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THE CONSTRUCTION OF SATURATED z’f{" DESIGNS

- by

" Norman R. Draper and Toby J. Mitchell
University of Wisconsin

0. SUMMARY

‘Xa Zlk,p design, of fixed resolution R and specified number of
runs 2;q, accommodates the maximum pos sible number of variables,
say t};at it is ga*urated. In this paper, we develop a methed for con=
sn'ucting saturated designs and apply it to an example. T |
We first shaw that when R is odd, the set of all distinct 2‘; P
designs (where q=k=p is specified) can be obtained easily from a
particular class of ch:ll) P designs. We then develop a stage by
stage method for constructing this “parent" class of desig'r{s of (even)
resolution R+l. This class is shown, incidentally, to contain a
saturated design. The complete set of 2‘;"9 designs, which naturally
includes all saturated 2’;‘9 designs, can then be obtained at once. |
The probiem of arranging the designs constructed into blocks of runs, so
that the blocked designs have certain desirable confoundipg properties,
is also Investigated, and a method for obtaming optimal blocking
arrangements is given. As an 1mportant part of our method, a "sequential
conjecture” procedure is developed and utilized to test the equivalence
of any two designs.
These procedures kave boen programmed for the computer, and ars

illustrated by the example R=5, q=7.
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_ " 1. INTRODUCTION
1.1 zlfip fractional factorial designs
The construction of 25™P fractional factortal designs and the
study of their confounding properties has been approached from several
closéiv related pomi:s of view, e.q., geometrically (K'empthbma (1947)),
as a special ‘case of an orthogonal afréy (Rao (1947), Bose and Bush
(1952)), and through the theory of »groups (Fisher (1942)). (For a review
of these and cther approaches to the‘ construction of zk'p fractional
_ iactdﬂal designs, see Addelman (1963). ) |
Box and Hunter (19612, 1961b) have distilled the essential
results and presented straightforward techniques for constructing,
blocking, and analyziné Zk"p fractional factorial designs of resolutidns
III, IV, and V. Throughout this paper we shail often refer to this work.
We shall assume that the variables of a 2°~P design are labeled
(1, 2, ..., k). From any subset of these variables, or letters, we
can form a word, e.g., 1357 is a word composed of the letters 1, 3,
5, and 7. Associated with every Zk'p design is a set of p words,
Wy, Wy,eony Wp, called generators. If we define the product of two words
X and Y to be that word which contains the letters appearing in X or Y,
but not in both, then the set of words which is composed of all possible

products involving the p ganerators appears in the defining rslation:

I=W1=W2=' =W

P
=wlwz=' ° =wp-lwp (all prodhicts of 2W's)
=W WoW3=" * =W W, Wp (all products of 3W's)
=W1W2. . .Wp (the produgt of pW's)

(1. 1.1)




 (L1s cailed the identity and is such that IX = XI =X for all words X. )
The length (i.e. , the number of letters) of the shortest word in the |

‘defining relation is called the resolution (R) of the design and is used

to classify it. In a design of fesolution R all m_ain effects are con-

- founded with interactions involving (R-*_li,\or more f’aétots, allrt’wo-factor'

- interactions are confounded with interactions involving (R-2) or more

factors, and so on. If the experimenter tentatively assumes that the

impertance of J-factor interactions diminishes as J increases, then the

- higher the valpe of R, the more satisfactory the design is with respect
to the pﬂncipie of confounding the "important” effects with "unimportant"
effects. Of course, given sufficient runs we can always make R
suitably large. In practice, when the number of factoré k 1is specified,
we may want R to be as large as possible for some given number of
runs. Or, if R is specified, we may wish to minimize the number of
runs necessary to examine k factors in a z’ﬁ"’ design. Both of these
problems can be solved if we have solved, in an appropriate number of
¢éases, the equivalent problem of accommodating the largest number of
factors in a Zi'p design of given resolution and given number of runs.
It is this latter problem which we shall consider.

1.2 Saturated 2K°P designs of resolution R

For designs of resolution III, Box and Hunter (1961a) used the
word gaturated to describe the two-level resolution III designs which
incorporate N-1 variables in N runs. This number (N-1)is'the maximum
number of variables possible. We shall extend the uée of the word
saturated to two-level fractional factorial designs of general rescliution

R as follows.




Suppose the number of runs, 29, and the resolutiéﬁ R, of a two-
level fractional factorial design are both specified. A zk“p design
~ (where k=p = q) which contains the maximum possible number of
variables k will be called a saturated resolutior: R design 1_423_ r_;_x_r;g or,
- simply, a saturated design.
It can be shown that for re:?oluﬂon\s IEand IV {Box and Hunter
(1961a)), the number of variables accommaodated {n a sammted désign
in 2% runs is 2% 1 zmﬂ Zq -1 , raspectively. F
For designs of resclution V the situation isi not as swaightfarward.
Box and Hunter (1961b) summzrize the solutions of the problem for the

cases q=4, 5, 6, and 7 as shown in the following tabulation:

q 4 5 6 7

no. of runs (=29) 16 32 64 128

max. no. of variables

which can be accommodated

in a resclution V design 5 () 8 11 (1. 2.1)
When q28, the maximum number of variables which can be accommodated
in a resolution V design has not previously been determined A speciﬁc

%; -9 design was given by Addelman (1965) who argued that "... 1t is unlikely

that more than 17 factors can be accommodated in such a plan. "

For rzsolutions > 5, no results have been published, though the
simpler cases ‘can readily be solved by extending the methods applied
by Box and Hunter (1961b) to some resolution V examples.

