@ https://ntrs.nasa.gov/search.jsp?R=19670007857 2020-03-16T18:36:10+00:00Z

(R 7706 7/

Alpha Research, Inc.
< Report No, 66-3426-1
15 December 1966

AERODYNAMIC STUDIES OF NON-
PLANAR AND NEAR-CIRCULAR
MOTIONS

by

James . Brunk

Summary Report for
Contract NAS 2-3426

Prepared for

NASA Ames Research Center
Moffett Field, California

Copy of



Alpha Research, Inc.
Report No. 06-3426-1
15 December 1966

TABLE OF CONTENTS

Foreword

Summary

II.

I11.

INTRODUCTION

APPLICATION OF EXISTING MOTION THEORY TO
THE CIRCULAR MOTION PROBLEM

A NEW FORMULATION OF THE POLAR EQUATIONS>

IV. AERODYNAMIC MOMENT EXPANSIONS
V. APPLICATION OF PERTUBATION THEORY TO
NEAR-CIRCULAR MOTIONS
Vi, AERODYNAMICS OF NEAR-CIRCULAR AND
NON-PLANAR MOTION . .
VII. RECOMMENDATIONS FOR CIRCULAR MOTION
EXPERIMENTS
VIII. CONCLUSIONS
Appendix A,
Figure 1

References .

Nomenclature

ii

16

26

37

47

56

61

02




Alpha Research, Inc.
- Report No. ©6-3426-1
15 December 1966

FOREWORD

This report was prepared under NASA contract NAS 2-3426, by
Alpha Research, Inc. The contract was monitored by Mr. Murray Tobak,

NASA Ames Research Center.

The principal investigator for this contract was Mr. James E. Brunk.
Consulting services were provided by Mr. Ray Rodman. The effort was carried

out from February 1966 through December 1966,

The author is grateful to both Mr. Murray Tobak and Mr. T. Coakley

of the Ames Research Center for their helpful suggestions.

-ii -



Alpha Research, Inc.
Report No. 66-3426-1
15 December 1966

SUMMARY

The polar form of the equations of yawing motion for a symmetric
missile are used to investigate the general nature of circular limit-cycles
and non-planar motion. The polar equations are derived both directly from
Euler angle variables and by transformation from the complex-variable aero-
ballistic equations. The difference between the two developments are noted.
An aerodynamic expansion for the polar equations is developed by transforma-
tion of the Maple-Synge terms. The physical significance of the new aero-
dynamic terms is discussed and the concepts of circular motion damping and

dynamic Magnus effect are described.

Using the exact equations of yawing motion, it is shown that circular
limit cycles exist even when the aerodynamic coefficients are linear in angle
of attack, as long as the Magnus moment is present. The stability of near-
circular motions is shown to be readily determined by the use of pertubation
equations derived from the polar equations of motion. This approach permits
both geometric and aerodynamic non-linearities to be considered simultaneously
without difficulty. The resulting stability criteria for a non-spinning missile
with cubic aerodynamic coefficients are shown to be identical to results obtained

by C. Murphy using quasi-linear theory.

Supplementing the analytical work is a review of the aerodynamic flow
phenomena which affect non-planar motion by generation of forces and moments
in the Magnus plane. Suggestions are made for additional experimental work

to obtain the effect of angle of attack plane rotation.
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I. INTRODUCTION

This report describes exploratory analytical investigations of non-
planar and near-circular motions of symmetric missiles, both with and without
axial spin. For the most part, these investigations are made using the equations

for pitch-yaw motion in polar form.

Non-planar and circular-type motions* are exhibited, not infrequently,
in full-scale vehicles such as sounding rockets, re-entry bodies, and a wide
variety of tactical and air-to-surface weapons. In most instances these motions
are due to the effect of the launch conditions, gyroscopic precession, or slight
asymmetries combined with roll, and are well damped except possibly at pitch-
roll resonance. However, in some instances there is observed a tendency for
sustained circular motion which grows, in some cases, to very large amplitude.
These later motions, which are of considerable concern, are to a great extent
associated with the presence of Magnus-type moments or some type of non-linear

damping.

While the basic linear aeroballistic theory** accounts very well for the
non-planar motions resulting from initial conditions, gyroscopic effects, and
the combined effects of asymmetry and roll, its use for studying motions due
to Magnus-type moments is severely limited and, of course, non-linear damping

moments are not within the scope of a linear theory. It is also rather well

* Circular motions are a particular non-planar motion wherein the angle of
attack approaches or is held to a constant value. Uur interesi in this report
is with motions which are predominantly non-planar,.

*% The basic linear aeroballistic theory, as developed by Murphy, Nicolaides,
and others, makes use of non-rolling coordinates and exploits aerodynamic
symmetry through introduction of complex variables for the angle of attack
and cross angular velocity.
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known that the linear theory does not predict a sustained circular motion for
a symmetric missile. Although much effort has gone into extending the aero-
ballistic theory to account for aerodynamic nonlinearities, * there are three
areas which have not received sufficient attention, namely:
1. The effect of geometric nonlinearities.
2. The description of the aerodynamic nonlinearities associated
with rotation of the angle of attack plane or aerodynamic asymmetry’
with respect to the angle of attack plane.
3. The application of the nonlinear theory to determination of
aerodynamic coefficients and derivatives from experimental

data, particularly that obtained from wind tunnel tests.

The latter is essential if experimental data are to be used for predicting
the flight behavior of arbitrary configurations. In the present treatment, which
involves a new formulation of the equations of motion, a concerted effort is

made to bring the above factors into clearer focus.

The impetus for the present work was a study of spinning bodies at very
large angle of attack. 1 These early investigations were concerned with the
attitude and stability of cylinder-like bodies in flat spins or very large angle
of attack coning motions. To treat this problem, a pertubation technique was

adopted similar to that used by Klinar & Grantham?

for studying aircraft spins.
However, new equations of motion were required which would not only accommo-
date large axial roll rates, but also a very wide range of angle of attack. As a
result, it was found that the flat spin problem could be simulated quite well with
two exact nonlinear moment equations, the first describing the motion in the

angle of attack plane, and the second describing the rotational motion of the

angle of attack plane itself. With such a formulation, the aerodynamic

* The work of Charles H. Murphy of BRL is particularly noteworthy.
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coefficients for pitch and yaw could be independent, in contradiction to the
assumptions of aerodynamic symmetry assumed at small angles of attack. It
was particularly noteworthy that approximation of the aerodynamic damping at
angles of attack at or approximating ninety degrees, showed that two different
values existed, one value applicable to rotation of the body in the angle of
attack plane, a second value applicable to the rotation of the body in a plane

normal to the angle of attack plane.

A most noteworthy aspect of the new formulation was that steady-state
constant-angle-of-attack solutions were obtained for practically all types of
Magnus moments. As a result, we have referred to this approach as a
"circular-motion theory.'"' When the generality of the circular motion theory
was fully realized, it became apparent that the same approach (and even the
same equations) were applicable at small angles of attack, the domain of the

aeroballistic theory.

A comparison of the equations, however, immediately presented a
dilema, since, in the circular motion theory separate aerodynamic variables
exist for the angle of attack and Maygnus planes, ¥ whereas in the aeroballistic
theory single coefficients are used to describe both components of the complex
pitch-yaw motion. This raised a question as to the appropriate aerodynamic
system, even at small angles of attack. So far, this question has been resolved
only for angles of attack approaching zero, where it has been shown that the
angular velocity damping derivatives are identical for the angle of attack and
Magnus planes. For larger angles of attack, it appears that nonlinear damping

terms will have to be included in the aeroballistic theory.

* Throughout this report, the Magnus plane refers to a plane normal to the
angle of attack plane. The Magnus plane also contains the missile axis
of symmetry.
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A second concern growing from comparison of the aeroballistic and
circular motion equations was that the former did not readily reveal the
existence of circular limit cycles for a wide variety of conditions, not even
for a linear Magnus moment. These differences could be traced, in part, to
the linearization of the inertial terms in the aeroballistic equations of motion.
Thus it appeared, that for investigation of circular motion, the inertial terms

in the equations of motion must be retained in their exact nonlinear form.

Another area of uncertainty was the non-rolling coordinates used in the
aeroballistic equations, as these do not describe the angle of attack plane
rotation precisely. Thus it was felt that a clearer separation of the effects
of spin and angle of attack plane rotation should be possible with the circular

motion theory.

The aerodynamic subtleties of non-planar motion appear in the aero-
ballistic theory as complex nonlinear aerodynamic coefficients. The nature of
these coefficients has been explained by C. Murphy in several papers, but yet
the complex-variable formulation has not encouraged a concerted effort to
determine the coefficients experimentally. This fault is corrected in the
present effort, by adoption of a new set of aerodynamic coefficients, which

are related to readily observable and measurable motion parameters.

With the new formulation such phenomena as ''circular motion damping"

and ""dynamic Magnus effect'" take on a meaningful significance.

The scope of the present study is quite vast, but because of the limita-
tions of program funding, much of the work has had to be of an exploratory

nature. The main objectives of the present effort have been as follows:

1. To compare the aeroballistic and circular motion theories.
2. To arrive at an improved aerodynamic formulation for non-planar
motions.
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3. To predict the motion and stability of axisymmetric bodies under

the influence of various Magnus phenomenon.

4. To show the adaptability of the small pertubation theory and the
polar-form of the equations of motion to the analysis of near-

circular motions.

5. To review, investigate and extend the available methods of
predicting the aerodynamic force distribution on bodies of revolu-
tion at large angles and in non-planar motion, and the subsequent

determination of stability coefficients.

6. To review and suggest improved methods for experimental deter-
mination of aerodynamic coefficients assoclated with non-planar

and circular motion.
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II. APPLICATION OF EXISTING MOTION THEORY
TO THE CIRCULAR MOTION PROBLEM

The equations of yawing motion in polar form have the advantage that
the total angle of attack is represented by a single rotating vector. In
turn, the motion represented by this single vector can be expressed by two
equations in real variables. For near-circular motions, the polar equations
nut only provide a better physical picture of the dynamics, but also permit
considerable mathematical simplification. In the case of circular limit cycles,
the amplitude and frequency are in most cases obtainable directly from
algebraic equations, since all of the derivatives approach zero except that

which represents the rotation of the angle of attack vector.

