|
brought to you by .. CORE

provided by NASA Technical Reports Server

View metadata, citation and similar papers at core.ac.uk

i
TECHNICAL REPORT 66-5 . - e
:, N . -

A CLASS OF FUNCTIONAL EQUATIONS

]. K, HALE and K. R. MEYER OF NEUTRAL TYPE

A

NOVEMBER, 1966 ¥ ©

N67 17986

[
o
@
(ACCESSION

E ; NUMBER) (THRU)
¢ . -~ . <
> i\ é/‘} — e /
Y (PAGES)
3. xﬁd e sonm
H G -

(NASA CR OR TMX OR AD NUMBER) (GATQGOR’I

CENTER FOR DYNAMICAL SYSTEMS

‘.

GPO PRICE  $ —
CE(S) § ——m

Foo
65

CFST!I PRI

. Hard copy (HC) —

Microfiche (M F) —

# 853 July 65


https://core.ac.uk/display/85248715?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A CLASS OF FUNCTIONAL EQUATIONS OF NEUTRAL TYPE

by

Jack K. Hale* and Kenneth R. Meyer**

*

This research was supported in part by the ﬁ}é Force Office
AP QA And S £3 Domapnawna T NI A~ /\ =N 1 TTrmd 4+ ~3 Qb nd
i U\'-L\.‘JJ.VJ.J.L\’ J.\.L—OCGLJ.\.;.[J, Wkl Ao ﬂ\.—J. UDHG\;\«C L\.CDLG okl ViliL vCTu MU uvCT o
Air Force, under AFSOR Grant N& RF AFOSR-69%-66/ by the United States

Army Research Office, Durham, under Contract No._DA-Bl 124_ARO-D-270
and in part by Natlonal Aeronautlcs and Space Administration under

Grant No.“NGR-40-002-015. . + '/

*% ’
This research was supported by National Aeronautics and Space

Administration under Contract No. NAS8-1126L,

o



I. INTRODUCTION

In the study of weakly nonlinear systems, the most useful
elements from the theory of linear non-homogeneous ordinary differential
equations with autonomous homogeneous part are 1) the variation of con-
stants formula, 2) the decomposition of Euclidean space into the direct
sum of subspaces which are invariant with respect to the solutions of
the homogeneous system (the Jordan canonical form) and 3) sharp exponential
bounds on the growth of solutions on these invariant subspaces. Once

these facts are well understood, many problems in the theory of stability,

asymptotic behavior and nonlinear oscillations can be discussed.
For delay differential equations of retarded type these three con-
cepts have been developed and applied to problems of the above
type (see,for example, [1],[21,[3,4],(5,61,[71).

For delay differential equations of neutral type, the
theory is not so well developed even though some results are
contained in the book of Bellman and Cooke [1]. In equations of
neutral type, the first difficulty arises because the derivatiye
of a solution occurs with a retardation. This leaves much freedom
in the choice of the topology on the solution space as well as on
the space of initial conditions. The tOpo;ogy must be chosen
in such a way as to obtain solutions which are at least continuous
with respect to the initial data. That such a choice is not obvious
may be easily seen by consulting the papers of Driver [8,9] where
a general existence and uniqueness theorm is given for a rather

broad class of neutral equations.



Our approach in this paper is to investigate a class
of functional integral equations in the space of continuous
functions. This class includes certain types of equations of
neutral type and does include some equations which arise in the
applications. For this class of equations, we obtain precise
analogues of the above stated properties of ordinary differential
equations. Furthermore, the decomposition of our space into
invariant subspaces is given in a way that is amenable to compu-
tations. As specific applications of the theory, we give a stability
theorem and extend the method of averaging to these systems.

The symbol [ ] indicates references in the bibliography,

Roman numerals refer to sections and Arabic to formulas.
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Let Rn be a real or complex n-dimensional linear space of
column vectors with norm |:| and let C([a,b],Rn) denote the Banach
space of continuous functions from [a,b] into R° with norm ”’”[a,b]
given by H@H[a,b] = sup {|9(6)] : 6 ¢ [a,b]}. Let r be a fixed non-
negative number and let C = C([-r,O],Rn) anda ||| = H‘”[-r,o]'

Let £P([a,b],Rn), 15 p<w, be the set of Lebesque integral
functions from [a,b] into R" with the norm of any ¢ in £p([a,b],Rn)
defined by [f:lw(s){pds]l/p. Also let £w([a,b],Rn) denote the set
of essentially bounded measurable functions from [a,b] into Rn, with
the norm of any @ in £w([a,b],Rn) given by ess.sup |9p(0)]. We
shall also use the space iw([a,b],Rng) of essentially bounded measur-
éble functions into the space of n X n matrices with the norm defined
in the obvious way.

Suppose T 1is a given real number. We allow T = - and
in this case the interval [T,®») denotes the interval (-o,®). Let
g and f be continuous functions from [T,©) X C into R" such that
for each t € [7,®) the functions f(t,+) and g(t,-) are linear
operators and there exist positive continuous functions K and L

defined for all t 2 Tt such that

7~
[
N

e, 5 k() snd | 2(£,0)] = L(e)ol

b4 v

for all ¢ € C and t € [7T,»).

By the Riesz representation theorem there exists n X n matrix



valued functions p and 1 defined on [7T,®) X [-r,0] such that

g(t,)

[ [agn(t,0)]e(8)

£(t,9)

[ [agn(t,0)In(e)

for all ® € C. Moreover for each fixed t the functions u(t,') and
n(t,+) are of bounded variation in [-r,0].

