USCEE Report 183

UNIVERSITY OF SOUTHERN CALIFORNIA

SCHOOL OF ENGINEERING

FINAL REPORT

MILLIMETER - WAVE RADIOMETRY FOR RADIO ASTRONOMY
W. V. T. Rusch
S. D. Slobin
C. T. Stelzried

Contract No. JPL 951424

Prepared for
$\frac{\text { JET PROPULSION LABORATORY }}{\text { PASADENA, CALIFORNIA }}$

ELECTRONIC SCIENCES LABORATORY

MILLIMETER-WAVE RADIOMETRY FOR RADIO ASTRONOMY

W. V. T. Rusch
S. D. Slobin
C. T. Stelzried

FINAL REPORT

Contract No. JPL 951424

This work was performed for the Jet Propulsion Laboratory, California Institute of Technology, sponsored by the National Aeronautics and Space Administration under Contract NAS7-100.

TABLE OF CONTENTS

I. HISTORY OF THE PROGRAM 1
II. INSTRUMENTATION DEVELOPMENT 3
III. ANTENNA DEVELOPMENT 4
A. Feedhorn Redesign 4
B. Nodding Subdish 7

1. Analysis 7
2. Mechanical Construction and Performance 11
3. RF Performance 17
IV. SOLAR OBSERVATIONS 20
V. LUNATION OBSERVATIONS 23
VI. PUBLICATIONS 25
APPENDIX 26
REFERENCES 31
ACKNOW LEDGEMENT 32

I. HISTORY OF THE PROGRAM

In September, 1963, the mm-wave instrumentation program was initiated as a joint effort between the Jet Propulsion Laboratory and the Electrical Engineering Department of the University of Southern California. The JPL participation was conducted through the New Gircuit Elements Group of the Communications Elements Research Section, which provided equipment and personnel involved primarily with the electronic instrumentation.

The Electrical Engineering Department contributed the antenna, a converted 60 -inch searchlight. Personnel were provided to design the antenna and feed system, the associated drive system, etc. USC personnel also directed the astronomical aspects of observation of the lunar eclipse of 30 December 1963. During the period from September 1963 to July 1964 USC participation was sponsored by a grant from the Research Corporation, Contract AJ4-205 638 from JPL, and financial support for salaries and equipment from the EE Department, Joint Services Grant, AF-AFOSR-495-64,

In August, 1964 a JPL study contract was issued to the USC Electrical Engineering Department (JPL Contract No. 951 004). The purpose of this contract was to investigate and develop high sensitivity MM-wave receivers and the techniques of their application to scientific and technological experimentation. The original contract period was from l August 1964 to 31 July 1965; however, a two-month extension changed the termination date to 30 September 1965. A second study contract (JPL Contract No. 951 424) was issued to cover the period from 1 October 1965 to 15 September 1966. This contract continued the previous work as a joint JPL-USC program. The
mm-wave radiometer and associated electronic technologies were the primary areas of interest and responsibility of JPL, although there was considerable participation by USC personnel in the design and assembly stages of the radiometer, particularly during the summer months. The chief responsibilities of the USC personnel were antenna design and performance, the scientific observational program, the theoretical analyses, and data reduction. The overall long-range planning of the entire program was a mutual effort.

II. INSTRUMENTATION DEVELOPMENT

Since the system used for lunation measurements during the summer of 1965 (Ref. 1) was close to the ultimate development goals, a great deal of new equipment was not developed during the period covered by this present report. Minor adjustments and updating of exising equipment were carried out to provide an adequate operating system for the lunar and solar observations.

A TRG, Inc. ferrite waveguide switch was installed to replace a deteriorating and well-used existing switch. Similarly, long usage had degraded the output of the Tucor, Inc. gas tube and this was replaced by an ITT, Inc. gas tube. Various combinations of mixer diodes were tried to minimize the receiver noise figure. A new waveguide run was installed to reduce signal loss between the waveguide horn and the mixer.

Following the lunar and solar observations and antenna pattern measurements, it was decided to install a commercially available radiometer "rear-end" in the existing system. This radiometer (AIL type 2392B Universal Radiometer) replaced part of the IF amplifiers, the Princeton, Inc. phase detector, and parts of the DC signal system. The advantages of having a commercial radiometer are ease of servicing, commercial availability of parts, and compatibility with many types of existing instrumentation. Quantitative comparisons will be made between the original system and the AIL Radiometer and will be reported in the next report.

III. ANTENNA DEVELOPMENT

A. Feedhorn Redesign

One component of the original radiometer needing improvement was the antenna feedhorn. Cassegrainian optics are used in the antenna, and the feedhorn illuminates the hyperboloidal subreflector. It is highiy desirable that the feedhorn have an axially symmetric pattern, a relatively narrow beam, and low sidelobes to minimize forward spillover. The original feedhorn used in the radiometer was a dual-mode circular horn with a matching iris (Ref. 2). However, in the haste to design this horn for the 1963 eclipse, only a minimum effort was devoted to optimizing the design.

