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Nonlinear Differential Equations

Edwin Kinnen

Chiou Shiun Chen
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Abstract

A method is described for sequentially
developing a quadratic polynomial into a
possible Lyapunov function for a class of
nonlinear differential equations. The

equations are nth

order in one dependent
variable, with nonlinearities appearing as
polynomial functions of the variable and its
n-1 derivatives. The procedure utilizes higher
order homogeneous polynomials in the dependent

variable and its derivatives to generate sign

definite functions.



LYAPUNOV FUNCTIONS FOR A CLASS OF nt® ORDER

NONLINEAR DIFFERENTIAL EQUATIONS
I. INTRODUCTION

The problem of determining the stability of solutions to
nonlinear differential equations by the direct method of
Lyapunov is often an exercise in guessing suitable Lyapunov
functions. The sufficiency condition that is characteristic
of this method, however, may leave the analyst without a
conclusive statement of either stability or instability.
Techniques have not been widely developed to provide a sequence
of steps that can be followed to correct or modify an initial
"choice of a possible Lyapunov function to gradually approach
a satisfactory one. This report introduces one procedure
for doing this under stated conditions. Specifically a
method is given for sequentially developing a quadratic polynomial
into a possible Lyapunov function for a class of nonlinear
differential equations. The inherent limitations of the
Lyapunov method (the sufficiency condition and the poorly
defined region of stability) are not circumvented.

The construction of sign definite polynomials in the
proposed procedure is not limited to quadratic forms. As a
result modifications to an initial trial gquadratic polynomial
can progressively compensate for nonlinear terms in the
equation. As one considers increasingly more complex
nonlinearities, the philosophy of this approach is intuitively
satisfying.

The class of nonlinear differential equations considered
in this report is the following:

(n)

X + F(X,%,...,X(n—l)) =

where F = (n-l))

F. (X, Xyene
) l( 1 Xy 1 X
1

R~

1

with fi homogeneous polynomials of order i and real coefficients.



Equivalently

X = X,
X, = X,
R EEEE (l)
in—l = *n
in T T 8%y T 8popXgcecneereees T X, T fz(xl'XZ'...’xn)
B R R Y N TR
or X = AX + F,
(
0 1 0 0 0
0 0 1 0 0
where A = 5
0 0 0 0 1
~%n “8nh-1 ) o "2 e |
~
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o]
Il

—fz _f3 .........._fz I3
and X = x, x, X X ]t
ot l 2 3 ® o n [ ]

Without loss of generality, assume an equilibrium point *
at the origin of the state space, i.e., fi(0,0,...,O) =0 [11 .

The objective of the direct method of Lyapunov is to
determine the stability characteristics of the equilibrium
point utilizing the given form of the differential equations
but without explicit knowledge of the solutions [l]. According
to this method, if it is possible to generate a scalar function
V(X) within a region 2 around the equilibrium point such
that:

(1) V(X) is continuous together with its first
partial derivatives in @,
(2) V(o) = o,

(3) V(X) > 0, for X # 0, and
av(x)

4 e

then the equilibrium point is stable in the sense originally
defined by Lyapunov [l]. The generation of this scalar
function, V, called a Lyapunov function, for most nonlinear
system equations, including those of the form of equation (1),
has been found to depend critically on the ingenuity of the
analyst [3, 4, 5]. For the class of equations (1), a
Lyapunov function can always be found for an ¢ region around
the equilibrium point, as long as the eigenvalues of A

have negative real parts [l]. The purpose here is to find a
finite region around the equilibrium point, larger than an

€ region, within which the polynomial is positive definite
and the time derivative is either negative definite or
negative semidefinite.

= V (X) <0 in @,

To summarize the procedure one initially assumes a
quadratic form in X, V0(§,§), as the elementary polynomial

of a possible Lyapunov function for the given differential
equation. If Vo(g,g) is not a Lyapunov function, then a

sequence of correction polymonials is added to V0 until

the time derivative of the modified function is made either
negative definite or negative semidefinite in a finite region
around the equilibrium point. The method is described in
greater detail in Section III and by illustration in Section IV,

*Definitions of the terminology used in this report are
referenced for the unfamiliar reader.



