A STUDY OF
 ABLATION MATERIAL EFFECTS ON ANTENNA PERFORMANCE

AVCO MISSILES, SPACE AND ELECTRONICS GROUP
 SPACE SYSTEMS DIVISION

201 Lowell Street
Wilmington, Massachusetts
AVSSD-0277-66-RR
NASA Contract 9-4916

LIBRARY COPY

DEC 51966 MANNED SPACECRAFT CENTER
HOUSTON, TEXAS
12 October 1966

ff 653 Julv 65

A STUDY OF ABLATION MATERIAL EFFECTS ON ANTENNA PERFORMANCE

Prepared by
R. L. Fante
J. R. McLaughlin
J. E. Trousdale
AVCO MISSILES, SPACE AND ELECTRONICS GROUP SPACE SYSTEMS DIVISION
201 Lowell Street
Wilmington, Massachusetts

AVSSD-0277-66-RR NASA Contract 9-4916

12 October 1966

APPROVED

Chief, Radiating Systems Section

Prepared for
NATIONAL AERONAUTICS
AND SPACE ADMINSTRATION
MANNED SPACECRAFT CENTER
Houston, Texas

ABSTRACT

This is the final report on Contract NAS 9-4916 "A Study of Ablation Material Effects on Antenna Performance." This report summarizes the contract objectives, details the work accomplished, provides conclusions and recommends a future course of continued study.

EDITED BY:
EDITORIAL SERVICES SECTION
J. J. McCARRON

CONTENTS

I. Introduction 1
II. Program Objectives 1
III. Summary of Work Accomplished 2
IV. Conclusions and Recommendations 5
V. Detailed Report 7
A. Literature Search 7

1. Theoretical-Program-Literature Search 7
2. Dielectric-Measurements-Literature Search 7
B. Avcoat 5026-39 Dielectric Measurements 8
3. Pre-Contract 5026-39 Dielectric Measurements 8
4. Study of Physical Properties 8
5. Midtemperature-Range Measurements 15
6. Cryogenic Range Measurements 25
7. High-Temperature-Rangt Measurements 26
C. Theoretical Study 36
8. Formulation 37
9. Some Properties of the Q Functions 48
10. Discussion of Method of Solutions of Equations 35 and 36 50
11. The Computer Programs for the Solutions of Equations 35 and 36 52
12. A Variational Expression for the Admittance of the Plasma-Covered Rectangular Waveguide 53
13. Steepest-Descent Calculations for Far Fields 57
14. Radiation Pattern of Slot Antenna 65
15. Computer Program in Fortran 72
D. Simulator-Verification Tests 94
16. Simulator Sources 94
17. Simulator Inspection 96
18. Verification Tests 98

CONTENTS (Concl'd)

a. Open-Ended Waveguide, Full-,1/3 and 1/5- Scale-Model Patterns and Impedance 99
b. Monopole, Full- and 1/3-Scale-Model Patterns and Impedance 154
c. Scimitar and Scimitar Slot Full- and 1/3-Scale- Model Patterns and Impedance 162
d. Simulation Errors 162
Appendixes 185
A. Bibliography 187
B. Mid-Temperature Range Complex Dielectric Constant Test Procedures for Avcoat 5026-39 195
C. Cryogenic Temperature Range Complex Dielectric Constant Test Procedures for Avcoat 5026-39 203
D. High Temperature Range Complex Dielectric Constant Test Procedures for Avcoat 5026-39 213

ILLUSTRATIONS

Figure 1 Capacitor with Dielectric Layers Parallel to Plates 11
2 Capacitor with Dielectric Layers Perpendicular to Plates 13
3 Swept-Frequency Equipment Setup 17
4 Honeycomb Orientations 18
5 Honeycomb Orientations 19
6 Dielectric Constant, $5026-39 \mathrm{M}$ and HCG at $25^{\circ} \mathrm{C}$ 21
7a Loss Tangent, $5026-39 \mathrm{M}$ and HCG at $25^{\circ} \mathrm{C}$ 22
7b Loss Tangent, 5026-39 HCG at $180^{\circ} \mathrm{C}$ 22
8 Dielectric Constant 5026-39 HCG at $180^{\circ} \mathrm{C}$ 24
9 Cryogenic Sampl』 Holder 26
10 Cryogenic Sampie Holder and Dewar 27
11 Dielectric Constant 5026-39 HCG $4^{\circ} \mathrm{K}$ 28
12 Top View of High-Temperature Oven 30
12a Sample Holder and Sample 31
13 High-Temperature Test Equipment 32
14 Theoretical Pattern of 300 Mc Open-Ended Waveguide Covered with Avcoat 5026-39M. Principal E Plane 68
15 Theoretical Pattern of 300 Mc Open-Ended Waveguide Covered with Avcoat 5026-39M. Principal H Plane 69
16 Theoretical Patterns of 2200 Mc and 6600 Mc Open- Ended Waveguide Covered with Avcoat 5026-39M. Principal E Plane 70

YLLUSTRATIONS (Cont'd)

Figure 17 Theoretical Patterns of 2200 Mc and 6600 Mc Open
Ended Waveguide Covered with Avcoat 5026-39M.
Principal H Plane 71
18 Spherical Coordinate System for Open-Ended Waveguide 101
19300 Mc Open-Ended Waveguide, with and without Avcoat 5026-39M. E Plane 104
20300 Mc Open-Ended Waveguide, with and without Avcoat 5026-39M. H Plane 105
21300 Mc Open-Ended Waveguide, Comparison between Avcoat 5026-39M and Simulator. E Plane 106
22300 Mc Open-Ended Waveguide, Comparison between Avcoat 5026-39M and Simulator. H Plane 107
23300 Mc and 900 Mc Open-Ended Waveguide, Comparison between Avcoat 5026-39M and Third-Scale Simulator. E Plane 108
24300 Mc and 900 Mc Open-Ended Waveguide, Comparison between Avcoat 5026-39M and Third-Scale Simulator. H Plane 109
25
300 Mc and 1500 Mc Open-Ended Waveguide, Comparison between Avcoat 5026-39M and Fifth-Scale Simulator. E Plane 110
26
300 Mc and 1500 Mc Open-Ended Waveguide, Comparison between Avcoat 5026-39M and Fifth-Scale Simulator. H Plane 111
28 113
Avcoat 5026-39M. H Plane29
272200 Mc Open-Ended Waveguide, with and without Avcoat 5026-39M. E Plane 112
2200 Mc Open-Ended Waveguide, Comparison between Avcoat 5026-39M and Simulator. E Plane 114

ILLUSTRATIONS (Cont'd)

Figure $\quad 30 \quad$| 2200 Mc Open-Ended Waveguide, Comparisun |
| :--- |
| between Avcoat 5026-39M and Simulator. |
| |
| |
| H Plane . 115 |

312200 Mc and 6600 Mc Open-Ended Waveguide, Comparison between Avcoat 5026-39M and Third-Scale Simulator. E Plane116

2200 Mc and 6600 Mc Open-Ended Waveguide,
Comparison between Avcoat 5026-39M and
Thiai-Scale Simulator. H Plane 117
332200 Mc and 11000 Mc Open-Ended Waveguide, Comparison between Avcoat 5026-39M and Fifth- Srale Simulator. E Plane 118
342200 Mc and 11000 Mc Open-Ended Waveguide, Comparison between Avcoat 5026-39M and Fifth-Scale Simulator. H Plane 119
352200 Mc Open-Ended-Waveguide Antenna Partially Covered with Virgin Heat-Shield Simulator 120
36 Impedance of $300 \mathrm{Mc}, 900 \mathrm{Mc}$ and 1500 Mc Open-Ended Waveguide 121
37 Impedance of 2200 Mc Open-Ended Waveguide 122
38 Impedance of 6600 Mc Open-Ended Waveguide 123
39 Impedance of 11000 Mc Open-Ended Waveguide 124
Oven Test Setup 126
41 Top View of Charred Avcoat 5026-39M 127
42 Cross-Sectional View of Surfact Char on Avcoat 5026-39M 12843300 Mc Open-Ended-Waveguide Antenna with NylonAntenna Window. Ground Plane Covered with CharredAvcoat 5026-39M130

ILLUSTRATIONS (Cont'd)

Figure $\quad 44 \quad 300 \mathrm{Mc}$ Open-Ended Waveguide, Comparison between Charred Avcoat 5026-39M and Simulator. E Plane 132
45300 Mc Open-Ended Waveguide, Comparison between Charred Avcoat 5026-39M and Simulator. H Plane 133
46300 Mc and 900 Mc Open-Ended Waveguide, Comparison between Charred Avcoat 5026-39M and Third-Scale Simulator. E Plane 134
47300 Mc and 900 Mc Open-Ended Waveguide Comparison between Charred Avcoat 5026-39M and Third-Scale Simulator. H Plane 135
48300 Mc and 1500 Mc Open-Ended Waveguide, Comparison between Charred Avcoat 5026-39M and Fifth-Scale Simulator. E Plane 136
49300 Mc and 1500 Mc Open-Ended Waveguide. Comparison between Charred Avcoat 5020-29M and Fifth-Scale Simulator. H Plane 137
502200 Mc Open-Ended Waveguide, Comparison between Charred Avroat 5026-39M and Simulator L^{4} Plane 138
512200 Mc Open-Ended Waveguide, Comprizion between Charred Avcoat 5026-39M and Simister. H Plane 139
$52 \quad 2200 \mathrm{Mc}$ and 6600 Mc Open-Ended Waveguide,
Comparison between Charred Avcoat 5026-39M and Third-Scale Simulator. E Plane 140
$53 \quad 2200 \mathrm{Mc}$ and 6600 Mc Open-Ended Waveguide, Comparison between Charred Avcoat 5026-39M and Third-Scale Simulator. H Plane 141
54
2200 Mc and 11000 Mc Open-Ended Waveguide, Comparison between Charred Avcoat 5026-39M and Fifth-Scale Simulator. E Plane 142
552200 Mc and 11000 Mc Open-Ended Waveguide, Gomparison between Charred Avcoat 5026.39M and Fifth-Scale Simulator. H Plane 143

ILLUSTRATIONS (Cont'd)

$\begin{aligned} & \text { Figure } 56 \quad 300 \mathrm{Mc} \text { Open-Ended Waveguide, Charred } 5026-39 \mathrm{M} \text { and } \\ & \text { Charred } 5026-39 \mathrm{M} \text { with Antenna Window. E Plane...... } 144\end{aligned}$
57300 Mc Open-Ended Waveguide, Charred $5026-39 \mathrm{M}$ and
Charred $5026-39 \mathrm{M}$ with Antenna Window 145
58 2200 Mc Open-Ended Waveguide, Charrca $3026-39 \mathrm{M}$ and
Charred 5026-39M with Antenna Window. E Plane 146
59 2200 Mc Open-Ended Waveguide, Charred 5026-39M and
Charred 5026-39M with Antenna Window. H Plane 147

61 Impedance of 300 Mc and 900 Mc Open-Ended Waveguide l . 149
62 Impedance of 300 Mc and 1500 Mc Open-Ended
Waveguide with Charred Avcoat 5026-39M and Simulator ... 150
63 Impedance of 2200 Mc Open-Ended Waveguide with $\quad 151$
64 Impedance of 2200 Mc and 6600 Mc Open-Ended
Waveguide with Charred Avcoat $5026-39 \mathrm{M}$ and
Simulators . 152
65 Impedarce of 2200 Mc and 11000 Mc Open-Ended l.
66 Spherical Coordinate System for Monopole 155
67 2200 Mc Monopole Antenna Covered with Virgin \quad. 156

69 2200 Mc Monopole, Comparison between Avcoat
$5026-39 \mathrm{M}$ and Simulator - Polarization Horizontal 158
$\begin{array}{ll}70 & 2200 \mathrm{Mc} \text { and } 6600 \mathrm{Mc} \text { Monopole Antennas, Compariscn } \\ \text { between Avcoat } 5026-39 \mathrm{M} \text { and Third-Scale Simulation - } \\ \text { Polarization Horizontal ... }\end{array}$

ILLUSTRATIONS (Cont'd)

Figure 71 Impedance of 2200 Mc and 6600 Mc Monopole 160
72 Spherical Coordinate System for Scimitar and Scimitar Slot 165
73 Full-Scale and Third-Scale Scimitar and Scimitar-Slot Antennas 166
74 Full-Scale Scimitar Antenna Covered with Virgin Heat-Shield Simulator 167
75300 Mc Scimitar Antenna, with and without Avcoat 5026-39M - Polarization Horizontal. 168
76300 Mc Scimitar Antenna, with and without Avcoat 5026-39M - Polarization Vertical 169
77300 Mc Scimitar Antenna, Comparison between Avcoat 5026-39M and Simulator - Polarization Horizontal 170
78300 Mc Scimitar Antenna, Comparison between Avcoat 5026-39M and Simulator - Polarization Vertical 171
79300 Mc and 900 Mc Scimitar Antennas, Comparison between Avcoat 5026-39M and Third-Scale Simulation - Polarization Horizontal 172
80300 Mc and 900 Mc Scimitar Antennas, Comparison between Avcoat 5026-39M and Third-Scale Simulation - Polarization Vertical 173
812200 Mc Scimitar-Slot Antenna, with and without Avcoat 5026-39M - Polarization Horizontal 174
822200 Mc Scimitar-Slot Antenna, with and without Avcoat 5026-39M - Polarization Vertica! 175
832200 Mc Scimitar-Slot Antenna, Comparison between Avcoat 5026-39M and Simulator - Polarization Horizontal 176
842200 Mc Scimitar - Slot Antenna, Comparison.between Avcoat 5026-39M and Simulator Polarization Vertical.. 177

ILLUSTRATIONS (Concl'd)

862200 Mc and 6600 Mc Scimitar-Slot Antennas, Comparison between Avcoat 5026-39M and Third-Scale Simulation - Polarization Vertical 179
87 Impedance of 300 Mc and 900 Mc Scimitar Slot 180
88 Impedance of 2200 Mc and 6600 Mc Scimitar Slot 181
B-1 Block Diagram of Midtemperature Range Dielectric Measurements and Equipment List 196
B-2 Test Setup for $180^{\circ} \mathrm{C}$ Permittivity Measurements 198
C-1 Block Diagram of Cryogenic Range Dielectric Measurements and Equipment List 204
C-2 Cryogenic Sample Holder 205
C-3 Cryogenic Sample Holder and DEW AR 206
D-1 Dielectric Rod Disilaced ($\mu_{0}<b$) 216
D-2 High-Temperature Dielectric Measuring System ($\mathrm{f}=250 \mathrm{Mc}$) 219
D-3 High-Temperature Dielectric Measuring System ($\mathrm{f}=1000 \mathrm{Mc}$) 220
D-4 High-Temperature Dielectric Measuring System $(f=3000 \mathrm{Mc}$) 221
D-5 Data Sheet 225

TABLES

Table I Electrical Properties of Avcoat 5026 9
II Verification Tests-- Open-Ended Waveguide 100
III Char Simulators 131
IV Verification Tests-- Monopole 161
V Verification Tests--Scirritar 163
VI Verification Tests--Scimitar Slot 164
VII Decibel Deviation Between Avcoat 5026-39M and Simulator in Main Beam ($\theta=270$ to 90 degrees) 183
B-1 Frequencies, Temperatures and Sample Types
D-1 Equipment List for Figure D-2 219
D-2 Equipment List for Figure D-3 220
D-3 Equipment List for Figure D-4 221

I. INTRODUCTION

This is the final report on Contract NAS 9-4916 "A Study of Ablation Material Effects on Antenna Performance". This report summarizes the contract objectives, details the work ačomplished, provides conclusions and recommends a future course of continued study.

II PROGRAM OBJECTIVES

The first objective of this study program was to develop specifications for the electrical and physical properties of a series of materials as simulators of the Avcoat 5026-39 thermal protection system on the Apollo command module as it exists in the various stages of its mission. Of particular interest was the charred condition of the Avcoat during reentry. The simulators are required by NASA MSC for facile measurement of the electrical and physical conditions of the ablator on antenna performance for full-, one-third-and one-fifth scale vehicle models using standard antenna-range equipment at ambient temperatures.

The second objective was to analyze theroretically the effects which ablative dielectric coverings have on antenna pattern, gain, efficiency, and reflection coefficient, and to express these effects in terms of the dielectric constant, loss tangent, and thickness of the dielectric covering.

The third and over-all objective of the study was to provide a high confidence level for the accuracy of measurements to be made by the NASA Manned Spacecraft Center with the simulators specified in the first objective.

BLANK PAGE

III. SUMMARY OF WORK ACCOMPLISHED

The program was divided into three major tasks as follows:

1. Determination of Avcoat 5026-39 dielectric properties from $4^{\circ} \mathrm{K}$ to $2000^{\circ} \mathrm{K}$.
2. Development of a computer program to calculate properties of coveredslot radiation patterns and impedance.
3. Development of materials simulating the electrical conditions of Avcoat 5026-j9 from $4^{\circ} \mathrm{K}$ to $2000^{\circ} \mathrm{K}$ and verification thereof with the use of slot, monopole and scimitar antennas of various scales.

In pursuit of these above tasks, the following work increments were accomplished:

1. A literature search was made that included DOD-and NASA-computerized searches for material relevant to complex permittivity measurement procedures, artificial dielectric (simulators) fabrication, performance parameter calculation of dielectric-sheathed antennas with emphasis on monopoles and slots, and literature dealing with scaling laws. The useful literature ordered and received was copied and retransmitted to NASA Houston as contractually required.
2. Avcoat 5026-39 dielectric-property screening tests and studies were made first, to determine if any differences existed between 5026-39M and 5026-39HCG; second, to determir the effect of moisture on dielectricproperty stability; and third, to determine the effect of 5026-39 density and density tolerance being supplied in manufacture on dielectric properties.

Cryogenic complex permittivity test procedures were developed, appropriate equipment was fabricated, and virgin Avcoat 5026-39M dielectric properties were measured at $4^{\circ} \mathrm{K}$ for frequencies of $300,450,2200$, and 5800 Mc .

Mid temperature range test procedures were deveioped and virgin and oven-charred 5026-39M properties were measured at $298^{\circ} \mathrm{K}$ and $+53^{\circ} \mathrm{K}$ for frequencies of $300,450,1000,2200$, and 5800 Mc .

High-temperature range dielectric property test procedures were developed and the properties of $5026-39$ were measured at $2000^{\circ} \mathrm{K}$ for frequencies of 250,1000 , and 3000 Mc . The measurement procedures were subsequently found to be inadequate because of the extremely high loss tangent of 5026-39
charred under intense heating. Subsequent cold-char measurements indicated that char measurements hot or cold would be limited to measurements of conductivity.
3. Formulations and a computer program were developed to calculate the radiation patterns and impedance of a lossy dielectric-covered open-ended waveguide. Impedance and pattern calculations were verified experimentally.
4. Simulators for virgin and charred Avcoat 5026-39 were successfully developed. Fidelity of the simulators was verified experimentally on openended waveguide, monopole and scimitar antennas of various scales by direct comparison of radiation patterns, gain and impedance alternately covered with simulator and heat shield.

IV. CONCLUSIONS AND RECOMMENDATIONS

1. It was possible to solve the problems as associated with the measurement of the complex permittivity of Avcoat 5026-39 from $4^{\circ} \mathrm{K}$ to $450^{\circ} \mathrm{K}$ and measurements were made accordingly.
2. Techniques more sophisticated than those developed for this program are required to measure 5026-39 electrical properties after the onset of pyrolysis. Heat rate, time, shear forces, local gas constituents and pressure effect the 5026-39 electrical properties and need to be controlled and related to pertinent reentry conditions. As an alternative to determining the 5026-39 complex permittivity, it is probably more advisable to measure directly the effect of hot heat shield on antenna performance during pyrolysis and then develop a simulator empirically. The simulator could then cover a large vehicle as appropriate for antenna measurements.
3. The problem of calculating the impedance and rariation pattern of a dielec-tric-covered waveguide was resolved. It is suggested that this study be extended to consider stratified covers as a more realistic reentry antenna condition.
4. Flexible, easy to use, reasonably low-cost simulators for full-scale and part-scale models were designed to simulate conditions of 5026-39 prior to ablation. No additional work is recommended in this area.
5. Simulators were developed for charred Avcoat 5026-39. Although the char was not related to any specific reentry condition, the simulator fabrication technique could be used or extended to any moderate or severe char condition.
6. Scaling of antennas, together with the use of heat-sheald simulators, is a valid and useful way of measuring antenna parameters. The validity of scaling is decreased, however, in lower power regions of radiation patterns unless all elements in the test set, including those that radiate spuriously, are scaled. Spurious elements are, typically, the feed structure, the antenna boom and miscellaneous cables.

Specific recommendations derived from the above are:

Pursue the high-temperature measurement of 5026-39 electrical properties or, preferably, measure effects of ablating 5026-39 directly on antennas; then, develop simulators empirically.

BLANK
 PAGE

V. DETAILED REPORT OF PROGRESS

A. LITERATURE SEARCH

1. Theoretical Program Literature Search

The theoretical prograrn literature search was conducted for articles and documents pertaining to a dielectric coated monopole over a finite lossy ground plane and for a dielectric covered slot. The following abstract: and indexes were examined in search for the subject described:

STAR INDEX	1963 - Presert
TAB INDEX	1963 - Present
International Aerospace Abstracts	1962 - Present
Journal of Applied Physics	1943 - Present
I. E.E.E. Proceedings	1912 - Present
PGAP	1953 - Present
Physics Abstracts	1956 - Present

A computerized literature search was performed by DDC and NASA. The DDC searcu listed several hundred articles of which only one reference was considered useful and there were only two useful articles from NASA's 250 citations. These articles are listed in appendix A.

2. Dielectric Measurements Literałure Search

The initial literature search activity was concentrated on material pertaining to the measurement of dielectric properties and the manufacturing and control of the physical characteristics of Avcoat 5026-39 HCG. NASA and the Defense Documentation Center made literature searches on the former subject. The computer search submitted by the Departmf .t of Defense listed 26 abstracts oi which 9 appeared applicable to the program. The NASA search included 49 citations of which 16 we re applicable to the program. These reports were then ordered through the Avco Library.

Reprints of all the aricles and some of the reports were submitted t., NASA Houston. The more lengthy reporis are listed in the bibliography and may be obtained readily. (See appendix A for the bibliography.) .

B. AVCOAT 5026-39 DIELEC'TRIC MEASUREMENTS

Before any dielectric measurements were performed on the Avc at 5026-39M and -39 HCG materials, a search was made to determine the ex ent of previous dielectric measurements made on these materials. In conjunction with this. a study was performed on 5026-39 physical properties such as density and moisture content to test their respective effects upon dielectric constant and loss tangent.

1. Pre-Contract 5026-39 Dielectric Measurements

The records of the Avco Advarced Electronics Department laboratories were examined in detail for measurements of dielectric constants of Avcoat 5026-22 and Avcoat 5026-39. Measurements made by this department in 1962 and 1963 giving values for the insertion loss, dielectric constant, and loss tangent are tabulated in Table 1. The majority of the measurements were made with the -22 material in various orientations and show only transmission losses. Three measurements, however, were made on the -39 material, and it is believed that the samples were of molded variety now designated -39 M .

2. Study of Physical Properties

An investigation of the physical characteristics of Avcoat 5026-39 HCG was made to determine what problems, if any, would be encountered in making measurements of the dielectric constant and loss tangent with the equipment and techniques available. Machinability of the uncharred material to the tolerances required for the Rhode Schwarz dielectrometer was confirmed experimentally.

Two factors which can cause variation of the dielectric properties of a material are moisture content and density. Both were investigated for Avcoat 5026 39HCG and found to be sufficiently well controlled in the manufacturing process to limit the variation in dielectric properties to a few percent.

a. Density Measurements and Water Absorption Tests

A density check was made on the -39 HCG and -39 M bulk samples received from the Apollo manufacturing area. The density was checked by measuring a machined piece from the bulk sample and weighing it on a balance to 0.0001 gm . The water absorption test was made by measuring the weight of the sample before and after 2 hours heating at $150^{\circ} \mathrm{F}$. The results of these measurements are shown below

Material	Block IDN	Density gmicm ${ }^{3}$	Water Absorption (\%)
-39 HCG	A	0.517	1.249
-39 M	B	0.532	1.458

TABLE I
ELECTRICAL PROPERTIES OF AVCOAT 5026

$\begin{aligned} & \text { Frequency } \\ & \text { (kmc) } \end{aligned}$	Descriptio: of Test Sample	Temp. ${ }^{\circ} \mathrm{F}$)	$\%$	Tan δ	Loss (db)
5026-22: Data of 9/21/62					
9.8	Post-char -- char to transmitter	Room			21
9.8	Post-char -- Smooth side to trans mitter	Room			23.7
9.8	Post-char -- char to transmitter	329			28
9.8	Post-char -- smooth side to trans mitter	329			23
9.8	Pre-char -- different thickness	Room	2.51 to 2.64		$\begin{aligned} & 0.55 \text { to } \\ & 0.90 \text { to } \end{aligned}$
5. 5	Post-char -- char to transmitter	350			32
5. 5	Post-char -- smooth side to transmitter	350			32
5. 5	Pre-char	Room	2.5		0.6
5. 5	Post-char different orientations	350			28-34.5
5026-39: Data of 1/7/63					-
5.7	Uncharred, *slotted line method	Room	$\begin{aligned} & 1.86 \\ & 1.96 \end{aligned}$	$\begin{aligned} & 0.024 \\ & 0.021 \end{aligned}$	
5.7	Uncharred, interferometer method		1.83		

*All measurements were made with interferometer, except where noted.

The densities of the -39 HCG and -39 M materials were within specification. The figures for water absorption agree with those previously given by the Apollo manufacturing personnel.

Water absorption does not present any froblem in air-conditioned laboratories. If the moisture were driven completely from the sample the maximum change in dielectric constant would be 4 percent, assuming a dielectric constant of 81 for water. The composite dielectric constants for mixtures is described in the next section.
b. Density Variation and Its Effect on Dielectric Constant

The manufacturing density specification of Avcoat 5026-39 HCG allows the density to vary ± 7 prrcent. The major cause of this density variation is due to the gu ining technique used to fill the honeycomb. To examine the effect of the density variation upon the dielectric constant, the material must be considered as a mixture of two materials-Avcoat 5026-39 and air. The total dielectric constant is a function of the relative volume of the -39 material and air and their respective dielectric constants.

The problem was analyzed in the following manner. Two generalized expressions were derived for the equivalent dielectric constant. The dielectric constant for air and -39 material were substituted into the derived expressions along with iheir representative volumes to determine the effect of density variation.

Expressions for the equivalent dielectric constant were derived by considering the electrostatic field across a capacitor. Consider a parallel plate capacitor composed of parallel layers of the dielectrics with permittivities ϵ_{1} and ϵ_{2} (see Figure la). The layers of the two dielectrics may be lumped together as shown in Figure lb. Assume that there is a surface charge density of $+\sigma$ on the lower plate and $-\sigma$ on the upper plate. Then from Gauss's Law:

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{x}}=\sigma / \epsilon_{2} \text { for } 0<\mathrm{X}<\mathrm{t} \\
& \mathrm{E}_{\mathrm{x}}=\sigma / \epsilon_{1} \text { for } \mathrm{t}<\mathrm{X}<\mathrm{s}
\end{aligned}
$$

where $E=$ field strength

$$
E_{x}=\frac{\partial v}{\partial x}=-\frac{d v}{d x}
$$

Figure 1 CAPACITOR WITH DIELECTRIC LAYERS PARALLEL TO PLATES

$$
\begin{align*}
& V=-\int E_{x} d x=-\int_{0}^{t} \frac{\sigma}{\epsilon_{2}} d x-\int_{t}^{s} \frac{\sigma}{\epsilon_{1}} d x=-\sigma\left(\frac{t}{\epsilon_{2}}-\frac{s-t}{\epsilon_{1}}\right) \\
& C=\frac{Q}{V}=\frac{-\sigma S}{-\sigma\left(\frac{t}{\epsilon_{2}}+\frac{s-t}{\epsilon_{1}}\right)} \tag{1}\\
& C=\frac{S}{\left(t / \epsilon_{2}\right)+\left(s-t / \epsilon_{1}\right)}
\end{align*}
$$

This is the equivalent capacitance for two dielectrics parallel with the plates. The capacitance for a single dielectric capacitor is:

$$
\begin{equation*}
C=\frac{K \epsilon_{\mathrm{o}} S}{S} \tag{2}
\end{equation*}
$$

Rewriting Equation(1):

$$
\begin{equation*}
C=\frac{\epsilon_{\mathrm{o}} \mathrm{~S}}{\frac{1}{\mathrm{~S}}\left(\frac{\mathrm{t}}{\mathrm{~K}_{2}}+\frac{\mathrm{s}-\mathrm{t}}{\mathrm{~K}_{1}}\right) \mathrm{S}} \tag{3}
\end{equation*}
$$

Comparing Equation (3) with Equation (2) it can be seen that the equivalent dielectric constant for the combination of two dielectrics with lamellae parallel to the plates is:

$$
\begin{equation*}
K_{\text {eq. }}=\frac{1}{\frac{1}{S}\left(\frac{t}{K_{2}}+\frac{s-t}{K_{1}}\right)} \tag{4}
\end{equation*}
$$

Let $t=d, s-t=d z$, and rearranging Equation (4)

$$
\begin{equation*}
K_{e q .}=\frac{\left(d_{1}+d_{2}\right) K_{1} K_{2}}{d_{1} K_{2}+d_{2} K_{1}} \tag{5}
\end{equation*}
$$

Another possible alignment for the lamellae is shown in Figures 2a and 2 b .

Figure 2 CAPACITOR WITH DIELECTRIC LAYERS PERPENDICULAR TO PLATES

The equivalent capacitance for this case is:

$$
\begin{align*}
& C=\frac{K_{1} \epsilon_{o} \frac{d_{1}}{d_{1}+d_{2}} s}{S}+\frac{K_{2} \epsilon_{o} \frac{d_{2}}{d_{1}+d_{2}} s}{S} \\
& C=\left(\frac{K_{1} d_{1}+K_{2} d_{2}}{d_{1}+d_{2}}\right) \frac{\epsilon_{o} s}{S} \tag{6}
\end{align*}
$$

The equivalent dielectric constant for this case is:

$$
\begin{equation*}
K_{e q .}=\frac{K_{1} d_{1}+K_{2} d_{2}}{d_{1}+d_{2}} \tag{7}
\end{equation*}
$$

Equations (4) and (6) allow for the calculation of the efiective dielectric constant for two different lamellae orientations. These two equations are in agreement with those given by Reynolds and Hough, ${ }^{1}$ and the Encyclopedia of Physics. ${ }^{2}$ There are many other orientations and particle shapes that may be assumed; however, the two lamellae formulas previously derived are the extreme cases. All other formulas for the mixture of dielectrics lie within these two limits.

A general empirical formula derived by Lichtenecker and Rothen ${ }^{3}$ that lies within the two extremes is:

$$
\begin{equation*}
\mathrm{K}^{\mathrm{k}_{\text {eq. }}}=\mathrm{V}_{1} \mathrm{~K}_{1}^{\mathrm{k}}+\mathrm{V}_{2} \mathrm{~K}_{2}^{k} \tag{8}
\end{equation*}
$$

where $V_{1}+V_{2}=$ total volume which becomes (7) when $k=1$ and (5) when $k=-1$. When k is small compared with unity, the approximation $k=1+k \log k$ can be used for this case and we have:

$$
\begin{equation*}
\log K_{e q .}=V_{1} \log K_{1}+V_{2} \log K_{2} \tag{9}
\end{equation*}
$$

[^0]This formula has been used extensively with very satisfactory results. The average dielectric constant for the Avcoat 5026-39 HCG $\frac{1}{t_{0}} \div 1.82$) obtained from measured data given in this report was substituted into equations (4) and (6) and (9) along with the extreme charges in density. In equations (4), (6), and (9) the values of d_{1}, d_{2}, V_{1}, and V_{2} are proportional to the density. For the ± 7 percent density change of the Avcoat 5026-39 HCG, the equivalent dielectric constant varied ± 5.5, ± 3.3, and ± 4.1 percent for equations (4), (6), and (9), respectively.

The ± 5.5 percent dielectric constant variation was calculated from the equation representing the greatest variation using the worst density variation. A more realistic approach to the problem is to use Lichtenecker's equation 4 because it is representative of a random orientation. Since 95 percent of the material manufactured is within ± 5 percent density change, the average dielectric constant variation will be 2.7 per cent using Lichtenecker's formula. From this analysis, it can be seen that the 5026-39 HCG density variations on the actual Apollo vehicle will cause a 2.7 percent variation in the dielectric constant over 95 percent of the vehicle.

Since it is highly unlikely that we will receive a sample with +7 percent or - 7 percent density deviation, we will not be able to measure the dielectric constant at the se extreme ends of the density spectrum; however, it will be possible to calculate the dielectric constant at the extreme ends by using Lichtenecker's formula.
3. Mid Temperature Range Measurements

a. Introduction

The intent of the mid-temperature range measurement was to determine dielectric constant and loss tangent of Avcoat 5026-39M and Avcoat 5026-39 HCG Apollo heat shield materials at 20 and $180^{\circ} \mathrm{C}$ over a frequency range $300-5800 \mathrm{mc}$. In addition to the above, measurements of charred samples were to be made at $20^{\circ} \mathrm{C}$. Since the honeycomb is asymmetrical, the first step in measuring the dielectric constant and loss tangent was to determine if any resonance or orientation effect existed. Once this problem was resolved, the dielectric measurements were made using a Rhode and Schwarz dielectroneter.

[^1]b. Investigation of Resonance Effects

Because of the periodic honeycomb structure of the - 37 IICG material, an investigation into possible resonance effects was conducted. Since the hexagonal honeycomb has a $3 / 8$-inch dimension across the flats and the waveguide quarter wavelength, assuming a dielectric constant of 2. 0 , is approximately $27 / 64$-inch at 5800 Mc , a quarter wave resonance effect might result in an apparent change in the value of complex permittivity at particular frequencies. To avoid laborious and tedious measurements inherent in point by point methods, a swept frequency test setup was devised. The sweep setup shown in Figure 3 was used over the frequency range from 5600 to 5850 Mc to determine any resonant effects. No resonance effects were noted.

c. Investigation of Orientation Effects

Dielectric constant and loss tangent measurements were made at C-band ($\mathrm{f}=5.7 \mathrm{gc}$) in a waveguide setup at room temperature. Samples were machined so that six different orientations of the honeycomb could be measured in the waveguide. These orientations and their designation numbers are shown in figures 4 and 5. The results of the measure ments are as follows:

Sample I. D. No.	Material	$\epsilon^{\prime} / \epsilon_{o}$	Loss Tangent	Orientation
A- la	-39 HCG	1.82	0.020	1
A- lb	-39 HCG	1.80	0.021	1
$\mathrm{~A}-2$	-39 HCG	1.87	0.020	2
$\mathrm{~A}-3$	-39 HCG	1.89	0.020	3
$\mathrm{~A}-4$	-39 HCG	1.78	0.021	4
$\mathrm{~A}-5$	-39 HCG	1.77	0.020	5
$\mathrm{~A}-6$	-39 HCG	1.82	0.020	6
A - 7	-39 M	1.83	0.020	Hcmogeneous

The effect that the sample orientation had on the dielectric constant and loss tangent was insignificant. Since the dielectric properties were not sensitive to sample orientation at C-band, the S-band orientation sensitivity measurements were not pursued. The

Figure 3 SWEPT FREQUENCY EQUIPMENT SETUP

FREQUENCY
SAMPLE NO.
DATE
ORIENTATION NO.I

Figure 4 HONEYCOMB ORIENTATIONS

Figure 5 HONEYCOMB ORIENTATIONS

Figure 6 DIELECTRIC CONSTANT, 5026-39M AND HCG AT $25^{\circ} \mathrm{C}$
aluminum oxide coating on the honeycomb walls did not have a significant effect upon the dielectric constant and loss tangent. This was observed by comparing the -39 M with the -39 HCG measurements.

d. Measurements and Results

The mid-temperature range complex dielectric constant test procedures are given in Appendix B. All the mid-temperature measurements $w \leqslant r e$ made using the Rohde and Schwarz dielectrometer as described in the test procedures. The samples used in the dielectrometer were machined to a tolerance of ± 0.001 inch. The results of the $25^{\circ} \mathrm{C}$ measurements (plotted in Figures 6 and 7a) are as follows:

Frequency (Mc)	Material	$\% \%$	Loss Tangent
300	-39 HCG	2.66	0.073
300	-39 M	2.50	0.082
450	-39 HCG	2.39	0.091
450	-39 M	2.24	0.096
1000	-39 HCG	2.05	0.050
1000	-39 M	1.96	0.047
1200	-39 HCG	1.85	0.020
2200	-39 M	1.85	0.022
5800	-39 HCG	1.95	0.027
5800	-39 M	1.91	0.024

The charred samples for the $25^{\circ} \mathrm{C}$ measuremerts could not be machined prior to charring because of a 20 percent dimensional shrinkage during charring. Oversizedvirgin samples of Avcoat 5026-39 HCG were charred for 15 hours at $1000^{\circ} \mathrm{F}$ in an inert atmosphere. The resulting charred samples were soft and porous and presented some difficulty in machining. However, the material was satisfactorily machined and the samples were measured. The results of the meaurements are given below

Figure 7o LOSS TANGENT, 5026-39M AND HCG AT $25^{\circ} \mathrm{C}$

Figure 7 b LOSS TANGENT, $5026-39$ HCG AT $180^{\circ} \mathrm{C}$

Charred Avcoat 5026-39 HCG Heated for 15 hours at iC00 F

Frequency (kMc)	$\epsilon^{\prime} / \epsilon_{0}$	Loss Tangent
5.8	1.69	0.031
2.2	1.71	0.040
1.0	1.78	0.065
0.45	1.98	0.146
0.30	1.72	0.0847
0.30	0.0734	

It was somewhat astounding to find that the dielectric values had not changed substantially from the uncharred case. The appearance of the charred samples was that of a fiberglass matrix with the glass fibers covered with carbon.

Further measurements will show that the char layer becomes very lossy when heated to higher temperatures. This will be discussed in the high temperature measurements section of this report.