In this section of the report we will review the form of the polar equations
both as they are developed by transformation from complex variable equations,
and as derived directly from Euler angles. Each approach has received
previous attention by aerodynamicists and mathematicians. Our present
interest is in the way of introduction, and we will take up the more general
development of the polar equations in Section III. In addition, we will briefly
consider, here, the nature of the circular limit cycles indicated by the two

different developments of the polar equations,

A. Development of Polar Equation of Motion by Transformation
from Complex Variables

One method of obtaining a set of poiar equations is by suitable
transformation of the aeroballistic equations, * which are usually of the

form

VZ4 N/ ~ 1)

* The simplicity of Equation 1) is often exploited for investigation of time
varying coefficients and specific aerodynamic nonlinearities.
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where § is the complex yaw and the C's are complex quantities which
may be constants or highly nonlinear functions. The complex yaw is
usually with respect to non-rolling coordinates and the necessary transfor-

mation to the polar form is

= A B
F = Se = G+ A et 2)

where the variables are described in sketch below:

After performing the transformation, the real and imaginary terms can
be separated into two separate scalar equations. From the linear form of
equation 1), as derived by C. Murphy, reference 3, we obtain in Murphy's

notation

7 PR | e oo e
S - 3(8/) + HS + ra38 - 1rMe =20 3)

~

2580 + "5 +HSO -PS5S'-PTS =0 4)

Obviously, more complicated polar equations result when nonlinear terms

are included in 1), However, it must constantly be kept in mind that all

-7-
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of the assumptions involved in equations 1) will be retained in 3) and 4).

This point will be discussed in more detail later in the paper.

Zaroodny, ref. 4, has further transformed 3) and 4) from circular

to spiral yaw by use of the transformation

[Fte
S=5€°7

° 4

/
S =TI
where 77 represents the spiral motion and 4 is the independent variable,
Zaroodny goes on to examine the effect of nonlinear Magnus moment on

the spiral yaw by an iteration technique.

Haseltine, ref. 5, has examined the nonlinear form of 3) and 4),
which includes the geometric nonlinearity in the angle of attack, i.e.,
the inclusion of terms in /, where /: csa . Haseltine, through a
rigorous as well as general analysis has shown that certain periodic
solutions can be determined by pertubation theory. The work of Haseltine
is particularly noteworthy, in that it shows that the pertubation equations
derived from equations 3) and 4) will lead to the same conclusions regard-
ing periodic solutions and the stability as do the methods employed by
Murphy, ref. 6. This fact will be clearly shown in a subsequent section

of the report.

The inherent shortcoming of the transformed equations is that

equation 1) usually contains approximations for the geometric nonlinearities.

Wwhen eguation 1) is derived in its
Appendix A of ref. 7) there exists two parameters in the C's: ../ the
axial spin rate, and ;/, , the rotation of the y z moving coordinates.
However, in the application of equation 1), /I, is usually deleted by the

gselection of non-rolling coordinates. Thus, with /1, = 0, there is the

-8-
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added complication of the motion generated by the moving axes themselves.
This very important question has received some attention by Murphy from
the standpoint of reduction of ballistic range data. (7) More light will be

shed on this problem as a result of the present analyses.

B. Development of Polar Equations from Euler Angle Variables

The direct formulation of the polar equations for the three angular
degrees of freedom follows from selection of Euler angles which represent
the orientation of the missile axis of symmetry with respect to an appro-
priate inertial reference. In general it will be convenient to make the
inertial reference coincident with the total velocity vector. This precludes
the effects of translation, nevertheless the equations are useful for studying
motions such as those of wind tunnel models, and have the advantage that
the inertial moment terms are exact. An axis system often employed is

illustrated below:

NORMAL, TO /4

NODAL AXIS A

N
SPIN AX|S
¢

80DvY
AXIS L
Té SPIN ~
AXI|S

<7

L
/7 X

Y @

HORIZONTAL

M

NODAL g

AX1S
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The equations of motion can be shown to be

L= [,70' 5)
M = ]’4:-[/\'?/44.‘4“’(««5",‘1;7’/).,4«;4« 6)
A/flx'\'mf#zlzl'a*mrv—,/;fé 7)

In contrast to equations 3) and 4), the above equations are basically

nonlinear.

These equations are effectively those of a top with appropriate
aerodynamic terms added. This form of the polar equation was used by
Bird and Lichtenstein, ref. 30, for studying the motion of a wind tunnel
model with three degrees of angular freedom. Apparently Bird and
Lichtenstein did not recognize the fact that steady-state or pertubation
solutions could be obtained analytically from 6) and 7), and their investi-

gations were restricted to solutions obtained by computer.

The distinguishing feature about equations 5), 6) and 7) is that
they define the location of the angle of attack plane precisely with respect
to inertial space. In contrast, the orientation of the angle of attack plane
is not known precisely with aeroballistic non-rolling axes when the angle

of attack is finite and the motion non-planar.

The inertial terms in equations 6) and 7) are similar to those in
the transformed linear equations 3) and 4), except that the former equations

involve trigonometric functions of o , the angle of attack

C. Circular Motion Solutions

A circular motion solution can be obtained from the polar equations
3) and 4) whenever we can establish finite values of 5 and ¢ for

17

S"-5"-8@ . 0. However, itis at once obvious that the linear equations

-10-
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3) and 4) lead only to the trivial solution & = 0. From 3) we obtain the

usual precessional and nutational frequencies,

6= L Qe 8)

while from 4) we obtain the additional relationship

. 27 9)
o

To obtain a finite value of 5 nonlinear terms must be added to equations

3) and 4) such that » does not factor out of either 3) and 4). An interest-

ing consequence of this is the case of zero spin with nonlinear damping,

H a function only of $". For steady circular motion this new H term

will drop out of 3), because & -~ , and will appear only in equation 4).

But a solution to 4) will be obtained only if & = 0. Therefore, nonlinear

damping proportional to S* cannot lead to circular motion. This result

has also been obtained by a nonlinear analysis of equation 1). It should

also be noted at this point that a lincar Magnus moment does not lead to

a circular motion solution from equations 3) and 4).

Now let us examine the possibility of circular motion solutions
from equations 6) and 7). Again, letting the motion approach steady-state

we can set o~ : o : A = © and obtain

Moz T A o oo +f,f/\'4¢;a~' 10)

N = 0 11)
Equation 11) merely states that the total aerodynamic yawing moment

must equal zero. *

* From examination of the coordinates in the sketch on page 9, it can
be seen that N moment corresponds to the Magnus plane while the M
moment corresponds to the angle of attack plane,

-11-
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Consider first the case where the aerodynamic moments are linear

in ¢’ . Equation l1) can now be written as
A -

In addition to the trivial solution ¢ = 0, we obtain

Y- (/f

On o

which when substituted into

Cop. o~ /4

S N Y j:,\//‘wﬂ

7’ 77
leads to
- Cmp {,?fx /__" - Z
(o 07 = 144,«0" 12)

(52)
Solutions to equation 12) will exist for a w1dé range of ~ , provided Cnpcf
is sufficiently large. Thus, a family of steady-state circular motion
solutions are obtained from equations 6) and 7), even with linear

aerodynamics!

The reason for this can easily be traced to the fact that co<a o
appears in equation 10), thus not permitting - to factor out of that equation. *
If the usual small angle approximation, ¢e°s” =/ , were introduced prior
to formulation of equation 10), the same difficulty would be experienced

in obtaining a steady-state solution as was the case with equations 3) and 4).

For illustrative purposes, equation 12} is plottcd

some representative values of the aerodynamic and inertial parameters.

* This is true particularly when M is a linear function of sin s , which is

[P A 77 o

the case when the angle of attack is defined to be %

-12-
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k2

The solutions are shown as p versus — , whered = pd/V is now
a parameter. For Cm, < ./, the solution curves are in the range
0« < 7 , while for Cmr > 0 the solution curves are in the
range g <o’< 7 . 1t will be noted that for small values of the Magnus
moment coefficient, solutions are not always obtained. However, when
both the Magnus moment coefficient and the spin rate parameter, p, are

large, circular motion solutions are always obtained.

To obtain a complete steady-state solution of all three moment equa-
tions, it is only necessary to superimpose on Figure 1 the actual values of
the spin rate parameter as a function of @ ., As can be seen from the
shape of the curves, the magnitude and variation of the actual spin rate
with o will have a significant effect on the amplitude of the circular
motion. Particularly, if the spin rate varies only slightly with ~ , the
circular motion solutions will tend to correspond to values of - closer
to 90 degrees than to either zero or 180 degrees. It is of interest in these
latter cases that for very large spin, a positive Magnus moment leads to

circular motion solutions with «~ < 7o regardless of the size of Cm,

Likewise for negative Magnus moment and very large spin, o > T
With slight modification of the usual linear aerodynamic system it
is possible to obtain other circular motion solutions. For example, Tobak

(27)

and Lessing have obtained circular motion solutions by re-defining the

Magnus and damping coefficients.

By replacing the classical Magnus moment with a side moment¥*,

which has a linear dependency upon angle of attack, some additional and

The linear side-moment is not consistent with aerodynamic symmetry
considerations. Ye¢t, moments closely approximating a linear side moment
have been measured on finned rockets where the fin planes were not aligned
with the angle of attack plane,

-13.
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very interesting results are obtained. In this case we consider only a

lunar circular motion.
For this case the steady-state solutions are obtained from
/V‘w ~ 4 A/l"A A =0
.2
_/‘4'_‘4"-: /\Mﬂmﬂ[/—?]

with the result that

au 6 (o0 o - M/ T 14)

” (1- L) &Y
I N,-',\

Here again, circular solutions will be obtained if N, is sufficiently large.

It will be observed that 7 and A must have the same sign for o~ « 7,

Thus for p 70 and /\f_,x < ¢ , we must have a positive side moment,

Mo >0

The above exercises, (based on elementary equations) are presented
for the express purpose of illustrating the contribution of geometric non-
linearities to limit circular motion. Also, we have shown the significance
of the N moments, which can result in a frequency, % , independent of
the pitch natural frequency, and thus permit a simultaneous solution for

o and A

One further remark can be made about equations 12) and 14): It
will be noted that the numerator of the right hand side of each equation
depends upon the air density, through the aerodynamic parameter M, ,
while the denominator of each equation is independent of air density and
depends only upon the constant frequency, % . Itis therefore possible

to obtain solutions to 12) and 14) at high altitudes, even though no solution

-14-
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may exist at low altitudes. Therefore, even small Magnus-type moments
can be expected to produce coning motions of sounding rocket vehicles at

very high altitudes.

