

CONCERNING METRIZATION AND SEPARATION

IN NORMAL, SEPARABLE MOORE SPACES
D. Reginald Taylor

Recently, [3] E. E. Grace and R. W. Heath raised a question which is stated below as Conjecture A.

Conjecture A: Suppose that S is a connected, normal Moore space such that S contains no cut points and it is true that if each of P and Q is a point of S and R is a region containing P then some separable, closed, connected subset N of R separates P from Q in S. Then S is separable.

The purpose of this note is to answer Conjecture A in the negative, provided there exists a normal, separable, nonmetrizable Moore space. It follows that, should Conjecture A be found true, it thus would remove the condition of the continuum hypothesis from Jones' result ([7], Theorem 5), that each normal, separable Moore space is metrizable, provided $2^{\boldsymbol{K}_{0}}<2 \mathbf{r}_{\boldsymbol{r}}$.

For definitions and results related to the question of metrization of normal Moore spaces, refer to ([1], [2], [3], [4], [5], [6], [7], [8], [9], [10]).

The following lemmas prove helpful in describing the construction of a space which denies Conjecture A. There is much reliance on the methods which were employed in ([2], Theorem 1), ([9], Theorem 3 and Theorem 7), and ([10], Theorem 4). No proof of Lemma 1 is included here, as it only states formally a property of E^{3}.

Lemma 1. There exist, in E^{3}, a countably infinite discrete point set K
and a collection G of mutually exclusive arcs such that
i) if each of x and y is a point of K some arc in G has x as one end point and y as the other,
ii) each arc in G has its end points in K, and
iii) if g is an arc in G, then g contains no limit point of $G^{*}-g$.

Lemma 2. If there exists a normal, separable, nonmetrizable Moore space (S, Ω) then there exists one, say $\left(S^{\prime}, \Omega^{\prime}\right)$, such that S^{\prime} is a subset of E^{3} and $\left(S^{\prime}, \Omega^{\prime}\right)$ is locally compact.

Proof. Denote by (S, Ω) a normal, separable, nonmetrizable Moore space. There exists [7, Lemma C] an uncountable subset N of S with no limit point and a countable dense subset L of $S-N$. If $S^{\circ}=L+N$, let $\left(S^{\circ}, \Omega^{\circ}\right)$ denote the subspace of (S, Ω) induced by the relative topology.

If x is a point of N, denote by $P_{x, 1}, P_{x, 2}, \ldots$ a sequence of points of L which converges, in the Ω^{0} sense, sequentially to x . In [2, Theorem 2] it is established that there exists a space $\left(S_{1}, \Omega_{1}\right)$ with the following properties:
i) $\mathrm{S}_{1}=\mathrm{s}^{\mathrm{o}}$,
ii) Ω_{1} is the topology induced by the following definition of region:

The point set R is a region if and only if either
(a) for some point P of L, R is the degenerate set whose only point is P, or
(b) for some point x of N and some integer K, R is the set to which p belongs if and only if $P=x$ or $P=P_{x, j}$ for some $j \geq k$, and
iii) ($\mathrm{S}_{1}, \Omega_{1}$) is normal, separable, locally compact, nonmetrizable, and no region has boundary.

If G_{n}^{1} denotes the collection to which the region R belongs if and only if R is a degenerate region, or, for some point x of N and some positive integer $i \geq n, R=x+\sum_{j=1}^{\infty} P x_{j, j}$ then $\left\{G_{n}^{1}\right\}_{n=1}^{\infty}$ gives a development for $\left(S_{1}, \Omega_{1}\right)$.

Denote by K the subset of E^{3} and by G the collection of arcs described in Lemma 1. There exists a reversible transformation T from K onto L. Let G^{\prime} denote the subcollection of G to which the arc [a,b] belongs if and only if there exist a point x of N, points y and z of K, and a positive integer i such that $T(y)=P_{x, i}, T(z)=P_{x, i+1}$, and $a=y, b=z$, or $a=z, b=y$. Denote by M an uncountable subset of E^{3} such that $\overline{\bar{M}}=\overline{\bar{N}}$, and M is a subset of $E^{3}-\left(K+\overline{G^{+} *}\right)$. It is no restriction to assume that T has been extended such that T is a reversible transformation from $M+K$ to $N+L$ with $T(M)=N$ and $T(K)=L$.