Samples of the virgin Avcoat 5026-39 HCG were measured at $180^{\circ} \mathrm{C}$ in the Rohde and Schwarz dielectrometer using a temperature-controlled sample holder. One of the major problerns encountered in measuring the samples at $180^{\circ} \mathrm{C}$ was that the heat caused further curing of the sample and the dielectric properties changed during the measurement. This problem was resolved by fully curing the sample at $180^{\circ} \mathrm{C}$. Once the sample was cured, final measurements were made (see figures 7 b and 8 and the tabulation ${ }^{3}$-low)

Frequency (kMc)	ϵ / ϵ_{0}	Loss Tangent
5.8	1.836	0.053 c
2.2	1.797	0.0344
1.0	1.880	0.0589
0.45	2.044	0.0566
0.30	$-23-$	0.0517

85-6933
4. Cryogenic Temperature Range Measurements
a. Introduction

The intent of cryogenic temperature range measurement was to determine the dielectric constant and loss tangent of Avcoat 5026-39 HCG heat shield material at $4^{\circ} \mathrm{K}$ over a frequency range from 300 to 5800 Mc . This required the design and development of a sample holder that could be immersed in liquid helium. The sample holder was designed so that it would adapt to the Rohde and Schwarz equipment.
b. Cryogenic Sarnple Holder

A diagram of the sample holder is shown in figure 9. The sample holder was designed so that it would adapt to a helium dewar (figure 10) and the Rohde and Schwarz dielectrometer. The walls of the inner and outer conductor of the coaxial lire were made of 0.020 -inch stainless steel +- minimize thermal conductivity. An indium washer was used as a ee 1 to prevent leakage of the liquid helium into the sample holder. The hollow portion of the inner conductor allowed the liquid helium to cool the sample from the inside. A small hole in the inner conductor above the level of the liquid helium allowed a flow of gase ous helium through the empty portion of the sample holder. This gaseous flow purged the air from the sample holder, flushing it out through the top of the sample holder. A device to measure the liquid helium level was inse: ted through the brass cover plate. The performance of the cryogenic sample holder was checked at room temperature by measur ing the dielectric constant and loss tangent of a sample using, in turn, the Rohde and Schwarz holder and the cryogenic sample holder and comparing the results. The test showed that the sample holder performed satisfactorily.

c. Measurements and Results

The cryogenic measurements were made by the method described in the cryogenic temperature range complex dielectric constant test procedures for Avcoat 5026-39 (appendix C).

Losses added to the Rohde and Schwarz setup by the addition of cables and connectors to the cryogenic sample holder did not allow measurement of loss tangents less than 0.005 . It was determined from the data that the loss tangents were less than 0.005 for all four frequencies. Line losses did not affect the real part of the dielectric constant measurements. The reduced results are listed below and graphed in figure 11.

Frequency (kMc)	Relative Dielectric Constant $\epsilon^{\prime} / \epsilon_{\mathrm{o}}$
0.30	1.810
0.45	1.817
2.20	1.812
5.80	1.844

Figure 9 CRYOGENIC SAMPLE HOL DER

85-6942

Figure 10 CRYOGENIC SAMPLE HOLDER AND DEWAR

Note that the dielectric constants are lower than they were at room temperature and are less frequency dependent.

5. High Temperature Range Measurements

a. Introduction

The intent of the high-temperature range measurement was to determine the electrical properties of the Avcoat $5026-39 \mathrm{M}$ heat shield material at $2000^{\circ} \mathrm{K}$ in a frequency range from 250 to 5800 Mc . The measurements were to be made by the cavity perturbation method. It was discovered that the conductivity of the char layer was so high as to make measurement by this nethod impossible. Conductivity measurements had to be taken to determine the electrical properties of the samples.

b. Figh-Temperature Oven

The high-temperature oven had thirty-two 18-inch GE quartz heater lamps capable of producing 160 kw total output. The lamps were stationed in blocks of eight around the periphery of an octogonal wall of polished aluminum (see figure 12). Highly reflective valls directed radiation upon the sample, allowing it to reach a temperature of 2000° K. The oven was purged with nitrogen during heating to prevent oxidation of the sample.

The samples were hung from a pair of spring-loaded pincers located at the top of the oven (see figure 12 and 12 a). The test set-ups shown in figure 13 with the oven mounted on top of the cavities. The sample was heated to the desired temperature and ther released so it passed through the hole at the bottom of the oven and into the cavities below.

The internal temperature of the sample was not measured directly with each test due to complications that arise in removing the the rmocouple from the center of the sample before it is dropped through the cavity. The sample temperature was measured indirectly by relating the sample temperature to a the rmocouple located outside the sample. This was done by placing a thermocouple outside the sample along with one inside the sample and measuring the rise times of both thermocouples until they reached an equilibrium at $2000^{\circ} \mathrm{K}$. Using these two curves the thermocouple outside the sample was used to monitor the sample temperature.

Figure 12 TOP VIEW CF HIGH-TEMPERATURE OVEN

SAMPLE

0

85-6937

Figure 12o SAMPLE HOLDER AND SAMPLE
-31.

Figure 13 HIGH-iEMPERATURE TEST EQI., DMENT

c. Measurements and Resuits

The initial measurements were made according to the high-temperature range complex dieleciric constant test procedures given in appendix D. When it was discovered that the samples were highly conductive, conductivity measurements were made on the material to determine the skin depth of the samples. The skin depth was so small that it was impractical to make the radius of the sample equal to the skin depth is required for cavity measurements (see Limitations of Measuring Kange in test procedures). Therefore, the cavity perturbation method had to be abandoned.

Previous measurements on the samples prechared at $1000^{\prime \prime}$ F lod us to believe that the skin $d: p$ ph would not present any probeln. However, the high impulse heating of the samples at $2000^{\circ} \mathrm{K}$ caused then to take on high values of "' 'c'.

Conductivity measurements were sub_equently taken at room temperature with an impedance bridge to determine the skin doptland,${ }^{\prime \prime}$. . The results of these measurements are given below.

Avcoat 5026-39M Precharred at $1000^{\circ} \mathrm{F}$ and The: Reheated for 45 Seconds at $2000^{\circ} \mathrm{K}$		
Frequency (Mc)	Skin Depth (cm)	Loss Tangent
300	0.130	2.98×10^{4}
1000	0.071	8.93×10^{3}
3000	0.041	2.98×10^{3}
Virg in Avcoat 5026-39M Heated for 45 Seconds at $2000^{\circ} \mathrm{K}$		
Frequenc; (Mc)	Skin Depth (cm)	Looss Tangent
300	0.121	3.43×10^{4}
1000	0.048	1.03×10^{2}
3007	0.038	3.43×10^{3}

The minimum dc conductivity of the samples measured was $4.96 \mathbf{x}$ 10^{3} mho/meter. Comparing this conductivity with the conductivities of $\mathrm{m}=$ tals $\left(\sigma=1.0 \times 10^{7}\right.$ to $10 \times 10^{7} \mathrm{mho} /$ meter $)$ and dielectrics $(\sigma=1$ $x 0^{-8}$ to 1×10^{-17}) mho/meter), it can be seen that the samples will have electrical properties more like those of metals than dielectrics.

Feeping this in mind let us examine the flux density \bar{D} in the dielectric:

$$
\begin{equation*}
\overline{\mathrm{D}}, \epsilon_{\mathrm{o}} \overline{\mathrm{E}}, \overline{\mathrm{P}} \tag{10}
\end{equation*}
$$

where
$\epsilon_{o} \quad=$ permittivity of a vacuum
$\overline{\mathrm{E}} \quad=$ field in dielectric
$\overline{\mathrm{P}} \quad=$ polarization
Rewriting equation (10):

$$
\begin{equation*}
\overline{\mathrm{D}}=\left(\hat{o}_{0}+\frac{\overline{\mathrm{P}}}{\overline{\mathrm{E}}}\right) \overline{\mathrm{E}} \tag{11}
\end{equation*}
$$

also

$$
\bar{D}-\epsilon \bar{E}
$$

and it follows that

$$
\begin{equation*}
\epsilon=\epsilon_{o}+\frac{\overline{\mathrm{p}}}{\overline{\mathrm{E}}} \tag{12}
\end{equation*}
$$

where
f = permittivity of dielectric.

In a conductor P is negligibly small enough such that we can write

$$
P \quad=O(\text { reference } 5), \text { and }
$$

substituting into equation (12), we obtain the dielectric constant of a conductor:

$$
\epsilon^{\text {conductor }}=\epsilon_{0}
$$

[^2]The relative dielectric constant then becomes 1 .

Since the conductivity of the samples is approaching that of the metals, their relative dielectric constants may be assumed to te a value of 1 . With this information, the attenuation may be calculated. The equation for attenuation is as follows: ${ }^{6}$

$$
\begin{equation*}
a=8.686 \mathrm{a}=1.287 \times 10^{-9} \mathrm{f}\left[\mathrm{~K}^{\prime}\left(\sqrt{1+\left(\mathrm{K}^{\prime \prime} / \mathrm{K}^{\prime}\right)^{2}}-1\right)\right]^{12} \mathrm{db} \cdot \mathrm{~cm} \tag{13}
\end{equation*}
$$

where

$$
\begin{aligned}
& K^{\prime}=\epsilon^{\prime} / \epsilon_{0} \\
& K^{\prime \prime}=\epsilon^{\prime \prime} / \epsilon_{0}
\end{aligned}
$$

Since

$$
\begin{align*}
& \frac{\mathrm{K}^{\prime \prime}}{\mathrm{K}^{\prime}} \quad \ddot{y} 1 \\
& \mathrm{a}=1.287 \times 10^{-9} \mathrm{f}\left(\mathrm{~K}^{\prime \prime}\right)^{1 / 2} \mathrm{db} / \mathrm{cm} \tag{14}
\end{align*}
$$

The attenuation for material and frequencies given previously in this section is then computed as follows:

$\begin{aligned} & \text { Frequency } \\ & \text { (Mc) } \end{aligned}$	Avcoat 5026-39M Precharred to $1000^{\circ} \mathrm{F}$ and Heated for 45 Seconds at $2000^{\circ} \mathrm{K}$ Attenuation ($\mathrm{db} / \mathrm{cm}$)	Virgin Avcoat 5026-39M Heated for 45 Seconds at $2000^{\circ} \mathrm{K}$ Attenuation ($\mathrm{db} / \mathrm{crn}$)
300	67	71
1000	122	130
2200	180	193
3000	211	226

[^3]Several comments should be made about these attenuation figures. These values of attenuation are based upon plane electromagnetic wave theory for a wave traveling in a homogenous isotropic medium. Attenuation measurements made with antennas covered with charred Avcoat 5026-39M have been made and will be discussed in detail in a latter portion of this report. However, it will not be possible to relate these measurements to the calculated values. The antenna attenuation measurements are dependent not only upon propagation through the char layer but upon reflection, antenna Q, distance of char layer from the antenna aperture, and other paramet rs.

Antenna attenuation measurements were made using a 3/8-inch-thick heat shield with a thin char layer visually 0.065 inch thick over an open-ended waveguide antenna. Radiation patterns of the E plane with and v ithout a charred heat-shield cover were integrated to obtain an average attenuation. The attenuations were 19.4 db for 300 Mc and 11.6 db at 2200 Mc for respective conductive char thicknesses of 0.039 inch and 0.028 inch.

The attenuation measured at 300 Mc was greater than that measured at 2200 MC which is contrary to the calculated plain-wave attenuations. Higher attenuations were experienced than at 2200 Mc because the conductive char is immersed in the near fields of the 300 Mc antenna and the effect on the antenna is more profound.

Although the calculated and measured attenuations cannot be compared, they both reflect the fact that the attenuation through the char layer is very high.

C. THEORETICAL STUDY

We have studied the problem of a rectangular waveguide opening into an infinite conducting plane which is covered by a dielectric layer. We have formulated the problem in a fashion similar to the integral equation technique discussed in Marcuvitz (Waveguide Handbook, 1951). The solutions are then used to obtain the aperture admittance and its radiation pattern. The variational technique for the admittance is discussed but is not used in this analysis.

1. Formulation

Consider a TE_{10} mode denoted by $\mathrm{B} \cos \frac{\pi \mathrm{x}}{a} \mathrm{e}^{-\mathrm{i} \gamma_{10}{ }^{z}} e^{-\mathrm{i} \omega t}$ propagating down a rectangular wave guide. The total H_{Z} field including the reflected wave can then be written (neglecting a factor $e^{-i \omega t}$) as:

$$
\begin{align*}
\mathrm{H}_{\mathrm{z}}= & \mathrm{B} \cos \frac{\pi \mathrm{x}}{\mathrm{a}} \mathrm{e}^{+\mathrm{i} \gamma_{10} \mathrm{z}}+\sum_{\mathrm{k}, l} \mathrm{~A}_{\mathrm{k} l} l \cos \left(\frac{l \pi \mathrm{x}}{\mathrm{a}}\right) \cos \left(\frac{\mathrm{k} \pi \mathrm{y}}{\mathrm{~b}}\right) \mathrm{e}^{-\mathrm{i} \gamma_{\mathrm{k}} l^{z}} \\
& \gamma_{\mathrm{k} l} l^{2}=\mathrm{k}_{\mathrm{o}}^{2}-\left(\frac{l \pi}{\mathrm{a}}\right)^{2}-\left(\frac{\mathrm{k} \pi}{\mathrm{~b}}\right)^{2} \\
& \mathrm{k}_{\mathrm{o}}=\omega / \mathrm{C} \tag{1}
\end{align*}
$$

Also, it is possible that a component of E_{Z} will be generated in the reflected wave, even though none is present in the transmitted wave. Thus we write:

$$
\begin{equation*}
E_{z}=\sum_{k, l} B_{k l} \sin \left(\frac{l \pi x}{a}\right) \sin \left(\frac{k \pi y}{b}\right) e^{-i \gamma_{k} l^{z}} \tag{2}
\end{equation*}
$$

The other components of the field are related to H_{Z} and E_{Z} by (for $e^{-i \gamma z}$)

$$
\begin{align*}
& H_{x}=\frac{-1}{k^{2}-\gamma^{2}}\left[i \omega \epsilon \frac{\partial E_{z}}{\partial y}+i \gamma \frac{\partial H_{z}}{\partial x}\right] \\
& H_{y}=\frac{+1}{k^{2}-\gamma^{2}}\left[i \omega \epsilon \frac{\partial E_{z}}{\partial x}-i \gamma \frac{\partial H_{z}}{\partial y}\right] \tag{3}\\
& E_{x}=\frac{+1}{k^{2}-\gamma^{2}}\left[-i \gamma \frac{\partial E_{z}}{\partial x}+i \omega \mu \frac{\partial H_{z}}{\partial y}\right] \\
& E_{y}=\frac{-1}{k^{2}-\gamma^{2}}\left[+i \gamma \frac{\partial E_{z}}{\partial y}+i \omega \mu \frac{\partial H_{z}}{\partial x}\right]
\end{align*}
$$

For $e^{+\mathrm{i} \gamma z}$ we replace γ by $-\gamma$ in the above equations. Substituting equations (1) and (2) into equation (3) yields for the fields inside the waveguide:

$$
\begin{aligned}
& H_{x}{ }^{(0)}=\frac{-i \gamma_{10} B\left(\frac{\pi}{a}\right)}{k_{0}{ }^{2}-\gamma_{10}{ }^{2}} \sin \left(\frac{\pi x}{a}\right) e^{+i \gamma_{10} z}
\end{aligned}
$$

$$
\begin{align*}
& \left.H_{y}^{(0)}=\sum_{k, l} \frac{\sin \left(\frac{k \pi y}{b}\right) \cos \left(\frac{l \pi x}{a}\right) e^{-i \gamma_{k} l^{z}}}{k_{o}^{2}-\gamma_{k} l}{ }^{2} \quad+i \omega \epsilon_{o} b_{k} l\left(\frac{l \pi}{a}\right)+i \gamma_{k} l\left(\frac{k \pi}{b}\right) A_{k} l\right\} \tag{5}\\
& E_{x}^{(0)}=\sum_{k, l} \frac{\sin \left(\frac{k \pi y}{b}\right)}{k_{0}^{2}-\gamma_{k} l^{2}}\left\{-i \gamma_{k} l\left(\frac{l \pi}{a}\right) B_{k l} e^{-i \gamma_{k} l^{2}}-i \omega \mu_{0}\left(\frac{k \pi}{b}\right) A_{k} l\right\} \\
& \text { (6) }
\end{align*}
$$

$$
\begin{align*}
& E_{y}{ }^{(0)}=\frac{+i \omega \mu_{0} B}{k_{0}{ }^{2}-\gamma_{10}{ }^{2}}\left(\frac{\pi}{a}\right) \sin \left(\frac{\pi x}{a}\right) e^{+i \gamma_{10} z} \\
& +\sum_{k, l} \frac{\sin \left(\frac{l \pi x}{a}\right) \cos \left(\frac{k \pi y}{b}\right) e^{-i \gamma_{k} l^{z}}}{k_{0}{ }^{2}-\gamma_{k} l^{2}}\left\{+i \omega \mu_{0}\left(\frac{l \pi}{a}\right) A_{k} l-i \gamma_{k} l\left(\frac{k \pi}{b}\right) \mathrm{B}_{\mathrm{k} l}\right\}^{\}} \tag{7}
\end{align*}
$$

Now for the fields inside the slab we may write:

$$
\begin{aligned}
& H_{z}^{(1)}=\int_{-\infty}^{\infty} d \xi \int_{-\infty}^{\infty} d \eta e^{-i(\xi x+\eta y)}\left[K(\xi, \eta) e^{+i h_{1} z}+L(\xi, \eta) e^{-i h_{1} z}\right](8) \\
& E_{z}^{(1)}=\int_{-\infty}^{\infty} d \xi \int_{-\infty}^{\infty} d \eta e^{-i(\xi x+\eta y)}\left[M(\xi, \eta) e^{+i h_{1} z}+R(\xi, \eta) e^{-i h_{1} z}\right](9) \\
& h_{1}^{2}=k_{1}^{2}-\xi^{2}-\eta^{2} \quad \mathbf{k}_{1}=\frac{\omega}{c} \sqrt{\epsilon}
\end{aligned}
$$

So that using equation (3) we may write:

$$
\begin{aligned}
H_{x}^{(1)} & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} d \xi d \eta \frac{e^{+i(\xi x+\eta y)}}{k_{1}{ }^{2}-h_{1}^{2}} e^{+i h_{1} z}\left\{\epsilon \omega \eta M-h_{1} \xi K\right\} \\
& +\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{d \xi d \eta e^{+i(\xi x+\eta y)}}{k_{1}^{2}-h_{1}^{2}} e^{-i h_{1} z}\left\{\epsilon \omega \eta R+h_{1} \xi L\right\} \quad(1 C) \\
H_{y}^{(1)} & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{d \xi d \eta e^{+i(\xi x+\eta y)}}{k_{1}^{2}-h_{1}^{2}} e^{+i h_{1} z}\left[-\omega \in \xi M-\eta h_{1} K\right] \\
& +\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\left.d \xi d \eta e^{+i(\xi x}+\eta y\right)}{k_{1}^{2}-h_{1}^{2}} e^{-i h_{1} z}\left[-\omega \in \xi R+\eta h_{1} L\right](11)
\end{aligned}
$$

$$
\begin{align*}
& E_{\mathbf{x}}{ }^{(1)}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\mathrm{d} \xi \mathrm{~d} \eta \mathrm{e}^{+\mathrm{i}(\xi \mathrm{x}+\eta y)}}{\mathrm{k}_{1}{ }^{2}-\mathrm{h}_{1}{ }^{2}} \mathrm{e}^{+\mathrm{i} \mathrm{~h}_{1} z}\left[-\xi \mathrm{h}_{1} \mathrm{M}-\omega \mu_{\mathrm{c}} \eta \mathrm{~K}\right] \\
& +\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{d \xi d \eta e^{+i(\xi x+\eta y)}}{k_{1}{ }^{2}-h_{1}{ }^{2}} e^{-i h_{1} z}\left[\xi h_{1} R-\omega \mu_{0} \eta L\right] \tag{12}\\
& \mathrm{F}_{\mathrm{y}}^{(1)}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\mathrm{d} \xi \mathrm{~d} \eta \mathrm{e}^{+\mathrm{i}(\xi \mathbf{x}+\eta \mathrm{y})}}{\mathrm{k}_{1}^{2}-\mathrm{h}_{1}^{2}} \mathrm{e}^{+\mathrm{ih} \mathrm{~h}^{z}}\left[-\eta \mathrm{h}_{1} \mathrm{M}+\omega \mu_{\mathrm{o}} \xi \mathrm{~K}\right] \\
& \left.\left.+\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{d \xi d \eta e^{+i(\xi x+\eta y)}}{k_{1}^{2}-h_{1}^{2}} e^{-i h_{1} z} \right\rvert\, \eta h_{1} R+\omega \mu_{0} \xi L\right] \tag{13}
\end{align*}
$$

Next we must write the fields outside the slab:

$$
\begin{align*}
& H_{Z}^{(2)}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathrm{d} \xi \mathrm{~d} \eta \mathrm{e}^{+\mathrm{i}(\xi \mathrm{x}+\eta \mathrm{\eta})} \mathrm{T}(\xi, \eta) \mathrm{e}^{+i h_{2} z} \tag{14}\\
& \mathrm{E}_{Z}^{(2)}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathrm{d} \xi \mathrm{~d} \eta \mathrm{e}^{+\mathrm{i}(\xi \mathrm{x}+\eta y)} \mathrm{S}(\xi, \eta) \mathrm{e}^{+i h_{2} z} \tag{15}\\
& \mathrm{~h}_{2}^{2}=\mathrm{k}_{\mathrm{o}}^{2}-\xi^{2}-\eta^{2}
\end{align*}
$$

so that the tangential components become:

$$
\begin{equation*}
H_{x}^{(2)}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{d \xi d \eta}{k_{0}^{2}-h_{2}^{2}} e^{+i(\xi x\urcorner \eta y)} e^{+i h_{2} z}\left[\omega \epsilon_{0} \eta S-\xi h_{2} T\right] \tag{16}
\end{equation*}
$$

$$
\begin{align*}
& \mathrm{H}_{y}^{(2)}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\mathrm{d} \xi \mathrm{~d} \eta \eta}{\mathrm{k}_{\mathrm{o}}^{2}-\mathrm{h}_{2}^{2}} \mathrm{e}^{+i h_{2} z} \mathrm{e}^{+\mathrm{i}(\xi \mathrm{x}+\eta y)} \\
& {\left[-\omega \epsilon_{\mathrm{o}} \xi \mathrm{~S}(\xi, \eta)-\eta \mathrm{h}_{2} \mathrm{~T}(\xi, \eta)\right]} \tag{17}
\end{align*}
$$

$$
\begin{align*}
\mathrm{E}_{x}^{(2)}= & \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\mathrm{d} \xi \mathrm{~d} \eta \eta}{\mathrm{k}_{0}^{2}-\mathrm{h}_{2}^{2}} \mathrm{e}^{+i h_{2} z} \mathrm{e}^{+\mathrm{i}(\xi \mathbf{\xi}+\eta \mathrm{y})} \\
& {\left[-\xi \mathrm{h}_{2} \mathrm{~S}(\xi, \eta)-\eta \sigma \mu_{0} \mathrm{~T}(\xi, \eta)\right] } \tag{18}
\end{align*}
$$

$$
\begin{align*}
E_{y}^{(2)} & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{d \xi d \eta}{k_{o}^{2}-h_{2}^{2}} e^{+i(\xi x+\eta y)} e^{+i h_{2} z} \\
& \circ\left[-h_{2} \eta S(\xi, \eta)+\omega \mu_{0} \xi T(\xi, \eta)\right] \tag{19}
\end{align*}
$$

Next we need to match boundary conditions at $z=l_{0}$. We obtain:
a. From the continuity of Ex:

$$
\begin{gather*}
e^{+i h_{1} l_{o}}\left(-\xi \mathrm{h}_{1} \mathrm{M}-\omega \mu_{\mathrm{o}} \eta \mathrm{~K}\right)+\mathrm{e}^{-\mathrm{i} \mathrm{~h}_{1} l_{\mathrm{o}}}\left(\xi \mathrm{~h}_{1} \mathrm{R}-\omega \mu_{\mathrm{o}} \eta \mathrm{~L}\right) \\
=\mathrm{e}^{+\mathrm{i} h_{2} l}\left(-\xi \mathrm{h}_{2} \mathrm{~S}-\eta \omega \mu_{\mathrm{o}} \mathrm{r}\right) \tag{20}
\end{gather*}
$$

b. From the continuity of $E y$:

$$
\begin{gather*}
\varepsilon^{+i h_{1} l_{\mathrm{o}}}\left(-\eta \mathrm{h}_{1} \mathrm{M}+\omega \mu_{\mathrm{o}} \xi \mathrm{~K}\right)+\mathrm{e}^{-\mathrm{ih}} l_{1} l_{\mathrm{o}}\left(\eta \mathrm{~h}_{1} \mathrm{R}+\omega \mu_{\mathrm{o}} \xi \mathrm{~L}\right) \\
\quad=\mathrm{e}^{+\mathrm{ih}_{2} l_{\mathrm{o}}}\left(-\mathrm{h}_{2} \eta \mathrm{~S}+\omega \mu_{\mathrm{o}} \xi \mathrm{~T}\right) \tag{21}
\end{gather*}
$$

2. From the contin: ity of Hx_{x} :

$$
\begin{gather*}
e^{+i h_{1} l_{o}\left[\epsilon \omega \eta M-h_{1} \xi K\right]+e^{-i h_{1} l_{o}}\left[\epsilon \omega \eta R+\xi h_{1} L\right]} \\
=e^{+i h_{2} l_{o}\left[\omega \epsilon_{0} \eta S-\xi h_{2} T\right] \quad \text { and }} \tag{22}
\end{gather*}
$$

d. From the continuity of Hy :

$$
\begin{align*}
& e^{+i h_{1} l_{o}}\left[-\omega \epsilon \xi M-\eta h_{1} K\right]+e^{-i h_{1} l_{o}}\left[-\omega \epsilon \xi \mathrm{R}+\eta \mathrm{h}_{1} \mathrm{~L}\right] \\
& \quad=\mathrm{e}^{i \mathrm{ih}_{2} l_{o}\left[-\xi \omega \ell_{0} S-\eta \mathrm{h}_{2} \mathrm{~T}\right]} \tag{23}
\end{align*}
$$

Solving for M, K, S, and T in terms of R and L in equations (20) through (23) yields:

$$
\begin{array}{ll}
K=U L & L \text { from } \\
M=U R & H_{Z} \tag{24}\\
S=W R & \text { from } \\
F_{Z} \\
T=\widehat{L} & S \text { from } E_{Z} \\
M & T \text { from } H_{Z}
\end{array}
$$

where

$$
\begin{array}{ll}
W=\left(\frac{2 h_{1} \epsilon_{r}}{h_{1}-\epsilon_{r} h_{2}}\right) e^{-i\left(h_{1}+h_{2}\right) l_{0}} & U-e^{-i 2 h_{1} l_{o}}\left(\frac{h_{1}+\epsilon_{r} h_{2}}{h_{1}-\epsilon_{\mathrm{r}} h_{2}}\right) \\
\hat{W}=e^{-i\left(h_{1}+h_{2}\right) l_{o}}\left(\frac{2 h_{1}}{h_{1}-h_{2}}\right) & \hat{U}=e^{-i 2 h_{1} l_{o}}\left(\frac{2 h_{1}}{h_{1}-h_{2}}\right)
\end{array}
$$

We may note from equation (24) that there is no coupling between the E_{Z} and H_{7} modes at the outer edge of the dielectric slab.

Using equation (24) to substitute for M and K in terms of R and L in equations (10) through (13) we may write for the boundary conditions at $z=0$.
e. From the continuity of Hx :

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{d \xi \mathrm{~d} \eta}{\xi^{2}+\eta^{2}} \mathrm{e}^{\mathrm{i} \mathrm{i}(\xi \mathrm{x}+\eta \mathrm{y})}\left[\epsilon \omega \eta(1+\mathrm{U}) \mathrm{R}+\mathrm{h}_{1} \xi(1-\hat{\mathrm{U}}) \mathrm{L}\right] \\
& =-A_{0} \sin \left(\frac{\pi x}{a}\right)-\sum_{k, l} \sin \left(\frac{l \pi x}{a}\right) \cos \left(\frac{k \pi y}{b}\right)\left[i \omega \epsilon_{d}\left(\frac{k \pi}{b}\right) Y_{k l}\right. \\
& \left.-\mathrm{i} \gamma_{\mathbf{k} l}\left(\frac{l \pi}{\mathrm{a}}\right) \quad \mathrm{z}_{\mathrm{k} l}\right] \\
& 0 \leq x \leq a \\
& 0 \leq y \leq b
\end{aligned}
$$

f. From the continuity of Hy :

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\mathrm{d} \xi \mathrm{~d} \eta}{\xi^{2}+\eta^{2}} \mathrm{e}^{+\mathrm{i}\left(\xi_{\mathrm{x}}+\eta \mathrm{y}\right)}\left[-\omega \epsilon \xi \mathrm{R}(1+\mathrm{U})+\eta \mathrm{n}_{1} \mathrm{~L}(1-\hat{\mathrm{U}})\right] \\
& =\sum_{\mathrm{k},} \sin \left(\frac{\mathrm{k} \pi \mathrm{y}}{\mathrm{~b}}\right) \cos \left(\frac{l \pi x}{\mathrm{a}}\right) \cdot\left\{+\mathrm{i} \epsilon_{0}\left(\frac{l \pi}{\mathrm{a}}\right) \mathrm{Y}_{\mathrm{k} l}+\mathrm{i} \gamma_{\mathrm{k} l}\left(\frac{\mathrm{k} \pi}{\mathrm{~b}}\right) \mathrm{z}_{\mathrm{k} l}\right\}(26) \\
& 0 \leq x \leq a \\
& 0 \leq y \leq b
\end{aligned}
$$

g. From the continuity of Ex:

$$
\begin{align*}
& \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{d \xi \mathrm{~d} \eta \mathrm{e}^{+i(\xi x+\eta y)}}{\xi^{2}+\eta^{2}}\left[\xi \mathrm{~h}_{1} R(1-U)-\left(\omega \mu_{0} \eta \mathrm{~L}(1+\hat{\mathrm{U}})\right]\right. \\
= & I(x, y) \sum_{k, l} \sin \left(\frac{k \pi y}{b}\right) \cos \left(\frac{l \pi x}{a}\right)\left[-i \gamma_{k l}\left(\frac{l \pi}{a}\right) y_{k l}-i \omega \mu_{0}\left(\frac{k \pi}{b}\right) z_{k l}\right] \tag{27}
\end{align*}
$$

h. From the continuity of Ey:

$$
\begin{align*}
& \int_{-\infty}^{\infty} \frac{d \xi \mathrm{~d} \eta \mathrm{e}^{+\mathrm{i}(\xi \mathrm{x}+\eta \mathrm{y})}}{\xi^{2}+\eta^{2}}\left[\eta \mathrm{~h}_{1} \mathrm{R}(1-\mathrm{U})+\omega \mu \xi \mathrm{L}(1+\hat{\mathrm{U}})\right] \\
& =\left.I(x, y)\right|_{-B_{0}} \sin \left(\frac{\pi x}{a}\right)+\sum_{k, l} \sin \left(\frac{l \pi x}{a}\right) \cos \left(\frac{k \pi y}{b}\right)\left[+i \omega \mu_{0}\left(\frac{l \pi}{a}\right) Z_{k l}\right. \\
& \left.-\mathrm{i} \gamma_{\mathrm{k} l}\left(\frac{\mathrm{k} \pi}{\mathrm{~b}}\right) \mathrm{Y}_{\mathrm{k} l}\right] \tag{28}
\end{align*}
$$

where

$$
I(x, y)=\left\{\begin{array}{ll}
1 & 0 \leq x \leq a \\
0 \leq y \leq b \\
0 & \text { elsewhere }
\end{array} \quad A_{0} \equiv \frac{i \gamma_{10} B \pi / a}{k_{0}{ }^{2}-y_{10}{ }^{2}}\right.
$$

From equation (27) we may write:

$$
\begin{equation*}
\frac{\xi \mathrm{h}_{1} \mathrm{R}(1-\mathrm{U})-\omega \mu \eta \mathrm{L}(1+\hat{\mathrm{U}})}{\xi^{2}+\eta^{2}}=\mathrm{G}_{\mathrm{o}} \tag{29}
\end{equation*}
$$

while from equation (28; we get:

$$
\begin{equation*}
\frac{\xi \mathrm{h}_{1} \mathrm{R}(1-U)+\omega \mu \xi \mathrm{L}(1+\hat{\mathrm{U}})}{\xi^{2}+\eta^{2}}=\mathrm{F}_{0} \tag{30}
\end{equation*}
$$

where G_{0} and F_{0} are defined as:

$$
\begin{aligned}
(2 \pi)^{2} G_{0}= & \sum_{k, l} \int_{0}^{a} d x \int_{0}^{b} d y e^{-i(\xi x+\eta y)} \sin \left(\frac{k \pi y}{b}\right) \cos \left(\frac{l \pi x}{a}\right)\left[-i \gamma_{k}\left(\frac{l \pi}{a}\right) y_{k l}\right. \\
& \left.-i \omega \mu_{0}\left(\frac{k \pi}{L}\right) Z_{k l}\right]
\end{aligned}
$$

$$
\begin{aligned}
& (2 \pi)^{2} F_{0}=-B_{0} \int_{0}^{a} d x \int_{0}^{b} d y e^{-i(\xi x+\eta y)} \sin \binom{\pi x}{a} \\
& \quad+\sum_{k, l} \int_{0}^{a} d x \int_{0}^{b} d y e^{-i(\xi x+\eta y)} \sin \left(\frac{l \pi x}{a}\right) \cos \left(\frac{k \pi y}{b}\right)\left[+i \omega \mu_{0}\left(\frac{l \pi}{a}\right) y_{k!l}-i \gamma_{k l}\left(\frac{k \pi}{b}\right) Y_{k l}\right]
\end{aligned}
$$

Solving equations (29) and (30) for L and R, we obtain.

$$
\begin{align*}
& h_{1} R(1-U)=\xi G_{o}+\eta F_{o} \tag{31}\\
& \omega \mu_{0} L(1+\hat{U})=\xi F_{o}-\eta G_{o} . \tag{32}
\end{align*}
$$

Perfcrming the integrations over X and Y in G_{0} and F_{o} and substituting the results into equations (31) and (32) yields:

$$
\begin{align*}
& (2 \pi)^{2} \mathrm{~h}_{1} \mathrm{R}(1-\mathrm{U})=+\sum_{\mathrm{k}, l}\left(\xi^{2}+\eta^{2}\right) \hat{\mathrm{w}}(l, \xi, \mathrm{a}) \hat{\mathrm{w}}(\mathrm{k}, \eta, \mathrm{~b})\left(\frac{\mathrm{k} \pi}{\mathrm{~b}}\right)\left(\frac{l \pi}{\mathrm{a}}\right) y_{\mathrm{k} l} \mathrm{Y}_{\mathrm{k} l} \\
& \quad+\sum_{\mathrm{k}, l} \omega \mu_{\mathrm{o}}\left[\left(\frac{\mathrm{k} \pi}{\mathrm{~b}}\right)^{2} \xi^{2}-\left(\frac{l \pi}{\mathrm{a}}\right)^{2} \eta^{2}\right] \mathrm{z}_{\mathrm{k} l} \hat{w}(l, \xi, \mathrm{a}) \hat{\mathrm{w}}(\mathrm{k}, \eta, \mathrm{~b}) \\
& \quad+\mathrm{B}_{0}\left(\frac{\pi}{\mathrm{a}}\right) \hat{\mathrm{w}}(1, \xi, \mathrm{a}) \hat{\mathrm{w}}(\eta, \eta, b)\left(-\mathrm{i} \eta^{2}\right) \tag{33}
\end{align*}
$$

and

$$
\begin{align*}
& (2 \pi)^{2} \omega \mu_{0} \mathrm{~L}(1+\hat{\mathrm{U}})=\mathrm{B}_{0}\left(\frac{\pi}{\mathrm{a}}\right) \hat{\mathrm{W}}(1, \xi, \mathrm{a}) \hat{\mathrm{W}}(0, \eta, b)(-\mathrm{i}, \xi) \\
& -\omega \mu_{0} \sum_{\mathrm{k}, l} \eta \xi \hat{\boldsymbol{w}}(l, \xi, \mathrm{a}) \hat{\mathrm{w}}(\mathrm{k}, \eta, \mathrm{~b}) \mathrm{z}_{\mathrm{k} l}\left[\left(\frac{l \pi}{\mathrm{a}}\right)^{2}+\left(\frac{\mathrm{k} \pi}{\mathrm{~b}}\right)^{2}\right] \tag{34}
\end{align*}
$$

where

$$
\hat{w}(l, \xi, a)=\left[\frac{(-1)^{l} e^{-i \xi \mathbf{a}}-1}{\xi^{2}-\frac{l^{2} \pi^{2}}{\mathbf{a}^{2}}}\right]
$$

From equations (33) and (34) we see that there is coupling between the E_{Z} and H_{Z} modes at the waveguide-slot surface.

