}{\partial v_{z}}\right)}{b\left(b-\omega_{z}\right)}, \\
k_{31}=\frac{-2 \frac{e}{m} \frac{a_{+}}{v_{\perp}} M_{-}\left(f_{o}\right)}{b\left(b+\omega_{z}\right)}, k_{32}=\frac{-2 \frac{e}{m} \frac{a}{v_{\perp}} M_{+}\left(f_{o}\right)}{b\left(b-\omega_{z}\right)}, \\
k_{33}=\frac{e}{\frac{\partial f_{o}}{\partial v_{z}}} \frac{j b}{j b a-a_{+} \frac{e}{m} \frac{\partial}{\partial v_{\perp}}\left(\frac{\partial f_{o}}{\partial v_{z}}\right)} \tag{24}\\
v_{\perp} b\left(b^{2}-\omega_{z}^{2}\right)
\end{gather*},
$$

with $\mathrm{b} \triangleq\left(\omega-\mathrm{kv}_{\mathrm{z}}\right)$, and for Case 2

$$
\begin{align*}
& k_{11}=\frac{e}{m} \frac{M_{0}\left(f_{0}\right)}{\delta}\left[\frac{2 \omega_{-} \omega_{+} \omega}{b}-b\left(b-\omega_{z}\right)\right], \\
& k_{12}=\frac{e}{m} \frac{M_{0}\left(f_{0}\right)}{\delta}\left(\frac{2 \omega_{0}^{2} \omega}{b}\right), \\
& k_{13}=\frac{-e}{m} \frac{1}{\delta}\left[D\left(\frac{\partial f_{0}}{\partial v_{z}}\right)+\frac{k v_{\perp}}{b} \frac{\partial f_{0}}{\partial v_{z}}\right]\left[\omega_{-}\left(b-\omega_{z}\right)\right], \\
& k_{2 I}=\frac{e}{m} \frac{M_{o}\left(f_{0}\right)}{\delta}\left(\frac{2 \omega_{+\infty}^{2} \omega_{b}}{b}\right), \\
& k_{22}=\frac{e}{m} \frac{M_{0}\left(f_{0}\right)}{\delta}\left[\frac{2 \omega_{-} \omega_{+} \omega^{\prime}}{b}-b\left(b+\omega_{z}\right)\right], \\
& k_{23}=\frac{e}{m} \frac{1}{\delta}\left[D\left(\frac{\partial f_{0}}{\partial v_{z}}\right)+\frac{k v_{\perp}}{b} \frac{\partial f_{o}}{\partial v_{z}}\right]\left[\omega_{+}\left(b+\omega_{z}\right)\right], \\
& k_{31}=\frac{-e}{m} \frac{M_{o}\left(f_{0}\right)}{\delta}\left[2 \omega_{+}\left(\frac{v_{z}}{v_{\perp}}\right)\left(b-\omega_{z}\right)\right], \\
& k_{32}=\frac{e}{m} \frac{M_{0}\left(f_{0}\right)}{\delta}\left[2 \omega_{-}\left(\frac{v_{z}}{v_{\perp}}\right)\left(b+\omega_{z}\right)\right], \\
& k_{33}=\frac{e}{m} \frac{1}{\delta}\left(\frac{\partial f_{0}}{\partial v_{z}}\right)\left(\omega_{z}^{2}-b^{2}+4 \omega_{+} \omega_{-}\right)-\frac{e}{m} \frac{1}{\delta} D\left(\frac{\partial f_{0}}{\partial v_{z}}\right)\left[4\left(\frac{v_{z}}{v_{\perp}}\right) \omega_{+} \omega_{-}\right], \\
& M_{0}\left(f_{0}\right) \triangleq\left[\frac{\partial f_{0}}{\partial v_{\perp}}+\frac{k}{\omega} D\left(f_{0}\right)\right], \tag{25}
\end{align*}
$$

with

$$
\delta \triangleq\left[j b\left(\omega_{z}^{2}-b^{2}\right)+j 4 \omega_{+} \omega_{-} \omega\right] .
$$

Similarly by writing the ion distribution function as

$$
\begin{equation*}
F_{1}\left(z, t, v_{\perp}, v_{z}, \varphi\right)=F_{-}\left(z, t, v_{\perp}, v_{z}\right) e^{j \varphi}+F_{+}\left(z, t, v_{\perp}, v_{z}\right) e^{-j \varphi}+G\left(z, t, v_{\perp}, v_{z}\right), \tag{26}
\end{equation*}
$$

and in view of the fact that Eq. 11 has exactly the same form as Eq. 10, the substitution of Eq. 26 into Eq. 11 results in a system of equations governing F_{-}, F_{+}and G, similar to the system (Eqs. 2I). By defining $\vec{\Omega}$ and \vec{A} as

$$
\begin{equation*}
\vec{\Omega} \triangleq\left(-\frac{e}{M} \vec{B}_{0}\right) \text { and } \vec{A} \triangleq\left(\frac{-e}{M} \vec{E}_{0}\right) \tag{27}
\end{equation*}
$$

F_{-}, F_{+}and G can be expressed as

$$
\begin{align*}
& F_{-}=K_{11} E_{-}+K_{12} E_{+}+K_{13} E_{12}, \\
& F_{+}=K_{21} E_{-}+K_{22} E_{+}+K_{23} E_{12}, \\
& G=K_{31} E_{-}+K_{32} E_{+}+K_{33} E_{12}, \tag{28}
\end{align*}
$$

where for Case 1

$$
\begin{gather*}
K_{11}=\frac{-\frac{e}{M} M_{-}\left(F_{o}\right)}{j\left(b+\Omega_{z}\right)}, \quad K_{12}=0, \quad K_{13}=\frac{\frac{e}{M} A_{-}-\frac{\partial}{\partial v_{1}}\left(\frac{\partial F_{0}}{\partial v_{z}}\right)}{b\left(b+\Omega_{z}\right)}, \\
K_{21}=0, K_{22}=\frac{-\frac{e}{M} M_{+}\left(F_{0}\right)}{j\left(b-\Omega_{z}\right)}, \quad K_{23}=\frac{\frac{e}{M} A_{+} \frac{\partial}{\partial v_{\perp}}\left(\frac{\partial F_{0}}{\partial v_{z}}\right)}{b\left(b-\Omega_{z}\right)}, \\
K_{31}=\frac{2 \frac{e}{M} \frac{A_{+}}{v_{\perp}} M_{-}\left(F_{0}\right)}{b\left(b+\Omega_{z}\right)}, \quad K_{32}=\frac{2 \frac{e}{M} \frac{A}{v_{\perp}} M_{+}\left(F_{0}\right)}{b\left(b-\Omega_{z}\right)}, \\
K_{33}=\frac{-\frac{e}{M} \frac{\partial F_{0}}{\partial v_{z}}}{j b}-j \frac{4 A_{+} A}{v_{\perp}} \frac{\frac{e}{M} \frac{\partial}{\partial v_{\perp}}\left(\frac{\partial F_{0}}{\partial v_{z}}\right)}{b\left(b^{2}-\Omega_{z}^{2}\right)}, \tag{29}
\end{gather*}
$$

and for Case 2

$$
\begin{align*}
& K_{11}=-\frac{e}{M} \frac{M_{0}\left(F_{o}\right)}{\Delta}\left[\frac{2 \Omega_{+} \Omega_{0}-\omega}{b}-b\left(b-\Omega_{z}\right)\right], \\
& K_{12}=-\frac{e}{M} \frac{M_{0}\left(F_{0}\right)}{\Delta}\left(\frac{2 \Omega_{-}^{2} \omega}{b}\right), \\
& K_{13}=\frac{e}{M} \frac{1}{\Delta}\left[D\left(\frac{\partial F_{o}}{\partial v_{z}}\right)+\frac{k v_{i}}{b} \frac{\partial F_{o}}{\partial v_{z}}\right]\left[\Omega_{-}\left(b-\Omega_{z}\right)\right], \\
& K_{21}=-\frac{e}{M} \frac{M_{o}\left(F_{o}\right)}{\Delta}\left(\frac{2 \Omega_{+}^{2} \omega}{b}\right), \\
& K_{22}=-\frac{e}{M} \frac{M_{0}\left(F_{o}\right)}{\Delta}\left[\frac{2 \Omega_{+} \Omega_{-} \omega}{b}-b\left(b+\Omega_{z}\right)\right], \\
& K_{23}=-\frac{e}{M} \frac{1}{\Delta}\left[D\left(\frac{\partial F_{o}}{\partial v_{z}}\right)+\frac{k v_{1}}{b} \frac{\partial F_{o}}{\partial v_{z}}\right]\left[\Omega_{+}\left(b+\Omega_{z}\right)\right], \\
& K_{3 I}=\frac{e}{M} \frac{M_{0}\left(F_{0}\right)}{\Delta}\left[2 \Omega_{+}\left(\frac{v_{z}}{v_{\perp}}\right)\left(b-\Omega_{z}\right)\right], \\
& K_{32}=\frac{-e}{M} \frac{M_{0}\left(F_{o}\right)}{\Delta}\left[2 \Omega-\left(\frac{v_{z}}{v_{\perp}}\right)\left(b+\Omega_{z}\right)\right], \\
& K_{33}=\frac{-e}{M} \frac{1}{\Delta} \frac{\partial F_{o}}{\partial v_{z}}\left(\Omega_{z}^{2}-b^{2}+4 \Omega_{+} \Omega_{-}\right)+\frac{e}{M} \frac{1}{\Delta} D\left(\frac{\partial F_{o}}{\partial v_{z}}\right)\left[4\left(\frac{v_{z}}{v_{\perp}}\right) \Omega_{+} \Omega_{-}\right], \\
& M_{0}\left(F_{o}\right)=\left[\frac{\partial F_{o}}{\partial \mathrm{~V}_{1}}+\frac{k}{\omega} D\left(f_{0}\right)\right], \tag{30}
\end{align*}
$$

where $\Delta \triangleq\left[j b\left(\Omega_{z}^{2}-b^{2}\right)+j 4 \Omega_{+} \Omega_{-} \omega\right]$,

$$
\begin{aligned}
& \Omega_{ \pm} \triangleq \frac{I}{2}\left(\Omega_{x} \pm j \Omega_{y}\right), \text { and } \\
& A_{ \pm} \triangleq \frac{1}{2}\left(A_{x} \pm j A_{y}\right)
\end{aligned}
$$

Since the time-dependent distribution function is now explicitly expressed in terms of the time-varying electric field, the convection current density \vec{J}_{1} and the space-charge density ρ_{1} can be expressed in terms of the electric field with the aid of Eqs. 7 g and 7 h , respectively. On the other hand, the electric field is related to the current density by Eqs. 15. Consequently the electric field can be written as

$$
\begin{equation*}
2\left(\frac{\omega^{2}}{c^{2}}-k^{2}\right) E_{ \pm}=j \omega \mu_{0} e \int_{-\infty}^{\infty} \int_{0}^{\infty} \int_{0}^{2 \pi} e^{ \pm j \varphi}\left(F_{1}-f_{1}\right) v_{\perp}^{2} d \varphi d v_{\perp} d v_{z} \tag{3la}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{1 z}=\frac{j e}{\omega \epsilon_{0}} \int_{-\infty}^{\infty} \int_{0}^{\infty} \int_{0}^{2 \pi}\left(F_{1}-f_{1}\right) v_{\perp} v_{z} d \varphi d v_{\perp} d v_{z} . \tag{3lb}
\end{equation*}
$$

Upon substituting F_{I} and f_{I} given by Eqs. 26 and 20 respectively into Eqs. 31 the following set of equations is obtained:

$$
\begin{align*}
& E_{-}=R_{11} E_{-}+R_{12} E_{+}+R_{13} E_{1 z}, \\
& E_{+}=R_{21} E_{-}+R_{22} E_{+}+R_{23} E_{1 z}, \\
& E_{1 Z}=R_{31} E_{-}+R_{32} E_{+}+R_{33} E_{1 z}, \tag{32}
\end{align*}
$$

where

$$
\begin{align*}
R_{p, q} & =P\left(S_{p, q}\right) ; p=1,2 ; q=1,2,3 \\
& =Q\left(S_{p, q}\right) ; p=3 ; q=1,2,3, \tag{33}
\end{align*}
$$

in which the integration operators P and Q are defined as

$$
\begin{align*}
P(S) & \equiv \frac{j\left(\frac{\omega \mathrm{e}}{\epsilon_{0}}\right)}{2\left(\omega^{2}-c^{2} k^{2}\right)} \int_{-\infty}^{\infty} \int_{0}^{\infty} S\left(v_{\perp}, v_{z}\right) v_{\perp}^{2} d v_{\perp} d v_{z}, \\
Q(S) & \equiv \frac{j e}{\omega \epsilon_{0}} \int_{-\infty}^{\infty} \int_{0}^{\infty} S\left(v_{\perp}, v_{z}\right) v_{\perp} v_{z} d v_{1} d v_{z} \tag{34}
\end{align*}
$$

and

$$
\begin{align*}
& s_{11}=\int_{0}^{2 \pi}\left[\left(k_{11}-k_{11}\right)+\left(k_{21}-k_{21}\right) e^{-j 2 \varphi}+\left(k_{31}-k_{31}\right) e^{-j \varphi}\right] d \varphi, \\
& s_{12}=\int_{0}^{2 \pi}\left[\left(k_{12}-k_{12}\right)+\left(k_{22}-k_{22}\right) e^{-j 2 \varphi}+\left(k_{32}-k_{32}\right) e^{-j \varphi}\right] d \varphi, \\
& s_{13}=\int_{0}^{2 \pi}\left[\left(k_{13}-k_{13}\right)+\left(k_{23}-k_{23}\right) e^{-j 2 \varphi}+\left(k_{33}-k_{33}\right) e^{-j \varphi}\right] d \varphi, \\
& s_{21}=\int_{0}^{2 \pi}\left[\left(k_{11}-k_{11}\right) e^{j 2 \varphi}+\left(k_{21}-k_{21}\right)+\left(k_{31}-k_{31}\right) e^{j \varphi}\right] d \varphi, \\
& s_{22}=\int_{0}^{2 \pi}\left[\left(k_{12}-k_{12}\right) e^{j 2 \varphi}+\left(k_{22}-k_{22}\right)+\left(k_{32}-k_{32}\right) e^{j \varphi \varphi}\right] d \varphi, \\
& s_{23}=\int_{0}^{2 \pi}\left[\left(k_{13}-k_{13}\right) e^{j 2 \varphi}+\left(k_{23}-k_{23}\right)+\left(k_{33}-k_{33}\right) e^{j \varphi}\right] d \varphi, \\
& s_{31}=\int_{0}^{2 \pi}\left[\left(k_{11}-k_{11}\right) e^{j \varphi}+\left(k_{21}-k_{21}\right) e^{-j \varphi}+\left(k_{31}-k_{31}\right)\right] d \varphi, \\
& s_{32}=\int_{0}^{2 \pi}\left[\left(k_{12}-k_{12}\right) e^{j \varphi}+\left(k_{22}-k_{22}\right) e^{-j \varphi}+\left(k_{32}-k_{32}\right)\right] d \varphi, \\
& s_{33}=\int_{0}^{2 \pi}\left[\left(k_{13}-k_{13}\right) e^{j \varphi}+\left(k_{23}-k_{23}\right) e^{-j \varphi}+\left(k_{33}-k_{33}\right)\right] d \varphi, \tag{35}
\end{align*}
$$

Therefore the dispersion relationship for the system under consideration is given, from Eqs. 32, as

$$
\mathrm{d}(\omega, k)=\left|\begin{array}{lll}
\left(R_{11}-1\right) & R_{12} & R_{13} \tag{36}\\
R_{21} & \left(R_{22}-1\right) & R_{23} \\
R_{31} & R_{32} & \left(R_{33}-1\right)
\end{array}\right|=0 .
$$

It should be observed that once the time-independent distribution functions f_{o} and F_{o} are known, the parameters $k_{p, q}$ and $K_{p, q}$ are specified so that the $R_{p, q}$ integrals can be evaluated. Then a detailed study of dispersion relation (36) can be made to obtain the propagation characteristic of waves in the system.

