On the Application of Extreme-Value Statistics to Command Oriented Problems

John C. Ashlock
Sandra M. Lurie

Approved by:

H. A. Curtis, Manager

Spacecraft Telemetry and Command Section

JET PROPULSION LABORATORY CALIFORNIAINSTITUTE OF TECHNOLOGY PASADENA, CALIFORNIA

October 15, 1966

Copyright © 1967
Jet Propulsion Laboratory
California Institute of Technology
Prepared Under Contract No. NAS 7-100
National Aeronautics \& Space Administration

CONTENTS

I. Introduction 1
II. Some Basic Questions 1
III. Amplitude-Distribution Analysis 2
IV. Interpretation of Empirical Amplitude-Distribution Analyses 5
V. Introduction to Extreme-Value Statistics 6
VI. Univariate Extreme-Value Statistics 7
VII. Restrictions and Limitations on Use of Univariate Extreme-Value Theory 12
VIII. Bivariate Extreme-Value Statistics 14
IX. Restrictions and Limitations on Use of Bivariate Extreme-Value Theory 25
X. Data-Processing Techniques 26
Nomenclature 31
Appendixes
A. Data-Processing Program for Bivariate EVT Statistics 32
B. Data-Processing Program Nomenclature, Simplified Flow Diagram, and Listing 34
C. Data-Processing Program Sample Output and Operational Directions 72
References 139
Bibliography 140

TABLES

$$
\begin{aligned}
& \text { 1. List of successive samples taken from the integrator output with } \\
& \text { a constant bit type and noise into the detector } 8
\end{aligned}
$$

2. Exireme data point for each group of 100 samples 10
3. Sample pairs from matched filter outputs just before the filter is dumped. 17
4. A list of pairs of extremes (X, Y) 22
5. Normalized pairs of extremes (Λ, Ω) 23
6. Conditional bit-error rates as a function of threshold 24
B-1. Nomenclature of the data-processing program 35
B-2. Listing of the data-processing program 41
C-1. Sample output of the data-processing program 73
C-2. Operational directions of the data-processing program 134

FIGURES

1. Typical threshold receiver 3
2. Ranger 3-9 command-detection channel 3
3a. Probability density of envelope detector, Ranger command-defection channel 4
3b. Probability density of envelope detector, Ranger command- detection channel, FSK one tone-25 db SNR 4
3. Coherent PSK-defection channel 4
4. Probability density of PSK-detection channel matched-filter output at dump time 4
5. Cumulative probability of data extremes taken from data of Table 2: plot A. 10
6. Extreme-value probability $\times 100$ divisions graph paper 11
7. Cumulative probability of data extremes taken from data of Table 2: plot B 12

FIGURES (Cont'd)

9. Normalized aufocovariance of independent samples 13
10. Normalized autocovariance of dependent samples 13
11. Two-channel detector functional diagram 15
12. The four bivariate probability regions 24
13. Bivariate probability density of data extremes. 25
14. Details of bivariate iterative maximum likelihood fit 30
B-1. Simplified flow diagram for data-processing program 39
C-1. Computer plot for data channel 101
C-2. Computer plot for synchronization channel 102

Abstract

In commanding planetary spacecraft, system constraints allow data rates of only a few bits per second. Also, the accuracy of received information must be high since execution of an improperly received command could disrupt the mission. This report considers the problem of experimentally estimating or verifying error probabilities when the classical error-counting approach is too time consuming to use. The rudiments of extreme-value theory are introduced for the univariate case where the bit-error probability of interest depends on a single variable, and for the bivariate case where the bit-error probability is a function of two dependent variables. Many examples are given, and numerical results are presented. Considerable attention is given to techniques of implementing the theory.

I. INTRODUCTION

The purposes of this report are to discuss the history leading to use of extreme-value theory (EVT) in estimation of statistical parameters of communication systems, detail the basic concepts of EVT and give examples of EVT application in this area, the primary application
being error rate estimation. The tone of the report is that of the engineer, as opposed to the mathematician. No attempt has been made to make it mathematically rigorous, and only sufficient mathematics are included to enhance the credibility of the general approach.

II. SOME BASIC QUESTIONS

In nearly all binary communication systems, information is ultimately conveyed by the use of some form of a decision or threshold device. In this type of system the question of accuracy of received information eventually can be, and frequently is, reduced to the concept of a bit error, i.e., the probability of incorrect reception on a particular bit. Thus, given a binary one (zero) and noise as the incoming signal of a threshold type receiver,
one basic question becomes: What is the probability of failing to receive a binary one (zero) at the output?

In a coherent system with a transmitted reference, another item of interest is the quality of the received reference. Generally, there is some type of "coherenceloss of coherence" indicator which is used for this purpose. One typical mechanization (Mariners R and C
command systems) of coherent systems employs the loss of coherence indicator to inhibit data reception when the indicator shows the reference to be faulty according to some predetermined criterion. Thus, another question to be answered is: What is the probability that the loss of coherence indicator will inhibit reception? In actuality the reference and data information are usually transmitted through the same medium at the same time and are simultaneously processed by the receiver in somewhat different manners. Often the statistics of the two channels are dependent. (Note that if the statistics are independent, it is a simplified special case of the preceding.) Thus, we can ask: What is the probability of a bit error, given an indication of coherence? Or similarly, given an indication of loss of coherence, what is the probability of a bit error?

In asynchronous systems which depend on the received signal to initiate a processing sequence, the time delay in the processing channel used to derive the initiation signal becomes of interest: e.g., if the delay is too great (due to noise, for example) the system may inherit an unknown time skew between its reference and that of the transmitter. If sufficient, this skew could completely disrupt the decoding scheme. Such an asynchronous system was used on Rangers VI-IX command systems and will be described in greater detail in the next section.

The classical, experimental approach to problems of this general type has been that of repeated trials of comparing transmitted and received digital data. For example, using this approach in bit-error testing, the receiver under test is supplied with a prescribed signal-to-noise ratio (SNR), a known bit is transmitted to it, and the receiver output is examined and compared with the value of the bit transmitted. The error rate is defined
simply as the ratio of bits in error to total bits transmitted during the test. If either error rates or bit rates are high so that errors accumulate at the rate of 10 / to $20 / \mathrm{hr}$ of test time, this approach can give accurate results with high confidence levels in a "reasonable" length of time. However, if error rates are low (say, 10^{-5}) and bit rates are also relatively low (say, $1 \mathrm{bit} / \mathrm{sec}$), then the test time required to experimentally determine such an error rate, with an 80% confidence level less than $\pm 20 \%$ wide, is about 1000 hr . Simply to establish if the error rate is less than 10^{-5} at an 80% confidence level requires 45 hr , if no errors are recorded. As bit rates decrease, and/or error rates being measured decrease, the required test time increases even more.

In present day space probes bit rates used in communication with the spacecraft are normally low-1 bit/ sec, for example, on both Ranger and Mariner command systems. Also, reliability of transmitted commands must be high. The maximum error probability acceptable on these two systems is a bit-error rate of 10^{-5}. Several hours of test time are required to establish whether or not the required error rates are obtained at the specified SNR. If it is further desired not only to obtain this one point of data, but also to establish an actual experimental curve of bit-error rates as a function of SNR (perhaps at several combinations of temperatures, power supply voltages, etc.) test time becomes prohibitive. Longer bit times, such as 0.05 bits/sec now being considered, only aggravate the problem. Furthermore, long periods of testing allow variables, some known and some unknown, to influence the system under test. This phenomenon, in turn, leads to highly instrumented test complexes involving large amounts of equipment, manpower, and operating time. A less costly and time consuming approach would obviously be welcome.

III. AMPLITUDE-DISTRIBUTION ANALYSIS

Consider the receiver in Fig. 1. It is not uncommon for the information to be presented to the threshold device in analog fashion. Information is available in the analog signal that is not used in bit-error testing as described previously; for example, one cannot only determine whether or not an error occurred, but also
how close it came to occurring. This implies that knowledge of the amplitude distribution of the signal presented to the threshold device at the time at which the threshold detector's output is examined will allow prediction of the probability that any single bit will be in error.

Fig. 1. Typical threshold receiver
To have something more concrete to discuss, consider the system of Fig. 2. This is the bit-detection channel used in Rangers III-IX and is, historically, the first system on which the efforts delineated in this report were expended. Basically, the FSK input signal is processed through an analog processing network which results, at point A of Fig. 2, in one dc output for an input of the frequency of the narrow bandpass filter and a second dc voltage for the other FSK input frequency. Of course, both of these dc levels will be perturbed by noise and will shift as a function of input signal-to-noise ratio (SNR) due to signal suppression in the limiter. The Schmitt trigger quantizes the envelope detector output and in this sense serves as the threshold device.

The internal programming of the detector is such that the Schmitt trigger output is sampled and stored at the
estimated midpoint of the received bit; no integrating is done other than that accomplished by the filter of the envelope detector. Thus, the data actually used are the behavior of the envelope detector at times other than transitions between bits. The detector relies on the leading edge of the first bit of the incoming command to establish synchronization for the rest of the command. This is an example of the initiation signal mentioned in the preceding section. One point to note is that the sampling of the Schmitt trigger output occurs at a point in time that leaves it essentially uninfluenced by the effects of the normal transitions in the frequency of the FSK input signal. Thus, we can make the statement that the voltage distribution of the steady-state, envelopedetector output controls the error rate. So far as noise is concerned, the statistical properties of the command subsystem are essentially determined by the analog circuitry and command word Schmitt trigger in the detector; thus, the statistical properties of output-signal voltage of the envelope detector, coupled with knowledge of the Schmitt trigger firing voltage, contain sufficient information to indicate the caliber of performance of which the detector is capable-including bit-error rates. Figure $3 a$ is an example of the shape and position of these distributions and how they change as a function of input SNR. Figure 3b details one of the curves of Fig. 3.

An additional example of how amplitude-distribution analyses (ADA) are developed in practice is presented in Fig. 4. The configuration presented is that of a coherent PSK-detection channel; this is basically the scheme used on the Mariner 64 command system. In the absence of noise, the matched filter has as its input a signal of $\pm \mathrm{A}|\cos \omega t|$ which it integrates for one-bit time. At the end of that time the dump and decision circuit dumps the integrator (shorts the capacitor) in preparation for the next bit and examines the direction of the resulting

Fig. 2. Ranger III-IX command-detection channel

Fig. 3a. Probability density of envelope detector, Ranger command-defection channel

Fig. 3b. Probability density of envelope detector, Ranger command-detection channel, FSK one tone- 25 db SNR
transient to determine the type of bit it assumes was transmitted. Thus, the type of bit chosen by the decision

Fig. 4. Coherent PSK-detection channel

Fig. 5. Probability density of PSK-detection channel and matched-filter output at dump time
circuit is determined by the polarity of the integrator output at dump time.

In this example, the amplitude distribution of the integrator output at dump time becomes of interest in determining statistical behavior. Note that, in contrast to the FSK system of Fig. 2, the voltages of interest occur only at discrete times, i.e., dump times. Figure 5 is a sketch of the shape and position of the distribution of the integrator output at dump time, and how it varies as a function of input SNR.

IV. INTERPRETATION OF EMPIRICAL AMPLITUDE-DISTRIBUTION ANALYSES

These amplitude-distribution analyses can conceivably be used in numerous ways. One of the more obvious ways is a visual examination of a family of ADA curves with the object of comparing these curves with data anticipated and with data obtained from similar tests on prototype equipment-equipment known to perform satisfactorily. Conclusions reached by this approach are arrived at strictly on the basis of engineering judgement and experience.

Another method in which ADA information can be used is to estimate bit-error rates. Conceptually, this method is based on the fact that amplitude-distribution analyses are estimates of probability-density distributions. Consequently, the probability of the variable exceeding the threshold of the decision circuit at any particular time of interest is simply the percent area under the ADA curve where the abscissa has a value greater than threshold. Or in a more concise statement

$$
P=\int_{v_{T}}^{\infty} p_{\mathrm{ADA}}(v) d v
$$

where

$$
\begin{aligned}
P= & \text { probability of error at any one instant, } \\
V_{T}= & \text { value of the variable at the threshold of the } \\
& \text { decision circuit, } \\
v= & \text { variable, } \\
p_{\text {ADA }}= & \text { probability density function obtained by nor- } \\
& \text { malizing the ADA curve so that the total area } \\
& \text { under the curve is unity. }
\end{aligned}
$$

In the data analyses performed, error rates of interest are on the order of 10^{-3} to 10^{-6}. Thus, the percent area that is of interest is 0.1 to 0.0001%. Since the total area under experimental ADA curves is generally on the order of $10 \mathrm{in}^{2}{ }^{2}$, direct physical measurement of the area of interest becomes impractical. In fact, the numerical value of the ADA probability density distribution is so small near V_{F} that data are often not even taken in that area. Practically then, the problem in applying amplitudedistribution analyses to estimating bit-error rates reduces to the following. Given a set of data points in a restricted range, predict with some known accuracy the behavior of the corresponding data outside the range measured.

Considering the command detector of Fig. 2 from a statistical communication point of view, one expects an amplitude-distribution analysis performed on the envelope detector signal to exhibit a near-Gaussian behavior when a tone of the narrow bandpass filter frequency is present at the detector input and near "half-Gaussian" behavior when a tone other than the narrow bandpass filter frequency is present. Indeed, one's expectations are not greatly dampened by a cursory examination of the ADA data plots (Fig. 3). Thus, in an effort to determine the behavior of the data in ranges of voltage where mechanical integration is impractical, attempts have been made to fit the known data by some Gaussian function.

The essence of this approach now becomes: fit the data as best possible with a Gaussian curve and assume the fit behaves properly at all points of interest. The manner of fitting the data and determining precisely what is the "best possible" fit now becomes the problem.

For the record, the following five methods of curve fitting were investigated:

1. Graphical determination of variance and mean by mechanical integration.
2. Mathematical fit of two points with an assumed mean.
3. Mathematical fit of three points.
4. Linearizing of data.
5. Least-square error fit.

The data required to obtain the amplitude-distribution plot in Fig. 3b was recorded in 5 min . Highly controlled, stable conditions can be maintained for such a period with a reasonable degree of effort. The effort involved in maintaining similar conditions for many days or weeks, as mentioned in conjunction with classical error testing, becomes very demanding. This short time required to record the necessary data is one of the most significant factors of the entire ADA approach.

In the cases of primary interest-i.e., error rates on the order of 10^{-5}-the shape of the probability-density curve. and the ability to extrapolate data become of great importance if actual bit-error rates are to be estimated
because of the small probability density around V_{T}. However in all the above curve-fitting techniques, an indication was found that the curves had variations from true Gaussian behavior. When Gaussian behavior was assumed, the answers obtained were wrong by several (2 or 3) orders of magnitude if true error rates were near 10^{-5}.

This observation leads naturally to the requirement for more accurate information concerning the amplitudedistribution density, particularly the "tails" of the curves. This information cannot be obtained by $x-y$ plotting of
the data as previously indicated, or even by printing it in digitized form unless, of course, the amount of data taken is increased. To well define the tail of the ADA curve requires an amount of data approaching that required for classical bit-error testing. Thus, to truly save test time it is necessary to use some method which allows (1) application of technique to a non-Gaussian (and preferably even undefined) amplitude distribution, (2) extrapolation of observed data beyond the range of data taken. It is in satisfying these two requirements that the branch of mathematics dealing with extreme value statistics becomes important.

V. INTRODUCTION TO EXTREME-VALUE STATISTICS

There have been many articles written about the theory of extreme values. These are scattered throughout scientific literature, have different nomenclature, are somewhat concentrated mathematically and are largely -what is often a handicap from an engineer's point of view-written by mathematicians for other mathematicians.

In addition, with the exception of an application to capacitor failures as a function of voltage and age (Ref. 5) most of the applications of extreme-value theory have been in the fields of actuarial science, climatology and aerodynamics. However it now appears that this theory, which by its very nature is concerned with the uncommon, the extreme, may well have a valuable con-
tribution to make to statistical communications in areas where the uncommon is precisely what is of interest.

Grossly, this body of theory is concerned with developing mathematical descriptions of the behavior of the "tails," i.e., extremes, of the ADA's of the previous section, but different techniques and a slightly different approach are used. Fundamentally, this theory defines and allows extrapolation of a processed form of an ADA without detailed knowledge of its shape (univariate extreme-value theory). A second branch of this theory is concerned with the situation where two interdependent data streams are being processed simultaneously and the statistics of one stream affect the processing of the other (bivariate extreme-value theory).

VI. UNIVARIATE EXTREME-VALUE STATISTICS

The basic statement of univariate extreme-value statistics in which we are interested, can be arrived at as follows. Given a set of n independent samples from a data source that forms some cumulative probability function, $F(x)$, we examine the probability $\Phi_{n}(x)$ that the largest of these samples is less than x. Since the samples are independent, this is simply

$$
\begin{equation*}
\Phi_{n}(x)=F^{n}(x) \tag{1}
\end{equation*}
$$

Subject to certain restraints on $F(x)$ that are not very limiting in practice (to be detailed later), univariate EVT states that as $n \rightarrow \infty, \Phi_{n}(x)$ asymptotically approaches $\exp [-\exp (-\Lambda)]$, where Λ is a linear function of x, i.e.

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \Phi_{n}(x)=\Phi(x)=\exp [-\exp (-\Lambda)] \tag{2}
\end{equation*}
$$

with

$$
\begin{equation*}
\Lambda=\alpha(x-u) \tag{3}
\end{equation*}
$$

Here, α and u are constants, and Λ is called the reduced variate. Equation (2) is in fact an equality (Ref. 2) but the asymptotic behavior indicated above [Eq. (2)] is a sufficiently strong statement for our purpose.

In practice what one does is to take a "large" group of data (typically $n=100$) and find the largest data point, X, within that group. According to Eq. (2) this largest data point will approximately have a doubleexponential distribution. To experimentally find this distribution, i.e., the unknown constants of Eq. (3), we proceed as we would with the experimental determination of any distribution; we obtain several, N, groups of data and find the largest data point within each group. These X_{i} 's are then ordered and plotted with some standard technique. This plotting allows estimation of $\Phi\left(x_{0}\right)$ where x_{0} is the threshold value of x; thus, $F^{n}\left(x_{0}\right)$ is known, and $F\left(x_{0}\right)$ is calculable from this.

The above two paragraphs can be restated as follows: In a sample of n independent observations, one of them (or perhaps several identical ones) is the largest. If N such samples are drawn, a distribution of extreme values is obtained, and we are interested in its nature under the condition that n is large. Videlicet, we claim that this distribution of extreme values asymptotically approaches Eq. (2) as n increases without bound.

Introduction of an example may well be appropriate at this point. It will be worked in segments throughout
the report as it appears that each segment will be of aid in understanding the subject.

Consider again the system of Fig. 4 introduced in the section, Amplitude-Distribution Analysis. Table 1 lists successive samples taken from the integrator output at dump time with a constant bit type and noise into the detector. If the data of Table 1 are broken into groups of 100 successive data points ($n=100$), then we have 30 groups ($N=30$) of 100 data points each. We now search each group for that data point which has the greatest value (indicated by the boxed entries in Table 1). These extremes (one for each group of 100 samples) are tabulated in Table 2.

The basic assertion has been that the data of Table 2 will have a distribution of the form described by Eqs. (2)-(3) for some choice of α and u. Figure 6 plots the data of Table 2 as a cumulative distribution and superimposes on the data points a curve of $\exp [-\exp (-\Lambda)]$ for $\alpha=0.033363$ and $u=-171.632$ which were chosen by a maximum likelihood technique to be considered in some detail later. The point to notice in Fig. 6 is that there is reasonably good agreement between the curve of Eq. (2) and the data obtained in Table 2.

As an aid to better visualizing the fit, (and indeed fitting by eye if desired) Eq. (2) can be linearized; i.e., if we plot Λ vs $-\ln (-\ln \Phi)$, the data will be a straight line. In fact, we can plot X vs $-\ln (-\ln \Phi)$ and the values of α and u can be estimated from the slope and intercept, respectively, of the straight line. For convenience, extremevalue probability paper is available which uses as axes X in arbitrary units and $-\ln (-\ln \Phi)$ in units of Φ. A sample of the form is given as Fig. 7. Figure 6 is redrawn on extreme-value probability paper in Fig. 8. Note that the data appear to be scattered about the straight line. As a matter of interest, experience has shown that visual fits of a straight line to typical data give surprisingly good results.

Due to the fact that values of $\Phi=0$ or $\Phi=1$ cannot be plotted in Fig. 7, the plotting positions tabulated in Table 2 and used in Figs. 6 and 8 were chosen as $i /(N+1)$ where i is the rank of the data point being plotted, the data having been ordered in increasing value. This particular choice of plotting position has a number of pleasing features. However, this point will not be pursued further in this report since plotting positions are not used in computer processing of data (mathematical fit).

Table 1. List of successive samples taken from the infegrator output with a constant bit type and noise into the detector

SAMPLE NUMBER	DATA CHANNEL VALUE	SAMPLE NUMBER	DATA CHANNEL VALUE	SAMPLE NUMBER	data channel value
1	-337.0	75	-236.0	149	-368.0
2	-348.0	76	-325.0	150	-287.0
3	-377.0	77	-401.0	151	-327.0
4	-386.0	78	-319.0	152	-374.0
5	-415.0	79	-399.0	153	-257.0
6	-338.0	80	-258.0	154	-280.0
7	-169.0	81	-237.0	155	-386.0
8	-313.0	82	-298.0	156	-265.0
9	-358.0	83	-284.0	157	-314.0
10	-246.0	84	-360.0	158	-333.0
11	-131.0	85	-369.0	159	-300.0
12	-283.0	86	-324.0	160	-354.0
13	-257.0	87	-396.0	161	-342.0
14	-334.0	88	-231.0	162	-414.0
15	-368.0	89	-297.0	163	-359.0
16	-383.0	90	-330.0	164	-379.0
17	-329.0	91	-366.0	165	-405.0
18	-414.0	92	-305.0	166	-369.0
19	-376.0	93	-287.0	167	-305.0
20	-339.0	94	-371.0	168	-361.0
21	-224.0	95	-95.0	169	-268.0
22	-254.0	96	-293.0	170	-308.0
23	-373.0	97	-371.0	171	-398.0
24	-269.0	98	-309.0	172	-318.0
25	-334.0	99	-335.0	173	-360.0
26	-393.0	$\underline{100}$	-348.0	174	-422.0
27	-365.0	101	-355.0	175	-230.0
28	-239.0	102	-333.0	176	-309.0
29	-311.0	103	-207.0	177	-244.0
30	-270.0	104	-266.0	178	-222.0
31	-210.0	105	-384.0	179	-334.0
32	-249.0	106	-285.0	180	-352.0
33	-328.0	107	-411.0	181	-351.0
34	-354.0	108	-280.0	182	-262.0
35	-314.0	109	-224.0	183	-342.0
36	-329.0	110	-237.0	184	-248.0
37	-306.0	111	-294.0	185	-324.0
38	-237.0	112	-338.0	186	-309.0
39	-329.0	113	-293.0	187	-320.0
40	-306.0	114	-165.0	188	-312.0
41	-271.0	115	-203.0	189	-307.0
42	-297.0	116	-320.0	190	-337.0
43	-360.0	117	-400.0	191	-145.0
44	-363.0	118	-315.0	192	-333.0
45	-267.0	119 120	-400.0	193	-265.0
46	-225.0	120	-284.0	194	-353.0
47	-314.0	121	-298.0	195	-374.0
48	-314.0	122	-334.0	196	-266.0
49	-296.0	123	-328.0	197	-364.0
50	-308.0	124	-172.0	198	-253.0
51	-338.0	125	-321.0	199	-341.0
52	-311.0	126	-342.0	200	-334.0
53	-393.0	127	-383.0	201	-315.0
54	-293.0	128	-282.0	202	-317.0
55	-240.0	120	-383.0	203	-318.0
56	-313.0	130	-312.0	204	-336.0
57	-310.0	131	-296.0	205	-337.0
58	-378.0	132	-351.0	206	-302.0
59	-359.0	133	-368.0	207	-331.0
60	-311.0	134	-419.0	208	-298.0
61	-384.0	135 136	-237.0	209	-354.0
62	-381.0	136	-384.0	210	-369.0
63	-229.0	137	-308.0	211	-381.0
64	-300.0	138 139	-258.0	212	-298.0
65	-239.0	139 140	-379.0	213	-299.0
66 67	-448.0	140 141	-271.0	214	-269.0
67 68	-353.0	141 142	-266.0	215	-308.0
68	-279.0	142 143	-335.0	216	-315.0
69	-332.0	143 144	$\stackrel{-387.0}{-138.0}$	217	-319.0
70	-327.0	144 145	-138.0 -327.0	218	-383.0
71	-281.0	145 146	-327.0	219	-374.0
72	-342.0	146 147	-262.0	220	-220.0
73	-399.0	147 148	-288.0	221	-340.0
74	-277.0	148	-318.0	222	-388.0

Table 1. (Cont'd)