If equations (33) and (34) are now substituted into equations (25) and (26), we get:

$$
\begin{align*}
& -\left(\frac{l^{2} \pi^{2}}{a^{2}}+\frac{k^{2} \pi^{2}}{b^{2}}\right) Q_{2}(x, y, l, k) Z_{k l}+(2 \pi)^{2} \sin \left(\frac{l \pi x}{a}\right) \cos \left(\frac{k \pi y}{b}\right)\left[i \omega c_{o}\left(\frac{k \pi}{b}\right) Y_{k l}-i \gamma_{k} l\left(\frac{l \pi}{a}\right) Z_{k l}\right]\left(\begin{array}{l}
l \\
l
\end{array}\right. \\
& =-(2 \pi)^{2} A_{0} \sin \left(\frac{\pi x}{a}\right)-i \omega \epsilon B_{o}\left(\frac{a}{\pi}\right) Q_{1}(x, y, 1,0)+\frac{i B_{0} \pi / a}{\omega \mu_{0}} Q_{2}(x, y, 1,0)
\end{align*}
$$

and

$$
\begin{align*}
& \sum_{\mathrm{k}, l} \int^{\omega \epsilon}\left(\frac{\mathrm{k} \pi}{\mathrm{~b}}\right)\left(\frac{l \pi}{\mathrm{a}}\right) \gamma_{\mathrm{k} l} \hat{\mathrm{Q}}_{\mathrm{o}}(\mathrm{x}, \mathrm{y}, l, \mathrm{k}) \mathrm{Y}_{\mathrm{k} l}-\omega^{2} \mu \epsilon \mathrm{Z}_{\mathrm{k} l} \hat{\mathrm{Q}}_{1}(\mathrm{x}, \mathrm{y}, l, \mathrm{k}) \\
& -\left(\frac{l^{2} \pi^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{k}^{2} \pi^{2}}{\mathrm{~b}^{2}}\right) \mathrm{Z}_{\mathrm{k} l} \hat{\mathrm{Q}}_{2}(\mathrm{x}, \mathrm{y}, l, \mathrm{k})-\left.(2 \pi)^{2} \sin \left(\frac{\mathrm{k} \pi \mathrm{y}}{\mathrm{~b}}\right) \cos \left(\frac{l \pi \mathrm{x}}{\mathrm{a}}\right)\left[+\mathrm{i} \omega \epsilon_{\mathrm{o}}\left(\frac{l \pi}{\mathrm{a}}\right) \mathrm{Y}_{\mathrm{k} l}+\mathrm{i} \gamma_{\mathrm{k}} l\left(\frac{l \pi}{\mathrm{~b}}\right) \mathrm{Z}_{\mathrm{k} l}\right]\right|_{i} \\
& =\mathrm{i} \mathrm{~B}_{\mathrm{o}}\left(\frac{\mathrm{a}}{\pi}\right) \omega \epsilon \hat{\mathrm{Q}}_{1}(\mathrm{x}, \mathrm{y}, ⿺, 0)+\frac{\mathrm{i} \mathrm{~B}_{\mathrm{o}}}{\omega \mu_{\mathrm{o}}}\left(\frac{\pi}{\mathrm{a}}\right) \hat{\mathrm{Q}}_{2}(\mathrm{x}, \mathrm{y}, 1,0) \tag{36}
\end{align*}
$$

where

$$
\begin{aligned}
& \mathrm{Q}_{0}(\mathbf{x}, y, l, \mathbf{k})=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\mathrm{d} \xi \mathrm{~d} \eta(1+\mathrm{U}) \eta \hat{\mathrm{w}}(l, \xi, \mathrm{a}) \hat{\mathrm{w}}(\mathrm{k}, \eta, \mathrm{~b}) \mathrm{e}^{\mathrm{t}} \mathrm{i}(\xi \mathbf{x}+\eta \mathrm{y})}{\mathrm{h}_{1}(1-\mathrm{U})} \\
& \mathrm{Q}_{1}(\mathbf{x}, \mathrm{y}, l, \mathbf{k})=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\mathrm{d} \xi \mathrm{~d} \eta(1+\mathrm{U})\left[\frac{\mathrm{k}^{2} \pi^{2}}{\mathrm{~b}^{2}} \xi^{2}-\frac{l^{2} \pi^{2}}{\mathbf{a}^{2}} \eta^{2}\right] \eta \hat{\mathrm{w}}(l, \xi, \mathrm{a}) \hat{\mathbb{W}}(\mathrm{k}, \eta, \mathrm{~b}) \mathrm{e}^{+\mathrm{i}(\xi \mathbf{x}+\eta y)}}{\mathrm{h}_{1}(1-\mathrm{U})\left(\xi^{2}+\eta^{2}\right)}
\end{aligned}
$$

$$
Q_{2}(x, y, l, k)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\mathrm{d} \xi \mathrm{~d} \eta \mathrm{~h}_{1} \xi^{2} \eta \hat{\mathrm{w}}(l, \xi, \mathrm{a}) \hat{\mathrm{w}}(\mathrm{k}, \eta, \mathrm{~b})(1-\hat{\mathrm{U}}) \mathrm{e}^{+\mathrm{i}(\xi \mathrm{k}+\eta \mathrm{y})}}{\left(\xi^{2}+\eta^{2}\right)(1+\hat{\mathrm{U}})}
$$

$$
\hat{Q}_{0}(x, y, l, k)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\mathrm{d} \xi \mathrm{~d} \eta(1+U) \xi \hat{w}(l, \xi, \mathrm{a}) \hat{\mathbf{w}}(\mathrm{k}, \eta, \mathrm{~b}) \mathrm{e}^{+\mathrm{i}(\xi \mathrm{\xi}+\eta \mathrm{y})}}{\mathrm{h}_{1}(1-\mathrm{U})}
$$

$$
\hat{Q}_{1}(\mathbf{x}, \mathbf{y}, l, \mathbf{k})=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\mathrm{d} \xi \mathrm{~d} \eta(1+\mathrm{U})\left[\frac{\mathbf{k}^{2} \pi^{2}}{\mathrm{~b}^{2}} \xi^{2}-\frac{l^{2} \pi^{2}}{\mathbf{a}^{2}} \eta^{2}\right] \hat{\mathrm{w}}(h \xi, \mathrm{a}) \hat{\mathrm{W}}(\mathbf{k}, \eta, \mathrm{~b}) \mathrm{e}^{+\mathrm{i}(\xi \mathbf{x}+\eta \mathrm{y})}}{\mathrm{h}_{1}(1-\mathrm{U})\left(\xi^{2}+\eta^{2}\right)}
$$

$$
\hat{Q}_{2}(\mathbf{x}, \mathbf{y}, l, \mathbf{k})=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\mathrm{d} \xi \mathrm{~d} \eta \xi \eta^{2} \hat{\mathrm{w}}(l, \xi, a) \hat{\mathrm{w}}(\mathbf{k}, \eta, \mathrm{~b})(1-\hat{\mathrm{U}}) \mathrm{e}^{+\mathrm{i}(\xi \mathbf{x}+\eta \mathrm{y})_{\mathrm{h}_{1}}}}{\left(\hat{\varsigma}^{2}+\eta^{2}\right)(1+\hat{\mathrm{U}})}
$$

Equations (35) and (36) represent a pair of coupled equations for the coefficients $Y_{k l}$ and $Z_{k l}$. If these equations could be solved for $Y_{k} l$ and $Z_{k l}$, then R and L could then be obtained from equations (33) and (34), and finally the coefficients T and s (of the transmitted fields) from equation (24). The difficult part of the solution is to evaluate the Q functions.

2. Somie Properties of the Q Functions

Consider the expression for Q_{1}
$\mathrm{Q}_{1}(\mathrm{x}, \mathrm{y}, l, \mathrm{k})=\int_{-\infty}^{\infty} \mathrm{d} \xi \int_{-\infty}^{\infty} \mathrm{d} \eta \frac{(1+\mathrm{U})\left[\frac{\mathrm{k}^{2} \pi^{2}}{\mathrm{~b}^{2}} \xi^{2}-\frac{l^{2} \pi^{2}}{\mathrm{a}^{2}}\right] \eta^{2} \eta w(l, \xi, \mathrm{a}) W(\mathrm{k}, \eta, \mathrm{b}) \mathrm{e}^{\mathrm{i}(\xi \mathrm{x}+\eta \mathrm{y})}}{\mathrm{h}_{\mathrm{l}}(1-\mathrm{U})\left(\xi^{2}+\eta^{2}\right)}$

Now let us make a coordinate transformation so that the new coordinates x^{\prime} and y^{\prime} are measured from the center of the aperture. That is, let $x=\frac{a}{2}+x^{\prime}$ and $y=\frac{b}{2}+y^{\prime}$ so that (37) becomes:
$\mathrm{Q}_{1}\left(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}, l, \mathrm{k}\right)=\int_{-\infty}^{\infty} \mathrm{d} \xi \int_{-\infty}^{\infty} \mathrm{d} \eta \mathrm{F}\left(\xi^{2}, \eta, \bar{i}(i, \xi, \mathrm{a}) \overline{\mathrm{w}}(\mathrm{k}, \eta, \mathrm{b}) \eta \mathrm{e}^{\mathrm{i}\left(\xi \mathrm{x}^{\prime}+\eta \mathrm{y}^{\prime}\right)}\right.$
where
$\left.F\left(\xi^{2}, \eta^{2}\right)=\xlongequal[{(1+U)\left[\frac{\mathbf{k}^{2} \pi^{2}}{\mathbf{b}^{2}} \xi^{2}-\frac{l^{2} \pi^{2}}{\mathbf{a}^{2}} \eta^{2}\right.}]\right]{ }$

$$
\begin{equation*}
h_{1}(1-U)\left(\xi^{2}+\eta^{2}\right)\left(\xi^{2}-\frac{l^{2} \pi^{2}}{a^{2}}\right)\left(\eta^{2}-\frac{\mathrm{k}^{2} \pi^{2}}{\mathrm{~b}^{2}}\right) \tag{39}
\end{equation*}
$$

$\overline{\mathbf{w}}(l, \xi, a)=\left[(-1)^{l} e^{-i \frac{\xi}{2} \mathbf{a}}-e^{i \frac{\xi}{2} a}\right]$
$\overline{\mathrm{w}}(\mathrm{k}, \eta, \mathrm{b})=\left[(-1)^{\mathrm{k}} \mathrm{e}^{-\mathrm{i} \frac{\eta}{2} \mathrm{~b}}-\mathrm{e}^{\mathrm{i} \frac{\eta}{2} \mathrm{~b}}\right]$
From (40) and (41) we may note that
$\bar{w}(l,-\xi, \mathbf{a})=\bar{W}(l, \xi, \mathbf{a}) \quad$ if $l=$ odd
$\bar{w}(l,-\xi, a)=-\bar{w}(l, \xi, a) \quad$ if $l=\operatorname{even}$

Now using (38) let us compute $Q_{1}\left(-x^{\prime}, y^{\prime}, l, k\right)$. This

$$
\begin{equation*}
\mathrm{Q}_{1}\left(-\mathrm{x}^{\prime}, \mathrm{y}^{\prime}, l, \mathrm{k}\right)=\int_{-\infty}^{\infty} \mathrm{d} \xi \int_{-\infty}^{\infty} \mathrm{d} \eta \mathrm{~F}\left(\xi^{2}, \eta^{2}\right) \bar{W}(l,-\xi) \bar{W}(\mathrm{k}, \eta) \mathrm{e}^{\mathrm{i}(\xi \mathrm{x}+\eta y)} \tag{43}
\end{equation*}
$$

Next let $\xi=-\xi$. to get

$$
\mathrm{Q}_{1}\left(-\mathrm{x}^{\prime}, \mathrm{y}^{\prime}, l, \mathrm{k}\right)=\int_{-\infty}^{\infty} \mathrm{d} \xi \int_{-\infty}^{\infty} \mathrm{d} \eta \mathrm{~F}\left(\xi^{2}, \eta^{2}\right) \overline{\mathrm{w}}(l,-\xi) \overline{\mathrm{w}}(l, \eta) \mathrm{e}^{\mathrm{i}(\xi \mathbf{x}+\eta \mathrm{y})}(44)
$$

Using Equation (42) we may conclude from (44) that

$$
\begin{array}{ll}
\mathrm{Q}_{1}\left(-x^{\prime}, y^{\prime}, l, k\right)=Q_{1}\left(x^{\prime}, y^{\prime}, l, k\right) & \text { if } l=\text { odd } \\
Q_{1}\left(-x^{\prime}, y^{\prime}, l, k\right)=-Q_{1}\left(x^{\prime}, y^{\prime}, l, k\right) & \text { if } l=\text { even } \tag{45}
\end{array}
$$

or more compactly

$$
\begin{equation*}
\mathrm{Q}_{1}\left(-\mathrm{x}^{\prime}, \mathrm{y}^{\prime}, l, \mathrm{k}\right)=-(-1)^{l} \mathrm{Q}_{1}\left(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}, l, \mathrm{k}\right) \tag{46}
\end{equation*}
$$

By similiar argument we also find

$$
\begin{equation*}
\mathrm{Q}_{1}\left(\mathrm{x}^{\prime},-\mathrm{y}^{\prime}, l, \mathrm{k}\right)=(-1)^{\mathrm{k}} \mathrm{Q}_{1}\left(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}, l, \mathrm{k}\right) \tag{47}
\end{equation*}
$$

The functions Q_{0} and Q_{1} can be shown to have the same symmetry properties in X and Y as Q_{1} while for $\hat{Q}_{0}, \hat{Q}_{1}, \hat{Q}_{2}$ we find

$$
\begin{align*}
& \hat{\mathrm{Q}}_{\mathrm{o}}\left(-\mathrm{x}^{\prime} ; \mathrm{y}^{\prime}, l, \mathrm{k}\right)=(-1)^{l} \hat{\mathrm{Q}}_{0}\left(\mathrm{x}^{\prime}, \mathrm{y}^{\prime} ; l, \mathrm{k}\right) \tag{48}\\
& 1 \tag{49}\\
& 2 \\
& \hat{\mathrm{Q}}_{\mathrm{o}}\left(\mathrm{x}^{\prime},-\mathrm{y}^{\prime} ; l, \mathrm{k}\right)=(-1)^{\mathrm{k}} \hat{\mathrm{Q}}_{\substack{ \\
1 \\
2}}^{\hat{\mathrm{Q}}_{\mathrm{o}}}\left(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}, l, \mathrm{k}\right) \\
& 2
\end{align*}
$$

From Equation (46) we also have setting $x^{\prime}=0$ that

$$
\begin{equation*}
\mathrm{Q}_{1}\left(\mathrm{o}, \mathrm{y}^{\prime}, l, \mathrm{k}\right)=-(-1)^{l} \mathrm{Q}_{1}\left(\mathrm{o}^{\prime}, \mathrm{y}^{\prime}, l, \mathrm{k}\right) \tag{50}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\mathrm{Q}_{1}\left(0, y^{\prime}, l, \mathrm{k}\right)=0 \quad \text { if } l=\text { even } \tag{51}
\end{equation*}
$$

Also setting $y^{\prime} \neq 0$ in Equation (47) gives:

$$
Q_{1}\left(x^{\prime}, o, l, k\right)=(-1)^{k} Q_{1}\left(x^{\prime}, o, l, k\right)
$$

Therefore

$$
\begin{equation*}
Q_{1}\left(x^{\prime}, o, l, k\right)=0 \quad \text { if } k=\text { odd } \tag{52}
\end{equation*}
$$

The functions Q_{0} and Q_{2} have the same properties as Q_{1} when x^{\prime} or y^{\prime} are zero. By similar argument we also find

$$
\begin{array}{ll}
\hat{Q}_{o}(0, y ; l, k)=0 & \text { if } l=\text { odd } \\
\hat{Q}_{o}\left(x^{\prime} ; c, l, k\right)=0 & \text { if } k=\text { even } \\
2 &
\end{array}
$$

These properties have proven a valuable aid to the numerical evaluation of the $Q^{\prime} s$, and to their use in obtaining the $\gamma_{l k}$ and $Y_{l k}$.
3. Discussion of the Method of Solution of Equations (35) and (36)

In the section Cl , we derived a pair of equations for the quantities coefficients $\mathrm{Z}_{l \mathrm{k}}$ and $\mathrm{Y}_{l \mathrm{k}}$. The problem now is to solve these equations for some set of Z 's and Y 's. Obviously, it would be too costly (because of the cost of computation of the Q functions) to try to compute $Z_{l k}$ and $\mathbf{Y}_{l \mathbf{k}}$ for $l=0$ to ∞ and $\mathbf{k}=0$ to ∞. Fortunately, it generally turns out that only the $Z_{l k}$ and $Y_{l k}$ for the lowest few l 's and k 's are significant. To discuss equations (35) and (36) further let us rewrite them as:

$$
\begin{equation*}
\sum_{k, l=0}^{\infty}\left\{F(l, k, x, y) Y_{l k}+G(l, k, x, y) z_{l k}\right\}=\Phi(x, y) \tag{55}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k, l=0}^{\infty}\left\{H(l, k, x, y) Y_{l k}+J(l, k, x, y) z_{l k}\right\}=\psi(x, y) \tag{56}
\end{equation*}
$$

where

$$
\begin{aligned}
F(l, k, x, y) & =+\epsilon \omega\left(\frac{l \pi}{a}\right)\left(\frac{k \pi}{b}\right) \gamma / k Q_{0}(x, y, l, k) \\
& +i \omega \epsilon_{0}\left(\frac{k \pi}{b}\right) \sin \left(\frac{l \pi x}{a}\right) \cos \left(\frac{k \pi y}{b}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{G}(l, \mathrm{k}, \mathrm{x}, \mathrm{y})=\omega^{2} \mu_{\mathrm{o}} \in \mathrm{Q}_{1}(\mathrm{x}, \mathrm{y}, l, \mathrm{k})-\left(\frac{l^{2} \pi^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{k}^{2} \pi^{2}}{\mathrm{~b}^{2}}\right) \mathrm{Q}_{2}(\mathrm{x}, \mathrm{y}, l, \mathrm{k}) \\
& -\mathrm{i} \gamma_{l \mathbf{k}}\left(\frac{l \pi}{\mathrm{a}}\right) \sin \left(\frac{l \pi x}{\mathrm{a}}\right) \cos \left(\frac{\mathrm{k} \| y}{\mathrm{~b}}\right) \\
& \Phi(x, y)=-A_{0} \sin \left(\frac{\pi x}{a}\right)-i \omega \epsilon B_{o}\left(\frac{a}{\pi}\right) Q_{1}(x, y, 1, o)+\frac{i B_{o}\left(\frac{\pi}{a}\right)}{\therefore \mu_{0}} Q_{2}(x, y, 1,0) \\
& H(l, k, x, y)=-\omega \epsilon\left(\frac{k \pi}{b}\right)\left(\frac{l \pi}{a}\right) \gamma_{l k} \hat{Q}_{0}(x, y, l, k)-i \omega \epsilon_{0}\left(\frac{l \pi}{a}\right) \sin \left(\frac{k \pi y}{b}\right) \cos \left(\frac{l \pi x}{a}\right) \\
& \mathrm{J}(l, \mathrm{k}, \mathrm{x}, \mathrm{y})=-\omega^{2} \mu_{0} \in \hat{\mathrm{Q}}_{1}(\mathrm{x}, \mathrm{y}, l, \mathrm{k})-\left[\left(\frac{l^{2} \pi^{2}}{\mathrm{a}^{2}}\right)+\left(\frac{\mathrm{k}^{2} \pi^{2}}{\mathrm{~b}^{2}}\right)\right] \hat{\mathrm{Q}}_{2}(x, y, l, k) \\
& -i \gamma_{l k}\left(\frac{k \pi}{b}\right) \sin \left(\frac{k \pi y}{b}\right) \cos \left(\frac{l \pi x}{a}\right) \\
& \Psi(x, y)=i B_{o}\left(\frac{a}{\pi}\right) \omega \in \dot{Q}_{1}(x, y, 1,0)+\frac{i B_{o}}{\omega \mu_{0}}\left(\frac{\pi}{a}\right) \hat{Q}_{2}(x, y, 1,0)
\end{aligned}
$$

One can also note from the definitions above that

$$
F(l, o, x, y)=F(0, k, x, y)=H(l, o, x, y)=H(0, k, x, y)=0
$$

Now suppose that we have a waveguide for which the x dimension " a " is 2/3 of a wavelength, and the y dimension b is $1 / 3$ of a wavelength. For such a case, we know from our previous work on the infinite slot antenna that only the lowest mode will have any significant amplitude in the y direction while in the x direction onlv the lowest two or three modes will be significantly excitcd. Thus we need keep only the terms with $k=0$ (or possibly 1) and those with $l=1$ and 2 (and possibly 3). Therefore, a fair approximation would involve retaining only Z_{10}, Z_{20}, Y_{10}, and Y_{20}. For this example, equations (55) and (56) become (note that the coefficients of the Y_{10} and Y_{20} terms are zero):

$$
\begin{align*}
& G\left(1,0, x, y, Z_{10}+G(2,0, x, y) Z_{20}=\Phi(x, y)\right. \tag{57}\\
& J(1,0, x, y) Z_{10}+J(2,0, x, y) Z_{20}=\Psi(x, y) \tag{58}
\end{align*}
$$

Then by specifying some point (x, y) over the antenna surface for the evaluation of the G, J, Φ, and ψ functions, we will be able to solve equations (57) and (58) for 7_{10} and Z_{20}. Actually because of the way we have truncated the infinite series in equations (55) and (56), it turns out that our selection of the point of evaluation (x, y) shculd not be completely arbitrary.

Previous experience with the infinite slot antenna has taught us that when only one point is to be specified, it should be at the center of the slot. Thus we pick $X=a / 2$ and $Y=b / 2$ to get:

$$
\begin{align*}
& G(1,0, a / 2, b / 2) Z_{10}+G(2,0, a / 2, b / 2) Z_{20}=\Phi(a / 2, b / 2) \tag{59}\\
& J(1,0, a / 2, b / 2) Z_{10}+J(2,0, a / 2, b / 2) Z_{20}=\dot{\psi}(a / 2, b / 2) \tag{60}
\end{align*}
$$

and the solution for Z_{10} and Z_{20} is:

$$
\begin{aligned}
& Z_{10}=\frac{\Phi(a / 2, b / 2) J(2,0, a / 2, b / 2)-\psi(a / 2, n / 2) G(2,0, a / 2, b / 2)}{J(2,0, a / 2, b / 2) G(1,0, a / 2, b / 2)-J(1,0, a / 2, b / 2) G(2,0, a / 2, b / 2)} \\
& Z_{20}=\frac{\psi(a / 2, b / 2) G(1,0, a / 2, b / 2)-\Phi(a / 2, b / 2) J(1,0, a / 2, b / 2)}{J(2,0, a / 2, b / 2) G(1,0, a / 2, b / 2)-J(1,0, a / 2, b / 2) G(2,1, a / 2, b / 2)}
\end{aligned}
$$

Note that this solution only involves the computation of $Q_{1}(1,0, a / 2$, $b / 2), Q_{1}(2,0, a / 2, b / 2), Q_{2}(1,0, a / 2, b / 2), Q_{2}(2,0, a / 2, b / 2), Q_{1}(1,0$, $a / 2, b / 2), \hat{Q}_{1}(2,0, a / 2, b / 2), \hat{Q}_{2}(1,0, a / 2, b / 2), \widehat{Q}_{2}(2,0, a / 2, b / 2)$, or $8 Q$ calculations.

For the case when we desire to solve for an arbitrary number of Z 's and Y 's we simply choose enough points (x, y) so that we have a number of unknowns.
4. The Computer Programs for the Soiution of Equations (35) and (36)

A computer prograrn (No. 2128) has been developed which evaluates the Q functions. The output of this program is then used in Equations (35) and (36) to solve for $Z_{l k}$ and $Y_{l k}$. This is achieved for an arbitrary (l, k) by use of computer prograrn No. 2187. As a test case, we considered the slot antenna with frequency 2200 Mc and dimensions 0.1092×0.0546 meter. The waveguide used was covered by a slab of relative dielectric constant $\epsilon_{r}=1.85+i .041$, and thickness, 0.025 meter. We assumed that the important mode coefficients were $\mathrm{Z}_{10}, \mathrm{Z}_{20}$,
Z_{21}, Z_{11}, Z_{01}, and the corresponding Y 's. This required hat we pick four (only 4 sets were needed since Y_{10}, Y_{01}, and Y_{20} do not erter the equations) sets of (x, y) across the waveguide aperture, obtain the Q functions from program 2128, and then use program 2187 to get the Z's and Y's. Using these values we computed the impedance Z_{L} to the $T E$ mode from

$$
\begin{equation*}
\frac{Z_{L}}{Z_{o}}=\frac{1-\frac{\pi}{a} \frac{i Z_{10} \omega \mu_{0}}{B_{o}}}{1+\frac{\pi}{a} \frac{i \omega \mu_{0} Z_{10}}{B_{0}}} \tag{61}
\end{equation*}
$$

Z_{o} is the characteristic impedance of the guide for the TE_{10} mode The result we obtained for Z_{L} was $Z_{L}=176+i 95$ (or if ej ${ }^{j \omega t}$ were used instead of $\left.e^{-i \omega t}, Z_{L}=176-j 95\right)$.

Since it was relatively costly to compute all the Q functions nncessary to determine $Z_{10}, Z_{20}, Z_{21}, Z_{11}$, and Z_{01}, we then attempt to develop a simpler solution. This involved neglecting all the coefficients $Z_{l k}$ and $Y_{l k}$ except Z_{10} and Y_{10}. This led to a simplified program (No. 2206). The results for Z_{L}, for the same waveguide as above, was $Z_{L}=181-j 99$. We thus found that there was relatively good agreement between the simple model and the more complex method of solution. (It is felt however that the closeness of this approximate result to the more exact result in this case was largely a matter of luck since in some of the cases tried Z_{01} and Z_{11} were a significant fraction of Z_{10}, and keeping merely Z_{10} in the equations should be less accurate than the present case.) In a later section, more detailed discussion of the computer results will be given as well as a discussion of the experiments.
5. A Variational Expression for the Admittance of the Plasma-Covered Rectangular Waveguide

In the preceding sections, we derived expressions for the fields, etc. produced by a dielectric covered waveguide. We previously used an approximate method (Program 2206) to compute the impedance and obtained antenna impedances which were accurate to within about 10%. We would now like to present a variational formulation for the antenna admittance which ve feel will be accurate to within 5%. (Of course, the solution of 35 and 36 , retaining a large number of items, is more accurate than either of these).

The fields within the waveguide can be written as:

$$
\begin{align*}
& \underline{E}^{(1)}=\sum_{n} v_{n} \varepsilon_{n}+v_{n}, s_{n} \prime \\
& \underline{H}^{(1)}=\sum_{n} I_{n} s_{n}+I_{n}, \underline{h}_{n}, \tag{62}
\end{align*}
$$

For the definition of e_{n}, h_{n} etc., see Marcuvitz (1951). Similarly in Section Cl. we showed that the Efields at the plasma-antenna interface could be written as

$$
\begin{align*}
& E_{x}=\iint_{-\infty}^{\infty} \frac{\mathrm{d} \xi \mathrm{~d} \eta}{\xi^{2}+\eta^{2}} e^{i(\xi \mathrm{x}+\eta \mathrm{y})}\left[\xi \mathrm{h}_{1} R(1-\mathrm{U})-\omega \mu_{0} \eta(1+\hat{\mathrm{U}})\right] \\
& \mathrm{E}_{\mathrm{y}}=\iint_{-\infty}^{\infty} \frac{\mathrm{d} \xi \mathrm{~d} \eta}{\xi^{2}+\eta^{2}} e^{i(\xi \mathrm{x}+\eta y)}\left[\eta \mathrm{h}_{1} R(1-\mathrm{U})+\omega \mu \xi(1+\hat{U})\right] \tag{63}
\end{align*}
$$

Matching boundary conditions across the interface gives:

$$
\begin{aligned}
& \frac{\xi h_{1} R(1-U)-\omega \mu_{0} \eta(i+\hat{U}) L}{\xi^{2}+\eta^{2}}=\hat{E}_{x} \\
& \frac{\eta h_{1} R(1-U)+\omega \mu_{0} \xi(1+\hat{U}) L}{\xi^{2}+\eta^{2}}=\hat{E}_{y}
\end{aligned}
$$

where

$$
\begin{equation*}
\hat{E}_{x}=\frac{1}{(2 \pi)^{2}} \iint_{\text {Aperture }} d x d y E_{x}(x, y) e^{-i(\xi x+\eta y)} \tag{64}
\end{equation*}
$$

Solving (64) for R and L yields:

$$
\begin{equation*}
R=\frac{\xi \hat{E}_{x}+\eta \hat{E}_{y}}{h_{1}(1-U)} \tag{65}
\end{equation*}
$$

$$
\begin{equation*}
L=\frac{\xi \hat{E}_{y}-\eta \hat{E}_{x}}{\omega \mu_{0}(1+\hat{U})} \tag{66}
\end{equation*}
$$

where \hat{U}, U, etc., are all defined in Section Cl
Now the H field in the plasma can be written:

$$
\begin{align*}
& H_{x}=\iint_{-\infty}^{\infty} \frac{d \xi d \eta}{\xi^{2}+\eta^{2}} e^{i(\xi x+\eta y)}\left[\epsilon \omega \eta(1+U) R+h_{1} \xi(1-\hat{U}) L\right] \\
& H_{y}=\int_{-\infty}^{\infty} \int_{\infty} \frac{d \xi d \eta}{\xi^{2}+\eta^{2}} e^{i(\xi x+\eta y)}\left[-\omega \epsilon \xi R(1+U)+\eta h_{1} L(1-\hat{U})\right] \tag{67}
\end{align*}
$$

The components cif (67) can be written in vector form as:

$$
\begin{equation*}
\underline{\underline{H}}=\iint_{-L}^{\infty} \frac{d \xi d \eta}{\xi^{2}+\eta^{2}} e^{i(\xi x+\eta y)}\left[\epsilon \omega R(1+U)\left(\underline{\Omega} \times z_{0}\right)+h_{1} L(1-\hat{U}) \underline{\Omega}\right] \tag{68}
\end{equation*}
$$

where

$$
\begin{aligned}
& \Omega=\underline{i}_{\mathbf{x}} \xi+\dot{\underline{i}}_{\mathbf{y}} \eta \\
& \underline{z}_{\mathrm{o}}=\text { unit vector in } \mathbf{Z} \text { direction }
\end{aligned}
$$

Matching the tangential H across the aperture gives:

$$
\sum_{n}\left(I_{n} h_{n}+I_{n}^{\prime} h_{n}^{\prime}\right)=\iint_{-\infty}^{\infty} \frac{d \xi d \eta}{\xi^{2}+\eta^{2}} e^{i(\xi x+\eta y)\left[e \omega R(1+U)\left(\Omega \times Z_{0}\right)+h_{1} L(1-\hat{U}) \Omega\right]}
$$

Assuming only the dominant H mode is transmitted down
the guide, we can rewrite (69) as (upon substituting from. (65) and (66) for R \& L):

$$
\begin{align*}
& +I_{o}^{\prime} \underline{h}_{o}^{\prime}=-\left(\sum_{n} I_{n} \underline{h}_{n}+\sum_{n \neq 0} I_{n}^{\prime} h_{n}^{\prime}\right) \\
& +\int_{-\infty}^{\infty} \frac{d \xi d \eta}{\xi^{2}+\eta^{2}} e^{i(\xi x+\eta y)}\left\{\begin{array}{l}
\varepsilon \omega(1+U)\left(\underline{\Omega} \times \underline{Z}_{0}\right)\left[\xi \hat{E}_{x}+\eta \hat{E}_{y}\right] \\
h_{1}(1-U)
\end{array} \frac{h_{1} \underline{\Omega}(1-\dot{U})\left[\xi \hat{E}_{y}-\eta \hat{E}_{x}\right] \mid}{\omega \mu_{0}(1+\hat{U})}\right. \tag{70}
\end{align*}
$$

Taking the cross product of Z_{0} with (70) yields:

$$
\begin{align*}
-I_{o}^{\prime} e_{o}^{\prime} & =\left(\sum_{n} I_{n} e_{n}+\sum_{n \neq 0} I_{n}^{\prime} e_{n}^{\prime}\right) \\
& +\iint \frac{d \xi d \eta}{\xi^{2}+\eta^{2}} e^{i(\xi x+\eta y)}\left\{\frac{\omega \epsilon(1+U)}{h_{1}(1-U)} \Omega\left(\xi \hat{E}_{x}+\eta \hat{E}_{y}\right)\right. \\
& \left.+\frac{h_{1}\left(\underline{Z}_{0} \times \underline{\Omega}\right)(1-\dot{U})}{\omega \mu_{0}(1+\hat{U})}\left(\xi \hat{E}_{y}-\eta \hat{E}_{x}\right)\right\} \tag{71}
\end{align*}
$$

Now taking the dot product of the aperturefield E with (71), and using the fact that for the reflected modes we have $I_{2}=-Y_{n} V_{n}$, we have:

$$
\begin{align*}
I_{0} \int \underline{e}_{0}^{\prime} \cdot \underline{E} d S & =\sum_{n} Y_{n} V_{n} \int \underline{e}_{n} \cdot \underline{E} d S+\sum_{n \neq 0} Y_{n}^{\prime} V_{n}^{\prime} \int \underline{e}_{n}^{\prime} \cdot \underline{E} d S \\
& -\iint_{-\infty}^{\infty} \frac{d \xi d \eta}{\xi^{2}+\eta^{2}}(2 \pi)^{2} \left\lvert\, \frac{\epsilon \omega(1+U)}{h_{1}(1-U)}(\underline{\Omega} \cdot \underline{E})\left(\underline{\Omega} \cdot \underline{E}^{*}\right)\right. \\
& +\frac{h_{1}(1-\hat{U})}{\omega \mu_{0}(1+\hat{U})}\left[\underline{Z}_{0} \times \underline{\Omega} \cdot \underline{E}^{*}\right]\left[\underline{Z}_{0} \times \underline{\Omega} \cdot \underline{E}\right] \tag{72}
\end{align*}
$$

where

$$
\begin{aligned}
& \underline{\underline{E}}(\xi, \eta)=\underline{i}_{x} \hat{\mathbf{E}}_{\mathbf{x}}(\xi, \eta)+\underline{i}_{y} \hat{\underline{E}}_{y}(\xi, \eta) \\
& \hat{\underline{E}}^{*}(\xi, \eta)=\underline{\hat{E}}(-\xi,-\eta)
\end{aligned}
$$

and
$d S \equiv d x d y$
Finally dividing through both sides of (72) by $v_{o}^{\prime}=\int e_{o}^{\prime} \cdot E d S$ we
get a variational expression for the admittance:

$$
\begin{aligned}
& Y_{0}^{\prime}=\frac{I_{0}^{\prime}}{V_{0}^{\prime}}=\frac{\sum_{n} V_{n} Y_{n} \int_{A_{p}} \underline{e}_{n} \cdot \underline{E} d S+\sum_{n \neq 0} Y_{n}^{\prime} V_{n}^{\prime} \int_{A_{P}} e_{n}^{\prime} \cdot \underline{E} d S}{\left(\int_{\Lambda_{P}} \underline{e}_{0}^{\prime} \cdot \underline{E} d S\right)^{2}} \\
&-\int_{-\infty}^{\infty} \frac{d \xi d \eta}{\xi^{2}+\eta^{2}}(2 \pi)^{2}\left\{\frac{\epsilon \omega(1+U)}{h_{1}(1-U)}|\underline{\Omega} \cdot \hat{E}|^{2}+\frac{h_{1}(1-\dot{U})}{\omega \mu_{0}(1+\hat{O})}\left|\underline{Z}_{0} \times \underline{\Omega} \cdot \hat{E}\right|^{2}\right\} \\
&\left(\int_{A_{P}} \underline{e}_{0}^{\prime} \cdot \underline{E} d S\right)^{2}
\end{aligned}
$$

It can be shown that Equation (73) is stationary. If one were to assume that the aperture field is approximately the field of the dominant mode ($\mathrm{E} \quad \mathrm{V}_{0} \varepsilon_{0}^{\prime}$) we would have from (73)

$$
\begin{equation*}
Y_{0}^{\prime}=-\iint_{-\infty}^{\infty} \frac{d \xi d \eta}{\xi^{2}+\eta^{2}}(2 \pi)^{2}\left\{\frac{\epsilon \omega(1+U)}{h_{1}(1-U)}\left|\underline{\Omega} \cdot \hat{\underline{e}}_{0}^{\prime}\right|^{2}+\frac{h_{1}(1-\hat{U})}{\omega \mu_{0}(1+\hat{U})}\left|\underline{Z}_{0} \times \underline{\Omega}^{\infty} \cdot \hat{\underline{e}}_{0}^{\prime}\right|^{2}\right\} \tag{74}
\end{equation*}
$$

where

$$
\underline{e}_{o}^{\prime} \equiv \frac{1}{(2 \pi)^{2}} \iint d x d y \underline{c}_{o}^{\prime}(x, y) e^{-i(\xi x+\eta y)}
$$

The integrals which need to be evaluated in (74) are very similar to the Q functions already evaluated by Avco computer program No. 2128. At a future time we will endeavor to have the integrals in Equation (14) programmed.

6. Steepest-Descent Calculation of Far Fields

In this section we will use the results of the previous section to derive formal solutions for the far fields radiated by a dielectric covered rectangular slot. In order for our results to be ultimately useful for experimental verification, we shall first convert all our results from rectangular to spherical coordinates as shown in the figure below.

In spherical coordinates the transverse components of the fields are:

$$
\begin{aligned}
& \mathrm{H}_{\theta}=\mathrm{H}_{\mathrm{x}} \cos \phi \cos \theta+\mathrm{H}_{\mathrm{y}} \sin \phi \cos \theta-\mathrm{H}_{\mathrm{z}} \sin \theta \\
& \mathrm{H}_{\phi}=-\mathrm{H}_{\mathrm{x}} \sin \phi+\mathrm{H}_{\mathrm{y}} \cos \phi
\end{aligned}
$$

and the same for the fields. Also $z=r \cos \theta, x=r \sin \theta \cos \phi$ and $y=r \sin \theta \sin \phi \quad$.