Let $S^{\prime}=M+K$ and consider the space ($S^{\prime}, \Omega^{\prime}$) where Ω^{\prime} is the topology induced by the following definition of region: The statement that the point set R is a region of G_{n}^{\prime} means that there exists a region g of G_{n}^{1} such that $T(g)=R$. Clearly, $\left(S^{\prime}, \Omega^{\prime}\right)$ is topologically equivalent to ($\mathrm{S}_{1}, \Omega_{1}$) and thus satisfies the lemma.

Now let $S_{2}=S^{\prime}+G^{\prime *}$ and consider the space $\left(S_{2}, \Omega_{2}\right)$ where Ω_{2} is the topology induced by the following definition of region: The statement that

the point set R is a region of G_{n}^{2} means that either
i) there exists a region g of G_{n}^{\prime} such that P belongs to R if and only if either
(a) P is a point of g, or
(b) there exists an arc $[a, b]$ of G which has both end points in g and P is a point of $[a, b]$, or
(c) there exists an $\operatorname{arc}[a, b]$ of G such that a is in g, b is not in g and P is some point of that component of $[a, b]$ which contains a and (in E^{3}) each of whose points is less than $1 / \mathrm{n}$ from a, or
(d) there exists an $\operatorname{arc}[a, b]$ of G such that g contains b but not a and P is some point of that component of $[a, b]$ which contains b and (in E^{3}) each of whose points is less than $1 / \mathrm{n}$ from b , or
ii) there exists an $\operatorname{arc}[a, b]$ of G which contains a subsegment g whose length (in E^{3}) is less than $1 / n$ and $R=g$.

It follows, as in [9, Theorem 3], that $\left(S_{2}, \Omega_{2}\right)$ with the development $\left\{\mathrm{G}_{\mathrm{n}}^{2}\right\}_{\mathrm{n}=1}^{\infty}$ is a normal, separable, arcwise connected, locally connected, nonmetrizable space. The following lemma is thus established.

Lemma 3. If there exists a normal, separable, nonmetrizable Moore space then there exists one, say $\left(S_{2}, \Omega_{2}\right)$, such that S_{2} is a subset of E^{3} and (S_{2}, Ω_{2}) is normal, separable, arcwise connected, locally connected and nonmetrizable.

Lemma 4. If there exists a normal, separable, nonmetrizable Moore space
(S, Ω) and N is a discrete uncountable subset of S then there exists a normal, separable, arcwise connected, locally connected, nonmetrizable Moore space $\left(S_{2}, \Omega_{2}\right)$ which is embedded in a normal, arcwise connected, locally connected, nonmetrizable Moore space $\left(S_{3}, \Omega_{3}\right)$ which contains a collection H of mutually exclusive domains such that $\overline{\overline{\mathrm{H}}}=\overline{\overline{\mathrm{N}}}$.

Proof. Consider $\left(\mathrm{S}_{2}, \Omega_{2}\right)$ of Lemma 3. There exists a subset M of S_{2} which is discrete and uncountable. Denoțe by Q a point of E^{3} and by H a collection of mutually exclusive horizontal line segments of E^{3} such that $\overline{\left(H^{*}+Q\right)}$ does not intersect S_{2} in E^{3} and $\overline{\overline{\mathrm{H}}}=\overline{\overline{\mathrm{M}}}$. There exists a reversible transformation T from H onto M.

