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ABSTRACT

The aim of the paper is the computation of short-period perturba-
tions of the elements of the orbits of artificial satellites, caused by
atmospheric drag. The density function of the earth's atmosphere
includes the effect of the atmospheric bulge, described by a formula
given by Jacchia. The method of the solution is in essence the method
of construction of the disturbing function on an electronic computer; the
formulas needed for such computations and some numerical results are

given,




THE SHORT-PERIOD DRAG PERTURBATIONS OF THE ORBITS
OF ARTIFICIAL SATELLITESl

L. Sehnal® and Sara B. Mills-

1. THE DENSITY FUNCTION

The variation of the density of the earth's atmosphere can be

described by a formula given by Jacchia (1960):

p(z) = o (1 +a cos n’ %) s (1)

where

p(z) denotes the density in the height z (km) above the
earth's surface,

' is the angle made by the radius vector of the satellite
and the axis of the atmospheric bulge,

a and n’ are arbitrary numbers, and

Po is given by the relation

lThis work was supported in part by Grant No. NsG 87-60 from the
National Aeronautics and Space Administration.

ZCelestial mechanician, Smithsonian Astrophysical Observatory; now
with Astronomical Institute, Ondfejov, Czechoslovakia.

3Prograrnmer, Computations Division, Smithsonian Astrophysical
Observatory.



log p0=3+bz+cexp (-0.01 z) s (2)

where a, b, and ¢ are empirical coefficients.

The coefficients a, a, b, and c and the exponent n’ are found for a
given date and given satellite as follows: The nighttime exospheric
temperature TO is found from the measured solarflux at 10. 7cm. Then,
for the height of the perigee of the satellite's orbit, we find the tempera-

tures Tl/Z and Tm (daytime maximum) as

=1.14 T

T T, =1.28 TO

1/2 0o M

For the temperatures TO’ Tl/Z’ and TM we find from the tables
of Jacchia (1964) the densities Po> P12 and VS The coefficient a

and the exponent n’ are then found from the formula

PM~Po  n’y’
p=p0(l+———p0——cos 2) . (3)

We have then the equations

PMm ~ Po
-~

[}

and

n' = 6.644 [10g (ppp - Po) ~ log (py/2- Po)]




We then take from the same tables the values of the densities pO(Zi) for

the temperature T0 at three different points z, above the perigee height

>

so that we have three equations

log PQ(Zi) =a+ bz, + ¢ exp (-0.01 z;) i=1,2,3) , (4)

from which we obtain the coefficients a, b, and c.

Thus the density function is computed separately for each date and

orbit.




2. THE EQUATIONS FOR THE VARIATIONS OF THE ELEMENTS

The change of an arbitrary orbital element o, caused by the

atmospheric drag, is given by the equation

where Kcr is a constant different for each element and dependent mainly
on the physicalcharacteristics of the satellite. The function F‘T(E) is afunc-
tion of the eccentric anomaly E and can be derived from the equations
given by Sterne (1960) or in a transcription by Izsak (1960). This func-
tion contains in itself the effect of the rotation of the atmosphere. It

can be developed in the Fourier series; it will be better for our pur-
poses to transform it into a series with powers of cost E instead of the

series with multiples of argument of trigonometric functions.

The coefficients of the terms of the series can be again expressed
as the series of the powers of the eccentricity e. We have then generally

two kinds of the function FU(E):

T L
FU(E) = Zcost EZ (rgflt) et s (6a)
t=0 u=0
and
T L
FU(E) = Zcost E sin E Z Ugl(lt) et . (6b)
t=0 u=0



(t)

The coefficients Ggu depend on the small parameter d introduced by
Sterne (1960),

w
s
n

1 —e2 cos i s (7)

where we is the angular velocity of the earth, n is the mean motion
of the satellite, and i is the orbital inclination. The summation limit
L depends then on the precision in powers of eccentricity wanted in the

computation.