For any x € C([-r,A),R"), A >0, define x., 0=t <A,
as the element of C given by xt(e) = x(t + 6); that is, x is
the restriction of x to the interval [t-r,t] shifted to [-r,0].

For any ¢ ¢ C and any o in [T,o) define 7v(0,p) =
®(0)-g(o,p). For any h, h e il([c,v),Rn) for every v 1in [o,w), con-

sider the following functional integral equation

t t
b) =x(t) = 7(0,¢)+g(t,xt)+f f(s,xs)ds+f h(s)ds , t ¢ [0,®).
o o

By a solution of (3) we shall mean an element of C([c-r,A),Rn),

0 < A S o, that satisfies the relations in (3). We shall refer to @

J
as the initial function and to ¢ as the initial time.
If f and g are independent of t then (3) will be called

autonomous and otherwise non-autonomous, If h = O the equation (5)

will be called homogeneous and otherwise non-homogeneous.




If g=0 then (3) is equivalent to the functional differential equa-

tion of retarded type
x(t) = f(t,xt) + h(t)

with initial function at t = ¢ given by .

If £f=0 and h =0 then equation (3) is a functional
difference equation of retarded type, and in particular, includes dif-
ference equations. For both f and g not identically zero, equation
(3) corresponds to a functional differential equation of neutral type.

Indeed, formal differentiation of the equation yields
(1) () = a(t,k,) + F(t,x,) + h(t) ,

where f = Og/ot + £ and %, 1is defined by kt(e) = ¥(t+6), -r £ 6 = 0.

t
Also, if one begins with (4) and defines a solution with initial func-
tion ¢ at o to be a continuous function satisfying (4) almost every-
where, then an integration yields (3) with v(0,9) = ®(0)-g(0,9).

Notice that all differential difference equations of neutral
type with variable coefficients and constant retardations can be written
in the form (3) provided the coefficients of the terms involving the
derivatives have an integrable first derivative.

Also, equation (3) contains as a special case some differential

difference equations of neutral type with variable lags provided that

the lags are bounded and satisfy some other reasonable conditions. For



example, the equation Xk(t) = %X(B(t)) + X(r(t)) can be written in the
form (3) if B, B >0, v are continuous, B is integrable and there is
a constant r 2 O such that t-r £ B(t) = t, t-r £ ¥(t) = t.

These last remarks are precisely the reason for considering
equation (3). It one attempts to discuss the equation (4) directly,
then the first problem encountered are precise definitions of a solu-
tion and the topology to be used on the space in which the sclutions
lie. To discuss (4) the topology must include information about the
derivatives of functions whereas (%) can be discussed in the simpler
space C.

Equation (3) would also include equations of advanced type
unless some further restriction is made on the function g. This is
due to the fact that the measure p(t,8) in (2) may have a jump at
6 = 0 equal to the identity for some values of t. To avoid this
difficulty, we shall assume that the measure p is uniformly nonatomic
at zero. More precisely, we assume that there exists a nonnegative,
continuous, nondecreasing function & defined on [O,go] for some

0 < 80 = r such that

o

(5) 8(0) = 0 and |[ [au(t,8)lp(8)| = 6(S)HCP”[_S 0]
-8 ’
for all 9 € C, t € [T,») and all s ¢ [0,6_]. In some cases it will
be necessary to further restrict p.

Observe that the solution x(t,0,p) of (3) with initial funec-

tion @ at o satisfies




v
©
v
Q

(6) x(t,0,0) = x(t,s,xs(-,d,cp)) t

provided all the above solutions exist and are uniquely defined by
initial values.

Also, at times it will be necessary to consider solutions of
(3) that are matrix valued. In this case we define the action of f
and g by (2) when @ is a continuous n X n matrix valued function

of the scalar 6, 6 € [-r,0].



II. THE GENERAL LINEAR EQUATION.

This section deals with the general non-autonomous equation

I(3). Existence and uniqueness of solutions and variation of constants

formula are discussed.

THEOREM 1. For any given @ € C, 0 € [7,%) and h, where h € £ ([0,v),R")

for every v in [0,o), there exists a unigue function x(o,p) defined

and continuous on [o-r,®) that satisfies I(3).

PROOF. Suppose K(t), L(t) are defined by I(1) eand &(s), s in
[O,SO] is defined by I(5). Let B >0 be any fixed positive number
and let KB and LB be the supremum on [g,B] of K(t) and I(t),

respectively. Choose A >0 so that 8(A)+LBA <1l and o+A < B,

A< 80. Let T = {y € C([c-r,o+A],Rn) 1Y, = ¢} , and for any vy

in T, define

¢(t-0) for o-r =t =g

(Iy)(t) = . .
7(0,®)+g(t,yt)+f f(s,ys)ds+f h(s)ds, 0 < t S g+A
ag a

Clearly I'CTI. For any y and z in T

t
|g(t,yt-zt)| + [ |f(s,ys-zs)|ds
o

A

| Iy(t)-Iz(t)|

A

[8(a) + LBA]”Y'ZH[o-r,U+A]




and so I is contracting in I'. Thus, I has a unique fixed point in
I, which implies I(3) has a unique continuous solution defined on
[o-r,o+A]. But A is a constant independent of the norm of ¢ and
the solution can be extended to [o-r,B] by use of the above and
relation I(6). Since B was arbitrary the theorem is proved.

If the operators f and g do not increase too fast with
t we would expect that the solutions of I(3) are exponentially bounded.