Furthermore, because of the matching iris, the dual-mode configuration is quite narrow band. Currently available 90 -Gc klystrons, which are used in the radiometer as a local oscillator, are not well frequency-stabilized. The resulting frequency instability in a narrow-band rffront end leads to degradation of radiometer gain and sensitivity. Consequently, it was felt desirable to incorporate a different feedhorn configuration in the radiometer.

The design selected was the diagonal-horn type (Ref. 3). The horn (shown in Figures 1 and 2) consists of three regions: an E-band waveguide region with flange, a transition region, and a long, tapered region with rotated square cross-section. The completed unit was gold flashed. The measured VSWR was less than 1.05 over a frequency range from 89.60 Gc to 90.30 Gc .
Figure 1 - Diagonal Feedhorn

Figure 2 - Diagonal Feedhorn

B. Nodding Subdish

The development of a nodding subdish beam-switching system has been the major project of the contract period. Not only was it necessary to design, fabricate, and test the subdish itself, it was also necessary to carry out a detailed theoretical analysis of the electromagnetic aspects of the problem. A preliminary description of the nodding subdish system may be found in the last final report (Ref. 1).

1. Theoretical Analysis - Scattering from an asymmetric

 hyperboloid has been solved previously in the literature (Ref. 5) using the techniques of geometrical optics. In order to obtain more accurate expressions for important diffraction effects, the problem of scattering from a tilted hyperboloid was solved using vector diffraction theory. The geometry is shown in Figure 3.The hyperboloid is axially symmetric in the $\mathrm{x}_{3}, \mathrm{z}_{3}$ system. The equation for its surface in this system is

$$
\begin{equation*}
\rho_{3}=\frac{-\mathrm{ep}}{1+e \cos \theta_{3}} \tag{Eqn1}
\end{equation*}
$$

where

$$
\begin{aligned}
& p=c\left(1-\frac{1}{e^{2}}\right) \\
& c=\text { eccentricity }>1 \\
& c=\frac{1}{2} \overline{O F}
\end{aligned}
$$

The primary field emanates from 0 (in the x_{1}, z_{1} system) in the form of a spherical wave and impinges on the hyperboloid. The scattered field at the field point P is (Ref. 4)

$$
\bar{E}(P)=\frac{-j w \mu}{2 \pi} \int\left[\bar{n}_{x} \bar{H}_{i}\right]_{\operatorname{transverse}} \cdot\left[\frac{e^{-j k r}}{r}\right] d S \quad\left[E_{q n} 2\right]
$$

For ease of solution, the integration is carried out in the x_{3}, z_{3} system. However, in order to compute the field scattered from the paraboloid, it is necessary to evaluate the scattered field $\bar{E}(P)$ in the x_{2}, z_{2} system. Thus, three coordinate systems are involved in the problem.

Evaluating factors in the integrand, and performing necessary coordinate transformations, the following multi-coordinate expressions are obtained:
$E_{\theta}(P)=\frac{-j(k e p)}{2 \pi} \frac{e^{-j k R}}{R} \int_{\theta}^{\pi} \frac{\sin \theta_{3}}{\left(1+e \cos \theta_{3}\right)^{2}}$.
$\left[\int_{0}^{2 \pi} \frac{\rho_{3}}{\rho_{1}} A\left(\theta_{1}\right) M\left(\theta_{3}, \varphi_{3}\right) e^{-j k \rho_{1}} e^{j k \rho_{2}\left[\sin \theta \sin \theta_{2} \cos \left(\varphi-\varphi_{2}\right)+\cos \theta \cos \theta_{2}\right]} d \varphi_{3}\right] d \theta_{3}$

$$
\begin{aligned}
& E_{\varphi}(P)=\frac{-j(k e p)}{2 \pi} \frac{e^{-j k R}}{R} \int_{\theta_{0}}^{\pi} \frac{\sin \theta_{3}}{\left(l+e \cos \theta_{3}\right)^{2}} \cdot \\
& \cdot\left[\int_{0}^{2 \pi} \frac{\rho_{3}}{f_{1}} A\left(\theta_{1}\right) N\left(\theta_{3}, \varphi_{3}\right) e^{-j k \rho_{1}} e^{j k \rho_{2}\left[\sin \theta \sin \theta_{2} \cos \left(\varphi-\varphi_{2}\right)+\cos \theta \cos \theta_{2}\right]} d \varphi_{3}\right] d \theta_{3}
\end{aligned}
$$