SAMPLE NUMBER	DATA CHANNEL VALUE	SAMPLE NUMBER	DATA CHANNEL VALUE
223	-360.0	298	-234.0
224	-267.0	299	-313.0
225	-256.0	300	-294.0
226	-431.0	-	-
227	-229.0	-	-
228	-378.0	-	-
229	-350.0	2961	-313.0
230	-394.0	2962	-287.0
231	-317.0	2963	-231.0
232	-348.0	2964	-314.0
233	-385.0	2965	-366.0
234	-339.0	2966	-407.0
235	-343.0	2967	-358.0
236	-278.0	2968	-356.0
237	-418.0	2959	-330.0
238	-295.0	2970	-170.0
239	-322.0	2971	-423.0
240	-316.0	2972	-319.0
241	-336.0	2973	-384.0
242	-288.0	2974	-329.0
243	-352.0	2975	-302.0
244	-384.0	2976	-320.0
245	-312.0	2977	-343.0
246	-217.0	2978	-304.0
247	-379.0	2979	-416.0
248	- 329.0	2980	-382.0
249	-273.0	2981	-356.0
250	-373.0	2982	-299.0
251	-360.0	2983	-328.0
252	-203.0	2984	-286.0
253	-253.0	2985	-375.0
254	-381.0	2986	-391.0
255	-305.0	2987	-325.0
256	-356.0	2988	-347.0
257	-265.0	2989	-287.0
258	-181.0	2990	-338.0
259	-297.0	2991	-315.0
260	-343.0	2992	-450.0
261	-380.0	2993	-394.0
262	-239.0	2994	-407.0
263	-365.0	2995	-350.0
264	-301.0	2996	-423.0
265	-286.0	2997	-430.0
266	-282.0	2998	-395.0
267	-304.0	2999	-453.0
268	-275.0	3000	-308.0
269	-376.0		
270	-346.0		
271	-356.0		
272	-297.0		
273	-348.0		
274	-318.0		
275	-339.0		
276	-335.0		
277	-261.0		
278	-334.0		
279	-373.0		
280	-267.0		
281	-274.0		
282	-317.0		
283	-342.0		
284	-297.0		
285	-287.0		
286	-214.0		
287	-304.0		
288	-341.0		
289	-320.0		
290	-285.0		
291	-272.0		
292	-347.0		
293	-254.0		
294	-296.0		
295	-316.0		
296	-217.0		
297	-239.0		

Table 2. Extreme data point for each group of 100 samples

Group no.	Chronological exiremes	Ordered extremes	Plotting position
1	-95	-211	0.0322581
2	-138	-204	0.0645161
3	-181	-198	0.0967742
4	-158	-197	0.1290323
5	-146	-192	0.1612903
6	-179	-190	0.1935484
6	- 192	-185	0.2258065
8	-211	-181	0.2580645
9	-169	-179	0.2903226
10	-198	-174	0.3225806
11	-159	-173	0.3548387
12	-204	-172	0.3870968
13	-197	-171	0.4193548
14	-157	-170	0.4516129
15	-185	-169	0.4838710
16	-173	-159	0.5161290
17	-19	-158	0.5483871
18	-103	-157	0.5806452
19	-108	-153	0.6129032
20	-153	-151	0.6451613
21	-172	-146	0.6774194
22	-112	-138	0.7096774
23	-112	-121	0.7419355
24	-121	-112	0.7741935
25	-171	-112	0.8064516
26	-190	-110	0.8387097
27	-151	-108	0.8709677
28	-110	-103	0.9032258
29	-174	-95	0.9354839
30	-170	-19	0.9677419

From Fig. 8, we see that $\Phi($ threshold $)=\Phi(0)$ is 0.99674 . But from Eq. (1) and the fact that we had $n=100$, $\Phi(0)=F^{100}(0)=0.99674$ so that

$$
\begin{aligned}
F(0) & =[1-(1-0.99674)]^{1 / 100}=(1-0.00326)^{1 / 100} \\
& =1-\frac{0.00326}{100}+\cdots \approx 0.9999674 .
\end{aligned}
$$

We conclude that for the raw data, the probability that the data will be less than 0 , i.e., the probability of a cor-

Fig. 6. Cumulative probability of data extremes taken from data of Table 2: plot A
rect bit, is 0.9999674 . This means the probability of an error on a single bit is 3.26×10^{-5}. Note that only 3000 data samples were used to make this estimate and that none of them were greater than threshold. Hence, using classical error-counting techniques, no errors would have been observed and the nominal, observed error rate would have been zero. Of course, one would hesitate to say the error rate is zero on the basis of only 3000 data points, so more likely one would make a statement to the effect that the error rate is less than 7.64×10^{-4} with 90% confidence.

This observation brings up the question of confidence intervals for the EVT estimate of error rate. If we define Λ_{0} as the value of Λ at threshold,

$$
\Lambda_{0}=\alpha\left(x_{0}-u\right)
$$

where x_{0} is the threshold in terms of the data, then it can be shown (Ref. 1) that

$$
\begin{equation*}
\operatorname{Var} \hat{\Lambda}_{0} \approx \frac{6}{N \pi^{2}}\left[\left(1-\gamma+\Lambda_{0}\right)^{2}+\frac{\pi^{2}}{6}\right] \tag{4}
\end{equation*}
$$

where γ is Euler's constant, $0.5772 \cdots$. Furthermore, for large N, the maximum likelihood estimators of α and Λ_{0} are approximately bivariately normally distributed.

Using Eq. (4) in the example under discussion, we find we can make the statement that the error rate is less than 1.88×10^{-4} with 90% confidence. In terms of a two-sided confidence interval, with 90% confidence, the error rate is between 7.49×10^{-6} and 1.42×10^{-4}. The comparison of upper 90% confidence intervals, i.e., an error rate of less than 7.64×10^{-4} by error counting and 1.88×10^{-4} by EVT methods, gives an indication of one of the prime advantages of the EVT approach to estimation of error rates. Using EVT, we had a meaningful estimate of the error rate, per se, which was totally absent in the error-counting approach and in addition a tighter

Fig. 8. Cumulative probability of data extremes taken from data of Table 2: plot B
confidence interval on that error rate. Note that if the data were such that the error rate had been lower, the EVT estimate would have been lower and the EVT confidence interval would have followed suit. However, in all likelihood the error-counting method would have counted no errors so that the statements as to error rate and confidence interval would have stayed the sameregardless of how much the error rate decreased!

The source of this improvement comes, of course, from knowledge of not only whether or not an error occurs, but how close it comes to occurring on each bit, i.e., knowledge of the amplitude distribution of the signal behavior just prior to the point at which it is quantized. However, EVT does not use knowledge of the entire distribution but only parts of it. Specifically, we chose $n=100$ and selected the largest value out of that 100 ; the other 99% of the data was discarded. This is the price of being able to apply EVT techniques without detailed knowledge of the amplitude distribution of the data being processed.

VII. RESTRICTIONS AND LIMITATIONS ON USE OF UNIVARIATE EXTREME-VALUE THEORY

An implicit restriction used throughout the report is that the mechanism by which a system makes an error is known and can be modeled accurately. In the example above, the system was modeled by noting that the decision circuitry essentially looks at the polarity of the integrator output at dump time. The application of EVT to this system is then predicated on the assumption that this is exactly what happens and the decision circuitry has no biases and makes no errors. It might be pointed out that accurate modeling of the decision making process is not always as straightforward as the samples in Figs. 2 and 4 might lead one to believe. For example, the command receiver in the Surveyor Block I spacecraft is a system in which the decision circuitry does not lend itself to being modeled easily. There appears to be a number of interrelated influences involving voltage and time behavior on a bit-by-bit basis as well as a currently not-too-well understood historical influence that some (but not all) bits exert on others. In general, attempts to
model this system have led to results that are not accurate to more than a factor of 5 so far as error-rate prediction is concerned.

In the comments leading to Eq. (2), it was pointed out that subject to certain restrictions on $F(x)$,

$$
\lim _{n \rightarrow \infty} F^{n}(x)=\Phi(x)=\exp [-\exp (-\Lambda)]
$$

The basic restriction on $F(x)$ can be stated in either of two ways: (1)

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{1-F(x)}=-\lim _{x \rightarrow \infty} \frac{f^{\prime}(x)}{f(x)}
$$

or (2)

$$
\lim _{x \rightarrow \infty}\left\{\frac{d}{d x}\left[\frac{1-F(x)}{f(x)}\right]\right\}=0
$$

where $f(x)=F^{\prime}(x)$; it can be shown that these two conditions are equivalent. Implicit in this requirement is the need for x to be unlimited in the direction of interest. Grossly, this requires that $F(x)$ have a right-hand tail that is qualitatively like the exponential distribution, $\left(1-e^{-x}\right)$. Most of the classical distributions-Gaussian, Rayleigh, etc.,-fall into this category as well as many forms of data encountered in practice. The requirement for x to be unlimited in the direction of interest is frequently ignored by arguing that x can range far beyond values it normally assumes or values near threshold, and that for all practical purposes it can be considered as having unlimited range. If this is not true, EVT techniques can still be used by making the appropriate transformations (Ref. 2).

Again, in the argument leading to Eq. (2) one basic statement used the limit of x as $n \rightarrow \infty$. Obviously, in practice, n is finite, so the question arises as to how large n must be. One would like to keep n as small as possible so that no more data than necessary are used to get the accuracy and confidence intervals desired. The problem can be stated as: Given $N n$ data points, what is the optimum manner of splitting the data points to get N as large as possible (minimum confidence intervals), thus making n small, but still keeping n large enough so that Eq. (2) is a reasonable approximation?

There seems to be no clear-cut solution to this problem. By experience we have found that it is difficult to construct a reasonable curve of $\Phi=\exp [-\exp (-\Lambda)]$ unless N is at least 20 ; this is to say nothing of the ballooning confidence intervals for small N 's. But minimum sizes for n appear much more elusive, partly, perhaps, because it depends on how "nice" the behavior of $F(x)$ is. In general, especially in cases where little or nothing is known about that behavior of $F(x)$, we have found that $n<100$ is asking for trouble; however, we have never found $n=100$ to be insufficient.

If a data source is sampled periodically, the question of how fast to sample becomes a real concern. If the data are sampled too fast, then successive samples are not independent as required for Eq. (1) while if they are sampled much slower than truly necessary, some usable data are lost and required test time is extended. Thus, the question arises: What is the required degree of independence, and how is this to be measured? Consider again the data of Table 1 listing successive samples from the integrator output with a constant bit type and noise into the detector. The degree of independence of successive samples can be indicated as in Fig. 9 which is the normalized autocovariance of 400 samples. Successive samples,

Fig. 9. Normalized autocovariance of independent samples
indicated by $\tau=1$, have a value of -0.029 . In the last analysis, the degree of dependence or independence between successive samples reduces to a subjective judgement, but this approach does serve as a reasonable guide. (For example, Fig. 10 uses data from a different source taken at a high rate so that the samples are "somewhat" dependent.) Data with autocovariances of successive samples as high as 0.6 have been used successfully (but not reliably); however, an upper limit of 0.3 is recommended.

One of the advantages of EVT is that the processed data exhibit some predictable behavior of which we can take advantage. For example, the data of Table 2, processed and plotted in Fig. 8, follow a straight line with

Fig. 10. Normalized autocovariance of dependent samples
some reasonable degree of assurance. Based on this behavior, we extrapolate this line beyond the observed data to make estimates of behavior at threshold (a data value of zero in Fig. 8). This assumes that the data follow the same pattern in regions where they were not measured as in regions where they were. A certain hesitation may be experienced by many people when extrapolation over large values of the variate is required to obtain the desired goal; however, we have never encountered any problems traceable solely to this extrapolation. Perhaps this hesitation can be lessened by noting that extrapolation over large values of the variate required in Eq. (4) increases Λ_{0}. This results in widening of the confidence intervals pretty much as one would intuitively expect.

It was pointed out earlier that for a given sample size there is some lower limit on error rate beyond which errorcounting techniques continue to give the same result. In our specific example, the counted error rate gave a 90% upper confidence level of 7.64×10^{-4}. As long as no errors are counted, it does not matter what the true error rate isthis same result will be obtained. The EVT approach will, however, continue to make estimates of the actual error rate as the error rates decrease, but the confidence intervals will widen.

However, it will be well to consider for a moment the converse problem, i.e., where the error rate increases. Since there seems to be some lower limit on the amount of data
that is required in order to apply EVT (2000 to 3000 data points) there will be an error rate at which the confidence intervals for EVT and for error-counting techniques are the same. At greater error rates, the situation will be reversed; i.e., at greater error rates, EVT will require the same amount of data just to be applicable, but errorcounting techniques will be able to obtain the same confidence intervals with less data or narrower confidence intervals with the same data. At an error rate of approximately 5×10^{-3}, the confidence intervals arrived at by EVT and classical techniques are the same. Thus, with its more complex instrumentation, application of EVT to estimation of error rates greater than 5×10^{-3} does not appear practical, while at error rates less than 5×10^{-3}, EVT saves test time. Furthermore, the smaller the error rate, the more time these techniques save on a percentage basis.

The preceding sections have dealt with making predictions of maxima from a set of data. Frequently the object of concern is behavior of minima. There is a similar theory of EVT based on minima of extremes (Ref. 2). Rather than introduce unnecessary complexity, minima problems can be treated as maxima problems if all the data (including threshold values, etc.) are multiplied by -1 . In fact, this is what was done with the data of Table 1, which lists the mirror images of the raw data. The problem in that instance was to find behavior of minima of data. The data were multiplied by -1 , and the maxima within each group were found and processed.

VIII. BIVARIATE EXTREME-VALUE STATISTICS

It was noted in Section II that in a coherent communication system (Fig.4) the quality, or at least presence, of the received reference or synchronization signal is of interest. The reference and data information are usually transmitted through the same medium at the same time, simultaneously processed by the receiver in somewhat different ways, and one received signal is used in the detection of the second. In view of this, it is not surprising when the statistics of the two channels are dependent. In such cases, error probability estimation is stated in terms of conditional probabilities, such as the probability of a bit error given an indication of coherence. The proba-
bility of a bit error is known from univariate EVT, and the probability of an indication of coherence may be obtained similarly by applying univariate EVT techniques to data from the synchronization channel. The problem now is to find the probability of a bit error and an indication of coherence. It is to this case of two dependent channels that we now turn our attention, i.e., bivariate EVT.

Typically, command systems are mechanized to employ an indicator that inhibits data reception when the quality of the received reference degrades below some predetermined criteria. Such a system is presented in Fig. 11.

Fig. 11. Two-channel detector functional diagram

As might be suspected from consideration of the univariate case, a sample n-bits long of pairs of deviations (x, y) is taken where x is the analog signal in the data channel just prior to quantization, and y is the analog signal of the synchronization channel just prior to quantization. Designating the thresholds of the respective channels as x_{o} and y_{o}, we assume the signs so chosen that $x>x_{o}$ indicates a bit error and $y>y_{o}$ indicates loss of lock (synchronization). We then record the largest x and the largest y out of the n samples, regardless of whether or not the largest x occurs on the same bit as the largest y. This process gives rise to a new bivariate distribution of random variables X and Y, corresponding to the extremes of the data and synchronization channels, respectively.

From univariate EVT X and Y separately have approximately extreme-value distributions each with α and u parameters, which are estimated from N extremes of groups each of size n as described in Section VI. A linear transformation, $\Lambda=\alpha_{\Lambda}\left(X-u_{\Lambda}\right), \Omega=\alpha_{\Omega}\left(Y-u_{\Omega}\right)$ is performed to obtain a pair of random variables (Λ, Ω) which have as their marginal distributions the standardized extreme-value distributions:

$$
\begin{aligned}
& \Phi(x)=\exp \left(-e^{-\Lambda}\right) \\
& \Phi(y)=\exp \left(-e^{-\Omega}\right) .
\end{aligned}
$$

Note that we have $\Phi\left(x_{0}\right)$ as the probability that n independent bits are all correct and $\Phi\left(y_{0}\right)$ as the probability that all n independent bits have in lock (coherence maintained) indications. Both of these probabilities are calculable from univariate EVT.

We have N independent samples of (Λ, Ω) which we already have used to estimate the α 's and u 's and these same N samples will be used to estimate the joint distribution of (Λ, Ω) according to a method given in Ref. 3. This joint distribution of Λ and Ω was shown there to be approximately of the form

$$
\begin{equation*}
\Psi(x, y)=\exp \left[-\left(e^{-\Lambda}+e^{-\Omega}\right) w(\Lambda-\Omega)\right] \tag{5}
\end{equation*}
$$

where w is a function satisfying some special conditions. For reasons given in Ref. 3, and which are broadly outlined in the following section, we have taken $w(\Lambda-\Omega)$ to be one of functions $w_{c}(\Lambda-\Omega)$ given by

$$
\begin{equation*}
w_{c}(\Lambda-\Omega)=1-c \operatorname{sech}^{2}\left(\frac{\Lambda-\Omega}{2}\right) \tag{6}
\end{equation*}
$$

where c is a parameter between 0 and $1 / 4$. Thus, the "fifth parameter," c, must be estimated instead of an unknown function $w(\Lambda-\Omega)$.

At this point it might be well to reiterate the four preceding paragraphs. Basically, the approach taken is to record pairs of samples from the matched filter outputs of Fig. 11 just before the filter is dumped. Such a set of data might appear as in Table 3, which is an extension of the example begun in Section VI. As in that section, the proper sign convention is adopted so that maxima, rather than minima, univariate EVT is applicable. The data are then broken into groups of n points, n large (typically $n=100$) and the maximum value recorded within each group for each channel (indicated by the boxed entries in Table 3) is selected as forming a new pair of random variables, X and Y. For this selection of maxima, the data from each channel are treated as if these were data from a univariate EVT problem independent of the other channel. There is no guarantee that the maxima for the two channels will occur on the same sample. The extremes in Table 3 are chronologically listed in Table 4. A linear transformation is performed on the X 's and Y 's which is identical with that indicated by Eq. (3) and results in a set of new random variables (Λ, Ω). The data from each channel are treated as an independent univariate EVT problem. This yields $\Phi(x)$ and $\Phi(y)$ as indicated previously. Note that of necessity these yields must be the marginal distributions of the joint distribution, Eq. (5).

The basic assertion of bivariate EVT is that the joint distribution of the linearly transformed data, $\Psi(x, y)$, asymptotically approaches Eq. (5) for large n. It is pleasing to notice that Eq. (5) is of the form of the product of the marginal distributions and some modifying function. In fact, after reflection on the form of the bivariate Gaussian distribution, one might hazard a guess (quite correctly!) that the function $w(\Lambda-\Omega)$ denotes some form of correlation. This is particularly apparent when Eqs. (5)-(6) are combined, yielding

$$
\begin{equation*}
\Psi(x, y)=\exp -\left[e^{-\Lambda}-c\left(e^{-\Lambda}+e^{-\Omega}\right) \operatorname{sech}^{2}\left(\frac{\Lambda-\Omega}{2}\right)+e^{-\Omega}\right] \tag{7}
\end{equation*}
$$

It can be shown and has been substantiated in practice that the constant c in Eq. (7) is a very sensitive indicator of correlation between the data from the two channels. As an elementary example, consider the case $c=0$; then

$$
\begin{aligned}
\Psi(x, y) & =\exp \left[-\left(e^{-\Lambda}+e^{-\Omega}\right)\right] \\
& =\Phi(\Lambda) \Phi(\Omega),
\end{aligned}
$$

which is frequently taken as the definition of statistical independence.

Table 3. Sample pairs from matched filter outputs just before the filter is dumped

SAMPLE NUMBER
DATA CHANNEL VALUE
SYNC CHANNEL VALUE

-246.0
-131.0
-283.0
-257.0
-334.0
-368.0
-383.0
-329.0
-329.0
-414.0
-414.0
-376.0
-339.0
-224.0
-254.0
-373.0
-269.0
-334.0
-393.0
-365.0
-239.0
-311.0
-270.0
-210.0
-249.0
-354.0
-314.0
-329.0
-306.0
-306.0
-237.0
-329.0
-306.0
-271.0
-297.0
-360.0
-363.0
-267.0
-225.0
-314.0
-314.0
-296.0

- 308.0
-338.0
-311.0
-393.0
-293.0
-240.0
-313.0
-310.0
310.0
-378.0
-359.0
-311.0
-384.0
-381.0
-281.0
-300.0
-239.0
-448.0
-353.0
-279.0
-332.0
-327.0
-281.0
-342.0
-399.0
-277.0
-575.0
-585.0
-536.0
-497.0
-555.0
- 399.0
-332.0
-523.0
-622.0
-481.0
-450.0
-597.0
-702.0
-556.0
-521.0
-536.0
-609.0
-556.0
-570.0
-646.0
-511.0
-340.0
-596.0
-536.0
-646.0
-565.0
-583.0
-601.0
-492.0
-533.0
-611.0
-661.0
-451.0
-533.0
-544.0
-456.0
-560.0
-423.0
-478.0
-417.0
-501.0
-698.0
-548.0
-544.0
-592.0
-471.0
-449.0
-591.0
-666.0
-555.0
-479.0
-452.0
-584.0
-746.0
- 345.0
-511.0
-653.0
-638.0
- 425.0
-540.0
-641.0
-649.0
-566.0
-473.0
-434.0
-564.0
-602.0
-431.0
-561.0
-561.0
-397.0
-535.0
-557.0
-543.0

Table 3. (Cont'd)

75	-236.0	-513.0
76	-325.0	-641.0
77	-401.0	-452.0
78	-319.0	-576.0
79	-399.0	-541.0
80	-258.0	-622.0
81	-237.0	-583.0
82	-298.0	-441.0
83	-284.0	-554.0
84	-360.0	-569.0
85	-369.0	-618.0
86	-324.0	-544.0
87	-396.0	-548.0
88	-231.0	-395.0
89	-297.0	-483.0
90	- 330.0	-320.0
91	-366.0	-519.0
92	-305.0	-601.0
93	-287.0	-400.0
94	-371.0	-421.0
95	-95.0	-157.0
96	-293.0	-543.0
97	-371.0	-429.0
98	-309.0	-416.0
99	-335.0	-601.0
100	-348.0	-537.0
101	-355.0	-641.0
102	-333.0	-526.0
103	-207.0	-414.0
104	-266.0	-601.0
105	-384.0	-602.0
106	-285.0	-446.0
107	-411.0	-580.0
108	-280.0	-542.0
109	-224.0	-373.0
110	-237.0	-493.0
111	-294.0	-545.0
112	-338.0	-556.0
113	-293.0	-722.0
114	-165.0	-394.0
115	-203.0	-421.0
116	-320.0	-516.0
117	-400.0	-441.0
118	-315.0	-545.0
119	-400.0	-536.0
120	-284.0	-621.0
121	-298.0	-545.0
122	-334.0	-527.0
123	-328.0	-617.0
124	-172.0	-716.0
125	-321.0	-662.0
126	-342.0	-567.0
127	-383.0	-471.0
128	-282.0	-614.0
129	-383.0	-702.0
130	-312.0	-609.0
131	-296.0	-516.0
132	-351.0	-437.0
133	-368.0	-603.0
134	-419.0	-693.0
135	-237.0	-582.0
136	-384.0	-627.0
137	-308.0	-462.0
138	-258.0	-532.0
139	-379.0	-473.0
140	-271.0	-659.0
141	-266.0	-576.0
142	-335.0	-656.0
143	-387.0	-488.0
144	-138.0	-199.0
145	-327.0	-250.0
146	-262.0	-563.0
147	-288.0	-510.0
148	-318.0	-528.0
149	-368.0	-631.0
150	-287.0	-660.0
151	-327.0	-672.0
152	-374.0	-521.0

Table 3. (Cont'd)

SAMPLE NUMBER
DATA CHANNEL VALUE

153	-257.0	-387.0
154	-280.0	-580.0
155	-386.0	-402.0
156	-265.0	-486.0
157	-314.0	-564.0
158	-333.0	-658.0
159	-300.0	-452.0
150	-354.0	-674.0
161	-342.0	-570.0
1.62	-414.0	-538.0
163	-359.0	-615.0
164	-379.0	-431.0
165	-405.0	-632.0
166	-369.0	-630.0
167	-305.0	-393.0
168	-361.0	-517.0
169	-268.0	-621.0
170	-308.0	-391.0
171	-398.0	-571.0
172	-318.0	-632.0
173	-360.0	-708.0
174	-422.0	-353.0
175	-230.0	-380.0
176	-309.0	-511.0
177	-244.0	-383.0
178	-222.0	-420.0
179	-334.0	-490.0
180	-352.0	-520.0
181	-351.0	-562.0
182	-262.0	-701.0
183	-342.0	-437.0
184	-248.0	-493.0
185	-324.0	-509.0
186	-309.0	-674.0
187	-320.0	-722.0
188	-312.0	-452.0
189	-307.0	-502.0
190	-337.0	-443.0
191	-145.0	-385.0
$19 ?$	-333.0	-511.0
1.93	-265.0	-644.0
194	-353.0	-601.0
195	-374.0	-537.0
196	-266.0	-422.0
197	-364.0	-509.0
1.98	-253.0	-302.0
199	-341.0	-492.0
200	-334.0	-398.0
201	-315.0	-520.0
202	-317.0	-450.0
203	-318.0	-566.0
204	-336.0	-512.0
205	-337.0	-522.0
206	-302.0	-506.0
207	-331.0	-660.0
208	-298.0	-482.0
209	-354.0	-608.0
210	-369.0	-622.0
211	-381.0	-579.0
212	-298.0	-525.0
213	-299.0	-432.0
214	-269.0	-410.0
215	-308.0	-550.0
216	-315.0	-516.0
217	-319.0	-498.0
218	-383.0	-451.0
219	-374.0	-440.0
220	-?20.0	-372.0
221	-340.0	-735.0
222	-388.0	-519.0
223	-360.0	-520.0
224	-767.0	-463.0
225	-256.0	-511.0
226	-431.0	-614.0
227	-229.0	-393.0
228	-378.0	-527.0
229	-350.0	-531.0
230	-394.0	-617.0

