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INTRODUCTION

The present report concerns efforts to extend slender-body theory for
the purpose of accurately predicting the forces and moments associated with
flow separation from the wing leading edges. The theory of Reference 1,
which was developed to predict the flow field associated with leading-edge
separation, suffers from two major shortcomings. First, the separated
normal force is overpredicted, apparently because the local shedding rates
are overpredicted, and second, the predicted vortex sheet shapes are quite
unrealistic, producing highly irregular curves, particularly when large
numbers of vortices are introduced.

The rate at which vorticity is shed from the wing leading edges is pre-
dicted in Reference 1 on the basis of the lateral velocity at the side edge
of a two-dimensional plate. It would appear that such a model does not
properly account for the fact that the span of the plate is a function of
x (or time), since the velocity potential in the cross-flow plane is un-
affected by the lateral growth of the plate. That is, the potential depends
only upon the local span at that station, not upon its rate of expansion.
Therefore, the first two sections of the analysis deal with the vortex sheet
shed from a two-dimensional plate whose width is a function of time.

The third portion of the analysis will be concerned with removing the
irregularities in the vortex sheet shape which are produced as a result of
the discrete vortex approximation. So long as one represents a continuous
vortex sheet by a number of discrete vortices, high velocities will result
when two vortices come close together, and the resulting sheet shape will
be distorted. Furthermore, the larger the number of vortices used, the more
difficult this problem becomes. Thus, convergence with number of vortices
may be impaired. Therefore, a "smoothing" technique will be employed by
which one forces the discrete vortices onto a smooth spiral at each step in

the rolling-up process.
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AN EXPLORATORY STUDY OF THE VORTEX SHEETS SHED FROM
THE LEADING EDGES OF SLENDER WINGS

1. ANALYSIS
1.1 Force on a Growing Two-Dimensional Plate

After initial attempts to extend the classical wake solutions of

Kirchoff (see Ref. 2) and Anton (Ref. 3) to the case of a two-dimensional

growing plate, it became apparent that neither of these solutions is appli-

cable to the present problem. In the case of the free-streamline (Kirchoff)

solution, the appropriate assumption for a growing plate would be a growing

dead-~water region above the plate. This assumption leads to an increased

shedding velocity and an increased force on the plate.
obtained from the solution of Anton (Ref.
sheets. But in both cases,

A similar result is
3) for a pair of spiral vortex
the assumed wake form is inconsistent with the
physical picture of the wake behind a growing plate and the increased force
is a direct consequence of the constraints placed on the wake shape. That
is, both of the above models lead to the concept of a wake which expands with

the plate. Actually, the growth of the plate will cause the vortex sheets

to be flattened toward the leeward side of the plate,

thus producing a
smaller wake (see sketch).

\__/@@m%

Kirchoff Anton

Growing Plate

In view of these findings, a more fundamental approach is required,

as
outlined in the following section.

1.2 Unsteady Pressure Relation

If we wish to investigate the shedding of vorticity from a two-dimensional
plate whose width is a function of time, the appropriate pressure relation
is the unsteady Bernoulli equation; that is,



¢t+%+%q2+9=f(t) (1)

where ¢, is the time derivative of the potential, g is the local fluid
velocity, and { 1is a constant.

The function £f(t) is the same function everywhere in the flow field,

provided that the region is simply connected; that is, so long as the wake

is neither closed nor infinite in extent. Thus, applying Equation (1) to
the internal and external sides of the vortex sheet (see sketch), we find
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But since the pressures on the two sides of the sheet must be equal, the
second term vanishes and we have

1 ( 2 _ 2\>
. ' de 93
i e

(qe + qi)(qe - q;) (3)

o
"
i
©-
fudd
I
|

D=

Further, we recognize (qe + qi)/2 as the tangential velocity of the sheet
and (qe - qi) as the vorticity of the sheet. If we denote these by v

s
and v, respectively, we can write

(bt - (bt = VS - Y (4)

Finally, the difference in ¢, across the sheet is equal to the time deriv-
ative of the jump in potential, which is the circulation. That is,

_ _ 9 _ ar
¢ti - ¢te = 8oy = 5¢ (84) = §¢ (5)



A
_;ggzg)Of Reference 1 in which v, was calculated directly from the potential,

Hence, the final relation for the vortex sheet is

ar
It = Vs T Y (6)

which relates the shedding rate to the shedding velocity and the vorticity
of the sheet.