In this papér we develop a general method for constructing saturated

designs of resolutions R and R+l, where R is odd. The procedure, which




=5-=

~has been programmed for the computer, is illustrated in the case R=5, N
q=7. A general method for blocking Zk P designs in such a way that the

maximum possible number of blocks are attained is also given. (The more

(i1) R'f 5, q=9 will appear in subsequent papers. )

2. DEVELOPMENT

T -

2.1 Preliminary definitions )
We shall say that two dé's’igns D; and D, are equivalent if and only
if one may be obtained from the oth@éx; | by a relabeling of tﬁe’ variables. A
more precise definition is the following. ' |
Definition: Designs D, and D,, each of which incorporates the
-variables {1, 2,..., k), are equivalent (denoted by Dls Dz) if and only
| if there is a permutation of the varf.ables (1, 2,..., k) which creates a
cne to one mapping of the words of Dl into the-words of D (Note: For
the sake of brevity, we shall often use the expression words of D" to
mean “"words of the defining relation of D. ") o
We shall say that two designs are distinct if and only if they are
not equivalent.
It will be convenibnt to classify designs as even or odd, according
to the following definition.

Definition: An even design is one whose defining relation consists
entirely of words of even length. (The identity I is considered to be a |
word of even length. ) An cdd design is one whose defining relation
contains at least one word of odd lengttn.

2.2 Preliminary remarks
We note that obtaining a Zg'p design which maximizes k=q+p
for given R and fixed q is equivalent to obtaining a Zkl; P design which

maximizes p for given R and fixed q. Since p is tha nnmher
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generatars of thé design, we may consider a saturated design as one
which has the g’f‘eatest number of generators (D)wfor fixed -q=k=p,
these generators satisfying, of course, the restrictions imposed by
the résc'luﬁonfR. We shall call a set of such generators a maximal
' Set for fixed q and R. | |

Our procedure for building up a maximal set of generators for
fixed q and R is based on a pérﬂeﬁiar form of cohsﬁ?uction, which
we obtain as a consequence of the following observations.

Remark 1. The defining relation of a 2K=P gractional factorial
deslgn contains 2P words (including I) Of these, either

(1) half are of even length and half are of odd length,

where I is counted as an even word | In particular, the defining
relation of every 2k P design of odd resolution R, which by deﬁni—
tion includes at least one word of length R, must be composed of
27! 6ad words and 2P~! even words (including I). (Nots: An equi-
valent form of Remark 1 can also be found in Brownlee, Kelly, and
Laratne (1948). ) o

Remark 2. Given the defining relation D of an arbitrary 21;°p ,
design, where R is odd, we can “attach" an extra variable (k+1) to
each of the 2P~ odd words of D. Then the resulting expression,
which contains only words of even length, is the defining relation,
E say, of some Z?{:l” P design. (Note: E is actually the defining
relation of the design obtained by associating the variable (k+1) with
the I column of the design matrix of D, then “foidmg over" this design.

(See Box and Hunter (1961a). ))




We note that, in Remark 2, D can be recovered from E simply
by erasing, i.e., removing from each word the varlable (k+1) Remark
2 implies, therefore, that the deﬁning relati@n D of any z" P design,
where R is odd, can be obtained from the defining relation E of some
even z%‘;’}"’ de,sign, by erasing a particulat variable wherever it
appears in E. o | : ; o
~ Letting q =k-p, we shall rwnte the g’e‘neratdi?é‘ﬁct E m the form:

LW, = Kla#2)
LWy = Ryl

= K,_y(a+p)
P
" where, Nfﬂor each 1= l, 2, ...; p, the variable q+1+1 appears in one
and only one generator, namely W it

Tlie expression of a set of géneratprs in a form such as (2. 2, 1),
in which each of p variables is isolated in one of the p generators,
was introduced by Box and Hunter (1961b). We shall call this form a .

standard form and shall refer to the p isolated variables as indicator
variables.

It can easily be shown that every defining relation has a set of

generators which can be written in a standard form. Every even

(Ilgll) p design, where R 1is odd, is therefore equivalent to a désign

-W = K (q-!-p-!-l) =K (k-l-l), (2.2.1)

T TR
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whose generators are written as in (2.2.1). The set {K;} satisfies

the conditicns:

_- (). K, is composed of letters of the set (1, 2, ..., q+)
(1) K, 1s of odd length -
) HK,)ZR |
[ARKER-L (2.2.2)
. (k. L)

where 2(word) is the _ll_e__rxg;_, i. e , the number of letters, of the word,
Condition (i)is a consequence of the requirement that the generatars
be in standard form, condition (i) ensuregs that the design is even,
and condition (111) is necessary if the resolution i& to equal R+l.

Our procedure will involve the construction of the co:qplete set
of distinct designs whose generators are written in the form (2, 2.1),
where the set { K, } satisfies the conditions (2.2.2). This set,
which includes the set of even (l]!(+11) P designs for sp d qg=k-p
qu odd R, is actually the set of distinct even 2(:"'1 rp. designs,

where the resolution S is even and equals cr exceeds R+l. The
set of distinct 2""p designs can then be tamed if we erase, in
every possible way, one variable from each desig,n in the get of even
Z(k"'l) P designs.