Table 3. (Cont'd)

SYNC CHANNEL VALUE

231	-317.0	-510.0
232	-348.0	-502.0
23.3	-385.0	-466.0
234	-339.0	-549.0
235	- 3.43 .0	-492.0
236	-278.0	-338.0
237	-418.0	-577.0
238	-295.0	-440.0
239	-322.0	-575.0
240	-316.0	-444.0
241	-336.0	-598.0
242	-288.0	-552.0
243	-352.0	-595.0
244	-384.0	-530.0
245	-312.0	-631.0
246	-217.0	-503.0
247	-379.0	-429.0
248	-329.0	-652.0
249	-273.0	-488.0
250	-373.0	-601.0
251	-360.0	-520.0
$25 ?$	-203.0	-400.0
253	-253.0	-472.0
254	-381.0	-500.0
255	-305.0	-647.0
256	-356.0	-468.0
257	-265.0	-584.0
258	-181.0	-510.0
259	-297.0	-532.0
260	-343.0	-661.0
261	-380.0	-657.0
262	-239.0	-564.0
263	-365.0	-620.0
264	-301.0	-610.0
265	-286.0	-447.0
266	-282.0	-615.0
267	-304.0	-512.0
268	-275.0	-513.0
269	-376.0	-510.0
270	-346.0	-570.0
271	-356.0	-519.0
272	-297.0	-427.0
273	-348.0	-553.0
274	-318.0	-559.0
275	-339.0	-494.0
276	-335.0	-467.0
277	-261.0	-471.0
278	-334.0	-721.0
279	-373.0	-428.0
280	-267.0	-658.0
281	-274.0	-352.0
282	-317.0	-595.0
283	-342.0	-471.0
28.4	-297.0	-652.0
285	-287.0	-556.0
286	-214.0	-321.0
287	-304.0	-510.0
288	-341.0	-610.0
289	-320.0	-372.0
290	-285.0	-591.0
291	-272.0	-419.0
292	-347.0	-606.0
293	-254.0	-682.0
294	-296.0	-519.0
295	- 316.0	-609.0
296	-217.0	-467.0
297	-239.0	-547.0
298	-234.0	-463.0
299	-313.0	-360.0
300	-294.0	-387.0
301	-317.0	-574.0
302	-224.0	-446.0
303	-340.0	-653.0
304	-202.0	-537.0
305	-350.0	-511.0
:	-	,
-	:	$:$

Table 3. (Cont'd)

SAMPLE NUMBER

2922	-312.0	-441.0
2923	-319.0	-394.0
2924	-319.0	-571.0
2925	-329.0	-395.0
2926	-258.0	-653.0
2927	-263.0	-495.0
2928	-333.0	-560.0
2929	-352.0	-598.0
2930	-268.0	-525.0
2931	-297.0	-450.0
2932	-299.0	-514.0
2933	-296.0	-451.0
2934	-324.0	-465.0
2935	-316.0	-629.0
2936	-284.0	-653.0
2937	-345.0	-504.0
2938	-333.0	-464.0
2939	-248.0	-422.0
2940	-363.0	-645.0
2941	-376.0	-409.0
2942	-277.0	-475.0
2943	-346.0	-569.0
2944	-386.0	-532.0
2945	-302.0	-481.0
2946	- 305.0	-526.0
2947	-297.0	-263.0
2948	-287.0	-343.0
2949	-389.0	-601.0
2950	-289.0	-491.0
2951	-328.0	-544.0
2952	-384.0	-521.0
2953	-296.0	-326.0
2954	-343.0	-514.0
2955	-247.0	-314.0
2956	-314.0	-377.0
2957	-312.0	-666.0
2958	-371.0	-426.0
2959	-384.0	-570.0
2960	-428.0	-603.0
2961	-313.0	-550.0
2962	-287.0	-496.0
2963	-231.0	-292.0
2964	-314.0	-581.0
2965	-366.0	-551.0
2966	-407.0	-519.0
2967	-358.0	-418.0
2968	-356.0	-625.0
2969	-330.0	-341.0
2970	-170.0	-240.0
2971	-423.0	-480.0
2972	- 319.0	-577.0
2973	-384.0	-551.0
2974	-329.0	-608.0
2975	-302.0	-602.0
2976	-320.0	-271.0
2977	-343.0	-571.0
2978	-304.0	-490.0
2979	-416.0	-601.0
2980	-. 882.0	-478.0
2981	-356.0	-568.0
2982	-299.0	-709.0
2983	-328.0	-477.0
2984	-286.0	-387.0
2985	-375.0	-481.0
2986	-391.0	-426.0
2987	-325.0	-495.0
2988	-347.0	-702.0
2989	-287.0	-574.0
2990	-338.0	-591.0
2991	-315.0	-485.0
2992	- 450.0	-681.0
2993	-394.0	-547.0
2994	-407.0	-609.0
2995	-350.0	-488.0
2996	-423.0	-518.0
2997	-430.0	-676.0
2998	-395.0	-472.0
2999	-453.0	-421.0
3000	-308.0	-430.0

Table 4. A list of pairs of extremes (X, Y)

Group no.	Data channel value	Synchronization channel value
1	-95	-157
2	-138	-199
3	-181	-321
4	-158	-355
5	-146	-209
6	-179	-331
7	-192	-273
9	-211	-299
10	-198	-322
12	-159	-333
13	-204	-300
15	-187	-327
		-321
		-304

Although we have indicated how the constants in the marginal distributions are found, the experimental determination of the constant c in Eqs. (6)-(7) has not been considered. In practice, the parameter c is usually esti-mated-at least initially-by a method first used in Ref. 3. The technique revolves around the relation

$$
\begin{equation*}
\operatorname{Pr}\{|\Lambda-\Omega|<a\}=\frac{e^{a}-1}{e^{a}+1}+2 \frac{w^{\prime}(a)}{w(a)} \tag{8}
\end{equation*}
$$

where a is some positive constant between 1.5 and 2 . Equation (8) is derived from Eq. (5) by integration between the proper limits. If we let $v_{N}(a)$ denote the number of times $\left|\Lambda_{i}-\Omega_{i}\right|<a$ in N samples, then $\nu_{N}(a) / N$ is an estimate of $\operatorname{Pr}\{|\Lambda-\Omega|<a\}$ which is known from Eq. (8). Thus, c satisfies

$$
\frac{\nu_{N}(a)}{N}=\tanh \left(\frac{a}{2}\right)+2 c \frac{\operatorname{sech}^{2}\left(\frac{a}{2}\right) \tanh \left(\frac{a}{2}\right)}{1-c \operatorname{sech}^{2}\left(\frac{a}{2}\right)}
$$

This can be solved for c giving an estimate, \hat{c}, for c as

Group no.	Data channel value	Synchronization channel value
16	-173	-274
17	-19	-216
18	-103	-366
19	-108	-253
20	-153	-265
21	-172	-293
22	-112	-282
23	-112	-336
24	-121	-238
25	-171	-215
26	-190	-272
27	-151	-326
28	-110	-185
29	-174	-255
30	-170	-240

In Ref. 3 it is shown that

$$
\begin{equation*}
\operatorname{Var} \hat{c}=\frac{v_{N}(a)}{4 N^{2}}\left[1-\frac{v_{N}(a)}{N}\right]\left[\frac{c w^{2}(a)}{w^{\prime}(a)}\right]^{2} \tag{10}
\end{equation*}
$$

It turns out that the variance of \widehat{c} does not depend very much on the value of a, and for $1.5 \leq a \leq 2.0$, it is approximately twice the variance of the maximum likelihood estimate over much of the range of c. Hence, this estimator is a good one to use to avoid solving the likelihood equations, which for Eq. (7) are indeed formidable.

The processing of the data of Table 4 proceeds in the following manner. Table 4 lists the pairs of random variables (X, Y) obtained by dividing the data into thirty groups each of 100 points. Application of univariate EVT to each channel independently results in the parameters

$$
\begin{aligned}
\alpha_{\Lambda} & =0.033363 \\
u_{\Lambda} & =-171.632 \\
\alpha_{\Omega} & =0.022859 \\
u_{\Omega} & =-302.892
\end{aligned}
$$

$$
\begin{equation*}
\hat{c}=\frac{\tanh \left(\frac{a}{2}\right)-\frac{\nu_{N}(a)}{N}}{-2 \operatorname{sech}^{2}\left[\left(\frac{a}{2}\right)\right]\left[\tanh \left(\frac{a}{2}\right)\right]+\left[\operatorname{sech}^{2}\left(\frac{a}{2}\right)\right]\left[\tanh \left(\frac{a}{2}\right)-\frac{\nu_{N}(a)}{N}\right]} \tag{9}
\end{equation*}
$$

Table 5. Normalized pairs of extremes (Λ, Ω)

DATA CHANNEL	SYNC CHANNEL
A	
2.5567	3.3349
1.1221	2.3749
-0.3125	-0.4139
0.4548	-1.1911
0.8552	2.1463
-0.2458	-0.6425
-0.6795	0.6833
-1.3134	0.0890
0.0878	0.6604
-0.8797	-0.4368
0.4214	-0.6882
-1.0799	0.0661
-0.8454	-0.5511
0.4882	-0.4139
-0.4460	-0.0253
-0.0456	0.6604
5.0923	1.9863
2.2898	-1.4426
2.1230	1.1405
0.6216	0.8662
-0.0123	0.2261
1.9895	0.4776
1.9895	-0.7568
1.6892	1.4834
0.0211	2.0091
-0.6128	0.9062
0.6883	-0.5282
2.0562	2.6949
-0.0790	1.0948
0.0544	1.4376

These parameters are then used to normalize the random variables of Table $4(X, Y)$ obtaining the set of random variables (Λ, Ω) in Table 5. If we choose a in Eq. (8) to be 1.5, we find from Table 5 that $\nu_{30}(1.5)$ is 24 so that we estimate $\operatorname{Pr}\{|\Lambda-\Omega|<1.5\}=24 / 30=0.80$. Using this in Eq. (9) gives an estimate $\widehat{c}=0.19254$. For this example, we then have

$$
\begin{align*}
& \Phi(x)=\exp -\left[e^{-.033363(x+171.632)}\right] \tag{11a}\\
& \Phi(y)=\exp -\left[e^{-.022859(y+302.892)}\right] \tag{11b}
\end{align*}
$$

and

We now have an expression for $\Psi(x, y)$ and by inserting the thresholds of the two channels, we have the probability that the data channel and the synchronization channel both make correct decisions on each of n bits (since there are n samples per group). Then the probability, p, of any one bit being correct and being acceptedi.e., the synchronization channel giving an in-lock indi-cation-is the $n^{t h}$ root of this, or

$$
\begin{equation*}
p=\Psi^{1 / n}\left(x_{0}, y_{o}\right) \tag{12a}
\end{equation*}
$$

Since the threshold devices of both channels are essentially polarity sensing devices, the example gives as an initial estimate

$$
\begin{aligned}
p & =\Psi^{1 / 100}\left(x_{o}, y_{o}\right)=\Psi^{1 / 100}(0,0) \\
& =(0.996345)^{1 / 100} \\
& =0.9999634
\end{aligned}
$$

There are, of course, three other probabilities of interest. These are (1) q, the probability of receiving and rejecting a correct bit, (2) r, the probability of receiving and accepting an incorrect bit and (3) s, the probability of receiving and rejecting an incorrect bit. Of course, $p+q+r+s=1$. The interrelation of these four probabilities can be visualized with the aid of Fig. 12 giving

$$
\begin{align*}
& q=\Phi^{1 / 100}\left(x_{0}\right)-p \tag{12b}\\
& r=\Phi^{1 / 100}\left(y_{0}\right)-p \tag{12c}\\
& s=1-p-q-r \tag{12d}
\end{align*}
$$

Using the four parameters $\alpha_{\Lambda}, \alpha_{\Omega}, u_{\Lambda}$ and u_{Ω} listed above and applying univariate EVT to each channel independently gives $\Phi^{1 / 100}\left(x_{0}\right)$, the probability of a correct bit, and $\Phi^{1 / 100}\left(y_{0}\right)$, the probability of an in-lock indication, respectively, as

$$
\begin{aligned}
& \Phi^{1 / 100}\left(x_{0}\right)=0.9999674 \\
& \Phi^{1 / 100}\left(y_{0}\right)=0.9999902
\end{aligned}
$$

$$
\begin{align*}
& \Psi(x, y)=\exp -\left\{e^{-.033363(x+171.632)}+e^{-.022859(y+302.892)}-0.19254\left[e^{-.033363(x+171.632)}+e^{-.022859(y+302.892)}\right]\right. \\
&\left.\times \operatorname{sech}^{2}\left(\frac{-0.033363 x-0.022859 y-12.650036}{2}\right)\right\} \tag{11c}
\end{align*}
$$

Fig. 12. The four bivariate probability regions

Hence, we compute for the initial estimate:

$$
\begin{aligned}
q & =\Phi^{1 / 100}\left(x_{0}\right)-p=4.02 \times 10^{-6} \\
r & =\Phi^{1 / 100}\left(y_{0}\right)-p=2.68 \times 10^{-5} \\
s & =1-p-q-r=5.82 \times 10^{-6}
\end{aligned}
$$

As indicated earlier, the maximum likelihood equations for Eq. (7) are quite difficult even to derive, let alone solve. The approach taken by us has been to use a numerical technique based on successive iterations of the mixed second partial derivative of Eq. (7). This type of maximum likelihood technique is described in more

Table 6. Conditional bit-error rates as a function of threshold

	Bias 1 (data, synchronization)		
	0,0	$0,-157$	$0,-252$
Pr (bit error)	3.02×10^{-5}	3.02×10^{-5}	3.02×10^{-5}
Pr (bit error given in-lock)	2.54×10^{-5}	1.46×10^{-5}	1.35×10^{-5}
Pr (out-of-lock)	1.22×10^{-5}	4.05×10^{-4}	3.36×10^{-3}
${ }^{1}$ Relative units.			

detail in Section X. Applying this technique to the above example results in the following parameters:

$$
\begin{array}{rlrl}
\alpha_{\Lambda} & =0.033500 & u_{\Lambda}=-173.178 \\
\alpha_{\Omega} & =0.022290 & u_{\Omega}=-300.845 \\
c & =0.139145 & &
\end{array}
$$

Using these parameters, we recalculate the final results as:

$$
\begin{aligned}
\Phi^{1 / 100}\left(x_{0}\right) & =0.9999698 \\
\Phi^{1 / 100}\left(y_{0}\right) & =0.9999878 \\
p & =0.9999624 \\
q & =7.39 \times 10^{-6} \\
r & =2.54 \times 10^{-5} \\
s & =4.85 \times 10^{-6}
\end{aligned}
$$

In no case are any of the changes large ones.
It is interesting to note that while the probability of making an error on any particular bit is 3.02×10^{-5}, the probability of making a bit error given an in-lock indication is $2.54 \times 10^{-5} / 0.9999878 \approx 2.54 \times 10^{-5}$, a slight decrease. One is now in a position to begin questioning the system design and asking for tradeoffs. For example, by biasing the lock indicator so that it is more likely to indicate out-of-lock, one would expect changes in the conditional probabilities calculated above. To this end, Table 6 was constructed.

We see from the table that the conditional probability of a bit error is decreased by a factor of 2 as the lockchannel bias is decreased to -252 ; but the probability of an out-of-lock is simultaneously increased by a factor of 300 . This may or may not be acceptable, but the point is that the tradeoffs are quantitatively known. Furthermore, these tradeoffs were arrived at without recourse to hardware changes. The only change was that of x_{0} and y_{0} in Eqs. (11)-(12) and the reevaluation of the probabilities of interest! Here we have a striking example of the fact that extreme value techniques can be used as a design tool, as well as for analysis after design.

The question now arises as to whether or not the data fit obtained by using the techniques outlined above does in fact represent the data in accordance with the assertion in Eqs. (5)-(7). To aid in visualizing such a fit, Fig. 13 shows the density corresponding to Eq. (7) along with the experimental data fitted by the density. It might be well to point out that the data presented in Fig. 13

Fig. 13. Bivariate probability density of data extremes
are not the same as those used in the example above. As opposed to the 3000 data points used in the example, Fig. 13 represents 70,000 data points so that the experimental density would be smoother. As in the example, though, 3000 data points are a sufficient number to apply the technique. The significant fact is that Fig. 13 dem-
onstrates reasonably good agreement between the experimental data and the fit obtained. Unlike the univariate case, the experimental data are difficult to plot, and visual fits of the data are not easily made or interpreted. Little effort has been expended along these lines and no success has been encountered.

IX. RESTRICTIONS AND LIMITATIONS ON THE USE OF BIVARIATE EXTREME-VALUE THEORY

Many of the restrictions on the use of bivariate EVT can be traced to those of univariate EVT. Of course, it is necessary to be able to model the system accurately, and it must be valid to apply univariate EVT to each of the
two variables independently. Successive samples were assumed independent as in the univariate case, and the same criteria of independence can be applied to each channel as with the univariate case.

However, in the step from Eqs. (5) to (7), i.e., choosing $w(\Lambda-\Omega)$, another restriction unique to bivariate EVT is encountered. With the level of understanding that we presently have, it appears there is a large family of functions that could be used for $w(\Lambda-\Omega)$. Each of these functions satisfies all constraints known to exist on $w(\Lambda-\Omega)$. While the known constraints do not completely specify $w(\Lambda-\Omega)$, they are sufficient that the probabilities calculated from $\Psi(x, y)$ do not appear to depend drastically on the choice of the function $w(\Lambda-\Omega)$ as long as it is chosen within these constraints. In view of this fact, the function in Eq. (6), $w_{c}(\Lambda-\Omega)$, was selected from among the family of w 's as one having nice mathematical properties. Specifically, $w(\Lambda-\Omega)$ was chosen so that it depended on a single constant. Thus, the parameter c of Eq. (7) is estimated rather than the entire function $w(\Lambda-\Omega)$.

A note of caution should be interjected at this point. The value of c is restricted so that $0 \leq c \leq 1 / 4$. When $c=0$,
the data from the two channels are uncorrelated, as pointed out in Section VIII. However, the case of $c=1 / 4$ does not correspond to complete correlation. When $c>1 / 4$, the function $\Psi(x, y)$ in Eq. (7) ceases to be a valid probability function, i.e., $\Psi(x, y)$ violates one of the basic axioms of probability theory, namely that $\Psi(x, y)$ must be a non-decreasing function. The value of $c=1 / 4$ corresponds to a linear correlation coefficient between the extremes of the data, ρ, of $\%$. Since ρ is much easier to calculate than c, this fact is of considerable aid in applying bivariate EVT where high correlation between the channels exists. Our experience has been that few systems exhibit c 's even approaching $1 / 4$. Usually c remains below 0.2 , with ρ remaining below 0.4. Except in artificially constructed cases, we have had no difficulties with large values of c. On the other hand, small values of c are not uncommon. When the data are uncorrelated, the maximum likelihood estimate of c is negative and must be held at zero. This analysis is considered again in Section X .

X. DATA-PROCESSING TECHNIQUES

The purposes of this section are to discuss in detail the various processing techniques which we have used to compute both the univariate and bivariate extremevalue statistics, to present mathematical descriptions where necessary, and to enumerate specific approaches used to overcome difficulties encountered in processing the data. All computations were accomplished by a FORTRAN program written for an SDS-920 computer. This section of the report is heavily slanted toward the computer program. Appendix A describes the capabilities and limitations of the program itself, Appendix B contains a table of nomenclature of the program, a simplified flow diagram and a program listing. Appendix C contains a copy of the sample output of the program using the example discussed throughout this report.

For simplicity, the discussion which follows will be geared to one channel only, and we have arbitrarily selected the data channel. It should be kept in mind that identical procedures must be applied to the second channel in bivariate statistics, as well as further computations on both channels. These procedures will be described later.

The development of EVT statistics in this report has been concerned with predicting bit-error rates of maxima from a set of data. In many instances we are concerned with minima EVT, that is, with data where $x<x_{0}$ denotes a bit error and/or $y<y_{0}$ indicates a loss of synchronization. The data-processing technique we have used to handle this condition is to multiply any such data, including the corresponding threshold, by -1 so that maxima EVT is applicable.

The extremes used to estimate the statistics of the data are obtained as follows. The data are divided into N groups of n points each. The maximum value, X_{i}, from each group of n points is then found, and using these N maxima we proceed to calculate the univariate EVT statistics. Having plotted the N maxima (Fig. 8) we see that a straight line could be fitted by eye. However, we desire a mathematical fit based on some minimizing criteria, and to this end we use a maximum likelihood fit.

To obtain an initial estimate for the parameters α_{Λ} and u_{Λ} we must first know the expected mean, μ_{e}, and
expected standard deviation, σ_{e}, which are calculable (see Ref. 2) as

$$
\begin{gather*}
\mu_{e}=\frac{1}{N} \sum_{i=1}^{N}-\ln \left(-\ln \frac{\imath}{N+1}\right) \tag{13a}\\
\sigma_{e}=\sqrt{\frac{1}{N} \sum_{i=1}^{N}\left[-\ln \left(-\ln \frac{i}{N+1}\right)-\mu_{e}\right]^{2}} \tag{13b}
\end{gather*}
$$

Note that as written, Eq. (13b) requires two sequential computations; the first computes μ_{e} and the second calculates σ_{e}. To reduce processing time, another form for computing standard deviations is employed. Specifically,

$$
\begin{equation*}
\sigma_{e}=\sqrt{\left\{\frac{1}{N} \sum_{i=1}^{N}\left[-\ln \left(-\ln \frac{i}{N+1}\right)\right]^{2}\right\}-\mu_{e}^{2}} \tag{14}
\end{equation*}
$$

Equation (14) calculates σ_{e} in one computation during which two sums are formed, the sum of the individual terms and the sum of the squares of the individual terms. From the former sum we easily obtain μ_{e}, and direct substitution into Eq. (14) yields σ_{e}.

It is shown in Ref. 2 that if μ_{Λ} denotes the mean and σ_{Λ} the standard deviation of the data channel maxima then as a first estimate α_{Λ} and u_{Λ} can be calculated as

$$
\begin{aligned}
& \alpha_{\Lambda}=\frac{\sigma_{e}}{\sigma_{\Lambda}} \\
& u_{\Lambda}=\mu_{\Lambda}-\frac{\mu_{e}}{\alpha_{\Lambda}}
\end{aligned}
$$

Knowing the values of $\alpha_{\Delta}, u_{\Delta}$, and x_{o}, the threshold of the data channel, we obtain initial estimates for $\Phi\left(x_{0}\right)$ and $\Phi^{1 / n}\left(x_{0}\right)$ using Eq. (2).