where $A\left(\theta_{1}\right)=$ primary source feed function

$$
\begin{aligned}
\mathrm{M}\left(\theta_{3}, \varphi_{3}\right)= & (\mathrm{DH}-\mathrm{EG}) \cos \theta \cos \varphi+(\mathrm{EF}-\mathrm{CH}) \cos \theta \sin \varphi+ \\
& (\mathrm{CG}-\mathrm{DF})(-\sin \theta) \\
\mathrm{N}\left(\theta_{3}, \varphi_{3}\right)= & (\mathrm{DH}-\mathrm{EG})(-\sin \varphi)+(\mathrm{EF}-\mathrm{CH}) \cos \varphi \\
\text { and } \quad & \mathrm{C}\left(\theta_{3}, \varphi_{3}\right)=\cos \alpha\left(\sin \theta_{3} \cos \varphi_{3}\right)-\sin \alpha\left(\mathrm{e}+\cos \theta_{3}\right) \\
& \mathrm{D}\left(\theta_{3}, \varphi_{3}\right)=\sin \theta_{3} \sin \varphi_{3} \\
& \mathrm{E}\left(\theta_{3}, \varphi_{3}\right)=\sin \alpha^{\left(\sin \theta_{3} \cos \varphi_{3}\right)+\cos \alpha\left(\mathrm{e}+\cos \theta_{3}\right)} \\
& F\left(\theta_{1}, \varphi_{1}\right)=\left(1+\cos \theta_{1}\right) \sin \varphi_{1} \cos \varphi_{1} \\
& G\left(\theta_{1}, \varphi_{1}\right)=\cos \theta_{1} \sin ^{2} \varphi_{1}-\cos ^{2} \varphi_{1} \\
& H\left(\theta_{1}, \varphi_{1}\right)=-\sin \theta_{1} \sin _{1}
\end{aligned}
$$

$k \rho_{1}, k \rho_{2}, \theta_{1}, \varphi_{1}, \theta_{2}, \varphi_{2}$ are all related through coordinate transformations to θ_{3} and φ_{3}
$E_{\theta}(P), E_{\varphi}(P)$ are referred to the x_{2}, z_{2} coordinate systerm

Numerical integration of Equations 3 and 4 has been undertaken. The resulting computer program is shown in the Appendix.
2. Mechanical Construction and Performance - The nodding subdish moves between two off-axis positions, symmetric with respect to the centerline of the operating mechanism. The axis about which the dish moves may be indexed to give movement in any desired direction. Provision is also made for focussing the subdish by means of an internal motor, gear drive, and lead screw. Located on the back of the subdish is a small cam follower and two small bearings. Located on the circular counterweight are similar cam follower and similar bearings. The four bearings fit into a holder located in a fixed position with respect to the adjustment plate. The cam followers fit into a two-track cam wheel which is driven by an external motor. All these various parts may be seen in Figures 4 through 10 .

Rotation of the cam wheel causes approximate "square-wave" motion of both the subdish and the counterweight. The subdish remains in one offaxis position for about 45% of the rotation of the cam wheel, switches for 5% of the rotation, remains in the second position for 45% of the rotation, and then switches back to the first position during the remaining 5% of the cam wheel rotation.

The nodding subdish mechanism has been set up in a permanent laboratory bench testing apparatus. The mechanism was operated slowly for a short period of time to observe the operation at low speeds (1 to 2 cycles per second). The speed of operation was then increased, and close visual and audio observations were made with regard to resonances, vibrations, possible surface deformation, and cam wear. Although operation was extremely noisy at 8 cps (the maximum tested so far), no mirror surface

Figure 6 - Back view of subdish assembly showing mirror stiffening ring, bearing holders, cam follower, cam wheel, counterweight, indexing plate, and tripod head

Figure 7 - Cam wheel showing symmetrical cam tracks

Figure 8 - Exploded view of hyperbolic reflector mount, l. to r.: sleeve for main shaft, tripod head main housing

Figure 9 - Focussing and drive unit showing universal joint for external drive, miter gear housing, focussing screw and gear, focussing spring, indexing plate, and bearing holders

Figure 10 - Focussing unit showing focussing motor, focussing gears and screw, and focussing spring
deformations or cam follower distortions were noted using a strobe light to "freeze" the motion of the mechanism during operation. At the present time it is felt that operation at $6-1 / 6$ cycles per second (a relatively smooth operatıng pointj is possible frori both ain electronic and mechanical standpoint.

3. RF Performance - Antenna pattern measurements have

 been taken using the tilted hyperboloid in one stationary position tilted 2° from its symmetric position (axis of hyperboloid colinear with axis of paraboloid). The total excursion from one extreme of tilt to the other is 4°. The total beam shift between extremes is 55.5 minutes of arc. Hence, the deviation of the beam from its symmetric position is 27.75 minutes of arc.Figures 11 and 12 show the static antenna patterns measured with the subdish tilted to its 2° - off -axis position. Comparison of these patterns with the patterns measured for the symmetrical geometry does not reveal significant aberrations such as excessively high sidelobes or beam broadening.

IV. SOLAR OBSERVATIONS

Sixteen 3.3 mm observations of the sun were carried out on
February 8, 1966. The observational technique was identical to past observational techniques (Ref. 1). Eight observations prior to meridian transit yielded $\mathrm{T}_{\mathrm{S}}^{\prime} / \mathrm{T}_{\mathrm{GT}}=3.07 \dot{ \pm} .16$ (p.e.), where $\mathrm{I}_{\mathrm{S}}^{\prime}$ is the equivaient biackbody antenna disc temperature of the sun and T_{GT} was the equivalent excess noise temperature of the gas tube at the output of the waveguide switch. The eight observations following meridian transit yielded $\mathrm{T}_{\mathrm{S}}^{\prime} / \mathrm{T}_{\mathrm{GT}}=3.16 \pm .03$ (p.e.). Averaging these two values (to allow for the possibility of a uniform rate of change of atmospheric loss) yielded $\mathrm{T}_{\mathrm{S}}^{\prime} / \mathrm{T}_{\mathrm{GT}}=3.12 \pm .08$ (p.e.). Calibration of the equivalent excess noise temperature of the gas tube at the output of the waveguide switch yielded $\mathrm{T}_{\mathrm{GT}} \doteq 1181.3 \pm 11.4^{\circ} \mathrm{K} . \quad$ (The gas tube output passed through a $10-\mathrm{db}$ directional coupler into the main rf path.) This result then yielded $\mathrm{T}_{\mathrm{S}}^{\prime}=3683.2 \pm 100.9^{\circ} \mathrm{K}$. The equivalent blackbody disc temperature of the sun, T_{S}, is then obtained by dividing T_{S}^{\prime} by the beam correction factor (BCF) which was measured to be 0.58 for a solar radius of $16^{\prime} 15^{\prime \prime}$. The final result of this measurement was $T_{S}=6378.97$ $\pm_{174 .} 7^{\circ} \mathrm{K}$.

