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ABSTRACT

In commanding planetary spacecraft, system constraints allow data

rates of only a few bits per second. Also, the accuracy of received infor-

mation must be high since execution of an improperly received com-

mand could disrupt the mission. This report considers the problem of

experimentally estimating or verifying error probabilities when the

classical error-counting approach is too time consuming to use. The

rudiments of extreme-value theory are introduced for the univariate

case where the bit-error probability of interest depends on a single

variable, and for the bivariate case where the bit-error probability is

a function of two dependent variables. Many examples are given, and

numerical results are presented. Considerable attention is given to tech-

niques of implementing the theory.

I. INTRODUCTION

The purposes of this report are to discuss the history

leading to use of extreme-value theory (EVT) in estima-

tion of statistical parameters of communication systems,

detail the basic concepts of EVT and give examples of

EVT application in this area, the primary application

being error rate estimation. The tone of the report is that

of the engineer, as opposed to the mathematician. No

attempt has been made to make it mathematically rig-

orous, and only sufficient mathematics are included to

enhance the credibility of the general approach.

II. SOME BASIC QUESTIONS

In nearly all binary communication systems, informa-

tion is ultimately conveyed by the use of some form of a

decision or threshold device. In this type of system the

question of accuracy of received information eventually

can be, and frequently is, reduced to the concept of a

bit error, i.e., the probability of incorrect reception on

a particular bit. Thus, given a binary one (zero) and

noise as the incoming signal of a threshold type receiver,

one basic question becomes: What is the probability of

failing to receive a binary one (zero) at the output?

In a coherent system with a transmitted reference, an-

other item of interest is the quality of the received

reference. Generally, there is some type of "coherence_-

loss of coherence" indicator which is used for this pur-

pose. One typical mechanization (Mariners R and C
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command systems) of coherent systems employs the loss

of coherence indicator to inhibit data reception when

the indicator shows the reference to be faulty according

to some predetermined criterion. Thus, another question

to be answered is: What is the probability that the loss

of coherence indicator will inhibit reception? In actuality

the reference and data information are usually trans-

mitted through the same medium at the same time and

are simultaneously processed by the receiver in some-
what different manners. Often the statistics of the two

channels are dependent. (Note that if the statistics are

independent, it is a simplified special case of the preced-

ing.) Thus, we can ask: What is the probability of a bit

error, given an indication of coherence? Or similarly, given

an indication of loss of coherence, what is the probability
of a bit error?

In asynchronous systems which depend on the received

signal to initiate a processing sequence, the time delay

in the processing channel used to derive the initiation

signal becomes of interest: e.g., if the delay is too great

(due to noise, for example) the system may inherit an
unknown time skew between its reference and that of the

transmitter. If sufficient, this skew could completely dis-

rupt the decoding scheme. Such an asynchronous system

was used on Rangers VI-IX command systems and will

be described in greater detail in the next section.

The classical, experimental approach to problems of

this general type has been that of repeated trials of

comparing transmitted and received digital data. For

example, using this approach in bit-error testing, the

receiver under test is supplied with a prescribed signal-

to-noise ratio (SNR), a known bit is transmitted to it, and

the receiver output is examined and compared with the
value of the bit transmitted. The error rate is defined

simply as the ratio of bits in error to total bits trans-

mitted during the test. If either error rates or bit rates

are high so that errors accumulate at the rate of 10/to

20/hr of test time, this approach can give accurate re-

sults with high confidence levels in a "reasonable" length

of time. However, if error rates are low (say, 10 -5) and

bit rates are also relatively low (say, 1 bit/see), then the

test time required to experimentally determine such an
error rate, with an 80% confidence level less than ±20%

wide, is about 1000 hr. Simply to establish if the error

rate is less than 10 -5 at an 80% confidence level requires

45 hr, if no errors are recorded. As bit rates decrease,

and/or error rates being measured decrease, the required
test time increases even more.

In present day space probes bit rates used in com-

munication with the spacecraft are normally low-1 bit/

sec, for example, on both Ranger and Mariner command

systems. Also, reliability of transmitted commands must

be high. The maximum error probability acceptable on

these two systems is a bit-error rate of 10-L Several hours

of test time are required to establish whether or not the

required error rates are obtained at the specified SNR. If

it is further desired not only to obtain this one point of

data, but also to establish an actual experimental curve

of bit-error rates as a function of SNR (perhaps at sev-

eral combinations of temperatures, power supply volt-

ages, etc.) test time becomes prohibitive. Longer bit

times, such as 0.05 bits/sec now being considered, only

aggravate the problem. Furthermore, long periods of

testing allow variables, some known and some unknown,

to influence the system under test. This phenomenon, in

turn, leads to highly instrumented test complexes involv-

ing large amounts of equipment, manpower, and operat-

ing time. A less costly and time consuming approach
would obviously be welcome.

III. AMPLITUDE-DISTRIBUTION ANALYSIS

Consider the receiver in Fig. 1. It is not uncommon

for the information to be presented to the threshold

device in analog fashion. Information is available in the

analog signal that is not used in bit-error testing as

described previously; for example, one cannot only

determine whether or not an error occurred, but also

how close it came to occurring. This implies that knowl-

edge of the amplitude distribution of the signal pre-
sented to the threshold device at the time at which the

threshold detector's output is examined will allow pre-

diction of the probability that any single bit will be in
error.

2
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Fig. 1. Typical threshold receiver

To have something more concrete to discuss, consider

the system of Fig. 2. This is the bit-detection channel

used in Rangers III-IX and is, historically, the first system

on which the efforts delineated in this report were ex-

pended. Basically, the FSK input signal is processed

through an analog processing network which results, at

point A of Fig. 2, in one dc output for an input of the

frequency of the narrow bandpass filter and a second

de voltage for the other FSK input frequency. Of course,

both of these dc levels will be perturbed by noise and

will shift as a function of input signal-to-noise ratio

(SNR) due to signal suppression in the limiter. The

Schmitt trigger quantizes the envelope detector output
and in this sense serves as the threshold device.

The internal programming of the detector is such that

the Schmitt trigger output is sampled and stored at the

estimated midpoint of the received bit; no integrating is

done other than that accomplished by the filter of the

envelope detector. Thus, the data actually used are

the behavior of the envelope detector at times other
than transitions between bits. The detector relies on the

leading edge of the first bit of the incoming command

to establish synchronization for the rest of the com-

mand. This is an example of the initiation signal men-

tioned in the preceding section. One point to note is that

the sampling of the Schmitt trigger output occurs at a

point in time that leaves it essentially uninfluenced by

the effects of the normal transitions in the frequency of

the FSK input signal. Thus, we can make the statement

that the voltage distribution of the steady-state, envelope-

detector output controls the error rate. So far as noise is

concerned, the statistical properties of the command sub-

system are essentially determined by the analog circuitry

and command word Schmitt trigger in the detector; thus,

the statistical properties of output-signal voltage of the

envelope detector, coupled with knowledge of the Schmitt

trigger firing voltage, contain sufficient info]anation to

indicate the caliber of performance of which the detector

is capable-including bit-error rates. Figure 3a is an ex-

ample of the shape and position of these distributions

and how they change as a function of input SNR. Figure

3b details one of the curves of Fig. 3.

An additional example of how amplitude-distribution

analyses (ADA) are developed in practice is presented in

Fig. 4. The configuration presented is that of a coherent

PSK-detection channel; this is basically the scheme used

on the Mariner 64 command system. In the absence of

noise, the matched filter has as its input a signal of

___AIcos I which it integrates for one-bit time. At the
end of that time the dump and decision circuit dumps

the integrator (shorts the capacitor) in preparation for the

next bit and examines the direction of the resulting

AUDIO
FSK

INPUT WIDE _,,_
BANDPASS

FILTER

NARROW_ _ _BANDPASS ENVELOPE SCHMITT DIGITAL
FILTER DETECTOR TRIGGER OUTPUT

Fig. 2. Ranger Ill-IX command-detection channel

3
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transient to determine the type of bit it assumes was

transmitted. Thus, the type of bit chosen by the decision

__+COS(wt) o--_ BANDPASS+NOISE FILTER

+ SYNC

INFORMATION COHERENT I
REFERENCE =-

MATCHED
FILTER

DUMP AND OUTPUT

DECISION _CIRCUIT

Fig. 4. Coherent PSK-detection channel

PROBABILITY
DEN_;ITY

"0" BIT RECEIVED

VOLTAGE .--i,-

"1 " BIT RECEIVED

p
Fig. 5. Probability density of PSK-detection channel

and matched-filter output at dump time

circuit is determined by the polarity of the integrator

output at dump time.

In this example, the amplitude distribution of the

integrator output at dump time becomes of interest in

determining statistical behavior. Note that, in contrast to

the FSK system of Fig. 2, the voltages of interest occur

only at discrete times, i.e., dump times. Figure 5 is a

sketch of the shape and position of the distribution of

the integrator output at dump time, and how it varies as

a function of input SNR.

4
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IV. INTERPRETATION OF EMPIRICAL AMPLITUDE-DISTRIBUTION ANALYSES

These amplitude-distribution analyses can conceivably

be used in numerous ways. One of the more obvious

ways is a visual examination of a family of ADA curves

with the object of comparing these curves with data

anticipated and with data obtained from similar tests on

prototype equipment-equipment known to perform sat-

isfactorily. Conclusions reached by this approach are

arrived at strictly on the basis of engineering judgement

and experience.

Another method in which ADA information can be

used is to estimate bit-error rates. Conceptually, this

method is based on the fact that amplitude-distribution

analyses are estimates of probability-density distribu-

tions. Consequently, the probability of the variable ex-

ceeding the threshold of the decision circuit at any

particular time of interest is simply the percent area
under the ADA curve where the abscissa has a value

greater than threshold. Or in a more concise statement

where

p=

VT

J_V _
P = pApA(V) dv

T

probability of error at any one instant,

value of the variable at the threshold of the

decision circuit,

variable,

probability density function obtained by nor-

malizing the ADA curve so that the total area

under the curve is unity.

In the data analyses performed, error rates of interest

are on the order of 10 -a to 10 -6. Thus, the percent area
that is of interest is 0.1 to 0.0001%. Since the total

area under experimental ADA curves is generally on the

order of 10 in. 2, direct physical measurement of the area

of interest becomes impractical. In fact, the numerical

value of the ADA probability density distribution is so
small near Vr that data are often not even taken in that

area. Practically then, the problem in applying amplitude-

distribution analyses to estimating bit-error rates reduces

to the following. Given a set of data points in a re-

stricted range, predict with some known accuracy the

behavior of the corresponding data outside the range
measured.

Considering the command detector of Fig. 2 from a

statistical communication point of view, one expects an

amplitude-distribution analysis performed on the enve-

lope detector signal to exhibit a near-Gaussian behavior

when a tone of the narrow bandpass filter frequency is

present at the detector input and near "half-Gaussian"

behavior when a tone other than the narrow bandpass

filter frequency is present. Indeed, one's expectations are

not greatly dampened by a cursory examination of the

ADA data plots (Fig. 8). Thus, in an effort to determine

the behavior of the data in ranges of voltage where

mechanical integration is impractical, attempts have

been made to fit the known data by some Gaussian
function.

The essence of this approach now becomes: fit the data

as best possible with a Gaussian curve and assume the

fit behaves properly at all points of interest. The manner

of fitting the data and determining precisely what is the

"best possible" fit now becomes the problem.

For the record, the following five methods of curve

fitting were investigated:

1. Graphical determination of variance and mean by

mechanical integration.

2. Mathematical fit of two points with an assumed
mean.

8. Mathematical fit of three points.

4. Linearizing of data.

5. Least-square error fit.

The data required to obtain the amplitude-distribution

plot in Fig. 3b was recorded in 5 min. Highly controlled,

stable conditions can be maintained for such a period

with a reasonable degree of effort. The effort involved in

maintaining similar conditions for many days or weeks,

as mentioned in conjunction with classical error testing,

becomes very demanding. This short time required to

record the necessary data is one of the most significant

factors of the entire ADA approach.

In the cases of primary interest-i.e., error rates on the

order of 10-5-the shape of the probability-density curve.

and the ability to extrapolate data become of great

importance if actual bit-error rates are to be estimated
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because of the small probability density around Vr. How-

ever in all the above curve-fitting techniques, an indica-

tion was found that the curves had variations from true

Gaussian behavior. When Gaussian behavior was as-

sumed, the answers obtained were wrong by several

(2 or 8) orders of magnitude if true error rates were
near 10 -_.

This observation leads naturally to the requirement

for more accurate information concerning the amplitude-

distribution density, particularly the "tails" of the curves.

This information cannot be obtained by x-y plotting of

the data as previously indicated, or even by printing it

in digitized form unless, of course, the amount of data

taken is increased. To well define the tail of the ADA

curve requires an amount of data approaching that re-

quired for classical bit-error testing. Thus, to truly save

test time it is necessary to use some method which al-

lows (1) application of technique to a non-Gaussian

(and preferably even undefined) amplitude distribution,

(2) extrapolation of observed data beyond the range of

data taken. It is in satisfying these two requirements

that the branch of mathematics dealing with extreme

value statistics becomes important.

V. INTRODUCTION TO EXTREME-VALUE STATISTICS

There have been many articles written about the

theory of extreme values. These are scattered throughout

scientific literature, have different nomenclature, are

somewhat concentrated mathematically and are largely

-what is often a handicap from an engineer's point of

view-written by mathematicians for other mathemati-
cians.

In addition, with the exception of an application

to capacitor failures as a function of voltage and age

(Ref. 5) most of the applications of extreme-value theory

have been in the fields of actuarial science, climatology

and aerodynamics. However it now appears that this

theory, which by its very nature is concerned with the

uncommon, the extreme, may well have a valuable con-

tribution to make to statistical communications in areas

where the uncommon is precisely what is of interest.

Grossly, this body of theory is concerned with develop-

ing mathematical descriptions of the behavior of the
"tails," i.e., extremes, of the ADA's of the previous sec-

tion, but different techniques and a slightly different

approach are used. Fundamentally, this theory defines

and allows extrapolation of a processed form of an ADA

without detailed knowledge of its shape (univariate

extreme-value theory). A second branch of this theory is

concerned with the situation where two interdependent

data streams are being processed simultaneously and

the statistics of one stream affect the processing of the

other (bivariate extreme-value theory).

6
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Vl. UNIVARIATE EXTREME-VALUE STATISTICS

The basic statement of univariate extreme-a, alue sta-

tistics in which we are interested, can be arrived at as

follows. Given a set of n independent samples from a data

source that forms some cumulative probability function,

F(x), we examine the probability e_n(x) that the largest of

these samples is less than x. Since the samples are inde-

pendent, this is simply

_n(x) = F_(x) (t)

Subject to certain restraints on F(x) that are not very

limiting in practice (to be detailed later), univariate

EVT states that as n--_ oo, _(x) asymptotically approaches

exp [-exp(-A)], where A is a linear function of x, i.e.

lim _(x) = _(x) = exp [-exp(-A)] (2)
n--_ oo

with

A -- _(x - u) (8)

Here, a and u are constants, and A is called the reduced

variate. Equation (2) is in fact an equality (Ref. 2) but the

asymptotic behavior indicated above [Eq. (2)] is a suffi-

ciently strong statement for our purpose.

In practice what one does is to take a "large" group

of data (typically n = 100) and find the largest data

point,X, within that group. According to Eq. (2) this

largest data point will approximately have a double-

exponential distribution. To experimentally find this dis-

tribution, i.e., the unknown constants of Eq. (8), we

proceed as we would with the experimental determina-

tion of any distribution; we obtain several, N, groups of

data and find the largest data point within each group.

These Xi's are then ordered and plotted with some stan-

dard technique. This plotting allows estimation of _(x0)

where x0 is the threshold value of x; thus, F_(xo) is known,

and F(xo) is calculable from this.

The above two paragraphs can be restated as follows:

In a sample of n independent observations, one of

them (or perhaps several identical ones) is the largest.

If N such samples are drawn, a distribution of extreme

values is obtained, and we are interested in its nature

under the condition that n is large. Videlicet, we claim

that this distribution of extreme values asymptotically

approaches Eq. (2) as n increases without bound.

Introduction of an example may well be appropriate

at this point. It will be worked in segments throughout

the report as it appears that each segment will be of aid

in understanding the subject.

Consider again the system of Fig. 4 introduced in

the section, Amplitude-Distribution Analysis. Table 1

lists successive samples taken from the integrator output

at dump time with a constant bit type and noise into the

detector. If the data of Table 1 are broken into groups of

100 successive data points (n --- 100), then we have 30

groups (N = 30) of 100 data points each. We now search

each group for that data point which has the greatest

value (indicated by the boxed entries in Table 1). These

extremes (one for each group of 100 samples) are tabu-
lated in Table 2.

The basic assertion has been that the data of Table 2

will have a distribution of the form described by Eqs.

(2)-(3) for some choice of a and u. Figure 6 plots the

data of Table 2 as a cumulative distribution and super-

imposes on the data points a curve of exp [-exp (-A)]
for a = 0.033363 and u = -171.632 which were chosen

by a maximum likelihood technique to be considered in

some detail later. The point to notice in Fig. 6 is that

there is reasonably good agreement between the curve of

Eq. (2) and the data obtained in Table 2.

As an aid to better visualizing the fit, (and indeed

fitting by eye if desired) Eq. (2) can be linearized; i.e., if

we plot A vs - In( - Incb), the data will be a straight line.

In fact, we can plot X vs -ln(-ln _) and the values of

and u can be estimated from the slope and intercept,

respectively, of the straight line. For convenience, extreme-

value probability paper is available which uses as axes X

in arbitrary units and -In(-In _) in units of ,I_. A sample

of the form is given as Fig. 7. Figure 6 is redrawn on

extreme-value probability paper in Fig. 8. Note that the

data appear to be scattered about the straight line. As a

matter of interest, experience has shown that visual fits of a

straight line to typical data give surprisingly good results.

Due to the fact that values of e_ = 0 or _I, = 1 cannot

be plotted in Fig. 7, the plotting positions tabulated in

Table 2 and used in Figs. 6 and 8 were chosen as

i/(N + 1) where i is the rank of the data point being

plotted, the data having been ordered in increasing

value. This particular choice of plotting position has a

number of pleasing features. However, this point will

not be pursued further in this report since plotting posi-

tions are not used in computer processing of data (mathe-
matical fit).

7



JPL TECHNICAL REPORT NO. 32-1025

Table 1. List of successive samples taken from the integrator output with

a constant bit type and noise into the detector

SAMPLE NUMBER DATA CHANNEL VALUE SAMPLE NUMBER DATA CHANNEL VALUE SAMPLE NUMBER

1 -337.0
2 -348.0
3 -377.0
4 -386.0
5 -415.0

6 -338.0
7 -J64.0
8 -313.0

9 -358.0
10 -246.0

11 -t31.0

12 -?83.0
13 -257.0
14 -334.0

15 -368.0
16 -383.0
17 -329.0
18 -414.0
19 -376.0
20 -339.0

21 -224.q
22 -254.0
23 -373.0
24 -269.0
25 -334.0
26 -393.0

27 -365.0
28 -239.0
29 -311.0
30 -270.0

31 -210.0
32 -249.0
33 -328.0
34 -354.0
35 -314.0
36 -329.0
37 -306.0

38 -237.0
39 -329.0
40 -306.0
4L -271.0

42 -297.0
43 -360.0
44 -363.0
45 -267.0
46 -225.0

47 -314.0
48 -314.0
49 -296.0
50 -308.0

51 -338.0
52 -311.0
53 -393.0
54 -243.0

55 -240.0
56 -313.0
57 -310.0

58 -378.0
59 -354.0
60 -311.0

61 -384.0
62 -381.0
63 -229.0
84 -300.0
65 -239.0
66 -448.0

67 -353.0
88 -279.0
89 -332.0

70 -327.0
7t -281.0
72 -342.0

73 -394.0
74 -277.0

DATA CHANNEL

75 -236.0
76 -325.0
77 "401-0
78 -319.0

79 -399.0

80 -258.0
81 -237.0
82 -298.0
83 -284.0
84 -360.0
85 -369.0

86 -324.0
87 -396.0
_8 -231.0

89 -297.0

90 -330.0
91 -366.0
92 -305.0
93 -287.0
94 -371.0

95
96 -293.0
97 -371.0
98 -309.0
99 -335.0

_00 -348.0
101 -355.0
102 -333.0
103 -207.0

t04 -266.0

105 -384.0
106 -285.0
107 -411.0
108 -280.0
109 -224.0
110 -237.0
111 -294.0
!12 -338.0
113 -293.0

114 -165.0
115 -203.0
116 -320.0
117 -400.0
lt_ -315.0
t19 -400.0
120 -284.0

12! -298.0
122 -334.0
123 -328.0
124 -172.0

125 -321.0
126 -342.0

127 -383.0
t28 -282.0
12g -383.0

130 -312.0
131 -296.0
132 -351.0
133 -368.0
134 -419.0

135 -237.0
136 -384.0

t37 -308.0
138 -258.0

t39 -379.0
140 -271.0
141 -266.0
142 -335.0
143 -387.0
]44

t45 -327.0
148 -262.0
147 -288.0

148 -318.0

149
150

15!
152

153

154

155
156
157

158
159
160
161
162

163
164
165
t86
167

168
169
170
t71
172
173

174
175
176
177
178
179
t80
t81
18?_
183
184
185

186
187
188

189
190
19!
192

193
194
195
196
197
198
t99

200
201

202

203

204

205

206

207

208

20g

210

211
212

213

214

215

216

217

218

219

220

221

222

-386.0

-287.0

-327°0
-374.0
-257.0

-280.0
-386.0

-265.0
-314.0
-333.0

-300.0
-354.0

-342.0
-414.0
-359.0
-379.0

-405.0
-369.0
-305.0
-361.0
-268.0
-308.0
-398.0

-318.0

-360.0
-422.0
-230.0
-30q.0
-244.0
-222.0

-334.0
-352.0
-351.0

-262.0

-342.0
-248.0
-324°0
-309.0

-320.0
-312.0

-307.0
-337.0
-145.0
-333.0
-265.0

-353.0
-374.0

-266.0
-364.0
-253.0
-341,0

-334.0

-315.0
-317.0

-318.0

-336.0
-337.0

-302.0
-331.0
-298.0
-354.0
-369.0

-381.0
-298.0
-2gq°0

-?_69.0
-308.0
-315.0
-319.0

-B83.0

-374.0
-220.0
-340.0
-388.0

VALUE

8
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Table1. (Cant'd)

SAMPLE NUMBER DATA CHANNEL VALUE SAMPLE NUMBER DATA CHANNEL VALUE

223
224
225

226
227
228

220
230

23!
232
233
234
235

236
237
238

239
240

241
242
243

244
245
246
247
_48
249

250
251
252
253
254
255
256
257
258

259
260
36!
262
263
_64
265

266
267
268
269
270
271

272
273
274
275
276
277

278
279
280

281
282
283

284
285
286
287

288
289
290

291
292
293
294
295
298
297

-360.0
-267.0

-2-56.0
-431.0
-229.0

-378.0
-350.0

-394.0
-317.0

-348.0
-385.0

-339.0
-343.0
-278.0

-418.0
-295.N

-322.0
-316.0
-336.0
-288.0

-352.0
-384.0
-312.0

-217.0
-379.0

-329.0
-273.0
-373.0
-360.0
-203.0

-253.0
-381.0

-305.0
-356.0
-265.0

-297.0
-343.0

-380.0
-239.0
-365.0
-301.0
-286.0
-282.0

-304.0
-275.0

-376.0
-:_46.0
-356.0
-297.0
-348.0

-318.0
-339.0
-335.0
-261.0
-334.0

-373.0
-267.0
-274.0

-317.0
-342.0
-297.0
-287.0

-214.0
-304.0
-341.0

-320.0
-285.0
-272.0
-347.0
-254.0
-296.0

-316.0
-217.0
-239.0

298
299
3OO

2961
2962
2963
2964

2965
2966
2967
2968

2969
2970
2971
2972
2973
2974

2975
2976
2977
2978

2979
2980
2981
2982
2983
2984

2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995

2996
2997
2998

2999
3000

-234.0
-313.0

-294.0

-313.0
-287.0
-231.0
-3t4.0
-366.0

-407.0
-358.0
-356.0
-330.0

r:-rrs_
-423.0
-319.0
-384,0
-329.0

-302.0
-320.0
-343.0

-304.0
-416.0
-382.0

-356.0
-299.0
-328.0
-286.0
-375.0

-391.0
-325.0
-347.0
-287.0
-338.0
-315.0
-450.0
-394.0

-407.0
-350.0
-423.0
-430.0
-395.0

-453.0
-308.0

9
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Table 2. Extreme data point for each group

of 100 samples

Group Chronological Ordered Plotting

no. extremes extremes position

I

2

3

4

5

6

6

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

--95

--138

--181

--158

--146

--179

--192

--211

--169

--198

--159

--204

--197

--157

--185

--173

--19

--103

--108

--153

--172

--112

--112

--121

--171

--190

--151

--110

--174

--170

--211

--204

--198

--197

--192

--190

--185

--181

--179

--174

--173

--172

--171

--170

--169

--159

--158

--157

--153

--151

--146

--138

--121

--112

--112

--110

--108

--103

--95

--19

0.0322581

0.0645161

0.0967742

0.1290323

0.1612903

0.1935484

0.2258065

0.2580645

0.2903226

0.3225806

0.3548387

0.3870968

0.4193548

0.4516129

0.4838710

0.5161290

0.5483871

0.5806452

0.6129032

0.6451613

0.6774194

0.7096774

0.7419355

0.7741935

0.8064516

0.8387097

0.8709677

0.9032258

0.9354839

0.9677419

From Fig. 8, we see that ¢I,(threshold) = _(0) is 0.99674.