To proceed with a maximum likelihood fit, we first change parameters in the extreme value distribution of Eq. (2) to a set of parameters more suited to our purpose. Specifically, we are interested in the probability that a random variable having an extreme-value distribution will not exceed the threshold x_{o}, rather than in the parameters α_{A} and u_{A}. This probability has been previously defined as

$$
\begin{equation*}
\Phi\left(x_{o}\right)=\exp -\left[-\exp \left(-\Lambda_{o}\right)\right] \tag{15a}
\end{equation*}
$$

where

$$
\begin{equation*}
\Lambda_{o}=\alpha_{\Lambda}\left(x_{o}-u_{\Lambda}\right) \tag{15b}
\end{equation*}
$$

We write $\Phi(x)$ in terms of α_{Λ} and $\Phi\left(x_{o}\right)$ rather than α_{Λ} and u_{Λ} as

$$
\begin{equation*}
\Phi(x)=\exp -\left[\exp -\left(\alpha_{\Lambda}\left(x-x_{o}\right)+\Lambda_{o}\right)\right] \tag{16}
\end{equation*}
$$

which has the unknown parameters α_{Λ} and Λ_{o}.
We now obtain the maximum likelihood estimators of a_{Λ} and Λ_{0}. Let $X_{1}, X_{2}, \cdots, X_{N}$ represent the N data channel maxima. Since the density function $\phi(x)$ of Eq. (16) has the form

$$
\phi(x)=\frac{d \Phi(x)}{d x}=\alpha_{\Lambda} \Phi(x) \exp \left[-\left(\alpha_{\Lambda}\left(x-x_{o}\right)+\Lambda_{o}\right)\right]
$$

the likelihood function, L, for this sample is

$$
\begin{align*}
L\left(X_{1}, \cdots, X_{N}, \alpha_{\Lambda}, \Lambda_{o}\right) & =\prod_{i=1}^{N} \alpha_{\Lambda} \Phi\left(X_{i}\right) \exp \left[-\left(\alpha_{\Lambda}\left(X_{i}-x_{o}\right)+\Lambda_{o}\right)\right] \\
& =\alpha_{\Lambda}^{N}\left[\exp -\left(\alpha_{\Lambda} \sum_{i=1}^{N}\left(X_{i}-x_{o}\right)+N \Lambda_{o}\right)\right] \exp -\left(\sum_{i=1}^{N} \exp -\left(\alpha_{\Lambda}\left(X_{i}-x_{o}\right)+\Lambda_{o}\right)\right) \tag{17}
\end{align*}
$$

To maximize Eq. (17), or equivalently, to maximize the logarithm of Eq. (17), we differentiate $\ln L$ (since it has a simpler form) and obtain

$$
\begin{gather*}
\ln L=N \ln \alpha_{\Lambda}-N \alpha_{\Lambda}\left(\mu_{\Lambda}-x_{o}\right)-N \Lambda_{o}-\sum_{i=1}^{N} \exp -\left(\alpha_{\Lambda}\left(X_{i}-x_{o}\right)+\Lambda_{o}\right) \\
\frac{\partial \ln L}{\partial \alpha_{\Lambda}}=\frac{N}{\alpha_{\Lambda}}-N\left(\mu_{\Lambda}-x_{o}\right)+\sum_{i=1}^{N}\left(X_{i}-x_{o}\right) \exp -\left(\alpha_{\Lambda}\left(X_{i}-x_{o}\right)+\Lambda_{o}\right) \tag{18a}\\
\frac{\partial \ln L}{\partial \Lambda_{o}}=-N+\sum_{i=1}^{N} \exp -\left(\alpha_{\Lambda}\left(X_{i}-x_{o}\right)+\Lambda_{o}\right) \tag{18b}
\end{gather*}
$$

To solve for the maximum likelihood estimators of α_{Λ} and $\Lambda_{o}, \hat{\alpha}_{\Lambda}$ and $\hat{\Lambda}_{o}$, we set

$$
\frac{\partial \ln L}{\partial \alpha_{\Lambda}}=\frac{\partial \ln L}{\partial \Lambda_{o}}=0
$$

When set equal to zero, Eqs. (18a) and (18b) do not have a closed-form solution; a numerical technique, the Newton-Raphson method for solving systems of equations, is used to find good approximations to $\hat{\alpha}_{A}$ and $\hat{\Lambda}_{o}$ (Ref. 4). Numerically, we proceed as follows. Using the initial estimates of α_{Λ} and Λ_{o} as the arguments for the partial derivatives of $\ln L$, we compute better estimates to α_{Λ} and Λ_{0}, say $\alpha_{\Lambda}^{(1)}$ and $\Lambda_{o}^{(1)}$ and calculate the corresponding values of $\partial \ln L / \partial \alpha_{\Lambda}^{(1)}$ and $\partial \ln L / \partial \Lambda_{o}^{(1)}$. If both of these values are greater than or equal to a specified limit (we have used 10^{-5}) we repeat the procedure and calculate $\alpha_{\Lambda}^{(2)}$ and $\Lambda_{o}^{(2)}$, obtaining still better estimates. This iterative procedure continues until Eqs. (18a) and (18b) both have values less than our specified limit. At this point we take the values of $\alpha_{\Lambda}^{(i)}$ and $\Lambda_{o}^{(i)}$ to be the maximum likelihood estimators, $\hat{\mathrm{x}}_{\mathrm{A}}$ and $\hat{\mathrm{X}}_{0}$.

To complete the univariate EVT application we compute the statistics $\Phi\left(x_{o}\right)$ and $\Phi^{1 / n}\left(x_{o}\right)$ from Eq. (2) using the maximum likelihood estimators, obtain a new estimate for u_{Λ} by substituting ${\hat{\alpha_{\Lambda}}}$ and $\hat{\Lambda}_{o}$ into Eq. (15), and proceed to find confidence intervals for the predicted bit-error rate. In computing the confidence intervals we use the fact that the maximum likelihood estimators $\hat{\alpha}_{A}$ and $\hat{\Lambda}_{o}$ are approximately bivariately normally distributed for large N (Ref. 1). If, for example, a 99% confidence interval is desired, the quantile of order 0.99 of the unitvariance normal distribution is 2.576 (that is, a unit normal variate is less than ± 2.576 with 0.99 probability). Thus, using Eq. (4) we set

$$
\Lambda_{o}^{*}=\hat{\Lambda}_{o} \pm 2.576\left(\operatorname{var} \hat{\Lambda}_{o}\right)
$$

and compute the two-sided 99% confidence interval for the predicted bit error rate by computing $1-\Phi^{1 / n}\left(x_{o}\right)$ for these two values of Λ_{o}^{*}. The data processing program repeats the above procedure to also obtain the 95,90 , 80 , and 70% confidence intervals.

Having calculated univariate EVT statistics for each channel, we now proceed to bivariate calculations. We use the univariate maximum likelihood estimators of $\alpha_{\Lambda}, \Lambda_{o}$,
α_{Ω}, and Ω_{0} to linearly transform the N pairs of random variables (X_{i}, Y_{i}) obtaining the pairs (Λ_{i}, Ω_{i}) where

$$
\begin{aligned}
& \Lambda_{i}=\alpha_{\Lambda}\left(X_{i}-u_{\Lambda}\right) \\
& \Omega_{i}=\alpha_{\Omega}\left(Y_{i}-u_{\Omega}\right)
\end{aligned}
$$

The parameter c is initially estimated by using Eqs. (8)-(9) in which $\operatorname{pr}\left\{\left|\Lambda_{i}-\Omega_{i}\right|<a\right\}$ is approximated by $\nu_{N}(a) / N$ where $\nu_{N}(a)$ denotes the number of times $\left|\Lambda_{i}-\Omega_{i}\right|<a$ in N samples; we restrict a so that $1.5 \leq a \leq 2.0$. Using this value of c we compute the initial bivariate statistics $\Psi\left(x_{o}, y_{o}\right), p, q, r$, and s as described by Eqs. (7) and (12a-d).

At this point it seems wise to interject a few comments concerning the different forms of Eqs. (5), (6) and (9) which appear in the computer program.

Eq. (6)

$$
w(\Lambda-\Omega)=1-c \operatorname{sech}^{2}\left(\frac{\Lambda-\Omega}{2}\right)
$$

can be written as

$$
\begin{equation*}
w(\Lambda-\Omega)=1-\frac{4 c e^{(\Lambda-\Omega)}}{\left(1+e^{(\Lambda-\Omega)}\right)^{2}} \tag{19}
\end{equation*}
$$

The program uses Eq. (19) in calculating c, so that Eq. (9) is rewritten as

As stated previously the bivariate experimental data, in comparison to that of the univariate case, are difficult to plot and do not allow a visual fit of the data which is either easily made or interpreted. Once again, a mathematical fit based on some minimizing criteria is desirable. A maximum likelihood approach to calculate the estimators, $\hat{\alpha}_{\Lambda}, \hat{u}_{\Lambda}, \hat{\alpha}_{\Omega}, \hat{u}_{\Omega}$, and \hat{c}, such as the one used in calculating the univariate maximum likelihood estimators is not feasible. The approach we have taken is based on the likelihood function of $\Psi(x, y)$. Let the density function of $\Psi(x, y)$ be represented by $\psi(x, y)$ where

$$
\psi(x, y)=\frac{\partial^{2} \Psi(x, y)}{\partial x, \partial y}
$$

By straightforward calculations

$$
\begin{align*}
\psi(x, y)= & \left\{\left[\alpha_{\Lambda} g(z) e^{-\Lambda}-\frac{\alpha_{\Lambda}}{2} g^{\prime}(z)\left(e^{-\Lambda}+e^{-\Omega}\right)\right]\left[\alpha_{\Omega} g(z) e^{-\Omega}+\frac{\alpha_{\Omega}}{2} g^{\prime}(z)\left(e^{-\Lambda}+e^{-\Omega}\right)\right]\right. \\
& \left.+\left[-\frac{\alpha_{\Lambda} \alpha_{\Omega}}{2} g^{\prime}(z)\left(e^{-\Lambda}-e^{-\Omega}\right)+\frac{\alpha_{\Lambda} \alpha_{\Omega}}{4} g^{\prime \prime}(z)\left(e^{-\Lambda}+e^{-\Omega}\right)\right]\right\} \cdot \Psi(x, y) \tag{20}
\end{align*}
$$

where

$$
\begin{aligned}
\Lambda & =\alpha_{\Lambda}\left(x-u_{\Lambda}\right) \\
\Omega & =\alpha_{\Omega}\left(y-u_{\Omega}\right) \\
z & =\frac{\Lambda-\Omega}{2} \\
g(z) & =1-c \operatorname{sech}^{2} z \\
g^{\prime}(z) & =2 c \operatorname{sech}^{2} z \tanh z \\
g^{\prime \prime}(z) & =2 c \operatorname{sech}^{4} z-4 c \operatorname{sech}^{2} z \tanh ^{2} z \\
\Psi(x, y) & =\exp \left[-\left(e^{-\Lambda}+e^{-\Omega}\right) g(z)\right]
\end{aligned}
$$

If we let $\left(X_{1}, Y_{1}\right) \cdots\left(X_{N}, Y_{N}\right)$ represent the N pairs of random variables, the likelihood function for this sample is
$L\left(\left(X_{1}, Y_{1}\right), \cdots,\left(X_{N} Y_{N}\right) ; \alpha_{A^{\prime}} u_{\Lambda^{\prime}} \alpha_{\Omega}, u_{\Omega}, c\right)=\prod_{i=1}^{N} \psi\left(X_{i}, Y_{i}\right)$

To proceed as in the univariate case would require that we minimize $\ln L$ which would necessitate finding the five first partial derivatives of $\ln L$ with respect to α_{Λ}, $u_{\mathrm{A}}, \alpha_{\Omega}, u_{\Omega}$, and c, equating these equations to zero, and solving these five simultaneous equations for the maximum likelihood estimators.

In lieu of the difficulties presented by the above approach, we have employed a numerical method based on the assumption that the bivariate surface is "nice." This assumption has been shown to be valid in all the various examples we have tried. The method can be described as a parabola fitting procedure on the five parameters.

We begin by selecting c as the first parameter to be varied since $\alpha_{\Lambda}, u_{\Lambda}, \alpha_{\Omega}$, and u_{Ω} have been estimated by the univariate maximum likelihood fit. Holding the other four parameters constant, we obtain two other values of $\ln L$ near c; that is, we set

$$
\begin{aligned}
& \xi_{1}=c \\
& \xi_{2}=c-.01|c| \\
& \xi_{3}=c+.01|c|
\end{aligned}
$$

and use these values to compute three corresponding values, ζ_{1}, ζ_{2}, and ζ_{3}, of $\ln L$; that is

$$
\begin{aligned}
\zeta_{i} & =\ln L\left(\left(X_{1}, Y_{1}\right), \cdots,\left(X_{N}, Y_{N}\right) ; \alpha_{\Lambda}, u_{\Lambda}, \alpha_{\Omega}, u_{\Omega}, \xi_{i}\right) \\
& =\sum_{i=1}^{N} \ln \psi\left(X_{i}, Y_{i}\right) \quad i=1,2,3
\end{aligned}
$$

To fit a parabola through the points $\left(\xi_{1}, \zeta_{1}\right),\left(\xi_{2}, \zeta_{2}\right)$, and $\left(\xi_{3}, \zeta_{3}\right)$ we solve the three simultaneous linear equations

$$
\begin{equation*}
\zeta_{i}=A \xi_{i}^{2}+B \xi_{i}+C \quad i=1,2,3 \tag{22}
\end{equation*}
$$

for the coefficients A and B using Cramer's rule. The vertex, v, of the parabola fitted to these points will be

$$
v=-\frac{B}{2 A}
$$

If this newly computed vertex differs from the previous vertex by some specified limit (we have been using 0.01%) then we consider the procedure to have converged. If the two successive vertices do not satisfy this condition, we determine new points for another attempt at fitting a parabola, as illustrated in Fig. 14. We iteratively fit parabolas in this manner until the above difference condition is satisfied, that is, until convergence is achieved. The last vertex calculated is now used as a better approximation to c.

Having found a better approximation to c we apply this same method to $\alpha_{\Lambda}, \alpha_{\Omega}, u_{\Lambda}$, and u_{Ω} in that order. When all five parameters have been estimated, one iteration is considered to be done. (The total number of iterations is variable in the program of Appendix A.) These newly estimated parameters are now used to re-calculate the bivariate statistics of interest.

Several difficulties which we encountered warrant special mention. Due to the numerical capacity of the computer (approximately twelve decimal digits) some overflow problems occurred when using Cramer's rule to solve the system of equations used in the parabola fitting

WHERE THE INITIAL GUESSES
DIFFERED BY I\% OF THE VARIATE AND
O DENOTES THE $i^{\text {th }}$ GUESS
\diamond DENOTES THE $(i+1) s t$ GUESS
$\delta=0.01|\mathrm{v}|$
Fig. 14. Details of bivariate iterative maximum likelihood fit
procedure. This problem is alleviated by performing a translation of axes so that $\left(\xi_{1}, \zeta_{1}\right)$ becomes the origin of the new coordinate system. This new coordinate system is used to compute the vertex of the parabola and to determine the new set of points for the next parabola fit. All other calculations are performed in the original coordinate system.

Another problem occurred when taking the $n^{\text {th }}$ root of the various cumulative probabilities, $\Phi\left(x_{o}\right), \Phi\left(y_{0}\right)$, and $\Psi\left(x_{o}, y_{o}\right)$. The first method we employed was to compute $\Phi^{1 / n}\left(x_{o}\right)$ for example, as

$$
\Phi^{1 / n}\left(x_{o}\right)=\exp \left[\frac{1}{n} \ln \Phi\left(x_{o}\right)\right]
$$

However, in cases where we were concerned with small error rates, it was found that the round-off errors propagated by the two program library routines, "exp" and "log," occasionally affected our results significantly. A second method of series expansion accurate to the elev-
enth decimal digit is incorporated in the program. $\Phi^{1 / n}\left(x_{0}\right)$ is calculated as
$\Phi^{1 / n}\left(x_{o}\right)=\left[1-\left\{1-\Phi\left(x_{o}\right)\right\}\right]^{1 / n}=1-\frac{\left[1-\Phi\left(x_{o}\right)\right]}{n}+\cdots$
For purposes of comparison the program computes $\Phi^{1 / n}\left(x_{o}\right)$ using both methods. $\Phi^{1 / n}\left(x_{0}\right)$ always assumes the value computed by the second method, except in instances where the second method overflows, due to the capacity of the computer.

Further explanations concerning the data processing program are necessary at this point. As stated in Section IX on the restrictions and limitations of bivariate EVT, the parameter c is restricted to the range $0 \leq c \leq{ }^{1 / 4}$. After the last complete iteration of the bivariate maximum likelihood parabola fit, the program determines whether or not c lies in the above closed interval. If not, c is modified so that if $c<0$ then c is set equal to 0 and similarly if $c>1 / 4$ then c is set equal to $1 / 4$. These modifications occur prior to the final calculation of the bivariate statistics, thereby assuring that c satisfies the restrictions placed on it by the bivariate theory.

As an additional feature the data-processing program computes the correlation coefficients between the data and between the extremes of the data of the two channels. Neither correlation coefficient is used in EVT statistics. However, the correlation coefficient between the data is an aid to evaluation of the data of the entire test and the correlation coefficient between the extremes of the data gives us an easily calculable indication of anticipated behavior of the parameter c, which is of considerable aid in applying bivariate EVT in cases where high correlation exists. Using the notation explained earlier in this section, we compute, for example, the correlation coefficient ρ between the extremes of the two channels as

$$
\rho=\frac{\sum_{i=1}^{N}\left(X_{i}-\mu_{\Lambda}\right)\left(Y_{i}-\mu_{\Omega}\right)}{N \sigma_{\Lambda} \sigma_{\Omega}}
$$

As in the computation of the standard deviations discussed above, this form of ρ requires two passes over the data. Processing time is reduced by using the equivalent form
$\rho=\frac{N \sum_{i=1}^{N} X_{i} Y_{i}-\sum_{i=1}^{N} X_{i} \sum_{i=1}^{N} Y_{i}}{\sqrt{\left[N \sum_{i=1}^{N}\left(X_{i}\right)^{2}-\left(\sum_{i=1}^{N} X_{i}\right)^{2}\right]\left[N \sum_{i=1}^{N}\left(Y_{i}\right)^{2}-\left(\sum_{i=1}^{N} Y_{i}\right)^{2}\right]}}$

NOMENCLATURE

This table, although not intended to be complete, identifies the major parameters used throughout the report. A nomenclature of the data-processing program is given in Appendix B.

ADA Amplitude distribution analysis
c An indicator of correlation between pairs of data extremes. A basic parameter of $\Psi(x, y)$
EVT Extreme value theory
$f(x)$ Derivative of $F(x)$ with respect to x
$f^{\prime}(x)$ Derivative of $f(x)$ with respect to x
$F(x) \quad$ Cumulative probability as a function of x
$L($) Likelihood function
n The number of samples per group
N The number of groups
\boldsymbol{p} The probability of receiving and accepting a correct bit
q The probability of receiving and rejecting a correct bit
r The probability of receiving and accepting an incorrect bit
s The probability of receiving and rejecting an incorrect bit
SNR Signal to noise ratio
u The mean of $\Phi(x)$
$u_{\Lambda} \quad$ That u associated with the source of x data
u_{Ω} That u associated with the source of y data
$w(\Lambda-\Omega) \quad$ A class of correlation functions
$w_{e}(\Lambda-\Omega) \quad$ A particular $w(\Lambda-\Omega)$
x Basic, measured variable of one channel
$x_{0} \quad$ Threshold value of x
$X_{i} \quad$ Largest value of x within the $i^{\text {th }}$ group of data; X has the same units as x
y Basic measured value of second channel
$y_{0} \quad$ Threshold value of y
Y_{i} Largest value of y with the $i^{\text {th }}$ group of data; Y has the same units as y
α A measure of concentration of $\Phi(x)$ about u
$\alpha_{A} \quad$ That α associated with the source of x data
$\alpha_{\Omega} \quad$ That α associated with the source of y data
γ Euler's constant ($0.5772 \ldots$. .
Λ Reduced variate; $\Lambda=\alpha(X-u)$
Λ_{0} The value of Λ at x_{0} (threshold)
μ_{e} Expected mean of extremes of data
$\mu_{\Lambda} \quad$ Mean of extremes associated with x data, X_{i}
$v_{N}(a)$ The number of times $\left|\Lambda_{i}-\Omega_{i}\right|<a$ in N pairs of samples
ρ The linear correlation coefficient between extremes of pairs of data samples
σ_{e} Expected standard deviation of extremes of data
σ_{Ω} Standard deviation of extremes associated with x data, X_{i}
$\phi(x)$ Density function corresponding to $\Phi(x)$
$\Phi(x) \quad \lim _{n \rightarrow \infty} \Phi_{n}(x)$
$\Phi_{n}(x)$ The probability that in a set of n independent samples the largest sample is less than x
$\psi(x, y)$ Density function correspond to $\Psi(x, y)$
$\Psi(x, y)$ The asymptotic expression for large n of the probability that in a set of n independent pairs of samples, the largest sample from one member of the pair is less than x and that the largest sample from the other member is less than y
Ω Reduced variate; $\Omega=\alpha_{\Omega}\left(Y-u_{\Omega}\right)$

APPENDIX A
 Data-Processing Program for Bivariate EVT Statistics

The data-processing program which computes the bivariate EVT statistics is written in FORTRAN, with the exception of one subroutine which is written in SYMBOL. The program is based on the capacity of an SDS-920 computer with an 8000 -word memory. It was the authors' intention to develop as flexible a program as possible. As a result, the program devised is capable of processing 700 extremes for each channel, i.e., 700 pairs of random variables. Because of the small memory size of the computer, the numerous extremes we wanted to be able to process, and the program flexibility we desired to incorporate, we were required to divide the program into three sub-programs or links, only one of which remains in the memory at any one time.

The first link of the program computes the univariate EVT statistics for each channel independently, i.e., it performs the following functions for each channel:

1. If necessary, multiplies the raw data by -1 so that maxima EVT is applicable
2. Splits the initial data matrix into N groups of n points each
3. Finds the maximum value within each group
4. Computes the parameters α and u
5. Computes the univariate EVT statistics
6. Computes the confidence intervals for the predicted error rates

In addition, this first link computes the mean, standard deviation and a form of signal-to-noise ratio for the raw data of each channel. It also computes the correlation coefficients between the data and between the extremes of the data, and computes the classical, i.e., errorcounting, probabilities corresponding to the probabilities p, q, r, and s of Eq. (12).

Link two is incorporated in the program as a supplement to the univariate statistics. It orders the extremes of each channel in increasing value, prints the unordered extremes, the ordered extremes and their respective plotting positions, and offers the operator an option of obtaining a plot of the data on a Cal-Comp plotter, coupled to the computer (Appendix C). If a plot is desired, this
link scales the range of the channel maxima so that it coincides with the smaller dimension of the Cal-Comp plotting paper ($10 \times 16 \mathrm{in}$.) and so that the threshold may also be plotted on the graph. Using the data channel, for example, this link plots the N scaled, ordered channel extremes, X_{i}, vs $-\ln [-\ln (i /(N+1))]$ where i is the rank of the ordered extreme by drawing a + . The latter coordinate is measured along the linear reduced variate scale which runs parallel to the non-linear cumulative probability scale (Fig. 7). The routine also plots the reduced variate at threshold and two points of the regression equation

$$
x=u_{\Lambda}+\frac{\text { reduced variate }}{\alpha_{\Lambda}}
$$

These last three points are denoted by the mark \square on the plot.

The third link of the program computes the bivariate EVT statistics. It performs the following functions:

1. Computes an initial guess for the parameter c
2. Performs a variable number of iterations during which a parabola fit is calculated in each of the $c, \alpha_{\Lambda}, \alpha_{\Omega}, u_{\Lambda}, u_{\Omega}$ planes
3. Computes bivariate EVT statistics whenever specified.

The program is blocked into these three links and their respective subroutines in the following manner:

Link 1. - Univariate EVT
UMAXLIK - Computes the univariate maximum likelihood estimators

CONFINT - Computes the confidence intervals for predicted error rates

Link 2. - Univariate EVT
ORDER - Orders and prints the channel extremes

GRAPH — Provides a linearized univariate EVT plot
$\left.\begin{array}{cl}\text { Link } 3 . & \text { - Bivariate EVT } \\ \text { BEVT } & \text { - Computes bivariate EVT statistics } \\ \text { BMAXLIK } & \text { - Computes the value of the bivariate } \\ \text { EVT likelihood function }\end{array}\right\}$

Each of the above links, except for the subroutine GRAPH is written in SDS FORTRAN II. GRAPH is coded in SDS symbolic programming language, SYMBOL.

All operational directions are typed on the console typewriter during execution of the program. These directions indicate options which are available, and explain the various inputs which the operator must supply. Some elaboration on these options and required inputs seems appropriate here.

The operator has the following options, all of which are controlled by the four breakpoint switches on the console:

1. Breakpoints one and two, respectively, control the need for multiplication by -1 of the raw data from the data and synchronization channels, i.e., whether or not it is necessary to convert the data so that maxima EVT is applicable
2. Breakpoint three controls whether or not link two will be used. If it is used, breakpoints one and two are used again to determine whether or not the operator desires linearized univariate EVT plots of the respective channels
3. Breakpoint four controls whether or not link three will be used, i.e., whether the program will proceed to compute bivariate statistics, or will terminate execution at the end of univariate calculations. If link three is used, breakpoints three and four are used again to offer further options on completion of bivariate calculations. Breakpoint three gives the option of changing the value of the variable a used in Eq. (8) and breakpoint four, the option of changing
the thresholds of the two channels. These last options may be used either individually or simultaneously. If any one of the options is used, the program computes bivariate statistics based on the changed inputs. If neither option is used, execution is terminated and control is transferred back to the top of the program (link one).

All program inputs must be typed according to the format specifications of the operational directions mentioned above. Link one requires that the operator input, via the typewriter, the following variables in this order:

1. The test number
2. The number of groups
3. The number of samples per group
4. The data channel threshold
5. The synchronization channel threshold
6. The univariate maximum likelihood fit error limit

Link two takes all its inputs from link one. Link three initially requires the following additional typewritten inputs in this order:

1. The total number of iterations desired for the bivariate maximum likelihood fit
2. The number of iterations to be performed before bivariate statistics are computed, e.g., if the first input $=8$ and this input $=2$, then 8 iterations will take place, but bivariate statistics will be calculated and printed after each second iteration
3. Value of the variable a used to compute the initial estimate of the parameter c \{Eq. (8)\}
4. The bivariate maximum likelihood fit error limit

It should be noted that the various tests which we executed were stored on magnetic tape with format fixed by convention, so that the data were input via READ TAPE commands. This input procedure would need to be changed if data were used which were recorded under any other convention.