During the eight post-transit observations on February 8, the observations were also calibrated directly with the hot reference loads that were used to calibrate the gas tube, which served as a transfer standard. The results of this calibration technique yielded $\mathrm{T}_{\mathrm{S}}=6277.6 \pm 230.7^{\circ} \mathrm{K}$.

Following the observations of February 8, the Tucor, Inc. gas tube was replaced with an ITT, Inc. gas tube. It was expected that the new gas tube
would provide more stability in the magnitude of the calibration pulses. Then on five days (February $12,16,17,18,19)$ pre- and post-transit observations were made. A typical set of data is plotted in Figure 13. Averaging and reduction of the data taken on these five days yielded:
Date
$\mathrm{T}_{\mathrm{S}}\left({ }^{\circ} \mathrm{K}\right)$
6372.7
6655.3
6272.0
6190.2
6331.2
P. E. (${ }^{\circ} \mathrm{K}$)
89.5
46.8
41.9
54.0
90.6

The average of these five values, weighted inversely as the probable error, is $T_{S}=6375.1 \pm 61.6^{\circ} \mathrm{K}$. This value is not far from the 3.2 mm value of $6402{ }^{\circ} \mathrm{K}$ (Ref. 6). It should be noted that the probable error quoted is statis tical only. It does not include the large uncertainty involved in the determination of the BCF which brings an additional uncertainty of $7-9 \%$.

Figure 13-16 February 1966 Solar Data (0857-1104 PST) with "Best-fit" Straight Line Approximation

$$
\mathrm{T}_{\mathrm{S}}^{\mathrm{t}} / \mathrm{T}_{\mathrm{GT}}=3.585 \pm 0.022 \text { (p. e.) ; } \mathrm{L}_{\mathrm{o}}=1.083 \pm 0.004 \text { (p. e.) }
$$

V. LUNATION OBSERVATIONS

A series of lunation observations was carried out from the period 4 April to 10 July. Useful data was obtained on only 23 dates in this period, due to bad weather and a frequent lack of observing personnel. The observing technique is similar to that used for a similar experiment (Ref. l). Calibration procedures were carried out each day, using both an ITT, Inc. and a Tucor, Inc. gas tube. The calibration technique is also described in Ref. 1.

Since it was necessary to obtain a Beam Correction Factor in order to convert the antenna temperatures into equivalent blackbody disc temperatures of the moon, it was necessary to remeasure the antenna gain and pattern. A slightly higher gain and somewhat narrower beamwidth were measured than previously.

The resulting lunation curve is plotted in Figure 14. Comparison of this curve with the previous lunation curve (FigureV-9, p. 54, Ref. 1) indicates a reduced scatter of data points as well as a reduced uncertainty for each data point. The increased accuracy was obtained by increasing the period of the onoff cycle and taking more data points. In addition, every data point in Figure 14 is the result of averaging both pre- and post-transit data. The resulting scatter of the data points in Figure 14 is attributed primarily to changing atmospheric loss rather than to experimental uncertainty. It is evident that changes in atmospheric loss during the course of a series of observations can frequently produce misleading data. The process of averaging pre- and posttransit data usually results in smoothing the scatter but does not eliminate it.

lunar phase (Deg)
Figure 14 - Lunation Curve (4 April - 10 July 1966)

VI. PUBLICATIONS

1. W.V.T. Rusch and C.T. Stelzried, "Observations of the 19 December 1964 Lunar Eclipse at a Wavelength of 3.3 Millimeters'", to be published in the Astrophysical Journal, April 1967.
2. C.T. Stelzried and W.V.T. Rusch, "Improved Determination of Atmospheric Opacity from Radio Astronomy Measurements", to be published in the Journal of Geophysical Research.