This approach may, at first, appear to complicate, rather than -
simplify, the investigation. The contrary is true, howes

for each value of p, the number of distinct even 2%‘3 rep designs
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(for specified q=k-p and odd R) never exceeds, and is generally
less than, the number of distinct 25 P designs. Thus, by dealing
with designs of the former type, as we build a maximal set of’ {K1 }
which satisfy (2.2.2), we shall reduce auhst‘anually the number of
distinct designs which need to be considered at each stage. '

7 Another advantage to this approach is derived from the fact

that the set of even 2%‘:’11)‘9 de‘s,igf‘né » which we use to obtain the
set of ‘Zi'p designs, always contains a saturated désign of resolution
R+l in zq“ runs (Mitchell (1966)). This cioée relationship between
saturated designs of odd re’sblation R and saturated designs of even
resolution R+l, will allow us to construct saturated designs for the
two resolutions R (in 27 runs) and RH (in 2%* runs) simultaneously.

2.3 Stage by stage construction of saturated designs

For a given odd resolution R, our object will be to construct
the set of ali distinct even 2(;;31 P designs for specified q=k=-p and
ail possible values of p. (We shall take p=1,‘ 2, ..., p* up to the
saturation point p=p*.) From the saturated designs of this set we can
then easily obtain the saturated 2’;{9 designs.

- We shall construct, stage by stage, the set of even_ 2(k+)-p
designs of resolution ZR+#l in the form (2, 2.1), where the set {K, }
mu“st, at each stage, satisfy the conditions (2. 2. 2).

At the r-th stage, 1.8., for p=r, we construct a typical new
design by adding to the set of generators of one of the distinct designs

{D((r-1). )}, 1=1,2,...,7,_;, which have been found at the (r-1)-th

SR TN e gen o S~ peps s - i .
TR A e Y e s g Y SR« e gt gt % v
*
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stage, a generator of form Wr & Kr (q+r+l) which is compatible with
(1. e., whose presence does not violate the resolution conditions

(2. 2.2)) the (r-1) generators already present. All possible candidates

lg. are incorporated in a generator W, = Kr(q-'!-r-l-l) and tested for
compatibility with D((r-1).1). Heﬁce, for the parent design D((r-'l).i),
there may be several new designs which can be formed, each corre~ - -
‘sponding to a particular W, which is compatible with the generators
of D((r-1).1). We consider, in tum, each possible parent design
D’((rsl)A.i), i=1,2,..., jrf-l’ and obtain the set of new r=th stage
designs which are derived from it. We then select one design from
each set of equivalent r-th stage designs. The selected designs are
distinct, and are denoted {D(r.1)}, 1=1,2,...,]. The designs

{ D(f. 1)} are then used as parent designs for the next stage (p=r+).

At eacﬁ stage r, therefore, we obtain a set of distinct even
2lairHl)r designs, of resclution = R+, in 27 runs, We now show, by in-
duction, - that every possible even Z(Q"'H'l )-r design of resolution = R+l
is equivalent to a design in this set.

Let us assume (for the purposes of induction) that avery even
z(q+r)--(r=-l) design of resolution 2 R+l is equivalent to a design in
the set {D((r-1).1)}, 1=1,2, ..., ] _,, which has been obtained by
the procedures described above. Now sﬁxppose we are given an
arbitrary 2{3¥H)T

When the generators of E are in standard form (2.2.1), it is obvious
q4r)-(r-1)

design E which is even and has resclution 2 R+l

that the first (r-1) of them are the generators of some even z‘

design E*® of resclution = R+l, where E' i3z, by our assumption,
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equivalent to a design, D' say, in the set {D((r-1).1)}. Let the | :
r-th generator of E be denoted w, = Kr(q+r+l) and let I‘r = P(lg’r) * .

where P is the permutation of the variables which transforms the
defining relation of E' into the defining relation of D'. Since the
generator i(r(qﬂﬂ") is éompaﬁble vdth the set of generators

Wy, Woyeoey W) of E', the word Lqér+l) will be‘_oompatible

with the set of generators of D'. 1If we include the word L (qér+l)
with the set ﬁof generators of D', therefore, the resulting set will be
a set of generators which define some 2(‘7‘*1‘""’1 )r design D of
‘resolution Z R+l. (Note that D=E, stnce P(D')=E' and P(W,)=
L{q#r+l). ) Now we need only show that design D 8 indeed pro- ‘
duced in our stage by stage procedure. Thig is seen to be the case )
I we feplace the generator I.i,(é-lirii-l) of D with Mr(q#ﬂ ), where

Mr 18 the product of i‘r with the word of D* which contains that
subset of the indicator variables (q+2,..., qir) appearing in L.
Since M, is composed of t’h_e variables (1, 2,..., g+1) and is of

~ odd length, it will arise as a candidate in the stage by stage pro-
cedure, with the result that destgn D 1s produced. Hence D is
equivalent to a design in {D(r.1)}. and so E (which is equivalent

to D) is also equivalent to a design in {D(r.1)}. We have therefore
shown that, if every even 20a#)-(r-1) gosign of resolution = R+l

is equivalent to a design in {D((r-1).1)}, 1=1, 2,..., J._ 30 every

even 2(qtr+l)r

design of resolution = R+1 18 equivalent to a design
m {D(l'.i)}, lgl’ 2,...,]}0 J

To complete our mducuvé argument, we need only state the

obvious fact that the resoit holds true when r=1, that is, that every
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2(a+2)-1 design, of resolution 2 R+1, whose (single) generator has

even length, is equivalent to a design in the set {D(l. 1)}' where the‘
{D(1.1)} are chosen in sequence according to thetr even word length
(greater than or equal to R+l, of course).