Indeed one has

LEMMA 1.  Suppose |g(t,0)| = Kol and |£(t,9)| s Llo| for all

® ¢ C and 81l t ¢ [T,») where K and L are constants. Then

there exist constants a, b and c¢ such that for any o in [T,)

c(t-o)

t
Iz (o,@)ll = {alloll + b [ [h(s)|as)e t 2o,

g

PROOF. In this proof, we let x, designate xt(o,w). Let M be such

t
that K+M > 1, | v(t,9)| = Mlo|| for all t ¢ [7,2), ® € C, and let A
be a positive constant such that 1-8(A) > 0. Define b = (1 -6(A))-l
and a = (K+M)(l-6(A))_l. For any t ¢ [0,0+A] one has |g(t,xt)| <

Klol| + 6(A)thll and so

t t
| x(t)] = uR)lloll + a(a)x )l + L [ llxflas + [ [n(s)as, ¢ 2 .
g g

Since K+M > 1 and X, = ¢, the right-hand side is an upper bound for
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thH. Solving the resulting inequality for th” and applying Gronwall's
inequality, we obtain

t
HXt“ s {do| + v fclh(S)Ids}ebL(t'G)

for t e [o,0+A].
We shall now show by an induction argument that the above
inequality is valid for all t 2 o provided bL 1is replaced by a

(bL-c)A

larger constant. Let ¢ be so large that ae =1 and c¢ > bL.

Assume that

¢ t
Ix = Callol+b f In(s)]as1e® %) for t e [o,oukal.
o}

From the above, this assumption is true if k= 1. If t € [o+kA,o+(k+1)A],

then the above estimate yields

t
bl = Lallx, [l + b ft_AI h(s)| as}e®™

and by the induction hypothesis

WA

t-A t
lx)l = (alallo] + b S [n(e)]as1e BB 17 p(e)| asy P
g

t-A

t
(alloll + o [ |n(s)|as)e

ag

c(t-0) )

1Y

This completes the proof of the lemma.
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COROLLARY 1. Let x(-,0,p,h) be the unigue solution of I(3) with

initial function ¢ at o and forcing function h e £([o,t),R").

For fixed t, and o, x(tl,c,-,-) is a continuous function from

¢ x £,([0,t,),R") into R

PROOF. The corollary is obvious from lemma 1 if £ and g admit a
constant bound as required by the lemma. Since changing f and g
for t = tl does not effect the value of the solution in [c,tl] one
can define new f' and g' to be identical to f and g for
o=t =t and to equal f(tl,-) and g(tl,-) for t 2 t,. Applying
the above theorem to equation I(3) with f and g replaced by f'
and g' yields the result.

The next problem is to obtain a variation of constants formula
for the solutions of I(3). This is accomplished by observing that the

solutions of I(3) are linear operators on the forcing function h. 1In

particular we have:

THEOREM 2. (Variation of Constants Formula). If x(o,p,h) is the

solution of I(3) with forcing function h, where h € £,([,v),R"),

for all v 2 o, and initial value ¢ in C at o, then

t

oY(+) + [ u(t,s)n(s)de

ag

(1) x(0,0,0)(+) = x(o

ct

1\

Q
-

. 2
where U(t,s) is defined for T £ s = t+r, U(t,-) € fw([c,t],Rn ) for

each t, U(t,s) = + oW(t,s)/ds a.e., where W(t,s) is the unique
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solution gf

(2a) W (+,s) =0
(o]
(2b) W(t,s) = [ {agn(t,0)}W(t+8,s)
t o
+ [ ] (8 u(8,0)1W(6+E,5)dt-(t-5s)I for TS s 5 t.

PROOF. Let h € il([o,t],Rn) and let wu(-,0,h) be the solution of
I(3) that satisfies u, = 0. For fixed t and o it follows from
Corollary 1 that u(t,0,:) 1is a continuous linear operator from
il([c,t],Rn) into R'. So there exists (see [10]) an n X n
matrix valued function U*(t,g,-)e £w([0,t],Rn2), t 2 0, such that

t

u(t,o,h) = [ U*(t,0,8)h(6)d6 .

o
Let o be in [o,t] and let k be any element of £l([c,t],Rn) that
satisfies k(6) = 0 for 6 ¢ [o,a]. Then u(t,o,k) = u(t,a,k), t 2z a,
and U*(t,0,0) = U*(t,0,0) a.e. Since «a is an arbitrary element of
[o,t], it follows that U* is independent of o. Define U(t,6) =
U*(t,0,6), t € [T,®), 6 € [T,t], U(t,0) =0 for t =6 = t+r., For
any s in [T,»), let W(t,s) = -ftU(t,G)de for t2 s and W(t,s) =0

s

for t e [s-r,s]. Clearly W satisfies (2a), (2b) and U 1is given as

stated in the theorem,
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_COROLLARY 2. If f and g are independent'2§ t then

t

(3) x(0,9,h)(t) = x(0,9,0)(t) + [ U(t-s)h(s)ds
g

: 2
where U is defined on [-r,»), U e'fm([-r,t),Rn ), for each t 1in

[-r,®), U(t) = -aW(t)/dt a.e. and W satisfies

(La) W, =0

t
(k) w(t) = g(W,) + / £(W )as + tI, t € [0,%).
e}



1k

III. THE AUTONOMOUS, HOMOGENEQUS EQUATION,

In this section we study equation I(3) when f and g are
independent of t and h = 0. Since, for the autonomous case it is

no restriction to choose the initial time o = O, we consider

(1) %
b) x(t) = ) + g(xt) + [ f(xs)ds for t20

with ¢ € ¢, 1(®) = ¢(0) - g(®) and
0 O

(2) g(e) = J (an(e)lo(e), (o) = [ (an(e)}o(e),
-1 -r

where p and 7 are functions of bounded variation in [-r,0].