But from Eq. (1) and the fact that we had n = 100,

¢I,(0) --- FI°°(0) = 0.99674 so that

F(0) = [1 -- (1 -- 0.99674)] 1/1°° = (1 -- 0.00326) 1/1°°

0.00326
= 1 + ... _ 0.9999674.

100

We conclude that for the raw data, the probability that

the data will be less than 0, i.e., the probability of a cot-

1,0

>-
_- 0.8
.J

_ 0.6

13-

w
_> O.4

_ O.2

?
:-210 -190 --170 --150

--0----

I
x = DATA

-- O=MAXIMUM LIKELIHOOD--
DATA FIT

I I I I
-130 -I 10 -90 --70 --50 --30 -10

DATA VALUE

Fig. 6. Cumulative probability of data extremes taken

from data of Table 2: plot A

rect bit, is 0.9999674. This means the probability of an

error on a single bit is 3.26 X 10-5. Note that only 3000

data samples were used to make this estimate and that

none of them were greater than threshold. Hence, using

classical error-counting techniques, no errors would have
been observed and the nominal, observed error rate

would have been zero. Of course, one would hesitate to

say the error rate is zero on the basis of only 3000 data

points, so more likely one would make a statement to
the effect that the error rate is less than 7.64 X 10_ with

90% confidence.

This observation brings up the question of confidence
intervals for the EVT estimate of error rate. If we define

Ao as the value of A at threshold,

Ao = a(Xo- u)

where Xo is the threshold in terms of the data, then it can

be shown (Ref. 1) that

Var_ 6 E 61_ (1-_+Ao) 2+ (4)

where v is Euler's constant, 0.5772 -... Furthermore, for

large N, the maximum likelihood estimators of a and Ao

are approximately bivariately normally distributed.

Using Eq. (4) in the example under discussion, we find
we can make the statement that the error rate is less

than 1.88 X 10 -4 with 90% confidence. In terms of a

two-sided confidence interval, with 90% confidence, the
error rate is between 7.49 X 10-6 and 1.42 X 10- 4. The

comparison of upper 90% confidence intervals, i.e., an

error rate of less than 7.64 × 10-9 by error counting and

1.88 × 10 -9 by EVT methods, gives an indication of one

of the prime advantages of the EVT approach to estima-

tion of error rates. Using EVT, we had a meaningful

estimate of the error rate, per se, which was totally absent

in the error-counting approach and in addition a tighter

IO
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tu"
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CUMULATIVE PROBABILITY,

{ { { I I I { I I I { 1 { I }

0.5 1.5 2.5 3.5 4.5 5.5 6.5

REDUCED VARIATE, ¥

Fig. 8. Cumulative probability of data extremes
taken from data of Table 2:

plot B

confidence interval on that error rate. Note that if the

data were such that the error rate had been lower,
the EVT estimate would have been lower and the EVT

confidence interval would have followed suit. However,

in all likelihood the error-counting method would have
counted no errors so that the statements as to error rate

and confidence interval would have stayed the same-

regardless of how much the error rate decreased!

The source of this improvement comes, of course, from

knowledge of not only whether or not an error occurs,

but how close it comes to occurring on each bit, i.e.,

knowledge of the amplitude distribution of the signal

behavior just prior to the point at which it is quantized.

However, EVT does not use knowledge of the entire

distribution but only parts of it. Specifically, we chose

n = 100 and selected the largest value out of that 100;
the other 99% of the data was discarded. This is the

price of being able to apply EVT techniques without

detailed knowledge of the amplitude distribution of the

data being processed.

VII. RESTRICTIONS AND LIMITATIONS ON USE OF UNIVARIATE
EXTREME-VALUE THEORY

An implicit restriction used throughout the report is

that the mechanism by which a system makes an error

is known and can be modeled accurately. In the example

above, the system was modeled by noting that the deci-

sion circuitry essentially looks at the polarity of the

integrator output at dump time. The application of EVT

to this system is then predicated on the assumption that

this is exactly what happens and the decision circuitry

has no biases and makes no errors. It might be pointed

out that accurate modeling of the decision making process

is not always as straightforward as the samples in Figs. 2

and 4 might lead one to believe. For example, the com-

mand receiver in the Surveyor Block I spacecraft is a

system in which the decision circuitry does not lend

itself to being modeled easily. There appears to be a

number of interrelated influences involving voltage and

time behavior on a bit-by-bit basis as well as a currently
not-too-well understood historical influence that some

(but not all) bits exert on others. In general, attempts to

model this system have led to results that are not
accurate to more than a factor of 5 so far as error-rate

prediction is concerned.

In the comments leading to Eq. (2), it was pointed out

that subject to certain restrictions on F(x),

lim Fn(x) = qS(X ) = exp [ -- exp(-- A)]
n-_ oo

The basic restriction on F(x) can be stated in either of

two ways: (1)

lim f(x) -- --lim f(x)
._'--,_ 1 - F(x) _-__ f(x)

or (2)

lim_ d r l-F(x)7_ =0
t dx L t(x)

12
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where f(x) -- F'(x); it can be shown that these two con- ,o

ditions are equivalent. Implicit in this requirement is the
need for x to be unlimited in the direction of interest. 08

Grossly, this requires that F(x) have a right-hand tail that

is qualitatively like the exponential distribution, (1 - e-Z). o_

Most of the classical distributions-Gaussian, Rayleigh,
etc.,-fall into this category as well as many forms of data

"_ 0.4

encountered in practice. The requirement for x to be ._
unlimited in the direction of interest is frequently ignored

by arguing that x can range far beyond values it normally o.z

assumes or values near threshold, and that for all prac-

tical purposes it can be considered as having unlimited o

range. If this is not true, EVT techniques can still be

used by making the appropriate transformations (Ref. 2).

Again, in the argument leading to Eq. (2) one basic

statement used the limit of x as n--_ _. Obviously, in

practice, n is finite, so the question arises as to how large

n must be. One would like to keep n as small as possible

so that no more data than necessary are used to get the

accuracy and confidence intervals desired. The problem

can be stated as: Given Nn data points, what is the opti-

mum manner of splitting the data points to get N as large

as possible (minimum confidence intervals), thus making n

small, but still keeping n large enough so that Eq. (2) is

a reasonable approximation?

There seems to be no clear-cut solution to this problem.

By experience we have found that it is difficult to con-

struct a reasonable curve of • = exp [ -exp( -A)] unless N

is at least 20; this is to say nothing of the ballooning
confidence intervals for small N's. But minimum sizes

for n appear much more elusive, partly, perhaps, because

it depends on how "nice" the behavior of F(x) is. In gen-

eral, especially in cases where little or nothing is known

about that behavior of F(x), we have found that n < 100

is asking for trouble; however, we have never found
n -- 100 to be insufficient.

If a data source is sampled periodically, the question

of how fast to sample becomes a real concern. If the data

are sampled too fast, then successive samples are not

independent as required for Eq. (1) while if they are

sampled much slower than truly necessary, some usable

data are lost and required test time is extended. Thus, the

question arises: What is the required degree of indepen-

dence, and how is this to be measured? Consider again

the data of Table 1 listing successive samples from the

integrator output with a constant bit type and noise into

the detector. The degree of independence of successive

samples can be indicated as in Fig. 9 which is the normal-

ized autocovariance of 400 samples. Successive samples,

-0.2

0 2 4 6 8 10 12 14 16

T, samples

Fig. 9. Normalized autocovariance of independent

samples

indicated by r = 1, have a value of -0.029. In the last

analysis, the degree of dependence or independence

between successive samples reduces to a subjective judge-

ment, but this approach does serve as a reasonable guide.
(For example, Fig. 10 uses data from a different source

taken at a high rate so that the samples are "somewhat"

dependent.) Data with autocovariances of successive

samples as high as 0.6 have been used successfully (but

not reliably); however, an upper limit of 0.3 is recom-
mended.

One of the advantages of EVT is that the processed

data exhibit some predictable behavior of which we can

take advantage. For example, the data of Table 2, pro-

cessed and plotted in Fig. 8, follow a straight line with

0.8

I
I

"_ 0.6 ',
Ig ,I

% 0.4 I
I

0.2

DEGREE OF'DEPEND'ENCE OF

SUCCESSIVE SAMPLES

\
\

0

0 2 4 6 8 I0 12 14

_', somples

16

Fig. 10. Normalized autocovariance of dependent

samples
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some reasonable degree of assurance. Based on this be-

havior, we extrapolate this line beyond the observed data

to make estimates of behavior at threshold (a data value

of zero in Fig. 8). This assumes that the data follow the

same pattern in regions where they were not measured

as in regions where they were. A certain hesitation may

be experienced by many people when extrapolation over

large values of the variate is required to obtain the desired

goal; however, we have never encountered any problems

traceable solely to this extrapolation. Perhaps this hesi-

tation can be lessened by noting that extrapolation over

large values of the variate required in Eq. (4) increases

Ao. This results in widening of the confidence intervals

pretty much as one would intuitively expect.

It was pointed out earlier that for a given sample _ize

there is some lower limit on error rate beyond which error-

counting techniques continue to give the same result. In

our specific example, the counted error rate gave a 90%

upper confidence level of 7.64 × 10 -4. As long as no errors

are counted, it does not matter what the true error rate is-

this same result will be obtained. The EVT approach

will, however, continue to make estimates of the actual

error rate as the error rates decrease, but the confidence
intervals will widen.

However, it will be well to consider for a moment the

converse problem, i.e., where the error rate increases. Since
there seems to be some lower limit on the amount of data

that is required in order to apply EVT (2000 to 3000 data

points) there will be an error rate at which the confidence

intervals for EVT and for error-counting techniques are

the same. At greater error rates, the situation will be

reversed; i.e., at greater error rates, EVT will require

the same amount of data just to be applicable, but error-

counting techniques will be able to obtain the same con-
fidence intervals with less data or narrower confidence

intervals with the same data. At an error rate of approxi-

mately 5 × 10-3, the confidence intervals arrived at by

EVT and classical techniques are the same. Thus, with

its more complex instrumentation, application of EVT to

estimation of error rates greater than 5 )< 10 -3 does not

appear practical, while at error rates less than 5 )< 10 -_,

EVT saves test time. Furthermore, the smaller the error

rate, the more time these techniques save on a percentage
basis.

The preceding sections have dealt with making pre-

dictions of maxima from a set of data. Frequently the
object of concern is behavior of minima. There is a similar

theory of EVT based on minima of extremes (Ref. 2).

Rather than introduce unnecessary complexity, minima

problems can be treated as maxima problems ff all the

data (including threshold values, etc.) are multiplied
by -1. In fact, this is what was done with the data of

Table 1, which lists the mirror images of the raw data.

The problem in that instance was to find behavior of

minima of data. The data were multiplied by -1, and the

maxima within each group were found and processed.

VIII. BIVARIATE EXTREME-VALUE STATISTICS

It was noted in Section II that in a coherent communi-

cation system (Fig. 4) the quality, or at least presence,

of the received reference or synchronization signal is of

interest. The reference and data information are usually

transmitted through the same medium at the same time,

simultaneously processed by the receiver in somewhat

different ways, and one received signal is used in the

detection of the second. In view of this, it is not surprising

when the statistics of the two channels are dependent.

In such cases, error probability estimation is stated in

terms of conditional probabilities, such as the probability

of a bit error given anindication of coherence. The proba-

bility of a bit error is known from univariate EVT, and

the probability of an indication of coherence may be ob-

tained similarly by applying univariate EVT techniques

to data from the synchronization channel. The problem

now is to find the probability of a bit error and an indica-

tion of coherence. It is to this case of two dependent chan-

nels that we now turn our attention, i.e., bivariate EVT.

Typically, command systems are mechanized to employ

an'indicator that inhibits data reception when the quality

of the received reference degrades below some pre-

determined criteria. Such a system is presented in Fig. 11.

14
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As might be suspected from consideration of the uni-

variate case, a sample n-bits long of pairs of devia-

tions (x,y) is taken where x is the analog signal in the data

channel just prior to quantization, and y is the analog

signal of the synchronization channel just prior to quan-

tization. Designating the thresholds of the respective

channels as Xo and Yo, we assume the signs so chosen that

x > Xo indicates a bit error and y > yo indicates loss of lock

(synchronization). We then record the largest x and the

largest y out of the n samples, regardless of whether or

not the largest x occurs on the same bit as the largest y.

This process gives rise to a new bivariate distribution of

random variables X and Y, corresponding to the extremes

of the data and synchronization channels, respectively.

From univariate EVT X and Y separately have ap-

proximately extreme-value distributions each with a and

u parameters, which are estimated from N extremes of

groups each of size n as described in Section VI. A linear

transformation, A = aA(X - uA), f_ = aa(Y - ua) is per-

formed to obtain a pair of random variables (A, f_) which

have as their marginal distributions the standardized
extreme-value distributions:

if(x) = exp (-- e -A)

• (y) -----exp(-- e-").

Note that we have _(x0) as the probability that n inde-

pendent bits are all correct and _(Y0) as the probability

that all n independent bits have in lock (coherence main-

tained) indications. Both of these probabilities are cal-
culable from univariate EVT.

We have N independent samples of (A, f_) which we

already have used to estimate the a's and u's and these

same N samples will be used to estimate the joint distri-

bution of (A, f_) according to a method given in Ref. 8.

This joint distribution of A and _ was shown there to be

approximately of the form

•It (x, y) = exp [-(e -A + e-") w(A - f_)] (5)

where w is a function satisfying some special conditions.

For reasons given in Ref. 3, and which are broadly out-

lined in the following section, we have taken w(A - _2)

to be one of functions wc(A - f_) given by

we(A-_) = 1- c sech2 (-_) (6)

where c is a parameter between 0 and 1/4. Thus, the "fifth

parameter," c, must be estimated instead of an unknown

function w(A -- f_).

At this point it might be well to reiterate the four

preceding paragraphs. Basically, the approach taken is to

record pairs of samples from the matched filter outputs

of Fig. 11 just before the filter is dumped. Such a set of

data might appear as in Table 8, which is an extension

of the example begun in Section VI. As in that section,

the proper sign convention is adopted so that maxima,

rather than minima, univariate EVT is applicable. The

data are then broken into groups of n points, n large

(typically n = 100) and the maximum value recorded

within each group for each channel (indicated by the

boxed entries in Table g) is selected as forming a new

pair of random variables, X and Y. For this selection of

maxima, the data from each channel are treated as ff

these were data from a univariate EVT problem inde-

pendent of the other channel. There is no guarantee that
the maxima for the two channels will occur on the same

sample. The extremes in Table 8 are chronologically

listed in Table 4. A linear transformation is performed
on the X's and Y's which is identical with that indicated

by Eq. (8) and results in a set of new random variables

(A,f_). The data from each channel are treated as an

independent univariate EVT problem. This yields _(x)

and _p(y) as indicated previously. Note that of necessity

these yields must be the marginal distributions of the

joint distribution, Eq. (5).

The basic assertion of bivariate EVT is that the joint

distribution of the linearly transformed data, _(x,y),

asymptotically approaches Eq. (5) for large n. It is pleasing

to notice that Eq. (5) is of the form of the product of the

marginal distributions and some modifying function. In

fact, after reflection on the form of the bivariate Gaussian

distribution, one might hazard a guess (quite correctly!)

that the function w(A - f_) denotes some form of corre-

lation. This is particularly apparent when Eqs. (5)-(6) are

combined, yielding

_,(x,y) = exp--[e-A-- c(e-A + e-")sech2(_-_--_)+ e -a]

(7)

It can be shown and has been substantiated in practice

that the constant c in Eq. (7) is a very sensitive indicator
of correlation between the data from the two channels.

As an elementary example, consider the case c = 0; then

• (x,y) = exp [-(e -A+ e-")]

= _(A) _(_),

which is frequently taken as the definition of statistical

independence.

16
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Table 3. Sample pairs from matched filter outputs just before the filter is dumped

SAMPLE NUMBER DATA CHANNEL VALUE SYNC CHANNEL VALUE

l -337.0 -575.0

2 -348.0 -585.0

3 -377.0 -536.0

4 -386.0 -497.0
5 -415.0 -555.0

6 -338.0 -399.0

7 -|69.0 -332.0

8 -313.0 -523.0
9 -358.0 -622.0

|0 -246.0 -48J.0

11 -131.0 -450.0

12 -283°0 -597.0

13 -257.0 -702.0

14 -334.0 -566°0
15 -368.0 -521.0

16 -383.0 -536.0

i7 -329.0 -609.0
18 -4|4.0 -556.0

19 -376.0 -570.0

20 -_39°0 -545.0

21 -224.0 -51t.O
22 -254.0 -340,0

23 -373.0 -596°0

24 -269.0 -536.0

25 -334.0 -646.0
26 -393.0 -566.0

27 -365.0 -583.0

28 -239.0 -601.0

29 -311.0 -492.0

30 -270.0 -533.0

31 -2tO.O -611.0
32 -249.0 -661.0

33 -328.0 -451.0

34 -35a.0 -533.0
35 -314.0 -544,0

35 -329.0 -456.0

37 -306.0 -560.0

3_ -237.0 -423.0

39 -329.0 -478°0
40 -306.0 -417.0

41 -271.0 -501.0

4? -297.0 -698.0

43 -360.0 -548.0

4_ -363.0 -544.0

45 -267.0 -592.0

45 -225°0 -471.0
47 -314.0 -449.0

48 -314.0 -591.0

49 -296.0 -666.0
50 -308.0 -555.0

5J -338.0 -479.0

52 -311.0 -452.0

53 -393.0 -584.0

54 -293.0 -746.0

55 -240.0 -345.0

56 -313.0 -511.0

57 -310.0 -653.0

58 -378.0 -638.0

5g -359.0 -425.0

60 -311.0 -540.0

51 -384.0 -641.0
62 -351.0 -649.0

63 -229.0 -566.0

64 -300.0 -473.0

65 -239.0 -434.0
66 -_48.0 -564.0

67 -353.0 -602.0

68 -279.0 -431.0

69 -332.0 -561.0

70 -327.0 -561.0

71 -281.0 -397.0

72 -342.0 "535o0

73 -399.0 -557.0

74 -277.0 -543.0

17
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SAMPLE NUMBER

7_

76

77
78

79

8O
8t
82

83

84
8S

86

87
88

8q

90

91
92

9:3

94

95
96

97

98
99

100

I01

102

I03

104

I05

106

107

108

I09

110

111

112

113

114

115

116

117

118

119

120

121

122

123

t24

125

126

127

128

129

130

131

132

134

135

136

137

138

139

140

14.1

142

143

144

145

146

147

148

149

150

151

152

Table 3. (Cont'd)

DATA CHANNEL VALUE

-236.0

-325.0

-a01 .O

-319.0
-399.0

-258.0

-237.0
-298.0

-284.0

-360.0
-369.0

-324.0

-396.0

-_31.0

-297.0

-330.0

-366.0

-305.0

-287.0

-371 .O

EEE_
-293.0

-371.0

-309.0

-335.0

-348.0

-355.0

-333.0

-207.0

-266.0
-384.0

-285.0

-411.0
-280.0

-224.0

-237.0
-294.0

-338.0

-293.0

-165.0

-203.0
-_20.0

-ao0.o

-315.0
-400.0

-284.0

-298.0

-334.0

-328.0

-172.0

-321.0

-342 .O

-383.0

-282.0

-383 .O

-312.0
-296 .O

-351.0

-368.0

-41g.0
-237.0

-384.0
-308.0

-258.0

-379.0
-271.0

-266.0

-335.0

-387.0

E_
-327.0

-262.0

-288.0

-318.0
-368.0

-287.0

-327.0

-374.0

SYNC CHANNEL VALUE

-513.0

-641.0

-452.0
-576 -0

-541.0

-622.0

-583.0
-441.0

-554.0

-569.0
-618.0

-544 -0

-548.0

-396.0
-483.0

-320.0

-519.0

-601.0

-400.0

-421.0

FT_V_q
-543.0

-429.0

-416.0

-601.0

-537.0
-641.0

-526.0

-414.0

-601.0

-602 -0

-446.0

-580.0
-542.0

-373.0
-493.0

-545.0

-556.0

-722.0

-394.0

-421.0
-516.0

-441.0

-545.0
-536 .O

-621.0
-545.0

-527.0

-617.0

-716.0

-662.0

-567.0

-471.0

-614.0

-702.0

-60g .0

-516.0

-437.0

-603.0

-693.0
-582.0

-627.0
-462.0

-532.0

-473.0
-659.0

-576.0

-656.0
-488 .O

-250.0

-563,0

-510.0

-528.0
-631.0

-660.0

-672.0

-521.0
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SAMPLE NUMBER

153

IS4

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

176

179

180

181

18P

183

184

185

186

187

188

189

19n

19!

IQ3

194

195

196

197

1.9_

199

2OO

201
2O2

203

20"

205

206

207

2O8
209

210

211
212

213

214

215
216

217
218

219

220

221
222

223

224

225
226

227

228

229

230

Table 3.