APPENDIX

```
    UIMENSIUN SUM(4),SUMT(4),UATE(12)
1 READ INPUT TAPE 5,1000,DATE
    READ INPUT TAPE 5,1001,LOOPA,LUUPE,IPRNT
    READ INPUT TAPE 5,1002,THES,DELTHE,THENUMM
    READ INPUT TAPE 5,1002,PHIS,DELPHI,PHINUM
    READ INPUT TAPE 5,1002,THEO,CEP,E,ALPHA,CAYX,CAYZ,CAYUF
    LPRNT =0
    LOOPA=(LOOPA/2)*2
    LOOPB=(LOOPB/2)*2
    PI=3.14159265
    PI 2=6.2831853
    PIH=1.5707963
    DEG=0.0174532925
    RAD=57.2957795
    WRITE OUTPUT TAPE 6,4000,DATE
    WRITE OUTPUT TAPE 6,5000
    WRITE OUTPUT TAPE 6,5001, THES,DELTHE
    WRITE OUTPUT TAPE 6,5002,PHIS,DELPHI
    WRITE OUTPUT TAPE 6,5003, THEU,CEP,E,ALPHA
    WRITE OUTPUT TAPE 6,5004,CAYX,CAYZ,CAYUF
    ALPHA=ALPHA*DEG
    THES=THES*DEG
    DELTHE=DELTHE*DEG
    PHIS=PHIS*DEG
    THEO=THEO*DEG
    DELPHI=OELPHI*DEG
    DELTH3=(PI-THEU)/FLOATF(LOOPA)
    TEMP=UELTH3*RAD
    WRITE UUTPUT TAPE 6,5005,DELTH3,TEMP
    SINA=SINF(ALPHA)
    COSA=COSF(ALPHA)
    Rl=DEL TH3/3.0
    JFK=THENUM
    LBJ=PHINUM
    A=LOUPA
    B=LOOPB
    DEL=(B-4.0)/A
    LOOPA=LOOPA+1
    DO 900 L= 1,LBJ
    PHI=PHIS+DELPHI*FLUATF(L-I)
    TEMP=PHI %RAD
    WRITE UUTPUT TAPE 6,6000,PHI,TEMP
    WRITE UUTPUT TAPE 6,6001
    WRITE OUTPUT TAPE 6,6002
    SINP=SINF(PHI)
    COSP=COSF(PHI)
    DO 800 K=1,JFK
    THE=THES+DELTHE*FLOATF(K-1)
    SINT=SINF(THE)
    COST=COSF(THE)
    CTCP=COST*COSP
    DO 30 I=1,4
30 SUMT(I)=0.0
    CTSP=COST:SINP
    IF(IPRNT) 34,35,34
34 LRUN=1
    WRITE OUTPUT TAPE G,7000,LRUN,SINA,SINP,SINT,CTSP,CUSA,COSP,
    XCOST,CTCP,THE,DEL
35 LL=1
```

```
    DO 600 J=1, LOOPA
    FLOAT=J-1
    THE3=THEO+DELTH3*FLOAT
    NN=B+0.5-DEL%FLOAT
    NN=(NN/2)*2
    DELPH3=PI2/FLOATF(NN)
    R2=DELPH3/3.0
    NN=NN+1
    SINT3=SINF(THE3)
    COST3=COSF(THE3)
    T 1=1.0+E%COST3
    CAYRO 3=-CEP/T1
    CAYZ3=CAYRO3*COST3
    ECOST3=E+COST3
    SAECT3=SINA*ECOST3
    FTHETA=SINT3/(T1*T1)
    R3=FTHETA*R2
    R4=R3*2.0
    R5=R 3*4.0
    DO 40 I= 1,4
40 SUM(I)=0.0
    IF(IPRNT)41,42,41
41LRUN=2
    TEMP=DELPH3*RAD
    WRITE OUTPUT TAPE 6,7001,LRUN,THE3,T1,CAYRU3,R3,SINT3,ECOST3,
    XCAYZ3,R4,COST3,SAECT3,FTHETA,R5,DELPH3,TEMP
42 KK=1
    DO 400 I=1,NN
    PHI3=DELPH3*FLOATF(I-1)
    SINP3=SINF(PHI3)
    COSP3=COSF(PHI3)
    ST3CP3=SINT3*COSP3
    ST3SP3=SINT3*SINP3
    CAYX3=CAYRO3*ST3CP3
    CAYY3=CAYRO3*ST3SP3
    CAYXI=CAYX3*COSA-CAYZ3*SINA-CAYX
    CAYY1=CAYY 3
    CAYZ1=CAYX3*SINA+CAYZ3*COSA-CAYZ
    T2=CAYX1**2+CAYY1**2
    CAYRO1=SQRTF(T2+CAYZ1**2)
    T3=SQRTF (T2)
    THE1=PI-ATANF(T3/ABSF(CAYZ1))
    PHII=ACOSF(ABSF(CAYX1)/T3)
    IF(CAYX1)70,50,50
50 IF(CAYY1)60,100,100
60 PHI1=PI2-PHII
    GO TO 100
70 IF(CAYY1)80,90,90
80 PHII=PI+PHII
    GO TU 100
    90 PHIl=PI-PHII
100 CAYX2=CAYX1
    CAYYZ=CAYY1
    CAYZZ=CAYZI+CAYOF
    CAYRO2=SQRTF(T2+CAYZ2**2)
    IF(CAYZ2)110,130,120
110 THE2=PI-ATANF(T3/ABSF(CAYZ2))
    GO TO 140
120 THE2=ATANF(T3/CAYZ2)
```