It will be noted in the above derivation that no assumption was made
regarding the change of plate width with time, and that q; and 9, refer
to the absolute fluid velocities immediately above and below the sheet; that

l\"
is, the fluid velocities are not relative to the expanding side edge of the et
plate. Furthermore, Equation(6) is precisely the relation used in the(EﬁgI:\\hf si5

ne i r T

and <y was calculated by assuming a flat vortex sheet of uniform strength
which satisfies the Kutta condition at the local wing edge. Therefore,
since the potential ¢ depends only on the local width of the plate (not
on its rate of expansion), and since the complex velocity from which A is
extracted is obtained by differentiation in the plane x = constant, it is
concluded that, within the framework of slender-body theory, the analysis
of Reference 1 does, in fact, properly account for the fact that the plate
width is variable.

It will be recalled that the numerical calculations of Reference 1 were
initiated by assuming that the shedding velocity of the first vortex pair

is given by that of the steady free~streamline flow, namely,

One might expect that a better starting value would be obtained from a solu-
tion of the unsteady free-streamline flow for a growing plate, using Equa-
tion (1). However, it was found in the study of Reference 1 that the solu-
tion for slender wing-body combinations is quite insensitive to the starting
value and therefore does not appear to warrant such a step.

1.3 Smoothing the Vortex Sheet with a Spiral Curve Fit

Several experimental investigations using various visual flow tech-
nigues (e.g., Refs. 4 and 5) have indicated that the primary vortex shed
from the leading edge of a slender wing assumes the shape of a smooth spiral

curve. This shape is closely approximated by the spiral equation (see Fig. 1).



R=—2 — (7)
(0 - &)

where m is a dimensionless exponent reflecting the rate at which the
spiral approaches its center (yo,zo) and 90 is the asymptotic angle the
spiral curve makes with the y-axis as R Dbecomes infinite.

The spiral form given by Equation (7) is also the form which arises in
the theoretical treatments of Kaden (Ref. 6) and Anton (Ref. 3) which deal
with the rolling-up of continuous vortex sheets. It would therefore seem
desirable to pass a least-squares spiral curve of this form through the
calculated vortex positions for the discrete vortex model of Reference 1.
That is, at each chordwise station at which a vortex is introduced, one
would fit all of the previously shed vortices onto a least-squares spiral
curve by displacing them slightly before proceeding to the next station.
This would prohibit the rather large distortions observed in the sheet shapes
calculated in Reference 1, and might significantly affect the calculated

forces due to separation.

In order to accomplish this "smoothing' of the vortex sheet, we consider
the nth vortex to lie along a ray Qn at a distance r, from the origin
of the spiral. Then, the least-squares radial error from the mathematical

spiral of Equation (7) is given by (Ref. 7)

k
2
1 = Zld(rn - Rn) (8)

n=1

where

r, = \[(yn - yo)‘2 + (z - zo)2

and k 1is the number of vortices (which must exceed the number of constants

involved). The point on the spiral curve corresponding to the nth vortex
is given by

R = ——— (9)



where

- z -z
6 = tan a0
n Yn = Yo

Note that the gquantity (rn - Rn) is a function of the five free parameters
A, m, Yoo 240 60. We must therefore minimize the error I, with respect to
each of these and determine their values by a standard least-squares pro-
cedure (see Ref. 7). This involves differentiating the error with respect
to each parameter, setting the derivatives all to zero, linearizing the
resulting equations, and solving by iteration.

The number of iterations required in this procedure depends strongly
on the accuracy of the first guess, particularly for the parameter m. If
the first guess is not within a reasonable tolerance (say +25 to 50 percent),
then solutions cannot be expected. Furthermore, it is possible to have
more than one solution in such nonlinear problems. For these reasons, four
sample cases were run (using six vortices) on the IBM 1620 which bracket
the range of interest (aspect ratio 1 and 2 for a = 10° and 200). This
was done to ensure suitable starting values beginning with six vortices in
the field (k = number of parameters plus one). These truncated cases indi-
cated that convergence was exceedingly difficult to achieve if 90 is
treated as an unknown. It was therefore considered expedient to fix its
value and solve for the other four parameters. Best results were obtained
by setting 90 = -7/2 {(see Fig. 1).