The aim of this section is to study the behavior of the solu-
tions in C. By some general results from functional analysis we are
able to introduce coordinates in C 1in such a way that the behavior of
the solution of 1) on certain finite dimensional subspaces are determined
by ordinary differential equations. An explicit characterization of
these subspaces is given that is amenable to computations.

If ¢ 1is any given function in C and x(¢) is the unique
solution of (1) with initial function ¢ at zero then we define a

mapping T(t): C - C, for each fixed t, by the relation
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(3) T(t)e = x. (o) .

The following lemma is an immediate consequence of the dis-

cussion in section II.

IEMMA 1. The family {T(t)} forms a strongly continuous,

t € [0,=]

semi-group of bounded linear operators from C into itself for all

t 2 0.
Since T(t) is strongly continuous we may define the infin-

itesimal operator A of T(t) (see Hille and Phillips [11],p.306) as

(1) M = Lim & [T(t)o-0]
t =0

whenever this limit exists in the norm topology of C. The infinitesimal

generator of T(t) 1is the smallest closed extension of A. By the
strong continuity of T(t) on [0,») it follows that the infinitesimal
generator and infinitesimal operator are the same (see corollary,

p. 344 and Theorem 10.61, p. 322 of Hille and Phillips [11]). From the
above remarks and Theorem 10.3.1 of Hille and Phillips, page 307, the
domain £7(A) of A, is dense in C and the range A3(A) of A is
C. These remarks allow us to compute A directly from (4). 1In fact,

we have

LEMMA 2, The infinitesimal generator A of the semi-group {T(t)}

£[0, )
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and its domain ,(,/(A) are given by

(5) a) a9(6) = T50(0) = 9(e)

b) AA)=(oec:dec, ¢(0) = &) + £(v))

[
o]

Moreover, /ﬂ(A) is dense in C and, for ¢ e.t’[/m(A),

(6) & M = T(t)a = AT(t)p .

FROOF. Suppose ¢ is in 4 (A). Since T(t)p(6) = @(t+6) when
-r £ t+6 £ 0, it follows directly from the definition (%) that
(ap)(8) = ¢(67) for 6 € [-r,0), where @(67) is the right-hand
derivative of ¢ at 6.
. . » 3 "
Since lim, _)O+[T(t)cp-cp]/t exists for ¢ in _J([/(A), there

are constants « and B such that |[T(t)e-¢l| = Bt for t € [0,a). Thus

| x(t+6)-p(6)| s Bt for t e [0,0) and 6 ¢ [-r,0]. This implies
0 -t o} -
£ [ an(0) (x(t+6)-p(8)) = [ du(e){&*—?}'—@ﬁ’l}ﬁ» ftau(e){_i___lx £+6)9(0 }

o
tends to [ du(6)p(6*) as t - 0" since
-r

s 3(t)B 20, as t »0% .

{:du(e){—g—lJ—zx t+9t'q) 8 }

From 1(b), it follows immediately that
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Z9(0) = g®") + £(9) -

Since Z¢ must be in C it follows that dp(6)/d6 exists and
is continuous. The rest of the lemma follows by Theorem 10.3.3 of Hille
and Phillips [11], page 308.

We shall now proceed to analyze the spectrum of &, Let B
be any linear operator of a Banach space ﬁ into itself. The resolvent
set o(B) is defined as the set of A in the complex plane for which
(M-B) has a bounded inverse in all of 6 The complement of p(B)

in the A-plane is called the spectrum of B and is denoted by o(B).

The point spectrum, Po(B), consists of those A in o(B) for which

(AMI-B) does not have an inverse. The points of Po(B) are called
eigenvalues of B and the nonzero @ € ﬁ such that (AI-B)p = O are

called eigenvectors of ¢Z, The null space N(B) of B is the set

of all @ € ﬁ for which Bp = O. For any given A € o(B) the generalized

eigenspace of A 1is defined to be the smallest closed subspace of 'ﬁ

containing the subspaces Sﬁ()\.I-B)k, k=1,2,..., and will be denoted
by I, (B).

One of our objects is to determine the nature of o(A) and
o( T(t)). We would hope to discuss most of the properties of T(t)

by using only properties of the known operator A.

THEOREM 1. Let A be defined as in Lemma 2, then o(A) = Po(A) and

»eo(A) if and only if A satisfies the characteristic equation
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(7) det &) = 0, A1) = AT - [ aeMau(e) —  Man(e) .
- -

The roots of (7) have real parts bounded above and for any X € o( A),

the generalized eigenspace 9)?)‘( A) is finite dimensional. Finally

if A is aroot of (7) of multiplicity k, then W (A) = ROI-A)
and C = W(A-Xl)k ® A A-XI)k, where @ 1is the direct sum.
Moreover T (t) is completely reduced by the two linear manifolds

M,(A) 2nd H,(A); that 1s, T()I(A) c M(4), 1A, (A) C Z,(4)

for all t 2 O.

PROOF. To prove that o( A) = Po( A), we show that the resolvent set
p( A) consists of all A except those that satisfy (7) and then show
that any A satisfying (7) is in Po( A). The constant A will be in

p( A) if and only if the equation
(8) (A-AD)® = ¥

has a solution ¢ in ﬂ(A) for all ¥ in C and the solution depends
continuously on V. Thus, we must have ¢(8) — Mp(8) = ¥(6), 6 € [-r,0];

that is,

e
(9) 0(8) = b + [ MO8 y(e)ar |, 6 € [-r,0.