II. Sufficient Conditions for the Sign Definiteness
of an Even Order Homogeneous Polynomial in n Variables

A major difficulty in generating Lyapunov functions has
been the lack of a general method for proving or disproving the
sign definiteness of scalar functions containing terms of
higher than second order. This difficulty can be partially
resolved by using the procedure illustrated in Section 1IV.

Suppose VZm(g) is a (2m)th order homogeneous polynomial
in n variables, xl,xz,...,x (m a real jinteger > 0). It
can be shown that V2 (X) can be reduced to a quadratic form

(nt+m- l)) variables,

V(Y,¥) = ¥°RY with at most (n(n+1)$;.

Y;, where K is a constant symmetric matrix. It can also be
i K

n(n+l) ® e o 0 (n+m—l)

m!

shown that at most ( ) conditions are needed on

the principal minors of K to prove the sign definiteness of
V(¥ ,Y) and hence of V2 (X)

ITII. Description of the Procedure
l. Assume a complete quadratic form vo(g,g) = §t2§,

where P is an n x n constant symmetric matrix containing
n(n+1)

5 unknown variables p; - Then
. dv A EAY A
A o _ O . O . ()

Subject to the differential equation constraint
V.= -x%0X - F..(X) - F_,(X) - F (X)
0 = == 03'= o4'=" *°°° 0(2m+1) ‘="'

where Q is an n x n constant symmetric matrix and FOi(g),




th

3 <1iz<2m+ 1, contains only i~ order terms in X. An

attempt is made to determine the Ei&ill unknown constants,
2
P+ from the following conditions:
(a) gtgg positive definite,

(b) gtgg at least positive semidefinite,

(c) the odd order terms in VO’ F

03 = Fos = -+ Foome1),

identically zero,
(d) the even order terms in VO' F04, F06' cee s F(Zm)’
at least positive semidefinite.

Condition (a) requires n necessary and sufficient conditions
such that all n principal minors of P are positive. Condition
(b) also requires n necessary and sufficient conditions such
that all n principal minors of Q are non-negative. Condition
(c) is satisfied if each coefficient of FOB’ FOS’ ceey FO(2m+1)

is set to zero.

For condition (d), as stated in Section II, at most
n(n+l) XX (n+q—l)
q!
show positive semidefiniteness for FO(q) (g: even integer

sufficient conditions are needed to

2 < q < m). Since these four conditions indicate a number of

equations greater than the number of unknowns, a consistent
set of solutions for all p; may or may not be found. If a

set of values for P; is found, the V_, is positive definite

0
everywhere, and V0 is either negative definite or negative

semidefinite in a finite region, the region of stability [1].
If a consistent solution set for P; doesn't exist, then

correction terms are added until a consistent set of solutions
is obtained. For example:

2. Add a complete third order homogeneous polynomial
Gy;5(X) to Vor and define



Then

= - xtox - - - -
V(%) XX = Fpp(X) = Fy (X = oo = Fy omeg) X
where Fli(g), 3 <1i<2m+ 1, contains only ith order terms
in X.

n(n+1)
2
constants P; and the constants introduced in Gl3(§) from

Next one attempts to determine the unknown
the following conditions:

(a) §t2§ positive definite,

(b) gtgg at least positive semidefinite,

(c) the odd order terms in V., identically zero,

1

(d) the even order terms in V, at least negative

1
semidefinite.

3. This procedure can be continued, adding higher order
terms to Vi at each step, if a consistent solution set for

the unknown constants of Vi is not found.




Iv. EXAMPLES

Example 1. Consider the nonlinear differential equation

7’
il X, 0 1 Xq 0
= = +
X -X -x3 0 -1 x -X
2 2 71 2 1

with an equilibrium point at (0,0).

1. Assume a quadratic form Vv as the fundamental

0
term of a possible Lyapunov function,

D= 2 2 _ Lt
Vo (X, Xy = Ky x7 + Ko X X, + Kjax5 = X'PX,

0372 = ==
N
4 " K02
01 2
where P = , & symmetric matrix.
K02 <
L 2 03
/
. Vv, . v,
Then VO (}_S,_)_() = -5;; xl + -a—x'; X2

3
(2Kolxl+K02x2)x2 + (K02x1+2K03x2) (-x2 xl)

xy +

2
{ (K02-2K01)x1x2 + (2K03-K02)x2 } { Kj2

t
- XQX - F, (%)

o
w

b
= W

by
[\§)

("

"




( Kga=2Kgp )

where Q = , a symmetric matrix.