DATA CHANNEL

-257.0

-280.0

-386.0

-265.0

-314.0

-333.0

-300.0

-354.0

-342.0
-,q14.0

-359.0

-379.0

-405.0

-369.0
-308.0

-361.0

-268.0

-308.0
-398.0

-318.0

-360.0

-422°O
-230.0

-309.0

-244.0

-222.0
-334.0

-352.0

-351.0

-262.0
-342.0

-248.0

-324.0

-309.0

-320.0

-312.0

-307.0

-337.0

-145.0

-333.0

-265.0

-353.0
-374.0

-266.0

-364.0

-253.0
-341.0

-334.0

-315.0

-317.0

-318.0

-336.0

-337.0

-302.0

-331.0
-298.0

-354.0

-369.0

-381.0
-298.0
-299°0

-269.0

-308.0

-315.0

-319.0
-383.0

-374.0

-220.n

-340.0

-388.0

-360.0
-_67.0

-258.0

-431.0

-229.0

-378.0

-350.0

-394.0

(Cont'd)

VALUE SYNC CHANNEL VALUE

-387.0

-580.0

-402.0
-486.0

-564.0

-658.0

-452.0

-674.0

-570.0
-538.0

-615.0

-431.0

-632.0

-630.0

-393.0

-517.0

-621.0
-39t .0

-571.0

-632.0
-708.0

-353°0

-380.0
-511.0

-383 -0

-420.0
-490.0

-520.0

-562.0
-701.0

-437.0

-493 °0

-509.0
-874.0

-722.0

-452,0

-502.0
-443.0

-365.0

-511.0

-644.0

-601.0
-537.0

-422°0

-509.0

-302.0
-492o0

-398.0

-520.0

-450°0

-566.0

-512.0

-522.0

-608.0
-660.0

-482.0

-608.0

-622.0
-579°0

-525 -0
-432.0

-410.0

-550.0

-516-0

-498.0

-451.0

-440 -0
-372°0

-735°0

-519.0

-520.0
-463.0

-511.0

-614.0

-393.0

-527.0

-531.0

-617.0

lg
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2O

SAMPLE NUMBER

231

232

23_
234

235

236

237
238

239

240
241

242

243

244
245

246

247

248
249

25O

251

252
253

254

255

256
257

258

259

260

26t
262

263

264
265

266

267

268
269

270

27!
272

273

274

275
276

277

278

279

280

281

282

283

284
285

286

287

288

289

290
291

292
293

294

295
296

297

298

2(39

300

301

302

303

304

305

Table 3. (Cant'd)

DATA CHANNEL VALUE

-317.0

-348.0

-385.0

-339.0

-343.0
-?78.0

-_18.0

-295.0

-322°0

-316.0

-336.0

-288.0

-352.0
-384.0

-312.0

-217.0

-379.0
-329.0

-273.0

-373.0
-360.0

-203.0

-253.0

-381.0
-305.0

-356.0

-265.0

-297.0
-343.0

-380.0
--239.0

-365.0

-301.0

-286.0
-282.0

-304.0
-275.0

-376.0

-346,0

-356.0
-297.0

-348.0

-318o0
-339.0

-335.0

-261.0

-334.0

-373.0

-267.0

-274.0
-317.0

-342°0

-297.0

-287.0

-214.0

-304°0
-34to0

-320.0

-285.0

-272.0

-347.0
-254.0

-296.0

-316.0
-217.0

-239.0

-234.0

-313.0
-294°0

-317.0

-224.0

-340.0

-202.0

-350.0

SYNC CHANNEL

-510.0

-502.0

-466.0
-549.0

-492.0

-338.0

-577o0

-440°0

-575.0

-444°0
-598.0

-552.0

-595°0

-530°0

-631.0

-503.0

-429.0

-652°0

-488.0
-601 *0

-520.0

-400.0

-472.0
-500.0

-647.0

-468.0

-584.0
-510.0

-532.0

-66t .0

-657.0

-564.0

-620.0

-610.0

-447.0

-615.0

-512.0

-5/,3.0

-510.0

-570.0
-519.0

-427.0

-553.0

-559.0
-494°0

-467.0

-471°0
-721.0

-428.0

-658.0

-352.0

-595.0

-471.0

-652.0

-556.0

-510.0
-610.0

-372 °0

-59t .0

-419.0

-606.0

-682°0

-51g.O
-509.0

-467.0

-547.0
-463.0

-360°0

-387.0

-574.0

-446.0

-653°0

-537.0
-511.0

VALUE
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Table 3. (Cont'd)

SAMPLE NUMBER DATA CHANNEL VALUE SYNC CHANNEL VALUE

2922
2923

2924

2925
2926

2927

2928
2929

2930

2931

_932

2933
2934

2935

2936

2937

2938

2939

2940

2941

2942

2943

2944

2945

2946

2947

2948

2949

2950

295J
2952

2953
2954

2955

2956
2957

2958

2959

2960

2961

2962

2963

2964

2965

2966

2967

2968

2969

2970

2971

2972

2973
2974

2975

2976

2977
2978

2979

2960

2981

298?

2983

2984

2985
2986

2987
2988

2989

2990

2991

2992

2993

2994

2995
2996

2997

2998

2999
3000

-312.0

-319.0
-319.0

-329.0

-256.0
-263.0

-333.0
-352.0

-268.0

-297.0

-299.0

-296.0
-324.0

-316.0
-284.0

-345.0

-333.0

-248.0

-363.0
-376.0

-277.0

-346,0
-386.0

-302.0

-305.0

-297.0
-287.0

-389.0

-289.0

-328.0
-384.0

-296.0

-343.0
-247.0

-314.0

-312.0

-371.0

-384.0

-428.0

-313.0
-287.0

-231.0
-314.0

-366.0
-_07.0

-358.0

-356.0

-330.0

-423.0

-319.0

-384.0

-329.0

-302.0

-320.0

-343.0

-304.0

-416.0
-382.0

-356.n

-299.0

-328.0

-286.0

-375.0

-391.0

-325.0
-347.0

-287.0
-338.0

-315.0

-aSO.O

-394.0

-407.0
-350.0

-423.0

-430.0

-395.0
-453.0

-308.0

-441.0

-394.0
-571.0

-395.0
-653-0

-495o0
-560.0

-598.0

-525.0

-450.0

-514.0

-451.0

-465.0

-629.0
-653.0

-504.0

-464.0

-422.0

-645°0

-409.0
-475.0

-569.0

-532.0
-481.0

-526.0

-283.0

-343.0

-601.0
-491.0

-544.0

-521.0
-326.0

-514.0

-314.0

-377.0

-666.0

-426.0

-570.0

-603.0

-550.0

-496.0

-292.0
-581.0

-551.0

-519.0

-418.0

-625.0

-341.0

-480.0
-577.0

-551.0

-608.0

-602.0
-271.0

-571.0

-490.0

-601.0

-478.0
-568.0

-709.0

-477.0
-387.0

-481.0

-426.0
-495.0

-702.0

-574.0

-591.0

-485.0

-681.0

-547.0

-609.0
-488.0

-518.0

-676.0

-472.0

-421°0
-430.0
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Table 4. A list of pairs of extremes (X, Y)

Group

no.

6

7

8

9

10

11

12

13

14

15

Data

channel value

-- 95

--138

--181

--158

--146

--179

--192

--211

--169

--198

--159

--204

--197

--157

--185

Synchronization

channel value

--157

--199

--321

--355

--209

--331

--273

--299

--274

--322

--333

--300

--327

--321

--304

Group

no.

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Data

channel value

--173

-- 19

--103

--108

--153

--172

--112

--112

--121

--171

--190

--151

--110

--174

--170

Synchronization

channel value

--274

--216

--366

--253

--265

--293

--282

--336

--238

--215

--272

--326

--185

--255

--240

Although we have indicated how the constants in the

marginal distributions are found, the experimental deter-

mination of the constant c in Eqs. (6)-(7) has not been

considered. In practice, the parameter c is usually esti-

mated-at least initially--by a method first used in Ref. 3.

The technique revolves around the relation

Pr{ A - f_l< a) - e_ - 1 uf(a)
eawl +2 w(a) (8)

where a is some positive constant between 1.5 and 2.

Equation (8) is derived from Eq. (5) by integration be-

tween the proper limits. If we let vN(a) denote the number

of times [A_ - _2_[<a in N samples, then vN(a)/N is an

estimate of Pr{ [A - f_J <a} which is known from Eq. (8).
Thus, c satisfies

vz_(a)N-tanh(2)
+ 2c

sech2 (2) tanh (2)

1-c sech_ (2)

• /x
This can be solved for c giving an esttmate, c, for c as

In Ref. 3 it is shown that

Var _'- vN(a) I4N2 1 vN(-_a)]FCmuf(a)W2(a)]-]2 (10)

It turns out that the variance of _" does not depend very

much on the value of a, and for 1.5 < a < 2.0, it is approx-
imately twice the variance of the maximum likelihood

estimate over much of the range of c. Hence, this estimator

is a good one to use to avoid solving the ]ikelihobd equa-
tions, which for Eq. (7) are indeed formidable.

The processing of the data of Table 4 proceeds in the

following manner. Table 4 lists the pairs of random vari-

ables (X, Y) obtained by dividing the data into thirty
groups each of 100 points. Application of univariate EVT

to each channel independently results in the parameters

aA = 0.0&3363

uA = -- 171.632

a. ---- 0.022859

un = -- 302.892

-2sech _

tanh (-_-) vN(a)N

[(_-)] [ tanh(-_-)]-I-[sech_ (-_-)] [tanh/' a-_-_- vz_(a)l\2] N 3

(9)
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Table 5. Normalized pairs of extremes (A, _)

DATA CHANNEL SYNC CHANNEL
A Q

2.5567 3.3349
1.1221 2.3749

-0.3125 -0.4139
0.4548 -1.1911
0.8552 2.1463

-0,2458 -0.6425
-0,6795 0.6833
-1.3134 0.0890

0,0878 0,6604
-0,8797 -0.4368

0.4214 -0.6882
-1.0799 0o0661
-0.8464 -0.5511

0.4882 -0,4139
-0,4460 -0.0253
-0.0456 0.6604

5.0923 1.9863
2.2898 -1.4426
2.1230 1.1405
0,6216 0,8662

-0.0123 0.2261
1.9895 0.4776
1.9895 -0.7568
1.689_ 1.4834
0.0211 2.0091

-0,6128 0.7062
0,6883 -0,5_82
2.0562 2.6949

-0,0790 1.0948
0,0544 1,4376

These parameters are then used to normalize the random

variables of Table 4 (X, Y) obtaining the set of ran-

dom variables (A, ft) in Table 5. If we choose a in Eq. (8)

to be 1.5, we find from Table 5 that v3o (1.5) is 24 so that

we estimate Pr{ IA - ft I<1.5} -- 24/30 --- 0.80. Using this
in Eq. (9) gives an estimate F = 0.19254. For this example,
we then have

• (x) = exp - [e -'°33_63C_÷171"63_)] (lla)

@(y) : exp -- [e -'022859(y+302"892)] (llb)

and

We now have an expression for _(x,y) and by inserting

the thresholds of the two channels, we have the proba-

bility that the data channel and the synchronization
channel both make correct decisions on each of n bits

(since there are n samples per group). Then the proba-

bility, p, of any one bit being correct and being accepted_

i.e., the synchronization channel giving an in-lock indi-

cation is the n th root of this, or

p = _l/,, (xo, Yo). (12a)

Since the threshold devices of both channels are essen-

tially polarity sensing devices, the example gives as an
initial estimate

p = ._1/16o(Xo,yo) = _..oo (0, 0)

= (0.996345)1/loo

= 0.9999634

There are, of course, three other probabilities of interest.

These are (1) q, the probability of receiving and rejecting

a correct bit, (2) r, the probability of receiving and accept-

ing an incorrect bit and (3) s, the probability of receiving

and rejecting an incorrect bit. Of course, p + q + r + s : 1.
The interrelation of these four probabilities can be visual-

ized with the aid of Fig. 12 giving

q = @1/_60(Xo) - p (12b)

r = (I)1/100 (yo) - p (12c)

s=l--p--q--r (12d)

Using the four parameters aA, a_, uA and u, listed above

and applying univariate EVT to each channel inde-

pendently gives @_/_o6 (Xo), the probability of a correct

bit, and @1/1o0 (yo), the probability of an in-lock indica-

tion, respectively, as

_1/_oo (x0) = 0.9999674

_1/loo (go) = 0.9999902

",I'(x,y) = exp --
t e .033363(x+171.632) -1- e -.022859(y+302.s92) - 0.19254 [e -'°a336a(x+lTl'632) -F e -'022859(y+302"892) ]

(llc)
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probability regions

Hence, we compute for the initial estimate:

q = _1/100 (Xo) -- p = 4.02 X 10-6

r = _1/lo0 (Y0) -- p = 2.68 X 10-_

s= 1--p--q--r=5.82X10 °6

As indicated earlier, the maximum likelihood equa-

tions for Eq. (7) are quite difficult even to derive, let

alone solve. The approach taken by us has been to use

a numerical technique based on successive iterations of

the mixed second partial derivative of Eq. (7). This type

of maximum likelihood technique is described in more

Table 6. Conditional bit-error rates as a function

of threshold

Bias I (data, synchronization)

O, 0 O, --157 O, --252

Pr (bit error) 3.02 X 10 -_ 3.02 X 10 -5 3.02 X 10 -5

Pr(bit error given in-lock) 2.54 X 10 -5 1.46 X 10 -s 1.35 X 10 -5

Pr (out-of-lock) 1.22 X 10 -_ 4.05 X 10 -4 3.36 X 10 _

1Relative units.

detail in Section X. Applying this technique to the above

example results in the following parameters:

aA = 0.033500 uA = - 178.178

aa = 0.022290 u_ = - 300.845

c = 0.189145

Using these parameters, we recalculate the final results
as:

@/_oo (x0) ----0.9999698

¢1/loo (yo) = 0.9999878

p = 0.9999624

q = 7.89 X 100 6

r= 2.54X10 -5

s= 4.85X10 -6

In no case are any of the changes large ones.

It is interesting to note that while the probability of

making an error on any particular bit is 3.02 X 10-_, the

probability of making a bit error given an in-lock indi-

cation is 2.54 X 10-5/0.9999878 _ 2.54 X 10- 5, a slight

decrease. One is now in a position to begin questioning

the system design and asking for tradeoffs. For example,

by biasing the lock indicator so that it is more likely to

indicate out-of-lock, one would expect changes in the

conditional probabilities calculated above. To this end,
Table 6 was constructed.

We see from the table that the conditional probability

of a bit error is decreased by a factor of 2 as the lock-

channel bias is decreased to -252; but the probability

of an out-of-lock is simultaneously increased by a factor

of 300. This may or may not be acceptable, but the point

is that the tradeoffs are quantitatively known. Further-
more, these tradeoffs were arrived at without recourse

to hardware changes. The only change was that of Xo

and Y0 in Eqs. (11)-(12) and the reevaluation of the

probabilities of interest! Here we have a striking example

of the fact that extreme value techniques can be used as

a design tool, as well as for analysis after design.

The question now arises as to whether or not the data

fit obtained by using the techniques outlined above does

in fact represent the data in accordance with the asser-

tion in Eqs. (5)-(7). To aid in visualizing such a fit,

Fig. 18 shows the density corresponding to Eq. (7) along

with the experimental data fitted by the density. It might

be well to point out that the data presented in Fig. 13
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Fig. 13. Bivariate probability

are not the same as those used in the example above.

As opposed to the 3000 data points used in the example,

Fig. 18 represents 70,000 data points so that the experi-

mental density would be smoother. As in the example,

though, 3000 data points are a sufficient number to apply

the technique. The significant fact is that Fig. 18 dem-

density of data extremes

onstrates reasonably good agreement between the experi-
mental data and the fit obtained. Unlike the univariate

case, the experimental data are difficult to plot, and

visual fits of the data are not easily made or interpreted.

Little effort has been expended along these lines and no
success has been encountered.

IX. RESTRICTIONS AND LIMITATIONS ON THE USE OF
BIVARIATE EXTREME-VALUE THEORY

Many of the restrictions on the use of bivariate EVT
can be traced to those of univariate EVT. Of course, it is

necessary to be able to model the system accurately, and

it must be valid to apply univariate EVT to each of the

two variables independently. Successive samples were

assumed independent as in the univariate case, and the

same criteria of independence can be applied to each
channel as with the univariate case.
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However, in the step from Eqs. (5) to (7), i.e., choosing

w(A - f_), another restriction unique to bivariate EVT is

encountered. With the level of understanding that we

presently have, it appears there is a large family of func-

tions that could be used for w(A - f_). Each of these
functions satisfies all constraints known to exist on

w(A - f_).While the known constraints do not completely

specify w(A - f0, they are sufficient that the probabilities

calculated from #(x, y) do not appear to depend dras-

tically on the choice of the function w(A - _2) as long as

it is chosen within these constraints. In view of this fact,

the function in Eq. (6), wc(A- f_), was selected from

among the family of w's as one having nice mathematical

properties. Specifically, w(A - _2) was chosen so that it

depended on a single constant. Thus, the parameter c

of Eq. (7) is estimated rather than the entire function

w(A - f_).

A note of caution should be interjected at this point.
The value of c is restricted so that 0<c<¼. When c = 0,

the data from the two channels are uncorrelated, as

pointed out in Section VIII. However, the case of c = ¼

does not correspond to complete correlation. When c>¼,

the function ",y(x, y) in Eq. (7) ceases to be a valid prob-

ability function, i.e., ff(x, y) violates one of the basic

axioms of probability theory, namely that _(x, y) must

be a non-'decreasing function. The value of c = aA corre-

sponds to a linear correlation coefficient between the

extremes of the data, p, of %. Since p is much easier to

calculate than c, this fact is of considerable aid in apply-

ing bivariate EVT where high correlation between the

channels exists. Our experience has been that few systems

exhibit c's even approaching 1A. Usually c remains below

0.2, with p remaining below 0.4. Except in artificially

constructed cases, we have had no difficulties with large

values of c. On the other hand, small values of c are not

uncommon. When the data are uncorrelated, the maxi-

mum likelihood estimate of c is negative and must be

held at zero. This analysis is considered again in Sec-
tion X.

X. DATA-PROCESSING TECHNIQUES

The purposes of this section are to discuss in detail

the various processing techniques which we have used

to compute both the univariate and bivariate extreme-

value statistics, to present mathematical descriptions

where necessary, and to enumerate specific approaches

used to overcome difficulties encountered in processing

the data. All computations were accomplished by a

FORTRAN program written for an SDS-920 computer.
This section of the report is heavily slanted toward the

computer program. Appendix A describes the capabili-

ties and limitations of the program itself, Appendix B

contains a table of nomenclature of the program, a simpli-

fied flow diagram and a program listing. Appendix C

contains a copy of the sample output of the program

using the example discussed throughout this report.

For simplicity, the discussion which follows will be

geared to one channel only, and we have arbitrarily

selected the data channel. It should be kept in mind that

identical procedures must be applied to the second

channel in bivariate statistics, as well as further compu-

tations on both channels. These procedures will be
described later.

The development of EVT statistics in this report has

been concerned with predicting bit-error rates of maxima

from a set of data. In many instances we are concerned

with minima EVT, that is, with data where x < x0 de-

notes a bit error and/or y < y0 indicates a loss of syn-

chronization. The data-processing technique we have

used to handle this condition is to multiply any such

data, including the corresponding threshold, by -1 so

that maxima EVT is applicable.

The extremes used to estimate the statistics of the data

are obtained as follows. The data are divided into N

groups of n points each. The maximum value, Xi, from

each group of n points is then found, and using these N

maxima we proceed to calculate the univariate EVT

statistics. Having plotted the N maxima (Fig. 8) we see

that a straight line could be fitted by eye. However, we

desire a mathematical fit based on some minimizing

criteria, and to this end we use a maximum likelihood fit.

To obtain an initial estimate for the parameters aA

and uA we must first know the expected mean, t_e, and
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expected standard deviation, (:re, which are calculable

(see Ref. 2) as

( ,)_ 1 -- In -- ln_--4-- _
[-¢e -- "_ i=1

11 _I_ln(_ln i ) 12

(13b)

Note that as written, Eq. (13b) requires two sequential

computations; the first computes _e and the second cal-

culates _e. To reduce processing time, another form for

eomputing standard deviations is employed. Speeifieally,

(14)

Equation (14) calculates _ in one computation during

which two sums are formed, the sum of the individual

terms and the sum of the squares of the individual terms.

From the former sum we easily obtain /_, and direct

substitution into Eq. (14) yields _e.

It is shown in Ref. 2 that if _. denotes the mean and
_A the standard deviation of the data channel maxima

then as a first estimate a A and u A can be calculated as

o" e

C[ A --

(7 A

/z__Le
UA ---- boa -- C¢A

Knowing the values of a., u., and Xo, the threshold of the

data channel, we obtain initial estimates for • (xo) and

• :/_ (Xo) using Eq. (2).

To proceed with a maximum likelihood fit, we first

change parameters in the extreme value distribution of

Eq. (2) to a set of parameters more suited to our purpose.

Specifically, we are interested in the probability that a

random variable having an extreme-value distribution

will not exceed the threshold xo, rather than in the param-

eters aA and u A. This probability has been previously de-
fined as

where

(xo) = exp - [-exp (- Ao)] (15a)

A ° = a. (x ° - uA) (15b)

We write 4_ (x) in terms of a. and • (xo) rather than aA

and u A as

(x) = exp - [exp - - Xo)+ Ao)] (16)

which has the unknown parameters aA and A o.

We now obtain the maximum likelihood estimators of

% and Ao. Let X:, X2, ..., X Nrepresent the N data channel

maxima. Since the density function ¢(x) of Eq. (16) has
the form

d ,_(x)
exp Xo)+ Ao)]-- -- a. [- (ctA(x-dx

the likelihood function, L, for this sample is

N

L (X:,"., XN, a A, Ao) = -1-[ aA _ (X_) exp [--(aA (X_ -- Xo) + Ao)]
'i=1

= a_Eex p- (aa_=l(Xi-xo)+NAo)]exp--(4'=_exp-(a A(X_-xo) +Ao))
(:7)

To maximize Eq. (17), or equivalently, to maximize the logarithm of Eq. (17), we differentiate In L (since it has

a simpler form) and obtain

N

In L = NlnaA - Na. (_. - xo) - NAo - _ exp - (aa(X_ - Xo) + Ao)
4,=1

N

]nL _ N N(_.--xo) + E(Xl--x°)exp-- (a.(Xi--xo) + Ao) (lSa)

ln L
- N + _ exp - (a.(X_ - Xo) + Ao) (lSb)

_Ao _::

27



JPL TECHNICAL REPORT NO. 32-1025

To solve for the maximum likelihood estimators of aa

and Ao, a_A and/_o, we set

lnL _ lnL
-- -- 0

_aA _Ao

When set equal to zero, Eqs. (18a) and (18b) do not

have a closed-form solution; a numerical technique, the

Newton-Raphson method for solving systems of equations,
• . , /N /_'

is used to find good approximations to aA and Ao (Ref. 4).

Numerically, we proceed as follows. Using the initial esti-

mates of aA and Ao as the arguments for the partial deriva-

tives of In L, we compute better estimates to aA and Ao, say

a_ 1) and Ao¢l) and calculate the corresponding values of

In L/_a(_) and Din L/_A(o a). If both of these values are

greater than or equal to a specified limit (we have used

10 -_) we repeat the procedure and calculate a_2) and

A¢o2), obtaining still better estimates. This iterative pro-

cedure continues until Eqs. (18a) and (18b) both have

values less than our specified limit• At this point we take

the values of ct__) and A(oi)to be the maximum likelihood

estimators, a_'Aand _o.