D. Effect of Aerodynamic Rotational Symmetry

A distinguishing mark between the polar equations obtained by
transformation (equations 3 and 4) and those obtained directly from the
Euler angles (equations 6 and 7) is that, in the former, aerodynamic
rotational symmetry is implied, while in the latter, one is free to select
separate aerodynamic characteristics for the angle of attack and Magnus
planes. This fact is made very evident by closer inspection of equations
3) and 4). It will be noted that the damping parameter, H, is forced to
appear in both equations 3) and 4) while the overturning moment parameter,
M, appears only in 3) and the Magnus moment parameter, T, appears
only in 4). For steady circular motion only, the H and T terms remain
in 4), so that either H or T will affect the frequency, & l , as obtained
from equation 9). The significance of the above remarks is as follows:
for systems which exploit aerodynamic rotational symmetry, there is a
forced inter-relationship between the Magnus moment and the damping
moment. This fact makes the use of linear equations 3) and 4) very
suspect for the analysis of experimental motions, where the exact form
of either H or T may not be precisely known. A most obvious conse-
quence of this would be that of a slight nonlinearity in the Magnus moment

being interpreted as a noniinear damping moment.

-15-
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III. A NEW FORMULATION OF THE POLAR EQUATIONS

In the preceding section some of the advantages and disadvantages of
the two different types of polar equations were made apparent. These factors
have led to the derivation of a2 new set of equations, which are an extension of
the moment equations with the Euler angles as dependent variables. These
new equations incorporate the effect of lateral translation, which is known to
have an important cffect on aerodynamic damping. Finally, we will show the
difference between the new formulation and the exact fourth order complex

variable equations.

Equations of Motion, Rotational Degrees of Freedom

For the purpose of comparing with the aeroballistic theory as well as
following the original large angle of attack motion theory of ref. 1, the Euler

angle notation noted below is utilized.

xXYZ INERTIAL AxeEs
X}’;' Freeo- Prave Axes
x93 Bovy-Fxey Axés

(Axns oF
SymmeTRY
FIR 800)’)
?I W V\\I\/y/ ~ X
p ////// NN
Y
¢
& / 3
7 3
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If x y' z'are fixed-plane axes, i.e., y'always is the XY plane, the angular
velocities of the body and the triad can be expressed as

LD, Vi wx o= Yo
12;/:: & ab/ - f -2
jZJ/ = p;4¢4 6

C(JJ: = A = Vmﬁ
where  represents the roll of the miasile with respect to x y' z' coordinates,

These can be substituted into the fundamental equation of motion for moving
axes systems,

—ay —y — —

M= [rlw + N x[Iw 15)
to obtain the moment equations. In the work which follows we assume axial
mass symmetry, and also x to be a principal axis such that

The resulting scalar moment equations are

L = I« f;

16)
M= 16 + L ph + I A Zano 17)
Nz IA-I pb- ThéLomé 18)
or equivalently
L= I,p
/\// =

16 »L;ow'mév‘ T oo 6 .0 &

A = ['V:w.e - f,fé-?[?ﬁ'wé

«17-



Alpha Research, Inc.
Report No. 66-3426-1
15 December 1966

A simple transformation from equations 16) - 18) to equations 5) - 7) is

possible by use of the relationships

o~ = Th o+ 6

We now consider the effect of translational motion. The fixed-plane
force equations can be derived in a manner similar to the moment equations

with the following results:
£ o= m(,u +ar9'—uy'co¢9>
6/= W(V.‘+a/';ﬂ'~uﬂ;9 LY e b))

' 19)
§/= m (et - ué)

To couple these equations with the moment equations it is convenient to select
new variables to represent the translational motion. In accordance with the

following sketch we select € to represent the deflection of the velocity vector
in the x y' plane, and ry% to represent any additional rotation of the fixed-

plane axes required to make the total velocity lie in the x Z plane

/

— 3

-
R
X v \ v;){\z

\(-m-//K

X

-18 -
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We now introduce the relationships

€= Tp-({-8)-x 20)

]/," + Ay = rotation of angle of attack plane

Since our interest is basically in the yawing motion, we can restrict our
attention to values of ¢ and A]z; which approach zero, retaining, however,
the effects of the derivatives of € and A}J'” . We also assume here that the
lift force is the predominant force affecting the lateral translation. These
assumptions allow us to neglect the ¢} sin& term in equation 19c) and

to set Fy! = 0 in equation 19b). With the aid of the relationships

5 = ol 'fé

= L g oL 21)
AL = V' coo oL

¢ )= )

L// o J_SJ -~

- = [ ——— LD

v 2m

£l s 4

J Crv 2m

it can be shown that
61: t«-’sj(’L = (JS‘[ CL D(- * 22)
2am am o

and

ALy 2. g;_!d(f)

o 23)

From 19b) we obtain, by expanding sin ( ~ + ¢ )andcos ( < + € )
ey (Yesp)e L’_/J_»’_%@éf . 24)

To the first order in ¢ , this is exactly the acceleration cross product

Ve X 1&/ , which is obtained directly for . = 0, with our rotating coordinates.

* The singular dependence of Cy, on <. is not implied, but is assumed for
convenience. Comparison with aeroballistic theory will show that the
dependence of Cy, on =’ must also be considered, if comparison is to be
made with aeroballistic equations containing CNO.J terms.

-19-
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The value of 'V desired, is that which will make . = - L']Z;é . Thus from
equation 24)

. '3
Ay = Ye + higher order terms.
It is now seen that to the first order of ¢ , it is possible to neglect . v

Equations 17) and 18) can now be written in the following form. *
("” ”)+(<1/+5’>(-ﬁ§—4()+ ﬂ/—sz’w(é?w)

25)
2 - -~ 3 - -~ ! 3
_(V;)w(d*é)m(d+é):/»%§fﬁ/@xx +C‘,,o.(o< ve') « Gy ou]

(v v o) sz Zad(20e) e ovloan(3ee) 2

sd? o ,,/-p]
%j%%%[@#é}%(ﬁw%%

Substitutions of 22) and 23) into 25) and 26) gives the final form of the polar
equation with linear aerodynamics

[ 0, 0] 2

¢ 1k Vw/oﬂe/—(ww(wf)w("?“)

27)
‘ 5 ,0,_5 / } 7 =
,__._ D( — 5 Q ol = O

Vs (<L+e) -

o/
;’ oy erlie)

\ Hl‘\

. '}V[ (o (Kte)T - ﬂf‘ﬂ G aem(se) - /f/(" A%/J%)]

28)
+ (f;)(z >[ o - B

* The aerodynamic coefficients used here correspond to those appearing in
the aeroballistic equations 3) and 4).
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It is now worthwhile to carefully examine the differences between 27) and 28)
and the aeroballistic equations. The most exact form of equation 1) is, for

the same assumptions as above, *
e ]S - Eeitpar1.)]5
+[—M " ?(P— 7?)‘1 (PT— 7 (H - %/)‘ 7/"/// *Jm))J;

I
o

where
_ Hy + L “
s - «“
'Z;‘— = -—0/ ’/
A
AA = }’ /—(—:(/

o = (J, , Y o M, ,\ , velocity vector
With this formulation the rotation of the moving coordinates is specified only
by 12 . » and hence equation 29) is valid for both non-rolling and fixed-plane

axes systems.

It should be emphasized, here, that equation 29) results from combining
a first order complex equation for §  with a first order complex equation for
the cross angular velocity. Note, also, that the complex variables are describ-
ing the motion relative to the body axis of symmetry, whereas the variables in
equations 25) and 26) are related to either the velocity vector or the inertial

reference axes.

Now let us examine the basic differences between equations 26) and 28)

and equation 29). This is most easily accomplished by transforming equation

* This equation is derived in Appendix A of BRL Report No. 974, ref. 7.
The JNA terms, which are proportional to CN: , are usually omitted, but
must be retained here if C1,  is to be included in the expansion of eq. 23).
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29) into polar form and taking into account the relationships between variables

We will first consider ecquation 29) with Jpp deleted. Again letting
5o 5ef
we obtain from equation 28) after separating real and imaginary parts
; 30)
éﬁyﬁuwn[g?ﬂ;wgﬁfﬁzﬁ#mh;ﬁ;
- ré ¢ ffb Ls (e 7). z//”/(p _

r(6))- o

25/((9/1‘7;‘)%é[Q/J-{/“)/#—[/OSJI(' ﬂSJ de/(H +3(n. )]é[ﬁ

31)
-y e /t/ L ./ /I sd 3
— + V- - . e - — — e I ﬂj
To compare 30) and 31) with 27) and 28) we need to consider the followin
P g
additional relationships
S = e 2
3': e 32)
é /7 - 7 *

Y = oo
e 2 e 2

P yand i)
(9,.1/)o¢ymn<—yo/ 2B -pe o (ot'e €’)

~ Yt 2 -V a
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In addition the coefficient notation is different, since different variables are
used. Denoting the coefficients of equations 30) and 31) by subscript M and

those of equations 27) and 28) by A, we have that:

1) for coefficients of angle of attack
//(" ) - (/’. > <
{Lig - P -,
2M 7 /A dem L

2) for coefficients of cross angular velocity

7

\ /e
(C;/M : ((/; )A

3) for coefficients of the derivative of the angle of attack

y . , /
(C/; )M = (C{;)A _6—00_-5

Finally, we obtain from 30) and 31)

plon Z - B2 L 2yl ez
osd > , 34
+[t_;\— G'O‘x'A :-:(. - E'S';! (CD A /QSI/(CA";-‘L (‘H;L)A_} w{d‘ﬂ °2 )

In equations 33) and 34) terms of order 2 ¢ , (JTe) , <e , €€,
-2
and « ¢ are neglected.
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Equations 33) and 34) are identical with 27) and 28), except for differences
in the damping parameters, particularly the coefficients of }//'sin (T +¢)
and ¥ sin ( 2} in cquations 28) and 34), respectively. First, we see that
the damping parameter in equation 28) involves only Cp,, while the aeroballistic

damping parameter in equation 34) is CMq + Cyg . - The second difference

. . . : : 2sdio )y e
is that in equation 34) the lift contribution to the damping is —-(%, ) |4 ,
. ; ' Fam oL
whereas in equation 28) we have />4 (:& v’ el Tee
n
In contrast to the above, inclusion of Cy, . in equation 22) and JNA in

equation 29) leads to equivalent terms in the polar equations. The principal

contribution of Jya to equation 34)is . ;4 ¢ 2 ", while the corresponding

term in 28) is ¢ \ se " >(w4 (e + e» W' T . Note that the factor 2.0
am ~ y

appears in both of these terms.