We have now to express the density function p as the function of
the eccentric anomaly and multiply it with one of the series (6a) or
(6b), to be able to integrate equation (5). We shall transform the

function p as follows:

! 14
' n ’ n ’
p=p0+poacosn -lg—=p0al cos l%+poa2cos 2-%—
2 n! ,
.—_Z P @; cos 1%— , (8)
i=1
where
—_ | -
al-—l nl—O
a, =a n’2=n’



The result will then consist of two parts, the second one corresponding
to the effect of the atmospheric bulge. For the analytical treatment of
the problem, we can take only one of the two terms in equation (8), thus

dropping the index i. We shall introduce into this term the substitution

zZz-zZ, ae -aecos kE s

0

2z, being the height of the perigee and a the semimajor axis. Intro-

ducing new constants kj (j =0, 1, 2, 3) by equations

a+b
(ZO + ae)

kg =a, 10 i=1,2) ,
kl=-1n10><bae s
k2=£n10cexp[—0.01(zo+ae)] ,
and
k3 = +0.01 ae , (9)

we have for the general term of the density function the expression

p~k

I3
o €XP (kl cos E) exp[kz exp (k3 cos E)] cos™ %ﬁ . (10)

We shall now introduce some development of the functions contained

in the density function (10):



°°k

exp (k) cos E) —Z —-—cos E . (11)
i=0
00 Z 00 J
- __3 ___2_ .
exp[k2 exp(k3 cosE)] —;cos 7 Z i . (12)

Multiplying equations (11) and (12), we obtain the expression for the

exponential part of the density function in the form

o0

exp (kl cos E) exp[k2 exp (k3 cos E)] =Z cosPE - bp ,  (13)
p=0

where

P kl p-i
1
p Z_' -1)

1=0

i
—J" (14)

o0

The actual limits that must be used in the computation of the
coefficient (14) depend on the numerical values of the constants ki and
are best determined numerically. The coefficients bp make a con-
vergent series, growing from the beginning to a certain limit, then
decreasing monotonically after this limit or a second maximum, de-
pending on the values of kl’ kZ’ and k3.

The trigonometric term in equation (10) is expressed using some

simple relations:



! ’

n n’ n'

J
cosn’-Lpz—, =<%>2 (1 +cos 41’)2 =<%>2 2 n, cosl i s (15)
£=0

where

n1=£211<£21—,-l><%-2>...<%-1+1> : (16)

We shall now suppose that the position of the orbital plane and the
axis of the atmospheric bulge remain constant; this is nearly true for
one revolution of the satellite, so that the short-period perturbations
can be determined, assuming this hypothesis, with sufficient accuracy.
The whole theory could be, of course, developed considering the real
changes of the elements of the satellite orbit and the motion of the sun.
In this case, we should obtain a good description of the behavior of the
orbit during longer time intervals, including-.the long-period perturba-

tions.
The angle ¢’ can be found from the relations of spherical trigonom-

etry, which were given by Cook and King-Hele (1965). We shall use a

similar notation, writing
cos Y’ = Acos v+ Bsinv s

v being the true anomaly. The coefficients A and B will then be con-

stants, given by the equations




A =-lz- sin € sin i{cos(w- L) - cos(w+L)]

+ sinz%[cosz}z cos (w+2-L-\) + sin

2i

> cos (w-2-L+\)]

+ cosz%[cosz%cos(uwﬂ- L-\)+ sinzi2 cos (w+ 2+ L -)\)]

B =% sin € sin i [sin (0 - L) + sin (w+ L)]

+ sinz—%[- sinzi2 sin(w-2-L+N\) - Cosz—l?: sin (w+Q+ L - \)]
+ cosz-ez-[- sinz}z- sin (w -2+ L+\) - coszlz- sin (w+Q-L-\)]

(17)
where ¢ is the obliquity of the ecliptic, w is the argument of perigee,
2 is the longitude of the ascending node, L is the longitude of the sun,
and N is the angle of which the axis of the bulge lags behind the direc-

tion to the sun in right ascension.

Introducing the eccentric instead of the true anomaly, we have

cos ' =

H
H |

<AcosE-Ae+B l—ezsinE>= C s (18)

r being the radius vector of the satellite.

2

2



Then we can write

oY -4

J
PNERS (19)
4=0

and

The coefficients Pz can be then expressed from equation (18) as the

series in the powers of the eccentricity:

L
p,=y xPev (20)
v=0

where the coefficients XS}) are given as series in powers of the trigo-

nometric functions of the eccentric anomaly E:

(4) EI: Lv k g : 4, v k
XV = x,’ cos E + Oyk cos E sin E . (21)

The indices k will never be greater than £, so that the limit of sum-

mation can be written as J . The ratio (a/r)l is easily expressed as
L
1 - . .
(3 = (1 - e cos E) L z kJ(“ eJ cos? : (22)
j=0

-10-



Multiplying equations (21) and (22) and introducing the result into

equation (19), we have finally

n’ J L L
cos™ %= (%) E E k(f)eJ cos’ E E Xffz) v
£=0 j=0 v=0
‘ n’ T L J L
= (%)2 2 :Cost E§ : ePE : 1) A pej
joot]
t=0 p=0 £=0 j=0
n’ T-1 L J L
L 2: p}:}: (£) 2,p-j
+ 2) cos sin K e kJ Vil
t=0 p=0  £=0 j=0