To complete the univariate EVT application we com-

pute the statistics O(xo) and _l/_(Xo) from Eq. (2) using

the maximum likelihood estimators, obtain a new esti-

mate for uA by substituting _A and 2o into Eq. (15), and

proceed to find confidence intervals for the predicted

bit-error rate. In computing the confidence intervals we
use the fact that the maximum likelihood estimators _A

and/_o are approximately bivariately normally distributed

for large N (Ref. 1). If, for example, a 99% confidence

interval is desired, the quantile of order 0.99 of the unit-

variance normal distribution is 2.576 (that is, a unit nor-

mal variate is less than ±2.576 with 0.99 probability).

Thus, using Eq. (4) we set

X AA* = + 2.576 (var Ao)o o --

and compute the two-sided 99% confidence interval for

the predicted bit error rate by computing 1 - '_I/_(Xo)

for these two values of A* The data processing programo"

repeats the above procedure to also obtain the 95, 90,

80, and 70% confidence intervals.

Having calculated univariate EVT statistics for each

channel, we now proceed to bivariate calculations. We use

the univariate maximum likelihood estimators of aA, Ao,

aa, and f_o to linearly transform the N pairs of random

variables (Xi, Y_) obtaining the pairs (A_, ai) where

A_ = aA(Xi - uA)

ai = % (Y_ - %)

The parameter c is initially estimated by using Eqs.

(8)-(9) in which pr { ] A_ - fh [ < a} is approximated by
vN(a)/N where vN(a) denotes the number of times

IAi -a f< a in N samples; we restrict a so that

1.5 < a < 2.0. Using this value of c we compute the

initial bivariate statistics #(Xo, yo), p, q, r, and s as

described by Eqs. (7) and (12a-d).

At this point it seems wise to interject a few comments

concerning the different forms of Eqs. (5), (6) and (9)

which appear in the computer program.

Eq. (6)

w(A-a)=l-csech_(-_)

can be written as

4ce(A-a)

w (A - a) = 1 (1 + e(A-a)) _ (19)

The program uses Eq. (19) in calculating c, so that Eq.

(9) is rewritten as

/x
C 7--

tanh (2) vN(a)N

(1 4+e;a) '_(tanh (2)-- VNN(---a----_))

As stated previously the bivariate experimental data,

in comparison to that of the univariate ease, are difficult

to plot and do not allow a visual fit of the data which is

either easily made or interpreted. Once again, a mathe-

matical fit based on some minimizing criteria is desirable.

A maximum likelihood approach to calculate the estima-
^ " _' _a, and c_, such as the one used intors, aA, uA, aa,

calculating the univariate maximum likelihood estimators

is not feasible. The approach we have taken is based on the

likelihood function of _(x, y). Let the density function of

• (x, y) be represented by ¢(x, y) where

8x, 8y
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By straightforward calculations

+[---

_-g (z) (e -A + e -a) a, g (z)e -a + .-_--g (z) (e-A + e -a)

aA aa g, (z) (e -A -- e -a) + _ g"(z) (e -A + e-a) • ,I_(x, y)2
(20)

where

A _ (IA (x - /A)

a = aa (V - ua)

A-a
Z--

2

g(z) = 1- c sech 2z

g'(z) = 2 c sech 2 z tanh z

g"(z) = 2 c sech" z - 4 c sech 2 z tanh 2z

•_(x, y) = exp [ - (e-A + e a) g(z)]

If we let (X1, Y1)"'(Xz¢, YN) represent the N pairs of ran-
dom variables, the likelihood function for this sample is

N

uA, c) = II ¢(x,,
i=1

(21)

To proceed as in the univariate case would require that

we minimize In L which would necessitate finding the

five first partial derivatives of In L with respect to aA,

u A, a a, ua, and c, equating these equations to zero, and

solving these five simultaneous equations for the maxi-
mum likelihood estimators.

In lieu of the difficulties presented by the above ap-

proach, we have employed a numerical method based on

the assumption that the bivariate surface is "nice." This

assumption has been shown to be valid in all the various

examples we have tried. The method can be described

as a parabola fitting procedure on the five parameters.

We begin by selecting c as the first parameter to be

varied since aA, uA, aa, and u a have been estimated by

the univariate maximum likelihood fit. Holding the other

four parameters constant, we obtain two other values of

In L near c; that is, we set

_j_z C

_2 = c -- .01 [c I
= c +.01 Icl

and use these values to compute three corresponding

values, _, ¢2, and _3, of In L; that is

_i = In L ((X1, Y_), "", (XN, Y_); aA, uA, aa, ua, _¢)

N

= _ ln¢ (X,,Y_) i = 1,2,8
i=1

To fit a parabola through the points (_, _), (_2, _2), and

(_3, _3) we solve the three simultaneous linear equations

_=A}_+B_+C i=1,2,3 (22)

for the coefficients A and B using Cramer's rule. The

vertex, v, of the parabola fitted to these points will be

B
/)--

2A

If this newly computed vertex differs from the previous

vertex by some specified limit (we have been using

0.01%) then we consider the procedure to have con-

verged. If the two successive vertices do not satisfy this

condition, we determine new points for another attempt

at fitting a parabola, as illustrated in Fig. 14. We iter-

atively fit parabolas in this manner until the above

difference condition is satisfied, that is, until convergence
is achieved. The last vertex calculated is now used as a

better approximation to c.

Having found a better approximation to c we apply

this same method to aA, aa, uA, and ua in that order.

When all five parameters have been estimated, one iter-

ation is considered to be done. (The total number of

iterations is variable in the program of Appendix A.)

These newly estimated parameters are now used to
re-calculate the bivariate statistics of interest.

Several difficulties which we encountered warrant spe-

cial mention. Due to the numerical capacity of the

computer (approximately twelve decimal digits) some

overflow problems occurred when using Cramer's rule to

solve the system of equations used in the parabola fitting
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Fig. 14. Details of bivariate iterative maximum
likelihood fit

procedure. This problem is alleviated by performing a

translation of axes so that (&, _1) becomes the origin of

the new coordinate system. This new coordinate system

is used to compute the vertex of the parabola and to

determine the new set of points for the next parabola

fit. All other calculations are performed in the original

coordinate system.

Another problem occurred when taking the n th root of

the various cumulative probabilities, '_(Xo), '_(yo), and

q(Xo, yo). The first method we employed was to compute

• _/_ (xo) for example, as

@ln(xo) = exp [---lnIn ,I, (Xo)]

However, in cases where we were concerned with small

error rates, it was found that the round-off errors propa-

gated by the two program library routines, "exp" and

"log," occasionally affected our results significantly. A

second method of series expansion accurate to the elev-

enth decimal digit is incorporated in the program. @l'_(Xo)
is calculated as

@ln(xo) = [1 -- {1 -- _(Xo)}] I/n = 1 [1 -- @(Xo)] + ...
n

For purposes of comparison the program computes

@1_ (Xo) using both methods. _l/n (Xo) always assumes

the value computed by the second method, except in

instances where the second method overflows, due to the

capacity of the computer.

Further explanations concerning the data processing

program are necessary at this point. As stated in Sec-
tion IX on the restrictions and limitations of bivariate

EVT, the parameter c is restricted to the range 0 < c < 11.

After the last complete iteration of the bivariate maxi-

mum likelihood parabola fit, the program determines

whether or not c lies in the above closed interval. If not,

c is modified so that if c < 0 then c is set equal to 0 and

similarly if c > ¼ then c is set equal to %. These modifi-

cations occur prior to the final calculation of the bivariate

statistics, thereby assuring that c satisfies the restrictions

placed on it by the bivariate theory.

As an additional feature the data-processing program

computes the correlation coefficients between the data
and between the extremes of the data of the two chan-

nels. Neither correlation coefficient is used in EVT sta-

tistics. However, the correlation coefficient between the
data is an aid to evaluation of the data of the entire

test and the correlation coefficient between the extremes

of the data gives us an easily calculable indication of

anticipated behavior of the parameter c, which is of

considerable aid in applying bivariate EVT in cases

where high correlation exists. Using the notation ex-

plained earlier in this section, we compute, for example,

the correlation coefficient p between the extremes of the
two channels as

N

(x, - -
i=1

P = N o- A 0"_2

As in the computation of the standard deviations dis-

cussed above, this form of p requires two passes over the

data. Processing time is reduced by using the equivalent
form

N N N

i-1 i=1 i-1

P: N
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NOMENCLATURE

This table, although not intended to be complete, iden-

tifies the major parameters used throughout the report.

A nomenclature of the data-processing program is given

in Appendix B.

ADA Amplitude distribution analysis

c An indicator of correlation between pairs

of data extremes. A basic parameter of

v)

EVT Extreme value theory

/(x) Derivative of F(x) with respect to x

f'(x) Derivative of f(x) with respect to x

F(x) Cumulative probability as a function of x

L( ) Likelihood function

n The number of samples per group

N The number of groups

p The probability of receiving and accepting
a correct bit

q The probability of receiving and rejecting
a correct bit

r The probability of receiving and accepting
an incorrect bit

s The probability of receiving and rejecting
an incorrect bit

SNR Signal to noise ratio

u The mean of ,I_(x)

uA That u associated with the source of x data

un That u associated with the source of y data

w(A - f_) A class of correlation functions

wc(A - f_) A particular w(A - f_)

x Basic, measured variable of one channel

Xo Threshold value of x

X, Largest value of x within the i th group of

data; X has the same units as x

_A

.y

A

Ao

vN(a)

y Basic measured value of second channel

Yo Threshold value of y

Y_ Largest value of y with the iu_ group of

data; Y has the same units as y

A measure of concentration of if(x) about u

That a associated with the source of x data

That a associated with the source of y data

Euler's constant (0.5772...)

Reduced variate; A = a (X - u)

The value of A at Xo (threshold)

Expected mean of extremes of data

Mean of extremes associated with x data, X_

The number of times IA, - _, I< a in N
pairs of samples

p The linear correlation coefficient between

extremes of pairs of data samples

ae Expected standard deviation of extremes of
data

_a Standard deviation of extremes associated
with x data, X_

Density function corresponding to ¢(x)

!im: _n(X)

n--> co

The probability that in a set of n independ-

ent samples the largest sample is less
than x

Density function correspond to _(x, y)

The asymptotic expression for large n of the

probability that in a set of n independent

pairs of samples, the largest sample from

one member of the pair is less than x and

that the largest sample from the other

member is less than y

_2 Reduced variate; f_ : aa (Y -- u_)
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APPENDIX A

Data-Processing Program for Bivariate EVT Statistics

The data-processing program which computes the bi-
variate EVT statistics is written in FORTRAN, with the

exception of one subroutine which is written in SYMBOL.

The program is based on the capacity of an SDS-920

computer with an 8000-word memory. It was the authors'

intention to develop as flexible a program as possible. As

a result, the program devised is capable of processing

700 extremes for each channel, i.e., 700 pairs of random

variables. Because of the small memory size of the com-

puter, the numerous extremes we wanted to be able to

process, and the program flexibility we desired to in-

corporate, we were required to divide the program into
three sub-programs or links, only one of which remains

in the memory at any one time.

The first link of the program computes the univariate

EVT statistics for each channel independently, i.e., it

performs the following functions for each channel:

1. If necessary, multiplies the raw data by -1 so that

maxima EVT is applicable

2. Splits the initial data matrix into N groups of n

points each

8. Finds the maximum value within each group

4. Computes the parameters a and u

5. Computes the univariate EVT statistics

6. Computes the confidence intervals for the predicted
error rates

In addition, this first link computes the mean, standard

deviation and a form of signal-to-noise ratio for the raw

data of each channel. It also computes the correlation
coefficients between the data and between the extremes

of the data, and computes the classical, i.e., error-

counting, probabilities corresponding to the probabilities

p, q, r, and s of Eq. (12).

Link two is incorporated in the program as a supple-
ment to the univariate statistics. It orders the extremes

of each channel in increasing value, prints the unordered

extremes, the ordered extremes and their respective plot-

ting positions, and offers the operator an option of ob-

taining a plot of the data on a Cal-Comp plotter, coupled

to the computer (Appendix C). If a plot is desired, this

link scales the range of the channel maxima so that it

coincides with the smaller dimension of the Cal-Comp

plotting paper (10 X 16 in.) and so that the threshold

may also be plotted on the graph. Using the data chan-

nel, for example, this link plots the N scaled, ordered

channel extremes, Xi, vs - In [ -ln(i/(N ÷ 1))] where i is
the rank of the ordered extreme by drawing a +. The

latter coordinate is measured along the linear reduced

variate scale which runs parallel to the non-linear cumu-

lative probability scale (Fig. 7). The routine also plots

the reduced variate at threshold and two points of the

regression equation

reduced variate
X=UA _

These last three points are denoted by the mark [] on the

plot.

The third link of the program computes the bivariate

EVT statistics. It performs the following functions:

1. Computes an initial guess for the parameter c

2. Performs a variable number of iterations during

which a parabola fit is calculated in each of the

c, aA, aa, ua, u a planes

3. Computes bivariate EVT statistics whenever speci-
fied.

The program is blocked into these three links and their

respective subroutines in the following manner:

Link 1. -- Univariate EVT

UMAXLIK --Computes the univariate maximum
likelihood estimators

CONFINT --Computes the confidence intervals

for predicted error rates

Link 2. -- Univariate EVT

ORDER --Orders and prints the channel ex-
tremes

GRAPH -- Provides a linearized univariate EVT

plot
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Link 3. -- Bivariate EVT

BEVT -- Computes bivariate EVT statistics

BMAXLIK -- Computes the value of the bivariate
EVT likelihood function

PARAFIT -- Fits a parabola through three given

points and solves for the vertex

HELP m Determines new points for sueeessive

parabola fits

Each of the above links, except for the subroutine
GRAPH is written in SDS FORTRAN II. GRAPH is

coded in SDS symbolic programming language, SYMBOL.

All operational directions are typed on the console

typewriter during execution of the program. These direc-

tions indicate options which are available, and explain

the various inputs which the operator must supply. Some

elaboration on these options and required inputs seems

appropriate here.

The operator has the following options, all of which

are controlled by the four breakpoint switches on the
console:

1. Breakpoints one and two, respectively, control the

need for multiplication by -1 of the raw data from

the data and synchronization channels, i.e., whether

or not it is necessary to convert the data so that

maxima EVT is applicable

2. Breakpoint three controls whether or not link two

will be used. If it is used, breakpoints one and two

are used again to determine whether or not the

operator desires linearized univariate EVT plots of

the respective channels

. Breakpoint four controls whether or not link three

will be used, i.e., whether the program will proceed

to compute bivariate statistics, or will terminate ex-
ecution at the end of univariate calculations. If link

three is used, breakpoints three and four are used

again to offer further options on completion of

bivariate calculations. Breakpoint three gives the

option of changing the value of the variable a used in

Eq. (8) and breakpoint four, the option of changing

the thresholds of the two channels. These last options

may be used either individually or simultaneously, If

any one of the options is used, the program computes
bivariate statistics based on the changed inputs. If

neither option is used, execution is terminated and

control is transferred back to the top of the program

(link one).

All program inputs must be typed according to the

format specifications of the operational directions men-

tioned above. Link one requires that the operator input,

via the typewriter, the following variables in this order:

1. The test number

2. The number of groups

3. The number of samples per group

4. The data channel threshold

5. The synchronization channel threshold

6. The univariate maximum likelihood fit error limit

Link two takes all its inputs from link one. Link three

initially requires the following additional typewritten in-

puts in this order:

1. The total number of iterations desired for the bi-

variate maximum likelihood fit

2. The number of iterations to be performed before

bivariate statistics are computed, e.g., if the first

input = 8 and this input = 2, then 8 iterations will

take place, but bivariate statistics will be calculated

and printed after each second iteration

3. Value of the variable a used to compute the initial

estimate of the parameter c {Eq. (8)}

4. The bivariate maximum likelihood fit error limit

It should be noted that the various tests which we

executed were stored on magnetic tape with format fixed

by convention, so that the data were input via READ

TAPE commands. This input procedure would need to

be changed if data were used which were recorded under

any other convention.
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APPENDIX B

Data-Processlng Program Nomenclature, Simplified Flow Diagram, and Listing

This appendix contains a table of nomenclature for the data-processing pro-

gram (Table B-l), a simplified flow diagram of the program (Fig. B-l), and a

complete listing of the program segmented into three links, each having its respec-

tive subroutines (Table B-2). Since various portions of this program were written

at different times, the nomenclature varies from link to link. In an attempt to

alleviate any confusion which might exist, the table of nomenclature lists all

important program variables according to the links in which they are used, and

enumerates any equivalent names that might be used to represent the same

variables throughout the rest of the program. This table also states restrictions

which must be placed on certain variables for successful execution of the

program. It references specific variables according to sections, appendixes or

equations of this report which might clarify their usage.
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Table B-1. Nomenclature of the data-processing program

Variable
Equivalent

names
Definition Restrictions References

Link 1

ADC1

ADC2

MAXI

MAX2

ALPHA1

Ul

ALPHA2

U2

T1

T2

ITN

NG

NDP

XMEAN

SX

YMEAN

SY

EMEAN

SIGMA

CC

PER

POUT

PNEIN

IDEXT

ISEXT

ALPHAD

UD

ALPHAS

US

TD

TS

NQ

NDS

Storage array for data-channel data

Storage array for synchronization-channel data

Array for data-channel extremes

Array for synchronizatlon-channel extremes

Parameter alpha for data channel

Parameter u for data channel

Parameter alpha for synchronization channel

Parameter u for synchronization channel

Data-channel threshold

Synchronization-channel threshold

Test number

Number of groups (extremes)

Number of points/group

Mean of data-channel data and also of extremes of the data

Standard deviation Of data-channel data and also of extremes of the data

Mean of synchronization-channel data and also of extremes of the data

Standard deviation of synchronization-channel data and also of extremes of the data

Expected mean

Expected standard deviation

Correlation coefficient

Classical probability of an error

Classical probability of an out-of-lock

! Classical probability of no error and an in-lock

0 < NG < 700

0 < NDP

Section X

Section X

Section X

Section X

Eq. (13a)

Eq. (13b)

Section X

Appendix A

Appendix A

Appendix A
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Table B-1. (Cont'd)

Equivalent

Variable names Definition Restrictions References

Link 1 (Cont'd)

PNEOUT

PEIN

PEOUT

SNR

YTI

YT2

PCT 1

PCT2

PCT1NDP

PCT2NDP

ERROR

YTD

YTS

Classical probability of no error and an out-of-lock

Classical probability of an error and an in-lock

Classical probability of an error and an out-of-lock

Signal-to-noise ratio

Data-channel reduced variate at threshold

Synchronlzation<hannel reduced variate at threshold

Data-channel cumulative probability at threshold

Synchronization-channel cumulative probability at threshold

Predicted bit-error rate for data channel

Predicted out-of-lock rate for synchronization channel

Error limit for univarlate maximum-likelihood fit ERROR > 0

Subroutine UMAXLIK

Appendix A

Appendix A

Appendix A

Appendix A

Eq. (15b)

Eq. (15a)

Section VI

Section VI

Section X

F

G

FI

GI

DFDN

Univarlate maximum-likelihood equation

Univariate maximum-llkelihood equation

Partial derivative of F with respect to _A and then o._t

Partial derivative of G with respect to i, and then 9o

Mixed partial derivative of F and G with respect to O-A and n, and then o._ and no

Eq. (180)

Eq. (18b)

Section X

Section X.

Section X

Subroutine CONFINT

Z Section X

HOLD

BETA1

BETA2

IPCENT

Array containing the quantiles of order 99, 95, 90, 80, and 70 of the unit variance

normal distribution for computation of confidence intervals

Variance of the reduced variate at threshold

Upper confidence limit

Lower confidence limit

Percent confidence

Eq. (4)

Section X

Section X
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Table B-1. (Cont'd)

Variable
Equivalent

names
Definition Restrictions References

Link 2

MATRIX

Xl

MAX

MIN

I

J

Storage array to order channel extremes and to store coordinates to be plotted

Scale factor

Reduced variate at threshold

Scaled value of threshold

A point of regression equation

A point of regression equation

Subroutine ORDER

Section X

Appendix A

Appendix A

IARRAY

JARRAY

HOLD

NIT

NBEVT

A

C

DUA

F

G

ERROR

COUNT

II

Xl

X2

X3

Y1

Y2

Y3

VERTEX

Unordered extremes

Ordered extremes

Plotting position with respect to non-llnear cumulative probability scale

Link 3

Number of iterations for bivariate maxlmum-likelihood fit

Number of iterations to occur before computation of bivariate statistics

Strip estimator used to compute initial value of c

Bivariate EVT parameter c

Derivative of I-c sech2(_-_wlth respect to a

Normalized data-channel extremes

Normalized synchronizatlon-channel extremes

Error limit for bivariate maxlmum-likelihood fit

Number of times normalized variables fall within strip

Bivariate maximum-likelihood fit iteration number

•_Varied values of blvariate maximum-likellhood estimators

Correspondlng values of the bivariate-likellhood function

Vertex of parabola fitted to the points (Xl,Y1), (X2,Y2), (X3,Y3)

Appendix A

0 < NIT

I0< NBEVT< NIT

1.5 < A < 2.0

ERROR > 0

Appendix A

Appendix A

Section VIII

Section VIII

Section VIII

Section VIII

Section VIII

Section X

Section VIII

Section X

Section X

Section X
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Table B-1. (Cont'd)

Variable

P

Q

R

S

PP

QQ

RR

SS

SERIES

VARC

GU

GV

VARC

U

SECH2

TANH

WU

WUl

WU2

EX

EY

PROD

(P1 X,P1 Y)

(P2X,P2Y)

(P3X,P3Y)

AA

BB

Equivalent

names
Definition Restrictions References

Subroutine BEVT

Probability of

Probability of

Probability of

Probability of

Probability of

Probability of

Probability of

a correct bit being received and accepted

a correct bit being received and rejected

an incorrect bit being received and accepted

an incorrect bit being received and rejected

a correct command of length NDP being received and accepted

o correct command of length NDP being received and rejected

an incorrect command of length NDP being received and accepted

Probability of an incorrect command of length NDP being received and rejected

Value of the NDP tj' root of cumulative probabilities as computed by series expansion

Variance of parameter c

Probability of a correct bit

Probability of an in-lock on any one bit

Section VIII

Section VIII

Section VIII

Section VIII

Section Vlll

Section VIII

Section VIII

Section VIII

Section X

Eq. (10)

Section VIII

Section VIII

Subroutine BMAXLIK

Parameter c

{aa(X -- uA) - {z_(Y -- u_)}/2.0

Sech 2 u

Tanh u

g(u)

dg(u)/ du

d2g(u)/ du _

¢(x)

_(y)

Value of bivariate maximum-likelihood function

Section X

Section X

Section X

Section X

Section X

Section X

Section X

Section X

Section X

Eq. (20)

Subroutine PARAFIT

i

• Translated coordinates for parabola fit

I

Coefficient A of parabola equation

Coefficient B of parabola equation

Section X

Section X

Section X
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C MASTER @IV

Cooooooooeao

Ceoooooooeoo

C LINK(i) OF
C USES FORTR

C

C UNIVARIATE

DIMENS

COMMON

C TYPES OPER

I TYPE 9

PAUSE

TYPE 9

TYPE 9

2 ACCEPT

C SEARCHES D

3 READ T

IF(L-I

4 D_ 5 J

READ T

_9 TO

6 REW

C CAL. CULA

C CORRE

C C_MPUTE

C C_NVERT

C SPLITS

C FINDS G

C C_EFF

7 XME

YME

SX=

SY=

SUM

PER

POU

PNE

Table B-2. Listing of the data-processing program

A_IATE EXTREME VALU

.............. SANDR

..o ............ JULY

THE PROGRAM .......