The reasons for the small difference in the CL“ damping parameters
between the exact transformed aeroballistic equations and the equations
derived herein, is not fully understood at this time. It remains to be shown
whether this difference is due to 1) the method of including translation into
the Euler angle equations, 2) the transformation relationships, 3) the com-
bined effect of second order terms, 4) the inherent difference in the coordinate
systemg,or 5) the difference between Cp, and (CMq + CMO‘L ). However, it

can be shown that the difference corresponds to magnitude y ’¢’

The inertial terms in both the Euler angle equations, derived herein,

and ihe itransformed exact acrcballistic equations are identical. It is important
to note that agreement between the trigonometric form of the inertial terms
depends only upon retaining the [ terms in equation 29). The effect of
including 7 in equation 29) is a modification of the & " terms in equations
30) and 31), namely, & is everywhere replaced by ( © '+ ¢ ). Although the
form of the transformed aeroballistic equations is not affected by i , it is clear
that for any comparison with observed motions, /~ must be included. This

would also include analysis of experimental data.
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IV. AERODYNAMIC MOMENT EXPANSIONS

General

With the new fixed-plane equations of motion in polar form the aero-
dynamic moments M and N are related directly to the angle of attack and
Magnus planes, and each appears in only one equation. This division of the

aerodynamic system will be fully exploited.

Of particular concern is the appropriate formulation of what might be
called dynamic Magnus effect. This is the contribution to N resulting from
angle of attack plane rotation. This dynamic Magnus effect must be considered
for finite as well as zero spin, since it is not at all clear that the effect of

angle of attack plane rotation disappears for zero spin.

Although there is some concern about the most appropriate means of
describing an aerodynamic system in analytic terms, * both precedent and
convenience leads us to consider, at least initially, a series expansion scheme
in terms of the variables appearing in the equation of motion. Independently,
we examine both theoretically and empirically the aerodynamic force structure
on bodies of interest to confirm the suitability of the aerodynamic model. It
is important to realize that certain pitfalls exist when one tries to combine a
theoretically derived model of the complete aerodynamic system with certain
conjectures as to the form of specific aerodynamic effects. This point will be
brought out more fully when we consider the effect of n-gonal rotational

symmetry.

Maple-Synge Theory

The systematic development of the aerodynamic force system for

projectiles,including the effects of rotational and reflectional symmetry, is due

* Tobak and Etkin have both suggested alternate formulations of the aerodynamic
force system.
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principally to the work of Maple and Synge, ref. 8. The basic hypothesis
involved in their analysis is that the acrodynamic force system depends upon
the instantaneous motion of the body. The two specific types of symmetry
considered are, 1) n-gonal rotational symmetry about an axis, A, 2) reflec-
tional symmetry in a plane, P. The precise application of the Maple-Synge
theory depends upon the choice variables used to describe the motion, but

in any case, the end result is basically the same, viz., the theory shows

which of the coefficients of the expansion remain after certain '"covering
operations' are performed. The coefficients thus eliminated are inconsistent
with the covering operations. For n-gonal symmetry this whole process
amounts to forming a coefficient-eliminating sieve. The sieve can be expressed
in the form of a diagram, which shows the surviving coefficients of each degree
in terms of two parameters. A different sieve is constructed for the transverse

and axial modes, and for each type of rotational symmetry.

Using the Maple-Synge theory directly, the variables are the complex
cross velocity and the comples cross angular velocity. These are used in
their equivalent form, «, J/ «w and < . It is understood that the coefficients

are also function of the axial velocity and spin as well as air density, etc.

The appropriate coefficients for n-gonal rotational symmetry are pro-
vided by Maple & Synge in a convenient form in ref. 8, and hence their develop-
ment will not be repeated here. The development can be extended to derivatives

of the variables as well as the variables themselves,

The consequences of mirror symmetry, however, will be considered
briefly, as this analysis leads to different results depending upon the choice of
variables. This point is brought home by the way of an example in Appendix A.
Thus, the Maple-Synge rules regarding terms which vanish for mirror symmetry,
cannot be used in a general sense, and apply only to the Maple-Synge variables,

= >/
When 5 S f: § are used as variables, a new set of rules must be developed.
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Since the present effort is of an exploratory nature, the aerodynamic
expansion will be developed for just a representative case. We shall arbitrarily
choose a body with tetragonal rotational symmetry and mirror symmetry, and
we shall further assume that coefficients up to and including cubic terms are
sufficient to describe the aerodynamic system. For other types of symmetry
and for higher order terms in the aerodynamic expansion, the development will

be much the same.

For the case considered, we obtain the following Maple-Synge moment

coefficients for the transverse axes:

G/aaa /’“) = ((}o/ r "‘;u>‘4

Gl/oo /1»‘1/67) = (;,7» 4,4‘;L)M‘/¢}‘
Gio /",47/&0-‘ [}, #x‘f;,)a,a w

6/0// (“/ W/J)‘
G ooy (‘02, 63) = (j" “A‘f;/a) w o

O
N
N
i
N
€
g€

éa_?oo //13) = (;,37' # /'57/4 &
C’ola/ (&‘z/c‘_}-)’ (}/.s’ * /‘;/470)'&1'5

- —_1 )
60/02 (ad ")

— —1

(’;/774 + 4";,3 ‘) @ @

1}

Covz 1@ = (24 ripa,) @’
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It can be shown that the first six pair of cubic coefficients are applicable to a
body of revolution, while the last four pair of coefficients, g3 through gz,

are a consequence of the tetragonal symmetry.

Transformation of Maple-Synge Coefficients to Fixed-Plane Axes

The above coefficients are derived on the basis of body-fixed axes.
We must therefore consider the correct formulation for fixed-plane axes,

aligned with the angle of attack plane and Magnus plane.

The relationship between M + . N, where M is the moment in the
angle of attack plane and N is the moment in the Magnus plane, and the

Maple-Synge G = G, + « Gp is obtained from the following sketch:

;o
N

N
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The resulting equation relating these two sets of moments is

. 48 :
G = G +riG,= 4¢ /M+4N) 35)

A6
We may also define « = )¢ » from which we obtain immediately

~ -4 8
u=§€A
T+

U= S

The relationship between angular velocities in the two systems is given by the

following sketch:

\/ | /
/9
AN
S
\‘\
N
74
2
We obtain that
A8 Co
w = ¢ u‘/'z—xf/
— -4 8 .
w = € “ (/‘t +4f.)
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First we will consider the effect of the above relationships on a linear term,

as follows:
. / . . A8, .
G, 000 /’“/’(20/7’ 4 4;.41.)’(’(" ¢ \/MJXM)/a-a

8

(;u/f+/;oz )ée‘ R ‘\G(Mf“/\}//".

From this it is clear that

/% T PR
Yo PP Be 7S
Similarly, we obtain for the other linear coefficients
Cosro (@)= (0s ¢ apgos)o =~ ~ie "(sein),,,
R L A

from which we see that

Cubic Cocfficients - Body of Revolution

A typical transformation of the first six pair of cubic terms is given

next. Consider the term
G///a (u//;, “J)" (;3 4 "fj,_/) W w

From our basic relationships:

s virgs )8 tag)e s e rain),e

[(as# -0 pm) e L v guppls™ 5o eime),
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therefore,

::/ T 3/ v
33 ‘%;)m (‘Néfc),,,o

9. (M

-/
\ étf/& )u/o - (7 Né}f)mn

The Maple-Synge indices are retained here because different Maple-Synge cubic

terms may lead to the same fixed-plane cocfficient. For example, from G2p91,

we obtain

The transformations for the first six cubic coefficients are summarized in the

following table:

2/00 > M'53 3 A;’éj
Gro - A T Mé’f" Ng‘/t Ae7 élf/c - Ns}r
2L Je = - Mé(/t‘*r;—‘) Z’IA/JAf s szﬁfj/“ é;-/ﬂ‘*f)
Gjoo I1° Mﬁ’f Moy A¢° ‘Mé‘}m i -A{;}f
Cronr g~ M VRN
Sinte gt 79 YCNTYY
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For the zero spin case we can conveniently compare the Maple-Synge, fixed-
plane, and Murphy coefficients from BRL Rpt. 1071, These are given in the
Table below:

Cubic Coefficients For

Body of Revolution
with Zero Spin

Maple-Synge Fixed-Plane Coefficients for Murphy
Coefficients Angle of Attack & Magnus Planes Coefficients
i ;2 M§3 M/ao
23~ 77 ’b/é}- Moy = Hroo
-9, - M
;6 }/a At «"ijz) Mé/ﬂut‘) /‘700/ t Hypo
M
;// f:v + /‘?/tz _ /"/aa/
‘ ;J f ;7 A{S‘A - H/oo ~Maos0
2
(?6 Aé/‘(ﬁ -2 Ho/o
N -
(?” /Yf-l , Ma? y Nﬁ/ﬂ‘%‘) Hoo

It is of interest, that only six independent cubic coefficients remain. Also, it
will be noted that the Murphy and Maple-Synge coefficients are identical, except

for the signs of certain coefficients.
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The advantage of the fixed-plane coefficients, at this point, lies in their
direct relationship to those physical parameters of the motion which are easily
measured. For example, both wind tunnel and free-flight instrumentation
systems are available which can easily separate the angular velocity components
with respect to the angle of attack plane. On the other hand, the direct measure-

ment of the complex-conjugate variables would be extremely difficult.