(23)

This expression must be now multiplied by expression (13), the

exponential part of the density function. Introducing the substitution

!

n
P = @Fy, 20

and establishing the fixed summation limit in equation (13) as P, we
shall have

exp (k, cos E) exp[k, exp (k3 cos E)] cosn, Y
P (k, p[k, exp (k3 5

S L S-1 L
= E cos® epCés) + E cos® E sin E eP SI()S) » (25)
s=0 p=0 s=0 p=0

-11-



where we have introduced the factors CI()S) and SI()S) by

T J L
) =tz=0: KEDS 3wl L

£=0 j=0

and

SLS) _Z k(s- t)Z Zk(f) Yf JP i (26)

£=0 j=0

The expression (25) will now be multiplied by the function FO_(E),
given by (6a) or (6b). We shall take the formula (6a) for the detailed

explanation. After the multiplication, we obtain the expression

R-1 L M L
+ ko E cos”® E sin E E eq E E Gggr_ps) S( s) . (27)
r=0

The following formulas are known:

r
TE =Z dgr) cos i E (28a)
i=0
and
r+l
os' E sin E :Z cgr) sin iE s (28b)
i=1

-12-




(r)
i
formula (28a), we have finally

(r)

where the coefficients d and c;”’ are constant numbers. Using

R R
Fo_(E)'p=kO E cosiE Z, t+ kg E siniE W,
1=0 i=l

To obtain the changes of elements, we shall find it sufficient to inte-
grate this expression and multiply it by the constant coefficient K(r' We
shall make use of the relation E = nt + e - sin E to introduce time into
the secular term and shall imply the condition that the periodic
changes of elements will vanish in perigee. We have then the change

of an arbitrary element o given as

R 2
i, .
AO'—KO_kOZOnt+K0_kO E T sin iE
i=1
R Wj
+K6k02 —i—(l-cosiE) , (29)
i=1
where we denoted
1 -
Zl = eZO + Zl
and
Z! =7 , ifi>1

13-



The coefficients Zi and W.1 of the different terms can be written as

L R M L J L
=§:eq§:dr)§:§:cg(r—s) st)E:E:k(ﬁ)
q9-p J
q=0 r=0 =0 p=0 t=0 £=0 j=0
and
L R-1 M-1 L T-1
W. = eq C(r) (rg(r-s) k(s t) k(l) ‘e p J
i z : i z : q-p 5 z:z :
q=0 r=0 s=0 p=0 t=0 £=0 j=0

(30)

We used formula (6a) for our computation. This is sufficient in the
case of the semimajor axis and the eccentricity. In the case of the
argument of perigee, we have to use development (6b). The result

will then be as follows:

A =KkaZO nt

R+2 Z’ R+l

+Kwk E —--sm1E+K kO E ——(l-c051E) , (31)

where again

and

z/=2z. if1>1

-14-



and the coefficients are given as

L R M L
W, =}:e‘:1 chr) ZZ "g i s) k”) Zk 57 & o F P~

g=0 r=0 s=0 p=0 £=0 j=0
R+2

Z. = z a(r) <H -H ) , and

i i T r-2

r=0
L M L J L

Hr = E eq E E O-g(r s) E E k§l) -2- k(s t) E p J . (32)
q=0 s=0 p=0 £=0 j=0

-15-



3. THE COMPUTATION OF THE INDIVIDUAL COEFFICIENT
OF THE SERIES

The problem was thus solved in Section 2. To be able to use the
expression practically, we would have to compute the individual terms.
It is obvious that it is almost impossible to obtain by analytical hand
computation even the expressions for the secular terms. We shall
therefore try to find some recurrent formulas for the coefficients that
appear in expressions (30) or (32). It would be best if we could
find the values of the coefficients as functions of the indices. This is

not always possible, so we have to use some recurrent formulas. We

obtain for the coefficients these expressions:

A. The coefficients a'¥).

i

a. ifi=0, then a!r) =—1—-<r> ,
0 21‘ r
2
b. if i #0, then Pl R A )
i 2r-l r-1
7

when r/2 or (r-1)/2 are integers; otherwise, dir)EO. Moreover,
the indices must satisfy the conditions i, r = 0, r = i; otherwise,

again dir) = 0.