AN SUBROLITINES UMAX

CONF

EXTREME VALUE CALC

InN IADCI(5OO),IADC

MAX1,MAX2,ALPHA1,A

ATIONAL DIRECTIONS

O0

E PROGRAM FOR TWO CHANNEL DATA ...........

A LURIE ........... . ......................

1966 ...................................

OO000000000eO_OOO_OOOIOOeOOOO0000010000IO

LIK (UNIVARIATE MAXIMUM LIKELIHOOD FIT)..

INT (CONFIDENCE INTERVALS) ...............

ULATIQNS .................... , ............

2(500),MAXI(7OO),MAX2(700)

LPHA2,Ut.U2,NG.NDP,TI,T2,1TN,ERROR

AND ACCEPTS TYPEWRITER INPUTS ............

01

_82.1TN.NG.NDP,TI.T2.ERROR

ATA TAPE FOR DESIRED TEST ...................................

AmE i.L.I,I,I,ITAB.TEMP,TEMP,TEMP,TEMP, TEMP.TEMP

TN)4.7.6

=I.ITA8

APE I

3

IND I

TO 3

TES THE MEANS, DEVIATIONS, SIGNAL TO NOI_E RATIOS, AND THE

LATI_N COEFFICIENT _F THE TOTAL SAMPLE ..... . ...................

S CLASSICAL PROBABILITIES ......................................

S ALL DATA $8 THAT MAXIMA EVT IS USED ..........................

THE INITIAL DATA MATRIX INTO NG GROUPS EACH OF NDP SAMPLES .....

R_UP EXTREMES (MAXIMA) FOR EACH CHANNEL AND THEIR CORRELATION

ICIENT ................... , .............. . ......................

AN=O.

AN=O,

O.

O.

XY=O.

=0°

T=O.

IN=O.
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Table B-2. (Cont'd)

g

10

11

13

!4

PNEOUT=O.

PEIN=O.

PEOUT=O.
JTAB=O

LARGEI=-IO00000
LARGE2=LARgEI

READ TAPE I_(IADCt(J),J=I,500)

READ TA_E t,(IADC2(J),J=I,500)
JTAB=JTAB+2

IF(SENSE SWITCH 1)11,9

TI=-T1
De 10 J=t,500

IADCI(J)=-IADCI(J)

IF(SENSF SWITCH 2)14,12
T2=-T2

DO 13 J=1,500

IADC2(J)=-IADC2(J)

II=1

K=t

15 III=O

16 III=III+t

XMEAN=XMEAN+IADCI(II)

SX=SX+(IADCI(II))**2

YHEAN=yMEAN+IADC2(II)

SY=SY+(IADC2(II))**2

SUMXY=SUMXY+(IADCI(II)),(IADC2(II))

IF(IADC_(II)-TI)41,41,31

31 PER=PER+I.O

IF(IADC_(II)-T2)33,33,32

32 PeUT=PSUT+I.O

PEOUT=PFeUT+I.O

GO TO 3_

33 PEIN=PETN+t.O

GO TO 3_

41 IF(IADC_III)-T2)37,37,34

34 P@UT=P@UT+t.O

PNE@UT==NE@UT+I,O

GO T@ 3_

37 PNEIN=PNEIN+t.O
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Table B-2. (Cont'd)

38 IF(IADC_(II)-LARGEI)18,18,17

17 LARGE]=TADCI(II)

18 IF(IADC_(II)-LARGE2)20,20,19

Ig LARGE2=TADC2(II)

20 IF(III-NDP)21.30,30

21 II=II+I

IF(II-500)16.16,22

22 READ TAPE I_(IADCI(J),J=I,500)

READ TAPE I_(IADC2(J).J=I,500)

85

2.3

24

25

26

27

28

3O

35
36

JTAB=JTAB+2

IF(SENS_ SUITCH 1)25.23

DO 24 J=t,500

IADCI(J}=-IADCI(J)

IF(SENSE SWITCH 2)28,26

D@ 27 J=1,500

IADC2(J)=-IADC2(J)

II=t

O@ TO I_

MAXI(K)=LARGEI

MAX2(K)=LARGE2

LARGEI=-IO00000

LARGE2=LARGEI

III=O

K=K+I

IF(K-NG)_I.21_35

DO 35 I=I,JTAB+I

BACKSPACE 1

K=NG*NDP

CC=(K*SUMXY-XMEAN*YMEAN)/(SgRT((K*SX-XMEAN**2}*(K*SY-YMEAN**2}))

XMEAN=XMEAN/K

YMEAN=YMEAN/K

SX=SQRT((SX/K)-XMEAN**2)

SY=SQRTt(SY/K)-YMEAN**2)

PRINT 903,1TN

SNR=XMEAN/SX

DB=O,434_945*20.O*(ALOG(ABSF(SNR)))

PRINT 904

PRINT 9_.K,XMEAN,SX,SNR,DB

SNR=YMEAN/SY
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Table B-2. (Cont'dl

5n

DB=O.43d_g45*20.O*(ALBG(ABSF(SNR)))

PRINT gOB
PRINT gO6.K.YMEAN.SY,SNRaDB

PRINT q_S_K=CC

XMEAN=O.

SX=O.

YMEAN=O,

SY=O.

SUMXY=O,

DO 50 I=l.

XMEAN=XMEA

SX=SX+(MAX

YMEAN=YMEA

SY=SY+(MAX

SUMXY=SUMX

CC:(NG*_UM

)

PRINT 9?6,

HOLD=PER

PER=PER/K

PRINT g03

PRINT g_4

PRINT 97n

HOLD=POUT

POUT=POUT

PRINT Q_

PRINT g?n

HOLD=PNEI

PNEIN=PNE

PRINT g_6

PRINT g_
HOLD=PNE

PNEOUT=P

PRINT g!

PRINT g_

HOLD=PET

PEIN=PEI

PRINT 91

PRINT g?

NG

N+MAXI(1)

I(I))*'2

N+MAX2(1)

2(I))*'2

Y+(MAXI(1))*(MAX2(1))

XY-XMEAN*YMEAN)/(SORT((NG*SX-XHEAN**2)*(NG*SY-YMEAN**2))

NGJNDP_CC

.ITN

,PER

,HOLD

/K

,POUT

,HOLD

N

IN/K

.PNEIN

R.HOLD

RUT

NEOUT/K

7,PNEOUT

n,HOLD
N

N/K

8_PEIN

_,HOLD
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C

C

C

C

C

C

Table B-2. (Cont'd)

HOL

PEO

PRI

PRI

C(gMPUTE

COMPUTE

I00 XME

YME

SX=

SY=

COMPUTE

EME
SI6

De
NQL

EME

110 SIG

EME

SIG

D=PEQUT

UT=PEOUT/K

NT 9_g. PEOUT
NT g_#.HOLD

S MAPGINAL EVT DISTRIBUTIONS FOR EACH CHANNEL ..................

S MEANS AND DEVIATIONS OF 6HANNEL EXTREMES .....................

AN=XMEAN/NG

AN=yMEAN/NG

SQRT((SX/NG)-XMEAN**2)

SQRTt(SY/NG)-YMEAN**2)

S EXPECTED MEAN AND OEVIATION.., ........ , ......................

AN=O.

MA=O.

II0 T=I,NG

D=-AI@G(-AL@G(I/(NG+loO)))
AN=EMEAN+HOLD

MA=STGMA$HOLD**_

AN=EMEAN/NG

MA=SeRT((SIGMA/NG)-EMEAN**2)

C8MPUTES F@R EACH C

THE INITIAL REDUC

AND THE INITIAL E

ALPHAI=_IGMA/SX

ALPHA2=SIGMA/SY

Ut=XMEAN-EMEAN/

U2=YMEAN-EM

YTI=(TI-UI)

YT2=(T2-U2)

PCTI=EXPF(-

PCTINDP=I-E

PCT2=EXPF(-

PCT_NDP=t-E

HANNEL THE LINEARIZATION PARAMETERS (ALPHA AND U).

ED VARIATE AND CUMULATIVE PROBABILITY AT THRESHOLD

STIMATE QF THE PREDICTED ERROR RATE ................

ALPHAi

EAN/ALPHA2

*ALPHA!

,ALPHA2

EXPF(-YT1))

XPF((ALOG(PCTI))/NDP)

EXPF(-YT2))

XPF((ALOG(PCT2))/NDP)

CeMPUTES TH_ UNIVARIATE MAXIMUM LIKELIHOOD FIT VIA SUBROUTINE UMAXLIK,

COMPUTES THE UNIVARIATE EVT STATISTICS .................................

COMPUTES CONFIDENCE INTERVALS VIA SUBROUTINE CeNFINT ..................

PRINT 903,1TN

PRINT gOT_NGJNDP_ERROR

PRINT 904

PRINT 908
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HOLD=I/ALPHAt

PRINT 91n. T1-ALPHA1JUt,U1.HOLDjYTIJPCTINDP.PCT1

CALL UMAXLIK(MAXI,TI,ALPHAI,NGmYTI,XMEANmERROR)
PCTI=EXPF(-EXPF(-YTt))

PCTINDP=I-EXPF((ALOG(PCTI))I_DP)

UI=TI-(vTI/ALPHAI)

PRINT g_B, ITN

PRINT gO4

PRINT 9_g

TEMP=tlALPHAt

PRINT g_O,TI,ALPHAI,UI,UI,TEMP,YTI,PCTINDP,PCTI

125 CALL CONFINT(YTI,NG,NDP}

PRINT gO3,1TN

PRINT QOI,NG,NDP,ERROR

PRINT gob

PRINT QP8

HOLD=t/ALPHA2

PRINT gI_,T2,ALPHA2,U2.U2,HOLD,YT2,PCT2NDP.PCT2
CALL UMAXLIK(MA'X2.T2JALPHA2=NGJYT2,YMEAN_ERROR)

PCT2=EXPF(-EXPF(-YT2))

PCT2NDP=t-EXPF((ALOG(PCT2))/NDP)

U2=T2-(YT2/ALPHA2)

PRINT 9O3, ITN

PRINT 9OS

PRINT 9_9

TEMP=IlALPHA2

PRINT 9|D.T2. ALPHA2.U2.U2.TEMP._T2_PCT2NDP.PCT2

|27 CALL CONFINT(YT2,NG_NDP)

IF(SENSE S_ITCH 3)130,131

130 CALL LINK(2)

13I IF(SENS_ S_ITCH 4)132,1

132 CALL LINK(3)

900 FORMAT(/$SET BP1 IF LOOKING FOR A MAXIMUM FOR ADC-t.S/3XRSRESET BP

11 IF LOQKING FOR A MINIMUM.S/SSET BP2 IF LOOKING FOR A MAXIMUM FOR

2 ADC-2._I3X,$RESET BP2 IF LOOKING FOR A MINIMUM.SISSET BP3 FOR PRI

3NTOUT 0_ CHANNEL EXTREMES AN_ OPTION TO OBTAIN A GUMBEL PLOT.SISSE

4T BP4 FMR BIVARIATE ANALYSIS.S/SCLEAR HALT.s/)

901 FORMAT(ISTYPE IN FORMAT (314,3F12.5)$,/$ ITN--TEST NO.SIS NG--NO

I- OF GR_tJPSSI$ NDP--NO. OF SAMPLES/GROUP$1_ T1,T2--ADC1,ADC2 THR
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2ESHOLDS_/$ ERROR--ERROR FOR UNIVARIATE MAXIMUM LIKELIHOOD FITS//)

902 FORMAT(314.3Ft2.5)

903 FORMAT(IHI.38X.$UNIVARIATE EXTREME VALUE$/46X,STEST$,I4//)

904 FORMAT(/_FOR ADC-I$/)

g05 FORMATI/$FOR ADC-2$/)

006 FORMAT(_ BASED ON THE TOTAL SAMPLE SIZE = _.16.$ SAMPLES$/5X,SMEA

IN = S.E_n.1215X.SSTANDARD DEVIATION = $.E2O.12/5X.SSIGNAL TO NOISE

2 RATIO = $.E20.12.$ = $,E20.12,$ DO.S11)

907 FORMAT(ISTHERE ARE $,15,$ GROUPS OF $,15, • SAMPLES EACH.$1/SERROR

I FOR UNIVARIATE MAXIMUM LIKELIHOOD FIT = $=E20.12/)

908 FORMAT($ VALUES BEFORE UNIVARIATE MAXIMUM LIKELIHOOD FITS//)

909 FORMAT(_ VALUES AFTER UNIVARIATE MAXIMUM LIKELIHOOD FITS)

gtO FORMAT(15X STHRESHOLD = $,E20.12//5X,$ALPHA = $.E20.12/SX.SU = $,E

I_O.12//_X.STHE REGRESSION EQUATION = $,F20.7,$ + $,F12.7,$ YS/SXSR

2EDUCED VARIATE AT TRIGGER LEVEL =$E20.t2//SX,$PREDICTED BIT ERROR

3RATE = _.E20°I2/5X,$CUMULATIVE PROBABILITY AT TRIGGER LEVEL = $.

4E20.12)
914 FORMAT(////SCLASSICAL PROBABILITIES$//$PROBABILITY OF. A BIT ERROR

1 = $,E20,12)

915 FORMAT(_PROBABILITY OF AN OUT OF LOCK = $=E20.I2)

916 FORMAT(_PROBABILITY OF A CORRECT BIT BEING RECEIVED AND ACCEPTED

1 = $,E_.12)

917 FORMAT(mPROBABILITY OF A CORRECT BIT BEING RECEIVED AND REJECTED

I = $,E?N.12)

918 FORMAT(¢PROBABILITY OF AN INCORRECT BIT BEING RECEIVED AND ACCEPTE

ID = $,EP_.12)

gig FORMAT(_PROBABILITY OF AN INCORRECT BIT BEING RECEIVED AND REJECTE

ID = $,E_0.12)

920 FORMAT(_ NUMBER OF OCCURENCES = $,F12.1/)
925 FORMAT(///$BASED ON SI55 RA_ DATA SAMPLES, THE CORRELATION COEFFI

1CIENT = $,E20.12)

926 FORMAT(I$BASED ON EXTREMES 8F $I45 GROUPS QF $I45 SAMPLES, THE C

tORRELATION COEFFICIENT = $,E20.12)
93(] FORMAT(/$IF AN ERROR IS MADE WHILE TYPING INPUTS, DO THE FOLLOWING

15/$ 1. PUT RUN-IDLE-STEP (R-I-S) SgITCH TQ IDLE$/$ 2. SET REGI

2STER KNOB TO C$/$ 3. PUSH START$/$ 4. FILL REGISTER DISPLAY WI

3TH A B_U 03522 COMMAND,$1BX$THAT ISJ WITH THE OCTAL NUMBER 00103

4522$/$ 5, PUT R-I-S SWITCH TO RUN$/$ 6. RETYPE INPUTS$//)

END
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C

C

C

C

C

C

C

C
C

C

C

Table B-2. (Cont'd)

SUBROUTINE UMAXLIK(IARRAY,T_ALPHARNQ.YTjZMEAN+ERR)

COMPUTES UNIVARIATE MAXIMUM LIKELIHOOD FIT ........ , ...................

OBTAINS MAXIMUM LIKELIHOOD ESTIMATORS OF ALPHA AND THE REDUCED VARIATE
AT THRESHOLD BY SOLVING

D(LBG L)

t. - ........... = 0

DALPHA

WHERE

LOG

AND I =

USES

199

2OO

205

210

215

_.25

AND D(LOG L)

2. - ........... = 0
OU

GI=GI

HOLD =

ALPHA

YT=YT

F=NQ/

C=-NQ

L = NG*LOG(ALPHA)-NG*ALPHA*(XMEAN-THRESHOLD)-NG*YT

-SUMMATION(EXP(-(ALPHA*(X(1)-THRESHOLD)+YT)))

l,_. ..... jNG ........................ , .......................

NEUTON-RAPHSON METHOD FOR SYSTEMS OF EQUATIONS.;.... ..... . .......

DIMENSION IARRAY(700)

F=NQ/ALPNA-NQ*(ZMEAN-T)

FI=-NQ/(ALPHA**2)

DFDN=-F

DO 200 I_I,NQ

HOLD=(IARRAY(1)-T)*(EXRF(-I.O*IALPHA*(IARRAY(1)-T)+yT)))
F=F÷HOL_

FI=FI-(!ARRAY(1)'T)*HOLD

DFDN=-F-DFDN

G=-NQ

GI=O.

DO 210 I=I,NQ

HOLD=EXPF(-IoO*(ALPHA*(IARRAY(1)-T)+YT))

G=G+HOL_

-H_LD

FI*GI-DFDN**2

=ALPHA-(GI*F-DFDN*G)/HOLD

-(-DFDN*F+FI*G)/HOLD

ALPHA-NQ*(ZMEAN-T)

DO 215 T=I,NQ

HOLD=EX=F(-I.O*(ALPHA*(IARRAY(1)-T)+YT))

F=F+(IARRAY(1)-T)*_OLD

G=G+HOLD

IF(ABSFtF)-ERR)220,19_,199

IF(ABSFfG)-ERR)225,19g,199
RETURN

END
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S

C C{gMPU

C COMPU

D

Z

Z

`341

34__

343

344

`345

.35O

g60

961

AEOF

Table B-2. (Cont'd)

UBROUTINE CONFINT(YTjNQjNDS)
TES TWO-SIDED CONFIDENCE INTERVALS FOR PREDICTED ERROR RATES.....

TES gO, gsJ gO, 80, AND 70 PERCENT CONFIDENCE INTERVALS... .......

IMENSI@N Z(5)

(1)=2._7509t

(2)=t.g60tOt

Z(3)=1.644731

7(4)=t._8t56!

Z(5):1.036435
HOLD=SORT((6/(NQ*9.880604))*((1-.57721566+YT)**2÷9.869604/@.O))

PRINT g_O

De 350 T=

BETAI=I-E

BETA2=I-E

GO TO (34

IPCENT=qg

gO TO 3_n
IPCENT=_

_0 TO 3=0

IPCENT=aO

GO TO 3_0

1,5

XPF((-EXPF(-YT-HOLD*Z(I)))/NDS)

XPF((-EXPF(-YT+HOLD*Z(I)))/NDS)

1,342,343,344,345),I

TPCENT=@n

gO TO 3¢n

IPCENT=70

PRINT g_t,IPCENTJBETAI,BETA2

FORMAT(I//$PERCENT CONFIDENCES, 23X,SCONFIDENCE

CTED BIT ERROR RATES/)

FORMAT(ItO,24X,E20.t2,24XJE20.12)

RETURN

END

INTERVAL FOR PREDI
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C MASTER BIVAPIAT

COOOOO0OOel060ooI

Cooooooooeoo_oooo

C LINK(2) OF THE

C USES FORTRAN SLI

C SYMBOL SU

C UNIVARIATE FXTR

DIMENSION M

COMMON MAXI

C ORDERS ADC-I EX

C PRINTS ADC-! EX

5O

C OPTI

Ty

TY

PA

IF

C SCALES

C CONVER

49

E EXTREME VALUE PROGRAM FOR TWO CHANNEL DATA.... .......

......... SANDRA LURIE .............. . ...................

.......... JULY Ig66 ...................................

PROGRAM .......... . .....................................

BROUTINE ORDER (ORDERS CHANNEL EXTREMES) AND

BROUTINE GRAPH (PRODUCES A GUMBEL PLOT ON THE PLOTTER).

EME VALUE CALCULATIONS .................................

AXI(700),MAX2(700),MATRIX(1402)

,MAX2JALPHAImALPHA2,Ui,U2jNGjNDPJTI,T2,1TN,ERROR

TREMES IN INCREASING MAGNITUDE .................. . ......

TREMES AND THEIR PLOTTING POSITIONS. ......... . .........

PRINT gO3,1TN

PRINT g_d
CALL @R_ER(MAX1.MATRIXJNG)

@N TO O_TAIN ADC-1 GUMBEL PLQT ....................................

PE 9_

PE 911

USE

(SENSE SWITCH 1)49.60

EXTREMES TO FIT EXTREME VALUE PROBABILITY PAPER ................

TS PLOTTING POSITIONS TO REDUCED VARIATE SCALE ..................

ALPHA=ALPHAt

U=Ut

YT=(TI-Ut)*ALPHAI

T=Tt

IHOLD=O

51 DO 52 I=NG, I,-}

K=2*I+I

52 MATRIX(K)=-MATRIX(1)

IF(MATRTX(2*NG÷I)-T)56,57,57

_6 IF(MATRIX(3)-T)70,72,72

70 HQLD=ABSF(T-MATRIX(2*Ne÷I))

XI=IOOO.Q/HOLD

MATRIX(1)=T*XI

GO TO 5g

72 HOLD=ABSF(MATRIX(2*NG+I)-(MATRIX(3)÷5))

GO TO 5_

57 H@LD=AB_F(T-(MATRIX(3)+5))
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C

C

C

58 XI=IOOn.n/HOLD

54 HATRIX(_I=(MATRIX(3)+5),XI

5g MATRIX(?)=-3OO

J=O

DO 55 I=3_2*Ng+2m2

MATRIX(1)=XI*MATRIX(1)

J=J+1

55 MATRIX(T+I)=IOO*(-ALOG(-ALOG(J/(NG+I.0))))

MAX=IOO*YT

MIN=-XI*T

I=-XI*U

J=-(XI*(U+I.0/ALPHA))

K=2*NG+_

CALL GRAPH(K+MATRIXmMAX,MIN_I_J)

IF(IHOLD'I)60.100.60

ORDERS ADC-_ EXTREMES IN INCREASING MAGNITUDE... .............. ........

PRINTS ADC-? EXTREMES AND THEIR PLOTTING POSITIONS .... ... .... . ........

60 PRXNT gO3_ITN

PRINT geS

CALL ORDER(MAX2.MATRIX,NG)

OPTION TO OBTAIN ADC-2 GUMBEL PLeT ....................................

TYPE g!3

911

E

ENSE SWITCH 2)61-100

61 A=ALPHA2

TYPE

PAUS

IF(S

ALPH

U=U2

T=T2

EXTREME VALUE$/46X,$TEST$.I4//)

YT=(T2-u2)*ALPHA2

IHeLD=I

G@ TO 51

100 IF(SENSE SWITCH 4)101.102

_01 CALL LINK(3)

102 CALL LINK(1)

903 FORMAT(IHIJ38XJ$UNIVARIATE

904 FORMAT(ISFOR ADC-I$/)

q0.5 FORMAT(I_FOR ADC-2$/)

911FORMAT(_ IF SETm POSITION PLOTTER PEN AT

1 _F GRAPH PAPERS/SCLEAR HALTS/)

917 FORMAT(/_SET BPl FOR ADC-1GUMBEL PLOTS)

913 FORMAT(/_SET BP2 FOR ADC-2 GUMBEL PLOTS)

END

B_TT_M RIGHT-HAND CORNER
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SUBROUTINE ORDER(IARRAYJJARRAY,NO)

ORDERS EXTREMES OF EACH CHANNEL IN INCREASING MAGNITUDE ...............

PRINTS UNOR_ERED AND ORDERED CHANNEL EXTREMES AND THEIR GUMBEL

PLQTTING POSITIONS ..................................................