The dynamic Magnus cffect, due to angle of attack plane rotation, is

also well described by the fixed-plane cubic coefficients. At zero spin we

v A /
have S sag N/‘tg-

Magnus planc and of these A/; 1, and AL 3  contribute to pure circular

a and M, 3 contributions in the
motions. With axial spin included, we add Nf‘é {.;,,uf'/‘ and fo (A "‘f‘)
contributions to the Magnus plane. The former also contributes to pure

circular motion.

Cubic Coefficients - Tetragonal Rotational Symmetry

In the preceding transformations for the cubic body-of—revolution terms,
the €°° factor always appeared on both the left and right sides of the
equation, thus cancelling out. The last four cubic terms for a body with
tetragonal rotational symmetry ( Gg3gg. Gg291. and Gppg3) do not behave in
the same manner. Consider, for example, the term 00300(53). Proceeding as

before, we let

) 3 ) LB . \
(3/:«&0 PG )= —de (M i 000

3 '319

s pragn)s’e =i (recn)yy.

The form of the latter equation suggests a re-arrangement to

(G tign)s’={codo ciamto (Ng M),
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in which case we obtain:

}/4: —%3 ALoo 46 +/\./c53,44,.\'40
- A N
;/3 93f»¢4~4@ ~ Ang@o 4O

Thus g13 and g4 actually represent coefficients which are periodic in the
aerodynamic roll angle, since 4 1is precisely the angle between an arbitrary
set of body-fixed axes and the angle of attack plane. The relationships for

g3 and g4 can be made very precise, by letting the body-fixed axes be aligned
with the fin planes.

At this point we certainly see the validity of our earlier remarks
regarding a composite aerodynamic formulation, viz, a combination theoretical
and empirical aerodynamic model. For it could have been possible to introduce

both Gg3gq(0°) and terms like

M= 4 |t e no)S’

without realizing their equivalence. This particular problem has also been

discussed by Zaroodny, xref. 10.

The remaining cubic terms (Gpz91,» Gglo2, and Ggpg3)» become
increasingly complicated when transformed to the angle of attack and Magnus
planes, and will not be presented here. Also, unique spin dependent terms

cannot be separated. For zero spin we obtain
Qis = Noy cow 40 4 Moy ade

or ;,; = /\/étf ae 46 - MSL;m49

A7 ‘/l[/\éﬁlm4e > %Af’“‘“"‘#e]

or
(7‘/7 - /\/J(ﬂm_ftj,db 46 - /L'G//‘x‘f\./m 48
= N .
or A1 M"MA'I)W‘“ + M(ﬂ,_gﬂf,/h 46

/ = /\/ t s £ - M
R N
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In essence, the last three G coefficients merely state that the dynamic
Magnus effect is periodic in roll. From a practical viewpoint, as Zaroodny
points out in ref. 10, it makes more sense to use higher order terms in S ,
than to retain angular velocity coefficients like Ggjgp (< 5% )and
Gooo3 ( v ). This is because the angular velocity coefficients contribute
smaller aerodynamic moments than do the coefficients depending upon angle

of attack.

With our clear understanding of the physical significance of the Maple-
Synge terms, we can at last allow additional non-Maple-Synge terms to be

considered. Such a candidate term could be , and the variation of A/é

\‘("3
with aerodynamic roll angle. However, terms such as this should only be

considered when sufficient experimental data are available to establish their
validity. In practice, the N;S’ term contained in the Maple-Synge scheme,
may alone provide a sufficient representation of the experimental data. This

is because it is often difficult to obtain precise aerodynamic measurements at

very small angles of attack.
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V. APPLICATION OF PERTUBATION THEORY
TO NEAR-CIRCULAR MOTIONS

A. A Test Case for Comparison with Quasi-Linear Theory

The general validity of the small pertubation approach for analysis

5 However, from his

of circular motions has been established by Haseltine.
general analysis it is not at all clear how the stability requirements will be

expressed for specific nonlinear differential equations.

To establish a firm basis for the pertubation approach, a specific set
of nonlinear differential equations for zero spin and cubic aerodynamic
coefficients are analyzed. Murphy has obtained a quasi-linear solution to
these equations and has established the stability requirements with respect to
the amplitude plane. 7 we will develop a corresponding solution and stability
requirements by first writing the equations of motion in polar form, and then
developing small pertubation equations for near-circular motion. The Routh
stability criteria will then be applied to the characteristic equation describing

the pertubation equations.

This exercise will also serve to illustrate some of the differences

between the complex-variable and the polar equations.

The basic differential equation in complex variables is:
/
£ rM 5= —HT + (M-m)F 36)

where
_ -/ ) =/
M o= Mo + M,oo 5 y + Molofg - Moo/g g

H: ,L/o-l-/—/ z{_"Hmofj/*'HOO/?r

{00
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)
The corresponding polar equations, with §= 3 € , are

! 3 / ' . 2

S' o 5007) t Hy S Hyy 88+ Hpo§(5')- Hoo $(50") 37
+ Hoﬂl(é//3+ﬂ001 5'(591/2" Mlg - M™ion 53“' Moio étél
My, 508 Mee, 5 (5607 = 0

T 1 38)
25'0" + 0"S + H 56 4+ H,, §(s6')r2 H, 55(56")

b Hop (S)'56" + Uy (56 + Moy §T(5067) = 0

One of the disadvantages of the Murphy cubic coefficients is evident
from equations 37) and 38), namely, that more than one aerodynamic coefficient
exists for the same motion parameter. Specifically it is seen from equation 37)
that l1p1p and M;;] are both coefficicnts of 5 ‘;'é',‘t and that Il jgpand My} are
2,

both coefficients of 5 (s . Also in equation 38) both Hjgg and Mg are

coefficients of ;91 - 6’

To form pertutation equations from 37) and 38) we assume that the
motion will be near-circular so that we can replace 5 and & ! by

S S, +05

/

8= 0"+ 48’

o

39)

Following the usual procedure, equations 39) are substituted into 37)
and 38) and second order and smaller terms in 45 and 39  are neglected.
We then obtain, after some rearranging, two linear differential equations in

435 and 46’ . These cquations are presented below in operator form,

where /Z° = "d‘ ' , and & 1is the independent variable.
-
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[@Z*‘(@g//‘zf'ﬁ/o@ ’ /'//ooosolfp "3’40/0(;,‘94,)1* #00/(40‘9'//20
-M, - 3M,, é,z - Ma,oé,LP-J/"/”,(éoq,/)z]Aé 40)
+[- 3 ;0@0, -2 /-/0/9 ‘50390/—2/‘400/ ‘50390/_—/146/

= 50(90//1‘/ /'/0/0 fso (é,@,l)z‘*‘ Mé. + Moo éog ALYy z§, («5, 5,’)2

[26'p +1, 6 +3u,,5%6 +2H,,5D « 2 H. (58 ) 0
£ 3M e oS ¢ [S D F S He 8 )
o070 Y0 J o 0 o oo O, +3/‘/00/(<§.6:)§n

3 / 4 2 , ’ /
+ /\70/0 é‘ ]AQ = - H e ’///oogo ﬂ§a‘9- /)~ Hoor {‘5'&' ){ M,,,,(/os‘,@,/‘ogz‘ll)

From the nonhomogeneous part of equations 40) and 41) we readily

obtain a steady-state circular motion amplitude, J, , and the circular motion

rate, o, These are given by
J 2 _ -£,,. 42)
’ Mato +'L//oo "Ma/'/o"/ f(’qo Hol' +M00/ ﬂo)
and
2
(0/ )= =1, ¢ H [ Lo, Mm) 43)
HO’/ Hoo/ _
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The frequency &, " is very close to the natural pitch frequency, and
supports the assumptions used by Murphy in the quasi-linear method. The
amplitude, with the cxception of the small term in the brackets in equation 42),

is identical to Murphy's result.

The homogeneous part of equations 40) and 41) leads to a third order

characteristic equation of the form

AN s BA s )N + D=0 44)

The stability of the system is governed by the nature of the roots.
Routh has shown that the necessary and sufficient condition for stability (i. e.,
that no root of the equation shall be zero or have a positive real part), when

the characteristic equation is cubic, are that A, B, D, and BC-AD be positive.

To generate these test functions we expand the determinant formed by
the coefficients of 4~ and 49 in equations 40) and 41). The test functions
can then be expressed entirely in terms of the aerodynamic and physical param-

eters by substituting equations 42) and 43) for 5. and &,

After some very lengthy algebra we find that

A =/ - 45)
B = 2 Ho (/{‘45/2‘ + Hooy M. \ 46)
M
C = - 4£M, 47)
D ~ 4 H, M, 48)
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4 My (Mg 3 My # Howi M)
e

BC-AD =x

49)

where Y

1

MO/o +/L//oo - M, Hooy 50)

If it is assumed that the body is aerodynamically stable, i.e.,
A7, < ~ , then it follows from equations 42), 40), 48), 49) that the following
incqualities must be satisfied, *
H, < 0
n > 0
51)
/_//oo ngD/O 7L/'/oa/ Ma < 0

Moso + Hoor Mo P O

These are precisely the same stability criteria obtained by Murphy.
These conditions can be illustrated by a stability diagram in the Myi19° Hioo

plane as depicted below:
//\40/0
& K= Hao, Mo
\A\
&44(\(/ & [ Moo * K< 0
- = /
Loy,
Ll L Ll Ll L

\

ok (£ /‘//L[J'_

o0

Hioe * 3Mps +K L0

STABLE

H/o‘ fMWn - K > o

2
% Equation 42) must be satisfied such that J, 7 ©
-41-



Alpha Research, Inc.

" Report No. 66-3426-1

15 December 1966

Thus, the small pertubation theory, applied to the polar equations of
motion, obtains results which are consistent with the quasi-linear amplitude
plane analysis of Murphy, However, in some respects, the present method is
more advantageous. First, the pertubation method, as used here, is not as
restricted as to the types of nonlinearities present in the equations of motion.
Both aerodynamic and geometric nonlinearities can be handled, and the latter
can be retained in trigonometric form if necessary. Second, the degree of
approximation involved in the stability boundaries can be established more
easily, since the relative magnitude of the terms in the coefficients of the
characteristic equation can be determined, if necessary, by direct numerical

analysis.