02701 L,  _ g

§

According to Section II, reduce

4 + 2K x3x

1 03¥1%2 to a quadratic form in Y.

Fi4(¥) = Kgox

02

. _ .2 _
Define Yi = X1 Yy = XX,y

Fog = [¥y,¥,] Ko2 Ko3 Yy

and determine the unknown constants KOl’ K02' and KO3

from the following conditions:
(a) Vo(g,g) be positive definite,

(b) gtgg be at least positive semidefinite,

(c) F04 be at least positive semidefinite.

Condition (a) requires:

K01 > 0, (I-1)

K
02 _
K91K03 '(T) > 0, (1-2)




Condition (b) requires:

2
K, .- 2K
__( 02 01) >0 . (1-3)

Condition (c¢) requires:

Koo

v

o, (I-4)

K03 =0 (I-5)
Condition (I-5) contradicts (I-2), so correction terms added
to V0 are required.

A complete fourth order homogeneous polynomial with
unknown coefficients can be added to VO’ but inspection of

F04 reveals that the coefficient K is associated with

03

Y|Y,s OF xi x2. Consequently we may only need to add a term

Gl4(§) to v,
3 . 4

xlxz. As such a term is xl, set G

such that its time derivative will contain
_ 4

14 = Kp1%p-

2. Define

Then

. . 4

: _ ) ) 3
Vi 4 Vo * Gy = - XX - [ Kpgpx) + (2Kg3=4K) ) X%, )

= - x%Qx - F ,(X)

where Q is unchanged. Reduce the bracketed term to a

.. - .. 2 .
quadratic form of ¥ by defining v. = X5 ¥, = xlxq, i.e.,
- 4



10

/s
Then attempt to determine the unknown constants KOl' KOZ'
K03 and Kll from conditions (a) ~ (c) as given in step 1.

Again
(a) Ky 2 0, (I-1)
2

K02
Ko1K 3 -(-—5—) > 0, (I-2)

2

K,,—2K

(b) - —Oiz——ol) >0, (1-3)
(c) for Fl4 to be at least positive semidefinite,
K02 > 0, (I-4)

2
- (Ky3 = 2K;;) 72 0.
From (I-1), arbitrarily choose Kgp = 1 and substitute
(I-3) and K = 1 into (I-2),

0l
2— -
Ko1Kg3 = 4(Kgy) ™ = Ko3 = 4 2 0.
= - = = 2 =
Let K03 = 5., From (I-3) and K01 =1, Kll 5 and K02 2.
Therefore
= yt 4 _ 2 5 4 2
vV, = X'BX + Ki1¥; = x7 + 2X1X, + 35Xy + 5x2'
Y = - xtax - F - 2 _ 4
and v, = X QX Pl4(§) = 8x2 - 2xl.
Thus Vl is positive definite and vy is negative definite

everywhere in the X VX, plane and the equilibrium point
is global asymptotically stable.
The stability of this differential equation has been

examined in the literature by using the variable gradient
method [2] to get the Lyapunov function




xl2
V=-—2'+X
with V = - x 2 . X
2 1l
Example Z.
fo\_/
X1 7] %2
X 71 *3
x, |=| - 2x
L 73 T2

X

1

3 . 6xlx

2

2

Consider the differential equation

N

2
- 3x1 x3

7/

with an equilibrium point at the origin.

l.

function

where P

Then V,(X,X)

r

where Q =| 2K

0

K

03 01l

02

2K03—K

2(2K

2K

- x%QX - Py, (X)

0l

06K

03

05 Xp2

Assume a fundamental term of a possible Lyapunov

Ko3
K05 , a symmetric matrix.
Koe
“Ky, h
2K Ko37Kog | -
04 ~2Kg5
7

11



12

and

- 4 3 3
F04(§) = 2K03xl + 2K05xl x2 + (6K03+2K06) xl x3

2x X, + 6K 2,.2 + 12K 2,2

+ 6Ky5X) XoXg 06%1 *3 03%1 %2

3

+ 12K05x1x2 + 12K

2
06¥1%2 *3°
Reduce F04(§) to a quadratic form in Y by defining

2 2
Y T %3 0 Yy T Xy 4 Y3 T XgXy0 ¥y T XyX3s Yy T XpX3e

Then F04(§) = F04(X'!) = Y'KyY
( 2K 0 K 3K, +K 0 )
03 05 05 706
0 0 6K05 0 0
with 50 = Ko5 6K05 12K03 3K05 6K06
3K03+K06 0 3K05 6K06 0
L 0 0 6K06 0 0 J
To determine the unknown constants KOi’ the following

conditions are to be satisfied.