DIMENSION IARRAY(7OO)JJARRAY(IO00)

DO 75 j=I,NQ

75 JARRAY(J)=IARRAY(J)

DO 85 J=I.NQ-1

MIN=JARRAY(j}

DO 85 I=J+IJNQ

IF(MIN-JARRAY(1))85.85,80

80 MIN=JARRAY(1)

JARRAY(1)=JARRAY(J)

JARRAY(J)=MIN

85 CONTINUE

PRINT g_

DO gO J=!.NQ

HOLD=J/(NQ+I.0)

90 PRINT g_I..I, IARRAY(J).JARRAY(J),HOLD

g50 FORMAT ($GROUP NUMBER$,_X,$UNORDERED EXTREMES$.IOXm$ORDERED EXTREM

IESS,12X,$PLOTTING POSITIONS/)

g51 FORMAT(17,122,127,t8X,Et7.tO)

RETURN

END
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* GRAPHS A LINEARIZED EVT PLOT ON THE CAL-COMP PLOTTER. ...... . ........ ..

* PLOTTER PEN MUST BE POSITIONED IN THE BOTTOM RIGHT-HAND CORNER. .......

XSD @PD OtO000000

$GRAPH PZE

* STORES ADDRESSES OF THE SUBROUTINE PARAMETERS ..... , ........... , .......

BRM 201SYS

XSD NUM

XSD POINT

XSD RVT

XSD THRES

XSD LINEO

XSD LINEI

BRM 202SYS

ADDRESS OF SAMPLE SIZE

BEGINNING ADDRESS OF COORDINATE ARRAY

ADDRESS OF THE REDUCED VARIATE

ADDRESS OF THE THRESHOLD

ADDRESS OF REGRESSION EQUATION POINT

ADDRESS OF REGRESSION EQUATION POINT

* PLOTS THE CHANNEL EXTREMES VS. THEIR PLOTTING POSITIONS _HICH HAVE

* BEEN LINEARIZED TO THE REDUCED VARIATE SCALE., .... , ....... . .........

LDX =00040000

NEXT LDA *POINT+I

STA XHOLD SAVES VALUE OF CHANNEL EXTREME

BRX $+1

LDA *POINT+!

STA YHOLD SAVES VALUE OF PLOTTING POSITION

BRX $+1

* DETERMINES INCREMENT ALONG THE CHANNEL EXTREMES AXIS ................ ..

, MOVES PEN ALONG CHANNEL EXTREMES AXIS ....... ....... ........... . ........

CLA

STA COUNT

LDA XHOLD

SUB *PQINT+I

STA TEMP

SKE ZERO

BRU $*2

BRU B

EQM 00064

MIW PYUP

EOM 14000

SKS 21000

BRU $-1

MIN COUNT
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LDA TEMP

SKE COUNT

BRU A

B BRX $+1

* DETERMINES INCREMENT ALONG THE REDUCED VARIATE AXIS._ .......... . ......

* MOVES PEN ALONG REDUCED VARIATE AXIS ................................ ,.
CLA

STA COUNT

LDA *POINT+I

SUB YHOLD

STA TEMP

SKE ZERO

BRU C

BRU $+10

EOM 00064

MIW PXUP

EOM 14000

SKS 21000

BRU $-1

MIN COUNT

LDA TEMP

SKE COUNT

BRU C

CLA

STA

BRM

BRU

COUNT

UPX BRANCH TO ROUTINE WHICH PLOTS A +

E-2

* ROUTINE WHICH PLOTS COORDINATES BY USING THE MARK +
UPX PZE POSITIONS PEN FOR VERTICAL'BAR'OF'+''''''''""'" "" "

D EOM 00064

MIW PYUP

EOM 14000

SKS 21000

BRU $-1

MIN COUNT

LDA =5

SKE COUNT

BRU D

BRR UPX
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E

LEFTX
F

G

CLA
STA
EOM
MIW
EOM
SKS
BRU
MIN
LDA
SKE
BRU
CLA
STA
BRM
CLA
STA
BRH
BRU
PZE
EOM
MIU
EOM
SKS
BRU
MIN
LDA
SKE
BRU
BRR
CLA
STA
EOM
MIW
EOM
SKS
BRU
MIN
LDA
SKE

COUNT
00064
MYDO
140O0

210O0

$-1
COUNT
--I0

COUNT
E

COUNT
UPX

COUNT
LEFTX
e-2

00064
MXUP
14000
21000
$-1
COUNT
=5
COUNT
F
LEFTX

COUNT
00064
PXDO
14000
21000
$-1
COUNT
=10
COUNT

Table B-2. (Cont'd)

9RAWS VERTICAL BAR OF +

POSITIONS PEN FOR HORIZONTAL BAR OF +

DRAWS HORIZONTAL BAR OF +
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BRU G

CLA

STA COUNT

BRM LEFTX

* TESTS TO SEE IF ALL COORDINATES HAVE BEEN PLOTTED .....................

CXA

ADD ONE

LDB =037777

SKM *NUM

9RU $+4

SUB TWO

CAX

BRU REST

SUB TWO

CAX

BRU

ALL COORDINATES HAVE BEEN PLOTTED

NEXT NOT ALL COORDINATES HAVE BEEN PLOTTED

* PLOTS THE FnLLOWING THREE COORDINATES BY DRAWING A SQUARE .............

* PLOTS THE REDUCED VARIATE AT THRESHOLD ...... . .........................

REST LDA *POINT+I

STA XHOLD SAVES VALUE OF LAST CHANNEL EXTREME

LDA *THRES

STA YHOLD SAVES VALUE OF THRESHOLD

BRM ABSCIS BRANCH TO PEN POSITIONING ROUTINE

BRX $+1

LDA *POINT+!

STA XHOLD SAVES VALUE OF LAST PLOTTING POSITION

LDA ,RVT

STA YHOLD SAVES VALUE OF REDUCED VARIATE

BRM ORD BRANCH TO PEN POSITIONING ROUTINE

BRM MARK BRANCH TO SOUARE DRAWING ROUTINE

* PLOTS POINT OF REGRESSION EQUATION WHEN REDUCED VARIATE = 0..... ......

LDA *THRES

STA XHOLD

LDA *LINEO

STA YHOLD

BRM ABSCIS

LDA *RVT

STA XHOLD

CLA

SAVES VALUE OF THRESHOLD

SAVES VALUE OF REGRESSION EQUATION

BRANCH TO PEN POSITIONING ROUTINE

SAVES VALUE OF REDUCED VARIATE
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STA YHOLD SAVES VALUE OF 0 FOR REDUCED VARIATE

BRM ORD BRANCH TO PEN POSITIONING ROUTINE

BRM MARK BRANCH TO SOUABE DRAWING ROUTINE

* PLOTS POINT OF REGRESSION EQUATION WHEN REDUCED VARIATE = t ......... ,.

LDA *LINEO

STA XHOLD SAVES LAST VALUE OF REGRESSION EOTN.

LDA *LINEr

STA YHOLD SAVES NEW VALUE OF REGRESSION EOTN.

BRM ABSCIS BRANCH TO PEN POSITIONING ROUTINE

* MOVES PEN ALONG REDUCED VARIATE AXIS SO THAT REDUCED VARIATE = I ......

CLA

STA COUNT

ZZ EOM 00064

MIW PXUP

EOM 140O0

SKS 21000

BRU $-1

MIN COUNT

LDA =105

SKE COUNT

BRU ZZ

BRM MARK BRANCH TO SOURE DRAWING ROUTINE

BRR GRAPH RETURN TO MAIN PROGRAM

* DETERMINES INCREMENT ALONG THE C_ANNEL EXTREMES AXIS ..................

* MOVES PEN ALONG CHANNEL EXTREMES AXIS .................................

ABSCIS PZE

CLA

STA COUNT

LDA XHOLD

SUB YHOLD

STA TEMP

SKE ZERO

BRU $+2

BRR ABSCIS

SKN TEMP

BRU $+3

CNA

STA TEMP

LDA YHOLD
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UP

t

_RD

SKG XHOLD

8RU UP

EOM 00064

MIW MYUP

EOM 14000

SKS 21000

BRU $-I

MIN COUNT

LDA TEMP

SKE COUNT

BRU H

BRR ABSCIS

EOM 00064

MIW PYUP

E0M 14000

SKS 21000
BRU $-1

MIN COUNT

LDA TEMP

SKE COUNT

BRU UP
BRR ABSCIS

DETERMINES INCREMENT ALONG

MOVES PEN At.ONG REDUCED

PZE

CLA

STA COUNT

LDA XHOLD

SUB YHOLD

STA TEMP

SKE ZERO

BRU $+II

EOM 00064

MIW PXUP

EOM 14000

SKS 21000

BRU $-1

MIN COUNT

LDA =5

THE

VARIATE

REDUCED VARIATE AXIS ..... , ..... , .......

AXIS ................... , ........... ,,,,
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Q

RIGHT

* ROUTI

MARK

P

TEMP

XHOLD

YHOLD
RIGHT

=5

COUNT

00064
MXUP

14000

21000

$-I
COUNT
TEMP
COUNT-
g
ORD
=5
TEMP
00064
PXUP
14000
21000

$-1
COUNT

COUNT

TEMP
RIGHT+2
{_RD

DRA_S

SKE COUNT

BRU $-8

BRR ORD
SKN TEMP

BRU $+3

CNA
STA

LDA

SKG

BRU
LDA

STA

EOM

MI_

EOM
SKS

BRU
MIN

LDA

SKE

BRU

BRR

LDA
ADM

EOM

MI_

EOM

SKS

BRU
MIN

LDA

SKE

@RU

BRR

NE UHICH

PZE

CLA

STA

E8M

COUNT
00064

Table B-2. (Cont'dl

A SQUARE ...........................................
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R

S

T

Table B-2.

MI_/

EOM

SKS

BRU

MIN

LDA

SKE

BRU

CLA

STA

E(gM

MI_/

EOM

SKS

BRU

MIN

LDA

SHE

BRU

CLA

STA

E(gM

MI_/

EOM

SKS

BRU

MIN

LDA

SKE

BRU

CLA

STA

E{gM

MI_/

EOM

SKS

BRU

MIN

LDA

(Cont'd}

PYDO

14000

21000

$-I

COUNT

=5

COUNT

P

COUNT

00064

MXDO

14000

21000

$-1

COUNT

=I0

C@UNT

R

C@UNT

00064

MYDO

140O0

21000

$-1

COUNT

=10

COUNT

S

COUNT

00064

PXDe

14000

21000

$-1

C_UNT

=I0
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SKE COUNT

BRU T

CLA

STA COUNT

EOM 00064

MIU PYDO

EOM 14000

SKS 21000

BRU $-I

MIN COUNT

LDA =5

SKE COUNT

BRU Z

CLA

STA C_UNT

BRM LEFTX
BRR MARK

NUM RES 2

POINT RES 2

RVT RES 2

THRES RES 2

LINEO RES 2

LINEI RES 2
ZERO PZE

ONE DATA I

TWO DATA 2

XHOLD PZE

YHOLD PZE

TEMP PZE

COUNT PZE

PXUP DATA 042000000

PYUP DATA 012000000

MXUP DATA 022000000

MYUP DATA 006000000

PXDO DATA 041000000

PYDO DATA 011000000

MXDO DATA 021000000

MYDO DATA 005000000

END

PEN UP. +X DIRECTION

PEN UPJ +Y DIRECTION

PEN UP, -X DIRECTION

PEN UP, -Y DIRECTION

PEN D_WNJ +X DIRECTION

PEN DO_N, +Y DIRECTION

PEN DOWN. -X DIRECTION

PEN DOWN, -Y DIRECTION
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C MASTER BIVARIATE EXTREME V

C ......................... SA

..........................,

C LINK(3) OF THE PROGRAM ....

C USES FORTRAN SUBROUTINES

C

C

C

C BIVARIATE EXTREME VALUE CA

DIMENSION MAXI(7OO),MA

COMMON MAXI.MAX2JALPHA

EQUIVALENCE (MAXI.IDEX

I(AL

STORES

FI=

GI=

DFD

ALP

T=T

YT=

ALUE PROGRAM FOR TWO CHANNEL DATA ....... ,.,.

NDRA LURIE ......................... ., ..... ,.

ULY 1966 ........................... oo ......

°°oooeooooooeoooeowo_omooooooeeoomlOOOmmomoo

BEVT (BIVARIATE EXTREME VALUE CALCULATIONS).

BMAXLIK (BIVARIATE MAXIMUM LIKELIHOOD FIT),,

_ARAFIT (PARABOLA FIT) .............. .... ,,,,

HELP (NEW POINT DETERMINATION FOR PARAFI[),.

LCULATIONS ..................................

X2(7OO)JlDEXT(7OO),ISEXT(700)

t,ALPHA2_UtJU2,NG,NDP,T1,T2JITN,ERROR

T),(MAX2, ISEXT),(ALPHAI_ALPHAD)

PHA2.ALPHAS).(UI,UD),(U2.US)_(TI,TD)J(TP,TS),(NDP,NDS)

C PARAMETERS ............... ° .....................................

ALPHAD

ALPHAS

N=UD

HA=US

D

TS

C TYPES OPERATIONAL DIRECTIONS AND ACCEPTS TYPEWRITER INPUIS ............

300 TYPE 9t_

TYPE 904

301 ACCEPT gO5,NIT.NBEVT,A,ERROR

C PICKS UP PARAMETERS ........ o ..........................................

3tO ALPHAD=FI

ALPHAS=¢I

UD=DFDN

US=ALPHA

TD=T

TS=YT

C ESTIMATES C PARAMETER

COUNT=O,

DO 350 T=I-NG

330
340

BY STRIP METHOD ....... .... ........ • ........ • ....

F=(IDEXTII)-UD)*ALPHAD

G=(ISEXT(1)-US)*ALPHAS

IF(ABSFrF-G).-A)340,350,350

COUNT=C_UNT+I.O
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350 CONTINUE

PRINT QhTJITN
PRINT 91n. NGmNDSRTDnTS.A.CQUNT

PRINT gltjNIT,NBEVTJERROR

COUNT=CeUNT/NG

DUA=(4.0*(EXPF(A)-EXPF(3.0*A)))/(I.O+EXPF(A))**4

HOLD=(EXPF(A/2.0)-EXPF(-A/2.0))/(EXPF(A/2.O)+EXPF(-A/2.O))-COUNT

C=H_LD/(_.O*DUA+((4.0*EXPF(A))/(|.O+EXPF(A))**2)iHOLD)

C_MPUTES INITIAL BIVARIATE EVT STATISTICS ............... o .............

370 II=O

CALL BEVT(ITN.NG.NDS.COUNT.A.DUA.ALPHAD.ALPHAS.UD.US.C.TD.TS. II)

BIVARIATE MAXIMUM LIKELIHOOD FIT .................................. ....

FITS A PARABOLA THROUGH EACH eF THE PARAMETERS C. ALPHAI. ALPHA2. UI.

AND U_ ............................................ .................
H=o:o;
HOLD=O.

De 700 I=I.NIT.NBEVT

De 600 j=I.NBEVT

VARIES C PAP

XI=C

X2=C-H,A

X3=C+H,A

501 CALL BMA

502 CALL BMA

503 CALL BMA

AMETER AND PERFORMS A PARABOLA FIT ........................

BSF(C)

BSF(C)

XLIK(ALPHAD.ALPHASJUD.US.XIJYI=IDEXTJISEXT.NG)

XLIK(ALPHAD.ALPHAS.UD.US,X2.Y2.1DEXTJISEXT.NG)

KLIK(ALPHAD.ALPHAS.UD.US.X3.Y3.1DEXT+ISEXT.NG)

CALL PARAFIT(Xt. YI.X2.Y2.X3.Y3JVERTEX)

CALL HELP(.HOLDJXt. YI.X2.Y2.X3.Y3.VERTEX.ERRBR.H)

IF(HOLD-_.O)505.StO,505
g_ TO (_n3,502,501),Y35O5

510 C=VE

VARIES A

Xt=A

X2=A

X3=A

511 CALL

512 CALL

51_ CALL

CALL

CALL

RTEX

LPHAt PA

LPHAD

LPHAD-H*

LPHAD+H*

BMAXLIK

BMAXLIK

BMAKLIK

RAMETER AND PERFBRMS A PARABOLA FIT ..... . .............

ABSF(ALPHAD)

ABSF(ALPHAD)

(Xt. ALPHAS.UD.US.C.YlJIDEXT. ISEXT.NG)

(X2. ALPHAS.UD.US.C.Y2_IDEXT. ISEXT.NG_

(X3.ALPHAS.UD.US.C.Y3.1DEXT. ISEXT.NG)

PAPAFIT(XI,YI,X2,Y2,X3,Y3,VERTEX)

HELP(HeLD,X1,YI,X2,Y2, X3,Y3.VERTEX.ERR_R_H)

63



JPL TECHNICAL REPORTNO. 32-1025

TableB-2. (Cont'd)

IF(HOLD-O.O)515,520,515

515 GO TO (F$3,512,511),Y3

520 ALPHAD=VERTEX

C VARIES ALPHA_ PARAMETER AND PERFORMS A PARABOLA FIT ..... . ..... ........

XI=ALPHAS
X2=ALPHAS-H*ABSF(ALPHAS)

X3=ALPHAS+H*ABSF(ALPHAS)

521 CALL BMAXLIK(ALPHADJXI_UD_USJC.Yt. IDEXTJISEXT.NG_

522 CALL BM_XLIK(ALPHAD.X2.UD.USJC.Y2.1DEXT. ISEXT.NG)'

523 CALL BMAKLIK(ALPHAD.X3.UD.USaC.Y3.1DEXT_ISEXT.NG)

CALL PARAFIT(XI.Y1.X2.Y2.X3.Y3.VERTEX)

CALL HELP(HOLD.XI.YI.X2.Y2.X3.Y3.VERTEX.ERR_R.H)

IF(HOLD-O.O)525,52g,525

525 GO TO (5_3m522.521)jY3

529 ALPHAS=VERTEX

C VARIES Ul PARAMETER AND PERFORMS A PARABOLA FIT .......................

530 XI=UD

X2=UD-H,ABSF(UD)

X3=UD+H,ABSF(UD)

531 CALL BMAXLIK(ALPHAD.ALPHAS.XI.US.C.YI.IDEXT. ISEXT.NG)

532 CALL BMAXLIK(ALPHAD.ALPHAS.X2.US.CmY2.1DEXT. ISEXTjNG)

533 CALL BMAXLIK(ALPHAD. ALPHAS.X3.US.C.Y3.1DEXT.ISEXT.NG)

CALL PARAFIT(XI.Y1.X2.Y2.X3.Y3.VERTEX)

CALL HELP(HOLD.XI.YI.X2.Y2.X3.Y3_VERTEX.ERRBR.H)

IF(HOLD-n.O)535.540.535

535 GO TO (_3,532_531).Y3

540 UD=VERTEX

C VARIES U2 PARAMETER AND PERFORMS A PARABOLA FIT .......................

XI=US
X2=US-H*ABSF(US)

X3=US+H*ABSF(US)

541 CALL BMAXLIK(ALPHAD_ALPHASjUDmXI.CeYIJIDEXTmISEXTjNG)

542 CALL BMAXLIK(ALPHAD.ALPHAS.UD. X2.C+Y2.1DEXT. ISEXTJNG)

543 CALL BMAXLIK(ALPHAD.ALPHAS.UD.X3.CmY3.1DEXT.ISEXT.NG)

CALL PARAFIT(Xt_YIJX2.Y2.X3.Y3JVERTEX)

CALL HEI.P(HOLD,Xt.YI.X2.Y2,X3,Y3.VERTEX.ERROR.H)

IF(HOLD-_.O)545_550.545

545 GO TO (_43=542J541),Y3

550 US=VERTEX
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II=II+I

600 CONTINUE

IF(II-NTT)650,625,625

C ON THE LAST ITERATION REPLACES C BY ZERO IF C IS LESS THAN ZERO AND

C BY 0.25 IF C IS GREATER THAN 0.25 ...................................

625 IF(C)630.650,626

626 IF(C-O._S)650_650e627

627 HOLD=O._S
630 CALL BEVT(ITN,NGeNDSeCOUNT.AeDUAeALPHAD, ALPHAS,UDeUSeHOLDeTDeTSe

Ill}

GO TO 7on

6so CALL BEVT(ITN_NGmNDSmCOUNT.A,DUAJALPHADeALPHAS.UDeUSeCeTDeTS, II)

700 C@NTINUE

IF(C)70_-725,710

705 PRINT g!_eC

GO TO 7?5

710 IF(C-O._%)725,725e715

715 PRINT g14,C

C OPTIONS TO ALLOW CHANGING @F THE PARAMETER A AND THE THRESHOLDS OF THE

C TWO CHANNELS ........................................................
725 TYPE 9|_

PAUSE

IF(SENSE SWITCH

C INPUT NEW VALUE FOR

730 TYPE _16

73t ACCEPT gI7.A

750 IF(SENSE S_ITCH

C INPUT NEW VALUES FOR

760 TYPE 91_

761 ACCEPT @19eT,YT

TD=T

TS=YT

IF(SENSE S_ITCH 3)310.762

762 PRINT g_7,ITN

X=C@UNT*NG

PRINT gtn. NGJNDS,TDJTSJA.X

GO TO 6_5

770 IF(SENSE SWITCH 3)310J800

C JOB DONEe RETURN CONTROL TO LINK

3)730,750

PARAMETER A ................. . .....................

4)760e770

CHANNEL THRESHOLDS ...............................

(1)ee$ooooo-ooo. ooeooooooooooeoeoomoooo
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800 TYPE 906

CALL LINK(t)

gO4 FORMAT(/SINPUT IN FORMAT 2110,2Ft5.5S/$ NIT--ITERATIONS FOR BEVT

1MAXIMUM LIKELIHOOD FIT$1$ NBEVT--ITERATIONS BEFORE EACH BEVT PROB

2ABILITY CALCULATION$/S A--STRIP ESTIMATE PARAMETER$/4X$A MUST BE

31N THE CLOSED INTERVAL 1.5 Te 2.05/$ ERROR--ERROR FOR BIVARIAIE M

4AXIMUM LIKELIHOOD FITS/)

g05 FORMATI_IIO.2F15.5)

g06 FORMAT(/SjOB DONE. READY NEW INPUT.S/)

907 FORMAT(tH1.38XSBIVARIATE EXTREME VALUES/d6X.$TESTSmI4//)

910 FORMAT(/I/ISTHERE ARE $.I5,$ GROUPS OF $,I5.$ DATA POINTS EACH,S//

1/$ADCt CHANNEL THRESHOLD = $aFtO,5//$ADC2 CHANNEL THRESHOLD = $.F1

20.5///$A = $.FtO.5//$ABS(XADCI(N)-XADC2(N)) LESS THAN A OCCURS $F6

3.25 TIMES.S/l)
911F_RMAT(/I3$ ITERATIONS TO BE PERFORMED°$//$BIVAR;IATE CALCULATIONS

tUILL OCCUR EVERY $,12.$ ITERATIONS.S//// $ERROR ESTIMATE FOR MAXIM
_UM LIKELIHOOD FIT = $,E20.12)

912 FORMAT(///_ON THE LAST ITERATION C WAS NEGATIVE, C = $,E20.12/$FOR

1 THE PRFCEDING BIVARIATE COMPUTATIONS C = _.05)
913 FORMAT(/$IF AN ERROR IS MADE WHILE TYPING INPUTS. DO THE FOLLOWING

15/$ 1. PUT RUN-IDLE-STEP (R-I-S) SWITCH T_ IDLE$/$ 2. SET REGI
2STER KNOB TO C$/$ 3. PUSH START$/$ 4. FILL REGISTER DISPLAY WI

3TH A BRU 03531 COMMAND.$/8X$THAT IS, UITH THE OCTAL NUMBER 00103

45315/$ S. PUT R-I-S SWITCH TO RUN$/$ 6. RETYPE INPUTS$//)

914 FORMAT(///$ON THE LAST ITERATION C WAS GREATER THAN 0°25. C = $,

IE20.12/_FOR THE PRECEDINg BIVARIATE COMPUTATION C = 0.255)

gl5 FORMAT(/_SET BP3 TO CHANGE THE VALUE OF PARAMETER A$/$SET BP4 TO C
!HANGE THE CHANNEL THRESHOLDS$//$IF NEITHER BREAKPOINT IS SET, CONT

2ROL TRANSFERS TO LINK(1)$/$CLEAR HALT TO PROCEEDS/)

g16 FORMAT(/$INPUT THE NEW VALUE FOR A IN FORMAT F10.55/$ IF AN ERROR

1 IS MADE WHILE TYPING, REPEAT THE 6 STEPS LISTED ABOVE,$/$ EXCE

2PT IN STEP 4 FILL THE REGISTER DISPLAY WITH A BRU 05013 COMMAND,S/

3S THAT IS. WITH THE OCTAL NUMBER 001050135/)

g17 FORMAT(FrO.5)
gl8 FORMAT(/_INPUT IN FORMAT 2Ft0.55/$ NEW ADC-I THRESHOLD VALUE$/_

tNEW ADC-_ THRESHOLD VALUES/$1F AN ERROR IS MADE WHILE TYPING. REPE

2AT THE _ STEPS LISTED ABOVE._I$ EXCEPT IN STEP 4 FILL THE REGISTE

3R DISPLAY WITH A BRU 05026 CeMMANDm$/$ THAT IS. WITH THE OCTAL NU

4MBER 001_502651)

919 FORMAT(?FIO.5)

END
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SUBRBUTINE BEVT(IBITN, IBNG, IBNDS,BCOUNT,BA.BDUAjBALPHAD,BALPHAS,BU

ID,BUS,BC.BTD,BTS, IIB)

PERFeRMS BIVARIATE CALCULATIONS .......................................