Before considering the time-independent distribution functions, it is of interest to observe that for Case 2 the parameters $K_{p, q}$ and $k_{p, q}$ are independent of φ, as shown in Appendix A, and Eqs. 35 are reduced to

$$
\begin{equation*}
S_{p, q}=2 \pi\left(K_{p, q^{-k}}{ }_{p, q}\right) ; p=1,2,3 ; q=1,2,3 . \tag{37}
\end{equation*}
$$

Furthermore, if $B_{o x}=B_{o y}=0$, i.e., $\omega_{ \pm}=\Omega_{ \pm}=0$, then $S_{p, q}=0$ for $p \neq q$, which implies that $R_{p, q}=0$ for $p \neq q$. In other words, the off-diagonal elements of the determinant in dispersion relationship (36) vanish, so that Eq. 36 gives

$$
\begin{equation*}
\left(W_{11}-1\right)\left(W_{22}-1\right)\left(W_{33}-1\right)=0, \tag{38}
\end{equation*}
$$

where $W_{11}=R_{11}, W_{22}=R_{22}$ and $W_{33}=R_{33}$ for the case $\omega_{ \pm}=\Omega_{ \pm}=0$.
Equation 38 implies that

$$
\begin{equation*}
W_{11}=1, W_{22}=1 \text { and } W_{33}=1 \text {, } \tag{39}
\end{equation*}
$$

which represent the dispersion relationships for the left-hand and right-hand circularly polarized modes, and the longitudinal mode respectively:

$$
\begin{equation*}
I+\frac{\pi\left(\frac{\omega \epsilon}{\epsilon_{0}}\right)}{\left(\omega^{2}-c^{2} k^{2}\right)} \int_{-\infty}^{\infty} \int_{0}^{\infty}\left[\frac{\frac{e}{M} M_{0}\left(F_{0}\right)}{b+\Omega_{z}}+\frac{\frac{e}{m} M_{o}\left(f_{0}\right)}{b+\omega_{z}}\right] v_{\perp}^{2} d v_{\perp} d v_{z}=0, \tag{40a}
\end{equation*}
$$

$1+\frac{\pi\left(\frac{\omega \epsilon}{\epsilon_{0}}\right)}{\left(\omega^{2}-c^{2} k^{2}\right)} \int_{-\infty}^{\infty} \int_{0}^{\infty}\left[\frac{\frac{e}{M} M_{o}\left(F_{o}\right)}{b-\Omega_{z}}+\frac{\frac{e}{m} M_{o}\left(f_{o}\right)}{b-\omega_{z}}\right] v_{\perp}^{2} d v_{\perp} d v_{z}=0$
and

$$
\begin{equation*}
I+\frac{2 \pi e}{\omega \epsilon_{0}} \int_{-\infty}^{\infty} \int_{0}^{\infty} \frac{1}{b}\left(\frac{e}{M} \frac{\partial F_{o}}{\partial v_{z}}+\frac{e}{m} \frac{\partial f_{0}}{\partial v_{z}}\right) v_{\perp} v_{z} d v_{\perp} d v_{z}=0 \tag{40c}
\end{equation*}
$$

in which Eqs. 40 a and 40 b are the same as those given by Montgomery and Tidman ${ }^{4}$.

IV. TIME-INDEPENDENT DISTRIBUTION FUNCTIONS

The time-independent distribution functions f_{0} and F_{0} must satisfy Eqs. $6 a$ and $6 b$ respectively. It is not difficult to show that the solution of Eq. 6a has the form

$$
\begin{equation*}
f_{0}(\vec{r}, \vec{v})=\overline{f_{0}}(w) \tag{4I}
\end{equation*}
$$

where $w=(1 / 2) m|\vec{v}|^{2}-e \Phi(\vec{r})$, in which the electric scalar potential $\Phi(\vec{r})$ is related to the electrostatic field $\vec{E}_{o}(\vec{r})$ by

$$
\begin{equation*}
\vec{E}_{0}=-\nabla \Phi \tag{42}
\end{equation*}
$$

Similarly the solution of Eq. 6b has the form

$$
F_{0}(\vec{r}, \vec{v})=\overline{F_{0}}(w)
$$

where

$$
\begin{equation*}
W=\frac{1}{2} M|\vec{v}|^{2}+e \Phi(r) \tag{43}
\end{equation*}
$$

It should be noted that the electrostatic field \vec{E}_{o}, appearing in Eqs. 6 a and 6 b , in general consists of two parts; $\overrightarrow{\mathrm{E}}_{\mathrm{o}}=\vec{E}_{\mathrm{s}}+\vec{E}_{\mathrm{a}}$, where $\overrightarrow{\mathrm{E}}_{\mathrm{a}}$ is the externally applied static electric field and $\overrightarrow{\mathrm{E}}_{\mathrm{S}}$ is the spacecharge field which must also satisfy Eq. 6e.

For a one-dimensional analysis in a Maxwellian plasma f_{o} and F_{o} can be written as

$$
\begin{equation*}
f_{0}=n_{0}\left(\frac{\alpha_{e}}{\pi}\right)^{3 / 2} \exp \left(-\alpha_{e} w_{e}\right) \tag{44}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{0}=N_{0}\left(\frac{\alpha_{i}}{\pi}\right)^{3 / 2} \exp \left(-\alpha_{i} w_{i}\right) \tag{45}
\end{equation*}
$$

where

$$
\begin{align*}
& w_{e} \triangleq\left(v_{\perp}^{2}+v_{z}^{2}\right)-\frac{2 e}{m} \Phi(z) \\
& w_{i} \triangleq\left(v_{\perp}^{2}+v_{z}^{2}\right)+\frac{2 e}{M} \Phi(z) \\
& \alpha_{e} \triangleq \frac{m}{2 K T_{e}}, \quad \alpha_{i} \triangleq \frac{M}{2 K T_{i}}, \tag{46}
\end{align*}
$$

in which K is the Boltzmann constant, n_{o} and T_{e} are the concentration and the temperature of the electron respectively, and N_{o} and T_{i} are the concentration and the temperature of the ion respectively. In view of the fact that both f_{0} and F_{0} are expressed as even functions of v_{x}, v_{y} and v_{z} in Eqs. 46, Eq. 6 g gives $J_{o x}=J_{o y}=J_{o z}=0$. Then from Eqs. 9, the magnetostatic field must be constant, i.e., $B_{o x}, B_{o y}$ and $B_{o z}$ are all independent of z .

On the other hand, Eq. 6h gives

$$
\begin{equation*}
\rho_{0}(z)=e N_{o} e^{-\frac{e \Phi(z)}{K T T_{i}}}-e n_{o} e^{\frac{e \Phi(z)}{K T}} . \tag{47}
\end{equation*}
$$

If electrostatic fields $E_{O X}$ and $E_{O y}$ are constant, then $E_{O Z}$ can be determined from Eqs. 8 and 47. For the one-dimensional analysis under consideration the x - and y-components of the space-charge field E_{s} are absent. For the two cases under consideration, the assumption $\mathrm{a}_{\mathrm{z}}=0$ implies that $E_{S Z}=0$ which will be the case if ($\partial \Phi / \partial z$) $=0$. In other words, Φ is independent of z, which is equivalent to requiring that f_{o} and F_{0} be independent of z and the plasma under consideration be homogeneous. If the space-charge potential $\Phi(z)$ is set equal to zero, Eq. 47 suggests that $\rho_{0}=e\left(N_{0}-n_{0}\right)$ and since $E_{o s}$ must be zero, ρ_{0} is zero. Consequently $N_{0}=n_{0}$ when the condition of electrical neutrality is met.

It is of interest to note that for a homogeneous plasma pervaded by a uniform static electric field $\overrightarrow{\mathrm{E}}_{\mathrm{a}}$ and magnetic field $\overrightarrow{\mathrm{B}}_{\mathrm{o}}$, Eq. 6a becomes

$$
\begin{equation*}
\left(\overrightarrow{\mathrm{E}}_{\mathrm{a}}+\overrightarrow{\mathrm{v}} \times \overrightarrow{\mathrm{B}}_{\mathrm{o}}\right) \cdot \nabla_{\mathrm{v}} \mathrm{f}_{\mathrm{o}}=0 \tag{48}
\end{equation*}
$$

and f_{o} can be given in the form

$$
\begin{equation*}
f_{0}=n_{0}\left(\frac{\alpha_{e}}{\pi}\right)^{s / 2} \exp \left(-\alpha_{e}|\vec{v}-\vec{u}|^{2}\right) \tag{49}
\end{equation*}
$$

where the drift velocity \vec{u} is given by

$$
\begin{equation*}
\vec{u}=\frac{\left(\vec{E}_{a} \times \vec{B}_{0}\right)}{\left|\overrightarrow{\mathrm{B}}_{0}\right|^{2}} \tag{50}
\end{equation*}
$$

Since the drift velocity depends neither on the ratio e/m nor on the initial velocities, it is the same for ions and electrons regardless of their energy. Crossed magnetic and electric fields produce a collective
displacement of all of the electrical charges in the direction of $\vec{E}_{\mathrm{a}} \times \overrightarrow{\mathrm{B}}_{\mathrm{o}}$. Thus F_{o} can be also given by

$$
\begin{equation*}
F_{o}=N_{0}\left(\frac{\alpha_{i}}{\pi}\right)^{3 / 2} \exp \left(-\alpha_{i}|\vec{v}-\vec{u}|^{2}\right) \tag{51}
\end{equation*}
$$

It should also be noted that the distribution functions f_{o} and F_{\circ} given by Eqs. 44 and 45, respectively, are adequate for the study of the case where there is no externally applied electrostatic field; since $\nabla_{v} f_{o}=-2 \alpha_{e} f_{o} \vec{v}$ and $(\partial \Phi / \partial z)=-E_{s}$, it can easily be shown that f_{o}, given by Eq. 44, indeed satisfies Eq. 6a. However, for the case where the externally applied electrostatic field is present, f_{o}, given by Eq. 44, is not adequate since it does not satisfy Eq. 6a and must be modified. Suppose that $\vec{E}_{o}=\overrightarrow{i E}_{a x}+\overrightarrow{j E}_{a y}+\overrightarrow{k E} E_{s}$ and $\vec{B}_{o}=\overrightarrow{k B}_{o}$ are considered, where \vec{i}, \vec{j} and \vec{k} are the unit vectors along the coordinate axes respectively, $E_{a z}$ and $E_{a y}$ are the components of \vec{E}_{a}, and E_{s} is the space-charge field. Then it is not difficult to show that the sollowing form of f_{0} satisfies Eq. 6 a :
$f_{0}=n_{0}\left(\frac{\alpha_{e}}{\pi}\right)^{3 / 2} \exp \left\{-\alpha_{e}\left[\left(v_{x}-u_{x}\right)^{2}+\left(v_{y}-u_{y}\right)^{2}+v_{z}^{2}\right]+2 \alpha \frac{e}{m} \Phi(z)\right\}$,
where $\overrightarrow{\mathrm{u}}=\left(\overrightarrow{i u}_{\mathrm{x}}+\vec{j} \vec{u}_{\mathrm{y}}\right)$ is the drift velocity as defined by Eq. 50.
For the consideration of the case where interpenetrating plasmas such as electrons drifting through ions to form the configuration of a plasma carrying a current along the lines of force, the drift velocity along the direction of static magnetic field must be taken into account. If this drift velocity u_{0} is much greater than the transverse drift velocity due to the transverse electrostatic field, which is the case
for weak static fields, then w_{e}, associated with f_{o} of Eq. 44, can be expressed as

$$
\begin{equation*}
w_{e}=\left[v_{\perp}^{2}+\left(v_{z}-u_{o}\right)^{2}\right]-\frac{2 e}{m} \Phi(z) \tag{53}
\end{equation*}
$$

Thus the time-independent distribution functions f_{0} and F_{0} must be properly chosen according to the type of problem under consideration.

v. MAXWELLITAN PLASMA

The two cases defined in Section III are examined for a homogeneous plasma. As an illustration of the method of analysis a homogeneous Maxwellian plasma is considered in this section. f_{0} and F_{o} can be written as

$$
\begin{equation*}
f_{0}=n_{0}\left(\frac{\alpha_{e}}{\pi}\right)^{3 / 2} \exp \left(-\alpha_{e} w_{e}\right) \tag{54}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{0}=N_{0}\left(\frac{\alpha_{i}}{\pi}\right)^{3 / 2} \exp \left(-\alpha_{i} w_{i}\right) \tag{55}
\end{equation*}
$$

For Case 1:

$$
\begin{equation*}
w_{e}=\left[v_{\perp}^{2}+\left(v_{z}-u_{o e}\right)^{2}\right] ; \quad w_{i}=\left[v_{\perp}^{2}+\left(v_{z}-u_{o i}\right)^{2}\right] \tag{56}
\end{equation*}
$$

For Case 2:

$$
\begin{equation*}
w_{e}=\left(v_{\perp}^{2}+v_{z}^{2}\right)=w_{i} \tag{57}
\end{equation*}
$$

Having specified the form of f_{o} and F_{o}, the coefficients $K_{p, q}$ and $k_{p, q}$ in Eqs. 24, 25, 29 and 30 now can be determined. For the forms of f_{0} and F_{0} given by Eqs. 54 and 55, these coefficients are independent of φ, and the evaluation of the $R_{p, q}$ integrals can be carried out. Thus dispersion relationship (36) gives, for Case 1 and Case 2 respectively, (see Appendix A for details):

For Case 1:

$$
\begin{equation*}
D_{+} D_{-}\left\{D_{z}+4 \mu^{2}\left[\left(\gamma_{+}-\frac{\alpha_{+} \beta_{+}}{D_{+}}\right)+\left(\gamma_{-}-\frac{\alpha_{-} \beta_{-}}{D_{-}}\right)\right]\right\}=0, \tag{58}
\end{equation*}
$$

where $D_{ \pm} \triangleq\left[R_{1} Z_{0} G_{0}\left(U_{ \pm}\right)+r_{1} Z_{0} g_{0}\left(u_{ \pm}\right)-1\right]$,

$$
\begin{align*}
& D_{z} \triangleq\left(d_{z}-1\right), \\
& d_{z} \triangleq R_{2}\left[U_{0}\left(U_{0}-u_{o i}\right) G_{0}\left(U_{0}\right)+j \frac{U_{0}}{\sqrt{\alpha_{i}}}\right]+r_{z}\left[U_{0}\left(U_{0}-u_{o e}\right) g_{0}\left(U_{0}\right)\right. \\
& \left.+j \frac{U_{o}}{\sqrt{\alpha_{e}}}\right], \\
& \alpha_{ \pm} \triangleq \mp R_{2} Z_{0}\left[U_{ \pm} G_{0}\left(U_{ \pm}\right)-U_{0} G_{0}\left(U_{0}\right)\right] \mp r_{2} z_{0}\left[u_{ \pm} g_{0}\left(u_{ \pm}\right)-U_{0} g_{0}\left(U_{0}\right)\right], \\
& \left.\beta_{ \pm} \triangleq \mp R_{I} \alpha_{1}\left[U_{ \pm}-u_{o i}\right) G_{o}\left(U_{ \pm}\right)-\left(U_{o}-u_{o i}\right) G_{o}\left(U_{o}\right)\right] \mp r_{1} \alpha_{e}\left[\left(u_{ \pm}-u_{o e}\right)\right. \\
& \left.\cdot g_{0}\left(u_{ \pm}\right)-\left(U_{0}-u_{o e}\right) g_{0}\left(U_{0}\right)\right], \\
& \gamma_{ \pm} \triangleq R_{2} \alpha_{i}\left[U_{ \pm}\left(U_{ \pm}-u_{o i}\right) G_{o}\left(U_{ \pm}\right)-U_{0}\left(U_{o}-u_{o i}\right) G_{o}\left(U_{o}\right) \pm \frac{j \Omega_{Z}}{\sqrt{\alpha_{i}} k}\right] \\
& +r_{2} \alpha_{e}\left[u_{ \pm}\left(u_{ \pm}-u_{o e}\right) g_{0}\left(u_{ \pm}\right)-U_{0}\left(U_{0}-u_{o e}\right) g_{o}\left(U_{0}\right) \pm \frac{j \omega_{z}}{\sqrt{\alpha_{e}} k}\right], \\
& \mu^{2} \triangleq \frac{1}{4}\left(\frac{E_{o x}^{2}+E_{o y}^{2}}{B_{o z}^{2}}\right), \\
& G_{0}(Y) \triangleq \frac{j}{\sqrt{\pi}} \int_{-\infty}^{\infty} \frac{e^{-\alpha_{i}\left(v_{z}-u_{o i}\right)^{2}}}{\left(v_{z}-Y\right)} d v_{z}, \\
& g_{0}(Y) \triangleq \frac{j}{\sqrt{\pi}} \int_{-\infty}^{\infty} \frac{e^{-\alpha_{e}\left(v_{z}-u_{o e}\right)^{2}}}{\left(v_{z}-Y\right)} d v_{z} . \tag{59}
\end{align*}
$$