APPENDIX B

Data-Processing Program Nomenclature, Simplified Flow Diagram, and Listing

This appendix contains a table of nomenclature for the data-processing program (Table B-1), a simplified flow diagram of the program (Fig. B-1), and a complete listing of the program segmented into three links, each having its respective subroutines (Table B-2). Since various portions of this program were written at different times, the nomenclature varies from link to link. In an attempt to alleviate any confusion which might exist, the table of nomenclature lists all important program variables according to the links in which they are used, and enumerates any equivalent names that might be used to represent the same variables throughout the rest of the program. This table also states restrictions which must be placed on certain variables for successful execution of the program. It references specific variables according to sections, appendixes or equations of this report which might clarify their usage.

Table B-1. Nomenclature of the data-processing program

Table B-1. (Cont'd)

Variable	Equivalent names	Definition	Restrictions	References
Link 1 (Cont'd)				
PNEOUT PEIN PEOUT SNR YTI YT2 PCTI PCT2 PCTINDP PCT2NDP ERROR	$\begin{aligned} & \text { YTD } \\ & \text { YTS } \end{aligned}$	Classical probability of no error and an out-of-lock Classical probability of an error and an in-lock Classical probability of an error and an out-of-lock Signal-to-noise ratio Data-channel reduced variate at threshold Synchronization-channel reduced variate at threshold Data-channel cumulative probability at threshold Synchronization-channel cumulative probability at threshold Predicted bit-error rate for data channel Predicted out-of-lock rate for synchronization channel Error limit for univariate maximum-likelihood fit	ERROR >0	Appendix A Appendix A Appendix A Appendix A Eq. (15b) Eq. (15a) Section VI Section VI Section X
Subroutine UMAXLIK				
F G FI GI DFDN		Univariate maximum-likelihood equation Univariate maximum-likelihood equation Partial derivative of F with respect to α_{A} and then α_{Ω} Partial derivative of G with respect to Λ_{0} and then Ω_{o} Mixed partial derivative of F and G with respect to α_{Λ} and Λ_{0} and then α_{Ω} and Ω_{0}		Eq. (18a) Eq. (18b) Section X Section X. Section X
Subroutine CONFINT				
HOLD BETAI BETA2 IPCENT		Array containing the quantiles of order $99,95,90,80$, and 70 of the unit variance normal distribution for computation of confidence intervals Variance of the reduced variate at threshold Upper confidence limit Lower confidence limit Percent confidence		Section X Eq. (4) Section X Section X

Table B-1. (Cont'd)

Variable	Equivalent names	Definition	Restrictions	References
Link 2				
MATRIX XI MAX MIN I J		Storage array to order channel extremes and to store coordinates to be plotted Scale factor Reduced variate at threshold Scaled value of threshold A point of regression equation A point of regression equation		Section X Appendix A Appendix A
Subroutine ORDER				
IARRAY JARRAY HOLD		Unordered extremes Ordered extremes Plotting position with respect to non-linear cumulative probability scale		Appendix A
Link 3				
A C DUA F G ERROR COUNT II XI X2 X3 Y1 Y2 Y3 VERTEX		Number of iterations for bivariate maximum-likelihood fit Number of iterations to occur before computation of bivariate statistics Strip estimator used to compute initial value of \boldsymbol{c} Bivariate EVT parameter c Derivative of $1-c \operatorname{sech}^{2}\left(\frac{a}{2}\right)$ with respect to a Normalized data-channel extremes Normalized synchronization-channel exfremes Error limit for bivariate maximum-likelihood fit Number of times normalized variables fall within strip Bivariate maximum-likelihood fit iteration number $\{$ Varied values of bivariate maximum-likelihood estimators $\{$ Corresponding values of the bivariate-likelihood function Vertex of parabola fitted to the points (X1,Y1), (X2,Y2), (X3,Y3)	$\begin{gathered} \mathrm{O}<\mathrm{NIT} \\ \mathrm{O}<\mathrm{NBEVT} \leq \mathrm{NIT} \\ 1.5 \leq \mathrm{A} \leq 2.0 \end{gathered}$ ERROR >0	Appendix A Appendix A Section VIII Section X Section VIII Section X Section X Section X

Table B-1. (Cont'd)

Variable	Equivalent names	Definition	Restrictions	References
Subroutine BEVT				
\mathbf{P} Q R S PP QQ RR SS SERIES VARC GU GV		Probability of a correct bit being received and accepted Probability of a correct bit being received and rejected Probability of an incorrect bit being received and accepted Probability of an incorrect bit being received and rejected Probability of a correct command of length NDP being received and accepted Probability of a correct command of length NDP being received and rejected Probability of an incorrect command of length NDP being received and accepted Probability of an incorrect command of length NDP being received and rejected Value of the NDP't root of cumulative probabilities as computed by series expansion Variance of parameter c Probability of a correct bit Probability of an in-lock on any one bit		Section VIII Section X Eq. (10) Section VIII Section VIII
Subroutine BMAXLIK				
VARC U SECH2 TANH WU WUI WU2 EX EY PROD		Parameter c $\begin{aligned} & \left\{\alpha_{\Lambda}\left(x-v_{A}\right)-\alpha_{\Omega 2}\left(\gamma-v_{\Omega}\right)\right\} / 2.0 \\ & \operatorname{Sech}^{2} u \\ & \operatorname{Tanh} u \\ & g(u) \\ & d g(u) / d u \\ & d^{2} g(u) / d u^{2} \\ & \Phi(x) \\ & \Phi(y) \end{aligned}$ Value of bivariate maximum-likelihood function		Section X Eq. (20)
Subroutine PARAFIT				
$\begin{gathered} (P 1 X, P 1 Y) \\ (P 2 X, P 2 Y) \\ (P 3 X, P 3 Y) \\ A A \\ B B \end{gathered}$		$\{$ Translated coordinates for parabola fit Coefficient A of parabola equation Coefficient B of parabola equation		Section X Section X Section X

Fig．B－1．Simplified flow diagram for data－processing program

Table B-2. Listing of the data-processing program

```
C MASTER BIVARIATE EXTREME VALUE PROGRAM FGR TWO CHANNEL DATA...........
C........................SANDRA LURIE.
```



```
C LINK(1) OF THE PROGRAM.
C USES FQRTRAN SUBROUTINES UMAXLIK (UNIVARIATE MAXIMUM LIKELIHOQD FIT)..
C CONFINT (CONFIDENCE INTERVALS)
C UNIVARIATE EXTREME VALUE CALCULATIONS
    DIMENSION IADC1(500). IADC2(500),MAX1(700).MAX2(700)
    COMMON MAX1,MAX2.ALPHA1,ALPHA2,U1,U2.NG,NDP,T1.T2.ITN.ERROR
C TYPES OPERATIQNAL DIRECTIANS AND ACCEPTS TYPEWRITER INPUTS............
    1 TYPE 900
        PAUSE
        TYPE 93@
        TYPE 90'
        2 ACCEPT GO2.ITN.NG.NDP,T1,T2,ERROR
```



```
            3 READ TADE 1,L.I.I.I.ITAB,TEMP,TEMP,TEMP,TEMP,TEMP,TEMP
        IF(L-ITN)4.7.6
    4 DA 5 J=1.ITAB
    & READ TAPE 1
        GG TO 3
    6 REWIND 9
        GQ TO 3
C calculates the means. dEviATIONS. SIgNAL tO NOISE RATIOS. AND THE
```



```
C COMPUTES CLASSICAL PROBABILITIES
```



```
C SPLITS THE INITIAL DATA MATRIX INTO NG GRAUPS EACH OF NDP SAMPLES......
C FINDS GROUP EXTREMES (MAXIMA) FOR EACH CHANNEL AND THEIR CORRELATION
C COEFFICIENT
    7 XMEAN=0.
        YMEAN=0.
        SX=0.
        SY=0.
        SUMXY=0.
        PER=0.
        POUT=0.
        PNEIN=0.
```

Table B-2. (Cont'd)

```
    PNEQUT=0.
    PEIN=0.
    PEQUT \(=0\).
    JTAB=0
    LARGE1 \(=-1000000\)
    LARGE2 \(=\) LARGE 1
    READ TAPE 1.(IADCI(J),J=1.500)
    READ TAPE 1 .(IADC2 (J). \(J=1.500\) )
    \(J T A B=J T A E+2\)
    IF SENSF SWITCH 1)11.9
    \(9 \mathrm{~T}_{1}=-\mathrm{T}_{1}\)
    DA \(10 \mathrm{~J}=1.500\)
10 IADC1(J)=-IADC1(J)
11 IF (SENSF SWITCH 2) 14.12
\(12 \mathrm{~T} 2=-\mathrm{T} 2\)
    D \(13 \mathrm{~J}=1.500\)
13 IADC2(J)=-IADC2(J)
14 II =1
    \(K=1\)
15 I I I =0
16 I I I = I I I + 1
    \(X M E A N=X M E A N+1 A D C 1(I I)\)
    \(S X=S X+(I A D C 1(I))\) )* 2
    YMEAN =YMEAN+1ADC2(II)
    \(S Y=S Y+(1 A D C 2(I I)) * * 2\)
    SUMXY=SUMXY+(IADC1(II))*(IADC2(II))
    IF(IADC!(II)-T1)41.41.31
\(31 P E R=P E R+1.0\)
    IF(IADC?(II)-T2)33.33.32
32 POUT=PQUT+1.0
    PEOUT=PFOUT+1.0
    GQ TO \(3 \Omega\)
33 PEIN=PEIN+1.0
    GO TO 38
41 IF (IADC?(II)-T2)37.37.34
34 POUT=POUT +1.0
    PNEOUT = PNEQUT +1.0
    GO TO 38
37 PNEIN=PNEIN+1.0
```

Table B-2. (Cont'd)

```
38 IF(IADCI(II)-LARGE1)18.18.17
17 LARGE1= \ADC1(II)
18 IF(IADC?(II)-LARGE2)20.20.19
19 LARGE2=IADC2(II)
20 IF(III-NDP)21.30.30
21 II=II +1
    IF(II -500)16.16.22
22 READ TAPE 1.(IADC1(J).J=1.500)
    READ TAPE 1.(IADC2(J),J=1.500)
    JTAB=JTAB+2
85 IF(SENSF SWITCH 1)25.23
23 DO 24 J=1.500
24 IADCI(J)=-IADC1(J)
25 IF(SENSE SWITCH 2)28.26
26 DO 27 J=1.500
27 IADC2(J)=-IADC2(J)
28 II=1
    GO TO 1A
30 MAX1(K)=LARGE1
    MAX2(K)=LARGE2
    LARGE1=-1000000
    LARGE2=LARGE1
    III =0
    K=K+1
    IF(K-NG)\geqslant1.21.35
35 DA 36 I=1.JTAB+1
```



```
    K=NG*NDP
    CC=(K*SUMXY-XMEAN*YMEAN)/(SQRT((K*SX-XMEAN**2)*(K*SY-YMEAN**2)))
    XMEAN=XMEAN/K
    YMEAN=YMEAN/K
    SX=SQRT((SX/K)-XMEAN**2)
    SY=SQRT((SY/K)-YMEAN**2)
    PRINT 903.ITN
    SNR=XMEAN/SX
    DB=0.4342945*20.0*(ALOG(ABSF(SNR)))
    PRINT 904
    PRINT 9OG.K,XMEAN,SX,SNR,DB
    SNR=YMEAN/SY
```

Table B-2. (Cont'd)

```
    DB=0.4342945*20.0*(ALOG(ABSF(SNR)))
    PRINT 905
    PRINT 906,K,YMEAN,SY,SNR,DB
    PRINT 975.K.CC
    XMEAN=0.
    SX=O.
    YMEAN=0.
    SY=O.
    SUMXY=0.
    DO 50 I=1,NG
    XMEAN=XMEAN+MAX1(1)
    SX=SX+(MAX1(I))**2
    YMEAN=YMEAN+MAX2(1)
    SY=SY+(MAX2(1))**2
50 SUMXY=SUMXY+(MAX1(I))*(MAX2(I))
CC=(NG*SUMXY-XMEAN*YMEAN)/(SQRT((NG*SX-XMEAN**2)*(NG*SY-YMEAN**2))
1)
PRINT 9?6.NG.NDP.CC
HOLD=PER
PER=PER/K
PRINT 903.ITN
PRINT 914.PER
PRINT 920.HOLD
HOL.D=PQUT
POUT=POUT/K
PRINT 9!5.PQUT
PRINT 9?O,HOLD
HOLD=PNEIN
PNEIN=PNEIN/K
PRINT 916.PNEIN
PRINT 9?O.HOLD
HOLD=PNEOUT
PNEOUT=PNEOUT/K
PRINT 9!7.PNEOUT
PRINT 970.HOLD
HOLD=PEIN
PEIN=PEIN/K
PRINT 918.PEIN
PRINT 920.HOLD
```

Table B-2. (Cont'd)

```
HOLD=PEAUT
PEOUT=PEOUT/K
PRINT 919.PEOUT
PRINT 9?0.HOLD
C COMPUTES MARGINAL EVT DISTRIBUTIONS FOR EACH CHANNEL....................
```



```
    100 XMEAN=XMEAN/NG
        YMEAN=YMEAN/NG
        SX=SQRT((SX/NG)-XMEAN**2)
        SY=SQRT ( (SY/NG)-YMEAN**2)
```



```
        EMEAN=0.
        SIGMA =0.
        DO 110 I=1.NG
        HOLD=-ALOG(-ALQG(I/(NG+1.0)))
        EMEAN=EMEAN+HOLD
        110 SIGMA=SIGMA+HOLD**2
            EMEAN=EMEAN/NG
            SIGMA=SQRT((SIGMA/NG)-EMEAN**2)
C COMPUTES FOR EACH CHANNEL THE LINEARIZATION PARAMETERS (ALPHA AND UI,
C THE INITIAL REDUCED VARIATE AND CUMULATIVE PROBABILITY AT THRESHOLD
```



```
            ALPHAI=SIGMA/SX
            ALPHA2=SIGMA/SY
            U1=XMEAN-EMEAN/ALPHA1
            U2 = YMEAN-EMEAN/ALPHAZ
            YT1=(T1-U1)*ALPHA1
            YT2=(T2-U2)*ALPHA2
            PCT1=EXPF(-EXPF(-YT1))
            PCT1NDP=1-EXPF((ALOG(PCT1))/NDP)
            PCT2=EXPF(-EXPF(-YT2))
            PCT2NDP=1-EXPF((ALOG(PCT2))/NDP)
C COMPUTES THF UNIVARIATE MAXIMUM LIKELIHOOD FIT VIA SUBROUTINE UMAXLIK.
```



```
            PRINT 903.ITN
            PRINT 907.NG.NDP.ERROR
            PRINT 904
            PRINT 908
```

Table B-2. (Cont'd)

```
    HOLD=1/ALPHA1
    PRINT 910.T1.ALPHA1.U1.U1.HOLD.YT1.PCTINDP.PCT1
    CALL UMAXLIK(MAX1,T1,ALPHA1,NG,YT1,XMEAN,ERROR)
    PCT1=EXPF(-EXPF(-YT1))
    PCT1NDP=1-EXPF((ALOG(PCT1))/NDP)
    U1=T1-(YT1/ALPHA1)
    PRINT 903.ITN
    PRINT 904
    PRINT 909
    TEMP=1/ALPHA1
    PRINT 9,0.T1.ALPHA1,U1.U1.TEMP.YT1.PCTINDP.PCT1
125 CALL CONFINT(YT1.NG.NDP)
    PRINT 903.ITN
    PRINT 9O7,NG,NDP,ERROR
    PRINT 905
    PRINT 9^8
    HOLD=1/ALPHA2
    PRINT 910.T2.ALPHA2,U2.U2.HOLD.YT2.PCT2NDP.PCT2
    CALL UMAXLIK(MAX2,T2.ALPHA2,NG,YT2.YMEAN,ERROR)
    PCT2=EXPF(-EXPF(-YT2))
    PCT2NDP=1-EXPF((ALOG(PCT2))/NDP)
    U2=T2-(YT2/ALPHA2)
    PRINT 903.ITN
    PRINT 905
    PRINT 909
    TEMP=1/ALPHA2
    PRINT 910.T2.ALPHA2,U2.U2,TEMP,YT2.PCT2NDP.PCT2
127 CALL CONFINT(YT2.NG.NDP)
    IF(SENSE SWITCH 3)130.131
130 CALL LINK(2)
131 IF(SENSE SWITCH 4)132.1
132 CALL LINK(3)
900 FORMATI/SSET BPI IF LOOKING FOR A MAXIMUM FOR ADC-1.$/3X.SRESET BP
    11 IF LOOKING FOR A MINIMUM.S/$SET BP2 IF LOOKING FOR A MAXIMUM FOR
    2 ADC-2.$/3X,$RESET BP2 IF LOOKING FOR A MINIMUM.S/$SET BP3 FOR PRI
    3NTOUT OF CHANNEL EXTREMES AND OPTION TO OBTAIN A GUMBEL PLOT.S/SSE
    4T BP4 FAR BIVARIATE ANALYSIS.$/$CLEAR HALT.$/)
901 FORMAT(/STYPE IN FORMAT (3I4.3F12.5)$./$ ITN--TEST NO.$/$ NG--NO
    1. OF GRAUPS$/$ NDP--NO. OF SAMPLES/GROUP$/$ T1.T2--ADC1.ADC2 THR
```

Table B-2. (Cont'd)
2ESHOLDS\&/\$ ERROR--ERROR FOR UNIVARIATE MAXIMUM LIKELIHOOD FIT\$//) 902 FORMAT (3I4.3F12.5)
903 FQRMAT (1 H1.38X. SUNIVARIATE EXTREME VALUE\$/46X,\$TEST\$.I4//)
904 FORMAT(/SFOR ADC-1\$/)
905 FORMAT(/\$FOR ADC-2\$/)
906 FORMATI BASED ON THE TOTAL SAMPLE SIZE $=\$.16 . \$$ SAMPLES $\$ / 5 X . \$ M E A$ $1 N=\$. E 2 A .12 / 5 X$. SSTANDARD DEVIATION $=\$, E 20.12 / 5 X, \$ S I G N A L$ TO NOISE 2 RATIO $=\$. E 20.12 . \$=\$. E 20.12 . \$$ DB. $\$ / / 1$
907 FORMAT $/$ STHERE ARE $\$.15 . \$$ GROUPS OF \$.I5. S SAMPLES EACH. S//SERROR 1 FOR UNIVARIATE MAXIMUM LIKELIHOOD FIT $=\$. E 20.12 / 1$
908 FORMAT($\$$ VALUES BEFORE UNIVARIATE MAXIMUM LIKELIHOOD FIT $\$ / / 1$
909 FORMAT(G VALUES AFTER UNIVARIATE MAXIMUM LIKELIHOOD FITS)
910 FORMAT $/ 5 X \$$ THRESHOLD $=\$. E 20.12 / 15 X . \$ A L P H A=\$. E 20.12 / 5 X . \$ U=\$. E$ $120.12 / 15 \mathrm{X}$. \$THE REGRESSION EQUATION $=\$. F 20.7 . \$+\$. F 12.7 . \$ \mathrm{Y} \$ / 5 \mathrm{X} \$ \mathrm{R}$ 2EDUCED VARIATE AT TRIGGER LEVEL $=\$ E 20.12 / / 5 x$. SPREDICTED BIT ERROR 3RATE $=$. E2U. $12 / 5 \times$. \$CUMULATIVE PRGBABILITY AT TRIGGER LEVEL $=\$$. 4E20.12)
914 FORMAT (////\$CLASSICAL PROBABILITIES\$//\$PROBABILITY OF. A BIT ERROR $1=\$. E 20.121$
915 FORMAT(\$PROBABILITY OF AN OUT OF LOCK = \$.E20.12)
916 FORMATISPROBABILITY OF A CORRECT BIT BEING RECEIVED AND ACCEPTED $1=\$. E$ On.12)
917 FORMATIGPROBABILITY OF A CORRECT BIT BEING RECEIVED AND REJECTED $1=\$. E 20.121$
918 FORMATIPROBABILITY OF AN INCORRECT BIT BEING RECEIVED AND ACCEPTE 1D = S.E?O.121
919 FGRMATISPROBABILITY OF AN INCORRECT BIT BEING RECEIVED AND REJECTE $1 D=\$. E 20.121$
920 FORMATI NUMBER OF OCCURENCES = \$.F12.1/)
925 FQRMATI///\$BASED ON \$15\$ RAW DATA SAMPLES. THE CORRELATION COEFFI 1CIENT $=5 . E 20.12$)
926 FORMATI/SBASED ON EXTRFMES GF $\$ 14 \$$ GROUPS OF $\$ 14 \$$ SAMPLES. THE C 1ORRELATTON COEFFICIENT $=\$. E 20.121$
93U FORMATI/SIF AN ERROR IS MADE WHILE TYPING INPUTS, DO THE FOLLOWING $1 \$ / \$$ 1. PUT RUN-IDLE-STEP (R-I-S) SWITCH TO IDLES/\$ 2. SET REGI 2STER KNAB TO C $\$ / \$$ 3. PUSH START $\$ / \$$ 4. FILL REGISTER DISPLAY WI 3TH A BRU O3522 COMMAND. $\$ / 8 \times \$ T H A T$ IS. WITH THE OCTAL NUMBER OOIO3 $4522 \$ / \$$ 5. PUT R-I-S SWITCH TO RUN $\$ / \$$ 6. RETYPE INPUTS $\$ / / 1$
END

Table B-2. (Cont'd)

SUBROUTINE UMAXLIK(IARRAY,T,ALPHA,NQ,YT,ZMEAN,ERR)
C COMPUTES UNIVARIATE MAXIMUM LIKELIHOOD FIT
C OBTAINS MAXIMUM LIKELIHOOD ESTIMATORS OF ALPHA AND THE REDUCED VARIATE

C AT THRESHOLD BY SOLVING


```
C WHERE
```

C LOGL=NG*LOG(ALPHA)-NG*ALPHA*(XMEAN-THRESHOLD)-NG*YT
C -SUMMATION(EXP(-(ALPHA* (X (I)-THRESHOLD) +YT)))
C $A N D I=1,2,-\ldots-\infty, N G$

TIMENSION IARRAY(700)
$199 \mathrm{~F}=\mathrm{NQ} / \mathrm{ALPHA-NQ*(ZMEAN-T)}$
$F I=-N Q /(A L P H A * * 2)$
DFDN $=-F$
DO 200 IF1.NO
HOLD=(IARRAY(I)-T)*(EXPF(-1.O*(ALPHA*(IARRAY(I)-T)+YT)))
$F=F+H \theta L D$
$200 \mathrm{FI}=\mathrm{FI}-(\mathrm{I}$ ARRAY(I)-T)*HOLD
$D F D N=-F-D F D N$
$205 G=-N Q$
$G I=0$.
DO $210 \quad 1=1 . N Q$
$H O L D=E X P F(-1 \cdot 0 *(A L P H A *(I A R R A Y(1)-T)+Y T))$
$G=G+H O L D$
$210 \mathrm{GI}=\mathrm{GI}-\mathrm{HALD}$
$H \otimes L D=F I * G I-D F D N * * 2$
$A L P H A=A L P H A-(G I * F-D F D N * G) / H O L D$
$Y T=Y T-(-D F D N * F+F I * G) / H \theta L D$
$F=N Q / A L D H A-N Q *(Z M E A N-T)$
$G=-N Q$
DO 215 Ix1.NQ
$H O L D=E X P F(-1.0 *(A L P H A *(I A R R A Y(I)-T)+Y T))$
$F=F+(I A R R A Y(I)-T) * H O L D$
$215 \mathrm{G}=\mathrm{G}+\mathrm{HOLD}$
IF (ABSF $(F)-E R R) 220.199 .199$
220 IF(ABSF(G)-ERR)225.199.199
225 RETURN
END

Table B-2. (Cont'd)
SUBROUTINE CONFINT(YT,NQ,NDS)
C COMPUTES TWE-SIDED CINFIDENCE INTERVALS FOR PREDICTED ERROR RATES......
C COMPUTES 99, 95. 90. 80. AND 70 PERCENT CONFIDENCE INTERVALS...........
DIMENSIAN Z(5)
$Z(1)=2.575991$
$z(2)=1.960101$
$Z(3)=1.644731$
$Z(4)=1.281561$
$Z(5)=1.0 .36435$
HOLD=SQRT ($6 /(N Q * 9.869604)) *((1-.57721566+Y T) * * 2+9.869604 / 6.0))$
PRINT 960
DO $350 \quad I=1,5$
BETA1=1-EXPF((-EXPF(-YT-HOLD*Z(I)))/NDS)
BETA2 = $1-E X P F((-E X P F(-Y T+H O L D * Z(I))) / N D S)$
GO TO (341.342.343.344.345).I
341 IPCENT=99
GO TO 35n
342 IPCENT $=$ G5
GO TO 3EO
343 IPCENT=90
GO TO 350
344 IPCENT=80
GO TO $3 E \cap$
345 1PCENT=70
350 PRINT 9 A1,IPCENT.BETA1.BETA2
960 FQRMAT (///\$PERCENT CONFIDENCE\$, $23 X, \$ C O N F I D E N C E$ INTERVAL FOR PREDI ICTED BIT ERROR RATES/)
961 FORMAT(I10.24X,E20.12.24X.E20.12)
RETURN
END
$\triangle E \theta F$
\qquad