B. Cubic Static Moments and Modified Damping

We will now consider an aerodynamic system which is of practical
interest, but yet not completely compatible with Maple-Synge. This particular
case involves a cubic as well as linear side moment, the latter not being given
by Maple-Synge. We shall also consider two different values for the damping,
one value H},applicable to the polar equation corresponding to the real variables,
and a second value, Hp, for the polar equation corresponding to the imaginary

variables.

These new equations are

/ g t = -
&z, /%//%VZ»J-///”/ Cro ol e L 52)
) ZsIa//h,,,o(¢€,,,ZJ‘/J +HZ = ¢
124 7 / > ; -
)Vm.;/’ - ;f ‘%/J + 2]//’/°?/mc>é + Hy Yo oL 53)
3 »l 3 _-]
sd’fc, .+ ¢ > _ 2sd’[q G Ixlpd 2
—@I-[’l*+ nzoi/u/ (5 np “"Iff‘/% 0
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The application of these equations, which include the side moment terms,

arises most frequently where the motion is locked-in or lunar. In this case

. Jd
Y= 7 Coa L

and equations 52) and 53) become

‘ ; - . I -/ /3 i/ >
o *{’}1‘)2(""*"(4""52)[/' T] + H ot - ;/22'5_;“/:/["&-*6"24]0‘ =0 54)

174 - - _ I [ _SJ? -2
PR A SR S

The steady-state circular motion solutions are given by the following two

simultaneous equations:

- ’jz(m <, M&',,)I/

i
\
D
|

sd’ N
[C,,,ot + Cm, o, ]54’0 =0  56)

H, % ) aen /05"/[0 + Cn,_o‘?f}io =0 57)

- /
Generally, for small values of o<, , only one real solution for ) will be
obtained. The solution of 56) and 57) is shown qualitatively in the following

sketch, for negative values of the Cp,'s and positive values of Cp'g

°g\
AN

-43.



T T O Ea T SEaE - T .. ] [ ]

Alpha Research, Inc.
Report No. 66-3426-1
15 December 1966

It might be noted that for a fifth order expansion of C,, two circular motion

solutions could be obtained. In the latter case, one solution would be stable

and the other unstable.

A pertubation analysis of equations 54) and 55) can be accomplished

by letting
= - -y
~— = o, + A4 ol
58)
/ /
¥o= oy o+ sy’
from which we also obtain
Coo i = oo Xy — Aol aum ol 59)
hard - —ny —y
M 0-< = A“- O(, + AOL CM D(o

Substituting equations 58) and 59) into equation 54) and 55), expanding,
deleting terms of second order and higher in A~ and 4%, we obtain a
new set of linear differential equations whose characteristic function

AA e B8A v ca + D=0
has the following coefficients

B = IL//"‘/‘/Z

C = H H + T oL (Wl J2- /1)

@]
1

JH, + KL

where

;. ‘(‘Vo/)z(w220>(,—%>—[ Cmog +3(’mzc-;’01]

21r'
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T

- G Gy, o,
K = %%/W _ ™ +3/n;
2Tr

o

Lx

L= 2(p e )1 - F

Since our interest lies with the stability of the linear pertubation equations in
the neighborhood of the steady-state solution, we can obtain ( y; ") from 56)
and 57) and substitute the result into the coefficients of equations 60c) and 60d).
Unfortunately, the remaining equations must contain ~, implicitly. As a

result we obtain

- 2

- 2 -
-y (m« *3(""1"(0 C’u + C”'g o, o, 61)
C’ 14 2 ! + ! e d -
21 27 A Ny (O,

ot cra e 1)

L% >t 1
YR RSN CRETEN )
i 2 ’ - ) ;s s
21 (21'4,)

(- 222g=)

Good approximations for C and D at small 3, are

62)

\

z
- H. E'fif 36"’23/: + 2 (t - I-i) CK"" 3 (”’z&:/)((”'iiff:i:)
2[’ I, (2 AE-[I)Z
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As before, the necessary and sufficient conditions for stability are
that A, B, C, D and BC-AD be positive. For missiles with aerodynamic
stability, Cm_ - O and H, - 0, Hy » 0, the circular motion solutions will
be stable if Cn; and the nonlinearities Cp,, and Cn, are small. When
Cmz » O and the total C,, contribution is large, both the C and D coefficients
as well as BC-AD may become negative. It should also be noted that for
Hp < 0, the system can still be stable if \Hl! > "\HZ\ and the total C, is
large, such that D » 0. Thus the circular motion damping, H;, eiffects the

stability in a different manner than the planar motion damping, Hj.
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V. AERODYNAMICS OF NEAR-CIRCULAR
AND NON-PLANAK MOTION

General

A complete treatment of the aerodynamic phenomena associated with
near-circular and non-planar motions is beyond the scope of the present con-
tractural effort and this report. However, an understanding of the non-planar
motion problem requires some insight of the aerodynamic factors involved. In
particular, it is desirable to examine the source of the Magnus-type moments,
which promote the angle of attack plane rotation. Also, we shall consider the
nature of the cross-flow on inclined bodies of revolution, not only as it pertains
to Magnus forces and moments, but also to higher order stability and/or damping
coefficients. Finally, the state-of-the-art relative to the prediction and measure-

ment of aerodynamic stability coefficients for non-planar motion will be reviewed.

The discussion which follows in this report is of a general nature. More
specific work, relatcd to the development of cross-flow theory for calculation
of aerodynamic stability coefficients, is contained in a separate report by Ray

Rodman3,2consultant to Alpha Research, Inc., for Contract NAS-2-3426.

Cross-Flow Phenomena

Cross-flow theory, perhaps, provides the most useful concept for visuali-
zation of the effects of body motion and flow conditions on the aerodynamic force
system. This is particularly true where viscous cffects are of primary interest.
If a realistic cross-flow picture or model can be devised, stability coefficients
can be computed from it in a relatively straight forward manner. In contrast,
much more effort is required to obtain stability coefficients if the complete body

pressure distribution must be determined. The extent to which the cross-flow
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can be considered independent of the axial flow requires careful consideration.

This point will be emphasized in the discussions which follow.

R -

The combining of aerodynamic potential and viscous flow forces and the
super-position of body motions is basic to much of aerodynamics, and is the
basis of cross-flow theory. Following the demonstration by R. T. Jones that
in the case of laminar flow the viscous effects on a long yawed cylinder could
be treated by considering the flow across the cylinder axis independently of
the axial flow,Jualian Allen proposed a cross-flow theory for bodies of revolution,
The basis for Allen's cross-flow theory is the use of a steady-state cross-flow
drag coefficient for simulation of the viscous effect. Later work by H. Kelly12
considers the impulsive nature of the cross-flow as well as the effect of a
turbulent boundary layer. The Kelly theory leads to an odd polynominal for
the body total cross force, a result which is in agreement with the Maple-Synge
theory. A further improvement of Kelly's work is presently being accomplished

by Rodman as part of the present effort.

To provide a more firm basis for the cross-flow theory, flow visualization
and other tests have been conducted by a number of researchers. 13,14, 15.
A number of significant discrepancies with the ideal cross-flow postulation
have been observed, particularly where the boundary layer is in a transitional

state or affected by compressibility. These flow visualization studies, such as

the work of Allen and Perkinz~:13 began to show the importance, also, of the

wake and vortex structure in the lee of the body.

16 i1y 17
Somewhat independently, Eldon Dunn, and William Letko ' reported
anomalous side force characteristics for bodies of revolution at large angles
of attack with zero sideslip. These results were also traced to asymmetric

vortex formation.
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Closer study of the flow around pointed bodies of revolution at angle of
attack has shown that at least three different types of vortex formation can
occur behind the body; steady symmetric, steady asymmetric, and unsteady
asymmetric. Curry and Reed18 have found both the steady symmetric and
steady asymmetric formation appearing with a sounding rocket model both
with and without axial spin. Their results also show hysteresis effects associated
with large variations in the angle of attack. Recent vapor screen experiments
by Tobak and Peterson at the NASA Ames Research Center have shown the
steady asymmetric vortex formation occuring with a body of revolution in a
lunar coning motion. * Of considerable interest is the work of Thompson and
Morrison, 19 which includes both experimental and theoretical treatment of the
steady-asymmetric vortex case. Their flow model, which is restricted to
sub-critical cross-flow Reynolds numbers, incorporates vortex shedding from
alternate sides of the body in a manner related to the Karman vortex street
formation. In the Thomson-Morrison theory, the Strouhal number becomes

an important similarity parameter.

The angle of attack range corresponding to the various vortex and
wake formations is of practical interest, since most missiles are designed to
fly at small or moderate angles of attack. The following discussion is restricted
to long slender bodies. Of first interest is the angle at which flow separation
begins, since it is within this separated-flow region that the vortices are
formed. The initial cross-flow separation has a boundary not unlike that of
the minimum pressure line, where it will be recalled that for pointed nose
bodies at angle of attack the most forward point on the minimum-pressure liine

is aft of the nose. In general, separation will start at the most aft portion of

* These experiments also show that the angular displacement of the vortices
with respect to the angle of attack plane varies along the length of the body.
Such an effect will lead to very nonlinear damping moments.
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the body and move forward towards the minimum-pressure line. The longi-
tudinal position at which cross-flow separation first occurs at various angles
of attack has been determined by Perkins and Kuehn. 15 At Mach number 1. 98
it was found that separation began at angle of attack as small as one degree at

a point 11 diameters aft of the nose.