But, ¢ will be in (ﬂ( A) if and only if ¢(0) = g(¢) + £(®) and this

yields
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o 6
(10) Ab = (-4(0) + J au(e)dy [ MO B y(e)ae] +

o] 6
A(6-
s [ an(e) MO8 yeyaey .
-r o
Thus, if det AA) # 0, (9) and (10) show that (8) has a solution for
any ¥ in C and the solution is a continuous linear operator on C.
This operator, called the resolvent operator, will be denoted by (A—)\.I)_l

and is given by
-1 A8 o A6-¢)
(11) [(A-MD)"7v](6) = b+ [ e v(E)ae 6 € [-r,0]
o)

where b is given by (10) and det A(M) # 0. Hence p(A) D {r:idet A(A)#0}.
If det A(A) = O, then (9) and (10) imply there exists a nonzero

solution of (8) for V¥ = 0; that is, A is in Po( A ). This proves the

first part of the theorem.
As we have seen, if A is such that det A(A) = 0 and b is
such that A(A)b = 0, then e i an eigenvector of A and every

A

eigenvector is of this form. But then x(t) = e *b is a solution of (1)

and hence by Lemma II(1) the real parts of the roots of (7) are bounded

above.
For fixed k, any element of 9}(A.-kl)k is of the form
Z?:é Glexeai and since there are only a finite number of linearly

independent vectors @, the space N(A -A,I)k is finite dimensional.

Since det A(A) 1is an entire function of A 1is follows that
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(A—)\.I)-l is a meromorphic function with poles only at the zeros of
det A(A). Thus we can apply Theorem 5.8-A of Taylor [12] to conclude
that if A 1is a zero of order k >0 of det A(A) then
c = N A-)VI)k S Al A-A.I)k. Furthermore, since A and T(t) commute
for all t 2 0 it follows that T(t) is completely reduced by the
two linear manifolds m(A-XI)k and 77( A- )»I)k. Thus the theorem
is proved.
Now let us consider these spaces in more detail, Let
qJ)l“,...,cpg be a basis for W&X( A) = W A.u)k and let @, = (cp;,...,q%').

Since A?]?X( A) C 972)‘( A), there exists a d X d matrix B, such

A
that Af1>)V = Q)»B)\. and the only eigenvalue of B)\' is A. From the
definition of A and the relation A@x = (D)\.BA, it follows that

B, 6
(DX(G) = QX(O)e » . From this fact and (6), one obtains

Byt
T(t)o, = &, ™, t € [0,x),

(12)
By (t+6)
[T(t)(b)h](e) = @X(O)e , 0 € [-r,0), t € [0,).

This relation permits one to define T(t) on m)»( A) for all values
of t € (-»,), and so on a generalized eigenspace the equation (1) has
the same structure as an ordinary differential equation. By repeated

application of the same process one obtains

COROLLARY 1. Suppose A 1is a finite set {xl,...,xp} of eigenvalues
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of (1) and let o, = (@Xl,...,q>xp), B = dlag(Bkl,...,Bxp), where ®

and is a basis for ﬁnx_(.A) and B
i

s is the matrix defined by
i

'AQXi = @Xini, i=12,...,p. Then the only eigenvalue of Bxi is
Xi and for any vector a of the same dimension as QA? the solution
T(t)da with initial value ya at t =0 may be defined on (~o0, )

by the relation

Bt B

(13) T(t)@Aa=<I>AeAa, @A(e) =<I>A(o)eA, 6 € [-r,0] .

Furthermore there exists a subspace Q, of C such that ﬁ?(t)QAﬁE Qp

for all t 2z 0 and

() C=p,®Q,, P,= {p e C: 9 =0,a, for some fixed vector a}.

This corollary gives a very clear picture of the behavior of
the solutions of (1). In fact on the generalized eigenspaces the system
behaves much like an ordinary differential equation. The above decomposi-
tion of C allows one to introduce a coordinate system in C which
plays the same role as the Jordan canonical form in ordinary differential
equations.

Before obtainin tes for T(t) on th

space QI? we give an explicit characterization for Q[y This could be

obtained from the general theory of linear operators, by means of a

contour integral, but we prefer to give this representation in terms
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of an operator "adjoint" to A relative to a certain bilinear form.
This method leads to ease in computations and also provides a language
more familiar to differential equationists. Let C = C([O,r],Rn*)

nx . . . .
where R is the n-dimensional linear vector space of row vectors.

For any ® in C, define

o} o6
(15) (29) = a(0)e(0) -fr[-g—g fia(s-C)du(e)cp(s)ds]§=9- frfoa(S-G)dn(G)CP(S)dS
for all those «a in C* for which this expression is meaningful. In
particular, (,®) will have meaning if «a is continuously differentiable.
The motivation for this bilinear form is not easy to understand, but
it was first encountered in the proof of Theorem 1. In fact, equations
(8), (9), (10) show that (A-AI)® = ¢ has a solution if and only if

X'I,W) = 0 for all row vectors a for which a&(A) = O.

(ae”
Without further ado, we use this bilinear form to try to

determine an operator A¥* with domain dense in C* such that

(16) (0,49) = (A*a,9), for @ in ,J(A), a in LJ(a¥).

If we suppose « has a continuous first derivative and
perform the standard type of calculations using an integration by
parts, one shows that (16) is satisfied if A* and the domain D (a%)

of A% are defined by

(172) (A*a)(s) = -da(s)/ds , Osssr
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(170) (a%) = (o e c*; & € Cx,

o )
-o(0) = -f &(-6)an(6) + [ of-6)an(e)} .
-r -r
Hereafter, we will take (17) as the defining relation for A¥* and
refer to A* as the adjoint of A relative to the bilinear form (15).

For any a in C¥*, consider the equation

(18a) y(s) =as) , Osss=r

o} o} o

a(0) - [ of-6)aun(6) + [ y(s-6)au(6) - fs[f y(u-6)dn(6)Jdu,

[}

(18b) ¥(s)
s £ 0.