We canr therefore proceed, knowing that, at every stage r, each
set {D(r.1)}, 1=1, 2, e s Ir,» contains all the élstinct even
2(qirHl)r designs of resolution 2 R+l which exist at that stage. Our
procedure will stop only when we reach t’h’e" Sté"qe p*+l,-say, when
no candidate Kp* 4] 18 compatible with the generators of any design
in the set {D(p*.1)}. The set {D(p*.1)} will therefore be the ‘set
of distinct saturated even designs of resolution R+l in 29H ryns.

The set of all distinct saturated resolﬁtion R designs in 29 runs can
then be obtained from the set {D(p*.1) ’}7 as indicated in Section 2. 2.

2.4 Blocking designs of resolutions R and R+l

In blocking any given 2k=p fractional factorial design, cne -
can associate "blocking generators" Bl’ Bz, seeny Bt’ say, with any
t j,n_d_gmg_gt_l_; columns in the estimation matrix of the design. (See
Box and Hunter (196la).) The choice of t blocking generators
provides 2% blocks » each containing 2k-p-t runs.

The effects which are confounded with block effects for a
given design can be determined very simply as follows. We multiply
through the defining relation of the design by the product of any
subsat of the words (B,, B,,..., B,). If we do this for every |
possible s‘ubrset of the {Bi }I, then the resulting expressions list all

the effects which are confounded with block effects.
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In designs of odd resolution R, the effects which are tentatively
assumed to be the important effects are the main effects anci the
interactions of (R-1)/2 or fewer variables. We want to ensure that
‘such etfects are not confounded with blocks. -~ The blocking generatars
Bl’ Byyes., B 4» together with the generators Wl, Ty w of the
-Z ; P design to be blocked (called the b base design) must therefore
generate a defining relation which is of resolution R' not less than

k=p=t

(R+1)/2. Such a blocked design will be denoted as a 2 R:R’ design.
It can be shown that every ZkR pr design (where R 1s odd) can

be obtamed through the erasure of a variable from some even z‘ﬁj}!‘é‘! -t

design, where §' = R' if R' is even and S8' = R'+l if R' is odd, i.e.,
S* 18 even and §'2 (R+1 )/2. (The argument is analogous to that
guggested by Remark 2 of Seetion‘ 2.2 to show that e%rer’y 2’;{"" design
can be obtained from &n even 2/KHP destgn, )

We can now rely on our stage by stage précedur'e to construct
the set of distinct generating relations associated with even z(gﬂ:);?‘t
designs having a given base design. The object of the procedure will
be to add as many blaéking g'enerétcr'sj as possible, in order to obtain
the maximum number of blocks.

The form of construction of the generators lsr as follows:

W, = K,(q+2) |
Wy = K (q+3)

W, = K (q#pH)

(2.4.1)




In other words, we first write the generators (W Woyeeny Wp’ of
the base design just as they are obtained from the stage by stage
construction of Section 2, 3, and then complete the set of generators
(2. 4.1) with a set of words (B, By,..., B,) which are independent
of each other and of the W's. Without loss of .genérélify’, we can
insist that no word in the set {B, } contain any of the indicator |
letters q+2, q+3,..., q’-i-p-lslar For if one of the B's - Bu’ say -
originally contains some subset of these indicator variables, we can
replace B, by a new generator — the product of B with the particular
product of the W's which contains that subset of the indicator
variables. In (2.4.1) we can therefore take the words in the set { B, }, 7
1=1, 2,..., t, to be composed of letters from the set (1, 2,..., q+l).
Since ‘we are . interested in even designs, each B, is of even lenqth
The generators Wy, Wz,...,’wp, Bys Byy. .+, B,) must, of course,
generate a defining relation whose shortest word is not less than
(R+1)/2, to satisfy the resolution conditions. .

In the stage by stage procedure which adds blocking generators
to a given base design, we discard, at each stage, any defining
relation which is equivalent to a defining relation already found at
ﬂiat stage. The argument which shows thét we obtain, in this way,
the complete set of distinct defining relations associated with even
designs of type 2%‘:11”;? “t , 1s analogous to that used in Section 2.3
in the stage by stage construction of 2(kH)=P 4o51gns. |