As the angle of attack is increased, there is first formed a pair of
symmetrical vortices and at subcritical cross-flow Reynolds numbers these
subsequently break down into steady or unsteady asymmetrical vortices at
higher angles of attack. The nature of the vortices at moderate angles of
attack, i.e., 10-15 degrees,can be determined not only by flow observations,
but also be pressure distribution data, side force measurements, and rolling

moment characteristics (if the model has fins)

The side force measurements show that the steady asymmetrical vortices
begin to form at from 15-20 degrees angle of attack at subsonic velocities. to. 17
The asymmetrical vortices form at the lowest angle for bodies with long pointed
noses; the asymmetrical vortices are formed at a higher angle of attack if the
nose length is short and conical. At low supersonic Mach numbers, asymmetrical
rolling moments (indicative of asymmetric vortex formation) have been noted at
about 10 degrees angle of attack. 19 At a Mach number of five, asymmetric
side force characteristics are noted to commence at angles of attack as small
as 2 degrees for a sounding rocket model. 18

All of the above phenomena will influence the body non-planar motion.
Murphy has shown that the cross-flow theory of Kelly, which assumes a symmet-
ric wake, leads to values for all of the cubic damping coefficients for a body of
revolution with zero spin. Thus, the more complicated cross-flows, such as

those with asymmetric vortices, will probably make the aerodynamic force

system even more nonlinear.
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It is to be noted that the cross-flow characteristics at and above the
angles of attack where flow separation begins, become extremely sensitive to
the boundary-layer condition. The boundary layer in turn is sensitive to
Reynolds number, Mach number, nose shape, body fineness ratio, and such
geometric factors as roughness or protuberances. In addition the body motion;
particularly spin and possibly coning, will influence the boundary layer. Thus,
the cross-flow concept requires much additional evaluation before it can be

fully exploited as a means of arriving at stability coefficients.

Magnus Phenomenon

Although the cross-flow concept is considered primarily in conjunction
with the force distribution in the angle of attack plane, of equal importance are
the effects in the Magnus plane. In fact, the classical Magnus force and moment
(due to axial spin) for a body of revolution at angle of attack, can be developed
along lines similar to the normal force and pitching moment, by replacing the
cross drag coefficient with the Magnus force coefficient for a cylinder in
cross-flow. The two-dimensional Magnus force characteristics of cylinders
are quite well known. Both this approach and the somewhat more fundamental
boundary-layer displacement theory of Kelly, 20 are adaptable to prediction

of Magnus coefficients for non-planar motions.

Magnus-type moments are of interest from the standpoint that they provide
a means for driving or sustaining non-planar or near-circular motions. For
aerodynamically stabie missiies, nsgative Magnus moments (with positive spin)
are slightly more effective than positive moments in causing large angle of
attack circular motions. However, lunar circular motions can occur only with
positive Magnus moments since the angle of attack plane rotation must be in

the same direction as the spin.
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The classical Magnus force due to spin, can be either positive or negative,
depending upon the cross-flow Reynolds number. This characteristic has been

discussed by Krahn21.

In recent years it has been recognized that there are sources for Magnus-
type forces and moments in addition to the classical Magnus effect due to spin
and the forces due to vortex asymmetry. These psuedo-Magnus forces are in
most instances associated with finned missiles and occur even at relatively
small spin rates. Several Magnus moment producing mechanisms, including

body-fin interference, and differential fin cant, are described by Platau.

Another type of Magnus force and moment occurs on finned vehicle when
the fins are not aligned symmetrically with respect to the angle of attack plane.
The body vortices apparently contribute the unsymmetrical flow ficld over the
fins, but the complete process is not well understood and existing predictions
are not in close agreement with experimental data. As discussed in an earlier
section of the report, these forces and moments which are periodic in the
aerodynamic roll angle, are for the most part consistent with the higher order

Maple-Synge coefficicnts for bodies with n-gonal rotational symmetry.

Prediction of Stability Coefficients

From a dynamical point of view, our aerodynamic interest begins with
the stability coefficients themselves, rather than with the details of the force

distribution.

The prediction of the stability coefficients from cross-flow characteris-
tics has been previously mentioned. This approach should be quite satisfactory
for very large angles of attack, but may not be suitable for angles of attack

approaching zero. It can be mentioned here, that the cross-flow theory clearly
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shows a difference between the damping in and normal to the angle of attack
plane. In reference 1, it is shown that this difference approaches a factor of

2. 0 at ninety degrees angle of attack.

At supersonic and hypersonic Mach numbers, several flow theories are
available from which aerodynamic stability coefficients can be calculated.
Although much work has been done to determine the stability coefficients for
bodies of revolution from theory (see for example, references 23, 24, 25 and
26), the results to date have been obtained only for planar motions. It is
envisioned that considerable effort will be required to calculate the nonlinear

effects due to angle of attack plane rotation.

In regard to theoretical analysis of non-planar motions, it must be
pointed out that the method used must be quite exact, otherwise identical results
are likely to be obtained for both the planar and non-planar cases. Tobak and
Lessing, 21 have noted that potential theory leads to coefficients for bodies of
revolution which are unaffected by combined motions. Brunk28 has noted that
a simple analysis of the fin damping contribution leads to identical results for

circular and planar motions.

Non-Planar Motion Experiments

It is significant that as yet there haven't been wind-tunnel measurements
of the high order non-planar damping coefficients. In addition, nearly all wind-
tunnel Magnus force and momeni data have been obtained with the angle-of-
attack plane fixed. Free-flight data have not been obtained in sufficient quantity
or with sufficient accuracy to allow the determination of non-planar motion

damping coefficients, or dynamic Magnus effect.

The only known force and moment measurements on bodies of revolution

in pure circular motion are the results of reference 29. In these tests cone

-53-



Alpha Research, Inc.

" Report No. 66-3426-1

15 December 1966

cylinder models were attached to a rotating sting, and a rotating force balance
was utilized to measure the loads. The data indicates sizeable Magnus effect
due to angle of attack plane rotation, in some cases sufficient to cause auto-
rotation. A problem with such tests is the lack of force-balance sensitivity in
the Magnus plane and the data degradation due to the use of slip-rings. Balances
of new design are presently being fabricated, which have increased Magnus
force sensitivity, When these are adapted to rotating sting support systems,

it will finally be possible to make direct measurements of non-planar motion

coefficients with some degree of accuracy.

Aerodynamic data for non-planar motions must at present be derived
primarily from dynamic wind tunnel tests of bodies with two or three degrees
of rotational freedom, such as those described in ref. 30. In general, insuffi-
cient data are obtained to separate the effects of spin and angle of attack plane
rotation. The importance of varying the axial spin and angle of attack plane
rotation independently cannot be overemphasized, both from the standpoint of
providing simulation of the various free-flight motions, and also to allow the

spin dependent Magnus effect to be isolated from the circular motion damping.

Another method of testing, which has been used for non-planar motion
ayalysis, involves the use of a wind tunnel with rotating flow. Such a tunnel
was at one time utilized by the NASA Langley Research Center. Test results
obtained in this tunnel for a finned rocket model are described in ref. 21.
These resulis ars nocteweorthy in that they show the effect of modifications to
the rocket nose, such as spoilers and arming propeller. The corresponding
variations in the side moment at large angles of attack were found to be suffi-

cient to cause limit circular motions at angles ranging from 30-40 degrees.
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Determination of Stability Coefficients from Experimental Data

The basic problem of determining the nonlinear damping and Magnus
coefficients which are associated with non-planar motions, is the achievement
of sufficient variation in the motion parameters to isolate the separate effects
of angle of attack, axial spin, and angle of attack plane rotation. Even for pure
circular motion we must have sufficient data to determine at least the following
Magnus-plane coefficients: A | /\;,5 , /\é:« s M, /Vf;(;? y A??‘;A"
and possibly Aj3 (6) Nél_ﬂ(‘g)' etc. Some of these, such as Nps Mes?
and ,’L{;,_, /6] can be obtained without angle of attack plane rotation, but for
a.na.lys~is of general motions these static coefficients must be known for the
appropriate range of Reynolds number, Mach number, ctc. This means that,

in general, both static and dynamic tests will have to be conducted as part of

the same program.

There appears to be two methods of determining the coefficients which
are dependent upon r; the first method involves the use of a rotating force
balance, in the second method the coefficients would be inferred from the
variation of & with time. The latter type test is possible if there is a driving
moment opposite in sign to the damping moment at % = 0. ' This approach is
analagous to the determination of the roll driving and damping coefficients by

observation of the axial spin build-up from zero to stcady-state.
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VI, RECOMMENDATIONS FOR CIRCULAR MOTION EXPERIMENTS

Considerable information has been gathered as to the nature of the
flow around bodies at angle of attack for conditions where the angle of attack
plane is fixed. However, there is minimal experimental evidence to reveal
how the flow and aerodynamic forces will be modified by angle of attack plane
rotation. On the one hand, there is the possibility that the very sensitive
separated flow regions, which are easily disrupted by small changes in the
model or boundary-layer symmetry, may be stabilized by the presence of a
quasi-steady circular motion. On the other hand, the change in the flow field
around the body due to the circular motion, may itself initiate new and unique
aerodynamic force distributions. One of the most important questions to be
answered is whether the effects of circular motion can be isolated and super-
imposed on the results for the fixed angle of attack plane case. If so, a major
extension of the cross-flow theory will be possible, namely, the prediction of

aerodynamic coefficients for non-planar motion.

These and other questions regarding the effect of circular motion
require two areas of study: 1) an examination and comparison of the local
flow characteristics around models in circular motion as compared to results
obtained with the angle of attack plane fixed; 2) investigation of the integrated
effect of the circular motion on the total aerodynamic forces, moments, and

stability coefficients. A complication to the study of circular motion is the

»

separation of the effects of axial spin and angle-of-attack plane rotation. In
any experimental program, means must be provided to vary the axial spin and

the circular motion independently.

Direct Force Measurements

At the present time, the NASA Ames Research Center is preparing a

model and model support system which will permit simultaneous axial spin and
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coning motion at fixed angles of attack. The system utilizes a rotating sting,
with various adapters to achieve the desired angles of attack. The axial spin
is provided by an electric motor attached to the sting. The model is being
equipped with an internal force balance to permit direct measurement of the

aerodynamic forces and moments in and normal to the angle of attack plane.

The above model installation can also be used for flow observations,
particularly photographic observations of the flow relative to the angle of
attack plane. This type data can be obtained with cameras attached to the
rotating sting. Preliminary tests of this type have already been accomplished
using the vapor screen technique, but only lunar motions have been investigated

thus far.

Dynamic Model Tests with Free-Coning Motions

In many instances, the cost of a rotating balance will not be justifiable.
An indirect method of measuring the moments in the Magnus plane, with and

without angle of attack plane rotation, is therefore proposed.

A model supported at a fixed angle of attack by a freely-rotating sting, *
as in the following sketch, will experience a rotational acceleration about the

sting axis if there is 2 moment in the Magnus plane.

i

* An air bearing may be adaptable to this type installation.
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If the model and sting are statically balanced about the sting axis of rotation,

then only aerodynamic or externally applied moments can cause sting rotation.