Applying these equations to equation (14) through (19) gives:

$$
\begin{align*}
& \mathrm{H}_{\theta}=\int_{-\infty}^{\infty} \mathrm{d} \eta \int_{-\infty}^{\infty} \mathrm{d} \xi \mathrm{e}^{\mathrm{ir}\left(\xi \sin \theta \cos \phi+\eta \sin \theta \sin \phi+\mathrm{h}_{2} \cos \theta\right)} \Lambda(\xi, \eta) \tag{75}\\
& \mathrm{H}_{\phi}=\int_{-\infty}^{\infty} \mathrm{d} \eta \int_{-\infty}^{\infty} \mathrm{d} \xi \mathrm{e}^{\mathrm{ir}\left(\xi \sin \theta \cos \phi+\eta \sin \theta \sin \phi+\mathrm{h}_{2} \cos \theta\right)} \Gamma(\xi, \eta) \tag{76}
\end{align*}
$$

where
where

$$
\begin{aligned}
& \Lambda(\xi, \eta) \equiv\left\{\left[\frac{\omega \epsilon_{0} \eta \mathrm{~S}-\xi \mathrm{h}_{2} \mathrm{~T}}{\xi^{2}+\eta^{2}}\right] \cos \phi \cos \theta\right. \\
&\left.+\left[\frac{-\omega \epsilon_{0} \xi \mathrm{~S}-\eta \mathrm{h}_{2} \mathrm{~T}}{\xi^{2}+\eta^{2}}\right] \sin \phi \cos \theta-\mathrm{T} \sin \theta\right\} \\
& \Gamma(\xi, \eta) \equiv\left\{-\left[\frac{\omega \epsilon_{0} \eta \mathrm{~S}-\xi \mathrm{h}_{2} \mathrm{~T}}{\xi^{2}+\eta^{2}}\right] \sin \phi+\left[\frac{-\omega \epsilon_{0} \xi \mathrm{~S}-\eta \mathrm{h}_{2} \mathrm{~T}}{\xi^{2}+\eta^{2}}\right] \cos \phi\right\}
\end{aligned}
$$

Similarly for the electric fields we get:

$$
\begin{aligned}
& E_{\theta}=\int_{-\infty}^{\infty} d \eta \int_{-\infty}^{\infty} d \xi e^{i r\left(\xi \sin \theta \cos \phi+\eta \sin \theta \sin \phi+h_{2} \cos \theta\right)} C(\xi, \eta) \quad(77) \\
& E_{\phi}=\int_{-\infty}^{\infty} d \xi \int_{-\infty}^{\infty} d \eta e^{i r\left(\xi \sin \theta \cos \phi+\eta \sin \theta \sin \phi+h_{2} \cos \theta\right)} \quad D(\xi, \eta) \quad(78)
\end{aligned}
$$

where

$$
\left.\begin{array}{rl}
\mathrm{C}(\xi, \eta) \equiv\left\{\left[\frac{-\xi \mathrm{h}_{2} \mathrm{~S}-\eta \omega \mu_{0} \mathrm{~T}}{\xi^{2}+\eta^{2}}\right] \cos \phi \cos \theta\right.
\end{array}\right\} \begin{aligned}
& \left.\mathrm{F}\left(\frac{-\mathrm{h}_{2} \eta \mathrm{~S}+\omega \mu_{0} \xi \mathrm{~T}}{\xi^{2}+\eta^{2}}\right] \sin \phi \cos \theta-\mathrm{S} \sin \theta\right\} \\
& \\
& \mathrm{D}(\xi, \eta) \equiv\left\{-\left[\frac{-\xi \mathrm{h}_{2} \mathrm{~S}-\eta \omega \mu_{0} \mathrm{~T}}{\xi^{2}+\eta^{2}}\right] \sin \phi+\left[\frac{-\mathrm{h}_{2} \eta \mathrm{~S}+\omega \mu_{0} \xi \mathrm{~T}}{\xi^{2}+\eta^{2}}\right] \cos \phi\right\}
\end{aligned}
$$

Now that we have these fields in spherical coordinates we need to evaluate the integrals for the far field (i.e., $s \rightarrow \infty$). Let us consider equation (70). This can be rewritten as:

$$
\begin{equation*}
\mathrm{H}_{\theta}=\int_{-\infty}^{\infty} d \eta e^{\mathrm{i} r \eta \sin \theta \sin \phi} \int_{-\infty}^{\infty} d \xi e^{\mathrm{ir}\left(\xi \sin \theta \cos \phi+\mathrm{h}_{2} \cos \theta\right)} \Lambda(\xi, \eta) \tag{79}
\end{equation*}
$$

If $\Lambda(\xi, \eta)$ is well behaved, it can be shown that for $t \rightarrow \infty$ most of the contribution to equation (79) comes in the vicinity of the saddle point in the exponential function. Consider the inner integral in equation (79) and rewrite it as

$$
\begin{equation*}
\mathrm{I}=\int_{-\infty}^{\infty} \mathrm{d} \xi \mathrm{e}^{\mathrm{irf}(\xi, \eta)} \Lambda(\xi, \eta) \tag{80}
\end{equation*}
$$

where

$$
\begin{equation*}
f(\xi, \eta)=\xi \sin \theta \cos \phi+\sqrt{k_{0}^{2}-\xi^{2}-\eta^{2}} \cos \theta \tag{81}
\end{equation*}
$$

The saddle point occurs when $f^{\prime}(\xi)=0$ or at

$$
\begin{equation*}
f^{\prime}\left(\xi_{0}\right)=0=\sin \theta \cos \phi-\frac{\xi_{0} \cos \theta}{\sqrt{k_{0}^{2}-\xi_{0}^{2}-\eta^{2}}} \tag{82}
\end{equation*}
$$

The solution of equation (77) is:

$$
\xi_{0}=\frac{\sqrt{k_{0}^{2}-\eta^{2}} \sin \theta \cos \phi}{\left(\cos ^{2} \theta+\sin ^{2} \theta \cos ^{2} \phi\right)^{1 / 2}}
$$

Now in order to see how we must deform the cuntour to pass through the saddle point, it is necessary to examine the behavior of exp [irf($\xi, \eta)]$ in the vicinity of ξ_{0}. To do tris we expand

$$
\begin{equation*}
f(\xi)=f\left(\xi_{0}\right)+\frac{\left(\xi-\xi_{0}\right)^{2}}{2} \quad f^{\prime \prime}\left(\xi_{0}\right)+\cdots \tag{83}
\end{equation*}
$$

Note that $f^{\prime}\left(\xi_{0}\right)=0$ since this is the saddle point. Using equation (82) in equation (81) gives:

$$
\begin{equation*}
f\left(\xi_{0}\right)=\sqrt{k_{0}^{2}-\eta^{2}}\left(\cos ^{2} \theta+\sin ^{2} \theta \cos ^{2} \phi\right)^{1 / 2} \tag{84}
\end{equation*}
$$

and differentiating equation (82) gives:

$$
\begin{equation*}
f^{\prime \prime}\left(\xi_{\mathrm{o}}\right)=-\frac{\left(\cos ^{2} \theta+\sin ^{2} \theta \cos ^{2} \phi\right)^{1 / 2}}{\cos ^{2} \theta \sqrt{\mathrm{k}_{\mathrm{o}}^{2}-\eta^{2}}} \tag{85}
\end{equation*}
$$

Thus in the vicinity of the saddle point, the exponential in equation (85) behaves as:

$$
\begin{equation*}
-i \frac{\left(\xi-\xi_{0}\right)^{2} r \rho^{2}}{\sqrt{k_{0}^{2}-\eta^{2}}} \tag{86}
\end{equation*}
$$

where

$$
\begin{aligned}
\Omega & \equiv\left(\cos ^{2} \theta+\sin ^{2} \theta \cos ^{2} \phi\right)^{1 / 2} \\
\rho^{2} & =\frac{1}{2} \frac{\Omega}{\cos ^{2} \theta}
\end{aligned}
$$

Next, we may write $\left(\xi-\xi_{0}\right)=\operatorname{Se}^{i \gamma}$ so that equation (86) becomes

$$
\begin{equation*}
e^{i r \Omega} \sqrt{k_{0}^{2}-\eta^{2}} \quad e^{-i} \frac{\rho^{2} s^{2} r\left(\cos ^{2} \gamma+2 i \cos \gamma \sin \gamma-\sin ^{2} \gamma\right)}{\sqrt{k_{0}^{2}-\eta^{2}}} \tag{87}
\end{equation*}
$$

Case I - Suppose $k_{0}>\eta$; then as $\mathrm{r} \rightarrow \infty$, the dominant behavior of equation (87) is determined by

$$
\frac{2 \rho^{2} s^{2} r \cos \gamma \sin \gamma}{\sqrt{k_{0}^{2}-\eta^{2}}}
$$

This function in the complex plane grows as we move away from the saddle point for $0 \leq \gamma \leq \pi / 2, \pi \leq \gamma \leq 3 \pi / 2$, but decays rapidly as $r \rightarrow \infty$ for $\pi / 2<\gamma<\pi$ and $3 \pi / 2<\gamma<2 \pi$. Thus for $k_{0}>\eta$ we deform the contour C through the saddle point as:

Case II - Suppose $\eta>k_{0}$; then as $s \rightarrow \infty$, the dominant behavior of equation (87) is governed by:

$$
e-\frac{\rho^{2} s^{2} r \cos 2 \gamma}{\sqrt{\eta^{2}-k_{0}^{2}}}
$$

Here the function grows and decays as we move away from the saddle point as shown below:

Thus we may pass the contour directly through ξ_{0} parallel to the real (ξ) axis.

Now that we have discussed the contour, we can apply the method of steepest descents to equation (80). From equation (4.6.13) in Morse and Feshbach ${ }^{7}$ we get:

$$
\begin{align*}
& I=\Lambda\left(\xi=\lambda \sqrt{k_{0}^{2}-\eta^{2}}, \eta\right) e^{i+\Omega \sqrt{k_{0}^{2}-\eta^{2}}} e^{-i \frac{\pi}{4}} \sqrt{\frac{2 \pi\left(k_{0}^{2}-\eta^{2}\right)^{1 / 2} \cos ^{2} \theta}{r \Omega^{3}}} \\
& \Omega \equiv\left(\cos ^{2} \theta+\sin ^{2} \theta \cos ^{2} \phi\right)^{1 / 2}=\left(1-\sin ^{2} \theta \sin ^{2} \phi\right)^{1 / 2} \\
& \lambda=(\sin \theta \cos \phi) / \Omega \tag{88}
\end{align*}
$$

Now substituting equation (88) into equation (79), we have:

$$
\begin{equation*}
H_{\theta}=\int_{-\infty}^{\infty} d \eta \frac{e^{i r\left(\eta \sin \theta \sin \phi+\Omega \sqrt{k_{o}^{2}-\eta^{2}}\right)}}{\sqrt{r}} \Lambda_{0}(\eta) \tag{89}
\end{equation*}
$$

where

$$
\vdots_{0}(\eta)=\Lambda\left(\xi=\lambda \sqrt{k_{0}^{2}-\eta^{2}}, \eta\right) \quad e^{-i \frac{\pi}{4}} \sqrt{\frac{2 \pi\left(k_{0}^{2}-\eta^{2}\right)^{1 / 2} \cos ^{2} \theta}{\Omega^{3}}}
$$

[^4]Next, we may rewrite equation (84) as:

$$
\begin{equation*}
H_{\theta}=\frac{1}{\sqrt{r}} \int_{-\infty}^{\infty} \mathrm{d} \eta e^{\mathrm{i} r g(\eta)} \quad \Lambda_{0}(\eta) \tag{90}
\end{equation*}
$$

where

$$
g(\eta) \equiv \eta \sin \theta \sin \phi+\Omega \sqrt{k_{0}^{2}-\eta^{2}}
$$

Again, we wish to apply the method of steepest descents (saddle point integration) to evaluate equation (90). Setting $g^{\circ}\left(\eta_{0}\right)=0$ gives:

$$
\begin{equation*}
g^{\prime}=0=\sin \theta \sin \phi-\frac{\Omega \eta_{0}}{\sqrt{k_{0}^{2}-\eta_{0}^{2}}} \tag{91}
\end{equation*}
$$

and the solution to equation (85) is:

$$
\eta_{0}=k_{0} \sin \theta \sin \phi
$$

Again it is necessary to compute $g\left(\eta_{0}\right), g "\left(\eta_{0}\right)$. These are

$$
\begin{align*}
& g\left(\eta_{0}\right)=k_{0} \tag{92}\\
& g^{\prime \prime}\left(\eta_{0}\right)=\frac{-1}{k_{0}\left[1-\sin ^{2} \theta \sin ^{2} \phi\right]} \tag{93}
\end{align*}
$$

Thus in the vicinity of the saddle point the exponential

$$
\begin{equation*}
e^{i r g(\eta)}=e^{i k_{0} r} e^{-i r\left(\eta-\eta_{0}\right)^{2} q} \tag{94}
\end{equation*}
$$

where

$$
q \equiv \frac{1}{2 k_{0}\left[1-\sin ^{2} \theta \sin ^{2} \phi\right]}
$$

Writing $\eta-\eta_{0}=S e^{i \gamma}$ we may rewrite equation (94) as

$$
\begin{equation*}
e^{i r g\left(\eta_{0}\right)}=e^{i k_{0} t} e^{-i r q S^{2}\left(\cos ^{2} \gamma+2 i \cos \gamma \sin \gamma-\sin ^{2} \gamma\right)} \tag{95}
\end{equation*}
$$

The dominant behavior of equation (95) is determined by

$$
e^{2 \mathrm{rqS}} \mathrm{~S}^{2} \cos \gamma \sin \gamma
$$

and for large: we find that this function decays rapidly for $3 \pi / 2 \leq$ $\gamma \leq 2 \pi$ and $\pi / 2 \leq \gamma \leq \pi$, while for $0 \leq \gamma \leq \pi / 2$, and $\pi \leq \gamma \leq 3 \pi / 2$ this grows without bound as $\mathrm{r} \rightarrow \infty$. Thus the contour in the η plane we must choose is:

Applying equation (4.6.13) in Morse and Feshbach ${ }^{7}$ to equation (90) then yields:

$$
\begin{align*}
& H_{\theta}=\frac{\sqrt{2 \pi k_{0}}}{\sqrt{r}} \Lambda\left(\xi=k_{0} \sin \theta \cos \phi, \eta=k_{0} \sin \theta \sin \phi\right) \frac{e^{-i \frac{\pi}{4}} \cos \theta}{\Omega} \\
& e^{i k_{0} r} \sqrt{\frac{2 \pi k_{0}\left[1-\sin ^{2} \theta \sin ^{2} \phi\right]}{i r e^{i \pi} e^{i \pi}}} \\
& H_{\theta}=\frac{2 \pi k_{0}}{r} \quad e^{i\left(k_{0} r-\frac{\pi}{2}\right)} \cos \theta \Lambda\left(\xi=k_{0} \sin \vartheta \cos \phi, \eta=k_{0} \sin \theta \sin \phi\right) \tag{96}
\end{align*}
$$

or
for $\quad \mathbf{r} \rightarrow \boldsymbol{\infty}$

[^5]By analogy with equation (96) we also have for $r \rightarrow \infty$

$$
\begin{align*}
& H_{\phi}=\frac{2 \pi k_{0}}{r} e^{i\left(k_{0} r-\frac{\pi}{2}\right)} \cos \theta \Gamma\left(\xi=k_{0} \sin \theta \cos \phi, \eta=k_{0} \sin \rho \sin \phi\right) \tag{97}\\
& E_{\theta}=\frac{2 \pi k_{0}}{r} e^{i\left(k_{0} r-\frac{\pi}{2}\right)} \cos \theta C\left(\xi=k_{0} \sin \theta \cos \phi, \eta=k_{0} \sin \theta \sin \phi\right) \tag{98}
\end{align*}
$$

and

$$
E_{\phi}=\frac{2 \pi k_{0}}{r} \quad e^{i\left(k_{0} r-\frac{\pi}{2}\right)} \cos \theta D\left(\xi=k_{0} \sin \theta \cos \phi, \eta=k_{0} \sin \theta \sin \phi\right)
$$

7. Radiation Pattern of a Slot Antenna

The next step is to derive an expression for the radiated power. The Poynting vector N is

$$
\begin{equation*}
N=\frac{1}{2} E \times H^{*} \tag{100}
\end{equation*}
$$

and using equations (96) through (99), we may write for the radial component of \underline{N} :
$\left.(N)_{r}=\frac{1}{2}\left(E_{\theta} H_{\phi}^{*}-E_{\phi} H_{\theta}^{*}\right)=\frac{1}{2}\left(\frac{2 \pi k_{0}}{e}\right)^{2} \cos ^{2} \theta\left(C \Gamma^{*}-D \Lambda^{*}\right) \right\rvert\, \begin{aligned} & \xi=k_{0} \sin \theta \cos \phi \\ & \eta=k_{0} \sin \theta \sin \phi\end{aligned}$

Substituting for C, D, Γ, Λ from section G, we get after a great deal of manipulation:

$$
N_{r}=\frac{\omega 2 \pi^{2} k_{0}}{s^{2}(2 \pi)^{4}} \frac{\cos ^{2} \theta}{\sin ^{2} \theta} \quad\left\{\sigma_{0}|S|^{2}+\mu_{0}|T|^{2}\right\} \quad \begin{align*}
& \xi=k_{0} \sin \theta \cos \phi \tag{101}\\
& \eta=k_{0} \sin \theta \sin \phi
\end{align*}
$$

The quantities S and T in equation (101) were defined in equation
(24). Substituting $\xi=k_{0} \sin \theta \cos \phi$ and $\eta=k_{0} \sin \theta \sin \phi$ in the expressions given there yields:

$$
\begin{align*}
& S=W R \\
& T=\dot{w} L
\end{align*}
$$

where

$$
\begin{aligned}
& w=\frac{2 h_{1} \epsilon_{\mathrm{r}}}{h_{1}-\epsilon_{\mathrm{r}} h_{2}} e^{-i\left(h_{1}+h_{2}\right) l_{0}} \\
& \dot{W}=\frac{2 h_{1}}{h_{1}-h_{2}} e^{-i\left(h_{1}+h_{2}\right) l_{0}} \\
& h_{1}=\sqrt{k_{1}^{2}-k_{0}^{2} \sin ^{2} \theta} \\
& h_{2}=k_{0} \cos \theta
\end{aligned}
$$

Also $\epsilon_{\mathrm{r}} \equiv \epsilon / \epsilon_{0}$ from Section C 1, we get:

$$
\begin{align*}
& R=\frac{k_{0}^{2} \sin ^{2} \theta}{h_{1}(1-U)} \int_{j f_{0}} \sum_{k l}\left[\left(\frac{k \pi}{b}\right)^{2} \cos ^{2} \phi-\left(\frac{l \pi}{a}\right)^{2} \sin ^{2} \phi\right] \quad w_{1}^{l} w_{2}^{k} Z_{k l} \\
& \left.-i B_{0}\left(\frac{\pi}{a}\right) \sin ^{2} \phi w_{1} w_{2}^{0}+\sum_{l, k} w_{l}^{l} w_{2}^{k}\left(\frac{k \pi}{b}\right)\left(\frac{l \pi}{a}\right) y_{l k} Y_{l k}\right\} \quad(104) \\
& L-\frac{k_{0}^{2} \sin ^{2} \theta \sin \phi \cos \phi}{\omega \mu_{0}(1+i)}\left\{-i B_{0}\left(\frac{\pi}{a}\right) w_{1}^{1} w_{0}^{0}\right. \\
& -\omega \mu_{0} \sum_{k, l}\left[\left(\frac{l n}{a}\right)^{2}+\left(\frac{k \pi j^{2}}{b}\right)^{2}\right] \quad z_{k l l} \quad w_{l}^{\prime} \quad u_{2}{ }^{j}! \tag{105}
\end{align*}
$$

where

$$
\begin{aligned}
& \dot{u}=e^{-i 2 h_{1} l_{0}}\left(\frac{h_{1}+h_{2}}{h_{1}-h_{2}}\right) \\
& \because=e^{-i 2 h_{1} l_{0}}\left(\frac{h_{1}+\epsilon_{r} h_{2}}{h_{1}-\epsilon_{r} h_{2}}\right)
\end{aligned}
$$

$$
\left.\begin{array}{l}
W_{1}^{l}=\left[\frac{(-1)^{l}}{} e^{-i a k_{0} \sin \theta \cos \dot{\phi}}-1\right. \\
k_{0}^{2} \cos ^{2} \phi \sin ^{2} \theta-\left(\frac{l \pi}{a}\right)^{2}
\end{array}\right]
$$

Thus once the coefficients $\mathcal{Z}_{k k}$ and $Y_{l k}$ are determined by the solution of equations (35) and (36), the radiati n pattern may be readily computed from equation (101). Equation (101) has been programmed, and is evaluated as a function of θ and ϕ in program No. 2141.

Theoretical patterns for the open-ended waveguide we:e computed for the following cases: 300 Mc with one-inch heat-shield cover, 2200 Mc with oneinch heat-shield cover, and 6600 Nic with 0.33 -inch heat-shield cover. The E- and H-plane patterns for these cases are presented in Figure 14 through 17. The $6600-\mathrm{Mc}$ case is an exact scale of the $2200-\mathrm{Mc}$ case with all its computer-input parameters scaled by a factor of a third. The scaled 6600-Mc patierns show good correlation with $2200-\mathrm{Mc}$ patterns as can be seen by the superimposed patterns in Figure 16 and 17.

The theoretical program determines pattern shape but is not designed to provide absolute power. However, for each waveguide size, the relative attenuation due to the heat-shield cover was determined by referencing the computed power levels with heat shield to those without heat shield. The power levels without heat shield were obtained by replacing the complex permittivity of the heat shield with a permittivity similar to that of free space ($: \%$ / $=1.0-j 0.001$): In Figures 14 through 17 , the decibel values are referenced to the peak gain without heat shield $\quad \sigma=0^{\circ}, 0=0^{\circ}$ for each case. Caiculated peak gain reduction due to the heat-shield cover at $\phi=0 ., \theta=0^{\circ}$ is given below:

Frequency (Mc)	Heat-Shield Thickness (inches)	Guide	Relative Perraittivity of Dielectric Cover (f/o)	Peak Gain Reduction (db)
300	1.0	WR-2300	$2.5-\mathrm{j} 0.200$	2.07
2200	1.0	WR-430	$1.85-\mathrm{jo.014}$	2.30
6600	0.33	WR-137	$1.85-\mathrm{jo.014}$	2.15

- For romputational purposes, the imaginary part of the complex permittivity cannor be zero.

86-9866

Heat Shield Thickness $=1.0^{\prime \prime}$
$\phi=90^{\circ}$
$\theta=$ Variable
Infinite ground plane assumed

Figure 14 THEORETICAL PATTERN OF 300 MC OPEN-ENDED WAVEGUIDE COVERED WITH AVCOAT $5026-39 \mathrm{M}$. PRINCIPAL E PLANE

Figure 15 THEORETICAL PATTERN OF 300 MC OPEN-ENDED WAVEGUIDE COVERED WITH AVCOAT 5026-39M. PRINCIPAL H PLANE

Figure 16 THEORETICAL PATTERNS OF 2200 MC AND 6600 MC OPEN-ENDED WAVEGUIDE COVERED WITH AVCOAT 5026-39M. PRINCIPAL E PLANE

Figure 17 THEORETICAL PATTERNS OF 2200 MC AND 6600 MC OPEN-ENDED WAVEGUIDE COVERED WITH AVCOAT 5026-39M. PRINCIPAL H PLANE

In addition to the antenna patterns, the aperture impedances of the openended waveguide were calculated for the cases given in the following table.

$\begin{aligned} & \text { Frequency } \\ & (\mathrm{Mc}) \end{aligned}$	Guide	```Relative Permittivity of Dielectric Cover (\epsilon/\epsilono)```	Antenna Aperture Impedance (ohms)
300	W R-2300	2.5-j 0.200	549-j 69
200	WR-2300	$1.00-\mathrm{j} 0.000$	885-j219
$\therefore 200$	WR-430	1.85-j 0.014	181-j 99
2200	WR-430	$1.00-\mathrm{j} 0.000$	411-j245
6600	WR-137	1.85-j 0.014	186-j125
6600	WR-137	1.00-j0.000	478-j 278
11000	W R-90	1.85-j0.041	210-j 106
11000	WR-90	$1.00-\mathrm{j} 0.000$	427-j 240

8. Computer Program in Fortran

The computer programs to calculate the impedance and radiation patterns of the dielectric-covered open-ended waveguide appear on the subsequent pages.

The programs are used in the order of the block diagram below.

-72-

```
SIBFTC MICRO LIST
    DIMENS:ON RAD(520),H1(520),H2(520),U(520),W(520),YY(520),OV(520),
    XXX(520),UP(520),VP(520):XXP(520),VO(520),VOP(520)
    COMPLEX 2O,K1,Q1,O2,H1SO,H1,H2SO,H2,Z1,U,W,YY,FANS,FINT,GANS,V,
    IXINT,XX,QT1,QT2, 22,23,Z4,F2,F3,F4,SUMEV,SUMGD,TF1,SUMT, ANS,SUM,
    2EPS1,EPSN,UP,VP,XXP,Q1P,Q2P,QT1P,QT2P,FANS2,VO,VOP,QO,QTO,QOP,QTOP
    3,FANS3,FANS4
    REAL KO.LO
    COMMON HI,H2,U,W,YY,V,XX,UP,ZO,JMAX,RAD,A,R,B,X,Y,PI,FL,FK,CA,CB,
    1DELTA,CL,CK,CONV,IQO,IOOP,IQ1,IQIP,IO2,IO2P
    NAMELIST/NAMIN/A,B,K,L,LO,FRF,EPSN,X,Y,EPS,DELTA,RSTEP,CQNV,NSTEP
        NAMELIST/NAMOUT/OMEGA, KOOK1,EPSI
    NAMELIST/NAMIQ/IQO,IOOP,IQ1,IQ1P,IQ2,IQ2P
3333
    READ(5,NAMIN)
    IF(A.EQ.9999.ICALL EXIT
    WRITE(6.1003)
1003 FERMAT(1HI)
    WRITEIG,NAMIN)
    CL=1.
    CK=1.
    L2=L-2*(L/2)
    IF(L2.EO.1)GLz-1
    K2=K-2*(K/2)
    IF(K2.EQ.2)CK=-1
    FL=L
    FK=K
    PI=3.14159265
    CC1=1.0E-8
    EPSO=8.85E-12
    gMEGA=2.*PI*FRF
    EPSI=EPSO*EPSN
    KO=gMEGA*CC1/3.
    KI=KO*CSORT(EPSN)
    WRITE(G,NAMQUT)
    CA=FL*PI/A
    CB=FK*PI/B
    20=CMPLX(0.01.)
    PKI =REAL(KI)
    PPKI=AIMAG(K1)
    RMIN=O.
    RMAX=RSTEP
    100=0
    100P=0
    101=0
    102=0
    101P=0
    1Q2P=0
    READ(5,NAMIQ)
    RTEST=PK1-EPS
    IRTEST=0
    WRITE(6,1002)RTEST
    1002 FORMATIIHO 1OX,6HRTEST=,EL5.61
    IFIRMAX.GT.RTESTIRMAX=RTEST
    QO=CMPLX(0.,O.)
    QOP =CMPLX(0.,0.)
    Q1 =CMPLX(0.,0.1)
    Q2=CMPLX(0.00.1
    01P=CMPLX(0.0.0.)
    Q2P=CMPLX(0.0.0.)
    QTO=CMPLX(0.0.0.)
```

 「...
    ```
    QTL =CMPLX(0.0.0.)
    QT2=CMPLX(0.00.)
    QTOP=CMPLX10.,0.1
    QT1P=CMPLX(0.00.1
    QT2P=CMPLX(0.0.0.)
100 N=NSTEP
JO=1
JSTEP=1
1 JMAX=N+1
    ILL =0
    SMAX=N
    RDEL=(RMAX-RMIN)/SMAX
    DO 2 J=JO,JMAX,JSTEP
    STEP=J
    R=RMIN+RDEL*(STEP-1.)
    RAD(J)=R
    H1SQ=K1*K1-R*R
    H1(J)=CSORT(H1SQ)
    H2SQ=KO*KO-R*R
    H2(J)=CSORT(H2SQ)
    z1=-2.*20*H1(J)*LO
    U(J)=(HI(J)+EPSN*H2(J))*CEXP(Z1)/(HI(J)-EPSN*H2(J))
    UP(J)=(H1(J)+H2(J))*CEXP(Z1)/(H1(J)-H2(J))
    W(J)= (1.+U(J))/(1.-U(J))
    YY(J)=(1.-UP(J))*HL(J)/(1*+UP(J))
    THIS COMPLETES PRELIMINARY SET UP. NOW DO INTEGRATIGN
    CALL SIMVIFANS,FANS2,FANS3,FANS4I
    V(J)=FANS-CONJG(FANS)
    VP(J)=FANS2-CONJG(FANS2)
    VO(J)=FANS3-CONJG(FANS3)
    VOP(J)=FANS4=CONJG(FANS4)
    CALL SIMXIFANS,FANS2I
    Xx(J)=FANS-CONJG(FANS)
    XXP(J)=FANS2-CONJG(FANS2)
2 CONTINUE
    NOW DO Q1 AND O2
    IF(IOO.EQ.O)CALL SIMQIIILL,OTO,VO)
    WRITE(6,1005)RMIN,RMAX,QO,QTO,QOP,QTOP
    IFIILL.EQ.1)GO TO }
    IF(IQOP.EQ.O)CALL SIMQI(ILL,QTOP,VOP)
    WRITE(6,1005) RMIN,RMAX,OO,QTO,QOP,QTOP
    IF(ILL.EQ.I)GO TO 3
    IF(IOI.EQ.O)CALL SIMQI(ILL,OTI,V)
    WRITE(6,1001)RMIN,RMAX,Q1,QT1,QIP,OTIP
    IFIILL.EQ.1)GO TO 3
    IFIIQIP.EQ.OICALL SIMQI(ILL,QTIP,VP)
    WRITEI6.1001)RMIN,RMAXPQI,OTI,QIP,OTIP
    IFIILL.EQ.1IGO TO 3
    IF(IQ2.EO.01CALL SIMO2IILL,OT2,XX)
    WRITE(6,1004)RMIN,RMAX,Q2,QT2,O2P,QT2P
    IFIILL.EO.1IGO TO }
    IF(IQ2P.EQ.OICALL SIMQ2(ILL,QT 2P,XXP)
    WRITE(6,1004)RMIN,RMAX,Q2,OT2,O2P,OT2P
    IFIILL.EQ.JIGO TO 3
    IFIRMAX.EQ.RTESTIGO TO 6
    Tl=CABS(OTO)
    T 2=CABS(00)
    IFIT2.GT.1.IG0 T0 17
    IFITI.LT.CONVIIOO=1
    G0 T0 }1
```

```
    17 IF(TI.LT.(CONV*T2I)I00=1
    15 T1=CABS(OTOP)
    T2=CABS(QOP)
    IF(T2.GT.1.)G0 T0 18
    IF(T1.LT.CONVIIOOP=1
    G0 T0 16
18 IF(TI.LT.(CONV*T2))10OP=1
16 Tl=CABS(QT1)
    T2=CABS(Q1;
    IF(T2.GT.1.)G0 T0 116
    IF(T1.LT.CONV)IOI=1
    G0 T0 ll
116 IF(T1.LT.(CONV*T2))IO1=1
    11 T1=CABS(QT2)
        T2=CABS(Q2)
        IFIT2.GT.1.IG0 T0 111
        IF(TL.LT.CONV)102*1
        G0 T0 12
111 1F(T1.LT.ICONV*T2)IIQ2=1
    12 T1=CABS(QTIP)
        T2=CABS(O1P)
        IF(T2.GT.L.)G0 T0 112
        IFITI.LT.CONVIIOIP=1
        G0 T0 }1
112 IF(TI.LT.(CONV#T2))IO1P=1
    13T1=CABS(QT2P)
        T2=CABS(Q2P)
        IF(T2.GT.1.)G0 T0 113
        IFITI.LT.CONVIIQ2F=1
        G0 T0 }1
113 1FIT1.LT.ICONV*T2I)IO2P=1
    14 IFI(1O1*IO2*IO1P*IO2P*IQO*
        QO=QTO+QO
        QOP=QTOP+QOP
        Q1=Q1+OT1
        Q2=02+QT2
        Q1P=Q1P+QT1P
        Q2P=Q2P+QT2P
        GO TO 200
    4 RTI=RMIN
        RT2 = RMAX
        RMIN=RMAX
        RMAX=RMAX+RSTEP
        IFIIRTEST.EQ.IIGO T0 30
        IF(RMAX.GT.RTESTIRMAX=RTEST
    30 IF(IO1.EQ.O)O1=O1+QT1
        IF(102.EQ.0102=02+QT2
        IFIIQ1P.EQ.OIO1P=01P+QTIP
        IFIIQ2P.EQ.O1O2P=O2P+QT2P
        IFIIOO.EQ.O)OO=00+QTO
        IFIIQOP.EQ.O10OP=QO+QTOP
        WRITE16,1005IRT1,RT2,00,QTO,00P,QTOF
        WRITEIG,1001IRTI,RT2,O1,OT1,O1P,OTIP
        WRITEI6,1004IRT1,RT2,02,OT2,O2P,OT2P
1001 FORMATIIHO IOX,5HRMIN=,F6.1,5HRMMX=,F6.1/1真,3HO1=,2F9.3,4HOTI=,
    12F9.3/10X,4HO1P=,2F9.3,5HOT1P=,2F9.31
1004 FORMAT(IHO 10X,5HRMIN=,F6.1,5HRMAX =,F6.1/10X, 3HQ2=,2F9.3,4HQT2=,
    12F9.3/10X,4HQ2P=,2F9.3,5HOT2P=,2F9.3)
1005 FORMATIIHO 1OX,5HRMIN=,F6.1,5HRMAX=,F6.1/10X,3HOO=,2F9.3.4HOTO
    12F9.3/10X,4HOOP=,2F9.3,5HQTOP=,2F9.31
```


2128 (Cont'd)

Go T0 100
6 RNTN=RTEST+2.*EPS
RM: $4=R M I N+R S T E P$
IRTEST=1
IF (IO2.EQ.0) $02=02+0 T 2$
$I F(102 P \cdot E Q .0102 P=Q 2 P+Q T 2 P$
$\mathrm{Wl}_{1}=Q T 1+\left(W(J M A X) * V(J M A X) * 2 . *\left(C S Q R T\left(Z 0^{* P P P K 1+E P S}\right)-C S O R T(Z O * P P K 1-E P S)\right)\right.$
1//CSQRT(2.*PK1 +20*PPK1) +Q1
QO=QTO+(W(JMAX)*V(JMAX)*2.*(CSQRT(ZO*PPK1+EPS)-CSQRT(20*PPK1-EPS))
1)/CSQRT(2.*PK1+20*PPK1)+Q0

Q1P=QTIP + (W (JMAX)*VP(JMAX)*2.*(CSQRT(20*PPK1 +EPS)-CSQRTIZ0*PPK1-EP
1S))//CSQRT(2.*PK1 + ZO*PPK1) +Q1P
QOP = QTOP + (W (JMAX)*VP (JMAX)*2.*(CSQRT (20*PPK1+EPS)-CSQRT(ZO*PPK1-EP
15))/CSQRT(2.*PK1+20*PPK1) +QOP

Go TO 100
3 IF ($(2 \# J M A X) . G T .600) G 0$ TO 10
DO $5 \mathrm{~J}=1$:JMAX
$L=J M A X+1-J$
LL=2*L-1
RAD(LL) $=R A D(L)$
H1(LL) $=\mathrm{Hl}(\mathrm{L})$
$H 2(L L)=H 2(L)$
U(LL) =U(L)
UP(LL) $=$ UP(L)
$W(L L)=W(L)$
$Y Y(L L)=Y Y(L)$
$V(L L)=V(L)$
$V P(L L)=V P(L)$
XXP(LL) $=\times X P(L)$
VOILL)=VOIL)
$\vee O P(L L)=V O(L)$
$5 \times X(L L)=X X(L)$
JO $=2$
JSTEP $=2$
$\mathrm{N}=2 * \mathrm{~N}$
GOTO 1
1 C WRITE(6,1000)RMAX,N
1000 FORMAT(1H1 10X,14HPOOR ITERATION,5X,5HRMAX $=9 F 7.1,5 X, 2 H N=.151$
2C GO TO 3333
200 CONTINUE
WRITE (6,2000)01,01P,02,G2P,00,00P
2000 FORMATIIHO $10 \mathrm{X}, 9 \mathrm{HSQLUTION,5X,3HO1=,2F9.3,5X,4HQ1P=,2F9,3/24X,3HQ2=}$

GO TO 3.333
END
SIBFTC SIMVI LIST
SUBRøUTINE SIMV(ANS,ANS2,ANS3,ANS4)
DIMENSION RAD(520) OHI (520) PH2(520), (1520),W(520),YY(520).V(520). 1XX(520), UP(520)
COMPLEX $20, K 1,01,02, H 1 S Q, H 1, H 2 S Q, H 2,21, U O W, Y Y, F A N S, F I N T, G A N S, V$, $1 \times 1 N T, X X$, QT1,OT $2, \angle 2, \angle 3,24, F 2, F 3, F 4, S U M E V, S U M D D, T F 1, S U M T, A N S, S U M$, 2EPS1,EPSN,UP,DUM,TFT,TF2,SUMT2,ANS2,ANS3,ANS4,SUMT3,SUMT4,TF3,TF4, 3 FONT
REAL KO,LO
COMMON HI,HZ,U,W,YY,V,XX,UP,ZO,JMAX,RAD,A,R,B,X,Y,PI,FL,FK,CA,CB, 1DELTA,CL,CK,CENV,I00,IUOP,IQ1,IO1P,IQ2,IQ2P
$\mathrm{N}=8$
TEST=0.0001
TESTT=0.0001
TESTT3=0.0001

```
TESTT4=0.0001
IFIIOL.EQ.IITEST=O.
IFITQIP.EQ.IITESTTEO.
IF(IOO.EQ.1)TESTT3=0.
IF(IOOP.EQ.1)TESTT4=0.
DEL=3.*PI/2.
1 V2=N
TDEL=PI/(2.*V2)
Cl=4.
C2=-2.
SUMT=CMPLX(0.,0.)
SUMT2=CMPLX(0.,0.)
SUMT 3 = CMPLX(0.,0.)
SUMT4=CMPLX(0.00.)
NN=N/2
D0 2 K=1.NN
V1=K
Z=TDEL*(2.*V1-1.)
SU=SIN(Z)
CU=COS(2)
TFT=FINT(SU,CU,Z)
IFIIO1.EQ.0ITFI=CU*TFT
IFIIO1P.EQ.O)TF2=SU*TFT
TFT=FONT(SU,CU,Z)
1F(IQO.EQ.O)TF3=CU*TFT
IFIIOOP.EO.O)TF4=SU*TFT
Z=Z+3.*PI/2.
TEM=CU
CU=SU
SU=-TEM
TFT=FINT(SU,SU,Z)
IFIIQI.EQ.OITFI=TFI+CU#TFT
IF(IQ1P.EQ.O)TF2=TF2+SU-TFT
TFT=FONT(SU,CU,Z)
IF(IOO.EO.O)TF3=TF3+CU*TFT
1FIIOOP.EQ.OITF4=TF4+SU*TFT
1F(IO1.EQ.0)SUMT: SUMT+C1*TFI
1FIIOIP.EQ.OISUMT2=SUMT2+C1*TF2
1F(100.EQ.0)SUMT3=SUMT3+CI*TF3
IF(IOOP.EQ.O)SUNT4=SUMT4+C1*TF4
Cl=Cl+C2
C2=-C2
2=TDEL*(2.*V1)
SU=SIN(Z)
CU=COS(2)
TFT=FINT(SU,CU,Z)
IF(IQI.EQ.O)TFI=CU*TFT
1F(IOIP.EQ.OITF2=SU*TFT
TFT=FONTISU,CU,ZI
IF(100.EO.0)TF3=CUWTFT
IFIIOOP.EQ.O:TF4=SU#TFT
2=2+3.*P1/2.
TEM=CU
CU=SU
SU=-TEM
TFT=FINT(SU.CU.Z)
IF(IGI.EO.O)TFI=TFI+CU*TFT
IF(IQ1P.EQ.O)TF2=TF2+SU*TFT
TFT = FONT(SU:CU,Z)
IF(IOO.EQ.O)TF3=TF3+CU#TFT
```

```
    IF(IOOP.EQ.O)TF4+TF4+SU*TFT
    IF(IOL.EQ.O)SUMT =SUNT +CI*TF1
    IF(1O1P.EQ.0)SUMT2=SUMT 2+C1*TF2
    IF(100.EQ.O)SUMT 3=SUMT3+C1*TF3
    IF(1OOP.EQ.O)SUMT4=SUMT4+Cl*TF4
    Cl = Cl + C2
    C2=-C2
    2 CONTINUE
        IF(1O1P.EO.O)SUMT2=SUMT2-FINT(-1.,0.03.*P1/2.1-FINT(1..0..P1/2.1
        IF(IOOP.EO.0)SUMT4=SUMT4-FONT(-1.,0..3.*P1/2.)-FONTI2.,0.,P1/2.}
    SUMT=TDEL*SUMT/3.
    SUMT 2xTDEL*SUMT2/3.
    SUMT3=TDEL*SUMT3/3.
    SUMT4=TDEL*SUMT4/3.
    TEST1=(ARS(SUMT)
    TEST2=CABS(SUMT2)
    TEST3=(ABS(SUMT3)
    TEST4=(ABS(SUMT4)
    IFITEST.GT.1.IGO TO 6
    IF(ABS(TEST-TEST1).LT. GONVIGO TO 5
    GO TO 100
    6 IF(AESI1.-TESTI/TESTI.LT. GONVIGO TO 5
    lor CONTINUE
    N=2*N
    TEST&TEST1
    TESTT=TESTZ
    TESTT3*TEST3
    TESTT4=TEST4
    GO TO 1
    5 IFITESTT.GT.1.IGO TO 26
    IF(ABS(TESTT-TEST2).LT.GQNV)GE TO 25
    GO TO 100
26 IF(ABSI1.-TEST2/TESTTI.LT.CONVIGO TD 25
    GOTO 100
25 IF(TESTT3.GT.1.)GR TO 27
    IF(ABSITESTT3-TEST3).LT.CONVIGO TQ 28
    GO TO 100
27 1F(ABS(1.-TEST3/TESTT3).LT.CONV)GO TO 28
    GD TO 100
28 IFITESTT4.GT.1.IGO TO 29
    IF(AES(TESTT4-TEST4).LT.CONV)GO TO 30
    GO TO 100
2.9 IF(ABS(1.-TEST4/TESTT4).LT.CONV)GO TO 30
    GO TO 100
30 ANS=SUMT
    ANS 3 = SUMT 3
    ANS4=SUMT4
    ANS2=SUMT2
    RETURN
    ENO
SIBFTC SIMXI LIST
    SUGROUTINE SIMX(ANS,ANS2)
    DIMENSION RAD(520),HI(52C),H2(520).U(520),W(520),YY(520).V(520).
    1XX(520),UP(520)
    COMPLEX LO,KI,OL,O2,HLSQ,HL,H2SQ,H2,LI,U,N,YY,FANS,FINT,GANS,V.
    1XINT,XX,OT1,QT2,22,Z3,C4,F2,F3,F4,SLMEV,SUMOD.TFI,SUMT,ANS,SUM.
    2[.FS1,EPEN,UP,DUM,TFT,TF2,SUMT2,ANS2,XINTP
    REAL KC.LO
    COMMEN HI,HIZ,U,W, YY,V,XX,L'P,ZO,JMAX,RAD,A,R,B,X,Y,PI,FL,FK,CA,CB,
    1CELTA,CL,CK.CONV.IGU,1GOP,IO1,1O1P,1O2.102P
```