For Case 2: $4 \nu^{2} \triangleq\left[\left(B_{o x}^{2}+B_{o y}^{2}\right) / B_{o z}^{2}\right] \ll 1$:

$$
\begin{align*}
D_{+} D_{-} D_{z}=v^{2} \omega\left\{D_{z}\left(D_{-}+D_{+}\right)\left(M_{-}-M_{+}\right)+\right. & 2 N_{+}\left[D_{-} M_{+}+v^{2} \omega\left(M_{+}^{2}-M_{-}^{2}\right)\right] \\
& \left.-2 N_{-}\left[D_{+} M_{-}+v^{2} \omega\left(M_{-}^{2}-M_{+}^{2}\right)\right]\right\}, \tag{60}
\end{align*}
$$

where $D_{ \pm} \triangleq\left[R_{I} G_{0}\left(U_{ \pm}\right)-r_{I} g_{0}\left(u_{ \pm}\right)-l\right]$,

$$
\begin{aligned}
& D_{z} \triangleq\left[R_{2}\left(U_{o}^{2} G_{o}\left(U_{0}\right)+j \frac{U_{0}}{\sqrt{\alpha_{i}}}\right)+r_{2}\left(U_{o}^{2} g_{0}\left(U_{0}\right)+j \frac{U_{0}}{\sqrt{\alpha_{e}}}\right)-1\right], \\
& N_{ \pm} \triangleq \mp R_{2}\left[U_{ \pm}^{2} G_{0}\left(U_{ \pm}\right)-U_{o}^{2} G_{0}\left(U_{0}\right) \pm j \frac{1}{\sqrt{\alpha_{i}}} \frac{\Omega_{z}}{k}\right] \mp r_{2}\left[u_{ \pm}^{2} g_{0}\left(u_{ \pm}\right)\right. \\
& \left.-U_{o}^{2} g_{o}\left(U_{o}\right) \pm j \frac{1}{\sqrt{\alpha_{e}}} \frac{\omega_{z}}{k}\right], \\
& M_{ \pm} \triangleq \frac{R_{1}}{\Omega_{z}}\left[G_{0}\left(U_{ \pm}\right)-G_{0}\left(U_{0}\right) \pm \Lambda\right]+\frac{r_{1}}{\omega_{z}}\left[g_{0}\left(u_{ \pm}\right)-g_{0}\left(U_{0}\right) \pm \lambda\right], \\
& \Lambda \triangleq \frac{\Omega_{z}}{j \sqrt{\pi} k} \int_{-\infty}^{\infty} \frac{e^{-\alpha_{i} v_{z}^{2}}}{\left(v_{z}-U_{0}\right)^{2}} d v_{z}, \\
& \lambda \triangleq \frac{\omega_{z}}{j \sqrt{\pi} k} \int_{-\infty}^{\infty} \frac{e^{-\alpha_{e} v_{z}^{2}}}{\left(v_{z}-U_{0}\right)^{2}} d v_{z}, \\
& G_{0}(Y) \triangleq \frac{j}{\sqrt{\pi}} \int_{-\infty}^{\infty} \frac{e^{-\alpha_{i} v_{z}^{2}}}{\left(v_{z}-Y\right)} d v_{z} \quad, \\
& g_{0}(Y) \triangleq \frac{j}{\sqrt{\pi}} \int_{-\infty}^{\infty} \frac{e^{-\alpha e^{2} v_{z}^{2}}}{\left(v_{z}-Y\right)} d v_{z} .
\end{aligned}
$$

The R's and U's in Eqs. 58 and 59 are defined as

$$
\begin{gathered}
R_{1} \triangleq j \sqrt{\alpha_{i}} \frac{\Omega_{p}^{2}}{\left(\omega^{2}-c^{2} k^{2}\right)}\left(\frac{\omega}{k}\right), R_{2} \triangleq j 2 \sqrt{\alpha_{i}} \alpha_{i}\left(\frac{\Omega_{p}^{2}}{\omega^{2}}\right)\left(\frac{\omega}{k}\right), \\
r_{1} \triangleq j \sqrt{\alpha_{e}} \frac{\omega_{p}^{2}}{\left(\omega^{2}-c^{2} k^{2}\right)}\left(\frac{\omega}{k}\right), r_{2} \triangleq j 2 \sqrt{\alpha_{e}} \alpha_{e}\left(\frac{\omega_{p}^{2}}{\omega^{2}}\right)\left(\frac{\omega}{k}\right), \\
U_{ \pm}=\left(\frac{\omega^{ \pm} \Omega_{z}}{k}\right), U_{o}=\left(\frac{\omega}{k}\right), u_{ \pm}=\left(\frac{\omega \pm \omega_{z}}{k}\right), \\
Z_{0}=\left(1-\frac{u_{0 i}}{U_{o}}\right), \quad z_{o}=\left(1-\frac{u_{0 e}}{U_{o}}\right) .
\end{gathered}
$$

It should be noted that integrals $G_{O}(Y)$ and $g_{O}(Y)$ defined in Eqs. 59 have been discussed in detail by Stix^{3} and his results can be applied in the present investigation. Y, appearing in Eqs. 59, may be complex in general and takes the values $\left(\omega \pm \Omega_{z} / k\right),\left(\omega \pm \omega_{z} / k\right)$ and (ω / k). Let

$$
\begin{equation*}
\zeta^{2}=\alpha_{i}\left(v_{z}-u_{o i}\right)^{2} \tag{GI}
\end{equation*}
$$

G_{0} may be written, for $\operatorname{Im}(\omega)<0$, as follows:

$$
\begin{equation*}
G_{0}=\frac{j}{\sqrt{\pi}} \int_{-\infty}^{\infty} \frac{e^{-\zeta^{2}}}{\zeta-\alpha_{n}} d \zeta, \tag{62}
\end{equation*}
$$

where

$$
\alpha_{n}=\sqrt{\alpha_{i}}\left(Y-u_{o i}\right) .
$$

The contour of integration may be deformed and analytic continuation used to evaluate this integral in such a way that it is valid over the entire ω-plane:

$$
\begin{equation*}
G_{0}=\frac{j}{\sqrt{\pi}} P \int_{-\infty}^{\infty} \frac{e^{-\zeta^{2}}}{\zeta-\alpha_{n}} d \zeta+\frac{\sqrt{\pi} k}{|k|} \exp \left(-\alpha_{n}^{2}\right) \tag{63}
\end{equation*}
$$

where the principal value integration is to be carried through the pole at α_{n}.

On the other hand, when $S(\xi)$ is written as

$$
\begin{equation*}
S(\xi)=\frac{1}{2 \sqrt{\pi}} P \int_{-\infty}^{\infty} \frac{e^{-\tau^{2}}}{\tau+\xi} d \tau \tag{64}
\end{equation*}
$$

the asymptotic expansion of $S(\xi)$ exhibits a Stokes phenomenon; that is, different asymptotic expansions are required for validity in different portions of the ξ-plane. The Stokes phenomenon is a characteristic of the asymptotic expansion of analytic functions. For the expansion of $S(\xi)$,

$$
\begin{equation*}
S(\xi)=T(\xi)+U(\xi) \tag{65}
\end{equation*}
$$

where

$$
\begin{align*}
T(\xi) & =\frac{1}{2 \xi}+\frac{1}{2^{2} \xi^{3}}+\frac{1 \cdot 3}{2^{3} \xi^{5}}+\frac{1 \cdot 3 \cdot 5}{2^{4} \xi^{7}}+\ldots \\
U(\xi) & =0 \quad, \text { for }|\operatorname{Re} \xi|>|\operatorname{Im} \xi|, \\
& =\frac{-j \sqrt{\pi}}{k} e^{-\xi^{2}} \operatorname{sgn}(\operatorname{Im} \xi) \quad, \text { for }|\operatorname{Re} \xi|<|\operatorname{Im} \xi| . \tag{66}
\end{align*}
$$

It should be noted that in Eq. 63, the Gaussian term in G_{o} diverges whenever $\left|\operatorname{Re} \alpha_{n}\right|<\left|\operatorname{Im} \alpha_{n}\right|$. However, relation (62) for G_{o} shows that G_{0}, in fact, converges to zero as $\left|\operatorname{Im} \alpha_{n}\right|^{-1}$ in the unstable half-plane (Im $\omega<0$). It is the $U(\xi)$ term in $S(\xi)$ which reconciles this apparent difference. The entire result is best summarized with the aid of a quadrant diagram for the $\alpha_{n}(\operatorname{sgn} k$) plane (see Fig. 1).

FIG. 1 QUADRANT DIAGRAM FOR THE $\alpha_{n}(\operatorname{sgn} k)$ PLANE.

The following asymptotic expansions for G_{o} are appropriate in the quadrants indicated:

Quadrants A and B :

$$
G_{0}=\frac{\sqrt{\pi} k}{|k|} \exp \left(-\alpha_{n}^{2}\right)-j 2 T\left(\alpha_{n}\right)
$$

Quadrant D:

$$
G_{0}=\frac{2 \sqrt{\pi} k}{|k|} \exp \left(-\alpha_{n}^{2}\right)-j 2 T\left(\alpha_{n}\right)
$$

Quadrant C:

$$
\begin{equation*}
G_{0}=-j \gtrless T\left(\alpha_{n}\right) \tag{67}
\end{equation*}
$$

In Quadrant D, G_{0} diverges as $\alpha_{n} \rightarrow \infty$. Equation 63 shows that the Gaussian term may be neglected in Quadrants A and B because it is small for large values of α_{n}, and it is noted that this term is rigorously absent in Quadrant C.

If G_{0} is expanded in the first few terms of its asymptotic expansion in Quadrants A, B and C, i.e.,

$$
\begin{equation*}
G_{0}\left(\alpha_{n}\right) \simeq\left[\frac{\sqrt{\pi} k}{|k|} \exp \left(-\alpha_{n}^{2}\right)-\frac{j}{\alpha_{n}}-\frac{j}{2 \alpha_{n}^{3}}\right] \tag{68}
\end{equation*}
$$

then various factors appearing in dispersion equations (58) and (60) can be determined and, in principle, a detailed study of the'propagation characteristics of various waves can be made. It should be noted that in Eq. 68 the three terms on the right-hand side represent, respectively, the Landau or cyclotron damping term, the cold plasma, and that due to a finite thermal spread.

VI. SPECIAL CASES

Suppose that the difference between the phase velocities of various modes in the system and the drift velocity are large in comparison to the electron thermal velocity ($1 / \sqrt{\alpha_{e}}$), which is also greater than the ion thermal velocity $\left(I / \sqrt{\alpha_{i}}\right)$, so that $G_{O}(Y)$ and $g_{0}(Y)$ may be approximately written as

$$
\begin{align*}
& G_{o}(Y) \simeq-j \frac{1}{\sqrt{\alpha_{i}}\left(Y-u_{o i}\right)}\left[1+\frac{1}{2 \alpha_{i}\left(Y-u_{o i}\right)^{2}}\right] \\
& g_{o}(Y) \simeq-j \frac{1}{\sqrt{\alpha_{e}}\left(Y-u_{o e}\right)}\left[1+\frac{1}{2 \alpha_{e}\left(Y-u_{o e}\right)^{2}}\right] \tag{69}
\end{align*}
$$

Then the various factors appearing in Eq. 58 can be written as follows:

$$
\begin{gather*}
D_{ \pm}=\left[\frac{\Omega_{p}^{2}\left(\omega-k u_{o i}\right)}{\left(\omega^{2}-c^{2} k^{2}\right)\left(\omega \pm \Omega_{z}-k u_{o i}\right)}\left(1+\frac{1}{2 \alpha_{i}\left(U_{ \pm}-u_{o i}\right)^{2}}\right)\right. \\
\left.\quad+\frac{\omega_{p}^{2}\left(\omega-k u_{o e}\right)}{\left(\omega^{2}-c^{2} k^{2}\right)\left(\omega \pm \omega_{z}-k u_{o e}\right)}\left(1+\frac{1}{2 \alpha_{e}\left(u_{ \pm}-u_{o e}\right)^{2}}\right)-1\right], \tag{70a}\\
D_{z}=\left[\frac{\Omega_{p}^{2}}{\left(\omega-k u_{o i}\right)^{2}}+\frac{\omega_{p}^{2}}{\left(\omega-k u_{o e}\right)^{2}}-1\right] \tag{70b}
\end{gather*}
$$

$$
\alpha_{ \pm}=\mp 2 \alpha_{i}\left(\frac{\Omega_{p}^{2}}{\omega^{2}}\right)\left[\frac{\left(U_{0}-u_{O i}\right)}{\left(U_{ \pm}-u_{o i}\right)} U_{ \pm}\left(1+\frac{1}{2 \alpha_{i}\left(U_{ \pm}-u_{0 i}\right)^{2}}\right)\right.
$$

$$
\begin{aligned}
& \left.-U_{o}\left(1+\frac{1}{2 \alpha_{i}\left(U_{o}-u_{o i}\right)^{2}}\right)\right] \mp 2 \alpha_{e}\left(\frac{\omega_{p}^{2}}{\omega^{2}}\right) \\
& \cdot\left[\frac{\left(U_{o}-u_{o e}\right)}{\left(u_{ \pm}-u_{o e}\right)} u_{ \pm}\left(1+\frac{1}{2 \alpha_{e}\left(u_{ \pm}-u_{o e}\right)^{2}}\right)-U_{o}\left(1+\frac{1}{2 \alpha_{e}\left(U_{o}-u_{o e}\right)^{2}}\right)\right]
\end{aligned}
$$

$$
\begin{align*}
\beta_{ \pm}= & \mp \frac{\Omega_{p}^{2} U_{o}}{2\left(\omega^{2}-c^{2} k^{2}\right)}\left(\frac{1}{\left(U_{ \pm}-u_{o i}\right)^{2}}-\frac{1}{\left(U_{o}-u_{o i}\right)^{2}}\right) \tag{70c}\\
& \mp \frac{\omega_{p}^{2} U_{o}}{2\left(\omega^{2}-c^{2} k^{2}\right)}\left(\frac{1}{\left(u_{ \pm}-u_{o e}\right)^{2}}-\frac{1}{\left(U_{o}-u_{o e}\right)^{2}}\right)
\end{align*}
$$

$$
\begin{equation*}
\gamma_{ \pm}=\alpha_{i}\left(\frac{\Omega_{p}}{\omega}\right)^{2} U_{0}\left[\frac{U_{ \pm}}{\left(U_{ \pm}-u_{o i}\right)^{2}}-\frac{U_{0}}{\left(U_{0}-u_{0 i}\right)^{2}}\right] \tag{70d}
\end{equation*}
$$

$$
\begin{equation*}
+\alpha_{e}\left(\frac{\omega_{p}}{\omega}\right)^{2} U_{0}\left[\frac{u_{ \pm}}{\left(u_{ \pm}-u_{o e}\right)^{2}}-\frac{U_{o}}{\left(U_{o}-u_{o e}\right)^{2}}\right] \tag{70e}
\end{equation*}
$$