ROBTX=I.D/IBNDS

WA=I.O-t4.0*BC*EXPF(BA})/(I.O+EXPF(BA))**2

VARC=(I.n/(4.0*IBNG))*BCOUNT*(I.O-BCeUNT)*(((WA**2)/BDUA)**2)

RE-CALCULATeS UNIVARIATE EVT STATISTICS FOR ADCI ......................

YTD=(BT_-BUD),BALPHAD

PCT=EXP_(-EXPF(-YTD))

EXPF((ALOG(PCT))/IBNDS)RTPCT=

N=I

TEMP=I

GO TO

801 GU=SER

PCTNDP

N=N+I

.n-PCT

8_n

IES

=I.0-GU

PR

PR
PR

PR

RE-CAL

YT

INT 9_O, IBITN_IIB

INT 9_I,BALPHAD,BUD,BALPHAS,BUS,BC_VARC

INT g?_

INT g_3,PCT

CULATES UNI

S=(BTS-BUS)

NDPmPCT,RTPCT,GU

VARIATE EVT STATISTICS

*BALPHAS

PCT=EXPF(-EXPF(-YTS))

RTPCT=EXPF((ALOG(PCT))/IBNDS)

TEMP=I.O-PCT

GO Te 8_n

802 GV=SERIES

PCTNDP=I.0-GV
N=N+I

PRINT 9?4

PRINT g_

COMPUTES BIVA

TEMP=YT_-

WZ=I.0-t4

PR=EXPF{-

PRINT g_
PRI=EXPF(

RTPCT=PRI

FOR ADC2 ......................

,PCTNDP,PCT,RTPCT,GV

RIATE EVT STATISTICS ....................... . .............

YTS

°O*BC*EXPF(TEMP))/(I.0+EXPF(TEMP))**2

(EXPF(-YTD)÷EXPF(-YTS))*WZ)

,IBITN, IIB

(I.0/IBNDS)*ALOG(PR))
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TEMP=I.0"PR

GO TO 8_Q

803 P=SERIE_

PRINT 9o_,PRI,P

Q=GU-P

R=GV-P

S=I.0-P-Q-R

PP=P**IBNDS

QQ=(P+Q)**IBNDS-PP

RR=(P+RI**IBNDS-PP

SS=I.O+PP-(P+O)**IBNDS-(P+R)**IBNDS

PRINT g_7,P,Q,R

PRINT g_BjSjIBNDS,PPJQQ,RR,SS

RETURN

CALCULATES THE XTH ROOT OF THE CUMULATIVE PROBABILITY, WHERE X IS THE

RECIPROCAl QF THE NUMBER OF DATA SAMPLES/GROUP, BY SERIES EXPANSION

WHICH IS ACCURATE TO THE 11TH DECIMAl. PLACE. IF THIS PROCEDURE

OVERFLOWS, THAT IS, IF THE NUMERICAL CAPACITY OF THE COMPUTER IS

EXCEEDED, THE SERIES VALUE IS REPLACED BY THE VALUE OBTAINED BY

USING LOGARITHMS ....................................................

850 ROQTY=RQBTX

I=I

FACT=I

SERIES=I.0-(ROOTX*TEMP)/FACT

855 ROOT=RO_TY*(ROOTX-I)

ROOTY=ROOT

FACT=FACT*(I+t.O)
I=I+1

HANG=ABSF((ROOT*(TEMP**I))/FACT)

SERIES=SERIES-HANG

IF(ABSFfSERIES)-I.O)BSgJ856,856

856 SERIES=_TPCT
GO TO 8_0

859 IF(HANG-n.OOOOOOOOOOt}O60,860,855

860 GO TO (OQt,802,803),N

020 FORMAT(tHt,38X,$BIVARIATE EXTREME VALUE$146XmSTESTST4115ITERATION$

1-I4//)
921 FORMAT(I//$FOR THE FOLLOWING CALCULATTONS:t//SX,$ALPHA1 = $mE20.12

1,15X,$U_ = $,E20.t2/SX,$ALPHA2 = $,E20.12,tSX,SU2 = $,E20.t2tSX,$C
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2 = _,E20.I2oI5XJ_VARIANCE OF C = $,E20.t2)

g22 FORMAT(I//$FOR ADC-I$/)

g23 FORMAT(/SX.$PREDICTED ERROR RATE =$JE21.12./5X,$CUMULATIVE PROBABI

iLITY AT TRIGGER LEVEL = $,E20.12./5X,$THE NDP ROOT OF THE CUMULATI

2VE PROBABILITY:$/7X,$BY L@GS = $oE_O.12,/TX,$BY SERIES = $,E20.I

32)

g24 FORMAT(///$FOR ADC-2$/)

g26 F@RMAT(//$THE PROBABILITY OF A CORRECT BIT BEING RECEIVED AND ACCE

IPTED:$/TX.$BY L@GS = $,E20.12./TX,$BY SERIES = $,E20.12)

g27 F@RMAT(///SPR_BABILITY P OF A CORRECT BIT BEING RECEIVED AND ACCEP

ITED = $.E20.12/$PRO9ABILITY Q OF A CORRECT BIT BEING RECEIVED A

2ND REJECTED = SJE_O.I2/$PROBABILITY R OF AN INCORRECT BIT BEING

3 RECEIVED AND ACCEPTED = $,E20.17)

g28 FeRMAT(_PROBABILITy S @F AN INCORRECT BIT BEING RECEIVED AND REJEC

1TED = _,E20.121//$FOR A COMMAND @F LENGTH = $,I55 BITS:$//SX,$P =

2$,E20.I_/SX,$Q = $,E20.12/5XJSR = $,E20.12/SX,$S = $,E20.12)
END
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SUBROUTINE BMAXLIK(VARAI,VARA2,VARUI,VARU2,VARC,PRODjMATDAT_MATSYN

I-NQ)

COMPUTES THE 81VARIATE MAXIMUM LIKELIHOOD FUNCTION ....................

CBMPUTES THF SUM OF LN(DF/DXDY) FOR ALL PAIRS OF THE CHANNEL EXTREMES.

DIMENSI_N MATDAT(7OO),MATSYN(700)

PROD=O.O

DO 775 J=IJNQ

U=(VARAt*(MATDAT(J)-VARUI)-VARA2*(MATSYN(J)-VARU2})/2.0

SECH2=(_.O/(EXPF(U)+EXPF(-U)))**2
TANH=(EXPF(U)-EXPF(-U))/(EXPF(U)+EXPF(-U))

UU=I.O-VARC*SECH2
UUI=

WU2=

EX=E

EY=E

TEMP

TEMP

TEMP

IEY)

775

2.0*VARC*SECH2*

2.0*VARC*SECH2*

XPF(-VARAt*(MAT

XPFf-VARA2*(MAT

=VA_AI*_U*EX-(V

=TEMP*(VARA2*WU

=TEMP+(VARAI*VA

TANH

(3.0*SECH2-2.0)

DAT(J)-VARU1))

SYN(J)-VARU2))

ARAI/2.0)*WUI*(EX+EY)

*EY+(VARA2/2.0)*UUI*(EX+EY))

RA2/4.0)*UU2*(EX+EY)-(VARAI*VARA2/2.0)*_UI*(EX-

TEMP=TEMP*(EXPF(-(EX+EY)*UU))

PROD=PRBD+ALOGCTEMP)

CONTINUF

RETURN

END

SUBROUTINE

FITS A PARABOLA THROUGH

FINDS THE VERTEX OF THE

Ht=P2X

H2=P2Y

P|X=P1X'H1

P3X=P3X'HI

P2X=Oo

PlY=PlY-H2

P3Y=P3Y-H2
P2Y=O°
DE_=(P1X**2)*(P2X-P3X)-(P2X**2)*(P1X-P3X)+(P3X**2)*(P1X-P2X)

AA=(P1Y*(P2X-P3X)-P2Y*(P1X-P3X)+P3Y*(P1X-P2X))/DET

BB=((PIX**2)*(P2Y-P3Y)-(P2X**2)*(PIY-P3Y)+(P3X**2)*(PIY-P2Y))/DET
VERT=-BB/(2.0*AA)+H!

PIX=PIX+HI

P3X=P3X+H1

P2X=HI

PrY=PlY+H2

P3Y=P3Y+H2

P2Y=H2

RETURN

END

PARAFIT(PIX,P1YmP2X,P2YjP3XjP3Y,VERT)

THE PRINTS (XI*Yt),(X2oY2),(_3,Y3) ............

PARABOLA ......................................
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SU
C DETERN

tF

7O3 IF

705 SA
RE

706 SA
IF

707 IF

708 P3

P1

P2

P1
"3

RE

709 P2

P1

P3

P2

720

725

735

74O

75O

^E_F

Table B-2. (Cont'd)

BROUTTNE HELP(SAVE.PIXJP1YmP2XmP2Y.P3XJP3yJVERTJERRjSTEP)
INES NEW POINTS FOR SUCCESSIVE PARABOLA FITS ....................

(ABSF(SAVE/VERT)-(I.0-ERR))706,705,703

(ABSFtSAVE/VERT)-(1.0+ERR))705_705,706

VE=O.
TURN

VE=VERT

(VERT-P2X)708,720j707

(VERT-P3X)725=720_709

X=P1X

X=P2X

X=VERT

Y=P2Y
Y=2.0

TURN

X=PtX

X=P3X
X=VERT

Y=PtY

P1Y=P3Y
P3Y=I.0

RETURN

PtX=VERT

P2X=PIX-STEP*ABSF(P1X)

P3X=PtX+STEP*ABSF(PIX)

g_ T_ 740

IF(VERT-PIX)730_740.735

P3X=PIX

PlX=VERT
gO T8 7_n

P2X=PIX

PtX=V
GO Te

PlX=V
P2X=P

P3X=P

P3Y=3

RETUR

END

ERT

7_0
ERT

tX-STEP*ABSF(PtX)

1X+STEP*ABSF(PtX)

.0

N
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APPENDIX C

Data-Processing Program Sample Output and Operational Directions

This appendix contains a sample output of the data-processing program

(Table C-1, and Figs. C-1 and C-2) and a set of operational directions which

were typed on the console typewriter during program execution (Table C-2).

These directions illustrate the various options which are available and detail the

required typewriter inputs for this sample output. The output contains both the

univariate and bivariate EVT statistics of the example discussed throughout

the report. It also includes the linearized univariate EVT plots for each channel,

as plotted on the Cal-Comp plotter, the statistics obtained by biasing the lock

indicator (Section VIII) and the statistics obtained by changing the value of the

strip estimator, a, from 1.5 to 2.0. Approximately one and one-half hours of

SDS-920 computer time were needed to obtain all of the output contained in

this appendix.
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Table C-1. Sample output ofthe data-processing program

UNIVARIATE EXTREME VALUE

TEST 1

FOR ADC-1

BASED ON THE TOTAL SAMPLE SIZE = 3000 SAMPLES

MEAN = -Q.316310333334E 03

STANDARD DEVIATION = 0.5553_8613801E 02

SIGNAL T_ NOISE RATIO = -0.569591275280E 0l 0.151112671905E 02 _8.

F_R ADC-2

,BASED ON THE TOTAL SAMPLE SIZE = 3000 SAMPLES

MEAN = -n.SlgOg600000IE 03

STANDARD DEVIATION = O.8975F6430027E 02

SIGNAL T_ NOISE RATIO = -0.578343581123E O! 0.152437190316E 02 08.

BASED ON 30_n RAW DATA SAMPLES, THE CORRELATION COEFFICIEN[ = 0.227415805883E O0

BASED ON EXTREMES OF 30 GROUPS PF 100 SAMPLES, THE CORRELATION COEFFICIENT = 0.3_5838213564E O0
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Table C-1. (Cont'd)

UNIVARIATE EXTREME VALUE

TEST 1

CLASSICAL PRORABILITIES

PROBABILITY Of A BIT ERROR = O,O00000000000E OO

NUMBER OF OCCURENCES = 0.0

PROBABILITY Or AN OUT _F LOCK = O.O00000000000E O0

NUMBER oF OCCURENCES = 0.0

PROBABILITY Of A CORRECT BIT BEING RECEIVED AND ACCEPTED =

NUMBER OF OCCURENCES : 3000.0

PROBABILITY OF A CORRECT BIT BEING RECEIVED AND REJECTED =

NUMBER OF OCCURENCES = 0.0

PROBABILITY Of AN INCORRECT BIT BEING RECEIVED AND ACCEPTED =

NUMBER OF OCCURENCES = 0.0

PROBABILITY OF AN INCORRECT BIT BEING RECEIVED AND REJECTED =

NUMBER OF OCCURENCES = 0.0

O.tO0000000000E 01

O.O00000000000E O0

O.O00000000000E O0

O.O00000000000E O0
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Table C-1. (Cont'd)

UNIVARIATE EXTREME VALUE

TEST I

THERE ARE 3n GROUPS OF 100 SAMPLES EACH.

ERROR FOR UNIVARIATE MAXIMUM LIKELIHOOD FIT = n.999999999995E-05

FOR ADC-I

VALUES BEFORE UNIVARIATE MAXIMUM LIKELIHOOD FIT

THRESHOLD = O.O00000000000E O0

ALPHA = 0._73034555335E-01
U = -0.173239308614E 03

THE REGRESSION EQUATION = -173.2393_86 + 36,6254007 Y
REDUCED VARIATE AT TRIGGER LEVEL = 0°473003175939E 01

PREDICTE_ BIT ERROR RATE = 0.88_580352481E-04
CUMULATIVE PROBABILITY AT TRIGGER LEVEL = 0.9912126_5731E O0
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Table C-1. (Cont'd)

UNIVARIATE EXTREME VALUE

TEST I

FOR ADC-!

VALUES AFTER UNIVARIATE MAXIMUM LIKELIHOOD FIT

THRESHBL_ = O.O00000000000E O0

ALPHA = 0.333626955gtOE-OI

U = -0.!71831574073E 03

THE REGRESSION EQUATION = -171.6315741 + 29.9735972

REDUCED VARIATE AT TRIGGER LEVEL = 0.572609195960E 01

PREDICTE_ BIT ERROR RATE = 0.32597388781IE-04

CUMULATIVE PRQBABILITY AT TRIGGER LEVEL = 0.996745515564E O0

PERCENT CONFI_ENCE CeNFIDENCE INTERVAL F_R PREDICTED BIT

99

95

9O

80

7O

0.325743167195E-05
O.R64985384699E-05

0.74QO3509_IP4E-05

O.t036aO4137#_E-04

0.129037507576E-04

ERROR KATE

0.326163200952E-03

O.188u6192383bE-03

O.141d5530744/E-03

O.10262434731zE-03

0.82346159615bE-04
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Table C-1. (Cont'd)

UNIVARIATE EXTREME VALUE

TEST 1

THERE ARE _n GROUPS OF 100 SAMPLES EACH.

ERROR FOR UNIVARIATE MAXIMUM LIKELIHOOD FIT = N.999999999995E-05

FOR ADC-2

VALUES BEFORE UNIVARIATE MAXIMUM LIKELIHOOD FIT

THRESHOL_ = 0,000000000000E O0

ALPHA = 0,213_65757956E-01
U = -0._03176656604E 03

THE REGRESSION EQUATIQN= -303,1766S66 + 46,8898528 Y

REDUCED VARIATE AT TRIGGER LEVEL = 0.646571994651E 01

PREDICTE_ BIT ERROR RATE = 0.15558594BQSgE-04

CUMULATIVE PROBABILITY AT TRIGGER LEVEL = 0.998445339021E O0
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Table C-1. (Cont'd)

UNIVARIATE EXTREME VALUE

TEST i

FOR AOC-2

VALUES AFTER UNIVARIATE MAXIMUM LIKELIHOOD FIT

THRESHOLO= O.O00000000000E O0

ALPHA : 0.22859411490_E-01

U = -N.Ho28gf621230E 03

THE REGRFSSION EQUATIeN = -302.8916_12 + 43.74565_1 Y

REDUCED VARIATE AT TRIGGER LEVEL : 0.69239P420667E 01

PREDICTE_ BIT ERROR RATE : o.g83958307188E-05

CUMULATIVE PROBABILITY AT TRIGGER LEVEL : 0.999016522837E O0

PERCENT C@NFI#ENCE C@NFIDENCE INTERVAL FOR PREDICTED BIT ERROR KAIE

go

95

90

8O

7O

O.638705387246E-06

0.122815981740E-05

0.171655119629E-05

0.2524051524P3E-05
0.327428278979E-05

O.15168000314eE-03

0.788302859291E-04

0.564uI710025vE-O_

O.383675970772E-04
0.295o8858735/E-04

78



JPL TECHNICAL REPORT NO. 32-1025

Table C-1. (Cont'd)

UNIVARIATE EXTREME VALUE

TEST 1

FQR ADC-I

gReUP NUMBER

I
2

3
4
5
6
7
8
9

IO
11
12

13
14
15
16

17
18
19
2O

21
22
23
24
25
26
27
28

29
30

UNeRDERED EXTREMES

-95

-138
-181
-158
-146

-179
-192
-211
-169
-198
-159

-204
-197
-157
-185

-173

-19

-I03

-I08

-153
-172
-112

-i12

-121

-1,71

-190

-151

-110

-174

-170

ORDERED EXTREMES

-211
-204

-198
-197
-192
-190
-185
-181
-179
-174
-173

-172

-171

-170

-169

-159

-158

-157

-153

-151

-146

-136

-121

-112

-112

-110

-108
-I03

-95

-19

PLSTTING POSITION

0.32258064b1E-01

O,64516129U3E-01

0.9677419364E-01

0.12903225_1E O0
O.1612903226E O0
0.19354838/1E O0
0.2258064516E O0
0.25806451_1E O0
O,29032258U6E O0
0,3225806462E O0
0.3548387097E O0
0°3870967742E O0

0,41935483_7E O0
0,4516129032E O0
0,48367096/7E O0

0.5161290323E O0

0.5483870968E O0
0,5806451613E O0
0,6129032268E O0
0.6451612903E O0
0.6774193548E O0

0,70967741_4E 00
0.7419354839E 00

0.77419354_4E O0
0,8064516129E O0

0.8387096774E O0
0,8709677419E O0
0.9032258065E O0
0,9354838710E O0
0,9677419365E 00
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TableC-1. (Cont'd)

UNIVARIATE EXTREME

TEST 1

VALUE

FOR ADC-2

@ReUP NUMBER UNORDERED EXTREMES ORDERED EXTREMES

1 -157 -366
2 -199 -355

3 -321 -336
4 -355 -333

5 -20g -331
6 -331 -327
7 -273 -326
8 -299 -322

9 -274 -321

10 -322 -32t
11 -333 -304
12 -300 -300

13 -327 -299
14 -321 -293
15 -304 -282

t6 -274 -274
17 -216 -274
18 -366 -273
Ig -253 -272
20 -265 -265
21 -293 -255

22 -282 -253

23 -336 -240
24 -238 -238
25 -215 -216

26 -272 -215

27 -326 -209
28 -|8_ -199

29 -255 -185
30 -240 -157

PLOTTING POSITION

0.32258064btE-01
0.6451612903E-Ot
0.9677419364E-Ol
0.12903225_1E O0
0.1512903226E O0

Oolg354838/tE O0
0.2258064515E 00
0.25806451O1E 00

0.2903225806E O0
0.3225805452E O0
0.35483670_7E O0

0.3870967742E O0
0.41935483_7E 00
0.4516129032E 00
0.48387096/7E O0

0.5161290323E O0
O,5483870gO8E O0
0.580645tSt3E O0
O.6t29032268E O0

O.6451612903E O0
0o6774193548E O0

0.7096774194E 00!
0,7419354839E O0
0.774t935464E O0
0.8064516129E O0

0.83870967/4E O0

0°870967741gE O0
0,9032258005E O0
0°9354838710E O0
O°9677419365E O0
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TableC-1. (Cont'd)

BIVARIATE EXTREME VALUE

TEST 1

THERE ARE 30 GROUPS OF 100 DATA POINTS EACH.

ADC1 CHANNEL THRESHOLD =

ADC2 CHANNEL THRESHOLD =

0.00000

0.00000

A = 1.5000_

ABS[XADCI{NI-XADC2IN]] LESS THAN A OCCURS 24.00 TIMES.

8 ITERATIONS TO BE PERFORMED.

BIVARIATE CALCULATIONS WILL OCCUR EVERY 4 ITERATIONS.

ERROR ESTIMATE FOR MAXIMUM LIKELIHOOD FIT = 0.999999999998E-04
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ITERATIeN 0

Table C-1. (Cont'd)

BIVARIATE EXTREME VALUE
TEST 1

FOR THE FeLLOUING CALCULATIeN$:

ALPHA! =
ALPHA2 =

C =

0.333626955910E-01
0.228594114gO2E-OI
0.192540375740E O0

UI = -0.171631574073E 03
U2 = -Oo30289162t230E 03

VARIANCE OF C = 0.570001688422E-02

FOR ADC-1

PREDICTED ERROR RATE = 0.325973815051E-04
CUMULATIVE PROBABILITY AT TRIGGER LEVEL =
THE NDP pOeT OF THE CUMULATIVE PROBABILITY:

BY LOGS = 0.999967402611E 00
BY SERIES = 0.999967402619E O0

0°g96745515564E O0

FOR ADC-2

PREDICTEn ERROR RATE = O.g83955396805E-05

CUMULATIVE PROBABILITY AT TRIGGER LEVEL =
THE NDP ROOT OF THE CUMULATIVE PROBABILITY:

BY LeGS = 0,999990160421E O0

BY SERIES : 0.999990160446E O0

0.999016522837E O0
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ITERATION 0

Table C-1. (Cant'd)

BIVARIATE EXTREME VALUE

TEST !