We should remark here that, although the defining relations of
two blocked designs may be quivdent, the designs themselves are

equivalent if and only if the transforming permutation also connects
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the defining relations of the base designs. However, we shall not
"lose" any d-e91gn§ by cons:deﬂng only the "complete” defining
‘relatons (without regard to the labeling of the generators), since we
can always recover a design which has been discarded simply by
relabelifhg - the generators of a design which has been retained, 1n
nddltlon to the usual permuting of the variables. ,
The even Zg‘:il.)g? =t designs (where s's (R-H)/Z Yy whtch we use
to obtain the z’fz.%.‘ designs (where R' Z(R41)/2) , are themselves
of interest. Among blocked designs of resolution (R+l; S'), the
importance of these even destg‘ns is indicated by the fact that if we
are given an arbitrary 2’1“ ‘3, ;. design F, where k, p, and t are
specified, then there exists an even 2:; _'_f ;. design E having the
same values of k, p, and t. If one is mtefesmd in using a blocked
design of resolution (R+1;S'), and one's criteria for selection of a
’design involve only the number of variables, runs, and blocks, one
can thus restrict attention to the even designs. This fact lends
additional 1mpmahce to this class of designs, which was introduced
for another purpose, namely that of constructing blocked resolution
(R; R') designs. |
2.5 Examining the possible equivalence of iwo designs
At the r-th stage of 'ch6 procedure outlined in Section 2. 3, we
) which
are distinct. In pracﬂce, we ensure that all members of this det are |

wish to construct a set of designs {D(r.1)}, 1=], 2,...,

distinct by refusing to accept, at the r-th stage, any designs which

 are equivalent to a design already found at this stage. A necessary
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requirement of this procedure is that we be able to recognize whether
or not two specified designs are equivalent. |
~ Suppose we are given two 2P desicas A and B, and we wish
to determine whether or not A=B. That is, we wish to investigate
whether there is & !%%&&:B&Q@fﬁm variables which wili transform A
into B. If such a relabeling, P say, exists, the vector of variables
(1, 2,..., k) in design A is transformed by P into the vector (P(1),
P(2),..., 7P(k)) in such a way that the words of the defining relation
of A are transformed into the words of the defining relation of B. |
| We shall AdOpt the convention that the variables of both designs
A and B are lébeled 1,2,..., k. Hence the relabeling P will simply
be a permutation 6f the variables (1, 2,..., k). There may,bé\:séveral
such transforming permutations which take design A nto design B.
The discovery of any one of these will suffice to show that the designs
A and B are s»squiv;‘le’ntr. _ |
Suppose design ‘A is such that there are e, ’wéxj'é"sbf_;ieng’m t
in the defining relation cf A, where t=l, 2,..., k. The vector a =
(@), @5,..., @) will be called the word length pattern of A. Similarly,
we can define the word length pattern of design B. |
We note at once that two designg A and B which have different
word length pat:ierns cannot be aguivalent, since a transforming per-
-mutation P, . if it existed, could not changs the word lengths. If the
word length patterns of A and B are the same, however, further
investigation is necessary to determine whether or not A=B.

Our approach will 1hvolve tiiaking a sequence of "conjectures”

about the nature of a possible transforming permutation P. Each
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conjecture will then be "rejected” or "not rejected” on the basis of
an examtnéﬂon of fhe defining relations of A and B.
| We shall defing a conjecture at the r=th stage to be a tentative
assumption that there does exls‘i a transforming permutation P which |
18 such that P(l), 15,0 c034) = (), Jp5ee+, §), Where (1), 15,0 .0,1)
is a subset of the variables of A and Ups 3g+++5 1) 15 a subset of
- the variables of B. The effect of P on the remaining variables of A
is left unspecified by the coniecture.
_ In order to develop a test which will allow us to reject certain
" conjectures, we fﬁ's‘t note that any conjecture may be used to map
~ sets of words. in the defining relation of A into s«ats of words in the
defining relation of B.
Suppose we are given the conjecture: Py, 15,..., 1) =
(345 335+++5 3.} Each word of the defining relation of A contains a
particular subset of the variables (1}, 1,,...,1). We may use this
fact to divide the words of A into distinct sets; two words will
belong to the same set if and only if they both contain precisely the
same subset of the variables (i), 1,,...,1). There are 2" such
possible subsets of (4)5-++,4.), including the one which contains
none of these variables. The sets of words of the defining relation
of A which are induced m this ‘way will be denoted by {A }; 1=1, 2,
coey 2., Similarly, we can use the variables (jl, | PYRYTY 5 ) ta
divide the words of the defining relation of B fnto sets {B,}, 1=1, 2,
ceey 2’, Qv’here, for each i, the words in B, include that subset of the
| variables which is chosen from TR PTIRRY Jp) in exactly the same way
- as the subset of the variables asscciated with A‘i is chosen from
| (11, 15000, 1t).




We now define the mapping M, denoted by M(A,) = B, i=l, 2,..
ooy P » to be the mapping induced by the éonjecture P(ii, 1,5- ‘o ir) =
Ups Jps+++5 Ik It is important to note that the elements involved in
the mapping M are sets of words and not the words themseivés. If

the conjecture is true, i.2., if there does exist a transforming per-
mutation P such that P(ij, 15,...,4.) = (}), pye+e, ), thenthe
| fohowing pr_opemeé hold for the words of the sets {A,} and {B,}.
(1) The number of words in A, 15 equal to the number of wards

in B, = M@A)), 1], 2,..., 2.
(1) The word lengths of the words in A, are equal to the.

word lengths of the words in B, = MQA,), 1=l 2,..., 2k,

- (2.5.1)

e
—

The conditions (2. 5.1) are ne'cesséry hut;xa: sufficient for the
truth of the conjecture. We can, therefore, use them i;o eliminate
many, but not all, false conjectures. '