GO TU 140

130 THE2 $=\mathrm{P} \mathrm{IH}$
140 PHI 2=PHII
$C C=C O S A * S T 3 C P 3-S I N A * E C O S T 3$
$D D=S T 3 S P 3$
$E E=S$ INA* ST $3 C P 3+C U S A * E C U S T 3$
SINT1=SINF(THE1)
$\operatorname{COST} 1=\operatorname{COSF}($ THE 1$)$
SINPI=SINF(PHII)
$\operatorname{COSP} 1=\operatorname{COSF}(P H I 1)$
$\mathrm{FF}=(1.0+\operatorname{COST} 1) * \operatorname{SINP} 1 * \operatorname{CUSP} 1$
GG=COST1*SINP1*SINP1-COSP1*CUSP1
$H H=-S I N T 1 * S I N P I$
$T 4=D D * H H-E E * G G$
$T 5=E E * F F-C C * H H$
$T 6=C C * G G-D D * F F$
$A M=T 4 * C T C P+T 5 * C T S P-T 6 * S I N T$
$A N=T 5 * C O S P-T 4 * S I N P$
CALL UPTION(THEI,ANS,L)
$A A=A N S$
CALL UPTIUN(THE1,ANS,L)
$B B=A N S$
T7=CAYRO3/CAYRO1
G1=T7\%AM
G2=T7*AN
T8=COSF (PHI-PHI2)
T9=SINT*SINF(THE2)
Sl=COST $\div \operatorname{COSF}($ THE2)
H=CAYRO2*(T9*T8+S1)-CAYRO1
SINH=SINF (H)
$\mathrm{COSH}=\operatorname{COSF}(\mathrm{H})$
S2=AA*COSH-BB*SINH
S3 $=\mathrm{BB} * \mathrm{COSH}+A A * S I N H$
IF (I-LOOPB) $170,200,170$
170 GO TO $(200,220,240), K K$
$200 \operatorname{SUM}(1)=\operatorname{SUM}(1)+G 1 * S 2$
$\operatorname{SUM}(2)=\operatorname{SUM}(2)+G 1 * \operatorname{S3}$
$\operatorname{SUM}(3)=\operatorname{SUM}(3)+G 2 * \operatorname{S2}$
$\operatorname{SUM}(4)=\operatorname{SUM}(4)+G 2 * \operatorname{Sa}$
$K K=3$
GO TU 300
$220 \operatorname{SUM}(1)=\operatorname{SUM}(1)+G 1 * \operatorname{S} 2 * 2.0$
$\operatorname{SUM}(2)=\operatorname{SUM}(2)+G 1 * S 3 * 2.0$
$\operatorname{SUM}(3)=\operatorname{SUM}(3)+G 2 * \operatorname{S} 2 * 2.0$
$\operatorname{SUM}(4)=\operatorname{SUM}(4)+G 2 * S 3 * 2.0$
$K K=3$.
GO TO 300
$240 \operatorname{SUM}(1)=\operatorname{SUM}(1)+G 1 * \operatorname{S} 2 * 4.0$
$\operatorname{SUM}(2)=\operatorname{SUM}(2)+G 1 * \operatorname{Si*} 4.0$
$\operatorname{SUM}(3)=\operatorname{SUM}(3)+G 2 * \operatorname{S} 2 * 4.0$
$\operatorname{SUM}(4)=\operatorname{SUM}(4)+G 2 * \operatorname{Si*4.0}$
$K K=2$
300 IF (IPRNT) 305,400,305
305 LRUN=3
WRITE UUTPUT TAPE 6,7002,LRUN,PHI3,THE1,SINT1,CAYX1,SINP3,THE2,
XCOST1,CAYY1, COSP3,PHI1,SINP1,CAYZ1
WRITE OUTPUT TAPE 6,7003,ST3CP3,PHI2,CUSP1,T2,ST3SP3,CAYX3,
XCAYY3,T3,T4,T5,T6,T7
WRITE OUTPUT TAPE 6,7004,T8,T9,S1,S2,S3,CAYX2,CAYRU1,AA,H,