If we let y° be the element of C* defined by ys(V) = y(s+v), 0 s v

WA

r
and designate the solution of (18) by y(@), then the family of operators
T*(s), s £ 0, defined by ys(cﬁ = T*(s)a, s £ 0, is a strongly continuous
semigroup for which (-A¥) is the infinitesimal generator. We shall
refer to (18) as the equation adjoint to (1).

Observe that «a in (J(A*¥) implies that the solution y(q)

of (18) on (-w,r] is continuously differentiable and

(19) 5(s) = §(s-8)au(e) - [ y(s-8)an(e)

-r -r

LEMMA 3. Suppose y(0d), a edf’(A*), is the solution of (18) on (-e,r]
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and x(®) is the solution of the nonhomogeneous equation

(20a) x, =

t t
(20Db) x(t) = o) + g(xt) + f f(xs)ds + [ h(s)ds, tzo.
o o

Then for any v 2 o,

t

(21)  (3"7(@, % () = (+°7(@),0) + [ y(s-v)n(s)ds, oSt S v,
ag

PROOF: For simplicity in notation, let 2% = yt'v(a), tEv, x =

- .
Xt(Q), t 2 0. Since a is in of/(A*), 2(t) is continuously different-

able and satisfies (19) for t = v. From the definition (15) and the

fact that x(®) satisfies (20), one shows very easily that, for 0 £ t = v,

% t t
(2%, = 2()[H@) + f £(x)as + f B(s)ds] +
o o
o t+6 o t+6
+ [ fté(u-e)du(e)x(u)du - f ftz(u-e)dn(e)x(u)du.

t
Consequently, (z ’Xt) is differentiable in t and a simple calculation
yields d(zt,xt)/dt = z(t)h(t), 0=t = v. Integrating this expression

from o to v yields the formula (21) which proves Lemma 3.

LEMMA 4. A is in o(A) if and only if A is in o(A¥*). The

operator A% has only point spectrum and for any A in c(A*),
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the generalized eigenspace of A is finite dimensional.

PROOF: The last part of the lemma is proved exactly as in Lemma 2
and the first part follows from the observation that A is in o(A¥)
if and only if «(0) = e-xeb where b 1is a nonzero row vector

satisfying bA(A) = 0.

LEMMA 5. A necessary and sufficient condition for the equation

(22) (A-a1)% = v

to have a solution ¢ 1in C, or, equivalently, that V¥ 1is in

78(A_u)k is that (o,¥) =0 for all « in S)?(A*-u)k. Also,

dim RA-AD)E = aim N(A*AI)E for every k.

PROOF: First, we introduce some notation. With the matrix A(A)

given in (7), we define the matrices P, as

(3) . J
ALY adan) .
(23) PJ’+1 = Pj+1(h) = -—E?i—l ’ A(J)()v) = -;;E-l » J =0,1,2,...

and the matrices Ak of dimension kn X kn as

[ ]
Pl P2 - Pk
(2’4‘) Ak = O Pl c o Pk-l

[e )
o
Y
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Let us also define functions Bj by

ko1
(25) B.(s) = LZE)——i ™S 0=

sgr, J=1,2,...,k .
J (k vy b 3 a4 )
-3)!

If (22) is to have a solution, then necessarily (%5 - x)%p(e) = y(8),

-r £6 20, or

k-1 o
9(0) = T oT5,Py 5(-0) + [ By(s-0)u()at

where the Yj+l are arbitrary n-dimensional column vectors which must
be determined so that @ belongs to ,ﬂQ(A-XI)k. We now derive these

conditions on the 73.

A simple induction argument on m shows that

(m), . def,d k-m-1 6
2™ (6) SN (G -M) 0 (0) = I targeaPig(-0) + [ Py (s-0)u(2)as
J= o]

for 0 =m £ k-1,
k . .
Next, observe that ¢ belongs to aékAFXI) if and only if
w(m) belongs to 6(?(A-XI), m=0,1,...,k-1. Since a continuously
differentiable ¢ Dbelongs to \1Q(A) if and only if §(0) = g(@)+f(®),
it follows from the definition of the function @(m) and the matrices
Pj that @(m)’ m < k-1, belongs to oﬁ?(A) if and only if

P Vae1 * PoVpeot =or *B T = =PI ¥)
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where In is the n X n identity matrix and ( , ) is the bilinear
form defined in (15). Since cb(k'l)(o) = xrkw(o), it follows that

(p(k_l) belongs to n{)‘ (A) if and only if

PlYk. = - (BkIn,w) .

If we introduce the additional notation 7y = COl(Yi""’Yk)’
B = diag(B,I ,...,B I ), then equation (22) has a solution if and only
if v satisfies the equation A7 = -(B,¥). But this equation has a
solution if and only if b(B,V¥) = (bB,¥) = O for all row vectors b
satisfying bAk = 0. On the other hand, calculations very similar
to the ones above show that a function a in C* belongs to ?KA*-XI)k
if and only if « = bB for some b satisfying bAk = 0. It is clear
from the above that dimi’?(A-u)k = dim SR(A*-u)k for every k and
this completes the proof of the lemma.

In the proof of the above lemma, we have actually characterized

m(A-XI)k, m(A*-kI)k in a manner which is convenient for computations.

In fact,
Kk k-1
(263) N(A-M)" = {9 € C: p(8) = Zj___o‘fj+15k_j(-9), -r 28 20,
AY=0, 1= col(‘rl,...,‘rk)},
" k
(26Db) N(A*-AI)™ = (¥ € C*: ¥(s) = Zj:lajﬁj(s)’ OsSssr
&'k = O, ® = row(Sl,...,Sk)],
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where A, Bj, j=12,...,k, are defined by (23),(24),(25).