It should be noted that when the static transverse electric field is absent, $\mu=0$ and Eq. 58 becomes $\left(D_{-} D_{+} D_{z}\right)=0$. Then the dispersion equation for the uncoupled longitudinal mode is given by $D_{z}=0$, i.e.,

$$
\begin{equation*}
\frac{\Omega_{p}^{2}}{\left(\omega-k u_{o i}\right)^{2}}+\frac{\omega_{p}^{2}}{\left(\omega-k u_{o e}\right)^{2}}=1 \tag{7I}
\end{equation*}
$$

which is the familiar expression for a two-stream system.
Similarly the various factors appearing in Eq. 60 can be written

$$
\begin{gathered}
D_{ \pm}=\left[\frac{\Omega_{p}^{2} \omega}{\left(\omega^{2}-c^{2} k^{2}\right)\left(\omega \pm \Omega_{z}\right)}\left(1+\frac{1}{2 \alpha_{i} U_{ \pm}^{2}}\right)+\frac{\omega_{p}^{2} \omega\left(1+\frac{1}{2 \alpha_{e} U_{ \pm}^{2}}\right)}{\left(\omega^{2}-c^{2} k^{2}\right)\left(\omega_{ \pm} \omega_{z}\right)}-1\right] \\
D_{z}=\left(\frac{\Omega_{p}^{2}}{\omega^{2}}+\frac{\omega_{p}^{2}}{\omega^{2}}-1\right), \\
N_{ \pm}= \pm\left(\frac{\Omega_{p}}{\omega}\right)^{2}\left(1-\frac{U_{o}}{U_{ \pm}}\right) \pm\left(\frac{\omega_{p}}{\omega}\right)^{2}\left(1-\frac{U_{o}}{u_{ \pm}}\right), \\
M_{ \pm}=\frac{\Omega_{0}^{2} U_{0}}{\Omega_{z}\left(\omega^{2}-c^{2} k^{2}\right)}\left[\frac{1}{U_{ \pm}}\left(1+\frac{1}{2 \alpha_{i} U_{ \pm}^{2}}\right)-\frac{1}{U_{0}}\left(I+\frac{1}{2 \alpha_{i} U_{o}^{2}}\right) \pm\left(\frac{\Omega_{z}}{k}\right) \frac{1}{U_{0}^{2}}\right] \\
+\frac{\omega_{p}^{2} U_{0}}{\omega_{z}\left(\omega^{2}-c^{2} k^{2}\right)}\left[\frac{1}{u_{ \pm}}\left(1+\frac{1}{2 \alpha_{e} u_{ \pm}^{2}}\right)-\frac{1}{U_{0}}\left(1+\frac{1}{2 \alpha_{e} U_{0}^{2}}\right) \pm\left(\frac{\omega_{0}}{k}\right) \frac{1}{U_{0}^{2}}\right]
\end{gathered}
$$

It should be observed that when a transverse static magnetic field is absent, $v=0$ and Eq. 60 becomes $\left(D_{-} D_{+} D_{z}\right)=0$. Then the dispersion equations for the uncoupled transverse modes are given by $\mathrm{D}_{ \pm}=0$, i.e.,
$I=\frac{\Omega_{p}^{2} \omega}{\left(\omega^{2}-c^{2} k^{2}\right)\left(\omega \pm \Omega_{z}\right)}\left(1+\frac{1}{2 \alpha_{i} U^{2}}\right)+\frac{\omega_{p}^{2} \omega}{\left(\omega^{2}-c^{2} k^{2}\right)\left(\omega \pm \omega_{z}\right)}\left(1+\frac{1}{2 \alpha_{e} u_{ \pm}^{2}}\right)$.

Furthermore if $\left|\alpha_{i} v_{ \pm}^{2}\right| \gg 1$, and $\left|\alpha_{e} u_{ \pm}^{2}\right| \gg 1$, then Eq. 73 becomes

$$
\begin{equation*}
\frac{\Omega_{p}^{2} \omega}{\left(\omega^{2}-c^{2} k^{2}\right)\left(\omega \pm \Omega_{z}\right)}+\frac{\omega_{p}^{2} \omega}{\left(\omega^{2}-c^{2} k^{2}\right)\left(\omega \pm \omega_{z}\right)}=1, \tag{74}
\end{equation*}
$$

which is a familiar expression in the cold-plasma theory. Equation 74 is that given by Denisse and Delcroix ${ }^{2}$ and is simply the Appleton-Hartree
equation of the magnetoionic theory. It should be noted from Eq. 17 and Eq. 27 that Ω_{z} is opposite in sign to ω_{z}, i.e., $\omega_{z}=\left[(e / m) B_{o z}\right]$ and $\Omega_{z}=\left[-(e / M) B_{O Z}\right]$.

VII. OONCLTDING REMÄRKS

With the aid of the coupled Boltzmann-Vlasov-Maxwell equations, under a small-signal, one-dimensional analysis, the dispersion relation for a finite temperature, homogeneous, magnetoactive plasma has been derived. Equation 36 is applicable to the case of longitudinal propagation in the presence of a transverse static applied electric field, as well as to the case of oblique propagation in the absence of a static electric field. Once the time-independent parts of the distribution functions of constituent plasma particles and applied static electric and magnetic fields are known, the $R_{p, q}$ elements of the determinant in Eq. 36 are specified and the dispersion equation can be solved for the propagation constants.

Although various forms of the time-independent distribution functions may be considered and used in the evaluation of the elements of the determinants in Eq. 36, the present report considers a Maxwellian distribution function. For a homogeneous Maxwellian plasma the dispersion equations for Cases 1 and 2 are given by Eqs. 58 and 60, respectively.

It should be pointed out that the formulation of the dispersion relations in the form given by Eq. 36 has certain advantages since the various characteristic modes (i.e., the right-hand and left-hand circularly polarized transverse modes and the longitudinal modes) can easily be identified and their possible mutual coupling caused by the
presence of static transverse electric and magnetic fields is clearly indicated. Furthermore, a detailed study of these derived dispersion relations should provide useful information with regard to: (a) the effect of transverse static electric or magnetic fields on the propagation characteristics of electromagnetic waves in a magnetoactive plasma, as well as on the polarization of the wave, and (b) the question of energy conversion between the modes (with the aid of Eqs. 32).

The dispersion relation given in Eq. 36 is particularly suitable for the study of the coupling of the longitudinal mode to the transverse modes due to the transverse static electric or magnetic field present in the system. A natural important question then arises as to how effective is this type of coupling. This question is being investigated presently and will be discussed in a future report. For example, by this type of coupling mechanism, the energy carried by a longitudinal plasma oscillation may be converted into the transverse electromagnetic wave energy in the solar corona, thus leading to the escape of solar radio noise from the solar corona.

There are also phenomena found in the earth's ionosphere, e.g., the cutoff, amplification, and Landau damping of a whistler propagation in the ionospheric plasma, which may be explained by this type of coupling mechanism. In addition, the triggering of VIF emissions by a whistler in the ionospheric plasma, recently observed by Helliwell ${ }^{10}$, might also be explained. Finally this type of coupling mechanism may be at work in some laboratory devices involving the interaction of the transverse cyclotron wave and longitudinal space-charge waves.

A. 1 Derivation of Eqs. 27 and 29

From Eq. 25, for Case $1\left(\omega_{+}=\omega_{-}=0\right.$ and $\left.a_{z}=0\right)$:

$$
\begin{align*}
& \frac{\partial f_{-}}{\partial v_{\perp}}=\frac{1}{v_{\perp}} f_{-} \text {and } \frac{\partial f_{+}}{\partial v_{\perp}}=\frac{1}{v_{\perp}} f_{+}, \tag{A.1}\\
& j\left(b+\omega_{z}\right) f_{-}-a_{-} \frac{\partial g}{\partial v_{\perp}}=\eta M_{O_{-}}\left(f_{0}\right) E_{-}, \\
& j\left(b-\omega_{z}\right) f_{+}-a_{+} \frac{\partial g}{\partial v_{\perp}}=\eta M_{O_{+}}\left(f_{O_{0}}\right) E_{+}, \\
& j b g-\frac{2 a}{v_{\perp}} f_{+}-\frac{2 a_{+}}{v_{\perp}} f_{-}=\eta \frac{\partial f_{o}}{\partial v_{z}} E_{1 z}, \tag{A.2}
\end{align*}
$$

where $b \equiv\left(\omega-k v_{z}\right)$ and $\eta \equiv(e / m)$.
When the fact that $\partial / \partial v_{\perp}\left(f_{+} / v_{\perp}\right)=0$ and $\partial / \partial v_{\perp}\left(f_{-} / v_{\perp}\right)=0$ is used, with the aid of Eq. A.l, differentiation of Eq. A. 2 with respect to v_{\perp} gives $\left(\partial g / \partial v_{\perp}\right)=(\eta / j b)\left(\partial / \partial v_{\perp}\right)\left(\partial f_{0} / \partial v_{z}\right) E_{1 z}$ so that Eq. A. 2 can be written as

$$
\begin{align*}
& f_{-}=\frac{\eta M_{o}\left(f_{o}\right)}{j\left(b+\omega_{z}\right)} E_{-}-\frac{\eta a_{-}-\frac{\partial}{\partial v_{\perp}}\left(\frac{\partial f_{o}}{\partial v_{z}}\right)}{b\left(b+\omega_{z}\right)} E_{1 z}, \\
& f_{+}=\frac{\eta M_{o_{+}}\left(f_{o}\right)}{j\left(b-\omega_{z}\right)} E_{+}-\frac{\eta a_{+} \frac{\partial}{\partial v_{\perp}}\left(\frac{\partial f_{o}}{\partial v_{z}}\right)}{b\left(b-\omega_{z}\right)} E_{1 z} \quad, \\
& g=\frac{-2\left(\frac{a_{+}}{v_{\perp}}\right) \eta M_{o_{-}}\left(f_{o}\right)}{b\left(b+\omega_{z}\right)} E_{-}-\frac{2\left(\frac{a_{-}}{v_{1}}\right) \eta M_{o_{+}}\left(f_{o}\right)}{b\left(b-\omega_{z}\right)} E_{+} \\
& +\left[j \frac{4 a_{+}{ }^{a}-}{v_{\perp}} \frac{\eta \frac{\partial}{\partial v_{\perp}}\left(\frac{\partial f_{o}}{\partial v_{z}}\right)}{b\left(b^{2}-\omega_{z}^{2}\right)}+\frac{\eta \frac{\partial f_{o}}{\partial v_{z}}}{j b}\right] E_{1 z} \quad . \tag{A.3}
\end{align*}
$$

For Case $2\left(a_{+}=a_{-}=a_{z}=0\right)$, from Eqs. 25,

$$
\begin{gather*}
D\left(f_{ \pm}\right)=-\frac{v_{z}}{v_{\perp}} f_{ \pm}, \\
j\left(b+\omega_{z}\right) f_{-}-j \omega_{-} D(g)=\eta M_{0}\left(f_{0}\right) E_{-}, \tag{A.4}\\
j\left(b-\omega_{z}\right) f_{+}+j \omega_{+} D(g)=\eta M_{0}\left(f_{0}\right) E_{+} \tag{A.5}
\end{gather*}
$$

and

$$
\begin{equation*}
j b g+j \omega \omega_{-} 2\left(\frac{v_{z}}{v_{\perp}}\right) f_{+}-j \omega_{+} 2\left(\frac{v_{z}}{v_{\perp}}\right) f_{-}=\eta \frac{\partial f_{o}}{\partial v_{z}} E_{1 z} \tag{A.6}
\end{equation*}
$$

Using the fact that

$$
\begin{equation*}
D\left(\frac{v_{z}}{v_{\perp}} f_{ \pm}\right)=f_{ \pm} \text {and } D(b g)=-\left(k v_{\perp}\right) g+b D(g) \tag{A.7}
\end{equation*}
$$

and then operating D on Eq. A. 6 yields

$$
\begin{equation*}
D(g)=\left(\frac{k v_{\perp}}{b}\right) g+2\left(\frac{\omega_{+}}{b}\right) f_{-}-2\left(\frac{\omega_{-}}{b}\right) f_{+}-j \frac{\eta}{b} D\left(\frac{\partial f_{o}}{\partial v_{z}}\right) E_{1 z} . \tag{A.8}
\end{equation*}
$$

Substituting Eq. A. 8 into Eqs. A. 4 and A.5, and solving algebraically for f_{-}, f_{+}and g in terms of E_{-}, E_{+}and $E_{I Z}$ gives

$$
\begin{align*}
& f_{-}=k_{11} E_{-}+k_{12} E_{+}+k_{13} E_{1 z}, \\
& f_{+}=k_{21} E_{-}+k_{22} E_{+}+k_{23} E_{12}, \\
& g=k_{31} E_{-}+k_{32} E_{+}+k_{33} E_{1 z}, \tag{A.9}
\end{align*}
$$

$$
\begin{aligned}
\text { where } k_{11} & =\left(b_{11} / \Delta_{0}\right)\left[\left(\omega_{z}-b\right) b^{2}+2 \omega_{+} \omega_{-} \omega\right] \\
k_{12} & =\left(b_{22} / \Delta_{0}\right)\left(2 \omega_{-}^{2} \omega\right) \\
k_{13} & =\left(b_{13} / \Delta_{0}\right)\left[\left(\omega_{z}-b\right) b^{2}\right]+\left(b_{33} / \Delta_{0}\right)\left[\omega_{-}\left(k v_{z}\right) b\left(b-\omega_{z}\right)\right] \\
k_{21} & =\left(b_{11} / \Delta_{0}\right)\left(2 \omega_{+}^{2} \omega\right) \\
k_{22} & =\left(b_{22} / \Delta_{0}\right)\left[-b^{2}\left(b+\omega_{z}\right)+2 \omega_{+} \omega_{-} \omega\right] \\
k_{23} & =\left(-b_{23} / \Delta_{0}\right)\left[b^{2}\left(b+\omega_{z}\right)-2 \omega_{+} \omega_{-} \omega\right]-\left(b_{33} / \Delta_{0}\right)\left[\omega_{+}\left(k v_{z}\right) b\left(b+\omega_{z}\right)\right] \\
k_{31} & =\left(-b_{11} / \Delta_{0}\right)\left[2 \omega_{+} b\left(b-\omega_{z}\right)\right], \\
k_{32} & =\left(b_{22} / \Delta_{0}\right)\left[2 \omega_{-} b\left(b+\omega_{z}\right)\right], \\
k_{33} & =\left(1 / \Delta_{0}\right)\left[-2 b_{13} \omega_{+} b^{2}+2 b_{23} \omega_{-} b^{2}\right]+\left(b_{33} / \Delta_{0}\right)\left[b^{2}\left(b^{2}-\omega_{z}^{2}-4 \omega_{+} \omega_{-}\right)\right]
\end{aligned}
$$

where

$$
\begin{gathered}
\Delta_{0} \equiv b^{2}\left[4 \omega_{+} \omega_{-} \omega+\left(\omega_{z}^{2}-b^{2}\right) b\right] \equiv b^{2} \delta_{0}, \\
b_{11}=-j b \eta M_{0}\left(f_{0}\right), b_{12}=0, b_{13}=-j \omega_{-} \eta D\left(\frac{\partial f_{0}}{\partial v_{z}}\right), \\
b_{21}=0, b_{22}=-j b \eta M_{0}\left(f_{0}\right), b_{23}=j \omega_{+\eta D}\left(\frac{\partial f_{0}}{\partial v_{z}}\right), \\
b_{31}=0, b_{32}=0, b_{33}=j \eta\left(\frac{v_{1}}{v_{z}}\right) \frac{\partial f_{0}}{\partial v_{z}},
\end{gathered}
$$