XCAYY2,G1,BB
WRITE OUTPUT TAPE 6,7005,SINH,CAYZ2,G2,CC,CUSH,AM, AIV, XDD,EE,FF,GG,HH,CAYRO2
WRITE OUTPUT TAPE 6,7006,SUM(1), SUM(2), SUM(3), SUM(4),
XSUMT (1), SUMT (2), SUMiT(3), SUMT (4)
LPRNT=LPRNT+1
IF (LPRNT-IPRNT) $400,400,310$
310 IPRNT=0
400 COATitivuc
IF (J-LOOPA) $420,440,420$
420 GO TO $(440,460,480)$, LL
$440 \operatorname{SUMT}(1)=\operatorname{SUMT}(1)+\operatorname{SUM}(1) * R 3$
$\operatorname{SUMT}(2)=\operatorname{SUMT}(2)+\operatorname{SUM}(2) * R 3$
$\operatorname{SUMT}(3)=\operatorname{SUMT}(3)+\operatorname{SUM}(3) * R 3$
$\operatorname{SUMT}(4)=\operatorname{SUMT}(4)+\operatorname{SUNI}(4) * R 3$
$L L=3$
GO TO 600
$460 \operatorname{SUMT}(1)=\operatorname{SUMT}(1)+\operatorname{SUM}(1) * R 4$
$\operatorname{SUMT}(2)=\operatorname{SUMT}(2)+\operatorname{SUM}(2) * R 4$
$\operatorname{SUMT}(3)=\operatorname{SUMT}(3)+\operatorname{SUM}(3) * R 4$
$\operatorname{SUMT}(4)=\operatorname{SUMT}(4)+\operatorname{SUM}(4) * R 4$
$L L=3$
GO TO 600
$480 \operatorname{SUMT}(1)=\operatorname{SUMT}(1)+\operatorname{SUM}(1) * R 5$
$\operatorname{SUMT}(2)=\operatorname{SUMT}(2)+\operatorname{SUM}(2) * R 5$
$\operatorname{SUMT}(3)=\operatorname{SUMT}(3)+\operatorname{SUM}(3) * R 5$
$\operatorname{SUMT}(4)=\operatorname{SUMT}(4)+\operatorname{SUM}(4) * R 5$
LL=2
600 CONT INUE DO $650 \quad \mathrm{I}=1,4$
$650 \operatorname{SUMT}(I)=\operatorname{SUMT}(I) * R I$
TEMP $=$ THE $\# R A D$
$\operatorname{Tl}=\operatorname{SQRTF}(\operatorname{SUMT}(1) * * 2+\operatorname{SUMT}(2) * * 2)$
T $2=\operatorname{SQRTF}(\operatorname{SUMT}(3) * * 2+\operatorname{SUMT}(4) * * 2)$
WRITE OUTPUT TAPE 6,6003,THE,TEMP,SUMT(1),SUMT(2),T1,SUMT(3),
XSUMT (4), T2
800 CONT INUE
900 CONT INUE
GO TU l
1000 FORMAT(12A6)
1001 FORMAT (1415)
1002 FORMAT(7F10.0)
4000 FORMAT ($1 \mathrm{H} 1,30 \mathrm{X}, 12 \mathrm{~A} 6$)
5000 FORMAT ($39 H O I N P U T$ PARAMETERS AND COINTRUL CUNSTANTS)
5001 FORMAT (7HOTHETA=F12.5,8H DEGREES, 10X, 10HINCREMENT=F12.5)
5002 FORMAT(5H PHI=F12.5,8H DEGREES, $12 \mathrm{X}, 10 \mathrm{HINCKEMENT}=\mathrm{F} 12.3$)
5003 FORMAT (10HOTHETA $(0)=F 12.5,10 X, 3 H K E P$, OX, $14=, F 12=5,10 X, 1 H E, 8 X, 1 H=$, XF $12.5,10 X, 10$ HALPHA $=F 12.5)$
5004 FORMAT (3 H KX, $6 \mathrm{X}, 1 \mathrm{H}=\mathrm{F} 12.5,10 \mathrm{X}, 2 \mathrm{HKZ}, 7 \mathrm{X}, 1 \mathrm{H}=\mathrm{F} 12.5,10 \mathrm{X}, 3 \mathrm{HKOF}, 6 \mathrm{X}$, $\times 1 H=F 12.51$
5005 FORMAT 121 HOOUTER INTEGRAL STEP $=F 12.5,10 \mathrm{H}$ KADIANS $=F 12.5,8 \mathrm{H}$ DEGREES X)