With both driving and damping moments in the Magnus plane, the coning
motion becomes analogus to the rolling motion of a canted-fin missile, i.e.,
‘there will be an initial acceleration, .ﬂ_ , proportional to the driving moment
and a steady-state ;! dependent upon both the driving and damping moments.
From time histories of /. obtained at various values of the axial spin rate and
angle of attack, it should be possible to determine at least the aerodynamic

coefficients N N,» ,N

o Nfg’ » N, » and N, 3 through the use of

b Neot /t
curve fitting techniques.

The aerodynamic driving moments can be provided in several ways.
At large angles of attack, the asymmetric vortex separation will provide the
driving moment. Magnus-type moments can also be generated by large axial
spin, or in the case of a finned body, by the spin-rate generated by fin cant.
Another means of driving a finned model, is by having the fins locked-in to a
roll orientation which produces a side moment. Auxiliary drive systems, such
as air jets, can be used to drive the model to an initially large 22 , and then
data can also be obtained during the decay of /. . The latter method will
permit the damping moments to be measured under conditions where the
aerodynamic driving moments are small, thus assisting in the separation of

the driving and damping coefficients for a particular model.

The above technique has two advantages over the use of models with
three degrees-of-rotational-freedom. First, there are no inertial moments
introduced, as in the case where the magnitude of the angle of attack can change.
Secondly, if the model has complete rotational freedom, all of the aerodynamic
moments have to be evaluated, whereas with the above approach we do not have

to isolate the pitching moment or pitch-yaw coupling terms,.
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Experiments for Vertical Wind Tunnel

It is believed that a vertical wind tunnel, such as the NASA Langley
facility, offers advantages for studying the dynamics of large angle of attack
near-circular motions of axi-symmetric body-fin configurations. Particularly,
if quasi-steady circular motions can be obtained in the vertical tunnel, these
should be describable by analytical solutions such as those derived in Sections
II and V of the present report. Also, these motions could be correlated with

predictions based on experimental data obtained with less degrees-of-freedom.

Another area where the vertical tunnel can be used advantageously is
in the study of the initiation of non-planar or near-circular motions. Although
in some cases circular limit cycles can be initiated by dynamic instability at
small angles of attack, it is believed that most configurations will require
moderate angle of attack, and possibly an initial coning motion, before a
sustained non-planar or near-circular motion can be developed. One means of
imparting these initial conditions is by the use of a body-fixed trim in conjunction
with axial spin to produce a near resonant motion. ¥ As the model approaches
resonance, ** the rolling trim will not only increase, but will be close to a pure
lunar motion. If the motion grows into a circular limit cycle, it will become
steadily less dependent upon the trim moment and at the angle of attack corre-
sponding to the circular limit cycle the trim moment will probably be small

as compared with the total overturning moment.

* It is believed that this mechanism is responsible for initiating large angle of
attack post-resonance coning motions in canted-fin sounding rockets as well
as in other types of finned bodies such as bombs.

%% A variation in spin rate can be achieved by using canted fins, and launching
the model at a spin rate much less than the steady-state spin rate.
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The transient motion leading up to 2 sustained circular motion can be
investigated at great length, as many parameters are involved. Although at
present the vertical tunnel is limited to low subsonic velocities, an understanding
of the dynamics in this regime should be a prelude to investigations at transonic

and supersonic conditions.
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VIII. CONCLUSIONS

The polar equations of yawing motion, which utilize the total angle of
attack and the rotation of the angle of attack plane as the dependent variables,
can be used to provide a better understanding of near-circular and non-planar
motions than is possible with the conventional aeroballistic equations which
express the angle of attack in complex variables. With the polar equations,
nonlincar damping moments, various Magnus effects, and other aerodynamic
nonlinearities (both conforming and not conforming to the Maple-Synge
symmetry relationships) can be expanded into coefficients related to the angle
of attack and Magnus planes. The simultaneous effect of both these terms and
the nonlinear inertial moments, on the amplitude, frequency, and stability of

circular limit motions can easily be ascertained by pertubation analysis.

An important result of the present analyses is that circular limit
cycles are possible for all axi-symmetric missiles which possess a Magnus
moment of sufficient magnitude, even though all the aerodynamic coefficients
including the Magnus moment coefficient are linear. In addition, there exist
a number of aerodynamic mechanisms for producing psuedo Magnus moments,

which will also lead to non-planar and near-circular motions.

The present effort provides a suitable background for the design of
non-planar motion experiments in wind tunnels and the extension of the cross-

flow theory to include the effects of angle of attack plane rotation
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Appendix A. EFFECT OF MIRROR SYMMETEKY ON CUBIC COEFFICIENTS

To show the effect of mirror symmetry, we can assume a set of right
hand body-fixed axes as depicted in the sketch below, and consider the effect
of the transformation associated with a reversal of the 3 axis. If the body

possesses minor symmetry it should not be possible to distinguish between the

coefficients for the two sets of axes.

In affecting the transformed quantities, it will be noted that the positive
quantities are those which correspond to a particular operation on the coor-
dinate system. For example, in the basic coordinates p rotates y to z,

q rotates z to x, and r rotates x to y. These rotations and their corres-

ponding torques are defined as positive.

Using these definitions we have for the transformed axes the following

positive quantities:

-62-



TN 0020 W 0 s

Alpha Research, Inc.
Report No. 66-3426-1
15 December 1966

W)

>
>

7 V\D,‘?CA

n

Comparison of the original and transformed axes show that

A B _

7Ty

A

v o= 47

A

W = - (S

Ak o= A

A —

7 A

A

A

o= e,

A A A -
S’ S U s =2 VAl .
/{/‘ = ;f//:l-\‘- -f¢/A= ~/</
A/ -/

y = F

Al —_

R

Let us now consider the effect of mirror symmetry on a specific

cubic coefficient, as an example.
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The Maple-Synge theory states that there should be imaginary co-
efficients in the moment expansion vanishing if r + s is odd, where r and s

N
are related to the Maple-Synge power series expansion (« )7 y {u )f, {w)

-—
(w) .

= ./
A typical r + s odd term is Murphy's D,M fS? ,* where the

)oo COefficient may be complex and which we shall first assume to be expressed

in terms of the Maple-Synge variables as

a, 7o) ' i

/00 (. & w) ¢+ A d U, u w

REAL / / / /0'/,4‘&' ( / )

. — 2 2 2 .
Since U= U +ud, = D , a real number, and w= W, +4 W, ,

we have that

U U w = 51((», +/‘cu1)

g

<A

-—t
i

The moment expansion is now

Cpp #4Cn = 9, Jélw, FA‘JIC-’;J*’ d1p0 [4‘51"-‘, '51“’17

REAL

IMAC,
For the transformed axes we have
- . A .
(M tA C)n = - (m A Cn
- C/ [-;51 N T 7 [‘ 2 2
/00 w *tAa 5 W, + c/, JJ + w,
REAL ‘ + ',Lw @, s 2
- 1A v A vel A T A
> dyp 5(/, FAY w, I—J/M Ay w o+ S w,
REAL IMAG
from which it can be seen that .0 must vanish, in accordance with the
IMA G

Maple-Synge statement.

* This is a term defined by Murphy in Ref. 9.
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Let us now assume the variables 5 ¥ J 3 to be equivalent to
the Maple-Synge variables .« , <« (O . This is the usual aeroballistic
approach, where the derivative of the angle of attack is taken to represent the

. . / :
cross angular velocity, viz. ; = A

Now consider the term

d,, (f)f_/S/)fom (5,5,5/)

REAL /MAG,

We have that

C;,, f./‘Cn‘ a//oo /Vfw')/lf#/w/*-/o/,“ (U’+w1/(7"/fxw)

REAL IMAG
and as above we obtain
A PR /
(;’l*’{c /00 /V* /(I;‘#/V)flé//o‘) yr"w / 1‘/“/
REAL IMAL

In this case it is clear that oo must vanish, which is in contrast to the
REAL

result obtained with the Maple-Synge variables. Thus, the choice of variables
is very important when the effects of mirror symmetry are considered. The

basic difficulty is that different transformations are obtained for rotation and

translation vectors. Thus, different transformations are obtained for
f - (T
V
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NOMENCLATURE
CL& = lift coefficient derivative
(p = drag coefficient
(p = Normal force coefficient
Z+y = aeroballistic moment coefficient
[= &
Cng - 2 G » aeroballistic pitch damping coefficient
o ¢4,
f v
¢ A Cm I . . s
M, = =7 » aeroballistic angle of attack damping coefficient
4
Cr. - A O , aeroballistic Magnus moment coefficient
<5 £ 20
Con = -- , aerodynamic moment coefficient
%P visd
(@ N , aerodynamic moment coefficient
hpevesd
A - aerodynamic reference length

(G  Maple-Synge moment
4 = Maple-Synge moment coefficient
£/ - Murphy aerodynamic damping parameter,

0St¥r—v - -1
— 7 Ce — b ""ér /(;‘4 # )’Cu-w_]

Zm [ ey
L, - axial moment of inertia
I = transverse moment of inertia
{ = ﬂ
4 & = arbitrary constant or parameter
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T/ d”

i
R

mass

overturning moment, angle of attack plane

moment in Magnus plane

Murphy moment parameter,

A n~
number of fins

angular velocity of missile

4 Ix
s L

aerodynamic reference area

Murphy aerodynamic Magnus moment parameter,

d -v
B[ a4

U, , 4, d; (Maple-Synge velocity components)

components of velocity

total velocity

body axes

fixed-plane axes
inertial reference axes

air density
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J = oo 2
—y
o« = total angle of attack
€ = deflection of velocity vector
«w =  total angular velocity of missile

W Wy O Maple-Synge angular velocity components
t /

_1/2 = angular velocity of moving coordinate system
e
g - = » complex angle of attack
14
- ! }
! .’VE {

2 complex angular velocity
¢ * argument of complex variable
g P

&, ¢,¢r Euler angles

A ,o = Euler angles
IR (94
-
A = differential quantity
( )" - derivative with respect to non-dimensional length,
() = derivative with respect to time

conjugate of complex variable

()= transformed quantity
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