If a conjecture induces a mapping M -whlch satisfies (2. 5.1),
then we shall»say that the conjecture s consistent. We now show
that if a conjecture involving all of the p‘iﬁ'c‘neatér variables of A is
consistent, then A and B are equivalent. We first note that no two
words of the defining télation of A cont;m the same subset of the
indicator variables, since each word is formed by a different product
of the geﬁera;tors. A conjecture which {nvolves thé indicator variables -

1, 1yeees 1) therefore divides the words of A intq sete {A,}, each

of which containg one and only one word.
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BT g induced | elements.of
A2 o p | sets | induced sets _
= \‘ - e - a - T Al  §
"' : - @ . - ' - Az T Wl
- + * e @ L A3 ' wz
+  + . . . + Azf) Wlwzo . -wp (2.5.2)

(The plus signs in the i=th row of this array correspond to the particular

‘sﬁbs’e,t of the indicator variables which is contained in the word of

A;. For convenience, we have included the identity I as a word of

the defining relation, namely the word which mel’ﬁdes none of the

 vartables (1), 15,000, 1)) | ’ |
Now suppose the. canjecture P(l}, 155000510 = )y 1550005 p)s

where (J;, I35+« jp) are variables of design B, is consistent. This

implies that there is one and only one word in each of the subsets of

B induced by the éonjecture. In particular, for each i, there is one

and only one word of the defining relation of B which contains J; and

none of the other §'s. Denoting this word by V;, and letting i=l, 2,

.+« 5 D, We can write: ‘

vy =Lyl
V, = Ly(j)

Vp = Lp(jp) (2. 5. 3)
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wheré no element of the set (jﬂl, jé, cesy jp) appears in any of the words

{ I‘i}' The set (Vis Vaseeey Vp) is, clearly, a set of generators of B.
We could, at this point, construct a table for design B, similar

to the table (2. 5. 2) already available for design A, replacing the

1's by i's, the A's by B's, and the W's by V's.

the conjecture then implies that, for each 1,7 the length of the word in

set Ai must be equal to the length of the word 1n set That s,

= 2(V))
= £(V,)

LW W) = 2(V)V,)

R J

LW\W, . W) = £(VVy. . V).

Now we need only to show that, if the generatars of A and B

are named in such a way that the vector of word lengths, when written as

LW))
2(W,)
£(VV1W2)
1(W )

The consistency of

I(VVIWZ. . ..Wp)
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1s the same for both designs, then the designs are equivalent. We
can show this as follows.

We first note that the letter which corresponds to each variable
of design A appears in a particular subset of the generators (W 1° WZ’
cevy Wp), including that "subset" which contains no generators. We
shall represent thigs by the following tabulation:

- - . . - al
+ - - . - az
- + . . - a3
+ + . Y - a4
* * y . | ep (2.5.6)

where 3y, i=1,2, 3,..., 2P, 1s the number of letters which appear in
that subset of the generators which is denoted by the minus signs in

row §. (The use of minus signs rather than plus signs facilitates the
argument leading up to (2.5.12), ) We note that the sum of the
clements in the vector g, where g'= (8)s 3554+ 83p ), 18 equal to the
total number of varisbles (k) of the design, At this point, we also
draw attention to a fact which we shall use later in this argument,
namely that if we label tho variables associated with each L

i1, 2, 3,...4, zi’, in any spacified mannsr, we can use (2.5.6)to

oonstruct a set of generators m?f, Wayesey Wg, say) which are




[ ]
N
N

]

equivalent to the generators W;, W,,..., Wp of A. For this reason
we shall cail the vector a a generating vector of design A. If we
have, in additton to a, a lgbeling of the variabies which carrespond
to each element of g3, we shall refer to 2 as a ,l_a_!_)_g_;ﬂ generating
Now let M be the matrix of +1's and -~1's whlch is derived by
associating the value 1 with each sign in the .array (2.5.6). In térms

of its column vectors, M can be written

M = [ﬂl, W, . W_p] {2.5.7)

We shall define a new matrix X in terms of the products of the columns
of M, where we define the product 1\71\_'!] of two column vectors as
follows.

Definition: The product of two (N x 1) vectors w, and \_I_\fj is the
(N x 1) vector whose u-th element is the product of the u-th elements
of W and Wy, Le., (WW)), = (W) (W), u=l,2,...,N. The
obvious extension of this definition to products of more than two
vectors can be made, since associativity holds, e.g., (V_!l\l_!j \_Yk) =
(W, WHW, ) = (W, W, W, ).