B. The coefficients C(r):

a. ifi =0, then c(()r) =0 s
o (+1) _ 1 (_(j) (j) >
b. if i # 0, then H =3 (S + Shet)

-16-



The indices must satisfy the conditions i,j =0, j+l1 =1i; otherwise,

c(.j) =0
i
C. The coefficients kgf) are given as

(l) i£+l)(£+2) . (£+]j-1)
J 2

and the condition holds: j, £ =0, kgl) =1

D. The coefficients kgs_t) are given according to fomulas (24)
and (l14) as

n 1stioo

J

The computation of these coefficients is not too complicated, the actual
limits of the infinite series depending on the precision wanted. It can
be shown that the coefficients k(ss-t) make a convergent series, several
first terms being of increasing value. The rapidity of convergence
depends on the values of the coefficients kl’ kZ’ k3, which are again
given as a combination of the initial orbital elements and the coefficients
in the density function, according to the formulas (9). The best way to
obtain a sufficient number of coefficients is to determine this limit
numerically, since the analytical conditions, imposed on the number of
terms in the series (33), could lead to an immense number of terms.
£,p-]

t-]
formulas, different for individual values of p-j, which is in essence

aPJ

E. The coefficients x and Vil % are given by some recurrent

-17-




the power of the orbital eccentricity. We have to keep in mind that

according to formulas (19) and (20), the coefficient n

7 from expres-

sions (15) and (16) is included in the terms Xfrf) (21), and so in the

expressions for x and y, too. The upper index p-j must be = 0, and

if we want to be precise to the second power of eccentricity, we have

the following recurrent formulas, where we shall write, for the sake of

brevity, a subscript i instead of t-j:

X'£+l,0 _ £+1 AXI,O_I_BylZ,O B .1,0
i nl i-1 i-2
n
A0 P S £ 3| (Ax.l’l+B 6,1 _ g 4,2
i n i-1 i i-2
Y
n
x.l+l’2= Lt Ax.£’2+B fe"z-By.l’2
i nl i-1 i i-2
1 £,0 1 4,0
t2BYi 2By )
n
£+1,0 - £+1 (A YLO +Bx ,0>
1 n -1
£
n
£24+1,1 £+1 (A Yﬂ,l +Bx.£’l A .12,0
i n -1 i i
Y
£+1,2 41 4, £,2 _ £,1
: n£ (Ay.ll+Bx. Ayi

-18-



We have the initial values

0,0 _ 0,0 _
Xq =1 Yo =0
0,1 _ 0,1 _
X, =0 Yo =0
0,2 _ 0,2 _
X, =0 Yo =0

The coefficients n, are given by (16) and the values of A and B are
given by (17). Thus we can obtain, from formulas (34), the values

of all coefficients x and y needed.

F. The coefficients og((;r_;)s) are different for different elements
o and must be computed from the series (6a) or (6b). Fortunately,
the number of these coefficients is not too high, and if we want precision

to the second power of eccentricity, we have the expressions:

a. the semimajor axis a:

agloO)z 1-2d gél) =0 géz) =0
g(10) -0 g(11) -5 ggZ) ~ o
g(zo) =0 g(zl) =0 g(zz) =% (35a)

-19-



b. the eccentricity e:

0
Wheo o e P e
1 1 5 2
g(10)=§d g§)=1+§d gg)”*%d g(13)=° (35b)
0 1 3 2
c. the argument of perigee w:
wgéO) 1-2d g(()l) =0 g(()z) =0
g 70 g o & =3

The small parameter d was introduced by Sterne (1960) and contains
the ratio of the velocity of the revolution of the satellite to the rotation
of the earth. It is given by (7). We have omitted the terms O(dz) and

0(e3) in expressions (35).

G. The coefficients ko are given by (9) and we have for different

elements ¢ different values of coefficient Kcr’ according to

!
K =-c. A2
a dm
K =K l—ez
e a

K:K.(l;e?)l_/z

w a a‘e *

where A’ /m is the cross-section area-to-mass ratio of the satellite

and Cd is the drag coefficient.

-20-



4., THE CHANGES OF THE INDIVIDUAL ELEMENTS

According to (8), the whole computation of the perturbations of
any element splits into two parts, corresponding to the two parts of the
density function, the second of which contains the description of the
atmospheric bulge. It is obvious, with respect to (8), that the first
part of the density function (i.e., if i = 1), does not give rise to the
coefficients W, in the case of the semimajor axis a and the eccentricity
e, nor to the coefficients Z.1 in the case of the argument of perigee.
The secular terms Z0 arise in the case of a and e from both the first
and the second parts of the density function; in the case of w we obtain the
secular change only from the second part of the disturbing function.
Thus, the pattern of coefficients in (29) will be in the case of a and w

as follows:

Aa Aw
2z 2z(2) 02(2)
az() a0 ay 028 oyl oy
2z() a2y ayl?) 02 oyl oy
aégl) aéiZ) av;,§2) wZ.EZ) wv;,gl) wv;,ga . (36)

The left upper indices denote the element to which change the coefficients

belong.