A. 2 Determination of $R_{p, q}$ (for Case $1 \underline{\text { with }}$ Weak Transverse Static Electric Field)

Assuming that

$$
\begin{align*}
& f_{o}=n e^{-\alpha e^{\left[\left(v_{z}-u_{o e}\right)^{2}+v_{\perp}^{2}\right]}}, \\
& F_{o}=N e^{-\alpha_{i}\left[\left(v_{z}-u_{o i}\right)^{2}+v_{\perp}^{2}\right]}, \tag{A.10}
\end{align*}
$$

then

$$
\begin{gathered}
\frac{\partial f_{o}}{\partial v_{z}}=-2 \alpha_{e}\left(v_{z}-u_{o e}\right) f_{o}, \frac{\partial f_{o}}{\partial v_{\perp}}=-2 \alpha_{e} v_{\perp} f_{o}, \\
\frac{\partial}{\partial v_{\perp}}\left(\frac{\partial f_{o}}{\partial v_{z}}\right)=\left(2 \alpha_{e}\right)^{2}\left(v_{z}-u_{o e}\right) v_{\perp} f_{o}, \\
D\left(f_{o}\right)=2 \alpha_{e} u_{o e^{\prime}} v_{\perp} f_{o}, \\
M_{O}\left(f_{o}\right)= \\
\frac{\partial f_{O}}{\partial v_{\perp}}+\frac{k}{\omega} D\left(f_{o}\right)=-2 \alpha_{e} v_{\perp} f_{O}\left(I-\frac{k u_{o e}}{\omega}\right)
\end{gathered}
$$

Furthermore, from Eq. 28,

$$
\begin{align*}
& C_{11}=\frac{-2 \alpha_{e} \eta_{e}\left(1-\frac{k u_{o e}}{\omega}\right)\left(v_{\perp} f_{o}\right)}{j\left(b+\omega_{z}\right)}, \\
& c_{12}=0, \\
& c_{13}=\frac{-\eta_{e}\left(2 \alpha_{e}\right)^{2} a_{a_{-}}\left(v_{z}-u_{o e}\right)\left(v_{\perp} f_{o}\right)}{b\left(b+\omega_{z}\right)}, \\
& C_{21}=0, \\
& C_{22}=\frac{-2 \alpha_{e} \eta_{e}\left(1-\frac{k u_{o e}}{\omega}\right)\left(v_{\perp} f_{o}\right)}{j\left(b-\omega_{z}\right)}, \\
& c_{23}=\frac{-\eta_{e}\left(2 \alpha_{e}\right)^{2} a_{+}\left(v_{z}-u_{o}\right)\left(v_{\perp} f_{0}\right)}{b\left(b-\omega_{z}\right)}, \\
& C_{31}=\frac{4 a^{\eta} e^{a_{2}}\left(1-\frac{k u_{o e}}{\omega}\right) f_{0}}{b\left(b+\omega_{z}\right)}, \\
& c_{32}=\frac{4 \alpha e^{\eta} e^{a}-\left(1-\frac{k u_{o e}}{\omega}\right) f_{o}}{b\left(b+\omega_{z}\right)}, \\
& C_{33}=\frac{-2 \alpha_{e} \eta_{e}\left(v_{z}-u_{o e}\right) f_{o}}{j b}+j \frac{4 a_{+} a_{-} \eta_{e}\left(2 \alpha_{e}\right)^{2}\left(v_{z}-u_{o e}\right) f_{o}}{b\left(b^{2}-\omega_{z}^{2}\right)} . \tag{A.II}
\end{align*}
$$

$c_{p, q}$ can be obtained by replacing $f_{o}, \alpha_{e}, \eta_{e}, u_{o e}, a_{ \pm}$and ω_{z} by F_{o}, α_{i}, $-\eta_{1}, u_{o i}, A_{ \pm}$and Ω_{z} respectively in Eq. A.1l. Let

$$
\begin{align*}
R_{p, q} & \equiv \frac{j \pi\left(\frac{\omega e}{\epsilon_{0}}\right)}{\left(\omega^{2}-c^{2} k^{2}\right)} r_{p, q} ; p=1,2 ; q=1,2,3 \\
& \equiv \frac{j 2 \pi e}{\omega \epsilon_{o}} r_{p, q} ; p=3 ; q=1,2,3, \tag{A.12}
\end{align*}
$$

with

$$
\begin{aligned}
r_{p, q} & \equiv \int_{-\infty}^{\infty} \xi_{p, q}\left(v_{z}\right) d v_{z} ; p=1,2 ; q=1,2,3 \\
& \equiv \int_{-\infty}^{\infty} v_{z} \eta_{p, q}\left(v_{z}\right) d v_{z} ; p=3 ; q=1,2,3, \quad(A \cdot 13)
\end{aligned}
$$

where

$$
\begin{align*}
& \xi_{p, q}\left(v_{z}\right) \equiv \int_{0}^{\infty} v_{\perp}^{2}\left(c_{p, q}-c_{p, q}\right) d v_{\perp}, \\
& \eta_{p, q}\left(v_{z}\right) \equiv \int_{0}^{\infty} v_{\perp}\left(c_{p, q}-c_{p, q}\right) d v_{\perp}, \tag{A.14a}
\end{align*}
$$

and let

$$
\begin{align*}
& f_{0}=w_{0} n_{0} l\left(v_{z}\right) e^{-\alpha_{e} v_{\perp}^{2}}, \\
& F_{0}=w_{0} N_{0} L\left(v_{z}\right) e^{-\alpha_{i} v_{\perp}^{2}}, \tag{A.14b}
\end{align*}
$$

in which

$$
\begin{aligned}
& w_{o} \equiv\left(\frac{\alpha_{e}}{\pi}\right)^{3 / 2} e^{e \Phi / K T} e, w_{o} \equiv\left(\frac{\alpha_{i}}{\pi}\right)^{3 / 2} e^{-\left(e \Phi / K T_{i}\right)} \\
& \ell\left(v_{z}\right) \equiv e^{-\alpha_{e}\left(v_{z}-u_{o e}\right)^{2}}, \quad L\left(v_{z}\right) \equiv e^{-\alpha_{i}\left(v_{z}-u_{o i}\right)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \alpha_{e} \equiv \frac{m}{2 K T_{e}}, \alpha_{i} \equiv \frac{M}{2 K T_{i}}, \\
& I_{3 e} \equiv \int_{0}^{\infty} v_{\perp}^{3} e^{-\alpha} e^{v_{1_{d v_{\perp}}^{2}}}=\frac{I}{2 \alpha_{E}^{2}}, \quad I_{3 i} \equiv \int_{0}^{\infty} v_{\perp}^{2} e^{-\alpha_{i} v_{\perp_{d v_{\perp}}^{2}}}=\frac{1}{2 \alpha_{i}^{2}}, \\
& I_{1 e} \equiv \int_{0}^{\infty} v_{\perp} e^{-\alpha} e^{v_{\perp_{d v_{\perp}}}^{2}}=\frac{I}{2 \alpha_{e}}, I_{1 i} \equiv \int_{0}^{\infty} v_{\perp} e^{-\alpha_{i} v_{\perp_{d v_{\perp}}}^{2}}=\frac{I}{2 \alpha_{i}} .
\end{aligned}
$$

Define the integral

$$
Q_{0}[\mathrm{Y}] \equiv \int_{-\infty}^{\infty} \mathrm{Y}\left(\mathrm{v}_{\mathrm{z}}\right) \mathrm{dv} \mathrm{z}_{\mathrm{z}} .
$$

Then substituting Eqs. A. ll into Eqs. A.14, with the aid of Eqs. A. 12 and A.13, yields

$$
\begin{align*}
& R_{11}=\left(1-\frac{k u_{o i}}{\omega}\right) D_{1} Q_{0}\left[\frac{L\left(v_{z}\right)}{b+\Omega_{z}}\right]+\left(1-\frac{k u_{o e}}{\omega}\right) d_{1} Q_{0}\left[\frac{\ell\left(v_{z}\right)}{b+\omega_{z}}\right], \quad \text { (A.15a) } \\
& R_{12}=0, \\
& R_{13}=j 2 \alpha_{i} A_{-} D_{1} Q_{o}\left[\frac{\left(v_{z}-u_{o i}\right) L\left(v_{z}\right)}{b\left(b+\Omega_{z}\right)}\right]+j 2 \alpha_{e} a_{-} d_{1} Q_{0}\left[\frac{\left(v_{z}-u_{o e}\right) \ell\left(v_{z}\right)}{b\left(b+\omega_{z}\right)}\right], \\
& R_{21}=0, \\
& R_{22}=\left(1-\frac{k u_{o i}}{\omega}\right) D_{I} Q_{0}\left[\frac{L\left(v_{z}\right)}{b-\Omega_{z}}\right]+\left(1-\frac{k u_{o e}}{\omega}\right) d_{1} Q_{0}\left[\frac{\ell\left(v_{z}\right)}{b-\omega_{z}}\right], \tag{A.15d}
\end{align*}
$$

$$
\begin{aligned}
& R_{23}=j 2 \alpha_{i} A D_{1} Q_{0}\left[\frac{\left(v_{z}-u_{o i}\right) L\left(v_{z}\right)}{b\left(b-\Omega_{z}\right)}\right]+j 2 \alpha_{e} a_{+} \alpha_{1} Q_{0}\left[\frac{\left(v_{z}-u_{o e}\right) \ell\left(v_{z}\right)}{b\left(b-\omega_{z}\right)}\right], \\
& \text { (A. } 15 f^{\prime} \text {) } \\
& R_{31}=-j\left(1-\frac{k u_{o i}}{\omega}\right) 2 A_{+} D_{2} Q_{0}\left[\frac{v_{z} L\left(v_{z}\right)}{b\left(b+\Omega_{z}\right)}\right]-j\left(1-\frac{k u_{o e}}{\omega}\right) 2 a_{+} d_{2} Q_{0} \\
& \cdot\left[\frac{v_{z} \ell\left(v_{z}\right)}{b\left(b+\omega_{z}\right)}\right], \quad(A .15 g) \\
& R_{32}=-j\left(1-\frac{k u_{o i}}{\omega}\right) 2 A_{-} D_{2} Q_{0}\left[\frac{v_{z} L\left(v_{z}\right)}{b\left(b-\Omega_{z}\right)}\right]-j\left(1-\frac{k u_{o e}}{\omega}\right) 2 a_{-} d_{2} Q_{0} \\
& \cdot\left[\frac{v_{z} \ell\left(v_{z}\right)}{b\left(b-\omega_{z}\right)}\right], \quad(A .15 h) \\
& R_{33}=D_{2} Q_{0}\left[\frac{v_{z}\left(v_{z}-u_{o i}\right) L\left(v_{z}\right)}{b}\right]+d_{2} Q_{0}\left[\frac{v_{z}\left(v_{z}-u_{o e}\right) \ell\left(v_{z}\right)}{b}\right]+8 \alpha_{i} A_{+} A_{-} D_{2} Q_{0} \\
& \cdot\left[\frac{v_{z}\left(v_{z}-u_{o i}\right) L\left(v_{z}\right)}{b\left(b^{2}-\Omega_{z}^{2}\right)}\right]+8 \alpha_{e} a^{2}+a_{-} d_{2} Q_{0}\left[\frac{v_{z}\left(v_{z}-u_{o e}\right) \ell\left(v_{z}\right)}{b\left(b^{2}-\omega_{z}^{2}\right)}\right], \quad \text { (A.15i) }
\end{aligned}
$$

where

$$
\begin{aligned}
& D_{1} \equiv \frac{\left(2 \pi \alpha_{i} W_{0} I_{3 i}\right) \omega \Omega_{p}^{2}}{\left(\omega^{2}-c^{2} k^{2}\right)}, D_{2} \equiv \frac{\left(4 \pi \alpha_{i} W_{0} I_{1 i}\right) \Omega_{p}^{2}}{\omega}, \\
& \alpha_{1} \equiv \frac{\left(2 \pi \alpha_{e} W_{0} I_{3}\right) \omega \omega_{p}^{2}}{\left(\omega^{2}-c^{2} k^{2}\right)}, \quad d_{2} \equiv \frac{\left(4 \pi \alpha_{e} W_{0} I_{1 e}\right) \omega_{p}^{2}}{\omega} .
\end{aligned}
$$

Let

$$
\begin{array}{rlrl}
\mathrm{K}_{ \pm} & \equiv \mathrm{Q}_{0}\left(\frac{L}{\mathrm{~b} \pm \Omega_{z}}\right), & \mathrm{k}_{ \pm} & \equiv Q_{0}\left(\frac{\ell}{\mathrm{~b} \pm \omega_{\mathrm{z}}}\right), \\
S_{ \pm} & \equiv Q_{0}\left[\frac{\mathrm{v}_{\mathrm{z}} \mathrm{~L} \Omega_{z}}{\mathrm{~b}\left(\mathrm{~b} \pm \Omega_{\mathrm{z}}\right)}\right], & s_{ \pm} \equiv Q_{0}\left[\frac{\mathrm{v}_{\mathrm{z}} \ell \omega_{z}}{\mathrm{~b}\left(\mathrm{~b} \pm \omega_{\mathrm{z}}\right)}\right]
\end{array}
$$

$$
\begin{aligned}
& P_{ \pm} \equiv Q_{0}\left[\frac{\left(v_{z}-u_{o i}\right) L \Omega_{z}}{b\left(b \pm \Omega_{z}\right)}\right], \quad p_{ \pm} \equiv Q_{o}\left[\frac{\left(v_{z}-u_{o e}\right) \ell \omega_{z}}{b\left(b \pm \omega_{z}\right)}\right], \\
& T \equiv Q_{o}\left[\frac{v_{z}\left(v_{z}-u_{o i}\right) L}{b}\right], \quad \tau \equiv Q_{o}\left[\frac{v_{z}\left(v_{z}-u_{o e}\right) L}{b}\right], \\
& \mathrm{V} \equiv Q_{0}\left[\frac{\mathrm{v}_{\mathrm{z}}\left(\mathrm{v}_{\mathrm{z}}-\mathrm{u}_{\mathrm{oi}}\right) L \Omega_{\mathrm{z}}^{2}}{\mathrm{~b}\left(\mathrm{~b}^{2}-\Omega_{\mathrm{z}}^{2}\right)}\right], \quad \mathrm{v} \equiv Q_{0}\left[\frac{\mathrm{v}_{\mathrm{z}}\left(\mathrm{v}_{\mathrm{z}}-\mathrm{u}_{\mathrm{oe}}\right) \mu \omega_{\mathrm{z}}^{2}}{\mathrm{~b}\left(\mathrm{~b}^{2}-\omega_{\mathrm{z}}^{2}\right)}\right], \\
& Z_{o} \equiv\left(1-\frac{u_{0 i}}{U_{o}}\right), \quad z_{o} \equiv\left(1-\frac{u_{o e}}{U_{o}}\right), \quad U_{o} \equiv\left(\frac{\omega}{k}\right), \\
& \mu_{1} \equiv\left(\frac{A_{+}}{\Omega_{z}}\right)=\left(\frac{a_{+}}{\omega_{z}}\right), \mu_{2} \equiv\left(\frac{A_{-}}{\overline{\Omega_{z}}}\right)=\left(\frac{a_{-}}{\omega_{z}}\right), \\
& D_{ \pm} \equiv\left[\left(z_{0} D_{1} K_{ \pm}+z_{0} d_{1} k_{ \pm}\right)-1\right], \\
& D_{z} \equiv\left[\left(D_{2} T+d_{2} \tau\right)-I\right] .
\end{aligned}
$$

Since V and v can be written as

$$
v=v_{+}+v_{-} \text {and } v=v_{+}+v_{-} \text {, }
$$

where

$$
V_{ \pm} \equiv \frac{1}{2} Q_{o}\left[v_{z}^{2} L\left(\frac{1}{b \pm \Omega_{z}}-\frac{1}{b}\right)\right]-\frac{1}{2} u_{o i} Q_{o}\left[v_{z} L\left(\frac{1}{b \pm \Omega_{z}}-\frac{1}{b}\right)\right]
$$

and

$$
v_{ \pm} \equiv \frac{1}{2} Q_{o}\left[v_{z}^{2} \ell\left(\frac{1}{b \pm \omega_{z}}-\frac{1}{b}\right)\right]-\frac{1}{2} u_{o e} Q_{o}\left[v_{z} \ell\left(\frac{1}{b \pm \omega_{z}}-\frac{1}{b}\right)\right]
$$

Eqs. A. 15 can be written as

$$
\begin{align*}
& R_{11}=\left(D_{+}+1\right), \\
& R_{12}=0, \\
& R_{13}=j 2 \mu_{2} \beta_{+}, \\
& R_{21}=0, \\
& R_{22}=\left(D_{-}+1\right), \\
& R_{23}=j 2 \mu_{1} \beta_{-} \cdot \\
& R_{31}=-j 2 \mu_{1} \alpha_{+}, \\
& R_{32}=-j 2 \mu_{2} \alpha_{-}, \\
& R_{33}=\left(D_{z}+1\right)+4 \mu_{1} \mu_{2}\left(\gamma_{+}+\gamma_{-}\right), \tag{A.16}
\end{align*}
$$

where

$$
\begin{align*}
& \alpha_{ \pm} \equiv\left(z_{0} D_{2} S_{ \pm}+z_{0} d_{2} s_{ \pm}\right), \\
& \beta_{ \pm} \equiv\left(\alpha_{i} D_{1} P_{ \pm}+\alpha_{e} d_{1} p_{ \pm}\right), \\
& \gamma_{ \pm} \equiv 2\left(\alpha_{i} D_{2} v_{ \pm}+\alpha_{e} d_{2} v_{ \pm}\right) . \tag{A.17}
\end{align*}
$$

Substitution of Eqs. A. 16 into Eq. 36, with the aid of Eqs. A.17, yields

$$
\begin{equation*}
D_{+} D_{-} D_{z}=-4 \mu_{1} \mu_{2}\left[D_{+}\left(D_{-} \gamma_{-}-\alpha_{-} \beta_{-}\right)+D_{-}\left(D_{+} \gamma_{+}-\alpha_{+} \beta_{+}\right)\right] \tag{A.18}
\end{equation*}
$$

which is Eq. 58.