An important implication of the preceding lemms is

THEOREM 2. For X in o(A), let ¥, = col(wl,...,wp), 0, = (cpl,...,cpp)

be bases for m)“(A), m)"(A*): respectively, and let (Yx:‘bk) = (\"i’q)j)’
i,j = 1,2,...,p. Then (¥,,0,) is nonsingular and may be taken to be

the identity. The decomposition of C given by Lemma 2 may be written

explicitly as

Q, = {9 € C: (¥,,9) = 0}

P, = {9 € C: 9 =0,(¥,9)].

Il

PROOF: If k is the smallest integer for which ﬂnX(A):= WKAFXI)k
then Lemma 5 implies that 7ﬁZ(A-XI)k = Qk' If there is a p-vector a

A2 belongs to both

9?(A-XI)k and if(A-XI)k which implies by Lemma 3 that &

such that O = (\Y)»’@X)a = (‘Yx,cbxa), then o

ze = 0 ang,

thus, a = 0. Consequently, (YX’QX) is nonsingular and a change of

the basis ¥, will result in the identity matrix for (¥,,0,). The

remaining statements in the lemma are obvious.
s . . _ ¥ _ R¥
It is interesting to note that (YX’QX) =1 and A¥, = B}Y,,

AP, = ¢.B, 1implies B¥ = B

x = 9B, X A In fact,
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By

1]
i
]

* ¥* =
(A*Y (BKYL,®X) BX(Y,,9,) = B} .

A %) x

The following lemma is also convenient.

LEMMA 6. If M#u, A, p €0(A), then (V,9) =0 for all ¥ in

Sﬁu(A*), Q€ m?X(A)'

The proof of this is not difficult but tedious and may be

supplied as in [5].

If A= {7\1,...,7\p} is a finite set of characteristic wvalues

of (1); that is, 7\je o(A), we let P, be the lipear extension of the

A
fmk’j(A), ?\je A and refer to this set as the generalized eigenspace of
(1) associated with A, In a similar manner we define PK=

im)\l(A*) (a5} ...@mAP(A*) as the generalized eigenspace of the adjoint
equation (18) associated with A If ,@A,‘I’A are bases for F,,P¥,
respectively, (‘%,@A).: I, then

(27) P, = {p € C: 9 = ¢,b for some vector b}

Q,‘Al': {q) € C: (Y‘A_QCP)V = o}

and, therefore, for any ¢ in C
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Py Q
9 =0 '@ A
(28)
P
A
® T =0,(¥,0).

When this particular decomposition of C is used, we shall briefly

express this by saying that C 1is decomposed by A

Our next objective is to perform the above decomposition on
the variation of constants formula for the solution of (20). From

Corollary II.2, we know that the solution of (20) can be written as

t+6
x(t+6,0,9,0) + [  U(t+6-s)h(s)ds
a
t+6
x(t+6,0,9,0) + [ [dSW(t+9-s)]h(s), t46 2 o,
g

x(t+6,0,9,h)

If we use our notation x(t+6,0,9,0) = x(t+6-0,0,9,0) = [T(t-0)9](6)

and the fact that WO = 0, then

t
xt(c,m,h)(e) = [T(t-0)91(6) + [ [dswt_s(e)]h(s), -r £ 6 0.
¢

For simplicity we suppress the explicit dependence on 6 and write

this as
t
x,(0,9,h) = T(t-0)¢ + fc[dsWt_S]h(s)
(29) .

T(t-0)p + [ Ut_sh(s)ds
(o
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where Ut is defined in the obvious way.

Now, suppose that A is a finite set of characteristic
values of (1) and C is decomposed by A as in formulas (27),(28).
For simplitity in notation, let o = ¢y ¥=%, and let B Dbe the
‘matrix defined by A® = OB. We have remarked before that (¥,0) = I
implies that A¥Y = BY. Consequently, the matrix e'BtY(O) is a
solution of the adjoint equation (18) on (-»,®), If we let

P Q
X, = xt(c,¢,h) = xtA'+ xtA' and apply Lemma 3, it therefore follows

that
PA.def Bt, -Bt
X = @(Y,xt) = de” (e Y,xt)
Bt Bo t Bs
= 0e” [(eTTY,0) + [ e ¥(0)h(s)ds]
o
(30)

t
T(t-0)o(¥,p) + [ QeB(t—S)Y(O)h(s)ds
(o}

P t t-s B
(t-0)9” + [ [a(-f  %e "¥(0))In(s)
g e}

+ W% , WE = ¢(Y,Wt), t 2 0, then by the same type

of argument as above making use of Lemma 5 and the fact that W satisfies

If Wt=W

& H

II(L4), we obtain

%
WE def o(¥,W,) = - fthB(t's)Y(O)ds = - [ 9e"™¥(0)au .

(o} o}

Using this fact, equation (29),(30) and the formulas x = X -

Q P
t t 7t
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@Q = ¢_¢P, we have
p PP
(31a) x,(9,9,h) = T(t-0)p" + fc[dswt_s]h(s) s
Q Q. (Y. R
(31b) x.(0,9,h) = T(t-0)9" + f [dSWt_s]h(s) , tzo.
g

From formula (29), it is obvious that if xf(0,¢,h) =

oy(t), then y(t) satisfies the ordinary differential equation

(32) y(t) = By(t) + ¥(0)n(t) , t z 0.