Table B-2. (Cont'd)

```
C MASTER BIVARIATE EXTREME VALUE PROGRAM FOR TWO CHANNEL DATA
```



```
C.OOO-O
```



```
C USES FORTRAN SUBROUTINE ORDER (ORDERS CHANNEL EXTREMES) AND
C SYMBOL SUBRQUTINE GRAPH (PRODUCES A GUMBEL PLOT ON THE PLOTTER).
C univariate Extreme value calculations.
    DIMENSION MAX1(700),MAX2(700),MATRIX(1402)
    COMMON MAX1.MAX2.ALPHA1,ALPHA2.U1.U2.NG.NDP,T1.T2.ITN,ERROR
C ORDERS ADC-1 EXTREMES IN INCREASING MAGNITUDE
```



```
        50 PRINT 903.ITN
            PRINT 904
            CALL ORIER(MAXI,MATRIX.NG)
```



```
            TYPE 91?
            TYPE 911
            PAUSE
            IF (SENSE SWITCH 1)49.60
C SCALES EXTRFMES TO FIT EXTREME VALUE PROBABILITY PAPER.................
C CONVERTS PLOTTING POSITIONS TO REDUCED VARIATE SCALE.
        49 ALPHA=ALPHA1
            U=U1
            YT=(T1-U1)*ALPHA1
            T=T1
            IHOLD=0
        51 D0 52 I=NG,1,-1
            K=2*I +1
        52. MATRIX(K)=-MATRIX(I)
            IF(MATRTX(2*NG+1)-T)56.57.57
        56 IF(MATRIX(3)-T)70.72.72
        70 HOLD=ABSF(T-MATRIX(2*NG+1))
            XI=1000.0/HOLD
            MATRIX(;)=T*XI
            GO TO 50
        72 HOLD=ABSF(MATRIX(2*NG+1)-(MATRIX(3)+5))
            GO TO 5&
        57 HOLD=ABSF(T-(MATRIX(3)+5))
```

Table B-2. (Cont'd)

```
    58 X1=1000.ח/HOLD
    5 4 ~ M A T R I X ( 1 ) = ( M A T R I X ( 3 ) + 5 ) * X I ~
    59 MATRIX(2)=-300
        J=0
    DO 55 I=3.2*NG+2.2
    MATRIX(I)=XI*MATRIX(I)
    J=J+1
55 MATRIX(I+1)=100*(-ALOG(-ALOG(J/(NG+1.0))))
    MAX=100*YT
    MIN=-XI*T
    I=-XI*U
    J=-(XI*(U+1.0/ALPHA))
    K=2*NG+?
    CALL GRAPHIK,MATRIX,MAX,MIN,I,J)
    IF(IHOLD-1)60.100.60
C ORDERS ADC-? EXTREMES IN INCREASING MAGNITUDE
C PRINTS ADC-? EXTREMES AND THEIR PLOTTING POSITIONS
    60 PRINT 903.ITN
            PRINT 905
            CALL ORDER(MAX2,MATRIX,NG)
```



```
            TYPE 913
            TYPE 911
            PAUSE
            IF(SENSE SWITCH 2)61.100
    61 ALPHA=ALPHA2
        U=U2
        T=T2
        YT=(T2-112)*ALPHA2
        IHOLD=1
        GO TO 5!
100 IF(SENSE SWITCH 4)101.102
101 CALL LINK(3)
102 CALL LINK(1)
903 FORMAT(IH1.38X.SUNIVARIATE EXTREME VALUE$/46X,$TEST$.I4//)
904 FORMAT(/$FOR ADC-1$/)
905 FORMAT(/SFOR ADC-2$/)
911 FORMATIG IF SET. POSITION PLOTTER PEN AT BOTTOM RIGHT-HAND CORNER
    1 OF GRAPH PAPER$/$CLEAR HALTS/I
912 FORMAT(/SSET BPI FOR ADC-1 GUMBEL PLOT$)
913 FORMAT(/$SET BP2 FOR ADC-2 GUMBEL PLQT$)
    END
```

Table B-2. (Cont'd)
SUBROUTINE ORDER(IARRAY,JARRAY,NQ)
C ORDERS EXTREMES OF EACH CHANNEL IN INCREASING MAGNITUDE.................. C PRINTS UNORDERED AND ORDERED CHANNEL EXTREMES AND THEIR GUMBEL
C PLOTTING POSITIONS.
DIMENSIAN IARRAY(700).JARRAY(1000)
DO $75 \mathrm{~J}=1$, NQ
75 JARRAY(J)=IARRAY(J)
DO $85 \mathrm{~J}=1, N Q-1$
MIN=JARRAY(J)
DO $85 \quad 1=J+1$, NQ
IF (MIN-JARRAY(I))85.85.80
80 MIN=JARRAY(I)
JARRAY(I) =JARRAY(J)
JARRAY(J)=MIN
85 CONTINUE
PRINT 950
DO $90 \quad J=1 . N Q$
$H \theta L D=J /(N Q+1.0)$
90 PRINT $951 . J$. IARRAY(J).JARRAY(J). HOLD
950 FOFMAT (\$GROUP NUMBER $\$ 6$. 6 . SUNORDERED EXTREMES $\$ 10 X$. SORDERED EXTREM 1ES\$. 12 X . \$PLOTTING POSITION\$/)
951 FORMAT(I7.I22.I27.18X.E17.10)
RETURN
END

Table B-2. (Cont'd)

* GRAPHS A LINEARIZED EVT PLOT ON THE CAL-COMP PLOTTER
* PLOTTER PEN MUST BE POSITIONED IN THE BOTTOM RIGHT-HAND CORNER.........

XSD OPD 010000000
\$GRAPH PZE

BRM 201SYS
X NUM ADDRESS OF SAMPLE SIZE
XSD POINT BEGINNING ADDRESS OF COORDINATE ARRAY
XSD RVT ADDRESS OF THE REDUCED VARIATE
XSD THRES ADDRESS OF THE THRESHOLD
XSD LINEO ADDRESS OF REGRESSION EQUATION POINT XSD LINEI ADDRESS OF REGRESSION EQUATION POINT BRM $202 S Y S$

* PLOTS THE CHANNEL EXTREMES VS. THEIR PLOTTING POSITIONS WHICH HAVE

LDX $=00040000$
NEXT LDA *POINT+1 STA XHOLD SAVES VALUE OF CHANNEL EXTREME BRX $\quad \$+1$ LDA $\quad * P O I N T+1$ STA YHOLD SAVES VALUE OF PLOTTING POSITION BRX $\quad \$+1$

* MOVES PEN along channel ExTremes axis.

CLA
STA COUNT
LDA XHOLD
SUB *POINT+1
STA TEMP
SKE ZERO
BRU \$ +
BRU B
A EQM 00064
MIW PYUP
EOM 14000
SKS 21000
BRU \quad \$-1 MIN COUNT

Table B-2. (Cont'd)

Table B-2. (Cont'd)

Table B-2. (Cont'd)

Table B-2. (Cont'd)

Table B-2. (Cont'd)

	SKG	XHOLD
	BRU	UP
H	E日M	00064
	MIW	MYUP
	EOM	14000
	SKS	21000
	BRU	\$-1
	MIN	COUNT
	LDA	TEMP
	SKE	COUNT
	BRU	H
	BRR	ABSCIS
UP	EOM	00064
	MIW	PYUP
	EAM	14000
	SKS	21000
	BRU	\$-1
	MIN	COUNT
	LDA	TEMP
	SKE	COUNT
	BRU	UP
	BRR	ABSCIS

 ORD PZE

CLA
STA COUNT
LDA XHOLD
SUB YHOLD
STA TEMP
SKE ZERO
BRU \$+11
EOM 00064
MIW PXUP
E日M 14000
SKS 21000
BRU $\$-1$
MIN COUNT
LDA $=5$

Table B-2. (Cont'd)

	SKE	COUNT	
	BRU	\$-8	
	BRR	ORD	
	SKN	TEMP	
	BRU	\$+3	
	CNA		
	STA	TEMP	
	LDA	XHOLD	
	SKG	YHELD	
	BRU	RIGHT	
	LDA	$=5$	
	STA	COUNT	
0	E日M	00064	
	MIW	MXUP	
	EOM	14000	
	SKS	21000	
	BRU	\$-1	
	MIN	COUNT	
	LDA	TEMP	
	SKE	CQUNT.	
	BRU	0	
	BRR	$O R D$	
RIGHT	LDA	$=5$	
	ADM	TEMP	
	E®M	00064	
	MIW	PXUP	
	EOM	14000	
	SKS	21000	
	BRU	\$-1	
	MIN	COUNT	
	LDA	COUNT	
	SKE	TEMP	
	BRU	RIGHT+2	
	BRR	ORD	
* ROUT	NE	DRAWS	A SQUARE
MARK	PZE		
	CL. A		
	STA	COUNT	
P	E日M	00064	

Table B-2. (Cont'd)

MIW	PYDO
EOM	14000
SKS	21000
BRU	\$-1
MIN	COUNT
LDA	$=5$
SKE	COUNT
BRU	P
CLA	
STA	COUNT
EOM	00064
MIW	MXDO
EGM	14000
SKS	21000
BRU	\$-1
MIN	COUNT
L.DA	$=10$
SKE	COUNT
BRU	R
CLA	
STA	COUNT
EOM	00064
MIW	MYDO
EOM	14000
SKS	21000
BRU	\$-1
MIN	COUNT
LDA	$=10$
SKE	COUNT
BRU	S
CLA	
STA	COUNT
EOM	00064
MIW	P $\times 10$
EOM	14000
SKS	21000
BRU	\$-1
MIN	COUNT
LDA	$=10$

Table B-2. (Cont'd)

Table B-2. (Cont'd)

Table B-2. (Cont'd)

```
    350 CONTINUF
    PRINT 907.ITN
    PRINT 910.NG.NDS.TD.TS.A.COUNT
    PRINT 911.NIT.NBEVT,ERROR
    COUNT=COUNT/NG
    DUA=(4.0*(EXPF(A)-EXPF(3.0*A)))/(1.0+EXPF(A))**4
    HOLD=(EXPF(A/2.0)-EXPF(-A/2.0))/(EXPF(A/2.0)+EXPF(-A/2.0))-COUNT
    C=HOLD/(D.0*DUA+((4.0*EXPF(A))/(1.04EXPF(A))**2)*H0LD)
C COMPUTES INITIAL BIVARIATE EVT STATISTICS
    370 1I=0
    CALL BEVT(ITN,NG.NDS,COUNT,A,DUA.ALPHAD,ALPHAS,UD,US,C,TD,TS,II)
```



```
C FITS A PARAROLA THROUGH EACH OF THE PARAMETERS C. ALPHA1, ALPHAZ, UI.
```



```
    H=0.01
    HOLD=0.
    DQ 700 I=1.NIT.NAEVT
    Dब 600 J=1.NBEVT
C VARIES C PARAMETER AND PERFORMS A PARABOLA FIT
    x1=C
    X2=C-H*ABSF(C)
    X3=C+H*ABSF(C)
    501 CALL BMAXLIK(ALPHAD.ALPHAS.UD.US,XI,YI.IDEXT.ISEXT,NG)
    502 CALL BMAXLIK(ALPHAD,ALPHAS,UD,US,X2,Y2,IDEXT,ISEXT,NG)
    503 CALL BMAXLIK(ALPHAD.ALPHAS.UD,US.XZ,Y3,IDEXT.ISEXT,NG)
    CALL PARAFIT(X1,Y1,X2,Y2,X3,Y3.VERTEX)
    CALL HELP(HOLD,X1,Y1,X2,Y2,X3,YJ,VERTEX,ERRQR,H)
    IF(HOLD-0.O)505.510.505
    505 GO TO (503.502.501).Y3
    510 C=VERTEX
```



```
    X1=ALPHAD
    X2=ALPHAD-H*ABSF(ALPHAD)
    X3=ALPHAD+H*ABSF(ALPHAD)
    511 CALL BMAXLIK(X1,ALPHAS,UD,US,C,YI,IDEXT,ISEXT,NG)
    512 CALL BMAXLIK(X2,ALPHAS.UD,US,C,Y2,IDEXT,ISEXT,NG.
    513 CALL BMAXLIK(X3,ALPHAS,UD,US,C,Y3.IDEXT,ISEXT,NG)
    CALL PARAFIT(X1,Y1,X2,Y2,X3,Y3,VERTEX)
    CALL HELP(HOLD,X1,Y1,X2,Y2,X3,Y3,VERTEX,ERROR,H)
```

Table B-2. (Cont'd)

```
    IF(HOLD-0.0)515.520.515
    515 GO TO (543.512.511).Y3
    520 ALPHAD=VERTEX
```



```
    X1=ALPHAS
    X2=ALPHAS-H*ABSF(ALPHAS)
    X3=ALPHAS +H*ABSF(ALPHAS)
    521 CALL BMAXLIK(ALPHAD,XI.UD.US.C.YI.IDEXT,ISEXT,NG)
    522 CALL BMAXLIK(ALPHAD,X2.UD,US.C,Y2.IDEXT,ISEXT,NG)
    523 CALL BMAXLIK(ALPHAD,XJ,UD,US,C,Y3,IDEXT,ISEXT,NG)
    CALL PARAFIT(X1,Y1,X2,Y2.X3,Y3,VERTEX)
    CALL HELP(HOLD,X1,Y1,X2,Y2,X3,Y3,VERTEX,ERROR,H)
    IF(HOLD-0.01525.529.525
    525 GO TO (523.522.521).Y3
    529 ALPHAS=VERTEX
```



```
    530 X1=UD
    X2=UD-H*ABSF(UD)
    X 3 =UD+H*ABSF(UD)
    531 CALL BMAXLIK(ALPHAD,ALPHAS,X1,US.C.YI,IDEXT,ISEXT,NG)
    532 CALL BMAXLIK(ALPHAD.ALPHAS.X2.US.C.Y2.IDEXT,ISEXT.NG)
    53 CALL BMAXLIK(ALPHAD,ALPHAS,X3,US,C,YZ.IDEXT,ISEXT,NG)
    CALL PARAFIT(X1,Y1,X2,Y2,X3,Y3,VERTEX)
    CALL HELP(HOLD.X1,Y1,X2,Y2.X3,Y3.VERTEX,ERROR.H)
    IF(HOLD-0.0)535.540.535
    535 GO TO (533.532.531).Y3
    540 UD=VERTEX
```



```
    X1=US
    X2=US-H*ABSF(US)
    X3=US+H*ABSF(US)
541 CALL BMAXLIK(ALPHAD.ALPHAS,UD.X1,C.Y1,IDEXT, ISEXT,NG)
542 CALL BMAXLIK(ALPHAD.ALPHAS.UD,X2,C,Y2,IDEXT.ISEXT,NG)
543 CALL BMAXLIK(ALPHAD,ALPHAS.UD,X3.C.Y3.IDEXT,ISEXT,NG)
    CALL PARAFIT(X1,Y1,X2.Y2,X3,Y3,VERTEX)
    CALL HEI_P(HOLD,X1,Y1,X2,Y2,X3,Y3,VERTEX,ERROR,H)
    IF(HOLD-0.0)545.550.545
545 GO TO (543.542.541).Y3
550 US=VERTEX
```

Table B-2. (Cont'd)

```
        II=II I I
    600 CONTINUE
        IF(II-NTT)650.625,625
C ON THE LAST ITERATION REPLACES C BY ZERO IF C IS LESS THAN ZERO AND
C BY 0.25 IF C IS GREATER THAN 0.25
    625 IF(C)630.650.626
    626 IF(C-0.25)650,650.627
    627 HOLD=0.25
    630 CALL BEVTIITN.NG.NDS.COUNT.A.DUA.ALPHAD.ALPHAS.UD.US.HOLD.TD.TS.
        1II)
            GO TO 700
    650 CALL BEVT(ITN,NG,NDS,COUNT,A,DUA,ALPHAD,ALPHAS,UD,US,C,TD,TS,II)
    700 CANTINUE
        IF(C)705.725.710
    705 PRINT 912.C
        GO TQ 7, 5
    710 IF(C-0.25)725.725.715
    715 PRINT 914.C
C OPTIONS TO ALLOW CHANGING OF THE PARAMETER A AND THE THRESHOLDS OF THE
C TWO CHANNELS
    725 TYPE 915
        PAUSE
        IF(SENSE SWITCH 3)730.750
C INPUT NEW VALUE FOR PARAMETER
    70 TYPE $16
    731 ACCEPT 917.A
    750 IF(SENSE SWITCH 4)760.770
```



```
    760 TYPE 918
    761 ACCEPT 919.T.YT
        TD=T
        TS=YT
        IF(SENSE SWITCH 3)310.762
    762 PRINT 907.ITN
        X=COUNT*NG
        PRINT 910.NG.NDS.TD.TS.A.X
        GO TO 625
    770 IFISENSE SWITCH 3I310.800
C JOB DONE, RETURN CONTROL TO LINK (1)
```

Table B-2. (Cont'd)
800 TYPE 906
CALL LINK(1)
904 FORMATI/\$INPUT IN FORMAT $2110.2 F 15.5 \$ / \$$ NIT--ITERATIONS FOR BEVT IMAXIMUM LIKELIHOOD FIT\$/\$ NBEVT--ITERATIONS BEFORE EACH BEVT PROB 2ABILITY EALCULATION $\$ / \$$ A--STRIP ESTIMATE PARAMETER $\$ / 4 X \$ A$ MUST BE IIN THE CLOSED INTERVAL 1.5 TO $2.0 \$ / \$$ ERROR-EERROR FOR BIVARIATE M $\triangle A X I M U M$ LIKELIHOOD FIT\$/)
905 FORMAT(2110.2F15.5)
906 FORMAT (\$JOB DONE. READY NEW INPUT. \$/)

910 FORMAT $/ / / / / \$ T H E R E$ ARE $\$. I 5 . \$$ GROUPS OF \$.I5. \$ DATA POINTS EACH. $\$ / /$ $1 / \$ A D C 1$ CHANNEL THRESHOLD $=\$$ F $10.5 / / \$ A D C 2$ CHANNEL THRESHOLD = $\$. F 1$ 20.5///\$A $=\$.510 .5 / / \$ A B S(X A D C 1(N)-X A D C 2(N))$ LESS THAN A OCCURS \$F6 3.2\$ TIMFS. $\$ / / 1$

911 FGRMATI/I3\$ ITERATIONS TO BE PERFORMED. \$//SBIVARIATE CALCULATIONS 1 WILL GCCUR EVERY $\$$. $12 . \$$ ITERATIONS. $\$ / / / /$ SERROR ESTIMATE FQR MAXIM 2UM LIKELIHOOD FIT $=\$. E 20.12$)
912 FORMATI///SON THE LAST ITERATION C WAS NEGATIVE, C = $\$$. E20. $12 /$ SFGR 1 THE PRFCEDING BIVARIATE COMPUTATIONS $C=0.0 \$ 1$
913 FGRMAT (/SIF AN ERROR IS MADE WHILE TYPING INPUTS, DO THE FOLLOWING 1\$/\$ 1. PUT RUN-IDLE-STEP (R-I-S) SWITCH TA IDLE\$/\$ 2. SET REGI 2STER KNOB TO C $\$ / \$$ 3. PUSH START $\$ / \$$ 4. FILL REGISTER DISPLAY WI 3TH A BRU 03531 COMMAND. \$/8X\$THAT IS. WITH THE OCTAL NUMBER OOIO3 4531\$/\$ 5. PUT R-I-S SWITCH TO RUN $\$ / \$$ 6. RETYPE INPUTS $\$ / / 1$
914 FQRMAT (///SON THE LAST ITERATI日N C WAS GREATER THAN 0. $25 . \mathrm{C}=\$$. 1E20.12/\$FOR THE PRECEDING BIVARIATE COMPUTATION C = O.25\$)
915 FORMAT (/SSET BP3 TO CHANGE THE VALUE OF PARAMETER AS/SSET BP4 TO C 1HANGE THE CHANNEL THRESHOLDS $\$ / / \$ I F$ NEITHER BREAKPOINT IS SET. CONT 2ROL TRANSFERS TO LINK (1)\$/\$CLEAR HALT TO PROCEED\$/)
916 FORMATI/\$INPUT THE NEW VALUE FOR A IN FORMAT F10.5\$/\$ IF AN ERROR 1 IS MADF WHILE TYPING. REPEAT THE 6 STEPS LISTED ABOVE, $\$ / \$$ EXCE 2PT IN STEP 4 FILL THE REGISTER DISPLAY WITH A BRU O5O13 COMMAND. $\$ /$ 3\$ THAT IS, WITH THE OCTAL NUMEER 00105013\$/)
917 FORMAT(F10.5)
918 FORMATI/\$INPUT IN FQRMAT $2 F 10.5 \$ / \$$ NEW ADC-1 THRESHOLD VALUE $\$ / \$$ 1NEW ADC-? THRESHOLD VALIJES/SIF AN ERROR IS MADE WHILE TYPING, REPE 2AT THE 6 STEPS LISTED ABOVE, S/S EXCEPT IN STEP 4 FILL THE REGISTE 3R DISPLAY WITH A BRU O5O26 COMMAND. $\$ / \$$ THAT IS. WITH THE OCTAL NU 4MBER OO105026\$/)
919 FGRMAT (9 F10.5)
END

Table B－2．（Cont＇d）
SUBROUTINE BEVT（IBITN．IBNG，IBNDS，BCOUNT，BA．BDUA，BALPHAD，BALPHAS，BU 1D．BUS．BC．BTD．BTS．IIB）
C PERFQRMS BIVARIATE CALCULATIONS
ROOTX＝1．$\cap / I B N D S$
$W A=1 \cdot 0-(4.0 * B C * E X P F(B A)) /(1.0+E X P F(B A)) * * 2$
$\operatorname{VARC}=(1.0 /(4.0 * I B N G)) * B C \theta U N T *(1.0-B C \theta U N T) *(((W A * * 2) / B D U A) * * 2)$

$Y T D=(B T D-B U D) * B A L P H A D$
$P C T=E X P F(-E X P F(-Y T D))$
RTPCT＝EXPF（（ALQG（PCT））／IBNDS）
$N=1$
TEMP＝1．\quad－$P C T$
GO TO 850
801 GU＝SERIES
PCTNDP $=1.0-G U$
$N=N+1$
PRINT 920．IBITN．IIB
PRINT 921，BALPHAD，BUD．BALPHAS，BUS．BC．VARC
PRINT 9？2
PRINT 923．PCTNDP．PCT．RTPCT．GU

YTS＝（BTS－BUS）＊BALPHAS
$P C T=E X P F(-E X P F(-Y T S))$
RTPCT＝EXPF（（ALOG（PCT））／IBNDS）
$T E M P=1 \cdot O-P C T$
GO TO 850
802 GV＝SERIES
PCTNDP＝1．0－GV
$N=N+1$
PRINT 9？4
PRINT 9っ3．PCTNDP．PCT．RTPCT，GV
C COMPUTES BIVARIATE EVT STATISTICS
TEMP＝YTD－YTS
$W Z=1 \cdot 0-(4.0 * B C * E X P F(T E M P)) /(1.0+E X P F(T E M P)) * * 2$
$P R=E X P F(-(E X P F(-Y T D)+E X P F(-Y T S)) * W Z)$
PRINT 9の日．IBITN．IIB
$P R I=E X P F((1.0 / I B N D S) * A L O G(P R))$
RTPCT＝PRI

Table B-2. (Cont'd)

```
    TEMP=1.0-PR
    GO TO 850
803 P=SERIES
PRINT 9?6.PRI.P
Q=GU-P
R=GV-P
S=1.O-P-Q-R
PP=P**IRNDS
QQ=(P+Q)**IBNDS-PP
RR=(P+R)**IBNDS-PP
SS=1•0+PP-(P+Q)**IBNDS-(P+R)**IBNDS
PRINT 9?7,P,Q,R
PRINT 9?8.S.IBNDS,PP,QQ,RR,SS
RETURN
C CalCULATES thE XTH ROOT OF THE CUMULATIVE PROBABILITY, WHERE X IS THE
C USING LOGARITHMS
850 ROOTY=ROOTX
            I=1
            FACT=I
            SERIES=1.0-(ROQTX*TEMP)/FACT
855 ROOT=ROATY*(ROOTX-I)
    ROQTY=ROQT
    FACT=FACT*(I+1.0)
    I= I +1
    HANG=ABSF((ROOT*(TEMP**I))/FACT)
    SERIES=SERIES-HANG
    IF(ABSF(SERIES)-1.0)859.856.856
856 SERIES=RTPCT
    GO TO 860
859 IF(HANG-0.00000000001)860.860.855
860 GO TO (801.802.803).N
920 FORMAT(IHI.38X.$BIVARIATE EXTREME VALUE$/46X,$TEST$I4//$ITERATION$
    1.I 4//)
921 FORMATI///SFOR THE FOLLOWING CALCULATIONS:$//5X,$ALPHA1 = $.E20.12
    1.15X.$UT = $.E2O.12/5X.$ALPHA2 = $.E2O.12.15X.$U2 = $.E20.12/5X.$C
```