Define the integrals $G_{p}(Y)$ and $g_{p}(Y)$ as

$$
\begin{align*}
& G_{p}(Y) \equiv \frac{j}{\sqrt{\pi}} \int_{-\infty}^{\infty} \frac{v_{z}^{p} L\left(v_{z}\right)}{\left(v_{z}-Y\right)} d v_{z}, \\
& g_{p}(Y) \equiv \frac{j}{\sqrt{\pi}} \int_{-\infty}^{\infty} \frac{v_{z}^{p} \ell\left(v_{z}\right)}{\left(v_{z}-Y\right)} d v_{z}, \tag{A.19}
\end{align*}
$$

which has been discussed by Stix ${ }^{3}$. By simple manipulation of the integrand in Eqs. A. 19 it can be shown that

$$
\begin{align*}
& G_{1}(Y)=j \frac{1}{\sqrt{\alpha_{i}}}+Y G_{o}(Y), \\
& G_{2}(Y)=j\left(Y+u_{o i}\right) \frac{1}{\sqrt{\alpha_{i}}}+Y^{2} G_{o}(Y), \\
& g_{1}(Y)=j \frac{1}{\sqrt{\alpha_{e}}}+Y g_{o}(Y), \\
& g_{2}(Y)=j\left(Y+u_{o e}\right) \frac{1}{\sqrt{\alpha_{e}}}+Y^{2} g_{o}(Y), \tag{A.20}
\end{align*}
$$

$$
\begin{align*}
& K_{ \pm}=j \frac{\sqrt{\pi}}{k} G_{o}\left(U_{ \pm}\right), \\
& S_{ \pm}=\mp j \frac{\sqrt{\pi}}{k}\left[U_{ \pm} G_{o}\left(U_{ \pm}\right)-U_{o} G_{o}\left(U_{o}\right)\right], \\
& \left.P_{ \pm}=\mp j \frac{\sqrt{\pi}}{k}\left[U_{ \pm}-u_{o i}\right) G_{o}\left(U_{ \pm}\right)-\left(U_{o}-u_{o i}\right) G_{o}\left(U_{o}\right)\right], \\
& 2 V_{ \pm}=j \frac{\sqrt{\pi}}{k}\left[U_{ \pm}\left(U_{ \pm}-u_{o i}\right) G_{o}\left(U_{ \pm}\right)-U_{o}\left(U_{o}-u_{o i}\right) G_{o}\left(U_{o}\right)+j\left(U_{ \pm}-U_{o}\right) \frac{1}{\sqrt{\alpha_{i}}}\right], \\
& T=j \frac{\sqrt{\pi}}{k}\left[U_{o}\left(U_{o}-u_{o i}\right) g_{o}\left(U_{o}\right)+j \frac{U_{o}}{\sqrt{\alpha_{i}}}\right], \\
& k_{ \pm}=j \frac{\sqrt{\pi}}{k} g_{o}\left(u_{ \pm}\right), \\
& s_{ \pm}=\mp j \frac{\sqrt{\pi}}{k}\left[u_{ \pm} g_{o}\left(u_{ \pm}\right)-U_{o} g_{o}\left(U_{o}\right)\right], \\
& p_{ \pm}=\mp j \frac{\sqrt{\pi}}{k}\left[\left(u_{ \pm}-u_{o e}\right) g_{o}\left(u_{ \pm}\right)-\left(U_{o}-u_{o e}\right) g_{o}\left(U_{o}\right)\right], \\
& \tau=j \frac{\sqrt{\pi}}{k}\left[U_{o}\left(U_{o}-u_{o e}\right) g_{o}\left(U_{o}\right)+j \frac{U_{o}}{\sqrt{\alpha_{e}}}\right] \cdot \\
& 2 v_{ \pm}=j \frac{\sqrt{\pi}}{k}\left[u_{ \pm}\left(u_{ \pm}-u_{o e}\right) g_{o}\left(u_{ \pm}\right)-U_{o}\left(U_{o}-u_{o e}\right) g_{o}\left(U_{o}\right)+j\left(u_{ \pm}-U_{o}\right) \frac{1}{\sqrt{\alpha_{e}}}\right] \tag{A.2I}
\end{align*}
$$

Upon substituting Eq. A. 21 into Eqs. A. 16 and A. 17 ,

$$
\begin{aligned}
& D_{z}=\left\{R_{2}\left[U_{0}\left(U_{0}-u_{0 i}\right) G_{0}\left(U_{0}\right)+j \frac{U_{0}}{\sqrt{\alpha_{i}}}\right]+r_{2}\left[U_{0}\left(U_{0}-u_{0 e}\right) g_{0}\left(U_{0}\right)\right.\right. \\
&\left.\left.+j \frac{U_{0}}{\sqrt{\alpha_{e}}}\right]-I\right\}, \\
& D_{ \pm}=\left\{R_{1}\left[Z_{0} G_{0}\left(U_{ \pm}\right)\right]+r_{I}\left[z_{0} g_{0}\left(u_{ \pm}\right)\right]-I\right\}, \\
& \alpha_{ \pm}=\mp R_{2} z_{0}\left[U_{ \pm} G_{0}\left(U_{ \pm}\right)-U_{0} G_{0}\left(U_{0}\right)\right] \mp r_{2} z_{0}\left[u_{ \pm} g_{0}\left(u_{ \pm}\right)-U_{0} g_{0}\left(U_{0}\right)\right],
\end{aligned}
$$

$$
\left.-\left(U_{0}-u_{o e}\right) g_{0}\left(u_{o}\right)\right],
$$

$$
\gamma_{ \pm}=R_{2} \alpha_{i}\left[U_{ \pm}\left(U_{ \pm}-u_{o i}\right) G_{o}\left(U_{ \pm}\right)-U_{o}\left(U_{o}-u_{o i}\right) G_{o}\left(U_{o}\right) \pm j \frac{\Omega_{z}}{\sqrt{\alpha_{i}} k}\right]
$$

$$
\begin{equation*}
+r_{2} \alpha_{e}\left[u_{ \pm}\left(u_{ \pm}-u_{o e}\right) g_{0}\left(u_{ \pm}\right)-U_{0}\left(U_{0}-u_{o e}\right) g_{0}\left(U_{o}\right) \pm j \frac{\omega_{z}}{\sqrt{\alpha_{e}} k}\right], \tag{A.22}
\end{equation*}
$$

where

$$
\begin{aligned}
& R_{1} \equiv\left(j \frac{\sqrt{\pi}}{k} D_{1}\right)=j \sqrt{\alpha_{i}} \frac{W_{1} \Omega_{p}^{2}}{\left(\omega^{2}-c^{2} k^{2}\right)}\left(\frac{\omega}{k}\right), \\
& R_{2} \equiv\left(j \frac{\sqrt{\pi}}{k} D_{2}\right)=j 2 \alpha_{1} \sqrt{\alpha_{i}} W_{1}\left(\frac{\Omega_{p}^{2}}{\omega^{2}}\right)\left(\frac{\omega}{k}\right), \\
& r_{1} \equiv\left(j \frac{\sqrt{\pi}}{k} \alpha_{1}\right)=j \sqrt{\alpha_{e}} w_{1} \frac{\omega_{p}^{2}}{\left(\omega^{2}-c^{2} k^{2}\right)}\left(\frac{\omega}{k}\right), \\
& r_{2} \equiv\left(j \frac{\sqrt{\pi}}{k} \alpha_{2}\right)=j 2 \alpha_{i} \sqrt{\alpha_{i}} w_{1}\left(\frac{\omega_{p}^{2}}{\omega^{2}}\right)\left(\frac{\omega}{k}\right),
\end{aligned}
$$

with

$$
W_{1} \equiv e^{-\left(e \Phi / K T_{i}\right)} \text { and } w_{I} \equiv e^{\left(e \Phi / K T_{e}\right)}
$$

and for a homogeneous plasma Φ is independent of z.
A. 3 Determination of $R_{p, q}$

For Case 2,

$$
\begin{gathered}
f_{0}=n_{0} w_{1} e^{-\alpha_{e}\left(v_{z}^{2}+v_{1}^{2}\right)} \\
F_{0}=N_{0} W_{1} e^{-\alpha_{i}\left(v_{z}^{2}+v_{\perp}^{2}\right)}, \\
\frac{\partial f_{0}}{\partial v_{z}}=-2 \alpha_{e} v_{z} f_{0}, \frac{\partial f_{0}}{\partial v_{\perp}}=-2 \alpha_{e} v_{\perp} f_{0}, \\
\frac{\partial}{\partial v_{\perp}}\left(\frac{\partial f_{0}}{\partial v_{z}}\right)=\left(2 \alpha_{e}\right)^{2} v_{z} v_{\perp} f_{0}, D\left(f_{0}\right)=0, \quad M_{0}\left(f_{0}\right)=-2 \alpha_{e} v_{\perp} f_{0}
\end{gathered}
$$

Then from Eqs. 25,

$$
\begin{align*}
& k_{11}=\frac{j 2 \alpha_{e} \eta_{e}\left(v_{\perp} f_{o}\right)}{b \delta_{o}}\left[\left(\omega_{z}-b\right) b^{2}+2 \omega_{+} \omega_{-} \omega\right] \tag{A.24a}\\
& k_{12}=\frac{j 2 \alpha_{e} \eta_{e}\left(v_{\perp} f_{o}\right)}{b \delta_{o}}\left(2 \omega_{-}^{2} \omega\right) \tag{A.24b}\\
& k_{13}=\frac{j 2 \alpha_{e} \eta_{e}\left(v_{\perp} f_{o}\right)}{b \delta_{o}}\left[\omega_{-} \omega\left(\omega_{z}-b\right)\right] \tag{A.24c}\\
& k_{21}=\frac{j 2 \alpha_{e} \eta_{e}\left(v_{\perp} f_{o}\right)}{b \delta_{o}}\left(2 \omega_{+}^{2} \omega\right) \tag{A.24C}\\
& k_{22}=\frac{-j 2 \alpha_{e} \eta_{e}\left(v_{\perp} f_{0}\right)}{b \delta_{0}}\left[b^{2}\left(b+\omega_{z}\right)-2 \omega_{+} \omega \omega_{-} \omega\right] \tag{A.24e}
\end{align*}
$$

$$
\begin{align*}
& k_{23}=\frac{j 2 \alpha_{e} \eta_{e}\left(v_{1} f_{0}\right) \omega_{+}}{b \delta_{0}}\left[\omega\left(b+\omega_{z}\right)\right] \tag{A.24f}\\
& k_{31}=\frac{-j 2 \alpha_{e} \eta_{e}\left(v_{z} f_{0}\right)}{\delta_{0}}\left[2 \omega_{+}\left(b-\omega_{z}\right)\right], \tag{A.24g}\\
& k_{32}=\frac{j 2 \alpha_{e} \eta_{e}\left(v_{z} f_{0}\right)}{\delta_{0}}\left[2 \omega_{-}\left(b+\omega_{z}\right)\right], \tag{A.24h}\\
& k_{33}=\frac{-j 2 \alpha_{e} \eta_{e}\left(v_{z} f_{0}\right)}{\delta_{0}}\left(b^{2}-\omega_{z}^{2}\right),
\end{align*}
$$

where

$$
\delta_{0} \equiv\left[\left(\omega_{z}^{2}-\mathrm{b}^{2}\right) \mathrm{b}+4 \omega_{+} \omega_{-} \omega\right] .
$$