(a) P a positive definite matrix, '
(b) the principal minors of Q be non-negative,
(c) the principal minors of 50 be non-negative.

Condition (a) requires:

K > 0, (II-1)

01




Kg1Xga = Koo > O
Ko1 Ko2 Ko3
Ko2 Kog Kos| > O0-
Ko3 Kos Koe
Condition (b) requires:
0 2Kyq = Ko
2Kg3 ~ Kop 2(2Kg5-Kp5)
Ko1
which implies K03 =5
0 2K;37Kg,
2Kg3 ~ Koy 2(2Ky57Ky,)
“Kj2 2Kge =~ Kg3 = Koy
0 0
= 0 2 (2K =Ky ,)
“Ko2 2K567Kp37Kp4
= -K..2 .2« (2k..-K..) >0
02 05 Kp2) 2 O

which implies Ky, = 0
Condition (c) requires:

2K03 > 0,

(II-2)

(IX-3)

(II-4)
Koz
2Kgg =~ Kg3 = Koy
~2K
_K02
2K56"Kp37 Ky
2K
(II-5)
(I11I-96)

13




2Kq3 0 Kos
0 0 6K = - 72K..K..2 > 0
05 03%05 = -
Kos 6Xys 12Kg3
Since K03 must be greater than zero (II-1 and 4)
K05 =0 (I1-7)
r )
2K03 0 0 3K03+K06 0
0 0 0 0 0
F. o= y" 0 0 12K 0 6K Y
04 - = 03 06| =
3K03+K06 0 0 6K06 0]
L 0 0 6K06 0 0 )

Since the second row and second column of the matrix associated
with F04 are zero, the second element of Y can be dropped,

and F becomes

04
t
( ( Y (o, )
y
1] 2K, 5 0 3K, 3+K g 0 ¥,
y3 0 12K03 0 6K06 y3
Foa =| Y4 3K53+Kp 0 6Kpg 0 Y4
Ys 0 %06 0 ) LY
o Vs \

14




The requirements for F04 to
2Ko3 2 9
2K03 0
= 2
0 12K03
2K03 0
0 12K03
3K03+K06 0
= 2K03 { 72K03K06 - 6
and
2K03 0
0 12K03
3K03+K06 0
0 6K06
= - 36K, % { 12K K, . -
06 03706
Substituting (II-7) into (II-9)
2
12Ky3Kge = (3Kp3tKg

and (II-10) into (I-9),
2

36K06

This is possible only if K06

>

0.

be positive semidefinite are now

(I1-6)
5 |
4 Ko3 > 0,
3KO3+K06
0
6K,
(3K._+K. )%} > 0
03 Kpg) '+ 2 04 (II-8)
3Ky +K g 0
0 6K,
6K, 0
0 0
(3K..+K. )2 } > 0 (I1-9)
0306 z 0.
)y > 0, (II-10)
0. (II-11)

15



But if K06 = 0, V0 becomes

4 N
Ko1 Ko2 Ko3
xt | x K K
£ 02 04 05 | X/
LK03 Kos 0
7
which can never be positive definite. Therefore K06 can't
be set to zero, and we need higher order correction terms
added to VO‘

2. A complete fourth order homogeneous polynomial
with unknown coefficients can be added to Vs but an inspection

of F04 reveals that the coefficient K06 is associated with

3 2 2.2 . . . .
X7 X3, XX, X3s X; X37. Therefore it is sufficient to
such that dG14 contains
dt

3 2 2.2 3
the terms X] X3r X Xy X3, Xy Xy . Such terms are X X,

add only those terms of G14(§) to V0

and x12x2x3. Therefore define

A 3 2
Gpg4(X) = Kyy%)7xy + KyoX) X X5

A
o _ ot 3 2
and Vi =V t Gl4(§) = XBX + K %X, X, + Ky, %) X, X,
[k N
01 Ko Ko3
_ ot
= X" | Ky, Koa Kos| X
K K K
03 05 og

3 2
+ Kllxl xé +-K12x1 x2x3.