```
    N=8
    TEST=0.0001
    TESTT=0.0001
    IF(IQ2.EQ.1)TEST=0.
    IFIIQ2P.EQ.1)TESIT=O.
    DEI.=3.*PI/2.
    1 V2=N
    TDEL=P1/(2.*V2)
    Cl=4.
    C2=-2.
    SUMT=CMPLX(0.00.1
    SUMT2=CMPLX(0.,0.1)
    TFT=CMPLX(0..0.1
    TF2 = CMPLXiO.,0.1
    TF1=CMPLX(0.00.1
    NN=N/2
    DO 2 K=1.NN
    VI=K
    2=TDEL*(2.*V1-1.)
    IFIIO2.EQ.OITFI=XINT(Z)
    1F(IO2P.EQ.O)TF2=XINTP(Z)
    Z=Z+DEL
    IF(IQ2.EQ.0)TFI=TFI+XINT(2)
    IF(IQ2P.EQ.O)TF2=TF2+XINTP(Z)
    IF(IO2.EQ.0)SUMT =SUMT +C1*TF1
    IF(IQ2P.EQ.) SUMT2=SUMT2+C1*TF2
    Cl:Cl+C2
    C2=-C2
    2=TDEL*(2.*V1)
    IF(IQ2.EQ.O)TFI=XINT(Z)
    IFIIQ2P.EQ.OITF2=XINTP(2)
    z=z+DEL
    IF(102.EQ.0)TF1=TF1+XINT(Z)
    IF(102P.EO.O1TF2=TF2+XINTP(2)
    IF(IO2.EQ.0ISUNIT=SUMT+Cl#TFI
    IFI IO2P:O.OISUMT 2 = SUMT 2+C1*TF2
    Cl=Cl+C2
    C2=-C2
    2 CONTINUE
    IF(IO2.EQ.0)SUMT=SUNT+XINT(DEL)-XINT(PI/2.)
    IF(IQ2P.EQ.U)SUMT2=SUMT2+XINTP(DEL)-XINTP(P1/2.)
    SUMT=TDEL*SUMT/3.
    SUMT2=TDEL*SUMT2/3.
    TESTl=CABS(SUMT)
    TEST2:CABS(SUMT2)
    IFITEST.GT.1.IGO T0 6
    IFIABS(TEST-TESTI).LT. CONVIGO TO S
    G0 T0 100
    6 IF(ABS(1.-TESTI/TEST).LT. GONVIGO T0 5
100 CONTINUE
    N=2#N
    TEST=TEST1
    TESTT=TEST2
    G0 T0 1
    5 IFITESTT.GT.1.IGO TO 26
    IFIABSITESTT-TEST2I.LT.CONVIGO TO 25
    GO T0 100
26 IFIABSII.-TEST2/TESTTI.GT.CONVIGO TQ 25
    GO T0 100
25 ANS=SUMT
```


ANS2=SUMT 2

200 CONTINUE
RETURN
END
SIBFTC FINTI LIST
COMPLEX FUNCTION FINT(SU,CU.Z)
DIMENSIDN RAD(52C),HI(52C),H2(520),U(520),W(520),YY(520),V(520), $1 \times(520),(\operatorname{PP}(520)$
COMPLEX ZO,K1,Q1,Q2,H1SQ,H1,H2SQ,H2,Z1,U,W,YY,FANS,FINT,GANS,V, IXINT,XX,OT1,QT2,22,23,24,F2,F3,F4,SUMEV,SUMDD, TF1,SUMT,ANS,SUM, 2EPSI.EPSN.UP.DUM
REAL KOHLO
COMMON HI,H2,U,W,YY,V-XX,UP,ZC:JMAX,RAD,A,R,B,X,Y,PI,FL,FK,CA,CB, 2DELTA,CL,CK,CONV,IQO,IQOP,IQI,IQIP,IQ2,IO2P
$21=-20 * A * R * S U$
$22=-20 * B * R * C U$
$23=20 * R *(X * S U+Y *(U)$
$F 1=((C B * S U) * * 2-(C A * C U) * * 2) * R * R$
IF(CA.EQ.O.)FI $=C E * C B$
IFICB.EQ.O. $) F 1=-C A * C A$
IF (FLCNE.O.)F2 $=-0.5 * 20 * A * A /(F L * P I)$
IF(Z.GT.(P1/2.))F2x-F2
IF(FK.NE•O.) F3 $=-0.5 * 20 * B * B /(F K * P I)$
TEMI $=(R * S U) * * 2-C A * C A$
TEM2 2 ($R * C U$)**2-CE*CB
IF (CA.EQ.O.) TEMI =1.
1F(CB.EG.O.1TEM2=1.
IF(ABSITEM1).LT.CELTA)GO TO 1
F2 $=(C L * C E X P(21)-1.) / T E M 1$
1 IF(ABSITEM2).LT.DELTAIGO TO 2
F3 $=($ CK*CEXP (22)-1•)/TEM2
$2 \mathrm{~F}_{4}=\operatorname{CEXP}(23)$
SUMT=F1*F2*F3*F4
100 CONTINUE
FINT $=$ SUMT
RETURN
END
SIBFTC FONTI LIST
COMPLEX FUNCTION FONT(SU,CU,Z)
 $1 \times(520), \cup P(520)$
CQMPLEX $20, K 1, Q 1, Q 2, H 1 S Q, H 1, H 2 S Q, H 2, Z 1, U, W, Y Y, F A N S, F I N T, G A N S, V$, 1XINT, XX,QT1,QT2,22,23,24,F2,F3,F4,SUMEV,SUMOD,TF1,SUMT,ANS,SUM, 2EPSI,EPSN,UP,FONT
REAL KO,LO
COMMON H1,H2,U,W,YY,V,XX,UP,ZO,JMAX,RAD,A,R,E,X,Y,PI,FL,FK,CA,CB,
IDELTA,CL,CK,CONV,IQO,IQOP,IQ1,IQIP,IQ2,IQ2P
IFIFL.EQ.O.IGO TO 20
IFIFK.EQ.O.1GO T0 20
$21=-20 * A * R * S U$
$22=-20 * B * R * C U$
$Z 3=20 * R *(X * S U+Y * C U)$
F2 $=-0.5 * 20 * A * A /(F L * P I)$
IF(2.GT.(PI/2.))F2=-F2
F3 $=-0.5 * 20 * B * B /(F K * P I)$
TEMI=(R*SU)**2-CA*CA
TEM2=(R*CU)**2-CR*CB
IF(ARSITEMI).LT•DELTA)GE TO 1
F2:(CL*CEXP(21)-1.1/TEM1
1 IF(ABSITEM2).LT.DELTAIGO TO 2

```
        F3=(CK*CEXP(Z2)-1.)/TEM2
    2 F4=CEXP(23)
        FONT=F2*F3*F4
    21 RETURN
    20 FONT =CMPLX(0.,0.)
        G0 TO 21
        END
SIBFTC XINTI LIST
    COMPLEX FUNCYION XINT(Z)
        DIMENSION RAD(520):H1(520):H2(520),U(520),W(520):YY(520),V(5?0):
    1XX(520) UP(520)
    COMPLEX ZO,KI,O1,O2,H1SQ,H1,H2SQ,H2,Zl,U,W:YY,FANS,FINT,GANS,V,
    IXINT,XX,OT1,QT2,Z2,Z3,Z4,F2,F3,F4,SUMEV,SUMOD,TF1,SUMT ,ANS,SUM,
    2EPSI,EPSN.UP,DUM
        REAL KO:LO
        COMMON H1,H2,U,W,YY,V,XX,UP,ZO,JMAX,RAD,A,R,B,X,Y,PI,FL,FK,CA,CB,
    IDELTA,CL,CK,CONV,IOO,IQOP,IO1,IO1P,IO2,IQ2P
        CU=COS(Z)
        SU=SIN(Z)
        Z1=-20*A*R*SU
        Z2=-20*B*R*CU
        Z3=2O*R*(X*SU+Y*CU)
        FL=R*R*SU*SU*CU
        IF(CA.EQ.O.)FI=CU
        IF(CB.EQ.O.)F1=SU*SU
        IF(FL.NE.O.IF2=-0.5*ZO*A*A/(FL*PI)
        IF(Z.GT.(PI/2.) IF2=-F2
        IF(FK.NE.O.)F3=-0.5*ZO*B*B/(FK*PI)
        IF(CB.EQ.O.)F 3=-20*B*R
        TEM1=(R*SU)**2-CA*CA
        TEM2=(R*CU)**2-CB*CB
        IFICA.EQ.O.ITEMI=1.
        IF(CB.EO.O.)TEM2=CU
        IF(ABS(TEM1).LT.DELTA)GO TO 1
        F2=(CL*CEXP(Z1)-1.1/TEM1
    1 IF(ABS(TEM2).LT.DELTAIGO TO 2
    F3=1CK*CEXP(Z2)-1.)/TEM2
    2 F4=CEXP(23)
    SUMT=F1*F2*F3*F4
    XINT=SUMT
    RETURN
    END
SIBFTC XIPI LIST
    COMPLEX FUNCTION XINTP(Z)
    DIMENSIEN RAD(520),H1(520),H2(520),U(520),W(520):YY(520),V(520).
1XX(520).UP(520)
    COMPLEX ZO,K1,Q1,Q2,H1SQ,H1,H2SQ,H2,ZI,U,W,Y:,FANS,FINT,GANS,V,
    1XINT,XX,QT1,OT2,Z2,23,Z4,F2,F3,F4,SUMEV,SUMOD,TF1,SUMT,ANS,SUM.
    2EPSI,EPSN,UP,DUM,XINTP
    REAL KO:LO
    COMMON HI,HZ,U,W,YY,V,XX,UP,ZO,JMAX,RAD,A,R,B,X,Y,PI,FL,FK,CA,CB,
    IDELTA,CL,CK,CONV,IQO,IQOP,IQ1,IO1P,IO2,IO2P
    SU=SIN(Z)
    CU=COS(Z)
    Z1==-O*A*R*SU
    22=-20*B*R*CU
    Z3=2O*R*(X*SU+Y*CU)
    Fl=R*R*CU*CU*SU
    IF(CA.EQ.O.IFI=CU*CU
    1F:CB.EQ.O.1FI=SU
```

```
        IF(FL.NE.O.)F2=-0.5*20*A*A/(FL*PI)
        IF(Z.GT.(PI/2.) )F2=-F2
        IF(FK.NE.O.)F3=-0.5*ZO*R*R/(FK*PI)
        IF(CA.EQ.O.IF2=-2O*A*R
        TEMI=(R*SU)**2-CA*CA
        TEM2=(R*CU)**2-CB*CB
        IF(CA.EQ.O.)TEMI=SU
        IF(CB.EQ.O.ITEM2=1.
        IF(ABS(TEML).LT.DELTAIGO TD 1
        F2=(CL*CEXP(21)-1.)/TEM1
    1 IF(AES(TEM2).LT.DELTA)GO TE 2
        F3 = (CK*CEXP(Z2)-1.)/TEM2
    2 F4=CEXP(Z3)
        SUMT=F1*F2*F3*F4
        XINTP=SUMT
        RETURN
        END
SIBFTC SIQ1 LIST
            SUBROUTINE SIMOI(ILL,ANS,VXT)
        DIMENSION RAD(520):H1(520),H2(520):U(520),W(520),YY(520),V(520).
        : XX(520),UP(520):VXT(520)
            COMPLEX ZO,K1,Q1,Q2,H1SO,H1,H2SQ,H2,Z1,U,N,YY,FANS,FINT,GANS,V,
        1XINT,XX,QT1,QT2,Z2,Z3,Z4,F2,F3,F4,SUMEV,SUMOD,TF1,SUMT,ANS,SUM,
        2FPSI,EPSN,UP,VXT
            COMMON H1,H2,U,W,YY,V,XX,UP,ZO,JMAX,RAD,A,R,B,X,Y,PI,FL,FK,CA,CB,
        1DELTA,CL,CK,CONV,IQO,IQOP,IQ1,IQ1P,IQ2,IQ2P
            KDEL=(JMAX-1)/2
            TEST=0.0001
        2 SUM=CMPLX(0.00.)
            Cl=2.
            C2=+2.
            DO 1 K=1,JMAX,KDEL
            SUM = SUM+Cl*W(K)*VXT(K)/H1(K)
            C1 =C1 C C2
            C2=-C2
        1 CONTINUE
            SUM=SUM-W(1)*VXT(1)/H1(1)-W(JMAX)*VXT(JMAX)/HI(JMAX)
            SUM=SUM* (RAD(KDEL+1)-RAD(1))/3.
            TEST1=CABS(SUM)
            IFITEST.GT.1.IGO TO 4
            IF(ABSITEST-TESTI).LT. CONV)GO TO }
            GO TO 100
            4 IF(ABS(1.-TESTI/TEST).LT. CONV)GO TO }
    100 CONTINUE
            TEST=TEST1
            KDEL=KDEL/2
            IF(KDEL.GE.1)GO T0 2
            ILL=1
    3 ANS = SUM
            RETURN
            END
SIBFTC SIQ2 LIST
            SUBROUTINE SIMQ2(ILL,ANS,VXT)
            DIMENS10N RAD(520),H1(520):H2(520),U(520),W(520),YY(520),V(520).
        IXX(520),UP(52.0) •VXY(520)
            COMPLEX ZO,K1,O1,O2,HISO,H1,H2SO,H2,ZI,U,W,YY,FANS,FINT,GANS,V,
        1XINT,XX,OT1,QT2,22,23,24,F2,F3,F4,SUMEV,SUMOD,TF1,SUMT,ANS,SUM.
        2EPS1, EPSN,UP,VXT
            REAL KO.LO
            COMMON HI,HZ,U,W,YY,V,XX,UP,ZO,JMAX,RAD,A,R,B,X,Y,PI,FL,FK,CA,CB,
```

IDELTA,CL,CK,CONV,100,100P,101,101P,1Q2,102P KDEL $=(J M A X-1) / 2$

TEST $=0.0001$

2 SUM=CMPLX (0.0.0.)
Cl $=2$ 。
C2 $=+2$.
DO $1 K=1$, JMAX,KDEL
SUM=SUM+C1*VXT(K)*YY(K)
$\mathrm{Cl}=\mathrm{Cl}+\mathrm{C} 2$
C2 $=-\mathrm{C2}$
1 CONTINUE
SUM=SUM-VXT(1)*YY(1)-VXT(JMAX)*YY(JMAX)
SUM=SUM* (RAD(KDEL+1)-RAD(1))/3.
TEST1=CABS(SUM)
IFITEST.GT.1.1GO TO 4
IF(ABS(TEST-TESTI).LT. CONV)GO TO 3
GO TO 100
4 IF(ABS(1.-TESTI/TEST).LT. CONVIGO TO 3
100 CONTINLE
TEST=TEST1
KDEL=KDEL/2
IFIKDEL.GE.1)GOTO 2
ILL=1
3 ANS=SUM
RETURN
END

PROGRAM 2206

```
*QLIVFR BIN 54
$JOB FOCUTE IBJOL206 RCC R54OWI21A2O0010 OLIVER 54 MAYHAN
&IBJOB GOMMAP
SIBFTC IMPED LIST
        GQMPLEX Q1,Q2,R,S,Z1O,L,EPSR:ZO,TEM
        REAL KG
        NAMELIST/NAMIN/AO,BO,F,A,X,EPSR,OL,Q2,KG
        Pl=3.1415926
        UM=4.*PI*1.0E-7
        EPSO=8.85E-1?
    C=3-0EB
    ZO=CMPLX(0..1.)
    2 READ(5,NAMII!)
        IF(AO.EQ.999.)CALL EXIT
        WRITE(G,NAMIN)
        OMET2A=2.0*PI*F
        GAM1O=SORTIKG*(@MEGA/C1**2-(RL/A)**2)
        AO =-GAM10*BO/(UM*0MEGA)
        R=-AO*SIN(PI*X/A)-ZO*QMEGA*EPSR*EPSO*BO*A*O1/(4.*PI**3)+ZO*BO*Q2
        1/(4.0*PI*A*gMEGA*UM)
            S=EPSR*EPSO*UM*OMEGA*OMEGA*Q1/(4.0*PI*PI)-02/{400*A*A)-20*SAM10*
        IFI*SIN(PI*X/A)/A
            210=R\angleS
            TEM=Z0*PI*Z10*OMEGA*UM/(A*BO)
            RCC=CABS(TEM)
            Z=(1.-TSM)/(1.+TEM)
            Z=120.0*PI*2*0MEGA/(GAM10*C)
            WRITE(6,1)Z,210,RCC
FQRMAT11HI 1OX:2HZ=:2E13.4.5X:4HZ1O=2E13.4.5X.4HRCG=E13.41
            G0 TO 2
            END
SDATA
    BNAMIN AO=-:002,BC=1.0,F=2.2E9,A=.492E-1,X=.368E-1,EPSR=(.716,.248),
    Q1=(-17.547,-4.321),Q2=(-6.867,1.264),KG=3.75s
```



```
    Q1=(-20.826,-3.798),G2=(-20.270.1.393),KG=3.75$
```

\$13sys
spause

SIRFTC SOLVR LIST.DD

DIMENSION GAM(3.2),X(4),Y(4),DUM(100),U(7,7),G(7),W(7),00(4,3,?). 100P(4,3,2),Q1(4,3,2), Q1P(4,3,2),02(4,3,2),Q2P(4,3,2)
COMPLEX GAM,U,G,W,GO,OOP,Q1,Q1P,O2,Q2P, $20, E P 1, E P N, F 1, F 2, H 1, H 2, G P$, 1 GPP,AO,PED,PED1,PED2

IPIB,EPO,UMO,BO,XJ,YJ,PI
REAL KO
NAMELIST/NAMIN/EPN,FRF,A,B,AO,BO
NAMELIST/NAMXY/X,Y
NAMELIST/NAMQ/QO,OOP,O1,Q1P,O2,02P

DO $4 \quad \mathrm{~J}=1,4$

D0 $4 \mathrm{~K}=1,3$
D0 $4 \mathrm{~L}=1,2$
$001 \mathrm{~J}, \mathrm{~K}, \mathrm{~L})=\operatorname{CMPLX}(0.0,0$.
$\operatorname{QOP}(J, K, L)=\operatorname{CMPL} \times(0,0,0)$
Q1P(J,KoL) $=\operatorname{CMPLX}(0.0 .0)$
-01llekel $1=$ CMPI $\times 10$ enol
Q2 (J,KoL) $=\operatorname{CMPLX(0.,0.)}$
Q2P(J.K.RL) $=\operatorname{CMPL} \times(0.00$.
4 CONTINUE
READ (5,NAMIN)
READ (5,NAMXY)
READ (5aNAMO)
$E P O=8.85 E-12$
$U M O=12.5663706 E-7$
$20=(M P L X(0.11)$.
PI $=3.1415927$
$C 1=3.0 E+08$
QMEGA $=2$.*PI*FRE
KO = OMEGA/C1
$E P 1=E P N * E P O$
TK $=$ KO*KO
PIA=PI/A
$P I B=P I / B$
TA=PIA\#PIA
$T B=P I B \# P I B$
TEMP = SORT(ABS(TK-TB))
$\operatorname{GAM}(1,2)=\operatorname{CMPLX}(T E M P, 0.1)$
IF($(T K-T B) \cdot L T, O \cdot 1 G A M(1,2)=$ CMPLX(0.,TEMP)
TEMP $=S Q R T(A B S(T K-T A))$
GAM(2.1 $1=$ CMPLX 1 TEMP 20.1
$\operatorname{IF}(1 T K-T A) \cdot L T \cdot 0.1 \operatorname{GAM}(2,1)=C M P L X(0$. , TEMP $)$
$T E M P=S Q R T(A B S(T K-T A-T B))$
$\operatorname{GAM}(2,2)=\operatorname{CMPLX}(T E M P, 0.1$
$\operatorname{IF}(1$ TK-TA-TB).LT.0.) GAM(2,2)=CMPLX(0.,TEMP)
TEMP=SQRT(ABS(TK-4.*TA))
GAM(3.1) $=$ CMPLXITEMP,O.)
1F(TKK-4.*TA).LT.0.) GAM(3.1) $=$ CMPLX $(0$. TEMP)
$T E M P=S Q R T(A B S(T K-4 * * T A-T B))$
$\operatorname{GAM}(3,2)=\operatorname{CMPLX}(T E M P, 0.1)$
$1 F((T K-4, * T A-T B) \cdot L T, 0,1 G A M(3,2)=C M P L X(0 ., T E M P)$
DO $2 \mathrm{~J}=1,4$
$x J=x(J)$
$Y J=Y(J)$
U(2*J-1,1)=F1(1..1..J.1.1)
U(2*J-1,2)=Fi(2..1., J.2.1)
U(2*J-1,3) $=\mathrm{H}(10 ., 1,1, \mathrm{~J} \cdot 0.1)$
U(2*J-1,4)=HI(1.,0., Jol.0)


```
    U(2*J-1,6)=H1(2.,0., J,2,0)
    U(2*J-1,7)=HI(2.,1.:J.2.1)
    G(2*J-1)=GP(J)
    IF(J.EQ.4)GO TO 2
    U(2*J,1)=F2(1.,1.,J.1.1)
    U(2*),2)=F2(2e,1eg\e2el)
    U(2*J,3)=Hi2(0.,1.,J,0.1)
    U(2*J,4)=H2(1.,0.,J,1,0)
    U(2*J,5)=H2(1,.1.,J.1,1)
    U(2*J,6)=H2(2.,0.,J,2,0)
    U(2*J.7) =H2(2..1.0J.2.1)
    G(2*)}=GPP(N
    2 CONTINUE
    U(7,2)=CMPLX(0.,0.)
    U(1,6)=U(7,2)
    U(7,6)=U(7,2)
    U(7,7)=U(7,2)
    CONTINUE
    CONTINUE
    CALL COMINVIU.7:7,DUM)
    DO 3 J=1.7
    W'(J)=CMPLX(0.,0.1
    D0 3 KJ=1,7
    W(J)=W(J)+U(J.KJ)*G(KJ)
    3 CONTINUE
    WRITE(6,1001)W(1)
    WRITE(6,1002)W(2)
    WRITE(6.1003)W(3)
    WRITE(6.1004)W(4)
    WRITE (60.1005)W(5)
    WRITE(6,1006)W(6)
    WRITE(6,1007)W(7)
    1001 FORMAT(1H1 10X,6HY(1,1),5X,2E14.5)
    1007 FORMAT(1HO 10X,6HY(2,1),5X,2E14.5)
    1003 FORMAT(1HO 10X,6HZ(0,1),5X,2E14.5)
    1004 FORMAT(1HO 10X,6HZ(1,0),5X,2E14.5)
    10C5 FORMAT(1HO 1CX,6HZ(1,1).5X.2E14.5)
    1006 FORMAT(1HO 10X,6HZ(2,01,5XP2E14.5:
    1007 FORMAT(1HO 1OX,6HZ(2,1),5X,2E14.5)
    PEDI=20*PIA*W(4)*OMEGA*UMO/BO
    \GammaED=(1.+PED1)/(1.-PED1)
    WRITE(6:1008)PED
    1OO8 FORMAT(1HO 1OX:6HYL/YO=,2E14.5)
    PED2=376.7/PED
    WRITE(6,1009)PED2
    1009 FDRMAT(1HO 10X,1OHIMPEDANCE=,2E14.5)
    CALL EXIT
    END
    SIBFTC COMINV FULIST,REF,DECK:M94,DD,XR7
    SUBROUTINE COMINIA,NN,MAXDIM,LABEL )
    CEMPLEX MATRIX INVERSION
    DIMENSION A(MAXDIM.MAXDIMI
    DIMENSION LABEL(1)
    COMPLEX FRE : A OX PY
    N=NN
    DO 38 I=1,N
    38 LABEL(I)=1
    DO 24 I=l.N
    FRE=10. .0. 1
    3 DO }7\textrm{M}=1,
```

```
    X=CABS |A(M,I|)
    Y=FRE
    4 IF(X-Y) 7.7.5
    5 FRE = X
    I\capIG=M
    CONILNUE
    IF(IBIG-1)10.14,10
    10 D0 13 M=1,N
    11 FRE=A(I;M)
    12 A(I,M)=A|IBIG,M)
    13 \dot{(IBIG,M)=FRE}
        M=LABFI (1)
        L'BEL(I)=LABEL(IBIG)
        LABEL(IBIG)=M
    14 FRE=A(1:I)
    15 A(I,I)=(1.0.0.0)
    16 DO 17 M=1,N
    17 Al\:MlsA!I MM/F.RE ... ..
    18 DO 24 J=1 N
    19 IF(J-I)20,24,20
    20 FRE=A(J,I)
    21 A(J,I)=(0.,0.)
    22 D2 23 K=1,N
    23 E(N&K) =A(\&K)=ERE*A(I.2K)
    24 CONTINUE
    25 M=N-1
    26 DO 36 I=1,M
    27 CO 30 J=IgN
    28 IF(LABEL(J)-1)30,29.30
    29 [F(I-N)31,36:31
    30 CONTINUE
    31 DO 34 K=1,N
    32 FRE=A(K,I)
    33 A(K,I)=A(K,J)
    34 A(K,J)=FRE
    35.. LABEL\J.=LABEL\\)
    36 CONTINUF.
    37 RETURN
        END
    $IBFTC TFI LIST.DD
        COMPLEX FUNCTION FI(FL,FK,J,L,K)
```



```
        1QOP (4,3,2),Q1 (4,3,2),Q1P(4,3,2),Q2(4,3,2),Q2P(4,3,2)
            COMPLEX GAM,U,G,W,GO,QOP,G1,G1P,Q2,Q2P,ZO,EP1,EFN,F1,F2,H1,H2,GP,
        1 GPP,AO,FFI
            REAL KO
            COMMON GAM,U,G,W,QO,QOP,Q1,Q1P,O2,Q2P,EP1,ZO,AO,X,Y,DUM,OMEGA,PIA,
            1PIB&EPO:UMO,BQ:Xd:Y\:P.I
                FF1=+EP1 *OMEGA*FL*FK*PIA*PIB*GAM(L+1,K+1)*
        100(J.L+1,K+1)+20*0MEGA*EPO*FK*PIB*SIN(FL*PIA*XJ)*CgS(FK*P\B*YJ)
        2*4.*Pl*P1
            Fl=FFl
        1 CONTINUE
            REIURN
            END
    SIBFTC THI LIST,DD
            COMPLEX FUNCTION HI(FL,FK:J.L,K)
            DIMENSION GAM(3,2):X(4):Y(4),DUM(100):U(7,7),G(7):W(7),00(4,3,2).
            IQOP(4,3,2),Q1(4,3,2),Q1P(4,3,2),Q2(4,3.2),O2P(4,3.2)
```


1 GPP,AO:HHI
REAL KO
COMMQN GAM,U,G,W,QO, QOP, Q1,Q1P,Q2,Q2P,EP1, ZO,AO,X,Y,DUM, OMEGA,PIA.
IPIE,EPO,UMO:BO,XJ,YJ,PI

1-(FL*FL*PIA*PIA+FK*FK*PIB*PIB)*Q2(J,L+1,K+1)-20*GAM(L+1,K+1)*FL*
2FIA*SIN(FL*PIA*XJ)*
$\mathrm{Hl}=\mathrm{HHI}$
1 CONTINUE
RETURN
END
SIBFTC TH2 LIST,DD
CBMPLEX FUNCTION H2(FL,FK,J•L•K)
DIMENSION GAM(3,2$), X(4), Y(4)$, DUM (100), U(7,7),G(7),W(7),Q0(4, 3,2),
IQOP $(4,3,2), Q 1(4,3,2), \operatorname{Q1P}(4,3,2), \operatorname{Q2}(4,3,2), 02 P(4,3,2)$
COMPLEX GAM,U,G,W,QO, QOP, Q1, Q1P, O2, Q2P,ZO,EP1,EPN,F1,F2,H1,H2,GP,
1 GPP, AO, HH2
REAL KO
COMMON GAM,U,G,W,QO,QOP,D1,Q1P,Q2,Q2P,EP1,ZO,AO,X,Y,DUM, QMEGA,PIA, IPIB,EPO,UMO,BO,XJ,YJ,PI

HH2 = - OME GA*OMEGA*UMO*EP1*O1P(J,L+1,K+1)
1-(FL*FL*PIA*PIA+FK*FK*PIB*PIB)*O2P(J,L+1*K+1)-20*GAM(L+1,K+1)*FK* 2PIB*SIN(FK*PIB*YJ)*COS(FL*PIA*XJ)*4.*PI*PI
1 CQNTINUE
$\mathrm{H} 2=\mathrm{HH} 2$
PETURN
END
SIBFTC TF2 LIST.DD
CDMPLEX FUNCTION F2(FL,FK,J.L,K)
 1QOP $(4,3,2), Q 1(4,3,2), Q 1 P(4,3,2), 02(4,3,2), 02 P(4,3,2)$
COMPLEX GAM,U,G,W,OO, QOP, Q1, Q1P, O2, Q2P, $20, E P 1, E P N, F I, F 2, H 1, H 2, G P$.
1 CPP,AO,FF 2
PEAL KO
COMMON GAM, U, $G, W, Q O, Q O P, Q 1, Q 1 P, Q 2, Q 2 P, E P I, Z O, A O, X, Y, D U M, O M E G A, P I A$. IPIB,EPO,UMO, BO,XJ,YJ,PI

10OP(J.L+I,K+1)-2C*OMEGA*EPO*FL*PIA*SIN(FK*PIB*YJ)*COS(FL*PIA*XJ) 2*4.*Pl*Pl

F2 $=$ FF 2
1 CONTINUE
RETURN
END
SIBFTC TG2
COMPLEX FUNCTION GPP(J)

COMPLEX GAM,U,G,W,Q0,QOP, Q1,Q1P,Q2,Q2P,ZO,EP1,EPN,F1,F2,H1,H2,GP,
1 GPD AO
REAL KO
COMMBN GAM,U,G,W,QO, OOP, Q1, Q1P,O2, Q2P,EP1,ZO,AO,X,Y,DUM, BMEGA,PIA, IPIE,EPO,UMO,BO,XJ,YJ,PI
GPP $=20 * G M E G A * E P 1 * B O * Q 1 P(J .2 .1) / P 1 A+20 * B O * P 1 A * O 2 P(J, 2 \cdot 1 / /(8 M E G A *$ IUMO)
RETURN
END
SIBFTC TGP
COMPLEX FUNCTION GP(J)
DIMFNSION GAM(3.21:X(4),Y(4).DUM(100).U(7.7),G(7),W(7).00(4.3.2). 1 OOP $(4,3,2), Q 1(4,3,2), 01 P(4,3,2), 02(4,3,2), 02 P(4,3,2)$

COMPLEX GAM,U,G,W,QO, QOP,O1,G1P,Q2,Q2P,2O,EP1,EPN,F1,F2,H1,H2,GP, 1 GPP.AO
REAL KO
COMMON GAM,U,G,W,QC, QOP, Q1, OIP, Q2, Q2P,EPI, ZO,AO, X,Y,DUM, OMEGA,PIA,
IPIB,EPO,UMC,BO,XJ,YJ,PI

1*PIA*Q2(J.2.1)/(OMEGA*UMO)
RETURN
FND
\$NAMIN EFN $=(1,85,0.022), F R F=2,2 E+09, A=.1092, B=.0546, A O=(-.002,0),. B 0=1, S$
SNAMXY $X=.0546, .0819, .0819, .0546, Y=.0273, .0273 . .04095, .04095 \$$
SNAMQ
$00(3,2,2)=(.002,0),. O C(3,3,2)=1-.001,0.1$,
$\operatorname{OOP}(1,3,2)=(-.008,0.1, \operatorname{DOP}(2,2,2)=(-.011,0$.$) ,$
$\operatorname{OOP}(2,3,2)=(.002,0.1, \operatorname{QCP}(3,2,2)=(-.010,0$.$) ,$
$\operatorname{OCP}(3,3,2)=(.001,0),. \operatorname{QCP}(4,3,2)=(-.008,0$.$) ,$
$01(: 2,1)=(-11.440,-15.672), 01(2,2,1)=(-7.931,-13.204)$,
$0112231+1=117.431210,2521 \times 011312121=1-3.0151-3.4981$.
Q1(3,?,1) $=(-4.851,-11.293), 01(3,2,2)=(0.0-.033)$,
Q1 $(3,3,1)=(12.359,2.047), 01(3,3,2)=(-.001,-.001)$.
Q $1(4,2,1)=(-7.478,-13.466), 01(4,2,2)=(-.002,-.045)$,
Q1P(1,1,2) $=(-2.020,17.505)$, Q1P(1,3,2) $=(-9.992,-8,732)$.
Q1P(2,1,2) $=(5,204,11.432), Q 1 P(2,2,2)=(-12.741,-15.468)$,

Q1P $(3,3,1)=(1,685,3.291)$, Q1P $(3,3,2)=(5.221,-1.878)$,
Q1P(4,1,2) $=(-2.415,16.497), Q 1 P(4,3,1)=(11,540,5.743)$,
Q1P $(4,3,2)=(-14,248,-8.785)$,
$02(1,2,1)=(2,462,27.281), 02(2,2,1)=(4.992,20.532)$,

$02(3,2,1)=(5.037,20.145), 02(3,2,2)=(.972,-.763)$.
Q2 $(3,3,1)=(12.175,-6.289), Q 2(3,3,2)=(.001, .010)$,
Q2 $(4,2,1)=(4,262,26.633), 02(4,2,2)=(6.327,-1.005)$,
Q2P $(1,1,2)=(-15 \cdot 313,14 \cdot 185)$, Q2P $(1,3,2)=(21.491,-1.135)$.
Q2P $(2,1,2)=(-17.176,13.627), 02 P(2,2,2)=(15.278,-1.903)$,

O2P $(3,3,1)=(-1,015,-.944), \operatorname{Q2P}(3,3,2)=(-.840,-.760)$.
$\operatorname{Q2P}(4,1,2)=(1.075,12.617) \mathrm{s}$
-
\$IBSYS
SPAUSE

PROGRAM 2141

```
SIBFIC A2141 LIST,SOD
    DIMENSION P(100) ,THETA(100),PHI(100),WIL( 50 1,W2K( 50 ).
    1 ZLKD(50,50),YLKD(50,50),V1L(50),V2K(50),SIL(50),S2K(50)
    COMPLEX EPSR,ZLK,YLK,ZKIZ,HI,EIM,WSH,WSLV,WHAT,WSU,USLVOUHAT,
    1 WSW1,WSW2,SUM1,SUM2,SUM3,W1L,W2K,W1,W2,WS1,WS2,WS3, R,XL,S,T
```



```
    3 RCON,ELCON,S.,S2,V1,V2,V2O,S2O
        PEAL MEMO
        CALL BCDCDN(180HW,EPSR, ELZ,A,B, M, His
        BZ,C,EPSZ,EMUZ,THETA,PHI,NTHETA,NPHI
    2
    6 ,W,EPSR, ELZ,A,B,
        EMUZ,THETA,PHI,NTHETA,NPHI I
        CALL BCDCON(36HZLK(50,50),YLK(50.50)
    1 ZLKD,YLKDI
        CALL BCDCONI 36HDATE,CASE,MEMO
    1 -DATE!CASE &MEMQ 1.................. . . . . ...............
        PTST = 1.OE-5
        RAD =. 174532925F-1
        PI = = .14159265
        LTAP5 = 6
        C = 3.0E8
        EPSZ = 8.85E-12
        EMUZ =12.566371E-7
        E.M = (0.0.,-1.0)
    99 CONTINUE
        CALL SYMBLS(IN,
        2KZ=W/C
```



```
        ZKI2 = EPSR ZKZ̈2
        N = NN+1
        M = MM+1
        WRITE(LTAP5,100) DATE,CASE,MEMB
    100 FBRMAT(1H1,49X,5HDATE F8.3.5X.5HCASE F8.3.5X.5HMEMO F8.3)
        DO 1000 I=1.NTHETA
        THET = THETAII)
    TH = THEET WRAD
    STH=SIN(TH)
    CTH=COS(TH)
    STH2 = STH**2
    CTH? = CTH**?
    SCTH = STH#CTH
    H2 = 2KZ*CTH
    H1 = CSORT 1 2K12 - ZKZ2 *STH2 I
    IF(AIMAG(H1)) 30.31.31
    30 111 = -H1
    31 WSH = CEXP ( EIMW(H)+H2) EELZ )
        WSLVV ={2.0#HI EPSRI/(HI-EPSR#H2) WSH
        WHAT = {2.0*H1)/(H1-H2)* WSH
        WSU = CEXP 1 EIM 2.O#HI*ELZ)
        USLV= WSU *(H1+EPSR*H2)/(H1-EPSR*H2)
        (IHAT = WSU (HI+H2)/(HI-Hi)
20 KM=1
    ति- 2000 J=I.NPH!
    PH=PHI\J)*RAO
    SPH=SIN(PH)
    CPH= COS(PH)
    SPH2 = SPH**2
    CPH2 = CPH**2
```

 STCP = STH*CPH
 S2TC2P = STCP\#\#2 * 2K22
 STSP = STH*SPM
 S2TS2P = STSP**2 * 2K22
 WSW1 = CEXP (EIM* A *ZKZ * STCP)
 WSW2 = . CEXP .IEIM\#B \#2K2 * SISP -
 \(27 \mathrm{KM}=1\)
 VIL(1) = (WSW1-1.0) / (2K22*STH2)
 V2K(1) \(=\) (WSW2-1.0)/(2K22*STH2)
 IF(ABS(PH-1.570796325)-PTST) 60.60.50
 50 IF(ABS(PH-4.71238898)-PTST) 60.60.51

GO TO 52
51 $L L=0$
$E L=L L$
$D E N=52 T C 2 P-(E L * P 1 / A) * 2$
IF(ARS(DEN)-1.OE-5) 56.56.57
56. K1 = $=10.0 \times 0.01$.
G8 TO 58
$57 \mathrm{Wl}=(1-1.0)$ **LL*WSW1-1.0)/DEN
58 Sl = SPH*CPH*W1
52 SIL(1) $=51$
IF(PH-PTST) 61,61,53
53 1F(ABSSPH-3..14159265)-PTSI) 61:61\&54
6152 = (EIM*B*(PH)/(2K2*STH)
GO T0 55
$54 K K=0$
$2 K=K K$
DEN = 52TS2P-(2K*P1/B)**2
LFIABS(DEN)-1.OE-51 63:63:64
$63 \mathrm{~W} 2=(0.0 .0 .0)$
GO 1065
64 W2 $=((-1.0)$ *KK*WSW2-1.0)/DEN
65 S2 = SPH*CPH*W2
55 S2K(1) $=52$
DO $3000 \quad 1=2, N$
LL=L-1
EL=LL
DEN = S2TC2P - (EL*PI/A)**2
IFIABS(DENI-1.OE-5) 2.2.3
$2 \mathrm{Wl}=(0.0 .0 .0)$
60.104
3 W1 $=((-1.0)$ *LL WWSW1-1.0)/DEN
$4 \mathrm{VI}=\mathrm{CPH} 2 * W 1$
Sl $=S P H * C P H * W 1$
WIL(L) $=$ W1
VIL(L) = V1
S.lh(1) $=51$
3000 CENTINUE
D0 $4000 \mathrm{~K}=2, \mathrm{M}$
$K K=K-1$
$2 K=K K$
DEN = S2TS2P-(2K*PI/B)**2
IF(ARSIDENI-1:OE-5).. $5.5: 6$
$5 W 2=10.0 .0 .01$
GO TO 7
6 W2 = (-1.0)**KK*WSW2 -1.0$) / D E N$
7 V2 $=$ SPH2*W2
S2 $=S P H^{*}$ CPH*W2
$W 2 K(K)=W 2$