-21-



The time derivative of the mean anomaly is

where S is the radial component of the disturbing function. It was
shown by Izsak (1960) that the last term can be neglected, since it is
e2 times smaller than the second term. The change of the mean anom-
aly is then given as a combination of changes of the semimajor axis
and the argument of perigee. Using the pattern of results given in
equation (36), we can write for the change of the mean anomaly the

expression

0
2 R R+1
- 31 1 p(n) 4 41 -e E 1 “’an) (1 -cosiE)
2 a i i . 1 1
n=1 i=1 i=1
2 R R+2
- E %-1— E Lol Ji-e Loy ginie
a i i i
n=1] i=1 i=1
where
(n) _a,,(n) ea,,(n)
Pli="2)7 -3 %

_22-



an) = azgn) -5 <az.’(n) + az.'(n)> , ifi>1

i-1 i+1
e2 ay (2) e ay.(2)
Q1=<1"2_) wit-7 W
_ 2y (2) _e_(a (2) , ay(2) .
Q.l- Wl -3 Wi-l+ Wi+l> , ifi>1

The changes of the longitude of the ascending node £ and of the
inclination i are much smaller than the changes of a, e, w, and M,
since the equations for their changes contain the quantity d as a factor,
which then appears in the coefficients Gg;, given in (35). The short-
period perturbations of those elements are thus negligible in our

analysis,

-23-



5. NUMERICAL RESULTS

We chose the orbit of the satellite 1958 gamma (Explorer 3), since
the short-period perturbations of the orbit of this satellite were computed
by Izsak (1960) and we could compare both results. However, the
density model of the atmosphere used by Izsak was a very simple one,
but the satellite had a low perigee and small eccentricity, so that it
moved in a region where the differences in the course of the atmospheric
density determined by Izsak's or Jacchia's density function were not
too great. We shall see that our results, obtained from the first part
of the density function (8), are in very good agreement with those ob-
tained by Izsak. Of course, the perturbations corresponding to the

second part of the density function are of different shape and value.

The changes of the semimajor axis during one revolution are
plotted in Figure 1. The short-period perturbations are superimposed
on the secular change. The dotted curves correspond to the changes
computed from the first part of the density function (8), the full line
being the whole change, both parts of the density function included. We
see that the results do not differ substantially from those of Izsak,
either in the shape or in the numerical values. The secular change of
the semimajor axis is -1.58 X 105 cm. The part of the density function
corresponding to the effect of the bulge contributes to this change with
a value -4. 89 X 103 cm. The short-period perturbations of the semi-
major axis, corresponding to the effect of the bulge, are plotted
separately in Figure 2. The sums of cos (Wi) and sin (Z;) are shown,

and the scale is enlarged.

The contribution of the second (bulge) part of the density function

to the short-period perturbations of the argument of perigee is of the

-24-
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same order as in the case of the semimajor axis. It is shown in
Figure 3, in which the dotted line corresponds again to the perturbation
of the element w without considering the atmospheric bulge. The bulge
also causes a secular change in the argument of perigee, which has,

in this case, the value of +27 83 X lO-5 during one revolution.

The numerical results were computed mainly to check the whole
theory and computations procedure. This analysis was done by a
method uncommon in classical celestial mechanics. The implementa-

tion of this calculation taxes current computer technology.

=27~
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NOTICE

This series of Special Reports was instituted under the supervision
of Dr. F. L.. Whipple, Director of the Astrophysical Observatory of the
Smithsonian Institution, shortly after the launching of the first artificial

_ _earth satellite on October 4, 1957 Contributions come from the Staff
~ of the Observatory. - - s T

First issued to ensure the immediate dissemination of data for satel-
lite tracking, the reports have continued to provide a rapid distribution
of catalogs of satellite observations, orbital information, and prelimi-
nary results of data analyses prior to formal publication in the appro-
priate journals. The Reports are also used extensively for the rapid
publication of preliminary or special results in other fields of astro-
physics.

The Reports are regularly distributed to all institutions partici-
pating in the U. S. space research program and to individual scientists

- - who requestthem from the Publications Division, Distribution Section,
- Smithsonian Astrophysical Observatory, Ca.mbndge , Massachusetts -

02138.
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