Let $S_{3}=S_{2}+H^{*}+Q$ and consider the space $\left(S_{3}, \Omega_{3}\right)$ where Ω_{3} is the topology induced by the following definition of region: The statement that the point set R is a region of G_{n}^{3} means that either
i) there is a region g of G_{n}^{2} such that g does not intersect M and $R=g$, or
ii) there is a region g of G_{n}^{2} which contains a point x of M such that the point P belongs to R if and only if P is a point of g or, if (a, b) is the element of H such that $T[(a, b)]=x$, then P is a point of (a, b) less than $1 / n$ (in E^{3}) from a, or
iii) there exists a segment (a, b) of H and a subsegment (c, d) of (a, b) such that the length of (c, d), in E^{3}, is 1ess than $1 / n$ and $R=(c, d)$, or
iv) R is the set to which P belongs if and only if $P=Q$ or there exists a segment (a, b) of H such that P is a point of (a, b)
which is less than $1 / n$ from b (in E^{3}).
Clearly, $\left(S_{3}, \Omega_{3}\right)$, with the development $\left\{G_{n}^{3}\right\}_{n=1}^{\infty}$, satisfies the lemma.

Lemma 5. If there exists a Moore space (S, Ω) satisfying the hypothesis of Lemma 4 then there exists a Moore space $\left(S_{3}, \Omega_{3}\right)$ satisfying the conclusion of Lemma 4 and, in addition, is embedded in a normal, connected, locally connected, arcwise connected Moore space (S_{4}, Ω_{4}) such that if each of P and Q is a point of S_{3} and R is a region in (S_{4}, Ω_{4}) then there is a closed, connected, separable subset N of R which separates P from Q in (S_{4}, Ω_{4}). Proof. Consider the space $\left(S_{3}, \Omega_{3}\right)$ of Lemma 4. If W is a set such that $\overline{\bar{W}}=\overline{\bar{S}}_{3}$ and W does not intersect S_{3} and for each positive integer n, C_{n} denotes a circle with radius $1 / n$ such that no C_{n} intersects S_{3} or W, then for each element w of W, let $C_{w, n}=w \times C_{n}$. There is a reversible transformation T from W onto S_{3}. If $T(w)=P$, then with each point P of S_{3} there is associated an infinite sequence of circles $C_{w, 1}, C_{w, 2}, \cdots$. For each i and each point P of S_{3}, let $C_{w, i}=C_{i}^{P}$.

Remark: In the space $\left(S_{2}, \Omega_{2}\right)$ each point of K is an end point of some arc of G^{\prime}. The set K is embedded in $\left(\mathrm{S}_{3}, \Omega_{3}\right)$. Suppose that each of x and y is a point of K and $\{x, y]$ is that arc of G^{\prime} having end points x and y. There exist, in $[x, y]$, two subsets: $A=\sum A_{x, y, i}$ and $B=\sum B_{x, y, i}$ where $A_{x, y, 1}, A_{x, y, 2}, \ldots$ converges sequentially and monotonically to x and $B_{x, y, 1}, B_{x, y, 2}, \ldots$ converges sequentially and monotonically to y. If C_{i}^{x} is a circle, associated under T with x, and K_{x} is that subset of K
consist of those points each of which is an end point of an arc having the other end point x, there is a homeomorphic image of C_{i}, in E^{3}, which contains $A_{x, y, i}$ in its boundary, for each y in K_{x}. For simplicity and notational purposes, it is assumed here that C_{i}^{X} has that property itself. Thus, in the following treatment, if x is in S_{2}, each C_{i}^{x} contains points of S_{3} as described above.