```
        \(\operatorname{V2K}(K)=V 2\)
        S2K(K) = S2
    4000 CONTINUE
            SUM1 \(=10.0 .0 .01\)
            SUM2 \(=10.0,0.01\)
            SUM3 \(=10.0 .0001\)
            SUM4 \(=10.0 \cdot 0.01\)
            SUM5 \(=10.0 .0 .01\)
            W11 \(=\) W1L(2)
            \(\mathrm{V} 20=\mathrm{V} 2 \mathrm{~K} 111\)
            \(\mathrm{S} 20=52 \mathrm{~K}(1)\)
    \(23 \mathrm{KM}=1\)
            \(\Gamma 05000 \quad L=1, N\)
            \(W_{1}=\) WIL(L)
            \(E L=L-1\)
            WS2L = EL*PI/A
            WS3L=WS2L**2
            \(\frac{V 1}{S} \underline{1}=\frac{V 1 L}{S l} L(1)\)
            \(\frac{V}{S} \frac{1}{1}=\frac{V 1 L}{S 1 L}\)
    21 KM=1
            D0 \(5000 \mathrm{~K}=1, \mathrm{M}\)
            \(W 2=W 2 K(K)\)
            \(Z K=K-1\)
            WS2K=2K*PI/B
            WS \(3 K=W S 2 K * * 2\)
            \(\mathbf{V 2}=\mathrm{V} 2 \mathrm{~K}(\mathrm{~K})\)
            \(s 2=52 K(K)\)
            YLI \(=\) YLKD(L,K)
            ZLK \(=\) ZLKD(L:K)
            GLK =CSQRT (ZK22 - WŞ3L - WS3K )
            IFIAIMAG(GLKI) \(32,33.33\)
    32 riLK = -GLK
    33 WS1 = WS3K * V1*W2 \#ZLK
            WS2 \(=\) WS3L * WI*V2 *ZLK
            WS3 \(=\) WS2K*WS2L*GLK*YLK*W1*W2
            WS4 = WS3L* 2LK *W!* S2
            WS5 = WS3K* ZLK *Sj* W2
            IF(K-1) 41,41,42
    41 IF(L-1) \(5000,5000,43\)
    43 SUM2 \(=\) SUM2 + WS2
            SUM4 \(=\) SUM \(4+\) WS4
            r.0. T0 5000
    42 1F(L-1) \(44,44,45\)
    45 SUM3 \(=\) SUM \(3+\) WS3
            SUM2 \(=\) SUM2 + WS2
            SUM4 \(=\) SUM4 + WS4
    44 SUM1 \(=\) SUMI + WSI
            SUM5 \(=\) SUM5 + WS5
5000 CONTINUE
    RCON \(=2 K 22\) *STH2/(HI*(1.0-USLV))
    \(R=\) RCQN * 1 W*EMUZ*SUM1 - W*EMUZ*SUM2 + EIM*BZ*(PI/A)*WII*V20 +
    1 SUM3 )
    FLCON \(=2 K 22 * S T H 3 /(W * E M U Z *(1.0+\) UHAT))
    XL 2 ELCON *(EIM*BZ*(P1/A)*W!1*S2O-W*EMUZ*SUM4 - W*EMUZ*SUM5 I
    \(S=\) WSLV*R
    \(T=\) WHAT*XL
    \(S R=\operatorname{RFAL}(S)\)
    SI=AIMAG(S)
    \(T R=\) REAL(T)
    \(T 1=\operatorname{AIMAG}(T)\)
```


2141 (Cont'd)

```
            PSOLV = 19.739209 *W*2K2 *(CTH2/STH2) *(EPSZ *(SR **2 +SI **2i
        1 + EMUZ *(TR **2 + Tl **2) )
    P(J) = PSOLV
    2000 CONTINUE
        HRITE(LTAPS,101) THET
        101 FQRMAIIIHQ,BHTHETA = F&.3 <2..2X,3HPHI,15X_1HP 1.-
        WRITE(LTAP5,102) (PHI(IP),P(IP),IP=1,NPHI )
        102
    1000 CONTINUE
        G8 TO }9
        END
```