The initial guesses for the remaining four parameters at each chordwise
station thereafter (k > 6) were taken to be the converged values at the
previous station, except for the parameter A. The initial guess for A
at each chordwise station was determined by assuming that the spiral passes
through the vortex just shed at that station.

2. CALCUILATIONS

In order to investigate the effect of the curve-fitting or "smoothing'
of the vortex sheet shape on the calculated forces and moments on slender
wings, a sample calculation was carried out on the IBM 7094 for a delta
wing of aspect ratio 1.0 at 20° angle of attack. The calculation was per-
formed using 48 vortices, with the curve fit applied at each chordwise
station to all vortices shed ahead of that station. A comparison of the

calculated vortex sheet shapes with and without the spiral curve fit is



shown in Figure 2, and the improvement is apparent. On the other hand,
neither the calculated normal force nor the rate of convergence is signifi-
cantly affected (see Fig. 3).

3. CONCLUSIONS

The present investigation has been carried out in an attempt to improve
the theory of Reference 1 for the prediction of normal force and pitching
moment on slender wing-body combinations exhibiting leading-edge separation.
Two apparent shortcomings of the theory have been investigated. The first
is the prediction of vorticity shed from a growing plate, and the second is
the prediction of a smooth spiral vortex sheet.

A detailed derivation of the shedding rate from a growing two-dimensional
plate indicates that the analysis of Reference 1 does, in fact, properly
account for the rate of change of wing span with x, subject to the two
assumptions made in Reference 1l; namely: (1) a very slender configuration,
and (2) a flat vortex sheet segment of uniform vorticity shed at each station.

A least-squares spiral curve fit has been applied to the calculated
positions of the shed vortices at each chordwise station, with the result
that the predicted vortex sheet shape closely resembles the smooth spiral
curve observed experimentally. However, the effect on the calculated normal
force and center of pressure on slender wings appears to be insignificant.
The rate of convergence with number of vortices is similarly unaffected by
this modification.

It is therefore concluded that the overprediction of the shedding rate
and the corresponding overprediction of the normal force for wings of
finite aspect ratio is brought about by three~dimensional effects which can-
not be handled within the framework of slender-body theory. One must evi-
dently, therefore, resort to a truly three-dimensional theory if one is to
achieve more accurate predictions than those of Reference 1 for the forces
produced by leading-edge separation.




REFERENCES

Sacks, A. H., Lundberg, R. E., and Hanson, C. W.: A Theoretical
Investigation of the Aerodynamics of Slender Wing-Body Combinations
Exhibiting Leading-Edge Separation. Vidya Rpt. No. 227, June 30, 1966.

von Karman, Theodore, and Burgers, J. M.: General Aerodynamic Theory-
Perfect Fluids. BAerodynamic Theory, vol. II, W. F. Durand, Ed.,
Julius Springer, Berlin, 1935, pp. 330-336.

Anton, L.: Ausbildung eines Wirbels an der Kante einer Platte.

Ing. Archiv., vol. X, 1939, pp. 411-427.
Bergesen, A. J., and Porter, J.D.: An Investigation of the Flow
Around Slender Delta Wings with Leading-Edge Separation. Princeton
Univ., Dept. of Aero. Eng., Rpt., No. 510, May 1960.

Peckham, D. H.: Low=Speed Wind Tunnel Tests on a Series of Uncambered

Slender Pointed Wings with Sharp Edges. ARC Tech. Rpt. R&M No. 3186,
1961.

Kaden, H.: Aufwicklung einer unstabilen Unstetigkeitsflache.
(Diss. Gottingen, 1931) Ing. Archiv., vol. II, 1931, pp. 140-168,

Wylie, C. R.: Advanced Engineering Mathematics, Second Edition.
McGraw~Hill Book Co., Inc., New York, 1960.



& N

Figure l.- Mathematical spiral given by Equation (7).
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Figure 3.- Effect of spiral curve fit on calculated
separation normal force for a delta wing of aspect
ratio 1.0 at o = 20°.
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