THE PROBABILITY OF A CORRECT BIT BEING RECEIVED AND ACCEPTED=

BY LOGS = 0,999963384158E 00
BY SERIES = 0.999963384173E O0

PROBABILITY P OF A CORRECT BIT BEING RECEIVED AND ACCEPTED =

PROBABILITY Q OF A CQRRECT BIT BEING RECEIVED AND REJECTED =

PROBABILITY R OF AN INCORRECT BIT BEING RECEIVED AND ACCEPTED =

PROBABILITY S OF AN INCORRECT BIT BEING RECEIVED AND REJECTED =

0.999963384173E O0

0,401844590669E-05
0.267762734438E-04

0.58211080613_E-05

FOR A COMMAND OF LENGTH = 100 BITS=

p ---

O =

R =

S =

0.gg6345045878E 00
0.4R0470169552E-03
0._67147780323E-02
0._8300614g0ggE-03
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ITERATION 4

Table C-l.(Cont'd)

BIVARIATE EXTREME VALUE

TEST !

FOR THE FOLLOUING CALCULATIONS=

ALPHA1 =
ALPHA2 =

C =

0.335083643738E-0!
O.?22935228479E-Ot
O.I390199tIO72E O0

U! = -0,173182352723E 03

U2 = -0.300849995527E 03
VARIANCE OF C = O,656807094691E-02

FOR ADC-!

PREDICTE_ ERROR RATE = 0.301826585200E-04
CUMULATIVE PROBABILITY AT TRIGGER LEVEL =
THE NDP ROOT OF THE CUMULATIVE PROBABILITY:

BY LOG_ = 0,999969817323E O0
BY SERIES = 0,9 _17342E O0

0,996986238017E O0

FOR ADC-2

PREDICTED ERROR RATE = 0.122230994748E-04

CUMULATIVE PROBABILITY AT TRIGGER LEVEL =
THE NDP ROOT OF THE CUMUI_ATIVE PROBABILITY=

BY LOG_ = 0,999987776886E O0
BY SERIES = 0,999987776904E O0

0,998778428755E O0
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ITERATION 4

Table C-1. (Cont'd)

BIVARIATE EXTREME VALUE
TEST !

THE PROBABILITY OF A CORRECT BIT BEING RECEIVED AND ACCEPTED:
BY LOGS = 0,999962432274E O0
BY SERIES = 0°999962432288E O0

PROBABILITY P OF A CORRECT BIT BEING RECEIVED AND ACCEPTED =
PROBABILITY O OF A CORRECT BIT BEING RECEIVED AND REJECTED =

PROBABILITY R OF AN INCORRECT BIT BEING RECEIVED AND ACCEPTED =

PROBABILITY S OF AN INCORRECT BIT BEING RECEIVED AND REJECTED =

0.999962432288E O0

0,738505332265E-05
O.253446160059E-04
O,48380425t416E-05

FOR A COMMAND OF LENGTH = i00 BITS:

P =

O =
R =

S =

0,_96250206335E O0

0.736032772693E-03
O._R2822333277E-02
0°4_5537559143E-03
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ITERATION 8

Table C-1. (Cont'd)

BIVARIATE EXTREME VALUE

TEST I

FOR THE FOLLOUING CALCULATIONS:

ALPHA1 =

ALPHA2 =

C =

0.334996709373E-01
0.222900564506E-01
0.139164561S66E O0

UI = -0.173177517458E 03

U2 = -0.300844906796E 03

VARIANCE OF C = 0,656559905016E-02

FOR ADC-I

PREDICTED ERROR RATE : 0.302330372505E-04

CUMULATIVE PROBABILITY AT TRIGGER LEVEL =

THE NDP ROOT OF THE CUMULATIVE PROBABILITY=

BY LOGS = 0.999969766952E O0
BY SERIES : 0.999969766966E O0

0.996981215878E O0

FOR ADC-2

PREDICTED ERROR RATE = 0.122372439364E-04

CUMULATIVE PROBABILITY AT TRIGGER LEVEL =

THE NDP ROOT OF THE CUMULATIVE PROBABILITY=

BY LOGS = 0.999987762745E O0
BY SERlES= 0,999987762756E O0

O,998777016288E O0
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ITERATION 8

Table C-1. (Cont'd)

BIVARIATE EXTREME VALUE

TEST 1

THE PROBABILITY OF A CORRECT BIT BEING RECEIVED AND ACCEPTED:

BY LOG_ = 0.999962379112E O0
BY SERIES = 0,999962379126E O0

PROBABILITY P OF A CORRECT BIT BEING RECEIVED AND ACCEPTED =
PROBABILITY 0 OF A CORRECT BIT BEING RECEIVED AND REJECTED =

PROBABILITY R OF AN INCORRECT BIT BEING RECEIVED AND ACCEPTED =
PROBABILITY S OF AN INCORRECT BIT BEING RECEIVED AND REJECTED =

O.999962379t26E O0
0,738784001441E-05

0.253836296906E-04

0,484940755996E-05

FOR A COMMAND OF LENGTH = 100 BITS:

p s

O =
R =
S =

O.q96244909889E O0

0.736306745239E-03
0.753210665323E-02
0.486676712171E-03

87



JPL TECHNICAL REPORTNO. 32-1025

TableC-1. (Cont'd)

BIVARIATE EXTREME VALUE
TEST 1

THERE ARE 3_ GROUPS OF 100 DATA POINTS EACH.

ABC1 CHANNEL THRESHOLD = 0.00000

ADC2 CHANNEL THRESHOLD = -157.00000

A = 1.50000

ABSfXADCI[N]-XADC2[N]] LESS THAN A OCCURS 24.00 TIMES.
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ITERATION 8

Table C-1. (Cont'd)

BIVARIATE EXTREME VALUE
TEST 1

FOR THE FOLLOWING CALCULATIONS:

ALPHA1 =
ALPHA2 =
C =

0.334996709373E-01
0.222900564_06E-Ot
O.13g154561566E O0

Ul = -0.173177517458E 03
U2 = -0.300844906796E 03
VARIANCE _F C = 0.656559905016E-02

FOR ADC-t

PREDICTE_ ERROR RATE = 0.302330372505E-04
CUMULATIVE PROBABILITY AT TRIGGER LEVEL =
THE NDP ROOT OF THE CUMULATIVE PROBABILITY:

BY LOGS = 0.99996976695_E O0

BY SERIES = O,999969766966E O0

0.996981215878E O0

FOR ADC-2

PREDICTE_ ERROR RATE = 0.404975566198E-03

CUMULATIVE PROBABILITY AT TRIGGER LEVEL =
THE NDP ROOT OF THE CUMULATIVE PROBABILITY:

BY LOGS = 0,99959502441gE O0

BY SERTES = 0.999595024434E O0

O.Q60303633t17E O0
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ITERATION 8

TableC-1. (Cont'd)

BIVARIATE EXTREME VALUE

TEST !

THE PROBABILITY OF A CORRECT BIT BEING RECEIVED AND ACCEPTED:
BY LOGS = 0-999580457734E O0
BY SERIES = 0.999580457745E O0

PROBABILITY P OF A CORRECT BIT BEING RECEIVED AND ACCEPTED =

PROBABILITY O @F A CORRECT BIT BEING RECEIVED AND REJECTED =

PROBABILITY R OF AN INCORRECT BIT BEING RECEIVED AND ACCEPTED =

PROBABILITY S OF AN INCORRECT BIT BEING RECEIVED AND REJECTED =

FOR A COMMAND eF LENGTH = 100 BITS:

P ==

O =
R =
S =

O.q58905231812E O0
O._80750848230E-O!
O.1398402t7889E-02
O.l_2038119015E-02

0.990580457745E O0

0.389309221645E-03
0,145666890603E-04
0,156663481902E-04
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Table C-1. (Cont'd)

BIVARIATE EXTREME VALUE

TEST I

THERE ARE 3n GROUPS OF 100 DATA POINTS EACH.

ADC1 CHANNEL THRESHOLD : 0,00000

ADC? CHANNEL THRESHOLD : -252,00000

A : 1.5000_

ABS[XADCt[NI-YADC2fN|} LESS THAN A OCCURS 24.00 TIMES.
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ITERATION 8

Table C-1. (Cont'd)

BIVARIATE EXTREME VALUE

TEST t

FOR THE FOLLOUING CALCULATIONS=

ALPHAt =
ALPHA2 =
C =

0.334996709373E-01
0.222gOO564506E-OI

O.139164561566E O0

UI = -0.173177517458E 03
U2 : -0,300844906796E 03
VARIANCE OF C = 0.656559905015E-02

FOR ADC-1

PREDICTED ERROR RATE = 0.302330372505E-04
CUMULATIVE PROBABILITY AT TRIGGER LEVEL =
THE NDP _eOT OF THE CUMULATIVE PROBABILITY:

BY LOG_ = 0.99996976695_E O0
BY SERIES = O,999969766966E O0

0.996981215878E O0

FOR ADC-2

PREDICTE_ ERROR RATE = 0.336069115292E-02

CUMULATIVE PROBABILITY AT TRIGGER LEVEL = 0.714169394018E O0

THE NDP ROOT OF THE CUMULATIVE PROBABILITY:

BY LOG_ = 0,996639308803E O0
BY SERIES = 0,996639308851E O0
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ITERATION 8

Table C-1. (Cont'd)

BIVARIATE EXTREME VALUE
TEST 1

THE PROBABILITY 8F A CORRECT BIT BEING RECEIVED AND ACCEPTED:

8Y LOG_ = 0.99662580088_E O0

BY SERIES = o,gg66_5800919E O0

PROBABILITY P OF A CORRECT BIT BEING RECEIVED AND ACCEPTED =

PRgBABILITY O 8F A C_RRECT BIT BEING RECEIVED AND REJECTED

PRBBABILITY R OF AN INCORRECT BIT BEING RECEIVED AND ACCEPTED =

PRBBABILITY S BF AN INCORRECT BIT BEING RECEIVED AND REJECTED =

O°996625800919E O0
0.334396504739E-02

O.135079317260E-04
0,167251055245E-04

_0

FOR A COMMAND 5F LENGTH : I00 BITS:

P =

O :
R =
S :

O.713202096gO8E O0

Oo#8377glIg727E O0
O.afi72ggoo5424E-03
O._nS148436361E-02 I-

-I
Ill

.1-
Z
M

(3

1"

;0
Ill
,.g
0
;0
-]

Z
0

N
i

..k

0
N
01
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Table C-1. (Cant'd)

BIVARIATE EXTREME VALUE

TEST 1

THERE ARE _D GROUPS OF 100 DATA POINTS EACH.

ADC| CHANNEL THRESHOLD =

ADC2 CHANNEL THRESHOLD =

0.00000

0.00000

A : 2.00000

ABSrXADC][NI-XADC2rN]] LESS THAN A OCCURS 27°00 TIMES.

L.
"0
r-

-I
Ill
(3
"r
Z
(-,}

r"

;o
ill
"o
0
;0
-,I

Z
0

Co

0

01

8 ITERATIONS TO BE PERFORMED.

BIVARIATE CALCULATIONS WILL OCCUR EVERY 4 ITERATIONS.

ERROR ESTIMATE FQR MAXIMUM LIKELIHBOD FIT = O.gg9999999998E-04



ITERATION 0

Table C-1. (Cont'd)

BIVARIATE EXTREME VALUE
TEST 1

FOR THE FOLLOWING CALCULATIONS:

ALPHAi =
ALPHA2 =
C =

0.333626955910E-01
0.228594114902E-0!
0.198338358297E 00

UI = -0.171631574073E 03
U2 = -0.302891621230E 03
VARIANCE OF C = 0.517705896656E-02

FBR ADC-I

01

PREDICTE_ ERROR RATE = 0.325973815051E-04
CUMULATIVE PROBABILITY AT TRIGGER LEVEL =

THE NDP ROOT OF THE CUMULATIVE PRBBABILITY:

BY LOGS = 0.999967402611E 00
BY SERIES = 0.99996740261gE O0

FOR ADC-2

PREDICTE£ ERROR RATE : 0.983955396805E-05

CUMULATIVE PROBABILITY AT TRIGGER LEVEL :
THE NDP R80T OF THE CUMULATIVE PROBABILITY=

BY LOGS = O,@g99gOI60421E O0
BY SERIES : 0.g99ggO16044@E O0

0.g96745515564E 00

O,gggO16522837E O0
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ITERATION n

Table C-1. (Cont'd)

BIVARIATE EXTREME VALUE

TEST 1

THE PROBABILITY OF A CORRECT BIT BEING RECEIVED AND ACCEPTED:

BY LOG_ = 0,999963559440E O0

BY SERIES = o.gg9963559458E O0

PROBABILITY P OF A CORRECT BIT BEING RECEIVED AND ACCEPTED =

PROBABILITY Q OF A CORRECT BIT BEING RECEIVED AND REJECTED =

PROBABILITY R OF AN INCORRECT BIT BEING RECEIVED AND ACCEPTED =

PROBABILITY S OF AN INCORRECt BIT BEIN_ RECEIVED AND REJEC[EO =

0.999963559458E O0
0,384316081181E-05
0.266009853489E-04
0,599639315624E-05

FOR A COMMAND OF LENGTH : 100 BITS:

P =

O :
R =

S :

O.eg6362511112E O0
O._83004935429E-03
0._65401256911E-02
0.6nO471386860E-03
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ITERATIBN 4

Table C-1. (Cont'd)

BIVARIATE EXTREME VALUE

TEST I

THE PRBBABILITY @F A CBRRECT BIT BEING RECEIVED AND ACCEPTED:

BY LOG_ = O,99996243224FE O0

BY SERIES = 0.999962432255E O0

PROBABILITY P _F A C_RRECT BIT BEING RECEIVED AND ACCEPTED =

PRBBABILITY Q 8F A C_RRECT BIT BEING RECEIVED AND REJECTED =

PROBABILITY R 8F AN INCBRRECT BIT FEING RECEIVED AND ACCEPTED :

PROBABILITY S 8F AN INCBRRECT BIT BEING RECEIVED AND REJECTED =

0.999962432255E O0

0.738507151254E-05
0.253446269198E-04

0.483804979012E-05

FBR A C_MMAND BF LENGTH = I00 BITS:

P =

Q =

R :

S =

O.gQ6250203072E O0

0.736034584406E-03
0._52822441689E-02
0._5537922941E-03
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ITERATION 8

Table C-1. (Conf'd)

BIVARIATE EXTREME VALUE

TEST !

FOR THE FeLLOWING CALCULATIONSZ

ALPHAI :

ALPHA2 =

C =

0,3_4999273013E-01

0.222900797034E-0!
0,139164789797E 00

UI : -0.173177831350E 03

U2 : -0.300844671669E 03

VARIANCE OF C = 0,576169327848E-02

FOR ABC-I

PREDICTED ERROR RATE = 0.307313710562E-04

CUMULATIVE PReBABILITY AT TRIGGER LEVEL =

THE NDP ROOT OF THE CUMULATIVE PROBABILITY:

BY LOG_ = 0,999969768614E 00

BY SERIES = 0,999969768629E 00

O.996981381388E O0

FOR ADC-_

PREDICTED ERROR RATE = 0.122372_21085E-04

CUMULATIVE PROBABILITY AT TRIGGER LEVEL =

THE NDP R_OT OF THE CUMULATIVE PROBABILITY:

BY LOGS = o,9ggg@7762767E O0
BY SERIES = 0,99998776277_E O0

O.998777018431E O0
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ITERATION 8

Table C-1. (Cont'd)

BIVARIATE EXTREME VALUE

TEST I

THE PROBABILITY OF A CORRECT BIT BEING RECEIVED AND ACCEPTED:

BY LOG_ = o,gggg6_JBO71EE O0
BY SERIES = 0.999962380734E O0

L
"0
I-

-4
111
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"I"
Z
M

(3
).
I"

;O
111
"0
0
;0
,-I

Z
0

Co

,..=,

0

01

PROBABILITY P OF A CORRECT BIT BEING RECEIVED AND ACCEPTED =

PROBABILITY Q OF A C_RRECT BIT BEING RECEIVED AND REJECTED =

PROBABILITY R 8F AN INCORRECT BIT BEING RECEIVED AND ACCEPTED =

PROBABILITY S OF AN INCORRECT BIT BEING RECEIVED AND REJECTED =

0.999962380734E O0

O.7387894584tOE-05
O,253820435318E-04

0.4849331t6240E-05

FOR A C_MMAND OF LENGTH = 100 BITS:

O =

R =

S =

O.aq6245070091E O0

0.736312296794E-03
0._53194863034E-02
O._86668985tO4E-03
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Table C-2. Operational directions of the data-processing program

SET BP1 IF LOOKING FOR A MAXIMUM FOR ADC,-I.
RESET BP1 IF LODKII|G FOR A MINIMUM.

SET IDP2 IF LOOKING FOR A MAXIMUM FOR ADC-2.

RESET BP2 IF LOOKING FOR A MINIMUM.
SET PJP3 FOR PRII_TOUT OF CIIANNEL EXTREMES AND OPTION TO OBTAIN A GUM_EL PLOT.

SET DP4 FOR BIVARIATE A'JALYSIS,
CLEAR IIALT,

IF AN ERROR IS MADE _/HILE TYPING INPUTS, DO TIIE FOLLOiIING
1, PUT RUN-IDLE-STEP JR-I-S] S_41TCII TO IDLE
2. SET REGISTER KNO3 TO C
3. PUSH START

4. FILL REGISTER DISPLAY WITH A P_RU _3522 COMMAND,
THAT IS, WITII THE OCTAL NUI4BER I_111_3522

5. PUT R-I-S SiVITCII TO RUN
6. RETYPE Ii_IPUTS

TYPE IN FORIIAT [314,3F12.5]
ITN--TEST NO.

NG--NO. OF GROUPS

NDP--NO. OF SAqPLES/GROUP
T1,T2--ADC1,ADC 2 TIIRESIIOLDS
ERROR--ERROR FOR UNIVARITE ._.IAXI!IUHLIKELIIIOOO FIT

SET BP1 FOR ADC-1 GUMIDEL PLOT

IF SET, POSITION PLOTTER PEN AT BOTTOM RI_IIT-IIAIJD CORNER OF GRAPH PAPER
CLEAR HALT

SET BP2 FOR ADC-2 GUMBEL PLOT

IF SET, POSITION PLOTTER PEN AT 30TTON RIGHT-HM_D CORNER OF GRAPI_ PAPER
CLEAR HALT

IF AN ERROR IS MADE NIIILE TYPING INPUTS, DO TIIE FOLLOWING
1. PUT RUN-IDLE-STEP JR-I-S] SWITCH TO IDLE
2. SET REGISTER KND._ TO C
3. PUSII START

b,. FILL REGISTER DISPLAY _IITII A BRU _3531 COMMAND,
TIIAT IS, 'IITII THE OCTAL NUMBER _fl1(_3531

5. PUT R-I-S SWITCII TO RUN
6. RETYPE I kIPUTS

INPUT IN FORHAT 211_,2F15.5
NIT--ITERATIONS FOR 13EVT MAXIMUM LIKELIIIOO9 FIT
NDEVT--ITERATIOi_S BEFORE EACI! _EVT PROBABILITY CALCULATION
A--STRIP ESTIMATE PARAMETER

A MUST BE IN TIIE CLOSED INTERVAL 1.5 T9 2.CI
ERROR--ERROR FOR 31VARIATE MAXIMUM LIKELIHOOD FIT
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TableC-2.(Cont'd)

SET BP3 TO CHANGE THE VALUE OF PARAHETER A
SET BP4 TO CtlANGE THE CIIANNEL TItRESIIOLDS

IF NEITHER BREAKPOINT IS SET, CONTROL TRANSFERS TO LINK[l]
CLEAR HALT TO PROCEED

INPUT IN FORMAT 2Fl1_.5
NEW ADC-1 TIIRESIIOLD VALUE
NEW ADC-2 TItRESIiOLD VALUE

IF AN ERROR IS MADE !VHILE TYPIr'IGs REPEAT THE 6 STEPS LISTED ABOVEs
EXCEPT IN STEP k FILL THE REGISTER DISPLAY WITtl A BRU _5_26 COMMAND,.
THAT IS,. WITH THE OCTAL NUHBER _1_5_26

_. _,'157. _l,

SET BP3 TO CIlANGE TIlE VALUE OF PARAHETER A
SET BP4 TO CHANGE TIIE CItANNEL TtIRESIIOLDS

IF NEITIIER BREAKPOINT IS SET, CONTROL TRAtJSFERS TO LINK[l]
CLEAR HALT TO PROCEED

INPUT IN FORMAT 2F1_.5
NEW ADC-1 TIIRESIIOLD VALUE

NEW ADC-2 TIIRESIIOLD VALUE

IF AN ERROR IS MADE _fllILE TYPINGe REPEAT THE 6 STEPS LISTED AF_OVE,
EXCEPT IN STEP 4 FILL TIIE REGISTER DISPLAY HITII A BRU 05_26 COL'HAND,
TIIAT IS, WITII TIIE OCTAL NUrIBER g_}1(_5_26

]_. ]3,-252o _,

SET BP3 TO CIIANGE THE VALUE OF PARAtIETER A
SET BPb, TO CHANGE TIIE CIIANNEL TIIRESIIOLDS

IF NEITIIER BREAKPOINT IS SET,, CONTROL TRANSFERS TO LINK[l]
CLEAR IIALT TO PROCEED

INPUT TIIE NE"I VALUE FOR A IN FORHAT FI_I.5

IF AN ERROR IS HADE _VIIILE TYPINGs REPEAT Tile 6 STEPS LISTED ABOVE,,
EXCEPT IN STEP 4 FILL TIIE REGISTER DISPLAY 'qlTIl A BRU _}5_13 COHMAND,,

THAT IS,. _JITII TIIE OCTAL NUHBER _}_}1_5_13

2. _},,

INPUT IN FORMAT 2F1(].5
NE_-f ADC-1 TIIRESIIOLD VALUE
NEW ADC-2 TIIRESIIOLD VALUE

IF AN ERROR IS MADE WHILE TYPING, REPEAT THE 6 STEPS LISTED A_OVE_,

EXCEPT I_ STEP 4 FILL TIIE REGISTER DISPLAY ',,IITIIA BRU _15_26 COHr4ANT)e
TIIAT IS,. WITII TIIE OCTAL NUMBER (_g1(_5_26
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TableC-2. (Cont'd)

SET BP3 TO CHANGE TItE VALUE OF PARAMETER A
SET BPll TO CtlANGE THE CtlANNEL TttRESHOLDS

IF NEITItER BREAKPOINT IS SET, CONTROL TRANSFERS TO LINK[I]
CLEAR HALT TO PROCEED

JOB DONE. READY NE_ INPUT.

SET BP1 IF LOOKING FOR A HAXIMU;I FOR ADC-1.
RESET 3P1 IF LOOKING FOR A MINIHUM.

SET BP2 IF LOOKING FOR A MAXIMU._,I FOR ADC-2.
RESET BP2 IF LOOKING FOR A MINIMUr',I.

SET BP3 FOR PRINTOUT OF CHANNEL EXTREHES AND OPTION TO OBTAIN A GUHBEL PLOT.
SET BP4 FOR BIVARIATE A,_ALYSIS.
CLEAR HALT.
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