```
        M 1 N 2 BZ 1.0 THETA 10.0 PHI 20.0 NTHETA 1 NPHI 1
        2LK(1)
            0.0
    0.5 0.0
    YLK(1)
    0.1 0.0 0.0 1.0 _0.1 .0.5. .0.0 . 11011 0.5. 0.1.-0.2. c. 5
    THFTA 0.0(10.0190.0 NTHETA 10
    PHI 0.0120.0)360.0 NPHI 19
    THETA 1.0 NTHETA 1
1
END QF DATA
SIBDRL
*DEBUG A2141 23
    DUMP V1L,V2K,W1L,W2K,S1L,S2K
    *DEBUG A2141 20
        DUMP TH,H1,H2,WSH,WSLV,WHAT,WSU,USLV,UHAT
    *DEBUG A2141 ..500Q
        DUMP WS1,WS2,WS3,WS4,WS5,SUM1,SUM2,SUM3,SUM4,SUM5,K,L
    *DEBUG A2141 2000
        DUMP RCON,R,ELCON,XL,S,T,PSOLV
    *DEND
```

Programs 2206 or 2187 c an be used to calculate impedance at the end of the open-ended waveguide. Number 2206 is the short-form program and provides less accuracy than program 2187. The results of programs 2206 and 2187 must be multiplied by $\mathrm{Z}_{c} / \mathrm{Z}_{\mathrm{o}}$ where Z_{c} is the characteristic impedance of the waveguide and Z_{o} is 377 ohms.

D. SIMULATOR VERIFICATION TESTS

1. Simulator Sources

Prior to the formulation of the simulator requirements, a survey was made of the qualified manufacturers of artificial dielectrics. The results of the survey showed that there were only four suppliers capable of producing dielectric simulators. They were as follows: Armstrong Cork Company, Avco Corporation, Custom Materials, Inc., and Emerson and Cuming, Inc.

Specifications for the simulators were formulated about the requirements stated in the original RFP. The requirements for the dielectric simulators were as follows: 1) They must be flexible; 2) Specific gravity must be less than 0.5 ; 3) They must be bondable to metal surfaces; 4) They should not permanently deform if inadvertently subjected to pressure; 4) They must be easy to machine; 6) Their electrical properties should not change in a temperature range from $0^{\circ} \mathrm{F}$ to $140^{\circ} \mathrm{F}$; and 7) Moisture absorption over the above temperature range shouli be less than 0.5 percent.

The electrical and dimensional specifications for the simulators were carried out by the laws of scaling derived by Sinclair from Maxwell's Equations. The laws, which are applicable to all dielectrics, are as follows:

| Quantity | Full Scale
 System | Model System |
| :--- | :--- | :--- |
| Length (Physical dimensions) | l | $l^{\prime}=l / \mathrm{p}$ |
| Frequency | f | $f^{\prime}=\mathrm{pf}$ |
| Complex Permittivity | $\epsilon^{\prime}-j \epsilon^{\prime \prime}$ | $\left[\epsilon^{\prime}-j \epsilon^{\prime \prime}\right]=\left[\epsilon^{\prime}-j \epsilon^{\prime \prime}\right]$ |
| Loss Tangent | $\epsilon^{\prime \prime \prime} / \epsilon^{\prime}$ | $\left[\epsilon^{\prime \prime} / \epsilon^{\prime}\right]^{\prime}=\left[\epsilon^{\prime \prime} / \epsilon^{\prime}\right]$ |
| Permeability | $u^{\prime}-j u^{\prime \prime}$ | $\left[u^{\prime}-j u^{\prime \prime}\right]^{\prime}=\left[u^{\prime}-j u^{\prime \prime}\right]$ |
| Conductivity | σ | $\sigma^{\prime}=p \sigma$ |

where p is the scale factor.
Simulators for virgin Avcoat 5026-39M had to have identical dielectric constant and loss tangent for $1 / 3-1 / 5$, and full-scale tests as prescribed by the above electromagnetic laws of scaling. A simulator thickness of one inch was chosen for the full scale tests thus setting the $1 / 3$ - and $1 / 5-s c a l e$ thickness to 0.33 inch and 0.20 inch, respectively. The low frequency simulators, $300 \mathrm{Mc}, 900 \mathrm{Mc}$, and 1500 Mc , were assigned the following electrical properties: $\epsilon^{\prime} / \epsilon_{\mathrm{o}}=2.50 \pm 0.10 ; \epsilon^{\prime \prime} / \epsilon^{\prime}=0.082 \pm 0.005$. The electrical properties assigned to the high-frequency simulators (2200 Mc , 6600 Mc , and 11000 Mc) were as follows: $\epsilon / \epsilon_{\mathrm{o}}=1.85 \pm 0.10 ; \epsilon^{\prime \prime} / \epsilon^{\prime}=$ 0.022 ± 0.005. These dielectric constant and loss tangent values were taken from the room-.". aperature dielectric measurements made at 300 Mc and 2200 Mc .

Once the physical and electrical properties of the virgin heat-shield simulators had been measured, requests for quotations were sent to the potential suppliers. Armstrong Cork Company was contracted to supply the simulators. This decision was based upon price, dielectric tolerances, and quality control standards stated by the supplier in their answer to Avco's RFQ.

In their development of the simulator material, Armstrong Cork Company had no problem in holding the tolerances on the $2.2 \mathrm{kMc}, 6.6 \mathrm{kMc}$ and 11 kMc simulators and supplying these simulators on schedule. They experienced extreme difficulty in trying to attain the same tolerances with $300 \mathrm{Mc}, 900 \mathrm{Mc}$, and 1500 Mc simulators. The tolerance on the loss tangent was relaxed to $+.005,-.027$ so that the program would not be delayed any further. The specific-gravity tolerance was also relaxed to 0.6 in order to facilitate rapid development of the simulators. All other mechanical and electrical properties requirements remained unaltered. The simulator data supplied by the Armstrong Cork Company is given in the following table.

| | 2200 Mc
 to
 11000 Mc | 300 Mc | 900 Mc | 1500 Mc |
| :--- | :---: | :---: | :---: | :---: |
| Density $\left(\mathrm{lb} / \mathrm{ft}^{3}\right)$ | $22.9-23.5$ | $28.8-31.0$ | 28.1 | 28.7 |
| Dielectric | $1.84-1.86$ | $(\mathrm{x}-\mathrm{z}) 2.49-2.60$
 $\mathrm{y}) 2.24-2.35$
 $0.055(\mathrm{avg})$. | 2.58
 2.58
 Donstant
 Loss Tangent | $0.021-0.022$ |

The properties of the char simulators were defined by volume conductivity measurements. The original intent was to char the heat shield to its full depth and simulate it with a single simulator. Serious problems arose in charring the heat shield to its full depth. For instance, the heat shield became badly cracked making it impossible to take valid attenuation measurements. The heat shield was therefore charred to an average depth of approximately 0.065 inch only. The intact, uncharred heat shield below the char layer was simulated with the virgin simulator material while the char layer was simulated by a thin conductive layer bonded onto the virgin heat-shield sinulator.

Surface resistivity measurements made on the charred samples varied from 1.3 ohms per square to 46 ohms per square. It was decided that a versatile simulator material whose resistivity could be varied would be required. The appropriate char simulator would be attained by varying the resistivity until the antenna patterns matched those taken with the charred heat shield.

Eccosorb Space Cloth, a thin woven conductive fabric, was best suited fcr these requirements. The resistivity c an be varied by laying sheets atop one another. The resultant resistivity may be obtained by considering the sheets as resistors in parallel. The material is self-extinguishing, weatherproof, and can be easily cut with scissors. Listed below is the data supplied by Emerson and Cuming Inc.

| Type | Surface Resistivity
 (ohms/square) | Insertion Loss
 (db) (X-Band) | Thickness
 (inch) |
| :---: | :---: | :---: | :---: |
| SC-100 | 100 | 7.0 | 0.015 |
| SC-200 | 200 | 4.0 | 0.010 |
| SC -377 | 377 | 2.0 | 0.010 |

2. Simulator Inspection

Complex permittivity measurements were made on virgin heat-shield simulators at their respective operating frequencies. The measurements were made with the Rohde and Schwarz dielectrometer using the method described in Appendix B. All values are approximately 5 percent high because of sample compression in the sample holder. The results of the measure ments are as follows:

| Frequency
 (Mc) | ϵ / ϵ_{0} | $\epsilon^{\prime \prime / \epsilon^{\prime}}$ |
| :---: | :---: | :---: |
| 300 | 2.56 | 0.065 |
| 900 | 2.60 | 0.083 |
| 1500 | 2.62 | 0.095 |
| 2200 | 1.98 | 0.019 |
| 6600 | 1.97 | 0.020 |
| 11000 | | 0.020 |

The above values of $\epsilon^{\prime} / \epsilon_{0}$ and $\epsilon^{\prime \prime} / \epsilon^{\prime}$ were all within the specified tolerances except from the 1500 Mc simulator. Since these measurements were within +5 percent, the 1500 Mc simulator was allowed to pass inspection.

A density check was made on the 2200 Mc simulator with results showing that the material had a specific gravity of 0.509 . This value of specific gravity was slightly above the purchase-order limit of 0.5. Density checks made on the 300 Mc simulator showed that the specific gravity was well within the 0.6 purchase order limit.

The simulator material adhered to the requirements of the original RFP. The material was flexible and did not permanently deform when subjected to pressure. The material was easy to machine with hand tools and was bondable to metal surfaces. Armstrong Cork recommended their J-1170/E-18 epoxy adhesive to be used but stated that a contact cement could be used without affecting the dielectric properties of the material if the bond line was thin. Weldwood Contact Cement was tested and provided an excellent bond. This was used as the bonding agent for both heat-shield and simulator material.

Resistivity measurements were made on the Eccososb Space Cloth. Fiandom samples from each of the sheets supplied were measured and the results showed that the resistivity was not uniform. An average resistivity was obtained from the sample measurements for each of the three resistivities purchased. These average values differ considerably from those supplied by the manufacturer. The results of the measurements are given below.

| Type | Surface Resistivity**
 (ohms per square) | Surface Resistivity**
 (ohms per square) |
| :---: | :---: | :---: |
| SC-100 | 100 | 81 |
| SC-200 | 200 | 480 |
| SC- 377 | 377 | 660 |

*Data supplied by manufacturer
**Measured Data
3. Verification Tests

The verification tests were performed for the following reasons:
a. To demonstrate the effects of thr: Apollo heat shield on antenna performance;
b. To demonstrate the validity of simulator use and the scaling of models;
c. To verify the theoretical computation of antenna impedance and radiation pattern.

Four different antennas were used as experimental mediums to perform these tasks. They were as follows: open ended waveguide, scimitar, scimitar-slot, and monopole antennas. Two base frequencies of 300 Mc and 2200 Mc were used along with their respective $1 / 3$ and $1 / 5-s c a l e$ frequencies of $900 \mathrm{Mc}, 1500 \mathrm{Mc}, 6600 \mathrm{Mc}$ and 11000 Mc . The antennas were mounted on flat, square ground planes with lengths of 1.22λ and 8.88λ for the respective base frequencies of 300 Mc and 2200 Mc . The 300 Mc tests were limited to 1.22λ ground planes because of size restrictions.

For scaled tests, the ground planes were dimensionally scaled by factors of $1 / 3$ and $1 / 5$ so that their electrical length remained the same at the scaled frequencies. The simulators were scaled by retaining their fullscale complex permittivity at the scaled frequencies.

The 300 Mc and 900 Mc verification tests were made on one Avco's outdoor antenna ranges while the tests from 1500 Mc to 11000 Mc inclusive were performed in Avco's 60-x 20-x 20-foot anechoic chamber.

The verification tests required the use of Avcoat 5026-39 virgin ablator. Two forms of the Avcoat 5026-39 heat shield are used on the Apollo vehicle; the molded $(-39 \mathrm{M})$ and the honeycomb (-39 HCG). The dielectric properties of the -39 M and -39 HCG material were essentially the same at both 300 Mc and 2200 Mc . Prior to performing any verification tests, the -39 M
and - 39 HCG materials were compared in terms of their effect on antenna impedance and radiation patterns. Antenna impedance and radiation patterns of an open-ended waveguide covered with both materials were taken at 6600 Mc . The results showed negligible difference between the molded (-39 M) and the honeycomb (-39 HCG) in regard to antenna radiation patterns. The measured antenna-aperture impedances were identical. Since either material could be used for the verification tests, Avcoat 5026-39M was chosen because of its immediate availability and lower cost.
a. Open-Ended Waveguide, Full , 1/3, and 1/5-Scale-Model Patterns and Impedance

Verification tests made with the open-ended-waveguide antenna are presented in matrix form in Table II. The matrix references a series of figures which are reprints of measured data. The figures, in turn, have related patterns superimposed to enable the reader to compare them readily.

Waveguide transitions were used as open-ended-waveguide antennas. Standard waveguide sizes available did not facilitate exart 1/3 and 1/5-scaling. However, guide sizes for scaled tests were chosen as close as possible to the required scale factors. Deviations from the scale factors for the antenna aperture were less than 7 percent.

The spherical coordinate sysiem used for the open-ended-waveguide antenna patterns is defined in Figure 18 along with the location of the a and b guide dimensions.

The antenna efficiencies were calculated for the $300-\mathrm{Mc}$ and $2200-\mathrm{Mc}$ open-ended-waveguide antennas without heat shield, with virgin heat shield, with charred heat shield, and charred heat shield with antenna window. Antenna efficiency may be defined as follows:
(1) $a=\frac{G_{o}}{D} \quad$ where $a=$ efficiency
$G_{0}=$ maximum radiation intensity (test antenna) radiation intensity from (lossless) isotropic source with same power input.
$D=$ maximum radiation intensity average radiation intensity

TABLE II

VERIFICATION TESTS - OPEN ENDED WAVEGUIDE

| $\begin{aligned} & \text { Exporimont } \\ & \text { No. } \end{aligned}$ | Anetans Cover | Frequency (Mc) | Seale
 Factor | Efficioncy (percent) | $\begin{aligned} & \text { Measurod } \\ & \text { Pattorne } \\ & \text { Smalestor } \\ & \text { Patierans } \\ & \text { Exp. No. } \end{aligned}$ | $026-39$
 raue
 Tigure No. | Mesoured 5026-39
 smpedarace vertue Eimalator Impedance |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | no cover | 300 | 1 | 84,94 | | 19, 20 | Tigure 36 |
| 2 | virgin 5026-39 | 300 | 1 | 76.85 | 1 with 2 | 19, 20 | Figure 36 |
| 3 | virgin eimulator | 300 | 1 | | 2 with 3 | 21, 22 | Tigure 36 |
| 4 | virgin aimulator | 900 | 1/3 | | 2 with 4 | 23, 24 | Figure 36 |
| 5 | virgin eimulator | 1500 | 1/5 | | 2 with 5 | 25, 26 | Tigure 36 |
| 6 | no covar | 2200 | 1 | 71.74 | | 27, 28 | Figure 37 |
| 7 | virgin 3026-39 | 2200 | 1 | 65.59 | 6 with 7 | 27, 28 | Figure 37 |
| 8 | virgin aimulator | 2200 | 1 | | 7 with ${ }^{\text {a }}$ | 29,30 | Thgure 37 |
| 9 | virgin aimulator | 6600 | 1/3 | | 7 with 9 | 31,32 | Tigure 38 |
| 10 | virgin aimulator | 11000 | 1/5 | | 7 with 10 | 33, 34 | Figure 39 |

| Expesiment No. | Antenas Cover | $\begin{aligned} & \text { Frequency } \\ & \text { (Mc) } \end{aligned}$ | Scale Factor | Eficiency (percent) | Moaeused
 Patteran
 Stmulate
 Patterat
 Ewp. No. | $1026-39$
 rava
 Figure Ne. | Meanured 5026-39
 Impedamee veraue Strmiater Impedance |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11 | charred 5026-39 | 300 | 1 | 4.65 | 11 with 12 | 44,49 | Figure 60 |
| 12 | char aimulator | 300 | 1 | | 11 with 12 | 44.45 | Fiyure 60 |
| 13 | char r simulator | 900 | $1 / 3$ | | 11 with 13 | 46.47 | Figure 61 |
| 14 | char eimuletor | 1500 | 1/5 | | 11 with 14 | 4.49 | Figure 62 |
| 15 | charred 5026-39 | 2200 | 1 | 8.25 | 15 with 16 | 50,51 | Figuse 63 |
| 16 | char oimulator | 2200 | 1 | | 15 with 16 | 50, 51 | Figure 63 |
| 17 | char eimulator | 6600 | 1/3 | | 15 with 17 | 52,53 | Figure 64 |
| 18 | cher timuintor | 11000 | $1 / 5$ | | 15 with 18 | 54, 35 | Figure 65 |
| 19 | charred 5026-39 with window | 300 | 1 | 79.64 | 11 with 19 | 56. 57 | Figure 60 |
| 20 | charred 5026-39 with window | 2200 | 1 | 70.45 | 15 with 20 | 58, 59 | Figure 63 |

Figure 18 SPHERICAL COORDINATE SYSTEM FOR OPEN-ENDED WAVEGUIDE
therefore

Since

$$
\mathrm{U}_{\text {ave }_{T}}=\frac{\mathrm{w}_{\text {ave }_{T}}}{4 \pi}
$$

$$
\begin{equation*}
a=\frac{W_{\text {ave }} T}{4 \pi U_{\text {iso }}} \tag{3}
\end{equation*}
$$

(4) $a=\frac{\iint \mathrm{F}^{2}(\theta, \phi) \sin \theta \mathrm{d} \theta \phi}{W_{\text {iso }}}$
where $F=$ relative field intensity
$\theta=$ polar angle
$\phi=$ azimuth angle
Equation (4) describes efficiency as the ratio of the power radiated by the antenna under test to the power radiated by an isotropic antenna. The integral in the numerator of Equation (4) was integrated graphically. In order to integrate accirately, antenna patterns were taken in 10degree increments of θ from 0 degrees to 180 degrees for ϕ variable in both horizontal and vertical polarizations. These patterns were taken in voltage on polar paper. This all owed the area to be measured with a planimeter to obtain the average power of each pattern.

Average power levels for each pattern were multiplied by the sine of their associated θ angle. The average power level was then totaled for both polarizations and divided by the average value of the sine. The efficiency was obtained from the ratio of the average power of the test antenna to the isotropic power level.

Several conclusions can be made from the virgin-heat-shield and simulator tests. Patterns taken at 300 Mc with and without heat shield show that there is negligible distortion in the antenna-radiation patterns due to the heat-shield cover. The E- and H-plane patterns exhibi*ed
an average attenuation of approximately 1.5 db in the main beam ($\theta=270$ degrees to 90 degrees). Antenna patterns taken with simulators for full-scale and scaled tests showed good correlation with the patterns taken with the Avcoat heat shield.

Considerable antenna-pattern distortion was observed with the heatshield cover at 2200 Mc . Further test results indicated that the side radiation was caused by a surface wave coming off the ends of the g round plane and that the null and ripples were caused by the edges acting as an array element. These antenna patterns were in contrast to those taken at 300 Mc where little antenna-pattern distortion was observed with the heat-shield cover. The heat-shield thickness accounts for the differing effects. Both cases were taken with one-inch-thick heatshield covers but their electrical thicknesses were $0,0254 \lambda$ and 0.186λ for the 300 Mc and 2200 Mc cases, respectively. Antennaradiation patternstaken with the 2200 Mc simulator deviated little from the Avcoat $5026-39 \mathrm{M}$ patterns. Considering the amount of antennapattern distortion, the simulators fo- the full-scale and scaled frequencies performed very well.

Impedance measurements made on the 300 Mc opin-ended waveguide are referenced to the input terminal of the transition. The measurements were made in accordance with the test procedures; that is, without heat shield, with heat shield, and with simulator. At the scaled frequencies, the open-ended-waveguide impedance without heat shield were different from those of the 300 Mc transition.

Although the antenna apertures were scaled accurately, it was impossible to scale the probes and connectors of transition pieces. This omission in the scaling procedure caused the scaled impedances to differ. In order to compare the effects of the scaled simulitors on antenna impedance to those of the heat shield, the ante.nna impedances of the scaled antennas were niatched to the 300 Mc antenna without heat shield. The impedance measurements were then made with the simulator. Scaled impedance measurements did not ahow good correlation.

Impedance measurements made at 2200 Mc were more encouraging. At the scaled frequencies of 6 C 00 Mc and 11000 Mc it was not required to match the antenna imped ances to those of 2200 Mc . The scaled simulators were compared directly with the Avc sat 5026-39M heat shield which has the same complex permittivity as the simulators at the scaled frequencies. The heat-shied thickness was scaled to 0.33 inch and 0.20 inch for these tests. The impedance data compared very well with the Avcoat $5026-39 \mathrm{M}$.

86-9871
rigure 19300 MC OPEN-ENDED WAVEGUIDE, WITH AND WITHOUT AVCOAT 5026-39M. E PLANE

Figure 20300 MC OPEN-ENDED WAVEGUIDE, WITH AND WITHOUT AVCOAT 5026-39M. H PLANE

86-9873

Figure 21300 MC OPEN-ENDED WAVEGUIDE, COMPARISON BETWEEN AVCOAT 5026-39M AND SIMULATOR. E PLANE

86-9874

Figure 22300 MC OPEN-ENDED WAVEGUIDE, COMPARISON BETWEEN AVCOAT 5026-39M AND SIMULATOR. H PLANE

- = Variable

Horizontal Polarization
Iso. $=-10.75 \mathrm{db}$
Simulator Thickness $=0.33^{\prime \prime}$
86-9875

Figure 23300 MC ÀND 900 MC OPEN-ENDED WAVEGUIDE, COMPARISON BETWEEN AVCOAT 5026-39M AND THIRD-SCALE SIMULATOR. E PLANE

86-9876
Figure 24300 MC AND 900 MC OPEN-ENDED WAVEGUIDE, COMPARISON BETWEEN AVCOAT 5026-39M AND THIRD-SCALE SIMULATOR. H PLANE

86-9877

Figure 25300 MC AND 1500 MC OPEN-ENDED WAVEGUiDE, COMPARISON BETWEEN AVCOAT 5026-39M AND FIFTH-SCALE SIMULATOR. E PLANE

86-9878

Figure 26300 MC ANJ 1500 MC OPER-ENDED WAVEGUIDE, COMPARISON BETWEEN AVCOAT 5026-39M AND FIFTH-SCALE SIMULATOR. H PLANE

$\phi=90^{\circ}$
0 = Variable
Iso. $=-11.2 \mathrm{db}$
$f=2200 \mathrm{Mcs}$
Ground Plane $=8.88 \lambda \times 8.88 \lambda$
86-9879

Figure 27 22t. M MC OPEN-ENDED WAVEGUIDE, WITH AND WITHOUT AVCOAT 5026-39M. E PLANE

WITH AVCOAT 5026-39M

Fiquie 282200 MC OPEN-ENDED WAVEGUIDE, WITH AIND WITHOUT AVCOAT 5026-39M. H PLANE

Figure 292200 MC OPEN-ENDED WAVEGUIDE, COMPARISON BETNEEN AVCOAT 5026-39M AND SIMULATOR. E PLANE

Figure 302200 MC OPEN-ENDED WAVEGUIDE, COMPARISON BETNEEN AVCOAT SO26-39M AND SIMULATOR. H PLANE

86-9883
figure 312200 MC AND 6600 MC OPEN-ENDED WAVEGUIDE, COMPARISON BETWEEN AVCOAT 5026-39M AND THIRD-SCALE SIMULATOR. E PLANE

86-9884
Figure 322200 MC AND 6600 MC OPEN-ENDED WAVEGUIDE, COMPARISON BETWEEN
AVCOAT 5026-39M AND THIRD-SCALE SIMULATOR. H PLANE

86-9885

Figure 332200 MC AND 11000 MC OPEN-ENDED WAVEGUIDE, COMPARISON BETWEEN AVCOAT 5026-39M AND FIFTH-SCALE SIMULATOR. E PLANE
With Avcoat 5026-39M

$$
\begin{aligned}
& \emptyset=0^{\circ} \\
& \theta=\text { Variable } \\
& \text { Vertical Polarization } \\
& \text { Iso. }=-11.2 \mathrm{db}
\end{aligned}
$$

86-9886
Figure 342200 MC AND 11000 MC OPEN-ENDED WAVEGUIDE, COMPARISON BETWEEN AVCOAT 5026-39M AND FIFTH-SCALE SIMULATOR. H PLANE

IMPEDANCE COORDINATES—50.OHM CHARACTERISTK MPEDANCE

Heat Shield Thickness $=1.0^{\prime \prime}$

Figure 36 IMPEDANCE OF $300 \mathrm{MC}, 900 \mathrm{MC}$ AND 1500 MC OPEN-ENDED WAVEGUIDE

Figure 37 IMPEDANCE OF 2200 MC OPEN-ENDED WAVEGUIDE

IMPEDANCE COORDINATES-50-OHM CHARACTERISTIC IMPEDANCE

Heat Shield Thickness $=0.33^{\prime \prime}$

Figure 38 IMPEDANCE OF 6600 MC OPEN-ENDED WAVEGUIDE

Figure 39 IMPEDANCE OF 11000 MC OPEN-ENDED WAVEGUIDE

The experimental results of the char tests are referenced in Table II by experiment numbers ll through 20 . The char tests were the most difficult part of the verification tests. It was originally thought that the heat shield could be charred its full depth and simulated with a single simulator. Heat shields charred their full. depth measured approximately 36 db attenuation in the E plane. The pattern shape was destroyed and energy seemed to be escaping through cracks in the heat shield. The ablator used for these tests \because.as not bonded to metal sheets prior to charring. This allowed the ablator to be charred on the front and back face. The samples were seriously warped by the heat so they cracked when bonded to ground planes. This indicated that for future charring the heat shield would have to be bonded to the ground planes prior to charring. If the heat shield were to be charred its full depth, the thickness would have to b.f reduced to minimize the attentuation and pattern degradation to the point where meaningful measurements could be taken.

It was decided to char a 0.25 -inch-thick heat-shield its full depth for the verification lests. The heat shield was bonded tu the metal plates Wach high-temperature HT 424 tape.

Charred samples varied considerably in terms of resistivity as a function of heat-shield depth. The idea of charring the heat shield its full depih was abandoned. It vas decided to use a surface char.

Since the largest oven did not have the capacity for a 4 -foot $\times 4$-foot piece of heat shield, the heat shield was charred in nine sections and reassembled after charring.

A standard Structures Lab furnace made up of a reflector and water jacket with 96 General Electric 1600 watt $T 3 C l$ quartz lamps was used to heat the heat shield. The ablator panels were mounted on a transite backup ahield and placed a distance of three inches from the lamps. Threc ignitron power supplies were used to power the quartz lamps, one ignitron per 32 lamps. A voltage of 440 volts was applied for nine seconds to the furnace resulting in a heating rate of approximately $50 \mathrm{Btu} / \mathrm{ft}^{2} \mathrm{sec}$. The tests were conducted in an inert nitrogen atmospherc. Following each test, the furnace was disassembled, cleaned, and reassembled. (See Figures 40, 41 and 42.)

The ablator panels were charred to a depth of between one-sixtcenth and one-eighth of an inch.

The ablator appeared to have a higher conductivity at its lower portion and this was probably due to nonuniformity of heating. The resistivitics varied from 1.3 uhms per square to 4ϵ ohms per square. Repea.ed efforts were made to obtain uniform resistivity. Resistivities still varied across the panels.

Fiqure 40 OVEN TEST SETUP

Figure 41 TOP VIEW OF CHARRED AVCOAT 5026-39M
-127-

Figure 42 CROSS-SECTIONAL VIEW OF SURFACE CHAR ON AVCOAT

Table II references the experimental data for the charred Avcoat 502639 M and its simulators. Note that antenna efficiency was considerably reduced as a result of the char layer over the antenna aperture.

Upon replacing char with a $1 / 4$-inch nylon antenna window, antenna efficiencies of the 300 Mc and 2200 Mc antennas increased to within 6.3 percent and 1.3 percent respectively, of the efficiency measured without heat shield. (See Figure 43.)

The virgin heat shield covered with char was simulated with virgir. heat-shield simulator and conductive cloth. The virgin simulator was approximately $7 / 32$-inch thick for full-scale tests. The conductive cloths required to simulate the char were determined experimentally. The number of conductive sheets used for each test, with their equivalent conductivities and resistivities, is given in Table III. The equivalent resistivity and conductivity was obtained by considering the sheets as parallel-circuit elements. This theory was confirmed experimentally. The equivalent conductivities are in no way related to the electromagnetic laws of scaling. Although the errors at $300 \mathrm{Mc}, 900 \mathrm{Mc}$, and 1500 Mc appear large on the patterns, they are actually small if these differences are compared in terms of power to the peak antenna gain without heat shield.

The nonuniformity of the char layer's resistivity affected the antenna patterns at 2200 Mc with a resultant nonuniform E-plane pattern. The charred section over the antenna aperture was replaced with another section. Antenna patterns taken with this char were again nonuniform and in addition, nonrepeatable. One char layer was chosen for the verification tests and simulators were made to simulate its patterns. The simulators developed for the full-scale and scaled cases were designed to give an average pattern since it was impossible to duplicate the nonuniform partern with the simulators. Again, the variations are not as serious as they appear on the patterns if they are referenced to the peak gain without heat shield.

Impedance measurements were taken in the same manner as previously discussed.

The theoretical radiation patterns were calculated with respect to an infinite ground plane. Since edge effects played a predominate role in the patterns taken at 2200 Mc , the associated theoretical patterns can be compared only in envelope. Although the patterns at 300 Mc did not show any serious edge effects, these patterns can not be compared due to the small ground plane used in the 300 Mc measurements ($1=1.22 \lambda$). The gain at $\emptyset=0$ degrees, $\theta=0$ degrees can be compared.

TABLE III
CHAR SIMULATORS

| Frequency | Char Simulator (ohms per square) | | | Equivalent G
 (mho per square) | Equivalent R (ohms per square) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | \#81 Ω / sq Sheets | \#480 $/$ /sq Sheets | \#660 R / sq Sheets | | |
| 300 Mc | 2 | | 1 | 0.026 | 38.2 |
| 900 Mc | 2 | | | 0.025 | 40.5 |
| 1500 Mc | 3 | | | 0.037 | 27.0 |
| 2200 Mc | 1 | 1 | 2 | 0.017 | 57.3 |
| 6600 Mc | 1 | 2 | 2 | 0.020 | 51.1 |
| 11000 Mc | 1 | 2 | 1 | 0.016 | 66.7 |

Charred Avcoot 5026-39M

Figure 44300 MC OPEN-ENC - D WAVEGUIDE, COMPARISON BETWEEN CHARRED AVCOAT 5026-39M AND SIMULATOR. E PLANE
Charred Avcoat 502t-39M \qquad

Figure 45300 MC OPEN-ENDED WAVEGUIDE, COMPARISON BETWEEN CHARRED AVCOAT 5026-39M AND SIMULATOR. H PLANE

86-9895

Figure 46300 MC AND 900 MC OPEN-ENDED WAVEGUIDE, COMPARISON BETWEEN CHARRED AVCOAT $5026-39 \mathrm{M}$ AND THIRD-SCALE SIMULATOR. E PLANE

Figure 47300 MC and 900 MC OPEN-ENDED WAVEGUIDE, COMPARISON BETWEEN CHARRED AVCOAT 5026-39M AND THIRD-SCALE SIMULATOR. H PLANE

Figure 48300 MC AND 1500 MC OPEN-ENDED WAVEGUIDE, COMPARISON BETWEEN CHARRED AVCOAT 5026-39M AND FIFTH-SCALE SIMULATOR. E PLANE

Figure 49300 MC AND 1500 MC OPEN-ENDED WAVEGUIDE, COMPARISON BETWEEN CHARRED AVCOAT 5026-39M AND FIFTH-SCALE SIMULATOR. H PLANE
\qquad

Figure 502200 MC OPEN-ENDED WAVEGUIDE, COMPARISON BETWEEN CHARRED AVCOAT 5026-39M AND SIMULATOR. E PLANE
86-9900
With Charred Avcost 5026-39M \qquad
With Simulator-

Figure 512200 MC OPEN-ENDED WAVEGUIDE, COMPARISON BETWEEN CHARRED AVCOAT 5026-39M AND SIMULATOR. H PLANE

Figure 522200 MC AND 6600 MC OPEN-ENDED WAVEGUIDE, COMPARISON BETWEEN CHARRED AVCOAT 5026-39M AND THIRD-SCALE SIMULATOR. E PLANE
$\mathrm{f}=2200 \mathrm{Mcs}$
With Charred Avcoat 5026-39M \qquad
$f=6600 \mathrm{Mcs}$
With $1 / 3$ Scale Simulator

Figure 532200 MC AND 6600 MC OPEN-ENDED WAVEGUIDE, COMPARISON BETWEEN CHARRED AVCOAT 5026-39M AND THIRD-SCALE SIMULATOR. H PLANE

Figure 542200 MC AND 11000 MC OPEN-ENDED WAVEGUIDE, COMPARISON BETWEEN CHARRED AVCOAT 5026-39M AND FIFTH-SCALE SIMULATOR. E PLANE

Figure 552200 MC AND 11000 MC OPEN-ENDED WAVEGUIDE, COPAPARISON BETWEEN CHARRED AVCOAT 5026-39M AND FIFTH-SCALE SIMULAT OR. H PLANE

W1th Charred Avcoat 5026-39M

Charred Avcoat 5026-39M with
Nylon Window --------

Figure 56300 MC OPEN-ENDED WAVEGUIDE, CHARRED 5026-39M AND CHARRED 5026-39M WITH ANTENNA WINDOW. E PLANE
With Charred Avcout 5026-30n: \qquad
Charred Avcoat 5026-39M With
Nylon Window

86-9906
figure 57300 MC OPEN-ENDED WAVEGUIDE, CHARRED 5026-39M AND CHARRED 5026-39M WITH ANTENNA WINDOW. H PLANE

With Charred Avcoat 5026-39M \qquad

86-9907

Figure 582200 MC OPEN-ENDED WAVEGUIDE, CHARRED 5026-39M AND CHARRED 5026-39M WITH ANTENNA WINDOW. E PLANE

86-9908

Figure 592200 MC OPEN-ENDED WAVEGUIDE, CHARRED 5026-39M AND CHARRED 5026-39M WITH ANTENNA WINDOW. H PLANE

MPEDANCE CUORDNATES-50.OHM Ci،ARACTERSTTK MPEDANCE

86-9909

Figure 60 IMPEDANCE OF 300 MC OPEN-ENDED WAVEGUIDE WITH CHARRED AVCכAT 5026-39M AND SIMULATOR

Figure 61 IMPEDNACE OF 300 MC AND 900 MC OPEN-ENDED WAVEGUIDE WITH CHARRED AVCOAT 5026-39M AND SIMULATOR

86-9911
Figure 62 IMPEDANCE OF 300 MC AND 1500 MC OPEN-ENDED WAVEGUIDE WITH CHARRED AVCOAT 5026-39M AND SIMULATOR

IMPEDANCE COORDINATES-50-OHM CHARACTERISTK MPEDANCE

86-9912
Figure 63 IMPEDANCE OF 2200 MC OPEN-ENDED WAVEGUIDE WITH CHARRED AVCOAT 5026-39M AND SIMULATOR

IMPEDANCE COORDINATES—50-OHM CHARACTERISTKC MPEDANCE

86-9913
Figure 64 IMPEDANCE OF 2200 MC AND 6600 MC OPEN-ENDED WAVEGUIDE WITH CHARRED AVCOAT $5026-39 \mathrm{M}$ AND SIMULATORS

IMPEDANCE COORDINATES—50-OHM CHARACTERISTKC MPEDANCE

86-9914
Figure 65 IMPEDANCE OF 2200 MC AND 11000 MC OPEN-ENDED WAVEGUIDE WITH
CHARRED AVCOAT 5026-39M AND SIMULATORS
$\left.\begin{array}{|c|c|c|}\hline \text { Frequency } \\ (\mathrm{Mc})\end{array} \left\lvert\, \begin{array}{c}\text { Theoretical } \\ \text { Attenuation } \\ \text { (db) }\end{array} \quad \begin{array}{c}\text { Measured } \\ \text { Attenuation } \\ \text { (db) }\end{array}\right.\right\}$

The average value for the 2200 Mc antenna was obtained by averaging the ripple in both the E - and H -plane patterns.

Impedance measurements of the antenna aperture were made at 6600 Mc with a 0.33 -inch heat-shield cover to check the computer program. The measured aperture impedance was $Z=483-j 266$ without heat shield and with heat shield $Z=222-j 106.3$. The calcuiated aperture impedance was $Z=47 \varepsilon-j 278$ without heat shield, and with heat shield $Z=186-j 125$. The measured and calculated impedances are within 20 percent of one another. This difference is due to approximations in the compuater progr:m for calculation of the Q integrals. Also, there is a measurement error in that the measurements were made on a 8.88λ ground plane whereas the computer calculations are based on an infinite ground plane.
b. Monopole, Full- and 1/3-Scale-Model Patterns and Impedance

Verification tests made with the monopole antenna are presented in matrix form in Table IV. The matrix references a series of figures which are reprints of measured data. Related patterns have been superimposed to enable the reader to readily compare them.

Only two verification test frequencies were required on the monopole, 2200 Mc and 6600 Mc . The spherical coordinate system used for the monopole-antenna patterns is defined in Figure 66.

Efficiency was calculated for the 2200 Mc monopole antenna with and without virgin heat shield. These efficiency calculations were made in the same manner as described in Subsection D.3.a with one exception, only the horizontal component was considered since the vertical component was negligible. Considerable antenna-pattern disturtion was caused by the heat-shield cover. The 2200 Mc simulator performed excellently while the 6600 Mc simulator provided good correlation in respect to pattern shape unly.

Figure 66 SPHERICAL COORDINATE SYSTEM FOR MONOPOLE

Figure 672200 MC MIONOPOLE ANTENNA COVERED WITH VIRGIN HEAT-SHIELD SIMULATOR

86-9916

Figure 682200 MC MONOF OLE, WITH AND WITHOUT AVCOAT 5026-39M

86-9918

Figure $70220 C$ MC AND 6600 MC MONOPOLE ANTENNAS, COMPARISON BETWEEN AVCOAT 5026-39M AND THIRD-SCALE SIMULATION-POLARIZATION HORIZONTAL

86-9917

Figure 692200 MC MONOPOLE, COMPARISON BETWEEN AVCOAT 5026-39M AND SIMULATOR

IMPEDANCE COORDNATES-50-OHM CHARACTERISTK MPEDANCE

86-9919
Figure 71 IMPEDANCE OF 2200 MC AND 6600 MC MONOPOLE
TABLE IV

| Experiment | Antenna Cover | Frequency (Mc) | $\left\|\begin{array}{c} \text { Scale } \\ \text { Factor } \end{array}\right\|$ | Efficiency (percent) | Measured 5026-39 Patterns versus Simulator Patterns | | Measured 5026-39 Impedance versus Simulator Impedance |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | Experiment No. | Figure No. | |
| 1 | no cover | 2200 | 1 | 88.81 | | 68 | Figure 71 |
| 2 | virgin 5026-39 | 2200 | 1 | 64.56 | 1 with 2 | 69 | Figure 71 |
| 3 | virgin simulator | 2200 | . 1 | | 2 with 3 | 69 | Figure 71 |
| 4 | virgin simalator | 6600 | 1/3 | | 2 with 4 | 70 | Figure 71 |

The impedance data showed good correlation. The impedance of the 6600 Mc monopole without simulator was matched to the 2200 Mc monopole without heat shield prior to measuring the 6600 Mc monopole with its simulator.

c. Scimitar and Scimitar-Slot, Full- and 1/3-Scale Model Patterns and Impedance

Verification tests made with the scimitar and scimitar-slot antennas are presented in matrix form in Tables V and VI. The matrix references a series of figures which are reprints of measured data. Related patterns have beer superimposed to enable the reader to compare them readily.

The scimitar antenna entails two antennas in one, the scimitar and scimitar slot. The full-scale scimitar was tested at 300 Mc while its associated slot was tested at 2200 Mc . The scaled frequencies were 900 Mc and 6600 Mc .

The spherical coordinate system used for the scimitar and scimitarslot antenna patterns is defined in Figure 72.

Antcnna-efficiency calculations were made using the same method described in Subsection D.3.a. Efficiency calculations were made on both the scimitar and scimitar-slot antennas with and without heat shield.

The simulator patterns showed good correlation with Avcoat 5026-39 patterns except for the vertical-polarization pattern of the scimitar slot. Impedance data compared favorably at the full-scale frequencies but not at the scaled frequencies.

d. Simulation Errors

Table VII is concerned with deviations in scaied and full-scale simulator patterns from the Avcoat 5026-39M patterns at four points in the forward beam. One column gives maximum deviation between simulator and heat shicld, excluding null areas. Another column gives deviations at the point of maximum radiation on the pattern to be simulated. The remaining two columns show errors in null areas if any nulls exıst in the forward beam. Deviations in null areas are large; however, the percentage error is relative to power. As an example, consider the E-plane pattern of the 6600 Mc open-ended-waveguide antenna with virgin heat shield. At $\theta=70$ degrees, the deviation is 14.0 db . The level of the simulator is -13.8 db below the isotropic level while the heat shield is -27.8 db below the isotropic level.
TABLE V

| ExperimentNo. | Antenna Cover | $\begin{aligned} & \text { Frequency } \\ & (\mathrm{Mc}) \end{aligned}$ | Scale
 Factor | Efficiency (percent) | Measured 5026-39 Patterns versus Simulator Patterns | | Measured 5026-3?
 Impedance versus Simulator Impedance |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | Experiment No. | Figure No. | |
| 1 | no cover | 300 | 1 | 87.13 | | 75, 76 | Figure 87 |
| 2 | virgin 5026-39 | 300 | 1 | 69.55 | 1 with? | 75, 76 | Figure 87 |
| 3 | virgin simulator | 300 | 1 | | 2 with 3 | 77, 78 | Figure 87 |
| 4 | virgin simulator | 900 | 1/3 | | 2 with 4 | 79, 80 | Figure 87 |

TABLE V!
VERIFICATION TESTS - SCIMITAR SLOT

| Experiment No. | Antenna Cover | Frequency (Mc) | Scale Factor | Efficiency (percent) | Measured 5026-39 Patterns versus Simulator Patterns | | Measured 5026-39 Impedance versus Simulator Impedance |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | Experiment No. | Figure N. | |
| 1 | no cover | 2200 | 1 | 73.69 | | \&1, 82 | Figure 88 |
| 2 | virgin 5026-39 | 2200 | 1 | 65.13 | 1 with 2 | 81, 82 | Figure 88 |
| 3 | virgin simulator | 2200 | 1 | | 2 with 3 | 83, 84 | Figure 88 |
| 4 | virgin simulato: | 6600 | 1/3 | | 2 with 4 | 85, 86 | Figure 88 |

-164-

Figure 72 SPHERICAL COORDINATE SYSTEM FOR SCIMITAR AND SCIMITAR SLOT

86-9921
Figure 75300 MC SCIMITAR ANTENNA, WITH AND WITHOUT AVCOAT 5025-39MPOLARIZATION HORIZONTAL

With Avcoat 5026-39M \qquad

36-9922

Figure 76300 MC SCIMITAR ANTENNA, WITH AND W!THOUT AVCOAT 5026-39M-POLARIZATION VERTICAL

86-9923
Figure 77300 MC SCIMITAR ANTENNA, COMPARISON BETWEEN AVCOAT 5026-39M AND SIMULATOR-POLARIZATION HORIZONTAL

86-9924

Figure 78300 MC SCIMITAR ANTENNA, COMPARISON BETWEEN AVCOAT 5026-39M AND SIMULATOR-POLARIZATION VERTICAL

86-9925

Figure 79300 MC AND 900 MC SCIMITAR ANTENNAS, COMPARISON BETWEEN AVOCAT 5026-39M AND THIRD-SCALE SIMLLATION-POLARIZATION HORIZONTAL

86-9926

Figure 80300 MC AND 900 MC SCIMITAR ANTENNAS, COMPARISON BETWEEN AVCOAT 5026-39M aNn THIRD-SCALE Si:HULATION-POLARIZATION VERTICAL

86-9927
Figure 8! 2200 MC SCIMITAR-SLOT ANTENNA, WITH AND WITHOUT AVCOAT 5026-39MPOLARIZATION HORIZONTAL

With Avcoat 5026-39M \qquad

Figure 822200 MC SCIMITAR-SLOT ANTENNA, WITH AND WITHOUT AVCOAT 5026-39MPOLARIZATION VERTICAL

86-9929

Figure 832200 MC SCIMITAR-SLOT ANTENNA, COMPARISON BETWEEN AVCOAT 5026-39M AND SIMULATOR-POLARIZATION HORIZONTAL
With Avcoat 5026-39M \qquad
With Simulato

86-9930

Figure 842200 MC SCIMITAR-SLOT ANTENNAS, COMPARISON BETWELN AVCOAT 5026-39M AND
SIMULATOR-POLAF, IZATION VERTICAL

| $\mathrm{f}=2200 \mathrm{Mcs}$ |
| :--- |
| With Avcoat 5026-39M $\quad 46$ |

$f=6600 \mathrm{Mcs}$
With $1 / 3$ Scale Simulator -.....-
$\phi=90^{\circ}$

$$
\theta=\text { Variable }
$$

Horizontal Polarization

$$
\text { Iso. }=-11.2 \mathrm{db}
$$

86-9931
Figure 852200 MC AND $660 C$ MC SCIMITAR-SLOT ANTENNAS, COMPARISON BETWEEN AVCOAT 5026-39M AND THIRD-SCALE SIMULATION-POLARIZATION HORIZONTAL

86-9932

Figure 862200 MC AND 6600 MC SCIMITAR-SLOT ANTENNAS, COMPARISON BETWEEN AVCOAT 5026-39M AND THIRD-SCALE SIMULATION-POLARIZATION VERTICAL

86-9933
Figure 87300 MC AND 900 MC SCIMITAR

IMPEDANCE COORDINATES-50-OHM CHARACTERISTK MPEDANCE
Heat Shield Thickness $=1.0^{\prime \prime}$
2200 mcs Simulator Thickness $=50110.019$ Ground Plane Size $=8.88 \lambda$

86-9934
Figure 882200 MC AND 6600 MC SCIMITAR SLOT

The pattern peak is +5.5 db above isotropic. The percentage error with reference to maximum power radiated is

$$
\text { Percentage Error }=\frac{0.04169-0.00166}{1.884} \times 100 \text { percent } 2.13 \text { percent }
$$

In other null areas, the percentage error may be considered small although the decibel deviation is large. For sharp nuils, high deviations are partially attributable to small angular-measurement errors.

The chart shows a trend of increasing deviations as the scale factor is reduced.
TABLE VII

| | | | | | | | | $\begin{aligned} & \dot{\sim} \\ & \stackrel{0}{7} \\ & 11 \\ & \stackrel{1}{2} \end{aligned}$ | ∞ \sim \sim \sim 0 0 | $\begin{aligned} & \dot{0} \\ & m_{1} \\ & \vdots 0 \\ & 0 \end{aligned}$ | | | $\begin{gathered} \dot{\sim} \\ \underset{\sim}{n} \\ n \\ 0 \\ 0 \end{gathered}$ | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | 8 7 11 0 0 | $\begin{aligned} & \dot{B} \\ & 110 \\ & =1 \end{aligned}$ | $\begin{aligned} & \dot{\infty} \\ & \underset{T}{11} \\ & 0.0 \end{aligned}$ | $\begin{aligned} & \dot{\circ} \\ & \text { " } \\ & \text { " } \end{aligned}$ | | $\begin{aligned} & \dot{\sigma} \\ & \dot{\omega} 0 \\ & \ddot{0} \end{aligned}$ | | $\begin{aligned} & \dot{\sim} \\ & \stackrel{1}{1} \\ & \dot{0} \end{aligned}$ | | |
| | $\begin{aligned} & i n \\ & n \\ & i n \\ & 0 \end{aligned}$ | $\begin{aligned} & \dot{\circ} \\ & \text { "1 } \\ & 0 \end{aligned}$ | $\begin{aligned} & \dot{n} \\ & \underset{n}{n} \\ & \underset{\sim}{n} \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & \hline 110 \\ & \hline 0 \\ & \hline 0 \end{aligned}$ | $\begin{aligned} & i_{n} \\ & n \\ & n \\ & i=-1 \end{aligned}$ | $\begin{aligned} & \dot{0} \circ \\ & 110 \\ & 0 \end{aligned}$ | $\begin{aligned} & \dot{0} \\ & \text { " } \\ & 0 \\ & 0 \end{aligned}$ | | $\begin{array}{ll} \dot{0} \\ 0 \\ 0 \\ 0 \end{array}$ | $\begin{aligned} & \dot{0} 0 \\ & 10 \\ & \hline 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & 110 \\ & 0 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0 \\ & \text { i in } \\ & \text { " } \\ & \hline \end{aligned}$ | | $\begin{aligned} & \dot{\sim} \\ & \tilde{N}_{1}^{\prime \prime} \\ & \text { "1 } \end{aligned}$ | $$ | $\stackrel{0}{9}-$ | $\begin{aligned} & i n \\ & i \\ & i n \\ & i n \\ & \hline \end{aligned}$ |
| | $\begin{aligned} & \text { in } \\ & \stackrel{y}{n} \\ & 0 \stackrel{0}{\circ} \end{aligned}$ | $\begin{aligned} & i n_{n}^{n} \\ & \stackrel{n}{0} \end{aligned}$ | $\begin{aligned} & i_{0}^{\infty} \\ & \stackrel{1}{\sim} \\ & { }_{0}^{\prime \prime} \end{aligned}$ | $\begin{aligned} & \dot{8} \\ & \ddot{0} \\ & \vdots i \end{aligned}$ | $$ | | $\begin{aligned} & \dot{0} \\ & i \\ & 01 \\ & 0:- \end{aligned}$ | $\begin{aligned} & \dot{0} \\ & \stackrel{0}{n} \\ & \ddot{0} \\ & 0 \end{aligned}$ | $\begin{aligned} & \stackrel{4}{\sim} \\ & \stackrel{1}{\circ} \end{aligned}$ | | $\begin{aligned} & \dot{8} \\ & \dot{8} 0 \\ & \mathfrak{y} \\ & \dot{x} \end{aligned}$ | $\begin{aligned} & \tilde{N}_{n} \\ & \tilde{m}_{11}^{\infty} . \\ & =- \end{aligned}$ | $\begin{aligned} & \dot{\infty} \\ & \stackrel{m}{m} \\ & \stackrel{1}{*} \end{aligned}$ | $\begin{aligned} & i n \\ & i n \\ & i n \\ & i \end{aligned}$ | $\begin{aligned} & \circ \\ & \stackrel{0}{m} \\ & \stackrel{11}{\circ} \dot{\circ} \end{aligned}$ | $\begin{aligned} & \dot{8} \\ & \underset{\sim}{\sim} \\ & 11 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & \underset{\sim}{n} \\ & \underset{\sim}{11} \\ & 0 \end{aligned}$ |
| | ω | I | 4 | I | （4） | x | ω | I | ω | ［ | 닌 | \pm | J D 0 0 0 d | 或 | T E U U d I | － | |
| | 8 | 8 | \％ | 8 | \％ | 8 | － | － | 8 | 8 | \％ | 8 | －8 | 8 | － | $\stackrel{9}{9}$ | \％ |
| | | S／H utinin | $\begin{array}{r} \text { S/H u!8גin } \\ \text {-opingonem popus-uado } \end{array}$ | | | | | | ＇opingasem рарад－uado | | $\begin{array}{r} \text { S/H u!8_in } \\ \text { 'วpinsanem papuo-uado } \end{array}$ | ＇כрinbanem рариә－иәdo | | | | | 年资 |

| Antenna and HeatShield State | Frequency (Mc) | Polarization or Plane of Radiation | Maximum Deviation
 Excluding Nulls
 (db) | Deviation at Pattern Peak (db) | $\underset{\substack{\text { Deviations } \\(\mathrm{db})}}{\text { Null }}$ | $\begin{gathered} \text { Null } \\ \text { Deviations } \\ \text { (db) } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Scimatar. virgin H/s | 900 | Vertical | $\begin{aligned} & \theta=320^{\circ} \\ & 3.4 \end{aligned}$ | $\begin{aligned} & \theta=10^{\circ} \\ & 1.40^{\circ} \end{aligned}$ | | |
| Scimitar alot, virgin H / S | 2200 | Horizontal | $\begin{aligned} & \theta=278^{\circ} \\ & 2.5 \end{aligned}$ | $\begin{aligned} & \theta=25^{\circ} \\ & 1.0 \end{aligned}$ | $\begin{aligned} & \theta=49^{\circ} \\ & 3.6 \end{aligned}$ | $\begin{aligned} & \theta=333^{\circ} \\ & 14.5 \end{aligned}$ |
| Scamitar alot, virgin H/S | 2200 | Vertical | $\begin{aligned} & \theta=15^{\circ} \\ & 5.9^{\circ} \end{aligned}$ | $\begin{aligned} & \theta=50^{\circ} \\ & 0.0 \end{aligned}$ | | |
| Scimitar alot. $\text { virgin } \mathrm{H} / \mathrm{S}$ | 6600 | Horizontal | $\begin{aligned} & \theta=300^{\circ} \\ & 5.0 \end{aligned}$ | $\begin{aligned} & \theta=25^{\circ} \\ & 0.3 \end{aligned}$ | ${ }^{0}=353$. | $\begin{aligned} & \theta=333^{\circ} \\ & 12.2 \end{aligned}$ |
| Scimitar alot. virgan H/S | 6600 | Vertical | $\begin{aligned} & \theta=60^{\circ} \\ & 3.3 \end{aligned}$ | $\begin{aligned} & \theta=50^{\circ} \\ & 2.2 \end{aligned}$ | | |
| Op:n-ended waveguide, charred K / S | 300 | E | $\begin{aligned} & \theta=270^{\circ} \\ & 3.2 \end{aligned}$ | $\begin{aligned} & \theta=353^{\circ} \\ & 0.0 \end{aligned}$ | | |
| Open-ended waveguide, charred H/S | 300 | H | $\begin{aligned} & \theta=270^{\circ} \\ & 2.0 \end{aligned}$ | $\begin{aligned} & 0=5^{\circ} \\ & 0.4 \end{aligned}$ | | |
| Cpen-ended wavegurde, charred H/S | 900 | E | $\begin{aligned} & 0=280^{\circ} \\ & 4.2 \end{aligned}$ | $\begin{aligned} & 0=353^{\circ} \\ & 1.1 \end{aligned}$ | | |
| Open-ended wavegusde, charred H/S | 900 | H | $\begin{aligned} & \theta=280^{\circ} \\ & 3.4 \end{aligned}$ | $\begin{aligned} & 0=5^{\circ} \\ & 0.8^{2} \end{aligned}$ | | |
| Open-ended waveguide, charred H/S | 1500 | E | $\begin{aligned} & \theta=290^{\circ} \\ & 2.9 \end{aligned}$ | $\begin{aligned} & \theta=353^{\circ} \\ & 0.1 \end{aligned}$ | | |
| Open -ended waypanise. charred H/S | 1500 | H | $\begin{aligned} & 0=280^{\circ} \\ & 2.4 \end{aligned}$ | $\begin{aligned} & 8=5^{\circ} \\ & 0.9 \end{aligned}$ | | |
| Open-ended waveguide. charred H/S | 2200 | E | $\begin{aligned} & \theta=353^{\circ} \\ & 1.8 \end{aligned}$ | $\begin{aligned} & \theta=65^{\circ} \\ & 1.8 \end{aligned}$ | $\begin{aligned} & 0=320^{\circ} \\ & 15.5^{\prime} \end{aligned}$ | $\theta=12^{*}$ 6.6 |
| Opin-ended waveguide, charred H/S | 2200 | H | $\begin{aligned} & \theta=30^{\circ} \\ & 4.8 \end{aligned}$ | $\begin{aligned} & \theta=22^{\circ} \\ & 2.9 \end{aligned}$ | | |
| Open-ended waveguide, charred H/S | 6600 | E | $\begin{aligned} & \theta=62^{\circ} \\ & 4.4 \end{aligned}$ | $\begin{aligned} & \theta=65^{\circ} \\ & 3.9 \end{aligned}$ | $\begin{aligned} & \theta=320^{\circ} \\ & 14.7 \end{aligned}$ | $\begin{aligned} & \theta=12^{\circ} \\ & 4.8 \end{aligned}$ |
| Open-ended waveguide, charred H/S | 6600 | H | $\begin{aligned} & \theta=.0^{\circ} \\ & 5.0^{\circ} \end{aligned}$ | $\begin{aligned} & \theta=22^{\circ} \\ & 3.9 \end{aligned}$ | | |
| Open-ended wavegu z. charred H/S | 11000 | E | $\begin{aligned} & d=63^{\circ} \\ & 6.1 \end{aligned}$ | $\begin{aligned} & \theta=65^{\circ} \\ & 5.9^{\circ} \end{aligned}$ | $\begin{aligned} & \theta=320^{\circ} \\ & 14.5 \end{aligned}$ | $\begin{aligned} & \theta=12^{\circ} \\ & 6.8 \end{aligned}$ |
| Open-ended waveguide, charred H/S | 11000 | H | $\begin{aligned} & t=48^{\circ} \\ & 5.9 \end{aligned}$ | $\begin{aligned} & \theta=22^{\circ} \\ & 3.2^{\circ} \end{aligned}$ | | |

APPENDIX A

BIBLIOGRAPHY

APPENDIX A

BIBLIOGRAPHY

Avco Corporation, Research and Development Division, Wilmington, Massachusetts, Apollo Heat Shield Design Status Report, -- Structures, Research and Advanced Development Division
Avco RAD-SR-64-137 (C) (June 1, 1964), p. 305, pp. 4-313.
Bennet, R. B., and J. H. Caldenwood
Measurement of VHF Complex Permittivity of Liquids by Means of an Adjustable Coaxial Line
Proc. IEE, 112, No. 2 (February 1965), pp. 416-420.

Blanck, A. R.
Compliant Electrodes for Dielectric Measurements (U)
Feltman Research Labs, Picatinny Arsenal, Dover, N. J. (August 1960)
AD-243-158, DDC Search Control No. 037175

Brydon, G. M., and D. J. Heppiestone
Microwave Measurement of Permittivity and Tan δ - over the Temperature
Range 20-700 ${ }^{\circ} \mathrm{C}$
Proc. IEE, l12, No. 2 (February 1965), pp. 421-425.
Chaplin, K. S. and R. R. Krongard
The Measurement of Conductivity and Permittivity of Semiconductor Spheres by an Extension of the Cavity Perturbation Method
lRE Transactions on Microwave Theory and Techniques (November 1961), np. 545-551.

Croswell, W. F.
Antennas under Ablation Materials (24), Conference on Langley Research Related to Apollo Mission, Langley Research Center (22-24 June 1965), 239 and 265.

Cuming, W. R., E. K. Buckley, P. E. Rowe, E. J. Luonia, and M. C. Volk, Graded Dielectric Absorber (U)
Engineering Report No. 3, Emerson and Cuming, Inc., Canton, Massachusetts (15 January to 15 April 1964).
AD 350-397, DDC Search Control No. 037175

Dakin, T. W., and C. N. Works Microwave Dielectric Mieasurements
J. Appl. Phys., 18, No. 9 (September 1947) pp. 789-796.

BLANK
 PAGE

East, B. B., and W. B. Westphal
Dielectric Parameters and Equivalent Circuits
Laboratory for Insulation Research, Massachusetts Institute of Technology
Technical Report 189
Emer-sn, C.
Study of Radar Absorber Materials (U)
Emerson and Cuming, Inc., Canton, Massachusetts (March 1962)
AD-275-425, DDC Search Control No. 037175

Flugge, S.
Dielectric Properties of Mixtures
Encyclopedia of Physics XVII
Electric Fields and Waves, Berlin (1958), pp. 706-710.

Fraser, D. B., and A. C. H. Hallett
The Coefficient of Linear Expansion and Gruneisen of $\mathrm{Cu}, \mathrm{Ag}, \mathrm{Au}, \mathrm{Fe}, \mathrm{Ni}$, and Al from $4^{\circ} \mathrm{K}$ to $300^{\circ} \mathrm{K}$
Proceedings of the 7th International Col .- ncc on Low Temperature Physics, 1961. University of Toronto Press, pp. 689-692.

Frisco, L. J., A. M. Muhlbaum, A. K. Szymkowi, and A. Edward
Dielectrics for Satellites and Space Vehicles - Final Report (U)
Dielectric Lab. Johns Hopkins University, Baltimore, Maryland (l March 1962 and 31 March 1963) DDC Search Control No. 037175

Gray, B. C.
Programming for Dielectric Constants
Electronic Industries (August 1961), pp. i06, 107, 222
Grosjean, B. G.
Preparation of Artificial Dielectric Materials with Low Loss
North American Aviation, Inc., Columbus Division, PP. 119-129
OSU-WADD Symposium on Electromagnetic Windows (June 1960), AD-250-268
Gum, P. H., and A. B. Schoomer
A Speedy Method of Computing Dielectric Properties
Electronic Industries (September 1963), pp. 90-94

Hansen, E. F.
Standardization Engineering Practices Study - Quarterly Progress Report No. 2
(U) General Electric Company, Syracuse, N. Y.. (l December 1962-28 February 1963)
AD-406-958, DDC Search Control No. 037175

Hansen, E. F.
Standardization Engineering Practices Study, High Frequency Characteristics of Ceramic Materials
(30 September 1963)
AD-440-377

Hazard, K.
Scaling Laws
Avco Corporation, RAD Division, in-plant memo
Memorandum AEDM-F530
(15 February 1965)
Hoare, F. E., L. C. Jackson, and N. Kurti
Experimental Cryophysics
Butterworth and Company, London (1961)

Iizuka, K.
An Experimental Study of the Insulated Dipole Antenna Irnmersed in a Conducting Medium
IEEE Trans. on Antennas and Propagation (September 1963).
Knop, C. M., and G. I. Cohn
Radiation fron an Aperture in a Coated Plane
Radio Science Journal of Research, 68D, No. 4
(April 1964).
Kohane, T.
The Measurement of Microwave Resistivity by Eddy Current Loss in Small
Spheres
IRE Trans. on Instrumentation
(September 1960), pp. 184-168
Koozekani
Dielectric Coated Antenna
Brown University
(May 1961) AD-こ6 1936 8/1.
Kozhelev, Y. D.
Measurements of Permittivity with an Autodyne Generator
Izmeyitel' Naya Tekhnika
No. 11, pp. 52-53 November 1964

Lewin, L.
The Electrical Constants of a Material Loaded with Spherical Particles
94, Part III pp. 65-68

Lynch, A. C.
Measurement of the Dielectric Properties of Low-Loss Materials Proc. IEE, 112, No. 2 (February 1965), pp. 426-431

McCammon, R. D., and R. N. Work
Dielectric Measurement of Folymer at $4^{\circ} \mathrm{K}$, Review of Scientific Instruments, 36, No. 8 (August 1965), pp. 1170-1172.

Mukharev, L. A., C. Perel, A. M. Man, and N. A. Rogova Determination of the Dielectric Permittivity of Materials at High Temperature in the Three-Centimetre Range of Radio Waves (U)
Royal Aircraft Establishment Farnborough (England)
AD-274-606, DDC Search Control No. 037175
Perkins, C. L., and Z. Alterman
Radiation Resulting from an Impulsive Current in a Vertical Antenna Placed on a Dielectric Ground
J. Appl. Phys., 28, No. 11

Redheffer, R. M., R. L. Wildman, V. O'Groman
The Computation of Dielectric Constants
J. Appl. Phys., 23, No. 5 (May 1957) pp. 505-508.

Reynolds, J. A., and J. M. Hough
Formula for Dielectric Constant of Mixtures
Proc. Physical Society, London
(July - December 1957), pp. 769-775.
Rohde and Schwarz
Die Kurz Information, Material Characteristics Measurement (1962)

Shaw, T. M., and J. J. Windle
Microwave Techniques for the Measurement of the Dielectric Constant of Fibers and Films of High Polymers
J. Appl. Phys., 21, (October 1950), pp. 956-961.

Squire, F .
Low Temperature Physics,
McGraw-Hill Book Company, Inc., New York
Surber, Jr. W. H., and G. E. Crouch, Jr.
Dielectric Measurement Methods for Solids at Microwave Frequencies
J. Appl. Phys., 19, (December 1948), pp. 113C-1139.

Sutton, R. W., and N. Grechny
Design and Development of a High Temperature Resonant Cavity Dielectrometer Proc., OSU-WADD Symposium on Electromagnetic Windows
(June 1960), pp. 497-511, AD-250-268

Von Hippel, Editor, The Technology Press of M. I. T., and Wiley, Sons, Inc., New York
Dielectric Materials and Applications
Chapman and Hall, LTD, London (Copyright 1954)
Von Hippel, R.
Dielectrics and Waves
John Wiley and Sons, Inc., New York (1954)

Von Hippel, A. R., et al.
Studies on the Formation and Properties of High Temperature Dielectrics Technical Report 191
Laboratory for Insulation Research, M. I. T.

Westphal, W. B.
Dielectric Constant and Loss Measurements on High-Temperature Materials (U) Laboratory for Insy ation Research Mass. Inst. of Tech., Cambridge (October 1963).
AD-423-686, DDC Search Control No. 037175

Westphal, W. B.
Dielectric Constant and Loss Measurements on High Temperature Materials Technical Report 182
Laboratory for Insulation Research, M. I. T.

Westphal, W. B.
Dielectric Constant and Loss Measurement on High Temperature Materials Laboratory for Instrumentation Research, MIT, Cambridge, Massachusetts (October 1963)

Yatsuk, K. P., V. P. Shestopalov, and V. A. Lyashchenko
Limits of Applicability of the Method of a Helical Waveguide for the Measurement of Dielectric Constants in Matter (U)
Aerospace Technology Div., Library of Congress, Washington, D. C., (December 1962).
AD-299-798, DDC Search Control No. 037175

APPENDIX B

MID-TEMPERATURE RANGE COMPLEX DIELECTRIC
CONSTANT TEST PROCEDURES FOR AVCOAT 5026-39

APPENDIX B

MID-TEMPERATURE RANGE COMPLEX DIELECTRIC CONSTANT TEST PROCEDURES FOR AVCOAT 5026-39
(Prepared by Avco RAD under NASA/MSC Contract NAS 9-4916)

Input impedance measurements with short samples in a co-axial transmission line will be used to obtain the complex dielectric constant of Avcoat 5026-39 in the mid-temperature range. This measurement method was chosen for its high accuracy with moderate lengths of medium and for measurement simplicity. Equipment required for the measurement is a signal generator, a slotted line, and a short circuited sample holder. See the block diagram and equipment list (figure B-1). The procedure for the dielectric measurements consists of measuring the magnitude of the VSWR anc the position of the voltage minima, E min., with the output of the slotted line shorted, and repeating the measure. ment with the dielectric medium placed against the short circuit. From these measurements the propagation constant of the dielectric medium can be obtained from equation (1):

$$
\begin{equation*}
\frac{\tanh \gamma \mathrm{d}}{\gamma \mathrm{~d}}=-i \frac{{ }^{\tau_{1}}}{2 \pi \mathrm{~d}} \cdot \frac{\frac{E_{\min }}{E_{\max }}-j \tan \frac{2 \pi x_{0}}{{ }^{\tau_{1}}}}{1-j \frac{E_{\min }}{E_{\max }} \tan \frac{2 \pi x_{0}}{\tau_{1}}} \tag{1}
\end{equation*}
$$

where
$\gamma \quad=$ complex propagation constant of dielectric medium.
d = length of dielectric sample.
$r_{1}=$ wavelength in co-axial line without dieloctric medium.
$x_{0}=s h i f t$ in position of E min. due to the introduction of the dielectric sample in the coaxial line.
$\frac{E_{\text {min }}}{E_{\text {max }}}=\frac{1}{V S W R}$
The complex dielectric constant is related to the propagation constant by the equation:

$$
\begin{equation*}
\gamma=j \omega(\iota \mu)^{1 / 2} \tag{2}
\end{equation*}
$$

| Description | 300 to 3000 mc | 1650 to 3000 mc | $\begin{array}{r} 4400 \mathrm{mc} . \mathrm{u} \\ 8000 \mathrm{mc} \end{array}$ |
| :---: | :---: | :---: | :---: |
| Signal Generator | Rohde \& Schwarz type SLRD BN 41004 FNR 1400/58 | Rohde \& Schwarz type NGS BN 95147 Fnr. E32/5/24 | Rohde \& Schwarz type SMCC BN4143 Fnr. F13849. |
| Slotted Line | Rohde \& Schwarz type LMD BN 39310 Fnr. EF 436/8/26 | Rohde \& Schwarz type LMC BN 39310 Fnr. 436/8/29 | Same as 1650 5000 mc |
| Temperature Control | Rohde \& Schwarz 200 mm | Same as 300-3000 mc | $\begin{aligned} & \text { Same as } 300- \\ & 3000 \mathrm{mc} \end{aligned}$ |
| Specimen Container | BN 39319. | | |
| Adjustable Short | Rohde \& Sclwarz 50 cm short BN 39592 Fnr. 39592 | Rohde \& Schwarz 13 cm BN 39591 Fnr. 1439/10 | Same as 1650 5000 mc |
| Indicating Amplifier | Rohde \& Schwarz type LMC BN 3931 Fnr. KL274/19 | Same as 300-3000 mc | Same as 300 3000 mc |
| Ultra Thermostat | Haake type NC Nr 61224 | Same as 300-3000 mc | $\begin{aligned} & \text { Same as } 300- \\ & 3000 \mathrm{mc} \end{aligned}$ |

85-6940

Figure B-I BLOCK DIAGRAM OF MIDTEMPERATURE RANGE DIELECTRIC MEASUREMENTS AND EQUIPMENT LIST

These are standard dielectric measurements and the procedure is outlined in detai: in references $1,2,3$, and 4.

The equipment that will be used to make the measurements is the Rohde and Schwarz precision coaxial dielectrometer. The Rohde and Schwarz dielectrometer is specifically designed to take advantage of the accuracy of the input impedance measuring method with short samples. This dielectrometer has a frequency range of 300 to $8000 \mathrm{mc} / \mathrm{s}$ and a -50 to $+250^{\circ} \mathrm{C}$ temperature range. See Figure B2.
Because the dielectric constant is not expected to vary appreciably in the midtemperature range only a limited number of measurements will be peirormed.

Table $B-I$ is a tabulation of the frequencies, temperatures, and simple types that will be measured.

TAB:JE B-I
FREQUENCIES, TEMPERATURES, AND SAMPLE TYPES,

| Frequencies (Mc) | Temperature | (Virgin Sample) | Temperature (Charred Sample) |
| :---: | :---: | :---: | :---: |
| | $25^{\circ} \mathrm{C}$ | $180^{\circ} \mathrm{C}$ | $25^{\circ} \mathrm{C}$ |
| 300 | x | x | \mathbf{x} |
| 450 | 2 | \mathbf{x} | \mathbf{x} |
| 1000 | | \boldsymbol{x} | \boldsymbol{x} |
| 220 | x | x | x |
| 5800 | x | \times | x |

The 5026-39 HCG samples will be machined so that the honeycomb structure is parallel to the coaxial line longitudinal axis. It has already been determined that the dielectric constant does not vary significantly with honeycomb orientation or between 5026-39 HCG and 5026-39 M; therefore only 5026-39 HCG will be measured. The charred samples will be oven heated until the sample is completely visibly charred throughout its volume. A sample in each oven run will be cut open to check for thorough charring.

Sources of Error in Determining the Dielectric Constants

1. Errors resulting from harmonics in the output of the signal generator will have a negligible effect in the measured dielectric constant for the following reasons:

a. The Rohde and Schwarz signal generators have harmonic suppression filters.
b. The microwave slotted line has harmonic suppression filters.
c. Low pass filters are also used on the signal generator outputs.
2. Errors due to the depth of the pick-up probe in the slotted line are negligible because a high-gain VSWR amplifier is used to amplify the output signal from the probe. The high sensitivity of the amplifier allows the use of very shallow probe depths and therefore the probe produces a negligible perturbation of the electric field in coaxial line. Also by using the onehalf minimum method of measuring VSWR, the probe is placed in a low field strength region of the line and this further reduces field perturbations.
3. Possible error due to the slotted line pick-up probe diode detector not being a perfect square law detector will be eliminated by careful calibration of the diode over its operating range.
4. Possible errors due to wall losses in the coaxial line are eliminated by measuring and applying these losses in the calculation of the dielactric constant. The wall losses in the Rohde and Schwarz dielectrometer do, however, set a limit on the minimum measurable sample loss tangent. This minimum value of $\tan \delta$ is 5×10^{-4}.
5. Errors result from the fact that the dielectric sample does not fit in the coaxial sample holder precisely. By measuring the space distribution along the length and around the periphery of the sample the corrected values of the dielectric constant can be calculated. The error is not very large even if the correction is not applied in the measurements since the sample will be machined to fit into the sample holder with less than 0.001 inch air spacing. The 0.001 spacing would result in an error of 3 percent for ϵ^{\prime} and 6 percent for $\tan \delta$ for a dielectric having $\epsilon^{\prime}=2.0$ and a tan δ of 0.02 .

No additional error will be introduced due to differential coefficient of thermal expansion between the sample and sample holder over the midtemperature rang. The differential coefficient is approximately 1×10^{-7} so that fit will vary only $1.55 \times 10^{-5} \mathrm{in}$. /in. over the temperature range.
6. Errors due to the inhomogeneity character of the sample were described in the third bi-weekly report of this contract. These errors are a maximum of 2.7 percent of the measured dielectric constant.
7. Although : llowances for errors in the specimen dimensions takes care of the main source of error, it is difficult to say exactly how accurate the measured results are. Deviations in frequency during the measurement,
contact errors, and reading errors can influence the measurement of the complex dielectric constant. One method to take all these errors into account is to consider the derivative of expression (1) with respect to γ. Then by obtaining an expression of $\frac{d \gamma}{\gamma}$ relative errors can be analyzed. Another method is to calculate the dielectric constant from the slotted line measurement and then repeat the calculation for the slotted line measurement plus the maximum reading ezror, frequency deviation, and contact errors.

From either of these two calculations the complex dielectric constant and its accuracy can be obtained. Although the second method would normally be much more difficult, in our case it is easier because the calculation procedure for the complex dielectric constant has already been set up in a computer program. The accuracy in the measurement of dielectric constant for reading errors, contact errors, and frequency deviations is 0.2 percent for ϵ^{\prime} of 2.0 . This error will increase if the dielectric constant increases. If it happens that the dielectric constant does increase in mid-temperature measurements, the computer program will again be used to determine the changes in accuracy.

In conclusion, the overall accuracy of the measurement is 6 percent when all the possible corrections are applied. This error is essentially totally associated with the 2.7 percent error due to the inhomogeneity of the sample and the 3 percent possible error due to the air space between the sample and the coaxial line walls.

REFERENCES

1. Von Hippel, A. R., Dielectric Materials and Applications, The Technology Press of M.I. T. and John Wiley and Sons, Inc., New York.
2. Westphal, W. B. Techniques of Measuring the Permittivity and Permeability of Liquids and Solids in the Frequency Range of $3 \mathrm{c} / \mathrm{s}$ to $50 \mathrm{~km} \mathrm{c} / \mathrm{s}$, Armed Services Tech. Infor. Agency, Alighton Hall Station, Arlington 12, Virginia, Wright Field Microfilm No. R3986F.
3. Sucher, M., and J. Fox, Microwave Measurements, Third Edition, Polytechnic Press of Polytechnic Institute of Brooklyn.
4. Montgomery, C. G., Techniques of Microwave Measurements, M. I. T. Radiation Lab. Series, McGraw-Hill Publishing Company (1947).

APPENDIX C

CYROGENIC TEMPERATURE RANGE COMPLEX DIELECTRIC CONSTANT TEST PROCEDURES FOR AVCOAT 5026-39

BLANK PAGE

APPENDIX C
 CRYOGENIC TEMPERATURE RANGE COMPLEX DIELECTRIC CONSTANT TEST PROCEDURES FOR AVCOAT 5026-39

(Prepared by Avco/RAD under NASA/MSこ Contract NAS 9-4916)

Test Procedure

Input impedance measurements with short samples on a co-axial transmission line will be lised to obtain complex dielectric constants in the cryogenic temperature range. This measurement method was chosen for its high accuracy with moderate lengths of medium and for measurement simplicity. Equipment required for the measurement is a signal generator, a slotted line, a short circuited sample holder and a dewar to cool the sample to cryogenic temperatures. A block diagram and equipment iist appears in figure C-1. Figures C-2 and C-3 are sketches of the dewar. The procedure for the dielectric measurements consists of measuring the magnitude of the VSWR and the position of the voltage minima, E min, with the output of the slotted line shorted and repeating the measurement with the dielectric medium placed against the short circuit. From these measurements the propagation constant of the dielectric medium can be obtained from equation:

$$
\begin{equation*}
\frac{\tanh y d}{\gamma d}=-j \frac{{ }^{\prime} 1}{2 \pi d} \cdot \frac{\frac{E_{\min }}{E_{\max }}-j \tan \frac{2 \pi x_{0}}{r_{1}}}{1-j \frac{E_{\min }}{E_{\max }} \tan \frac{2 \pi x_{0}}{r_{1}}} \tag{1}
\end{equation*}
$$

where
$\gamma \quad=$ complex propagation constant of dielectric medium.
d = length of dielectric sample.
$r_{1}=$ wavelength in co-axial line without dielectric medium.
$x_{0} \quad=$ shaft in position of $E_{\min }$ due to dielectric sample placed in co-axial line.

$$
\frac{E_{\min }}{E_{\max }}=\frac{1}{V S W R}
$$

The complex dielectric constant is related to the propagation constant by the equation:

$$
\begin{equation*}
\gamma=\mathrm{j} \omega(\epsilon \mu)^{1 / 2} . \tag{2}
\end{equation*}
$$

14294
$-204-$

| Description | 300-3000 mc | 1650-5000 mc | 4400-8000 mc |
| :---: | :---: | :---: | :---: |
| Signal Generator | Rohde and Schwarz Type SLR - BN 41004 FNR. 1400/58 | Rohde and Schwarz Type NGS BN 95147 FNR. E-362/5/24 | Rohde and Schwarz Type SMCC BN 4143 FNR. F13849 |
| Slotted Line | Rohde and Schwirz
 Type LMD BN 39310
 FNR-EF 439/8/26 | Rohde and Schwarz Type LMC BN 39310 FNR 436/8/29 | Same as 1650 5000 mc |
| Indicating Amplifier | Rohde and Schwarz Type LMC BN 3931 FNR KL 274/19 | Same as 300-3000 mc | Same as $\mathbf{3 0 0 - 3 0 0 0 ~ m c ~}$ |
| Cryogenic Sample Holder | AVCO made $Z_{0}=50$ | Same as 300-3000 mc | Same as 300-3000 mc |

85-6941

Figure C-2 BLOCK DIAGRAM OF CRYOGENIC RANGE DIELECTRIC MEASUREMENTS AND EQUIPMENT LIST

85-6942

Figure C-3 CRYOGENIC SAMPLE HOLDER

These are standard dielectric measurements and the procedure is outlined in detail in references $1,2,3$, and 4.

The equipment that will be used to make the measurements is the Rohde and Schwarz precision coaxial dielectrometer (see figure C-1). The Rohde and Schwarz dielectrometer is specifically designed to take advantage of the accuracy of the input impedance measuring method with short samples. This dielectrometer has a frequency range of 300 to 8000 Mc .

Because the dielectric constant is not expected to vary appreciably in the cryogenic temperature range from that of room temperature only a single temperature measurement will be made for each frequency.

Table C-l is a tabulation of the frequencies and the temperature at which measurements will be made.

| Frequencies (Mc) | Temperature (${ }^{\circ} \mathrm{K}$) |
| :---: | :---: |
| 300 | ~ 4 |
| 450 | ~ 4 |
| 2200 | ~ 4 |
| 5800 | ~ 4 |

The 5026-39 HCG samples will be machined so that the honeycomb structure is parallel to the coaxial line longitudinal axes. It has already been determined that the dielectric constant does not vary signiricantly with honeycomb orientation or between 5026-39 M. Therefore, only 5026-39 HCG will be measured.

Sources of Error in Determining the Dielectric Constants

1. Errors resulting from harmonics in the output of the signal generator will have a negligible effect in the measured dielectric constant for the following reasons:
a. The Rohde and Schwarz signal generators have harmonic suppreusion filters.
b. The microwave slotted line has harmonic suppression filters.
c. Low pass filters are also used on the oignal generator outputs.
2. Errors due to the depth of the pick-up probe in the slotted line are negligible because of a high-gain VSW R amplifier is used to amplify the
output signal from the probe. The high sensitivity of the amplifier allows the use of very shallow probe depths and therefore the probe produces a negligible perturbation of the electric field in coaxial line. Also by using the one-half minimum methed of measuring VSWR, the probe is placed in a low field strength region of the line and this further reduces field perturbations.
3. Possible error due to the slotted line pick up probe diode detector not being a perfect square law detector will be eliminated by careful calibration of the diode over its operating range.
4. Possible errors due to wall losses in the coaxial line are eliminated by measuring and applying these losses in the calculation of the dielectric constant. The wall losses in the Rohde and Schwarz dielectrometer do, however, set a limit on the minimum measurable sample loss tangent. This minimum value of $\tan \delta$ is 5×10^{-4}.
5. Errors result from the fact that the dielectric sample does not fit in the coaxial sample holder precisely. Tnis problem is augmented in the cryogenic test because of the differential thermal coefficient of expansion between 5026-39 HCG and the sample holder. A knowledge of the sample to sample holder fit within 0.001 inch at room temperature and a fairly precise knowledge of the differential thermal coefficient of expansion will allow correction of the complex dielectric constant to within 3 percent. The thermal coeificient of expansion curves for $5026-39$ HCG are available for temperatures dow $118^{\circ} \mathrm{K}$. Since the curves are constant is slope from 300 to $118^{\circ} \mathrm{K}$, it will be assumed that the curve does not shange slope down to $4^{\circ} \mathrm{K}$. Prior to measurement of dielectrin crnatant at $4^{\circ} \mathrm{K}$, the diameter of a cylindrical sample will be compared at room temperature and $78^{\circ} \mathrm{K}$ (liquid nitrogen) to substantiate in part this contention.
6. Error due to the non-homogeneity character of the sample were described in the thirdbi weekly report. These errois are 2.7 percent of the measured dielectric constant.
7. Although allowance for errors in the specimen dimensions taked care of the main source of error, it is difficult to say exactly how accurate the measured result is. Deviations in frequency during the measurement, contact errors, and reading errors can influence the measurement of the complex dielectric sonstant. One method to take all these errors into account is to consider the derivative oi expression (1) with respect to γ. Then by obtaining an exppression of $d y / y$ relative errors can be analyzed. Another method is to calculate the dielectric constant from the slotted line measurement and then repeat the calculation for the slotted line ineasurement plus the maximum reading error, frequency deviation and contact errors.

Frc n either of these two calculations the complex dielectric constant an! its accuracy can be obtained. Although the second method would normally be much more difficult, in our case it is easier because the calculation procedure for the complex dielectric constant has already been set up in a computer program. The accuracy in the measurement of dielectric constant for reading errors, contact errors, and frequency deviations is 0.2 percent for f^{\prime} of 2.0 . This error will increase if the dielectric constant incresees. If it happens that the dielectric constant does increase in cryogenic termes ature measuroments, the computer program will again be used to determine the changes in accuracy.

In conclusion, the overall accuracy of the measureinents is 6 percent when all the possible corrections are applied. This error is essentially totally associated with the 2.7 percent error due to the inhomogeneity of the sample and the 3 percent possible error due to the air space betwee: the sample and the coaxial line walls.

REFERENCES

1. Von Hippel, A. R., Dielectric Materials and Applications, The Technology Press of M.1. T. and John Wiley and Sons, Inc., New York.
2. Westpha, W. B., Techniques of Measuring the Permittivity and Permeability of Liquids and Solids in the Frequency Range of $3 \mathrm{c} / \mathrm{s}$ to $50 \mathrm{~km} \mathrm{c} / \mathrm{s}$, Armed Services Tech. Infor. Agency, Arlington HallStation, Arlington 12, Virginia, Wright Field Microfilm No. R 3986F.
3. Sucher, M., and J. Fox, Microwave Measurements, Third Edition, Polytechnic Press of Polytechnic Institute of Brooklyn.
4. Montgomery, C. G., Techniques of Microwave Measurements, M. I. T. Radiation Lab, Series, McGraw-Hill Publishing Company (1947).

APPENDIX D

HIGH TEMPERATURE RANGE COMPLEX DIELECTRIC CONSTANT

APPENDIX D

HIGH TEMPERATURE RANGE COMPLEX DIELECTRIC CONSTANT TEST FROCEDURES FOR AVCOAT 5026-39
 (Prepared by Avco/RAD under NASA/MSC Contract NAS 9-4916)

A. INTRODUCTION

Room temperature complex permittivity measurement of materials at microwave frequencies can be readily accomplished by the short-circuited line method. With slight modification, this method can be extended to be melting point of high temperature microwave components. The upper temperature limit for this method is $1500^{\circ} \mathrm{K}$, so it is unsuitable for the $2000^{\circ} \mathrm{K}$ problem at hand.

An alternate technique to be considered is the microwave interferometer or reflectometer. In this method the microwave components can be separated from the hot sample and operated at room temperature. Unfortunately, relatively large sample sheets are required to avoid edge diffraction and it is then difficult to achieve a high uniform temperature throughout the sample. For this reason the method is considered unstitable.

A resonant cavity dielectrometer will be used to overcome the difficulties inherent in the above dielectrometers in the temperature range of $500^{\circ} \mathrm{K}$ to $2000^{\circ} \mathrm{K}$. In this method a small sample will be introducted into a conventional cavity resulting in a measurable perturbation in the cavity resonant frequency. By progressively varying the sample size (always small compared to one wavelength), an effect on the cavity can be selected to optimize measurement accuracy. A small sample has the obvious advantage of being easily heated. In the method, the sample is heated outside the cavity and rapidly inserted into the cavity to avoid heating the microwave equipment.

Using this technique the cornplex permittivity of Avcoat $5026-39$ will be meas ured at $2000^{\circ} \mathrm{K} \pm 100^{\circ} \mathrm{K}$ for the following frequencies: 250,1000 and 3000 Mc .

B. THEORY

Birnbaum and Franeau have developed a perturbation theory ${ }^{1}$ which gives the changes in resonant frequency (f) and loaded $Q\left(Q_{L}\right)$ of a cavity due to a small perturbation of the cavity. They considered two cavities, 1 and 2 , which differed slightly due to the presence of a dielectric material in cavity 2 . If the material has a relative complex dielectric constant of $\epsilon^{\prime}-i \epsilon \epsilon^{\prime \prime}$ and a permeability of 1 then: *

[^6]\[

$$
\begin{align*}
& \frac{f_{1}-f_{2}}{f_{2}}=\left[\frac{\epsilon^{\prime}-1}{2}\right] \frac{\int_{V_{2}} E_{1} E_{2} d V_{2}}{\int_{V_{1}} E_{1}^{2} d V_{1}} \tag{1}\\
& \frac{1}{Q_{2}}-\frac{1}{Q_{1}}=\epsilon^{\prime \prime} \frac{\int_{V_{2}}^{E_{1} E_{2} d V_{2}}}{\int_{V_{1}} E_{1}^{2} d V_{1}} \tag{2}
\end{align*}
$$
\]

where V_{2} and V_{1} are the volume of the dielectric and the cavity respectively, and E_{1} and E_{2} are the electric field intensities of cavity 1 and 2.

These equations become useful when the perturbation of the cavity is small enough so that E_{1} and E_{2} are approximately equal. The relative error due to this approximation is of the order:

$$
\begin{equation*}
\frac{\mathfrak{f}_{1}-\mathfrak{f}_{2}}{\mathfrak{f}_{2}}+\frac{1}{Q_{2}} \tag{3}
\end{equation*}
$$

The error can be kept small by controlling the sample size.
A TMC $\triangle 0$ cavity has been selected because it provides a maximum sensitivity for the dielectric measurements. In addition, the field configuration is such that a dielectric sample off the cavity axis does not create a serious error. The field equations for a TMOlO cavity in cylindrical coordinates are given by: ${ }^{2}$

$$
\begin{align*}
& \bar{E}_{\mathrm{r}}=\overline{\mathrm{E}}_{\theta}=0 \tag{4}\\
& \overline{\mathrm{E}}_{\mathrm{z}}=\overline{\mathrm{E}}_{\mathrm{n}} \mathrm{~J}_{0}(\rho \mathrm{r}) \tag{5}
\end{align*}
$$

where $\left(\rho_{r}\right)=\frac{2.405}{a}$ and a is the radius of the cavity.

Figure $D-1$ is a diagram of a cylindrical dielectric rod in a cavity for the case where $r_{o}<a$. Equation (1) and (2) become respectively (6) and (10) when generalized to include the effects of the dielectric :od being slightly off axis. Fiquation (1) becomes:

[^7]The effect of the dielectric rod being off-center in the cavity ($r_{0}<b$) can be examined by expanding $J_{0}^{2}\left(\rho_{r}\right)$ in an infinite series and integrating the first few terms.

$$
\begin{equation*}
J_{0}\left(\rho_{r}\right)=\sum_{n=0}^{\infty} \frac{(-1)^{n}\left(\frac{\rho r}{2}\right)}{(n!)^{2}}=1-\frac{\rho^{2} r^{2}}{4}+\frac{\rho^{4} r^{4}}{64}-\ldots \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{J}_{\mathrm{o}}^{2}(\rho \mathrm{r})=1-\frac{\rho^{2} \mathrm{r}^{2}}{2}+\frac{3}{32} \rho_{\mathrm{r}^{4}}-\ldots \tag{8}
\end{equation*}
$$

Substituting equation (8) into (6) and integrating with respect to r, θ, z yields

$$
\begin{equation*}
\frac{f_{1}-f_{2}}{f_{2}}=185\left(\epsilon^{\prime}-1\right) \frac{b^{2}}{a^{2}}\left(1-145 \frac{b^{2}}{a^{2}}-2.90 \frac{r_{o}^{2}}{a^{2}}\right) \tag{9}
\end{equation*}
$$

and equation (2) becomes

$$
\begin{equation*}
\frac{1}{Q_{2}}-\frac{1}{Q_{1}}=370 \% \frac{b^{2}}{a^{2}}\left(1-1.45 \frac{b^{2}}{a^{2}}-2.90 \frac{r_{0}^{2}}{a^{2}}\right) . \tag{10}
\end{equation*}
$$

For this case where $a \geq b \geq r_{0}$, the correction factor to the volume fraction of dielectric sample is negligible. Typically, $a \approx 20 \mathrm{~b}$; therefore, the correction factor would be of the order of 2 percent if the dielectric rod is displaced such that $r_{0}=b$. The second term in the correction expression results from terminating the series expansion of the Bessell function after only two terms. In the limit, correction terms involving only (b/a $)^{n}$ should sum to zero.

85-6943
Figure D-1 DIELECTRIC ROD DISPLACED $\left.\mu_{0}<b\right)$
The change in Q and resonant frequency can be measured by a number of techniques if the dielectric is stationary in the cavity, However, when the dielectric is dropped through the cavity, time does not permit the usual measurements. Instead, phase shift and transmission loss, which are directly selated to the Q and the frequency shift, are measured. From the measured phase shift and transmission loss the following equations may be solved to obtain the complex permittivity.

The transmission loss of a cavity near resonance is given by: ${ }^{2}$

$$
\begin{equation*}
T_{L}=\frac{\rho_{0}}{\rho_{1}}=\frac{4 \beta_{1} \beta_{2}}{\left(1+\beta_{1}+\beta_{2}\right)^{2}+4 Q_{0}^{2}\left(\frac{\Delta f}{f_{0}}\right)^{2}} \tag{11}
\end{equation*}
$$

When the resonant frequency, f_{0}, of the cavity is applied, $\Delta f=0$
The impedance of the cavity is given by

$$
\begin{equation*}
Z=R\left[1+\beta_{1}+\beta_{2}+2 j Q_{0}\left(\frac{\Delta f}{f_{0}}\right)\right] \tag{12}
\end{equation*}
$$

from which the phase angle becomes

$$
\begin{equation*}
\phi-\tan ^{-1}\left[\frac{2 Q_{0} \frac{\Delta f}{f_{0}}}{1+\beta_{2}+\beta_{2}}\right] \tag{13}
\end{equation*}
$$

[^8]Introduction of the dielectric sample into the cavity is equivalent to including an additional resistance and reactance in series with the equivalent circuit of the cavity. This results in an additional coupling term, β_{d}, in addition to the frequency shift. Equations (11) and (13) are changed to include the coupling

$$
\begin{align*}
& T_{2}=\frac{4 \beta_{1} \beta_{2}}{\left(1+\beta_{1}+\beta_{2}+\beta_{d}\right)^{2}+4 Q_{0}^{2}\left(\frac{\Delta f}{f_{0}}\right)^{2}} \tag{14}\\
& \phi_{2}=\tan ^{-1}\left[\frac{2 Q_{0} \frac{\Delta f}{f_{0}}}{1+\beta_{1}+\beta_{2}+\beta_{d}}\right] \tag{15}
\end{align*}
$$

Using equation (10) and neglecting the off axis correction factor, the following expression for Q_{2} is obtained.

$$
\begin{equation*}
Q_{2}=\frac{Q_{1}}{3.70 v_{f} Q_{1} \epsilon^{\prime \prime}+1} \tag{16}
\end{equation*}
$$

where

$$
v_{f}=\frac{a^{2}}{b^{2}}
$$

The quantities to be measured are:

1. The ratio of transmission lous with the sample in the cavity to the transmission loss of the empty cavity measured at the empty cavity resonant frequency.
2. The phase shift of this signal with and without the sample in the cavity substituting the relations.

$$
\begin{equation*}
Q_{0}=\left(1+\beta_{1}+\beta_{2}\right) Q_{1}=\left(1+\beta_{1}+\beta_{2}+\beta_{d}\right) Q_{2} \tag{17}
\end{equation*}
$$

and following this procedure using equations (9) and (10), neglecting the off axis correction factor, equations (14) and (15) become:

$$
\begin{align*}
& \frac{T_{2}}{T_{1}}=\left\{\left(3.70 Q_{1} V_{f} \epsilon^{\prime \prime}+1\right)^{2}+\left[3.70 Q_{1} v_{f}\left(\epsilon^{\prime}-1\right)\right]^{2}\right\}^{-1} \tag{18}\\
& \phi_{2}=\tan ^{-1} \frac{3.70 V_{f} Q_{1}\left(\epsilon^{\prime}-1\right)}{3.70 V_{f} Q_{1} e^{\prime \prime}+1} \tag{19}
\end{align*}
$$

Solving these equations simultaneously yields ϵ^{\prime} and $\epsilon^{\prime \prime}$ in terms of phase shift and attenuation.

$$
\begin{aligned}
& \epsilon^{\prime}=1+\frac{\left[\frac{T_{1}}{T_{2}} \cdot \frac{1}{\left(\frac{1}{\tan ^{2} \phi_{2}}+1\right)}\right]^{1 / 2}}{370 Q_{1} V_{f}} \\
& \epsilon^{\prime \prime}=\frac{\left[\frac{T_{1}}{T_{2}} \cdot \frac{1}{\left(\tan ^{2} \phi_{2}+1\right)}\right]^{1 / 2}-1}{3.70 Q_{1} V_{f}}
\end{aligned}
$$

C. MEASURING SYSTEM

Phase and transmission measurement of the signal passing through the test cavity can be conveniently measured with a bridge circuit (see figures D-2, D. 3, and D-4 and tables D-I, D-II, and D-III). The receivers used to monitor the output of the bridge are capable of continuous measurements with $10 \mu \mathrm{sec}$ time resolution. This resolution is more than adequate to monitor the perturbation resulting from the sample being dropped through the cavity.

The bridge is designed around the vector addition property of the microwave tee or resistor combiner. If the reference and cavity arm input signals to the tee and their vector sum are measured, a vector triangle can be established with three known sides. The enclosed angle which is the phase shift of the cavity can then be calculated using the law of cosines.

Sensitive receivers are used to detect the output of the cavity arm and the sum output. Since the reference arm remains fixed throughout the measurements, it needs only to be set initially. It should be noted that a.dequate isolation has been incorporated in the bridge to avoid interaction between the bridge arms and the local oscillators of the receivers.

D. MEASUREMENT ERROR

The sum and cavity receiver outputs are displayed in time by means of an oscilloscope. Since the vector bridge and receivers are calibrated by precision attenuators, the only significant measurement error is due to the resolution limitation of the oscilloscope display. This reading error will be maintained at approximately 2 percent by proper selection of the oscilloscope vertical deflection sensitivity. By applying the 2 percent reading error of the receiver outputs to the law of cosines, the phase error can be determined. It should be noted that small inaccuracies in the measurements of the receiver outputs can cause large errors in the phase, if the vector triangle does not approximate an equilateral triangle. Therefore, the amplitude and phase angle of the reference

Table D-1 Equipment List for Figure D-2

| No. | Description | Manufacturer's Mooiel No. |
| :---: | :---: | :---: |
| 1. | Signal Generator | Hewlett Packard 608C Serial No. 1497 |
| 2. | Resistor Divider | Micro Lab DA 4 MN |
| 3. | Attenuator Step | Hewlett Packard 355C |
| 4. | Attenuator Variable | Weinchel Eng. 905 Serial No. 265 |
| 5. | Line Stretcher | Micro Lab ST 05N |
| 6. | Attenuator Step | Hewlett Packard 3550 |
| 7. | Resistor Combiner | Micro Lab DP 5 MN |
| 8. | Receiver | Nems Clark 1670 F Serial No. 314 |
| 9. | Attenuator | Micro Lab AB 10 N |
| 10. | Receiver | Nems Clark 1670.E Serial No. 380 |
| 11. | Attenuator | Micro Lab Ab 05 N |
| 12. | Directional Coupler | Narda 3000-10 Serial No. 619 |
| 13. | Cavity | AVCO made TM 010 fc $\mathbf{2 5 0 . 4} \mathbf{~ m c ~ Q ~} 1240$ |
| 14. | Attenuator Step | Hewlett Packard 355 C |
| 15. | Attenuator Step | Hewlett Packard 355 D |

Figure D-2 HIGH-TEMPERATURE DIELECTRIC MEASURING SYSTEM ($=\mathbf{2 5 0} \mathbf{~ m c}$)

Table D-2 Equipment List for Figure D-3

| No. | Description | Manufacturer's Model and Serial No. |
| :---: | :---: | :---: |
| 1. | Signal Generator | Polarad MSG-1 SN166 |
| 2. | Resistor Divider | Micro Lab DA 4 MN |
| 3. | Attenuator | Micro Lab AB 20 N |
| 4. | Attenuator | Micro Lab AB 20 N |
| 5. | Line Stretcher | Micro Lab SR 05 N |
| 6. | Resistor Combiner | Micro Lab DA 5 MN |
| 7. | Attenuator | Micro Lab AB 10 N |
| 8. | Attemator | Hewlett Packard Model 394A Serial No. 058 |
| 9. | Cavily | AVCO made fc 1010 Mc Q 927 |
| 10. | Directional Coupler | Narda Model 3002-10 Serial No. 1112 |
| 11. | Attenuator | Micro Lab AB 20 N |
| 12. | Attenuator | Micro Lab AB 20 N |
| 13. | Local Oscillator | Hewlett Packard 614A SN 1108 |
| 14. | Local Oscillator | Hewlett Packard 612A SN 637 |
| 15. | Detector | Hewlett Packard 440 A |
| 16. | Detector | Hewlett Packard 440 A |
| 17. | Receiver Amplifier | LEL Mod 301 D50 Serial No. 7050 |
| 18. | Receiver Amplifier . | LEL Mod 301 D50 Serial No. 7053 |

Figure D-3 HIGH-TEMPERATURE DIELECTRIC MEASURING SYSTEM (f = 1000 mc)

REFERENCE ARM

No.

Description
Signal Generator (Sta-Lo) Resistor Divider
Attenuator
Atlenuator
Line Stretcher
Attenuator
Isolator
Attenuator
Temination
Hybrid Tee
Silde Screw Tuner
Isolator
Detector
Receiver - IF Amplifier
Local Oscillator
Attenuator
Precision Attenuator
Isolator
Cavity
I solator
Directional Coupier
Altemuator
Isolator
Detector
Receiver - IF Amplifier
Local Oscillator
Coaxial to Waveguide Adapters

Manufacturer's Model No. and Serial No.

Lab for Elec. Mod 814-S-1 Serial No. 409
Micro Lab - Mod. DA 4MN
Narda 757-10 Serial No. 700
Narda 757-6 Serial No. 483
Micro Lab SR=05N
Demorhay Bonardi L430 Serial No. 2671
Microwave Assoc, Mod 170 Serial No. 16
Narda 757-10 Serial No. 701
FXR - Mod S5018 Serial No. 274
FXR - Mod 5622A Serial No. 042
FXR - Mod 5211A Serial No. 317
Microwave Assoc, Mod 170 Serial No. 12
Hewlett-Packard Mod 440A
LEL Mod 301050 Serial No. 7051
Hewlett Packard 616A Serial No. 1995
Micro Lab Mod. AB 10 N
Demorhay Bonard L410 Serial No. 2670
Microwave Assoc. Mod 170 Serial No. 15
AVCO made fic 3000 mc Q 1300
Microwave Assoc. Mod 170 Serial Vc. 15
Narda Mod 3003-10 Serial No. 600
Narda 757-6 Serial No. 482
Microwave Assoc. Mod 170 Serial No. 4
Hewlett Packard Mod 440A
LEL Mod 301050 Serial No. 7052
IS 403 B/U Serial No. 279
FXR Mod S311A

Figure D-4 HIGH-TEMPERATURE DIELECTRIC MEASURING
SYSTEM (f - 3000 mc)
voltage will be adjusted so that the phase shift caused by the sample passing through the cavity will create an equilateral triangle.

If the 2 percent reading error is applied to the differentiated law of cosines for an equilateral triangle, the following results evolve:

$$
\begin{equation*}
d \phi=\frac{\bar{S} d \bar{S}+\bar{C} d \bar{C}+\bar{R} \cos \phi d \bar{C}}{\bar{R} \bar{C} \sin \phi} \tag{20}
\end{equation*}
$$

where

$$
\begin{align*}
& \overline{\mathbf{S}}=\text { sum } \\
& \overline{\mathrm{C}}=\text { cavity vector } \\
& \overline{\mathrm{R}}=\text { reference vector } \\
& \mathrm{d} \phi=\frac{0.02+0.02+0.01}{0.88} \tag{21}\\
& \mathrm{~d} \phi=0.0575 \text { radians }=3 \text { degrees. } \tag{22}
\end{align*}
$$

Since the reference arm amplitude is accurately measured under static conditions and does not change under dynamic conditions, its error has been neglected.

Applying the errors of 2 percent in measuring transmission loss through the cavity and the 3 degree error in phase shift to formulas 9 and 10 , the measuring accuracies of ϵ° and " may be obtained. When the loss tangent ""/ ${ }^{\prime \prime}$ is less than 1 , the errors in e' and "" are approximately 5 percent. As the loss tangent increases from 1 to 20 , the accuracy of e^{\prime} degenerates rapidly and for loss tangents above 20, '' can no longer be obtained from squations (9) and (10). However, the accuracy of ${ }^{\prime \prime}$ remains approximately 5 percent throughout the measuring range of the equipment.

It can be shown that for loss tangents greater than 10, the real part of the complex dielectric constant need not be known to calculate attenuation through a dielectric.

The equation that describes attenuation through a dielectric for $\tan 8$ from 0.05 to 50 is:

$$
\begin{equation*}
8.686 a=\frac{17.37}{\lambda} \sqrt[n]{\frac{1^{\prime} \mu}{\mu_{0}} \frac{\sqrt{1+\tan ^{2} \delta}-1}{2}} \tag{23}
\end{equation*}
$$

Substituting $\frac{e^{\prime \prime}}{e^{\prime}}$ for $\tan \delta$ and setting $\mu_{0}=1$

$$
8.686 a=\frac{17.37}{\lambda} \pi \sqrt{\frac{\varepsilon^{\prime} \sqrt{1+\left(\epsilon^{\prime \prime} / \epsilon^{\prime}\right)^{2}}-1}{2}}
$$

for $\frac{e^{\prime \prime}}{e^{\prime}} \geq 10$

$$
\begin{aligned}
& 8.686 a=\frac{17.37}{\lambda} \pi \sqrt{\frac{e^{\prime}\left(\frac{c^{\prime \prime} / \epsilon^{\prime}-1}{2}\right)}{2}} \\
& 8.686 a=\frac{17.37}{\lambda} \pi \sqrt{\frac{e^{\prime \prime}-e^{\prime}}{2}}
\end{aligned}
$$

knowing that $\epsilon^{\prime \prime} \geq 10 C^{\prime}$ the second term in the numerator may be reglected. This assumption introduces a maximum error of 10 percent which diminishes as $\tan \delta$ increases. Equation (23) becomes:

$$
8.686 a=\frac{17.37}{\lambda} \pi \sqrt{\frac{\epsilon^{\prime \prime}}{2}}
$$

It can be seen that for high loss tangents the attenuation through a dielectric is a function of e". Therefore, to calculate or to simulate the attenuation through a material with tan $\delta \geq 10$, only the imaginary part of the complex dielectric constant,$^{\prime \prime}$) needs to be known.

E. LIMITATIONS OF MEASURING RANGE

As previously stated, cavity perturbation depends not oni; on the electrical properties of the material, but also on the fractional volume of the cavity occupied by the sample. Therefore, as the dielectric constant of the sample increases, the volume of the sarr.ple will be decreased in order that the cavity perturbation remain in the measuring range of the test equipment. This reduction in sample size has a practical limit of approximately a $1 / 4$ inch diameter rod. Below this thermal cooling of the sample would become a problem as it is dropped from the oven through tise cavity. This lower limit in sample size also limits the upper measurable range of the sample's loss tangent because the skin depth becomes less than the sample radius for high loss tangents, therefore perturbation theor: no longer applies. This upper limit of the toss tangent is 10^{4} and 10^{2} for the 300 Mc and 3 kMc cavities, respectively, when the dielectric constant (${ }^{\prime}$) is approximately 2.

F. CALIBRATION OF CAVITY DIELECTROMETER

The cavjty dielectrometer accuracy will be checked by measuring the known properties of several dielectric rods. The room temperature dielectric constants of these rods will be approximately that of the Apollo heat shield at elevated temperatures. The dielectric properties of the rods will be measured in the Rohde and Schwarz dielectrometer prior to the measurements. By this procedure, a correction factor will be applied to the discrepancies in the cavity perturbation method.

G. SAMPLE TEMPERATURE CONTROL

A cylindrical oven containing four 18 inch $6-\mathrm{kw}$ GE quartz heater lamps will be mounted above the cavity. The oven and cavity will be purged with nitrogen during the heating and measuring process to prevent decomposition of the sample.

The internal temperature of the sample will not be measured directly with each test due to complications that arise in removing the thermocouple from the center of the sample before it is dropped through the cavity. The internal temperature will be measured indirectly by relating the internal sample temperature to a thermocouple located outside the sample. This will be done by placing a the rmocouple outside the sample in addition to one inside the sample and measuring the rise times of both thermocouples until they reach an equilibrium at $2000^{\circ} \mathrm{K}$. Using these two curves, the thermocouple outside the sample will be used to monitor the internal temperature of the sample.

MEASUREMENT PROCEDURE

1. Calibrate receiver.

2. Null bridge by adjusting variable attenuator and phase shifter in the reference arm of the bridge. This will make the reference and cavity arms of the bridge equal in amplitude and in phase.
3. Insert 60 degrees phase shift in reference arm of the bridge. The equilateral triangle is now set. (The cavity, reference and sum outputs of the bridge are all equal when the equilateral triangle is set.)
4. Insert sample into cavity.
5. Record amplitude changes in cavity and sum outputs of bridge (see figure D-5).
6. Apply cavity and sum outputs in step 5 to law of cosines and obtain phase angle between reference and cavity arms of bridge.
DATA SHEET

| | |
| :---: | :---: |
| | |
| | |
| | |
| | |
| | |
| w | |
| | |
| | |
| | |
| | |

Figure D-5 DATA SHEET
7. Apply the attenua tion in the cavity arm of the bridge and the change in phase between cavity and reference arms of the bridge when the dielectric sample is inserted into the cavity to equations (9) and (10). This will yield the dielectric constants of the sample that was inserted into the cavity.