Let Ω_{4} denote the topology induced by the following definition of region: The statement that the point set R is a region of G_{n}^{4} means that either
i) there is a point P of S_{3} and a positive integer i such that $i \geq n$ and P belongs to a connected open (in the subspace C_{i}^{P} of E^{3}) subset of ($C_{i}^{P}-S_{3} \cdot C_{i}^{P}$) which has length (in E^{3}) less than $1 / i$, or
ii) there exist points x and y of K, an arc $[x, y$] of G having x and y as end points, a positive integer i and a point $A_{x, y, i}$ such that P belongs to R if and only if either
(a) $P=A_{x, y, i}$, or
(b) P is a point of an open connected subset of $[x, y]$ which contains $A_{x_{;}, y_{j} i}$ and is of length less than $1 / n$, or
(c) P is a point of an open connected subset of C_{i}^{X} which contains $A_{x, y, i}$ and is of length less than $1 / n$, or
(d) there exists a point $A_{x, y, j}$ or $B x, y, j$ which belongs to the open connecetd set satisfying (b) such that P is a point of an open connected subset of some C_{j}^{y} which contains $A_{x, y, j}$ or $B x, y, j$ and is of length less than $1 / n$, or
(e) replace $A_{x, y, i}$ by $B_{x, y, i}$ in ii), or
iii) there exists a region g of G_{n}^{3} such that P belongs to R if and only if either
(a) P is a point of g , or
(b) there exist a point x of g and a positive integer $1 \geq n$ such that P is a point of C_{i}^{x}, or
(c) there is a point x of S_{3} such that for some j, C_{j}^{x} intersects g at only one point, say y, and P is a point of an open connected subset of C_{j}^{x} which contains y and has length less than $1 / \mathrm{n}$.

It follows that $\left(S_{4}, \Omega_{4}\right)$ is a Moore space with development $\left\{G_{n}^{4}\right\}^{\infty} n=1$. That it has the properties described in the lemma follows as in [2, Theorem 1] and from the property that if P is a point of S_{3} and R is a region of ($\mathrm{S}_{4}, \Omega_{4}$) then there exists a closed, connected, separable subset N of R (in particular, some C_{i}^{P}) such that $S_{4}-N=H+U$ where H and U are mutually separated, H is a subset of R and $S_{4}-R$ is a subset of U.

Lemma 6. Suppose that $\left(S_{4}, \Omega_{4}\right)$ is a Moore space satisfying Lemma 5. Then for each positive integer $n \geq 4$, there exists a normal, arcwise connected, locally connected, nonmetrizable Moore space $\left(S_{n+1}, \Omega_{n+1}\right)$ such that (S_{n}, Ω_{n}) is embedded in (S_{n+1}, Ω_{n+1}), no point of S_{n+1} is a limit point of S_{n} in $\left(S_{n+1}, \Omega_{n+1}\right)$, and it is true that if each of P and x is a point of S_{n} and R is a region in $\left(S_{n+1}, \Omega_{n+1}\right)$ containing P then there exists a closed, connected, separable subset N of R which separates P from x in $\left(S_{n+1}, \Omega_{n+1}\right)$.

Proof. The construction only need by indicated. Consider ($\mathrm{S}_{4}, \Omega_{4}$) of Lemma
5. Each point of $S_{4}-S_{3}$ is a point of some C_{j}^{x} for some point x of S_{3} and some positive integer j. Indeed, no point of $S_{4}-S_{3}$ is a limit point of any subset of S_{3} in $\left(S_{4}, \Omega_{4}\right)$. Using the constructive device of Lemma 5 . there may be associated with each point P of $S_{4}-S_{3}$ a sequence $C_{1}^{P}, C_{2}^{P}, \ldots$ of homeomorphic images of circles such that C_{i}^{P} intersects a connected subset of $\mathrm{C}_{j}^{\mathrm{X}} \cdot\left(\mathrm{S}_{4}-\mathrm{S}_{3}\right)$ in two and only two points.

Definition of $\left(S_{5}, \Omega_{5}\right)$: The statement that P is a point of S_{5} means that P is a point of S_{4} or P is a point of some C_{i}^{y} for some point y in $S_{4}-S_{3}$ and some positive integer i. The statement that the point set R is a region in G_{n}^{5} means that there exists a region g in G_{n}^{4} such that the point z belongs to R if and only if either
(a) there exist a point x of $S_{4}-S_{3}$ and a positive integer j and a connected subset C of $C_{j}^{x}-C_{j}^{x} \cdot S_{4}$ which has length less than $1 / n$ and z is a point of C, or
(b)
i) z is a point of g, or
ii) there exists a point x of $\left(S_{4}-S_{3}\right) \cdot g$ and a positive integer $i>n$ such that z is a point of C_{i}^{x}, or
iii) there exists a point x of $S_{4}-S_{3}$ which is not in g but such that, for some positive integer $\mathrm{j}, \mathrm{C}_{\mathrm{j}}^{\mathrm{X}}$ intersects g (this intersection consists of only one point) and z is a point of a connected subset of C_{j}^{x} which contains $C_{j}^{\mathrm{X}} \cdot \mathrm{g}$ and has length less than $1 / \mathrm{n}$.