Table B-2. (Cont'd)

```
    2 = $.E20.12.15X.SVARIANCE OF C = $.E20.121
922 FORMAT(///$FOR ADC-1$/)
923 FORMAT(/5X.$PREDICTED ERROR RATE =$.E21.12./5X. $CUMULATIVE PROBABI
    ILITY AT TRIGGER LEVEL = $.E2O.12./5X.$THE NDP ROOT OF THE CUMULATI
    2VE PROEABILITY:$/7X,$BY LGGS = $.E20.12./7X.$BY SERIES = $.E2O.1
    32)
924 FORMAT(///$FOR ADC-2$/)
926 FORMATI//$THE PROBABILITY OF A CORRECT BIT BEING RECEIVED AND ACCE
    1PTED:$/7X,$BY LOGS = $.E20.12.17X,$BY SERIES = $.E20.121
927 FGRMAT(///SPROBABILITY P OF A CORRECT BIT BEING RECEIVED AND ACCEP
    ITED = $.E20.12/$PROBABILITY O OF A CORRECT BIT BEING RECEIVED A
    2ND REJECTED = $,E2O.12/$PROBABILITY R OF AN INCORRECT BIT BEING
    3 RECEIVED AND ACCEPTED = $,E20.121
928 FGRMATISPROBABILITY S OF AN INCORRECT BIT BEING RECEIVED AND REJEC
    1TED = $.E2O.12///$FOR A COMMAND OF LENGTH = $.15$ BITS:$//5X.$P=
    2$.E20.12/5X.$Q = $.E20.12/5X,$R=$.E20.12/5X.SS = $.E20.121
        END
```

Table B-2. (Cont'd)
SUBROUTINE BMAXLIKIVARA1,VARA2.VARU1,VARU2,VARC,PROD.MATDAT, MATSYN 1•NQ)
C COMPUTES THE BIVARIATE MAXIMUM LIKELIHOOD FUNCTION...
C COMPUTES THE SUM OF LNIDF/DXDYI FOR ALL PAIRS OF THE CHANNEL EXTREMES. DIMENSINN MATDAT(700), MATSYN(700)
PROD=0.0
DO $775 \mathrm{~J}=1$ NQ
U=(VARA1*(MATDAT(J)-VARU1)-VARA2*(MATSYN(J)-VARU2))/2.0
SECH2 $=(2.0 /(E X P F(U)+E X P F(-U))) * * 2$
TANH=(EXPF(U)-EXPF $(-U)) /(E X P F(U)+E X P F(-U))$
$W U=1.0-V A R C * S E C H 2$
WUI $=2.0 * V A R C * S E C H 2 * T A N H$
WU2 $=2.0 * V A R C * S E C H 2 *(3.0 * S E C H 2-2.0)$
EX=EXPF (-VARA1* (MATDAT(J)-VARU1))
$E Y=E X P F(-V A R A 2 *(M A T S Y N(J)-V A R U 2))$
TEMP = VARA $1 * W U * E X-(V A R A 1 / 2.0) * W U 1 *(E X+E Y)$
$T E M P=T E M R *(V A R A 2 * W U * E Y+(V A R A 2 / 2.0) * W U 1 *(E X+E Y))$
TEMP = TEMP + (VARA1*VARA2/4.0) *WU2* (EX + EY) - (VARA1*VARA2/2.0)*WU1*(EX1EY)
$T E M P=T E M P *(E X P F(-(E X+E Y) * W U))$
$P R \theta D=P R A D+A L Q G(T E M P)$
775 CONTINUF
RETURN
END

SUBROUTINE PARAFIT(P1X,P1Y,P2X,P2Y,P3X,P3Y,VERT)
C FITS A PARAROLA THROUGH THE POINTS (X1,Y1), (X2.Y2), (X3.Y3)

$H_{1}=P 2 X$
$H_{2}=P 2 Y$
$P_{1} X=P_{1} X-H_{1}$
$P 3 X=P 3 X-H_{1}$
$P 2 X=0$.
$P_{1} Y=P 1 Y=H 2$
$P 3 Y=P 3 Y-H 2$
$P 2 Y=0$.
DET $=(P 1 X * * 2) *(P 2 X-P 3 X)-(P 2 X * * 2) *(P 1 X-P 3 X)+(P 3 X * * 2) *(P 1 X-P 2 X)$
$A A=(P 1 Y *(P 2 X-P 3 X)-P 2 Y *(P 1 X-P 3 X)+P 3 Y *(P 1 X-P 2 X)) / D E T$
$B B=((P 1 X * * 2) *(P 2 Y-P 3 Y)-(P 2 X * * 2) *(P 1 Y-P 3 Y)+(P 3 X * * 2) *(P 1 Y-P 2 Y)) / D E T$
VERT $=-B E /(2.0 * A A)+H 1$
$P_{1} X=P 1 X+H 1$
$P 3 X=P 3 X+H 1$
$P_{2} X=H_{1}$
$P_{1} Y=P_{1} Y+H_{2}$
$P 3 Y=P 3 Y+H 2$
$P 2 Y=H_{2}$
RETURN
END

Table B-2. (Cont'd)

```
    SUBROUTINE HELP(SAVE,P1X,P1Y,P2X,P2Y,P3X,P3Y,VERT,ERR,STEP)
```



```
    IF(ABSF(SAVE/VERT)-(1.0-ERR))706.705.703
    703 IF(ABSF(SAVE/VERT)-(1.0+ERR))705.705.706
    705 SAVE=0.
    RETURN
    706 SAVE=VERT
    IF(VERT-P2X)708.720.707
    707 IF(VERT-P3X)725.720.709
    708 P3X=P1X
    P1X=P2 X
    P2X=VERT
    P1Y=P2Y
    P3Y=2.0
    RETURN
    709 P2X=P1X
        P1X=P3X
    P3X=VERT
    P2Y=P1Y
    P1Y=P3Y
    P3Y=1.0
    RETURN
    720 P1X=VERT
    P2X=P&X-STEP*ABSF(P1X)
    P 3X=P{X+STEP*ABSF(P1X)
    GG TO 750
    725 IF(VERT-PIX)730.740.735
    70 P3X=P1X
    P1X=VERT
    GO TO 75n
    735 P2X=P1X
    P1 X=VERT
    GO TO 750
    740 P1X=VERT
    P2X=P1X-STEP*ABSF(P1X)
    P3X=P 1X+STEP*ABSF(P\X)
    750 P3Y=3.0
    RETURN
    END
AEQF
```


APPENDIX C

Data-Processing Program Sample Oułput and Operational Directions

This appendix contains a sample output of the data-processing program (Table C-1, and Figs. C-1 and C-2) and a set of operational directions which were typed on the console typewriter during program execution (Table C-2). These directions illustrate the various options which are available and detail the required typewriter inputs for this sample output. The output contains both the univariate and bivariate EVT statistics of the example discussed throughout the report. It also includes the linearized univariate EVT plots for each channel, as plotted on the Cal-Comp plotter, the statistics obtained by biasing the lock indicator (Section VIII) and the statistics obtained by changing the value of the strip estimator, a, from 1.5 to 2.0 . Approximately one and one-half hours of SDS-920 computer time were needed to obtain all of the output contained in this appendix.

Table C-1. Sample output of the data-processing program
univariate extreme value
TEST 1

```
FQR ADC-1
    BASED ON THF TGTAL SAMPLE SIZE = 30OO SAMPLES
        MEAN = -0.316310333334E 03
        STANDARD DEVIATION = 0.555328613801E 02
        SIGNAL TA NGISE RATIO = -0.56959127528OE O1 = 0.151112671965E O2 DB.
FAR ADC-2
    BASED ON THF TOTAL SAMPLE SIZE = 3000 SAMPLES
        MEAN = - 0.519096000001E 03
        STANDARD DEVIATIQN = 0.897556430027E 02
        SIGNAL TM NOISE RATIO = -0.578343581123E O1 = 0.152437190316E 02 DB.
BASED ON 3O\capO RAW DATA SAMPLES, THE CORRELATION COEFFICIENT = 0.227415805883E OO
BASED ON EXTREMES OF 3O GROUPS OF 100 SAMPLES. THE CORRELATION COEFFICIENT = O. 385838213564E OO
```


Table C-1. (Cont'd)

univariate extreme value

TEST 1

```
CLASSICAL PROAABILITIES
PROBABILITY OF A BIT ERROR = 0.000000000000E ON
    NUMBER OF OCCURENCES = 0.0
PROBABILITY OF AN OUT OF LOCK = 0.000000000000E 00
    NUMBER OF OCCURENCES = 0.0
PROBABILITY OF A CORRECT BIT BEING RECEIVED AND ACCEPTED = 0.100000000000E 01
    NUMBER OF OCCURENCES = 3000.0
PROBABILITY OF A CORRECT BIT BEING RECEIVED AND REJECTED = 0.0000000000000E 00
    NUMBER OF OCCURENCES = 0.0
PROBABILITY GF AN INCORRECT BIT BEING RECEIVED AND ACCEPTED = 0.0000000000000E 00
    NUMBER OF GCCURENCES = 0.0
PROBABILITY OF AN INCORRECT BIT BEING RECEIVED AND REJECTED = 0.0000000000000E 00
    NUMBER GF OCCURENCES = 0.0
```

Table C-1. (Cont'd)
univariate extreme value TEST 1

```
THERE ARE 30 GROUPS OF }100\mathrm{ SAMPLES EACH.
ERROR FOR UNIVARIATE MAXIMUM LIKELIHOOD FIT = 0.999999999995E-05
FQR ADC-1
    VALUES bEFORE UNIVARIATE MAXIMUM LIKELIHOQD FIT
        THRESHOLD = 0.000000000000E OO
        ALPHA = 0.273034555335E-01
        U = -0.173239308614E 03
        THE REGRESSION EQUATION = -173.2393086 * 36.6254007 Y
        REDUCED VARIATE AT TRIGGER LEVEL = 0.473003175939E 01
        PREDICTED BIT ERROR RATE = 0.882580352481E-04
        CUMULATIVE PROBABILITY AT TRIGGER LEVEL = 0.991212645731E 00
```

Table C-1. (Cont'd)

```
univariate extreme value
    TEST 1
```

FOR ADC-1
VALUES AFTER UNIVARIATE MAXIMUM LIKELIHOOD FIT
THRESHOLT $=0.000000000000 E 00$
ALPHA $=0.333626955910 \mathrm{E}-01$
$U=-0.171631574073 \mathrm{E} 03$
THE REGRESSION EQUATION = $\quad-171.6315741+29.9735972 \mathrm{Y}$
REDUCED VARIATE AT TRIGGER LEVEL $=0.572609195960 E 01$
PREDICTEL BIT ERROR RATE $=0.325973887811 E-04$
CUMULATIVE PROBABILITY AT TRIGGER LEVEL $=0.996745515554 E 00$
PERCENT CONFIDENCE CONFIDENCE INTERVAL FGR PREDICTED GIT ERROR KATE

99	$0.325743167195 E-05$	$0.326163200952 E-03$
95	$0.564985384699 E-05$	$0.188051923830 E-03$
90	$0.749035095174 E-05$	$0.14185530744 / E-03$
80	$0.103640413795 E-04$	$0.102524347312 E-03$
70	$0.129037507576 E-04$	$0.82346159615 J E-04$

Table C-1. (Cont'd)

> UNIVARIATE EXTREME VALUE TEST 1

```
THERE ARE 30 GROUPS OF }100\mathrm{ SAMPLES EACH.
ERROR FOR UNIVARIATE MAXIMUM LIKELIHOOD FIT = 0.999999999995E-05
```

FOR ADC-2
VALUES BEFGRE UNIVARIATE MAXIMUM LIKELIHO日D FIt

```
THRESHOLD = 0.000000000000E OO
ALPHA = 0.213265757956E-01.
U = -0.303176656604E 03
THE REGRESSION EQUATION = -303.1766566 + 46.8898528 Y
REDUCED VARIATE AT TRIGGER LEVEL = 0.646571994651E 01
PREDICTEN BIT ERRQR RATE = 0.155585948959E-04
CUMULATIVE PROBABILITY AT TRIGGER LEVEL = 0.998445339021E 00
```

```
Table C-1. (Cont'd)
                                    univariate extreme value
            TEST 1
FAR ADC-2
    VALUES AFTER UNIVARIATE MAXIMUM LIKELIHOOD FIT
        THRESHOLD = 0.000000000000E OO
        ALPHA = 0.228594114902E-01
        U= -0.302891621230E 03
        THE REGRFSSION EQUATION = -302.8916212 + 43.7456581 Y
        REDUCED VARIATE AT TRIGGER LEVEL = 0.692392420667E O1
        PREDICTEN BIT ERROR RATE = 0.983958307188E-05
        CIJMULATIVE PROBAEILITY AT TRIGGER LEVEL = 0.999016522837E 00
PERCENT CONFIDENCE CONFIDENCE INTERVAL FQR PREDICTEIJ BIT ERROR KATE
\begin{tabular}{lll}
99 & \(0.638705387246 E-06\) & \(0.151580003148 E-03\) \\
95 & \(0.122815981740 E-05\) & \(0.788302859291 E-04\) \\
90 & \(0.171655119679 E-05\) & \(0.564017100254 E-04\) \\
80 & \(0.252405152473 E-05\) & \(0.38357597077<E-04\) \\
70 & \(0.327428278979 E-05\) & \(0.29508858735 / E-04\)
\end{tabular}
```

Table C-1. (Cont'd)
univariate extreme value TEST 1

FQR ADC-1

GROUP NUMBER	UNORDERED EXTREMES	ORDERED EXTREMES	PLOTTING position
1	-95	-211	0.3225806451E-01
2	-138	-204	0.6451612903E-01
3	-181	-198	0.9677419354E-01
4	-158	-197	0.1290322581E OO
5	-146	-192	0.1612903226 t 00
6	-179	-190	$0.19354838 / 1 \mathrm{E} 00$
7	-192	-185	0.2258064516 E OO
8	-211	-181	0.2580645101 E 00
9	-169	-179	0.2903225806 E 00
10	-198	-174	0.32258064ち2E OO
11	-159	-173	0.3548387097 E 00
12	-204	-172	0.3870967742 E 00
13	-197	-171	$0.4193548387 E 00$
14	-157	-170	0.4516129032E OO
15	-185	-169	0.4838709617 E 00
16	-173	-159	$0.5161290323 E 00$
17	-19	-158	0.5483870908 E 00
18	-103	-157	0.5806451613 O
19	-108	-153	0.6129032258 E 00
20	-153	-151	$0.6451612903 E 00$
21	-172	-146	0.6774193548 EE
22	-112	-138	0.70967741 y4E 00
23	-112	-121	0.7419354839 EO
24	-121	-112	0.7741935484 E 00
25	-171	-112	0.8054516129E 00
26	-190	-110	0.8387096714E 00
27	-151	-108	0.8709677419 EO
28	-110	-103	$0.9032258065 E 00$
29	-174	-95	0.9354838710 E 00
30	-170	-19	0.9677419355 CO

Table C-1. (Cont'd)
univariate extreme value TEST 1

FOR ADC-2

GROUP NUMBER	UNORDERED EXTREMES	ORDERED EXTREMES	PLOTTING POSITION
1	-157	-366	0.3225806451E-01
2	-199	-355	0.6451612903E-01
3	-321	-336	0.9677419354E-01
4	-355	-333	0.1290322581 E 00
5	-209	-331	$0.1612903226 E 00$
6	-331	-327	$0.1935483871 E 00$
7	-273	-326	$0.2258064516 E 00$
8	-299	-322	0.2580645101 E 00
9	-274	-321	0.2903225806 E 00
10	-322	-321	0.3225805452E 00
11	-333	-304	0.3548387097E OO
12	-300	-300	0.3870967742 E 00
13	-327	-299	0.4193548387E OO
14	-321	-293	0.4516129032 E OO
15	-304	-282	0.48387096/7E 00
16	-274	-274	0.5161290323 E 00
17	-216	-274	0.5483870968 E 00
18	-366	-273	$0.5806451613 E 00$
19	-253	-272	0.6129032258 E 00
20	-265	-265	0.6451612903E OO
21	-293	-255	0.6774193548 E 00
22	-282	-253	0.7096774194 E 00
23	-336	-240	0.7419354839 E 00
24	-238	-238	0.7741935484 E 00
25	-215	-216	0.8064516129 EO
26	-272	-215	$0.83870967 / 4 E 00$
27	-326	-209	0.8709677419 E 00
28	-185	-199	0.9032258005 E 00
29	-255	-185	0.9354838710 E OO
30	-240	-157	0.9677419355E 00

Table C-1. (Cont'd)

BIVARIATE EXTREME VALUE
TEST 1

```
THERE ARE 30 GROUPS OF }100\mathrm{ DATA POINTS EACH.
ADC1 CHANNEL THRESHOLD = 0.00000
ADC2 CHANNEL THRESHOLD = 0.00000
A = 1.5000n
ABS[XADCI[N]-XADC2IN]] LESS THAN A OCCURS 24.00 TIMES.
    8 ITERATIONS TO BE PERFGRMED.
bivariate calculations will gCcur Every 4 Iterations.
ERROR ESTIMATE FOR MAXIMUM LIKELIHOOD FIT = 0.999999999998E-04
```

Table C-1. (Cont'd)

bivariate extreme value

TEST 1

ITERATION 0

FOR THE FOLLOWING CALCULATIONS:

| ALPHA1 $=0.333626955910 E-01$ | $U 1=-0.171631574073 E 03$ | |
| ---: | :--- | ---: | :--- |
| ALPHA2 | $=0.228594114902 E-01$ | $U 2=-0.302891621230 E 03$ |
| C | $=0.192540375740 E 00$ | VARIANCE OF $=0.570001688422 E-02$ |

FOR ADC-1

```
PREDICTED ERROR RATE = 0.325973815051E-04
CUMULATIVE PROBABILITY AT TRIGGER LEVEL = 0.996745515564E 00
THE NDP ROOT OF THE CUMULATIVE PROBABILITY:
    BY LOGS = 0.999967402611E 00
    BY SERIES = 0.999967402619E OO
```

FOR ADC-2

```
        PREDICTEN ERROR RATE = 0.983955396805E-05
        CUMULATIVE PROBABILITY AT TRIGGER LEVEL = 0.999016522837E 00
        THE NDP ROOT OF THE CUMULATIVE PROBABILITY:
        BY LOGS = 0.999990160421E OO
        BY SERIES = 0.999990160446E 00
```

Table C-1. (Cont'd)

> BIVARIATE EXTREME VALUE TEST 1

ITERATION O

```
THE PROBABILITY OF A CORRECT BIT BEING RECEIVED AND ACCEPTED:
    BY LOGS = 0.999963384158E 00
    BY SERIES = 0.999963384173E OO
```

PROBABILITY P OF A CORRECT BIT BEING RECEIVED AND ACCEPTED = $0.999963384173 E 00$
PROBABILITY Q OF A CORRECT BIT BEING RECEIVED AND REJECTED = $0.401844590669 E-05$
PROBABILITY R OF AN INCORRECT BIT EEING RECEIVED AND ACCEPTED = $0.267762734438 E-04$
PROBABILITY S OF AN INCORRECT BIT REING RECEIVED AND REJECTED $=0.58211080613 E E-05$
FOR A COMMAND OF LENGTH $=100$ BITS:
$P=0.996345045878 \mathrm{E} 00$
$Q=0.400470169552 \mathrm{E}-03$
$R=0.367147780323 \mathrm{E}-02$
$s=0.583006149099 \mathrm{E}-03$

Table C-1. (Cont'd)
bivariate extreme value TEST 1

ITERATION 4

FQR THE FOLLOWING CALCULATIONS:

```
ALPHA1 = 0.335083643738E-01 U1 = -0.173182352723E 03
ALPHA2 = 0.222935228479E-01
C = 0.139019911072E 00
U2 = -0.300849995527E 03
VARIANCE OF C = 0.656807094691E-02
```

```
FOR ADC-1
```

PREDICTED ERROR RATE $=0.301826585200 \mathrm{E}-04$
CUMULATIVE PROBABILITY AT TRIGGER LEVEL $=0.996986238017 E 00$
THE NDP RO日T OF THE CUMULATIVE PROGABILITY:
BY LAGS $=0.999969817323 E 00$
BY SERIES $=0.9 \quad-17342 \mathrm{E} 00$
FOR ADC-2
PREDICTED ERROR RATE $=0.122230994748 E-04$
CUMULATIVE PROBABILITY AT TRIGGER LEVEL $=0.998778428755 \mathrm{E} 00$
THE NDP REOT OF THE CUMUI, ATIVE PROBABILITY:
BY LOGS $=0.999987776886 E 00$
BY SERTES $=0.999987776904 \mathrm{E} 00$

Table C-1. (Cont'd)

bivariate extreme value TEST 1

```
ITERATION 4
THE PROBABILITY OF A CORRECT BIT BEING RECEIVED AND ACCEPTED:
    BY LOGS = 0.999962432274E 00
    BY SERTES = 0.999962432288E 00
```

0.999962432288 E 0 $0.738505332265 E-05$ $0.253446160059 E-04$ $0.483804251416 E-05$

```
PROBABILITY P OF A CORRECT BIT bEING RECEIVED AND ACCEPTED
```

PROBABILITY P OF A CORRECT BIT bEING RECEIVED AND ACCEPTED
PROBABILITY Q OF A CORRECT BIT BEING RECEIVED AND REJECTED
PROBABILITY Q OF A CORRECT BIT BEING RECEIVED AND REJECTED
PROBABILITY R OF AN INCORRECT BIT REING RECEIVED AND ACCEPTED
PROBABILITY R OF AN INCORRECT BIT REING RECEIVED AND ACCEPTED
PROBABILITY S GF AN INCORRECT BIT REING RECEIVED AND REJECTED =

```
PROBABILITY S GF AN INCORRECT BIT REING RECEIVED AND REJECTED =
```

```
FOR A COMMAND OF LENGTH = 100 BITS:
```

FOR A COMMAND OF LENGTH = 100 BITS:
P = 0.096250206335E 00
Q = 0.736032772693E-03
R=0.252822333277E-02
S = 0.485537559143E-03

```

JPL TECHNICAL REPORT NO. 32-1025

Table C-1. (Cont'd)

\section*{bivariate extreme value TEST 1}

ITERATION 8

FOR The FOLLOWING CALCULATIONS:
\begin{tabular}{|c|c|c|}
\hline ALPHAI & \(0.334996709373 \mathrm{E}-01\) & \(U_{1}=-0.173177517458 \mathrm{E} 03\) \\
\hline ALPHA2 & \(0.222900564506 \mathrm{E}-01\) & \(U 2=-0.300844906796 \mathrm{E} 03\) \\
\hline C & \(0.139164561566 E 00\) & VARIANCE OF C \(=0.656559905016 E-02\) \\
\hline
\end{tabular}

FQR ADC-1
```

PREDICTED ERROR RATE = 0.302330372505E-04
CUMULATIVE PROBABILITY AT TRIGGER LEVEL = 0.996981215878E 00
THE NDP ROQT OF THE CUMULATIVE PROBABILITY:
BY LOGS = 0.999969766952E OO
BY SERIES = 0.999969766966E OO

```
FOR ADC-2
    PREDICTED ERROR RATE \(=0.122372439364 E-04\)
    CUMULATIVE PROBABILITY AT TRIGGER LEVEL \(=0.998777016288 \mathrm{E} 00\)
    THE NDP ROOT OF THE CUMULATIVE PROBABILITY:
        BY LOGS \(=0.999987762745 \mathrm{E} 00\)
        BY SERYES \(=0.999987762756 \mathrm{E} 00\)

Table C-1. (Cont'd)

\author{
bivariate extreme value \\ TEST 1
}

\section*{ITERATION 8}
```

THE PROBABILITY OF A CORRECT BIT BEING RECEIVED AND ACCEPTED:
BY LOGS = 0.999962379112E 00
BY SERTES = 0.999962379126E OO

```
PROBABILITY P OF A CORRECT BIT BEING RECEIVED AND ACCEPTED = \(0.999962379126 E 00\)
PROBABILITY Q OF A CORRECT BIT BEING RECEIVED AND REJECTED = \(0.738784001441 E-05\)
PROBABILITY R OF AN INCORRECT BIT BEING RECEIVED AND ACCEPTED \(=0.253836296906 E-04\)
PROBABILITY S OF AN INCORRECT BIT BEING RECEIVED AND REJECTED \(=0.484940755996 E-05\)
FOR A COMMAND OF LENGTH \(=100\) BITS:
    \(P=0.996244909889 \mathrm{E} 00\)
    \(Q=0.736306745239 \mathrm{E}-03\)
    \(R=0.253210665323 \mathrm{E}-02\)
    \(S=0.486676712171 \mathrm{E}-03\)

\section*{Table C-1. (Cont'd)}
bivariate extreme value TEST 1
```

THERE ARE 30 GROUPS OF 100 DATA POINTS EACH.
ADC1 CHANNEL THRESHOLD = 0.00000
ADC2 CHANNEL THRESHOLD = -157.00000
A= 1.50000
ABS{XADC1[NI-XADC2INI] LESS THAN A OCCURS 24.00 TIMES.

```

Table C-1. (Cont'd)
```

BIVARIATE EXTREME VALUE
TEST 1

```

\section*{ITERATION 8}
```

FOR THE FOLLOWING CALCULATIONS:

```
\begin{tabular}{rl} 
ALPHA1 & \(=0.334996709373 \mathrm{E}-01\) \\
ALPHAZ & \(=0.222900564506 \mathrm{E}-01\) \\
C & \(=0.139164561566 \mathrm{E} 00\)
\end{tabular}
\(U_{1}=-0.173177517458 E 03\)
\(U 2=-0.300844906796 E 03\)
VARIANCE EF \(C=0.656559905016 \mathrm{E}-02\)
FOR ADC-1
    PREDICTED ERROR RATE = 0.302330372505E-04
    CUMULATIVE PROBABILITY AT TRIGGER LEVEL \(=0.996981215878 \mathrm{E} 00\)
    THE NDP ROOT OF THE CUMULATIVE PROBABILITY:
        BY LOGS \(=0.999969766952 \mathrm{E} 00\)
        BY SERIES \(=0.99996976696600\)
FOR ADC-2.
    PREDICTED ERROR RATE \(=0.404975566198 E-03\)
    CUMULATIVE PROBABILITY AT TRIGGER LEVEL \(=0.960303633117 E 00\)
    THE NDP R日OT OF THE CUMULATIVE PRGBABILITY:
        BY LOGS \(=0.999595024419 \mathrm{E} 00\)
        BY SERIES \(=0.999595024434 E 00\)

Table C-1. (Conf'd)

\section*{givariate extreme value TEST 1}

ITERATION 8
```

THE PROBABILITY OF A CORRECT BIT bEING RECEIVED AND ACCEPTED:
BY LOGS = 0.999580457734E OO
BY SERIES = 0.999580457745E 00

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline PROBABILITY & \(P\) & OF & A & CORRECT BIT & & NG RE & EIVED & AND & & CEPTED & & 0.999580457745 E 0 \\
\hline PROBABILITY & Q & OF & A & CORRECT BIT & & NG RE & CEIVED & AND & & JECTED & & 0.999580457145E 00 \\
\hline PREBABILITY & \(R\) & OF & AN & INCORRECT & BIT & BEING & RECEI & & AND & ACCEPTED & & 0.145666890603E-04 \\
\hline PROBABILITY & S & \(\theta F\) & AN & INCORRECT & BIT & BEING & RECEI & VED & AND & REJECTED & & 0.156663481902E-04 \\
\hline
\end{tabular}

FOR A COMMAND OF LENGTH \(=100\) BITS:
\(P=0.958905231812 \mathrm{E} 00\)
\(Q=0.780759848230 \mathrm{E}-01\)
\(R=0.139840217889 \mathrm{E}-02\)
\(S=0.162038119015 \mathrm{E}-02\)

\section*{Table C-1. (Cont'd)}

\section*{BIVARIATE Extreme value TEST 1}
```

THERE ARE 3O GRQUPS OF 100 DATA POINTS EACH.
ADC1 CHANNEL THRESHOLD = 0.00000
ADC2 CHANNEL THRESHOLD = - 252.00000
A= 1.50000
ABS[XADCI[N1-XADC2IN]] LESS THAN A OCCURS 24.00 TIMES.