```
a
b radius of sample
\(\overline{\mathrm{C}} \quad\) cavity vector
E electric field
\(E_{1} \quad\) electric field intensity of cavity \(1 \%\)
\(\mathrm{E}_{2}\) electric field intensity of cavity \(2 *\)
\(f\) frequency
\(f_{1} \quad\) resonant frequency of cavity 1
\(f_{2} \quad\) resonant frequency of cavity 2
\(\Delta \mathrm{f} \quad \mathbf{f}_{1}-\mathbf{f}_{2}\)
j \(\quad \sqrt{-1}\)
\(l \quad\) length of cavity
\(P_{o} \quad\) power out of cavity
\(P_{1} \quad\) power into cavity
\(Q_{0} \quad\) unloaded cavity
\(Q_{1} \quad\) loaded \(Q\) of cavity 1
\(Q_{2} \quad\) loaded \(Q\) of cavity 2
\(r_{0} \quad\) distance between cavity and dielectric sample center lines
\(\overline{\mathrm{R}} \quad\) reference vector
-
s sum vector
\(T_{1}\) transmission loss of cavity 1
\(\mathrm{T}_{2}\) transmission loss of cavity 2
\(\frac{2}{{ }^{\circ} \text { Cavity } 1 \text { is }}\) without dielectric ample.
- Cavity 2 is with dielectric ample.
```

$v_{1} \quad$ volume of cavity
$\mathrm{v}_{2} \quad$ volume of sample
$V_{f} \quad$ fraction of sample volume to cavity volume
Z impedance
$\therefore \quad$ cavity axis
$\beta_{1} \quad$ input cavity coupling coeffic:ent
$\beta_{2} \quad$ output cavity coupling coefficient
$\beta_{d} \quad$ dielectric coupling coefficient
e absolute complex permittivity
$\epsilon_{0} \quad$ free-space permittivity
$\epsilon^{\prime} \quad$ real part of relative complex permittivity
". imaginary part of relative complex permittivity
$\mu_{0} \quad$ free-space permeability
$\phi_{1} \quad$ phase shift of cavity without sample
$\phi_{2} \quad$ phase shift of cavity with sample

Unclassificed
Security Classificathin

Unclassified
Security Classification

[^0]: ${ }^{\text {I }}$ Reynolds, J. A., and J. A: Hough, Formulas for Dielectric Constants and Mixtures, Proceedings of the Physical Sociecy, Lundon (July-December 1957) pp. 769-775.
 2Fincyclopedia of Physics Edited by S. Flugge, XVI Electric Fields and Waves; Berlin (1958) pp. 706-710.
 ${ }^{3}$ Lickenecker, K., and K. Rothen, Phys. Z, 32, p. 255 (1931).

[^1]: ${ }^{4}$ Shaw, T. M., and J. J. Windle, Microwave Techniques for the Measurement of the Dielectric Constant of Fibefa and
 Films of High Polymer, J. Appl. Phys., 21, pp. $95(1-961$ (October 1950).

[^2]: ${ }^{〔}$ King, R K., Funi :mental Electromagnetic Theory, Dover Publications, Inc., New York N. Y. (19u3), p. 148.

[^3]: ${ }^{6}$ Westphal, W. B., and B. B. East, Dielectric Parameters and Equivalent Circuits, Tech. Report 189, Laboratory for Insulation Research, M.I.T. AD-601-522, p. 42.

[^4]: ${ }^{7}$ Morse, P.M., and II. Ferhbach, Methods of Theoretical Physics, McGraw - Hill, New York (1953), P. 441.

[^5]: Morse and Ferhbach, op. cit.

[^6]: ${ }^{\text {l }}$ Birnbaum, G., and J. Franeau, Measurement of the Dielectric Constant and Loss of Solids and l.iquids by a (.avity Perturbation Methof, J. Appl. Phys. (August 1949), pp, 817-818.
 -Refer to list of symbols.

[^7]: ${ }^{2}$ Montgomery, C.G., Technique of Microwave Measurements, Radiation Lab Seriea; McGrawhill (1947), p. 299.

[^8]: $2 \overline{\text { Montgomery, op. cit., pp. 289-291. }}$