6000 FORMAT (5H1PHI $=F 12.5,9 H$ RADIANS $=F 12.5,8 \mathrm{H}$ DEGREES)
6001 FORMAT(1HO, $13 X, 5 H T H E T A, 31 X, 7 H E$ THETA, $40 X, 5 H E$ PHI)
6002 FORMAT $(1 H 0,5 X, 7 H R A D I A N S, 8 X, 7 H O E G R E E S, 11 X, 4 H R E A L, 6 X$, YHIMAGINARY, $6 X$, X 9HMAGNI TUDE, $11 \mathrm{X}, 4 \mathrm{HREAL}, 6 \mathrm{X}, 9 \mathrm{HI}$ MAGINARY, $6 \mathrm{X}, 9 \mathrm{HMAGNITUDE/1H}$ I
6003 FORMAT (8F 15.8)
7000 FORMAT (1HO, I $2,4 X, 7 H S I N A=F 15.8,8 X, 7 H S I N P=F 15.8,8 X, 7 H S I N T=F 15$. $X 8,8 \mathrm{X}, 7 \mathrm{HCTSP}=\mathrm{F} 15.8 / 7 \mathrm{X}, 7 \mathrm{HCOSA}=\mathrm{F} 15.8,8 \mathrm{X}, 7 \mathrm{HCOSP}=\mathrm{F} 15.8,8 \mathrm{X}, 7 \mathrm{HCOST}$

```
    X=F15.8,8X,7HCTCP = F15.8/7X,7HTHE =F15.8,8X,7HDEL =F15.8)
7001 FORMAT(1HO,I2,4X,7HTHE3 =F15.8,8X,7HT1 =F15.8,8X,7HCAYRO3=F15.
    X8,8X,7HR3 =F15.8/7X,7HSINT3=Fl`.8,8X,7HECUST3=F゙ゆ.8,8X,7HCAYZ3
    X=F15.8,8X,7HR4 =F15.8/7X,7HCUST3=F15.8,8X,7HSAECT3=F15.8,8X,
    X7HFTHETA=F15.8,8X,7HR5 =F15.8/7X,7HDELHH3=F15.8,ชX,7HIN DEG=F15
    X.8)
7002 FORMAT(1HO,I 2,4X,7HPHI3 =Fl5.8,8X,7HTHE1 =F15.8,8X,7HSINT1 =F15.
    X8,8X,7HCAYX1 =F15.8/7X,7HSINH3=F15.8,8X,7HTHEZ =F15.8,8X,7HCUST1
    X = F15.8.8X,7HCAYY1 = F15.9,7X,7HCHSH3 =F15.0,8X,7HPH11 =F15.8,&X,
    X7HSINP1 =F15.8,8X,7HCAYZ1 =F15.8)
7003 FORMAT(7X,7HST3CP3=F15.8,8X,7HPHI2 =F15.8,8X,7HCUSH1 =F15.8,8X,7H
    XT2 =F 15.8/7X,7HST3SP 3=F15.8, ठX,7HCAYX 3 =F15.8,8X, %HCAYY3 =F15.8
    X,8X,7HT3 =F15.8/7X,7HT4 =Fl5.8,8X,7HTS =F1b.8,8X,7HT6
    X=F15.8,8X,7HT7 =F15.8)
7004 FORMAT(7X,7HT8 =F15.8,8X,7HT9 =F15.8,8X,7HS1 =F15.8,8X,7H
    XS2 =F15.8/7X,7HS3 =F15.8,8X,7HCAYX2 =F15.8,8X,7HCAYRO1=F15.8
    X,8X,7HAA =F15.8/7X,7HH=F15.8,8X,7HCAYYZ =F1כ.8,8X,7HG1
    X=F15.8,8X,7HBB =F15.8)
7005 FORMAT(7X,7HSINH =F15.8,8X,7HCAYZ2 =F15.8,8X,7HG2 =F15.8,8X,7H
    XCC =F15.8/7X,7HCUSH =F15.8,8X,7HAN =F15.8,8X,7HAN =F15.8
    X,8X,7HDD =F15.8/7X,7HEE =F15.8,8X,7HFF =F15.8,8X,7HGG
    X=F15.8,8X,7HHH=F15.8/7X,7HCAYRU2=F15.8)
7006 FORMATI7X,7HSUM l=F15.8,8X,7HSU| 2=F15.8,8X,7HSUM 3=F15.8,8X,7H
    XSUM 4=F15.8/7X,7HSUMT l=F15.8,8X,7HSUMT L=F15.8,8X,7HSUMT 3=F15.8
    X,8X,7HSUMT 4=F15.8)
        END
        SUBRUUTINE OPTION(X,Y,L)
        Y=0.0
        IF(X-3.14159265)10,10,30
        10 IF(X-2.966889)30,20,20
    20 Y=1.0
    30 RETURN
        END
```


REFERENCES

1. W.V.T. Rusch, S. Slobin, and C.T. Stelzried, 'Millimeter-Wave Radiometry for Radio Astronomy", USCEE Report 161, Electronics Sciences Laboratory, Univ. of So. Calif., Los Angeles, Calif.
2. P. D. Potter, "A New Horn Antenna with Suppressed Sideiobes and Equal Beamwidths'", The Microwave Journal, Vol. VI, No. 6, pp. 71-78, June 1963.
3. A.W. Love, "The Diagonal Horn Antenna", The Microwave Journal, Vol. V, No. 3, pp. 117-122, March 1962.
4. S. Silver, 'Microwave Antenna Theory and Design'", M.I.T. Radiation Lab Series, McGraw-Hill Book Co., Inc., New York, N.Y., Vol. 12, p. 149, 1949.
5. M. P.S. Grфnlund, J. Wested, and N. Vejgaard-Nielsen, 'Nutating Subreflector in a Cassegrainian Antenna System", Microwave Laboratory, Danish Academy of Technical Sciences, Copenhagen, Denmark, March 1, 1966.
6. M. Simon, "Solar Observations at 3.2 mm ", CSUAC 10 , CornellSydney University Astronomy Center, Cornell University, Ithaca, New York, November 1964.

ACKNOWLEDGEMENT

We wish to acknowledge several individuals who have participated in this program: Mr. Robert Gardner of JPL continued his excellent work of radiometer development and equipment maintenance during the past year. Mr. Anthony Giandomenico was primarily responsible for the mechanical design of the nodding subdish mechanism and assisted in the initial mechanical testing. Mr. Louis Combe of the Skarda Manufacturing Company was primarily responsible for the fabrication of the nodding subdish. His original innovations during the construction phase contributed invaluably to the project. He is also responsible for the fabrication of the diagonal feedhorn. Mr. M. Dooley, Mr. A. Cooper, Mr. P. Janca, Mr. D. Oltmans, Mr. D. Lynn, and Mr. R. Kellogg of USC assisted in the lunar and solar observation programs. Mr. Palmer Poulson developed the computer program concerning scattering from the tilted hyperboloid.