16




From (II-4,5,7)

K N
/ 0l
Ko1 0 W
R ot
V1 = X 0 K04 D X
o1 o X
2 06
~ /s
3 2
MRS FESEE TR SPL R LS
T _ 2.2 3 2
v, = XX F04(§) + 3K11x1 Xy + Kyyx;7xq # 2K12xlx2 X4
2, 2 _ 2. 2 _ 2 3 2 2
+ Klle X3 2K12xl X, Klle xz(x1 +6xlx2 +3xl x3)
= - X 00X - { K,,x 4 + (3K, +2K,.,.~K.,)x 3x
=t3= 0171 01 06 "11°71 73
2. 2 2. 2
+ (6K05 Klz) X1 X, + (6K01-3Kll+2K12)xl X,
+ (12K, _-2K,.)X.Xx 2x } - { K,.x 5x + 6K, . X 4x X, + 3K, .,X 4x X}
06 1277172 73 1271 72 1271 7273 1271 7273
= - x%x - F,,(Y,Y) - F, (X)
= =2 14 ="~ l6'=
0 0 0 A
Ko1
where Q = 0 0 2K5e=—5— Koy |-
K
.01 _
X 0 2Ko6™2- “Kou 0

17



Since the first row and first column of Q are zero, the first
component of X is dropped, and gtgg becomes

, Ryy N\ /N
0
0 2Kge = —3— " Kpg X,
[xz,x3] .
K
0l
%Ko 7~ Koy 0 X4
~ 7 . /
Also
F,,.(X) = K. . % 4 + (3K..+2K. . -K,.)x 3x + (6K, .~K,.)Xx 2x 2
14'2 0171 ‘01" o6 11’71 %3 06 "12°71 73
+ (6K..=3K, +2K..)x.°%x.2 + (12K. -2K..)x.x.%x
01 711 “M127 %1 *2 06 12° 172 3¢
- 5 3.3 4
Fi6(X) KioX) Xy + 6Ky, %,7%,7 + 3K X, 'X,%3 .

Following Section II, Fl4(§) and Fl6(§) are reduced to quadratic
forms as

18




/ 2N 7
Xy Ko1
xlx2 0
Fiq =
X. X -3-K
1%3 770
K
X.X 0
| *2%3 ]
and
t
/ /
x13 )
2
X1%2
Fi16 =
X1¥2%3
.3
L 1
~

l+K

N*w

12

3K12

06

6K ., —-3K

01
2K

11
12

6Kp67K12

GKOG

12

~K

K,

12

-K

To determine the unknown constants, condition (a) in Section

III requires:

Ko1 2

0,

(II-1)



Ko1Kosa > 0
K
Koy 0 01
2
0 Koy 0
K
01
2 0 Koe

Condition (b) requires:

K
01
(2K -

06

which implies

K
0l _
2K06 - —- —K = 0.

Condition (c) requires:

K >0,

01

Koy (6Kgp=3K;+2K >0,

11+2K;5)

0 6K0 -3K,,+2K

1 11 12

2K01™Kp6™ 3 0

20

2

K.,+K

0l

6KpgK12

06

(I1-12)

K2

01
_K -
01¥04 (Kgg— 7 > 0-

(II-13)
(I1I-14)
(I1-1)
(II-15)
K11
2
> 0




or

K

k) - (3 Suy2 i
(6Kj1—3K;1+2K,) {Kg; (6K Ky 5) (5Kg1+Kpg™—5—) "} 2 0, (II-16)

and finally the deteminant of the matrix of F14 > 0, which

gives
2 3 K11,2
- (6K =Ky o) " {Kpy (6Roe=Ky5) = (5K ¥Kpg=—) ") 2 0. (11-17)
From (II-1) and (II-15), 6K, - 3Kqj + 2K;, 2 O. (II-18)
3
From (II-18) and (II-16), Ky (6Ky=Ki,) = (5Kg +Kqe
K
- %1)2 > 0. (II-19)

~

2
From (1II-10) and (1I-17), -(6K06—K12) > 0.

This last expression can be satisfied only if

K = 6K,_..