We can now define the (2P x2P) matrix X, which is written in
terms of its column vectors as:

(2. 5. 8)
where the first column ] 18 a (2P x 1) column of +1's, and the rematning
columns are formed by taking (in the order indicated) all possible
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products of the columns of M. We obséive that the columns of X
are orthogonal vectors.
We now use X to inﬁ'oduce a linear transformation L(a) , which
is defined as follows: ‘
La) = (ki-X'a)/?2 | (2.5.9)

where §' 1s the (1 x 2°)vector (1, 1, 1,...,1). If we write L(a) in
terms of the elements of a, we obtain

0 g 0
a,tajtagta ... 2W;)
a ta tagta te. .. 2(W,)
ayta ta taqt..... LW,W,)
La) = . =
. LW W o . W)

(2. 5.10)
i. e., L transforms the generating vector a into the vector of word
lengths of the design.
Suppose that the generators of two designs A and B are named
in such a way that the corresponding generating vectors, denoted a

and b respectively, give rise to the same vector of word lengths, i.e.,

L@) = L(b) (2.5.11)




This means that
Xa = Xb,
(2. 5.12)

8o

g
o’

’

since X' is a nonsingular matrix. Suppose, for every j, (J el,‘ 2,..
vey 2P ), we label the variables of B which correspond to bj to be
the same as the variables of A which correspond to ay. Then the
set of generators of design B which arise from the labeled generating
vectar b will be identical to the set of generatars of design A which
arise from the labeled generating vector a. Therefore A=B.

This is the result to which we have been led by the assumed
consistency of the conjecture (which invoives the specified indicator
variables of A) and the particular choice of generators (2. 5.3) of
design B. We have therefore shown that, given A and B, if a con-
jecture involving all: of the p indicator variables of A is cons?lstent,
then A and B are equivalent designs.

In order to establish the equivalence of two designs A and B,
we shall attempt to formulate a consistent conjecture involving the
indicator variables of design A. We first make a2 conjecture P (11) =
Ul)’ involving only one of the indicator variables of A, and then test
for consistency by inspecting the word lengths in the sets of A and B
induced by the conjecture, I this conjecture is found to be incon-
sistent, a new conjecture involving i, is made and tested. We
proceed in this way until we find a consistent conjecture P (il) = (jl,,,).
We then make a conjecture at the second stage, P(ll, 1,)= Uyas 32D
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which is chosen to incarporate the consistent first stage conjecture.
If this conjecture is inconsistent, we change j, and test again.
Conﬂnuiné in this way: conjecture - test = conjecture‘ -
_test, and so on, we attempt to find at each stage a consistent
conjecture, which we then incorporate into a cenjecture at the suc-
ceeding stage. If we obtain a consistent conjecture at the p~th
stage, we can conclude that designs A and B are equivalent.
| In the course ofw this procedure, it is possible that at the r<th
stage, r3p, none of the candidates for j_ give rise to a consistent
conjecture. If this happens, we say that the consistent conjecture at
the '(ril)ith stage has failed at the r-th stage. We must therefore
return to the (r-1)-th stage and try to find another consistent conjecture
on which to base conjectures at the r=th stage. (When we are forced
in this way to go back to the (r-1)-th stage, the conjectures we select
to test are, like all our conjectures, based on the consistent conjec-
ture already found for the previous stage (r-2).)
We continue until one of two things happens. Either
(1) we find a consistent conjecture at the p~th stage, in
which case A and B are equivalent; or
(i1) every conjecture at the first stage is either inconsistent
itself or fails at a succeeding stage, in which case A and

B are not equivalent.
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3. AN EXAMPLE: R=5, q=7
3.1 mﬁbducuon
The procedures described in Section 2 were programmed for the
computer and run on the CDC 3600 located at the University of:,Wisconsm
Computing Center. We shall now illustrate the results of the pro-
grammed procedures in the case: R=5, q=7, to find saturated designs

of resolution V in 128 runs and of resolution VIin 256 runs.

3.2 Even 256-mn designs of resolution 2 6

We first constructed the complete set of distinct even Z(k"'l)"p
designs of resolution 2 6, where k-=p=q=7. These designs are listed
in Table 3.1 together with their word length patterns.

TABLE 3.1
The Even 256=Run Designs of Resolution 2 6

Word Length Pattern -

No. v . 6 8 10 12 Ref. Delete
1.1 9 1 0 0 0 4.1 10, 11, 12
1.2 9 0 1 0 0 4.1 2,5,7
2.1 10 3 0 0 0 4.1 11, 12
2.2 10 2 1 (4] 0 4,1 9,10

3.1 11 6 1 0 0 4.1 12

4.1 12 12 3 0 0 4,1 -

Generators of design 4. 1:

Wl = 123459 Wz 2 12367(10) W, = 12468(11) VN‘4 = 13578(12)

3
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The riumber of each design in Table 3. 1 is wtitten in the form
(p.a), where p is the number of denerators and a is a number which
orders those designs having the da_me value of P. -

The ‘cplump,hagded "fr" (=k+1, in our previous notation) in
Table 3.1 gives the number of variables which arg accommodated in
eachfdééign. ~ We see that the single design (4. _l)which was found
at the last stage aec;)fﬁmadatés’ 12 variables, i.e., 12 is the maximum
number of varlables which can be incorporated into a 256-run resolu-
tion VI desién; ~ This imples ét once that the maximum humber of
variables which can be accommodated by a 128-run resolution V
design is 11 (in agreement with Box and Hunter (1961b)).