```

JPL TECHNICAL REPORT NO. 32-1025

Table C-1. (Cont'd)
bivariate extreme value TEST 1

ITERATION 8

FOR THE FALLOWING CALCULATIONS:
ALPHA1 \(=0.334996709373 E-01\)
U1 \(=-0.173177517458 \mathrm{E} 03\)
ALPHA2 \(=0.222900564506 \mathrm{E}-01\)
\(U 2=-0.300844906796 E 03\)
\(\mathrm{C}=0.139164561566 \mathrm{E} 0\)
VARIANCE BF C \(=0.656559905016 E-02\)
```

FAR ADC-1

```
    PREDICTED ERROR RATE \(=0.302330372505 E-04\)
    CUMULATIVE PROBABILITY AT TRIGGER LEVEL \(=0.996981215878 \mathrm{E} 00\)
    THE NDP REOT OF THE CUMULATIVE PREBABILITY:
        BY LOGS \(=0.999969766952 \mathrm{E} 00\)
        BY SERIES \(=0.999969766966 E 00\)
FQR ADC-2
    PREDICTED ERROR RATE \(=0.336069115292 \mathrm{E}-02\)
    CUMULATIVE PROBABILITY AT TRIGGER LEVEL \(=0.714169394018 \mathrm{E} 00\)
    THE NDP ROOT OF THE CUMULATIVE PROBABILITY:
        BY LOGS \(=0.996639308803 \mathrm{E}\) OO
        BY SERIES \(=0.996639308851 E 00\)

Table C-1. (Cont'd)

> BIVARIATE EXTREME VALUE
> TEST 1
```

ITERATION 8
THE PROBABILITY OF A CORRECT BIT BEING RECEIVED AND ACCEPTED:
BYLOGS = 0.996625800886E 00
RY SERYES = 0.996625800919E OO

```
PRQBABILITY P OF A CORRECT BIT BEING RECEIVED AND ACCEPTED
PROBABILITY O OF A CQRRECT BIT BEING RECEIVED AND REJECTED \(=0.334396504739 E-02\)
PROBABILITY R OF AN INCORRECT BIT BEING RECEIVED AND ACCEPTED \(=0.135079317260 E-04\)
PROBABILITY S OF AN INCORRECT BIT EEING RECEIVED AND REJECTED \(=0.167251055245 E-04\)
FOR A COMMAND OF LENGTH \(=100\) BITS:
    \(P=0.713202096908 \mathrm{E} 00\)
    \(Q=0.283779119727 E 00\)
    \(R=0.067299005424 \mathrm{E}-03\)
    \(S=0.205148436361 \mathrm{E}-02\)

\section*{Table C-1. (Cont'd)}
```

gIVARIATE EXTREME VALUE
TEST 1

```
ITERATION O
FQR the following calculations:
\begin{tabular}{rl} 
ALPHA1 & \(=0.333626955910 \mathrm{E}-01\) \\
ALPHAL & \(=0.228594114902 \mathrm{E}-01\) \\
C & \(=0.198338358297 \mathrm{E} 00\)
\end{tabular}
U1 = -0.171631574073E 03
\(\mathrm{U} 2=-0.302891621230 \mathrm{E} 03\)
VARIANCE OF C \(=0.517705896666 E-02\)
FQR. \(A D C-1\)
    PREDICTED ERROR RATE \(=0.325973815051 E-04\)
    CUMULATIVE PROBABILITY AT TRIGGER LEVEL \(=0.996745515564 E 00\)
    THE NDP REOT OF THE CUMULATIVF PRABABILITY:
        BY LOGS \(=0.999967402611 E 00\)
        BY SERTES \(=0.999967402619 \mathrm{E} 00\)
FQR ADC-2
    PREDICTEL ERROR RATE \(=0.983955396805 E-05\)
    CUMULATIVE PROBABILITY AT TRIGGER LEVEL \(=0.999016522837 E\) 00
    THE NDP ROOT OF THE CUMULATIVE PROBABILITY:
        BY LOGS \(=0.999990160421 \mathrm{E} 00\)
        BY SERTES \(=0.999990160446 E 00\)

JPL TECHNICAL REPORT NO. 32-1025

Table C-1. (Cont'd)
givariate extreme value TEST 1
```

ITERATION n

```
```

THE PROBABILITY OF A CORRECT BIT BEING RECEIVED AND ACCEPTED:
BY LAGS = 0.999963559440E 00
BY SERTES = 0.999963559458E OO

```
PROBABILITY P OF A CORRECT BIT BEING RECEIVED AND ACCEPTED \(=0.999963559458 E 00\)
PROBABILITY O OF A CORRECT EIT BEING RECEIVED AND REJECTED = \(0.384316081181 E-05\)
PROBABILITY R UF AN INCORRECT BIT BEING RECEIVED AND ACCEPTED = \(0.265009883489 E-04\)
PROBABILITY S OF AN INCORRECT BIT REING RECEIVED AND REJECTED \(=0.599639315624 E-05\)
FOR A COMMAND OF LENGTH \(=100\) BITS:
    \(P=0.096362511112 E 00\)
    \(\theta=0.383004935429 \mathrm{E}-03\)
    \(R=0.965401256911 \mathrm{E}-02\)
    \(S=0.600471386860 \mathrm{E}-03\)

\title{
\(0032889 \angle \angle \angle 86666^{\circ} 0=\) Sヨ1 \(1 \exists \mathrm{~S}\) 人8 \\ \(0038989 \angle \angle \angle 86666^{\circ} \mathrm{O}=\)＝ \(987^{\circ}\) 人 \\ 


}

\title{
\(00 \exists \angle Z \Sigma \angle 18696666^{\circ} 0=S \exists 1 \forall \exists S\) A \\ 00 ヨCIEく18696666品＝S9日7 18 \\  \(=7 \exists \wedge 37\) ぬヨ99Iと1 1৮ 1117 Ig४ ヤO－ヨ6I COEL9Z8IOE＊O＝ヨ1甘d yodyヨ ひヨ1JIUJyd
}
```

20-380I88乙8TE9\angleS*0= = J\& 3コN\forallI\&\forallA

```

```

 & Э6809&&己8I&LI*O- = In
    ```



Table C-1. (Cont'd)
```

bivariate extreme value
TEST 1

```
ITERATION 4
THE PRQBABILITY OF A CORRECT BIT BEING RECEIVED AND ACCEPTED:
    BY LOGS \(=0.999962432245 \mathrm{E} 00\)
    BY SERIES \(=0.999962432255 E 00\)
PROBABILITY P OF A CORRECT BIT BEING RECEIVED AND ACCEPTED = \(0.999962432255 E 00\)
PROBABILITY Q OF A CORRECT RIT BEING RECEIVED AND REJECTED = \(0.738507151254 E-05\)
PROBABILITY R OF AN INCORRECT BIT EEING RECEIVED AND ACCEPTED = \(0.253446269198 E-04\)
PROBABILITY S OF AN INCORRECT BIT BEING RECEIVED AND REJECTED \(=0.483804979012 E-05\)
FOR A COMMAND OF LENGTH = 100 BITS:
    \(P=0.996250203072 \mathrm{E} 00\)
    \(Q=0.736034584406 \mathrm{E}-03\)
    \(R=0.352827441689 \mathrm{E}-02\)
    \(S=0.485537922941 E-03\)

Table C-1. (Cont'd)

\section*{bivariate extreme value} TEST 1

\section*{ITERATION 8}

\section*{FQR THE FQLLOWING CALCULATIONS:}
\begin{tabular}{rl}
ALPHA & \(=0.334999273013 \mathrm{E}-01\) \\
ALPHA & \(=0.222900797034 \mathrm{E}-01\) \\
C & \(=0.139164789797 \mathrm{E} 00\)
\end{tabular}

U1 \(=-0.173177831350 E 03\)
\(\mathrm{U} 2=-0.300844671669 \mathrm{E} 03\)
VARIANCE OF C \(=0.576169327848 \mathrm{E}-02\)

FQR ADC-1

PREDICTED ERROR RATE \(=0.302313710562 E-04\)
CUMULATIVE PROBABILITY AT TRIGGER LEVEL \(=0.996981381388 E 00\)
THE NDP RAOT OF THE CUMULATIVF PROBABILITY:
BY LQGS \(=0.999969768614 \mathrm{E} 00\)
BY SERIES \(=0.999969768629 \mathrm{E} 00\)

FQR ADC-?

PREDICTED ERRQR RATE \(=0.122372221085 \mathrm{E}-04\)
CUMULATIVE PROBABILITY AT TRIGGER LEVEL \(=0.998777018431 E 00\) THE NDP RGOT OF THE CUMULATIVE PROBABILITY:

BY LOGS \(=0.999987762767 E 00\)
BY SERIES \(=0.999987762778 E 00\)
```

THE PROBABILITY OF A CORRECT BIT BEING RECEIVED AND ACCEPTED:

```
    BYLOGS \(=0.999962380716 E\) OO
    BY SERTES \(=0.999962380734 E\) OO

PROBABILITY P OF A CORRECT BIT BEING RECEIVED AND ACCEPTED \(=0.999962380734 E 00\) PROBABILITY Q OF A CORRECT BIT BEING RECEIVED AND REJECTED \(=0.738789458410 E-05\) PROBABILITY R GF AN INCERRECT BIT EEING RECEIVED AND ACCEPTED \(=0.253820435318 E-04\) PROBABILITY S OF AN INCORRECT BIT EEING RECEIVED AND REJECTED \(=0.484933116240 E-05\)

FOR A COMMAND OF LENGTH = 100 BITS:
\(P=0.096245070091 E 00\)
\(Q=0.736312296794 \mathrm{E}-03\)
\(R=0.753194863034 \mathrm{E}-02\)
\(S=0.486668985104 E-03\)

Fig. C-1. Computer plot for data channel


Fig. C-2. Computer plot for synchronization channel

\section*{Table C-2. Operational directions of the data-processing program}
```

SET BP1 IF LOOKING FOR A MAXIMUM FOR AOC-1.
RESET BPI IF LOOKIING FOR A MINIMUM.
SET 3P2 IF LOOKING FOR A MAXIMUM FOR ADC-2.
RESET BP2 IF LOOKING FOR A MINIMUM.
SET BP3 FOR PRINTJUT OF CHANNEL EXTREMES AND OPTIOH TO OBTAIN A GUMBEL PLOT.
SET BP4 FOR BIVARIATE ANALYSIS.
clear halt.
IF AN ERROR IS MADE WHILE TYPIHGG INPUTS, DO THE FOLLOWING
1. PUT RUN-IDLE-STEP [R-I-S] SUHTCH TO 1OLE
2. SET REGISTER KNOB TO C
3. PUSH START
4. FILL REGISTER DISPLAY WITH A BRU O}3522 COMMAND
THAT IS. WITH THE OCTAL WUIBER D@103522
5. PUT R-I-S SWITCII TO RUN
6. RETYPE IIIPUTS
TYPE IN FORILAT [314,3F12,5]
ITN--TEST HO.
NG--ND. OF GROUPS
NDP--NO. OF SAMPLES/GROUP
T1,T2--ADC1,ADC2 THRESHOLDS
ERROR--ERROR FOR UNIVARITE MAXIIUMI LIKELIIOOO FIT
1,30.100.0.0.0.0.0.00001,
SET BP1 FOR ADC-1 GUMBEL PLOT
IF SET, POSITION PLOTTER PEN AT GOTTJM RIGHT-HAND CORNER OF GRAPH PAPER
clear halt
SET BP2 FOR ADC-2 GUMBEL PLOT
IF SET, POSITIDN PLOTTER PEN AT 3OTTTM RIGHT-HAND CORNER OF GRAPH PAPER
clEAR HALT
if a| error is made while typing inputs, do the folloming
1. PUT RUN-IDLE-STEP [R-I-S] SWITCH TO IDLE
2. SET REGISTER KIIJB TO C
3. PUSII START
4. FILL REGISTER DISPLAY UIT| A BRU @3531 COMMAND.
THAT IS, ||T|| THE OCTAL NUMBER \emptyset0103531
5. PUT R-I-S SWITCII TO RUIN
6. RETYPE liNPUTS
INPUT IN FORHAT 2I10,2F15.5
NIT--ITERATIONS FOR BEVT MAXIMUM LIKELIIOJD FIT
H3EVT--ITERATIDINS DEFORE EACI! BEVT PROBABILITY CALCULATION
A--STRIP ESTIMATE PARAMETER
A MUST BE IN TIIE CLOSED INTERVAL 1.5 TJ 2.0
ERROR--ERROR FOR 3IVARIATE MAXIMUM LIKELIHOOD FIT
8.4.1.5.0.0001,

```

Table C-2. (Cont'd)
```

SET bP3 to change the value of parameter a
SET BP4 TO CHANGE THE CHANNEL THRESHOLOS
IF NEITHER BREAKPOINT IS SET, CONTROL TRANSFERS TO LINK[1]
CLEAR HALT TO PROCEED
INPUT IN FORIAT 2F10.5
NEW ADC-1 THRESHOLD VALUE
NEW ADC-2 THRESHOLD VALUE
IF AN ERROR IS MADE INHILE TYPING, REPEAT THE 6 STEPS LISTED ABOVE,
EXCEPT IN STEP 4 FILL THE REGISTER DISPLAY WITH: A BRU \emptyset5@26 COMMANQ,
THAT IS, WITH THE OCTAL NU:ABER \emptyset\emptyset1g5\emptyset26
0.0,-157.0.
SET BP3 to CHANGE THE VALUE OF PARAMETER A
SET BP4 TO CHANGE TIIE CHANNEL THRESHOLDS
IF NEITHER BREAKPOIWT IS SET, CONTROL TRANSFERS TO LINK[1]
ClEAR HALT TO PROCEED
INPUT IN FORIAAT 2F10.5
NEW ADC-1 TIIRESHOLD VALUE
HEW ADC-2 THRESHOLD VALUE
If AN ERROR IS MADE WHILE TYPING, REPEAT THE 6 STEPS listej AbOVE,
EXCEPT IN STEP \& FILL THE REGISTER DISPLAY HITH A BRU O5026 COMMAND,
THAT IS, WITH THE OCTAL NU:IDER \emptyset\emptyset105026
0.0,-252.0.
SET bP3 to change the value of paraileter a
SET bP4 To change THE CHAN|El ThresHoldS
IF NEITIIER BREAKPOIIIT IS SET, CONTROL TRANSFERS TO LINK[1]
CLEAR HALT TO PROCEED
INPUT TIE NEV VALUE FOR A IN FORMAT FID. }
IF AN ERROR IS llade WHILE TYPING, REPEAT THE G STEPS LISTED ABJVE,
EXCEPT IN STEP 4 FILL THE REGISTER DISPLAY WITH A BRU 05013 COMMAND,
THAT IS, WITH THE OCTAL NUMBER \emptyset\emptyset1\emptyset5013
2.0.
INPUT IN FOR:AAT 2F10.5
NEH ADC-1 THRESHOLD VALUE
NEW ADC-2 THRESHOLD VALUE
IF AN ERROR IS MADE WHILE TYPING, REPEAT THE G STEPS lisTED ABOVE,
EXCEPT IH STEP 4 FILL THE REGISTER DISPLAY WITH A BRU g5\emptyset26 COMMAND,
THAT IS, WITH THE OCTAL NUMBER \emptyset\emptyset1\emptyset5\emptyset26
0.0.0.0.

```

\section*{Table C-2. (Cont'd)}
```

SET bP3 TO CHANGE THE VALUE OF PARAMETER A
SET BP4 TO CHANGE THE CHANNEL THRESHOLDS
if NEITIER breakpoint is SET, CONTROL TRANSFERS TO LINK[1]
ClEAR HALT TO PROCEED
JOB DONE. READY NEW INPUT.
SET BPI IF LOOKING FOR A MAXIMUM FOR ADC-1.
RESET BP1 IF LOOKING FOR A MINIMUM.
SET BP2 IF LOOKING FOR A MAXIMUM FOR ADC-2.
RESET BP2 IF LOOKIING FOR A MINIMUM.
SET BP3 FOR PRINTOUT OF CHANNEL EXTREMES AND OPTION TO OBTAIN A GUMBEL PLOT.
SET BP4 FOR BIVARIATE ANALYSIS.
CLEAR HALT.

```

\section*{REFERENCES}
1. Posner, E. C., The Application of Extreme-Value Theory to Error-Probability Estimation in the Ranger Block III Command Detector, Technical Report 32-705. Jet Propulsion Laboratory, Pasadena, Calif., Jan. 15, 1965.
2. Gumbel, F. J., Statistics of Extremes. Columbia University Press, New York, 1958.
3. Rodemich, E., "Joint Asymptotic Distributions," in Supporting Research and Advanced Development, Space Programs Summary 37-36, volume IV, pp. 317-323. Jet Propulsion Laboratory, Pasadena, Calif., 1966.
4. Hildebrand, F. B., Introduction to Numerical Analysis. McGraw-Hill Book Company, Inc., New York, 1956.
5. Epstein, B., and Brooks, H., "The Theory of Extreme Values and Its Implications in the Study of the Dielectric Strength of Paper Capacitors," J. Appl. Phys., vol. 19, pp. 544-550, June 1948.

\section*{BIBLIOGRAPHY}

Ashlock, J. C., and Posner, E. C., "Application of the Statistical Theory of Extreme Values to Spacecraft Receivers," in Proceedings of IEEE National Telemetry Conference, May 10-12, 1966, pp. 167-172, Raytheon Company, Bedford Publishing Department, Boston, April 1966.

Ashlock, J. C., and Posner, E. C., Application of the Statistical Theory of Extreme Values to Spacecraft Receivers, Technical Report 32-737, Jet Propulsion Laboratory, Pasadena, Calif., May 15, 1965.

Ashlock, J. C., and Posner, E. C., "Error Probability Estimation Using Bivariate Extreme Value Theory," in Supplement to IEEE Transactions on Aerospace and Electronic Systems, Volume AES-2, Number 4, pp. 463-468. Institute of Electrical and Electronic Engineers, New York, July 1966.

Darling, D. A., "The Kolmogorov-Smirnov, CramérVon Mises Tests," Ann. Math. Statist., vol. 28, pp. 823-835, 1951.

Dodd, E. L., 'The Greatest and the Least Variate Under General Laws of Error," Trans. Am. Math. Soc., vol. 25, pp. 525-539, 1923.

Doob, J. L., "Heuristic Approach to the KolmogorovSmirnov Theorems," Ann. Math. Statist., vol. 20, pp. 393403, 1949.

Epstein, B., "Application of the Theory of Extreme Values in Fracture Problems," Am. Statist. Ass. J., pp. 403-412, Sept. 1948 (Presented at the 107th Annual Meeting of the American Statistical Association, December 30, 1947).

Fisher, R. A., "On the Mathematical Foundations of Theoretical Statistics," Phil. Trans. Roy. Soc. London [A], vol. 222, pp. 309-368, 1922.

Fisher, R. A., and Tippett, L. H. C., "Limiting Forms of the Frequency Distribution of the Largest or Smallest Member of a Sample," Proc. Cambridge Phil. Soc., vol. 24, pt. 2, pp. 180190, April 1928.

Gumbel, E. J., "Bivariate Exponential Distributions," Am. Statist. Ass. J., pp. 698-707, December 1960.

Gumbel, E. J., "Bivariate Logistic Distributions," Am. Statist. Ass. J., pp. 335-349, June 1961.

Gumbel, E. J., "Les Valeurs Extrêmes des Distributions Statistiques,' Ann. de I'Institut Henri Poincaré, vol. V, pp. 115158, 1935 (in French).

Gumbel, E. J., and Greenwood, J. A., "Table of the Asymptotic Distribution of the Second Extreme," Ann. Math. Statist., vol. 22, pp. 121-124, March 1951.

Gumbel, E. J., and von Schelling, H., "The Distribution of the Number of Exceedances," Ann. Math. Statist., vol. 21, pp. 247-262, June 1950.

Kimball, B. F., "An Approximation to the Sampling Variance of an Estimated Maximum Value of Given Frequency Based on Fit of Doubly Exponential Distribution of Maximum Values," Ann. Math. Statist., vol. 20, pp. 110-113, March 1949.

Kimball, B. F., "Limited Type of Primary Probability Distribution Applied to Annual Maximum Flood Flows," Ann. Math. Statist., vol. 13, pp. 318-325, Sept. 1942.

Lieblein, J., A New Method of Analyzing Extreme-Value Data, NACA TN 3053. National Advisory Committee for Aeronautics, National Bureau of Standards, Washington, January 1954.

Miller, L. H., "Table of Percentage Points of Kolmogorov Statistics," Am. Statist. Ass. J., pp. 111-121, March 1956.

Plackett, R. L., "A Class of Bivariate Distributions," Am. Statist. Ass. J., pp. 516-522, June 1965.

Posner, E. C., "Extension of Extreme-Value Theory for ErrorProbability Estimation," in Supporting Research and Advanced Development, Space Programs Summary 37-28, Volume IV, pp. 213-219, Jet Propulsion Laboratory, Pasadena, Calif., Aug. 31, 1964.

Posner, E. C., and Zohar, S., "A Distribution Free Goodness-of-Fit Test for Use in Extreme-Value Theory," in Supporting Research and Advanced Development, Space Programs Summary, 37-29, Volume IV, pp. 336-339. Jet Propulsion Laboratory, Pasadena, Calif., Oct. 31, 1964.

Sibuya, M., "Bivariate Extreme Statistics, I," Ann. Inst. Statist. Math. (Tokyo), vol. 11, pp. 195-210, 1960.```