$K_{p, q}$ can be obtained by replacing $f_{o}, \alpha_{e}, \eta_{e}, \omega_{ \pm}, \omega_{z}$ and δ_{o} by $F_{o}, \alpha_{i},-\eta_{i}, \Omega_{ \pm}, \Omega_{z}$ and Δ_{0} in Eqs. A.24. Letting

$$
\ell\left(v_{z}\right)=e^{-\alpha_{i} v_{z}^{2}} \text { and } L\left(v_{z}\right)=e^{-\alpha_{i} v_{z}^{2}}
$$

in Eq. A.14b, and defining

$$
\begin{aligned}
& \xi_{p, q} \equiv \int_{0}^{\infty} v_{\perp}^{2}\left(k_{p, q}-k_{p, q}\right) d v_{\perp} ; p=1,2 ; q=1,2,3 \\
& \eta_{p, q} \equiv \int_{0}^{\infty} v_{\perp}\left(k_{p, q}-k_{p, q}\right) d v_{\perp} ; p=3 ; q=1,2,3,
\end{aligned}
$$

with the aid of Eqs. A. 12 and A.13, gives

$$
\begin{align*}
& R_{11}=D_{1} Q_{0}\left\{\frac{L\left(v_{z}\right)}{\Delta b}\left[\left(\Omega_{z}-b\right) b^{2}+2 \Omega_{+} \Omega_{-} \omega\right]\right\}+d_{1} Q_{0}\left\{\frac { \ell (v _ { z }) } { \delta _ { 0 } b } \left[\left(\omega_{z}-b\right) b^{2}\right.\right. \\
& \left.\left.+2 \omega_{+} \omega \omega \omega\right]\right\} \text {, } \\
& R_{12}=D_{1} Q_{0}\left[\frac{L\left(v_{z}\right) 2 \Omega_{-}^{2} \omega}{\Delta b}\right]+d_{1} Q_{0}\left[\frac{\ell\left(v_{z}\right) 2 \omega^{2} \omega}{\delta_{0} b}\right], \\
& R_{13}=D_{1} Q_{0}\left[\frac{L\left(v_{z}\right)}{\Delta b} \Omega_{-} \omega\left(\Omega_{z}-b\right)\right]+d_{1} Q_{0}\left[\frac{\ell\left(v_{z}\right)}{\delta_{0} b} \omega_{-} \omega\left(\omega_{z}-b\right)\right] \text {, } \\
& R_{21}=D_{1} Q_{0}\left[\frac{L\left(v_{z}\right) 2 \Omega_{+}^{2} \omega}{\Delta b}\right]+d_{1} Q_{0}\left[\frac{\ell\left(v_{z}\right) 20 \omega_{+}^{2} \omega}{\delta_{0} b}\right], \\
& R_{22}=-D_{1} Q_{0}\left\{\frac{L\left(v_{z}\right)}{\Delta b}\left[b^{2}\left(b+\Omega_{z}\right)-2 \Omega_{+} \Omega_{-} \omega\right]\right\}-d_{1} Q_{0}\left\{\frac { \ell (v _ { z }) } { \delta _ { 0 } b } \left[b^{2}\left(b+\omega_{z}\right)\right.\right. \\
& \left.-2 \omega_{+} \omega_{-} \infty\right], \\
& R_{23}=D_{1} Q_{0}\left\{\frac{L\left(v_{z}\right) \Omega_{+}}{\Delta b^{2}}\left[\omega b\left(b+\Omega_{z}\right)\right]\right\}+d_{1} Q_{0}\left\{\frac{l\left(v_{z}\right) \omega_{+}}{\delta_{0} b^{2}}\left[\omega b\left(b+\omega_{z}\right)\right]\right\}, \\
& R_{3 I}=-D_{2} Q_{0}\left[\frac{v_{z}^{2} L\left(v_{z}\right)}{\Delta} 2 \Omega_{+}\left(b-\Omega_{z}\right)\right]-\alpha_{2} Q_{0}\left[\frac{v_{z}^{2} l\left(v_{z}\right)}{\delta_{0}} 2 \omega_{+}\left(b-\omega_{z}\right)\right] \text {, } \\
& R_{32}=D_{2} Q_{0}\left[\frac{v_{z}^{2} L\left(v_{z}\right)}{\Delta} 2 \Omega_{-}\left(b+\Omega_{z}\right)\right]+d_{2} Q_{0}\left[\frac{v_{z}^{2} \ell\left(v_{z}\right)}{\delta_{0}} 2 \omega_{-}\left(b+\omega_{z}\right)\right], \\
& R_{33}=-D_{2} Q_{0}\left[\frac{v_{z}^{2} L\left(v_{z}\right)}{\Delta}\left(b^{2}-\Omega_{z}^{2}\right)\right]-d_{2} Q_{0}\left[\frac{v_{z}^{2} \ell\left(v_{z}\right)}{\delta_{0}}\left(b^{2}-\omega_{z}^{2}\right)\right], \tag{A.25}
\end{align*}
$$

where $Q_{0}, D_{1}, D_{2}, d_{1}$ and d_{2} are as defined previously in Eqs. A.15. It should be observed that the integrand of $R_{p, q}, p, q=1,2,3$ in Eqs. A.25, has singularities at v_{z} for which $\mathrm{b}=0, \Delta=0$ or $\delta_{0}=0$, ie.,

$$
\begin{equation*}
b^{3}-\Omega_{z}^{2} b-4 \Omega_{+} \Omega_{-} \omega=0 \tag{A.26a}
\end{equation*}
$$

and

$$
\begin{equation*}
b^{3}-\omega_{z}^{2} b-4 \omega_{+} \omega \omega=0 \tag{A.26b}
\end{equation*}
$$

which are the cubic equations in b, whose discriminants are given, respectively, by

$$
\begin{equation*}
\Delta_{2} \equiv 27\left(4 \Omega_{+} \Omega_{-} \omega\right)^{2}-4\left(\Omega_{\mathrm{z}}^{2}\right)^{3} \tag{A.27a}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta_{2} \equiv 27\left(4 \omega_{+} \omega \omega_{-} \omega\right)^{2}-4\left(\omega_{\mathrm{z}}^{2}\right)^{3} \tag{A.27b}
\end{equation*}
$$

It is not difficult to see that Eqs. A.26a and A.26b have either only one real root and two complex conjugate pair roots or three real roots according to whether $\Delta_{2}>0$ or $\Delta_{2}<0$, and $\delta_{2}>0$ or $\delta_{2}<0$, respectively; in other words, according to whether

$$
\begin{equation*}
108\left(\frac{\Omega_{+} \Omega_{-}}{\Omega_{z}^{2}}\right)^{2}\left(\frac{\omega}{\Omega_{z}}\right)^{2}>1 \text { or }<1 \tag{A.28a}
\end{equation*}
$$

and

$$
\begin{equation*}
108\left(\frac{\omega_{+}^{\omega}-}{\omega_{z}^{2}}\right)^{2}\left(\frac{\omega}{\omega_{z}}\right)^{2}>1 \text { or }<1 . \tag{A.28b}
\end{equation*}
$$

Suppose that the following conditions are satisfied:

$$
\begin{equation*}
4\left(\frac{\Omega_{+} \Omega_{-}}{\Omega_{z}^{2}}\right)=4\left(\frac{\omega_{+}^{\omega}-}{\omega_{z}^{2}}\right)=\left(\frac{B_{o x}^{2}+B_{o y}^{2}}{B_{o z}^{2}}\right) \ll 1 \tag{A.29}
\end{equation*}
$$

Then

$$
\begin{equation*}
\Delta=\mathrm{b}\left(\Omega_{\mathrm{z}}^{2}-\mathrm{b}^{2}\right) \text { and } \delta_{0}=\mathrm{b}\left(\omega_{\mathrm{z}}^{2}-\mathrm{b}^{2}\right) \tag{A.30}
\end{equation*}
$$

If

$$
\begin{array}{rlrl}
B_{ \pm} & \equiv Q_{0}\left[\frac{L\left(v_{z}\right)}{b \pm \Omega_{z}}\right], & b_{ \pm} \equiv Q_{0}\left[\frac{\ell\left(v_{z}\right)}{b \pm \omega_{z}}\right], \\
C & \equiv Q_{0}\left[\frac{\Omega_{z}^{2} L\left(v_{z}\right)}{b^{2}\left(b^{2}-\Omega_{z}^{2}\right)}\right], & c \equiv Q_{0}\left[\frac{\omega_{z}^{2} \ell\left(v_{z}\right)}{b^{2}\left(b^{2}-\omega_{z}^{2}\right)}\right], \\
x_{ \pm} & \equiv Q_{0}\left[\frac{\Omega_{z} L\left(v_{z}\right)}{b^{2}\left(b \pm \Omega_{z}\right)}\right], & x_{ \pm} \equiv Q_{0}\left[\frac{\omega_{z} \ell\left(v_{z}\right)}{b^{2}\left(b \pm \omega_{z}\right)}\right], \\
F & \equiv Q_{0}\left[\frac{\Omega_{z}^{3} L\left(v_{z}\right)}{b^{3}\left(b^{2}-\Omega_{z}^{2}\right)}\right], & f \equiv Q_{0}\left[\frac{\omega_{z}^{3} \ell\left(v_{z}\right)}{b^{3}\left(b^{2}-\omega_{z}^{2}\right)}\right], \\
G_{ \pm} \equiv Q_{0}\left[\frac{\Omega_{z} v_{z}^{2} L\left(v_{z}\right)}{b\left(b \pm \Omega_{z}\right)}\right], & g_{ \pm} \equiv Q_{0}\left[\frac{\omega_{z} v_{z}^{2} \ell\left(v_{z}\right)}{b\left(b \pm \omega_{z}\right)}\right], \\
H \equiv Q_{0}\left[\frac{v_{z}^{2} L\left(v_{z}\right)}{b}\right], & h \equiv Q_{0}\left[\frac{v_{z}^{2} \ell\left(v_{z}\right)}{b}\right], \tag{A.31}
\end{array}
$$

and

$$
\begin{aligned}
& \nu_{1} \equiv\left(\Omega_{+} / \Omega_{z}\right)=\left(\omega_{+} / \omega_{z}\right), \\
& \nu_{2} \equiv\left(\Omega_{-} / \Omega_{z}\right)=\left(\omega_{-} / \omega_{z}\right), \\
& D_{+} \equiv\left[\left(D_{1} B_{+}+d_{1} b_{+}\right)-1\right], \\
& D_{z} \equiv\left[\left(D_{2} H+d_{2} h\right)-1\right], \\
& D_{-} \equiv\left[\left(D_{1} B_{-}+d_{1} b_{-}\right)-1\right],
\end{aligned}
$$

then Eqs. A. 25 can be written as

$$
\begin{align*}
& R_{11}=\left(D_{+}+1\right)-2 v_{1} v_{2} \omega I, \\
& R_{12}=-2 v_{2}^{2} \omega I, \\
& R_{13}=v_{2} \omega M_{+}, \\
& R_{21}=-2 v_{1}^{2} \omega I, \\
& R_{22}=\left(D_{-}+1\right)-2 v_{1} v_{2} \omega I, \\
& R_{23}=-v_{1} \omega M_{-}+2 v_{1}^{2} v_{2} \omega Q, \\
& R_{31}=2 v_{1} N_{+}, \\
& R_{32}=-2 v_{2} N_{-}, \\
& R_{33}=\left(D_{2}+1\right), \tag{A.32}
\end{align*}
$$

where

$$
\begin{align*}
I & \equiv\left(D_{1} C+d_{1} c\right) \\
M_{ \pm} & \equiv\left(D_{1} X_{ \pm}+d_{1} x_{ \pm}\right) \\
N_{ \pm} & \equiv\left(D_{2} G_{ \pm}+d_{2} g_{ \pm}\right), \\
Q & \equiv\left(D_{1} F+d_{1} f\right) \tag{A.33}
\end{align*}
$$

Substitution of Eqs. A. 32 into Eq. 43 yields

$$
\begin{align*}
\left(D_{+}-2 v_{1} v_{2} \omega I\right)\left[D _ { z } \left(D_{-}\right.\right. & \left.\left.-2 v_{1} v_{2} \omega I\right)-2 v_{1} v_{2} \omega M_{-} N_{-}+4 v_{1}^{2} v_{2}^{2} \omega Q N_{-}\right] \\
& +2 v_{2}^{2} \omega I\left(-2 v_{2}^{2} \omega I D_{z}+2 v_{1}^{2} \omega M_{-} N_{+}-4 v_{1}^{3} v_{2}^{2} \omega Q N_{+}\right) \\
+ & v_{2} \omega M_{+}\left(4 v_{1}^{2} v_{2} \omega I N_{-}-2 v_{1} D_{-} N_{+}+4 v_{1}^{2} v_{2} \omega I N_{+}\right)=0, \\
D_{+} D_{-} D_{z}= & 2 v_{1} v_{2} \omega\left[D_{-}\left(I D_{z}+M_{+} N_{+}\right)+D_{+}\left(D_{z}+M_{-} N_{-}\right)-2 v_{1} v_{2} Q D_{+} N_{-}\right] \\
& -4 v_{1}^{2} v_{2}^{2} \omega^{2}\left(\left(N_{+}+N_{-}\right)\left[I\left(M_{+}+M_{-}\right)+2 v_{1} v_{2} I Q\right]\right\} . \tag{A.34}
\end{align*}
$$

It should be noted that since

$$
c=Q_{0}\left[\frac{\Omega_{z} L}{2 b^{2}}\left(\frac{1}{b-\Omega_{z}}-\frac{1}{b+\Omega_{z}}\right)\right]=\frac{1}{2}\left(x_{-}-x_{+}\right)
$$

and

$$
F=Q_{0}\left\{\frac{\Omega_{z} \mathrm{~L}}{\mathrm{~b}^{2}}\left[\frac{1}{2}\left(\frac{1}{b-\Omega_{z}}+\frac{1}{b+\Omega_{z}}\right)-\frac{1}{b}\right]\right\}=\frac{1}{2}\left(\mathrm{x}_{-}+\mathrm{X}_{+}\right)-H_{3},
$$

where

$$
H_{3} \equiv Q_{0}\left(\frac{\Omega_{\mathrm{z}} \mathrm{~L}}{\mathrm{~b}^{3}}\right)
$$

I and Q can be written as

$$
I=\frac{I}{2}\left(M_{-}-M_{+}\right)
$$

and

$$
\begin{equation*}
Q=\frac{1}{2}\left(M_{-}+M_{+}\right)-H_{3}^{\prime}, \tag{A.35}
\end{equation*}
$$

where

$$
H_{3}^{\prime} \equiv\left(D_{1} H_{3}+d_{1} h_{3}\right)
$$

Since $4 v_{1} v_{2} \ll 1$ is assumed, and M_{-}and Q are of the same order of magnitude, Eqs. A. 34 can be reduced with the aid of Eqs. A. 35 to

$$
\begin{align*}
D_{+} D_{-} D_{z}=v_{1} v_{2} \omega\left[D _ { - } M _ { + } \left(2 N_{+}\right.\right. & \left.\left.-D_{z}\right)-D_{+} M_{-}\left(2 \mathbb{N}_{-}-D_{z}\right)+D_{z}\left(D_{-} M_{-}-D_{+} M_{+}\right)\right] \\
& +2 v_{1}^{2} v_{2}^{2} \omega^{2}\left[\left(M_{+}^{2}-M_{-}^{2}\right)\left(\mathbb{N}_{+}+N_{-}\right)\right], \quad(A .3 \tag{A.36}
\end{align*}
$$

which is Eq. 60 for $v^{2} \equiv\left(v_{1} v_{2}\right)$. On the other hand, with the aid of Eqs. A.19, $X_{ \pm}$can be written as

$$
x_{+}=Q_{0}\left[\frac{L}{b}\left(\frac{1}{b}-\frac{1}{b+\Omega_{z}}\right)\right]=Q_{0}\left(\frac{L}{b^{2}}\right)-\frac{Q_{0}}{\Omega_{z}}\left[L\left(\frac{1}{b}-\frac{1}{b+\Omega_{z}}\right)\right],
$$

so that

$$
x_{+}=\frac{j \sqrt{\pi}}{k \Omega_{z}}\left[G_{0}\left(U_{+}\right)-G_{0}\left(U_{0}\right)\right]+H_{z},
$$

where

$$
H_{2} \equiv Q_{0}\left(\frac{L}{b^{2}}\right) .
$$

Similarly

$$
x_{-}=\frac{j \sqrt{\pi}}{k \Omega_{z}}\left[G_{0}\left(U_{-}\right)-G_{0}\left(U_{0}\right)\right]-H_{2},
$$

where the G_{o} 's are as defined in Eq. A.19.
However, since

$$
G_{+}=Q_{0}\left[\mathrm{v}_{z}^{2} \mathrm{~L}\left(\frac{1}{\mathrm{~b}}-\frac{1}{\mathrm{~b}+\Omega_{\mathrm{z}}}\right)\right]=\frac{j \sqrt{\pi}}{k}\left[G_{2}\left(U_{0}\right)-G_{2}\left(U_{+}\right)\right],
$$

then from Eqs. A. 20 ,

$$
G_{+}=\frac{j \sqrt{\pi}}{k}\left[U_{0}^{2} G_{0}\left(U_{0}\right)-U_{+}^{2} G_{0}\left(U_{+}\right)+j \frac{1}{\sqrt{\alpha_{i}}}\left(U_{0}-U_{+}\right)\right] .
$$

Similarly,

$$
G_{-}=\frac{j \sqrt{\pi}}{k}\left[U_{-}^{2} G_{0}\left(U_{-}\right)-U_{0}^{2} G_{0}\left(U_{0}\right)+j \frac{1}{\sqrt{\alpha_{i}}}\left(U_{-}-U_{0}\right)\right] .
$$

Furthermore,

$$
B_{ \pm}=j \frac{\sqrt{\pi}}{k} G_{0}\left(U_{ \pm}\right)
$$

and

$$
H=j \frac{\sqrt{\pi}}{k}\left[U_{O}^{2} G_{O}\left(U_{0}\right)+j \frac{1}{\sqrt{\alpha_{i}}} U_{o}\right]
$$

Substituting these expressions of $X_{ \pm}, G_{ \pm}$, etc., into Eqs. A. 32 and A. 33 gives
$D_{z}=\left\{R_{2}\left[U_{0}^{2} G_{0}\left(U_{0}\right)+j \frac{U_{0}}{\sqrt{\alpha_{i}}}\right]+r_{2}\left[U_{0}^{2} g_{0}\left(U_{0}\right)+j \frac{U_{0}}{\sqrt{\alpha_{e}}}\right]-I\right\}$,
$D_{ \pm}=\left[R_{I} G_{0}\left(U_{ \pm}\right)+r_{1} g_{0}\left(u_{ \pm}\right)-1\right]$,
$N_{ \pm}=\mp R_{2}\left[U_{ \pm}^{2} G_{0}\left(U_{ \pm}\right)-U_{o}^{2} G_{0}\left(U_{0}\right) \pm j \frac{1}{\sqrt{\alpha_{i}}} \frac{\Omega_{z}}{k}\right] \mp r_{2}\left[u_{ \pm}^{2} g_{0}\left(u_{ \pm}\right)\right.$ $\left.-U_{o}^{2} g_{0}\left(U_{0}\right) \pm j \frac{1}{\sqrt{\alpha_{e}}} \frac{\omega_{z}}{k}\right]$,
$M_{ \pm}=\frac{R_{I}}{\Omega_{z}}\left[G_{0}\left(U_{+}\right)-G_{0}\left(U_{0}\right)\right]+\frac{r_{I}}{\omega_{z}}\left[g_{0}\left(u_{+}\right)-g_{0}\left(U_{0}\right)\right] \pm\left(D_{1} H_{2}+d_{1} h_{2}\right)$.