Using an argument similar to that of the preceding lemma, it follows that ($\mathrm{S}_{5}, \Omega_{5}$) meets the conditions of the lemma.

Indeed, it is readily seen that $\left(S_{5}, \Omega_{5}\right)$ may be embedded in a space $\left(S_{6}, \Omega_{6}\right)$ in a similar fashion, meeting the conditions of the lemma. The lemma follows from a formal induction which only repeats the above described construction.

Theorem. If Conjecture A is true then each normal, separable Moore space is metrizable.

Proof. Assume there exists a normal, separable, nonmetrizable Moore space and consider the sequence $\left(S_{1}, \Omega_{1}\right),\left(S_{2}, \Omega_{2}\right), \ldots$ given by the preceding lemmas. Let $S=\sum_{i=1}^{\infty} S_{i}$ and consider the space (S, Ω) where Ω is the to pology induced by the following definition of region: The statement that the point set R of G_{n} is a region means there exist a positive integer k and a sequence $R_{k}, R_{k+1}, R_{k+2}, \ldots$ such that:
i) for each i, R_{k+1} is a region of G_{n}^{k+i} in $\left(S_{k+1}, \Omega_{k+1}\right)$,
ii) $R_{k+i+1} \cdot S_{k+i}=R_{k+i}$ for each i,
iii) R_{k+i} does not intersect S_{k+i-1}, and
iv) $\sum_{i=k}^{\infty} R_{i}=R$.

Using an argument quite similar to that employed in [2, Theorem 1] or [10, Theorem 4], it follows that (S, Ω) is a normal, nonmetrizable, connected, arcwise connected Moore space. That (S, Ω) is not separable follows from the construction of $\left(S_{3}, \Omega_{3}\right)$. Indeed, each $\left(S_{n}, \Omega_{n}\right)$ contains uncountable many mutually exclusive domains if $n \geq 3$. The construction of the space (S, Ω) was such that if each of P and x is a point and R is a region containing P then there exists a closed, separable, connected set (a topological copy of some circle in the construction) which separates P from x. This would deny the conjecture and the theorem is proved.

1. R. H. Bing, "Metrization of topological spaces", Canad. J. Math., 3 (1951), 175-186.
2. B. Fitzpatrick and D. R. Traylor, "Two theorems on metrizability of Moore spaces", Pacific J. Math., to appear.
3. E. E. Grace and R. W. Heath, "Separability and metrizability in pointwise paracompact Moore spaces", Duke Math. J., 31, (1964), 603-610.
4. R. W. Heath, "A non-pointwise paracompact Moore space with a pointcountable base", to appear.
5. ___ "Screenability, pointwise paracompactness and metrization of Moore spaces", Canad. J. Math, 16 (1964), 763-770.
6. $\ldots, "$ Separability and \imath^{\prime}-compactness Coll. Math., 12, (1964), 11-14.
7. F. B. Jones, "Concerning normal and completely normal spaces", Bull. Amer. Math. Soc., 43 (1937), 671-677.
8. R. L. Moore, Foundations of Point Set Theorey, Amer. Math Soc. Coll. Publ. 13, Revised Edition, (Providence, 1962).
9. D. R. Traylor, "Normal, separable Moore spaces and normal Moore spaces", Duke Math. J., 30 (1963), 485-493.
10. —_ "Metrizability in normal Moore spaces", Pacific J. Math., to appear.
11. J. N. Younglove, "Concerning metric subspaces of non-metric spaces", Fund. Math. 48 (1959), 15-25.

University of Houston
Houston, Texas

Foot note to appear at the bottom of the first page.
*This research was partially supported, by NASA Grant NGR 44-005-010.