12 06

Substitute this into (II-16)

K

- (6K, = 3K +2K ) (3Ky +Kgg——52) ° 2 O (1I-20)
Since 6K01 - 3Kll + 2K12 > 0 from (II-18), (II-20) is possible
only if

o1 * Kog - i%l = 0.
Therefore K,;=3K,; + 2K,.. (I1-21)

21



Condition (d) in Section II requires only that

0 Ky2 2
2 = - > 0. (I1-22)
2
K
12 o
2

Equation (II-14) is possible if Ky, = 0, but then the purpose
of adding Gl4 to V0 is negated. Therefore further correction

terms are added to Vl‘

We can add a complete Gth order homogeneous polynomial
with unknown coefficient to Vl' but again an inspection of

F16 suggests that the coefficient P is associated with

. 5 3. 3 4 . .
terms like xl X5 xl x2 and x1 x2x3. Therefore it will be

sufficient to add only those terms of Gze(g) to V, such that
dG
26 . 5 3, 3 4
—g¢  contains terms x,7x,, X,7%x," and x; X,X4y. Such terms
. 6 4 2
obviously are X1 0 Xy Xy
3. Add G, (X) = K, x.° + K,.x,%%x.% to V., and define
: 26°= 2171 2271 72 1
_ t
V2 A V) ¥ Gyg = XTRX 4 Gy (X) + Gyp(X)
\
(% 0 fo
01 2
K
_ t __0l
= X 0 2Ky6™ 5 0 X
o1 0 K
2 01
N /

3 2 6 4 2
+ (3K01+2K06)x1 X, + Klle XX + K21xl + K. X, X

22




Then V A

T Fpe(X)

12
- 3Ky

3K12—2K

“H22

22

12
73Ky

0
6K01—3Kll+2K
3.

EKIZ K2 > 3K

12

12

-2K

x. 2
1
X1X2
N3
221 { *1 )
X 2X
1 %2
X1XX3
.3
J N 2 /

To determine the unknown constants, the following conditions

are to be satisfied.

(a) P at least positive semidefinite

(b) Fyy

(c) Fo6

Condition (a) requires:

KOl >0,

at least positive semidefinite

at least positive semideifinite.

(II~1)

23



0l
Kpy(2Kgg=—37) 2 0,
KOl 0
K
01
0 2K06 5=
K
01
- 0
Condition (b) requires:
Ko1 2 O
K01(6K01—3K11+2K12) > 0.
Condition (c) requires:
K
12 _
3
%12 ~ Ky = 0-

A set of solutions satisfying all

K =O'K —l’K =2,

0l 06 11

24

(II-23)
fo1
>
0 > 0.  (II-24)
Koe
(II-25)
(II-26)
(II-27)
(1I-28)

of the above conditions is

22 9.

K 21

= 6, K 1, K

12




Then

2x )2
1 72

(x3+3x + (x2+x

positive definite, and

s 2.2
V2 = 6xl Xy s

negative semidefinite.

Hence, Lyapunov's direct method indicates that the system is
stable but not asymptotically stable. For this particular
equation, however, no solution other than the origin exists

such that V is positive difinite and V is negative semidefinite,
indicating that the equilibrium point is asymptotically stable.

This example has also been considered in the literature
by the variable gradient method [2]. The Lyapunov function
was given as

_ 2 2 3,2 2
vV = (x3+3xl x2) + (x2+xl )¢+ x2

. 2 2
v 6xl x2 .

Using the variable gradient method, one statts by assuming
a particular form of VV, calculates V= (zz)t-g, and then

constrains V to be at least semidefinite. Finally V is found

by integration. The V so obtained is not guaranteed to be
definite. Thus, as with most of the other known methods, a
difficult step exists in the procedure that involves nonanalytical
work. Alternately the procedure described here (a) provides

a direction for developing a sequence of correction polynomials
starting with an elementary quadratic form until a Lyapunov
function is obtained, (b) presents the problem of determining

the sign definiteness of a polynomial as one of solving
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a set of algebraic equations and inequalities, and (c) appears

to offer a greater degree of flexibility for choosing the
unknown constants in the V function.

The two examples where chosen to illustrate the procedure
without encumbering the reader with algebraic details. More
complex examples have been considered. These clearly indicate
that while the algebra increases the sequence of steps is
straight forward and does not require greater insight or
familiarity with the solutions.
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(2]
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