; If we examine the word length patterns of the designs of Table
3. 1, we see that no two designs have identical word Ienéth patterns.
Although this distinct pattern property is not true in general, it does
hold for many sets of designs which are of interest, to the extent that
it even merits consideration as a basis\'f'or testing the equivalence of
designs. (A more thorough discussion of this point will be included
in a subsequent paper, together with an example of two distinct
designs whose word length patterns are identical. )

" The five distinct 256-run even designs of resolution 26 which
are not saturated can all be obtained from the saturated reference
design 4.1 through the deletion of variables. (The deletion of a
specified set of variables involves removing from the defining relation
all words in which any of the specified variables appear. Note that
this is not the same as the erasure of a variable, discussed above. )
Table 3.1 gives, in each case, the appropriate variables to be deleted

from design 4.1. These delstions are not, of course, unique and the
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~same designs can be obtained from the saturated design through
other deletion patterns. 7

We should remark that, although we see in this simple
example that the complete set of designs of the type constructed
can be expressed in terms of deletion of varl.abies from a saturated
design, this property is not true in qenera_l. |

3.3 0dd 128-run der.gns of resolution Z 5

The set of distinct odd 128-run designs of resolution 3 5 can
be obtained directly from the designs of Table 3.1 through the erasure
of a variable.. In order to ensure completeness, the erasure of each
possible variable was performed on each design. During this |
procedure, designs which were found to be equivalent to any pre-
viously obtained design were discarded. The re:aulting set of ’
designs, which is the complete set of distinct odd 128-run designs
of resolution = 5, is given in Table 3. 2.
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Table 3.2
The Odd 128-Run Designs: of Resolution Z 5

No. __k 5 6 7 8 9 1011 Ref. _ Delete  Frase
1.1/0 8 1 0 G 0000 41 10,11,12 9
1.2/0 8 o001 00 00 41 2,57 12
2.1/1 9 2 0 00 00 41 11,12 10
2.2/2 9 2 001 000 4.1 9, 10 8
311 10 3 3 100 00 41 12 11

3.1/2 10 4 2 01 0 0 O 4,1 12

4.1/1 11 6 6 2.1 0 0 0 4,1 = ‘12

Each design in Table 3. 2 is 1dent1fied by means of a number
written in the form (p. a/h). The meaning of this notation is that
(p.a)is the deslgn of Table 3.1 from which the design (p.a/b)is
derived (thréaugh the graéure of a vartable j, and ((p=1). b) is the even
design of Table 3. 1 which corresponds to the even words of (p.a/b).

We note that design 4. 1/1 is the unique saturated resolution V'
desion in 128 runs, i.e., every other 2%,1 =4 design is equivalent to
it. Design 4. 1/1 ! is therefore equivalent to the zlvl -4 designs given,
fm example, by Brownlee, Kelly, and Loraine (1948), National Bureau
of Standards (1957), and Box and Hunter (1961b).

Each of the designs in Table 3.2 can be obtained from the
reference design 4.1 through the deletion of a set of variables
followed by the erasure of a single variable. Appropriate variables

to be deleted and erased are given in Table 3.2 for each design.
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3.4 Blocking the aesigns constructed

Two distinct optimum blocking arrangements, each involving 8
blocks, were found for the saturated zi,z;*_ éeszgn 4.1, uimg the
procedures described in Section 2 4, with R=5. (We usé‘rtﬁe word
“aptimum® to refer to those @Apgements whigh ‘provide the ma:dm;;am
possible number of blocks. ) The blocking géh&&t&s’for éaéh
arrangement are as follows: '

(1) Bl = 1238 B, = 1478 83 = 2456

2
(11) Bl = 1258 B

, = 1368 B, = 2467 (3.4.1)

The resulting blocked design is, in each case, of type ? {,21:'41;3 .

It is of interest to determine whether or not an optimum biocking
arrangement for each of the other designs of Table 3. 1 can be found
by deleting variables ,from>the optimally blocked saturated design.
Since the deletion of variables does not affect the number of blocks,

" . each of the designs of Table 3. 1 can be obtained in 8 blocks by

déismg thé appropriate variables from design 4.1. We now show that
248 »ﬁdeed the maximum number of blocks which can be accommadatéd
in such a design . (which mu."st be even and of type 2(\8,'1';"%'?": s where
S' 2 4). We first note that each block of a 2(9":’1;?)'9" design is
itself a 2‘;’:"1"'9 r-(ptt) design and can therefore accommodate no

more than 2a-t variables, if 8'Z 4. Hence q+l+p 3 29°t, When

=t o 8<2t, since

q= 7,“ as in this example, we have 84p s2
p > 0. This implies that 7-t > 3, i.e., tS3. The number of blocks,
Zt, cannot,-therefore, exceed 8. We have thus. shown that any of the

designs of Table 3.1 can be obtained, optimally blocked, by deleting



variables from design 4. 1, blocked according to arrangement (i) or
arrangement (i1) of (3. 1), |
We‘ .can also block any of the designs of Table 3.2 optimally
(in blocks of 8) as follows. Giwven the bé;e design (p.a/b), say, we
(1) first write down the generators of the saturated 2131'33
design, using either set of blocking generators given
| in (3.4, 1)
(11) delete and then erase the appropriate variables (giVén
" in Table 3.2) to obtam the desired design (p.a/b)
| In stap (i1), the variables to be dcaleted should first be isolated as
- indicator variables in the generafors of the base design. (To isolate
~ the variable 1, say, in generator W, replace each generator G which
contains { (including the blocking generators but excluding W itself)
wﬁh the pi‘oduct GW. ) The erasure procedure follows , where the
dpprOpriate variable must be efased from al_l the generators, including _
the blocking generators. -
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