Since $R_{I}=(j \sqrt{\pi} / k) D_{I}$ and $r_{I}=(j \sqrt{\pi} / k) d_{I}$, and by defining

$$
\begin{align*}
& \Lambda=\frac{\Omega_{z}}{j k \sqrt{\pi}} \int_{-\infty}^{\infty} \frac{L\left(v_{z}\right)}{\left(v_{z}-U_{0}\right)^{2}} d v_{z}, \\
& \lambda=\frac{\omega_{z}}{j k \sqrt{\pi}} \int_{-\infty}^{\infty} \frac{\ell\left(v_{z}\right)}{\left(v_{z}-U_{0}\right)^{2}} d v_{z}, \tag{A.37}
\end{align*}
$$

$M_{ \pm}$can be expressed as

$$
M_{ \pm}=\frac{R_{I}}{\Omega_{z}}\left[G_{0}\left(U_{ \pm}\right)-G_{0}\left(U_{0}\right) \pm \Lambda\right]+\frac{r_{I}}{\omega_{z}}\left[g_{0}\left(u_{ \pm}\right)-g_{0}\left(U_{0}\right) \pm \lambda\right] .
$$

A. 4 Derivation of Egs. 70

From Eqs. 69

$$
\begin{align*}
& G_{o}\left(U_{ \pm}\right) \simeq-j \frac{1}{\sqrt{\alpha_{i}}\left(U_{ \pm}-u_{o i}\right)}\left[1+\frac{1}{2 \alpha_{i}\left(U_{ \pm}-u_{o i}\right)^{2}}\right], \\
& g_{o}\left(u_{ \pm}\right) \simeq-j \frac{1}{\sqrt{\alpha_{e}\left(u_{ \pm}-u_{o e}\right)}\left[1+\frac{1}{2 \alpha_{e}\left(u_{ \pm}-u_{o e}\right)^{2}}\right]} \tag{A.38}
\end{align*}
$$

and

$$
\begin{aligned}
& R_{1} Z_{o} G_{o}\left(U_{ \pm}\right) \simeq \frac{\Omega_{p}^{2}}{\left(\omega^{2}-c^{2} k^{2}\right)}\left(\frac{U_{o}-u_{o i}}{U_{ \pm}-u_{o i}}\right)\left[1+\frac{1}{2 \alpha_{i}\left(U_{ \pm}-u_{o i}\right)^{2}}\right], \\
& r_{1} z_{o g_{o}}\left(u_{ \pm}\right) \simeq \frac{\omega_{p}^{2}}{\left(\omega^{2}-c^{2} k^{2}\right)}\left(\frac{U_{o}-u_{o e}}{u_{ \pm}-u_{o e}}\right)\left[1+\frac{1}{2 \alpha_{e}\left(u_{ \pm}-u_{o e}\right)^{2}}\right] .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& D_{ \pm}=\left\{\frac{\Omega_{p}^{2}\left(\omega-k u_{o i}\right)}{\left(\omega^{2}-c^{2} k^{2}\right)\left(\omega \pm \Omega_{z}-k u_{o i}\right)}\left[1+\frac{1}{2 \alpha_{i}\left(U_{ \pm}-u_{o i}\right)^{2}}\right]\right. \\
& \left.\quad+\frac{\omega_{p}^{2}\left(\omega-k u_{o e}\right)}{\left(\omega^{2}-c^{2} k^{2}\right)\left(\omega \pm \omega_{z}-k u_{o e}\right)}\left[1+\frac{1}{2 \alpha_{e}\left(u_{ \pm}-u_{o e}\right)^{2}}\right]-1\right\}, \\
& \left.R_{2}\left[U_{o}\left(U_{o}-u_{o i}\right)\right)_{o}\left(U_{o}\right)+j \frac{U_{o}}{\sqrt{\alpha_{i}}}\right]=\frac{\Omega_{p}^{2}}{k^{2}} \frac{1}{\left(U_{o}-u_{o i}\right)^{2}}=\frac{\Omega_{p}^{2}}{\left(\omega-k u_{o i}\right)^{2}}, \\
& r_{I}\left[U_{O}\left(U_{o}-u_{o e}\right) g_{o}\left(U_{o}\right)+j \frac{U_{o}}{\sqrt{\alpha_{e}}}\right]=\frac{\omega_{p}^{2}}{k^{2}} \frac{1}{\left(U_{o}-u_{o e}\right)^{2}}=\frac{\omega_{p}^{2}}{\left(\omega-k u_{o e}\right)^{2}},
\end{aligned}
$$

and consequently

$$
\begin{aligned}
& D_{z}=\left[\frac{\Omega_{p}^{2}}{\left(\omega-k u_{o i}\right)^{2}}+\frac{\omega_{p}^{2}}{\left(\omega-k u_{o e}\right)^{2}}-1\right], \\
& R_{2} Z_{0}\left[U_{ \pm} G_{o}\left(U_{ \pm}\right)-U_{o} G_{o}\left(U_{o}\right)\right]=2 \alpha_{i}\left(\frac{\Omega_{p}^{2}}{\omega^{2}}\right)\left\{\frac{\left(U_{o}-u_{O i}\right) U_{ \pm}}{\left(U_{ \pm}-u_{O i}\right)}\left[1+\frac{1}{2 \alpha_{i}\left(U_{ \pm}-u_{o i}\right)^{2}}\right]\right. \\
& \left.-U_{0}\left[1+\frac{1}{2 \alpha_{i}\left(U_{o}-u_{O i}\right)^{2}}\right]\right\}, \\
& r_{2} z_{o}\left[u_{ \pm} g_{o}\left(u_{ \pm}\right)-U_{o} g_{o}\left(U_{o}\right)\right]=2 \alpha_{e}\left(\frac{\omega_{p}^{2}}{\omega^{2}}\right)\left\{\frac{\left(U_{o}-u_{o e}\right) u_{ \pm}}{\left(u_{ \pm}-u_{o e}\right)}\left[1+\frac{1}{2 \alpha_{e}\left(u_{ \pm}-u_{o e}\right)^{2}}\right]\right. \\
& \left.-U_{o}\left[1+\frac{1}{2 \alpha_{e}\left(U_{o}-u_{o e}\right)^{2}}\right]\right\}, \\
& R_{1} \alpha_{1}\left[\left(U_{ \pm}-u_{o i}\right) G_{o}\left(U_{ \pm}\right)-\left(U_{o}-u_{o i}\right) G_{o}\left(U_{o}\right)\right]=\frac{\Omega_{p}^{2} U_{o}}{2\left(\omega^{2}-c^{2} k^{2}\right)}\left[\frac{1}{\left(U_{ \pm}-u_{0 i}\right)^{2}}\right. \\
& \left.-\frac{1}{\left(U_{0}-u_{0 i}\right)^{2}}\right], \\
& r_{1} \alpha_{e}\left[\left(u_{ \pm}-u_{o e}\right) g_{o}\left(u_{ \pm}\right)-\left(U_{o}-u_{o e}\right) g_{o}\left(U_{o}\right)\right]=\frac{\omega_{p}^{2} U_{o}}{2\left(\omega^{2}-c^{2} k^{2}\right)}\left[\frac{1}{\left(u_{ \pm}-u_{o e}\right)^{2}}\right. \\
& \left.-\frac{1}{\left(U_{o}-u_{o e}\right)^{2}}\right],
\end{aligned}
$$

$$
\begin{align*}
R_{2} \alpha_{i}\left[U_{ \pm}\left(U_{ \pm}-u_{o i}\right) G_{o}\left(U_{ \pm}\right)\right. & \left.-U_{o}\left(U_{0}-u_{o i}\right) G_{o}\left(U_{o}\right) \pm j \frac{\Omega_{z}}{\sqrt{\alpha_{i}} k}\right] \\
= & \alpha_{i} U_{o}\left(\frac{\Omega_{p}^{2}}{\omega^{2}}\right)\left[\frac{U_{ \pm}}{\left(U_{ \pm}-u_{o i}\right)^{2}}-\frac{U_{o}}{\left(U_{o}-u_{o i}\right)^{2}}\right] \\
r_{2} a_{e}\left[u_{ \pm}\left(u_{ \pm}-u_{o e}\right) g_{o}\left(u_{ \pm}\right)\right. & \left.-U_{o}\left(U_{0}-u_{o e}\right) g_{o}\left(U_{o}\right) \pm j \frac{\omega_{z}}{\sqrt{\alpha_{e}} k}\right] \\
& =\alpha_{e} U_{o}\left(\frac{\alpha_{o}^{2}}{\omega^{2}}\right)\left[\frac{u_{ \pm}}{\left(u_{ \pm}-u_{o e}\right)^{2}}-\frac{U_{o}}{\left(U_{o}-u_{o e}\right)^{2}}\right] \tag{A.39}
\end{align*}
$$

Upon substituting the above expressions into Eq. 58, Eqs. 70 are obtained:

$$
\begin{align*}
R_{2}\left[U_{ \pm}^{2} G_{0}\left(U_{ \pm}\right)\right. & \left.-U_{0}^{2} G_{0}\left(U_{0}\right) \pm j \frac{1}{\sqrt{\alpha_{i}}} \frac{\Omega_{z}}{k}\right] \\
& =2 \alpha_{i}\left(\frac{\Omega_{p}^{2}}{\omega^{2}}\right) U_{0}\left[U_{ \pm}\left(1+\frac{1}{2 \alpha_{i} U_{ \pm}^{2}}\right)-U_{0}\left(1+\frac{1}{2 \alpha_{i} U_{0}^{2}}\right) \mp \frac{\Omega_{z}}{k}\right] \\
& =\left(\frac{\Omega_{p}^{2}}{\omega^{2}}\right)\left(\frac{U_{0}}{U_{ \pm}}-1\right) \tag{A.40a}
\end{align*}
$$

$$
r_{2}\left[u_{ \pm}^{2} g_{0}\left(u_{ \pm}\right)-U_{0}^{2} g_{0}\left(U_{0}\right) \pm j \frac{1}{\sqrt{\alpha_{e}}} \frac{\omega_{z}}{k}\right]=\left(\frac{\omega_{p}^{2}}{\omega^{2}}\right)\left(\frac{U_{0}}{u_{ \pm}}-1\right), \quad(A .40 b)
$$

$$
\Lambda=\frac{\Omega_{z}}{j \sqrt{\pi} k} \int_{-\infty}^{\infty} \frac{e^{\alpha_{i} v_{z}^{2}}}{\left(v_{z}-U_{0}\right)^{2}} d v_{z}=\frac{j \Omega_{z} 2 \alpha_{i}}{\sqrt{\pi} k} \int_{-\infty}^{\infty} \frac{v_{z} e^{-\alpha_{i} v_{z}^{2}}}{\left(v_{z}-U_{0}\right)} d v_{z}
$$

$$
=2 \alpha_{i}\left(\frac{\Omega_{z}}{k}\right) G_{i}\left(U_{0}\right)
$$

$$
=2 \alpha_{i}\left(\frac{\Omega_{z}}{k}\right)\left[\frac{j}{\sqrt{\alpha_{i}}}+U_{o} G_{o}\left(U_{o}\right)\right]
$$

$$
\begin{aligned}
& \frac{R_{1}}{\Omega_{z}}\left[G_{0}\left(U_{ \pm}\right)-G_{0}\left(U_{0}\right) \pm \Lambda\right] \\
& =\frac{1}{\Omega_{z}} \frac{\Omega_{p}^{2}}{\left(\omega^{2}-c^{2} k^{2}\right)} U_{0}\left[\frac{1}{U_{ \pm}}\left(1+\frac{1}{2 \alpha_{i} U_{ \pm}^{2}}\right)-\frac{1}{U_{0}}\left(1+\frac{1}{2 \alpha_{1} U_{0}^{2}}\right) \pm\left(\frac{\Omega_{z}}{k}\right) \frac{1}{U_{0}^{2}}\right], \\
& \frac{r_{1}}{\omega_{z}}\left[g_{0}\left(u_{ \pm}\right)-g_{0}\left(U_{0}\right) \pm \lambda\right] \\
& \quad=\frac{1}{\omega_{z}} \frac{\omega_{p}^{2}}{\left(\omega^{2}-c^{2} k^{2}\right)} U_{0}\left[\frac{1}{u_{ \pm}}\left(1+\frac{1}{2 \alpha_{e}^{u_{ \pm}^{2}}}\right)-\frac{1}{U_{0}}\left(1+\frac{1}{2 \alpha_{e} U_{o}^{2}}\right) \pm\left(\frac{\omega_{z}}{k}\right) \frac{1}{U_{0}^{2}}\right]
\end{aligned}
$$

Substituting Eqs. A. 40 into Eq. 60 yields Eqs. 72. $D_{ \pm}$and D_{z} appearing in Eqs. 72 are obtained by setting $u_{o i}=u_{o e}=0$ in $D_{ \pm}$and D_{z}, given by Eqs. 70 .

1. Bernstein, I. B. and Trehan, S. K., "Plasma Oscillation I", Project Matherhorn, A.E.C. Research and Development Tech. Report No. 42, Princeton University, Princeton, N. J.; May 10, 1960.
2. Denisse, J. F. and Delcroix, J. L., Plasma Waves, Interscience Publishers, New York; 1963.
3. Stix, T. H., The Theory of Plasma Waves, McGraw Hill Book Co., Inc., New York; 1962.
4. Montgomery, D. C. and Tidman, D. A., Plasma Kinetic Theory, McGraw Hill Book Co., Inc., New York; 1964.
5. Tanenbaum, B. S., "Dispersion Relations in a Stationary Plasma", Phys. Fluids, vol. 4, No. 10, pp. 1262-1272; October, 1961.
6. Heald, M. A. and Wharton, C. B., Plasma Diagnostics with Microwaves, John Wiley and Sons, Inc., New York; 1965.
7. Ratcliffe, J. A., The Magneto-ionic Theory and Its Applications to the Ionosphere, University Press, Cambridge, Fingland; 1959.
8. Tidman, D. A., "Radio Emission by Plasma Oscillations in Nonuniform Plasmas", Phy. Rev., vol. 117, pp. 366-374; 1960.
9. Ginzburg, V. L., Propagation of Electromagnetic Waves in Plasma, Gordon and Research Science Publisher, Inc., New York, Chap. 4; 1961.
10. Helliwell, R. A., Whistlers and Related Ionospheric Phenomena, Stanford University Press, Stanford, Calif., Chap. 7; 1965.