THEOREM 3. If A is a finite set of characteristic values of (1)

and C is decomposed by A as in (27),(28), then the solution
x(o,p,h) of (20) satisfies (31). Furthermore, if XE(U,Q,h) =
@Ay(t), then y(t) satisfies (32).

We now give an example to clarify the concepts discussed
in this section. An easier illustration could be given by consider-
ing only a retarded equation, but the example to be given will be
used later for other applications of the theory. Consider the

homogeneous scalar equation
(33) K(t) = a(t-r) - Bx(t) - a m(t-r)

where r >0, Qs B, v are constants and the associated nonhomogeneous
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equation

(34) X(t) = aoic(t_r) - Bx(t) - Oto‘rx(t-r) +h

where h 1s some given function. For simplicity in notation, we
are writing these equations in differential form, but it is always
understood that solutions are defined by specifying a continuous
initial function on an interval [o-r,0] and solving the integrated
form of the equation for x on t 2 ag.

The characteristic equation for (33) 1is

(35) A - aoke')‘r + B+ aoyve')‘r =0

and the associated bilinear form is
o, o)

(36) (¥,9) = W0)P(0)-a_W(0)(-r)-a_f W 6+r)n(8)as-a v ¥(6+r)o(6)ae.
- -

Equation (34) was encountered by Brayton [ 13] in the study
of transmission lines and he showed that for Y > > 0 there are
2
an infinite set of real pairs (ao,wo), o, > o, a, < 1, such that

s icuo are simple roots of (35) and W, are related by the formulas

2
w w -7
(37) sin wr = 52' %g s COS @I = ai-—-g—? .

o W Y 0O W _+Y
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Let us assume that ao is such a real number and compute the de-
composition of C assording to the set A= {+ iw, - io ).
If ¢ = (¢l,@2), @l(e) = sin w 6, ¢2(9) = cos w6,
-r £ 6 =0, then ¢ 1is a basis for the generalized eigenspace
of (33) associated with A since we are assuming these eigenvalues

are simple. Furthermore, AQ = ¢B implies

(38) B = (byy)s byy =Dpp =0, by = -0 = -by,.

The equation adjoint to (33) is
(39) §(1) = a §(tsr) By t)ea 1yl t+r)

and ¥* = col(Wi,wS), W{(G) = sin « 6, wg(e) =coswb, 0SOsr
is a basis for the generalized eigenspace of (39) associated with
A

After some straightforward but tedious calculations using

(3T7) one obtains

o [Y(1B)+B( ¥ ) ]
2(w0+r )

(v3,9,) = (¥%,9,)

w
2
(Wg,@l) =-(W{,¢2) = _-_52-5_ [y+B+r(Y +a§)] .
2(wo+y )

If we now define Y = (Y*,¢)-1Y*, then (Y¥,0) = I, the identity
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and we are in a position to make our decomposition of C by A
Our main interest lies in formulas (31),(32) and in particular
(31b) and (32). Consequently, we only need ¥(0) which is easily

calculated from the above formulas and found to be

D C
¥(0) = col [ = ]
CefDa 407
1 2 2
(%) C = —5—> [ 1#8)+r8(v +0 )]
2(wo+r )
w
D= —p—p [1*B+r(72+u§)] .
2(w0+Y )

Finally, equation (34) is equivalent to the following

system
x, = dy(t) + x%
(b1) y(t) = By(t) + ¥(O)h
t
x% = T(t.c)cpQ + [ [dswt_s]h , tzao
o

where Y¥(0) 1is given in (40) and B 1is defined in (38).
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IV. THE CHARACTERISTIC EQUATION AND EXPONENTTAL BOUNDS.

In this section the zeros of the characteristic equation
are discussed and estimates are obtained for the growth of the solu-
tions on the compliment of the generalized eigenspaces.

In order to analyze the characteristic equation it is neces-
sary to further restrict the functional g or equivalently the measure
g. It is known [10] that every function of bounded variation can be
decomposed into three summands 1) a saltus function (essentially a
step function with a countable number of discontinuities) 2) an absolute-
ly continuous function and 3) a "singular function" that is a continuous
function of bounded variation whose derivative is zero almost every-
where. We shall assume that the measure pn 1is without singular part.

Specifically, assume that

(1) €0) = I A0(-0y) + [ AO)p(0)30 , o e o([-r,01,R")

0

where the Ak are n X n constant matrices with 2 Ak absclutely
1

convergent, the W, are a countable sequence of real numbers with
2
0<aw sr forall k and A(B) € :Cl([-r,o],Rn ).

Under the above assumption A(A) has the form

(@) A0 = ME (M) + H() + B0

where

a) H.(\) = I - E A e %k
1 ok

() B) Hy(N)

O
-/ A(G)exede
-7
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(o]
c) H5(x) = - f e)\'edn(e).
-r

Moreover det A(A) = )\.nhl(k) + h2()\.) where hl(k) = det Hl( )

and  hy(A) = det A\) - xnhl(x) .

For any pair of real numbers a,p (@ £ B) let [q,B] =
= {A a5 Re A =B}. Inany [a,B] the elements of HB(A.) are
bounded and the elements of H2( A) tend uniformly to zero as |A| — =,
Thus he()‘.) =o(A) as |M -« in [o,B].

LEMMA 1. If {Xk] is a sequence of zeros of h, in [a + 8,B-8],

1
5 >0, with Iknl — o, then there exists a sequence [A.;(} of zeros

of det A(A) in [a,B] with the property that !)‘.k-){{l -0, as k ==,

LEMMA 2. Let a be a real number such that only a finite number of

zeros of det A(\) have real part greater than a-€ for some € > 0.

Then there exists an a* and a K >0 such that a- %S S g% = a and

‘||A(a*+i§)-l|| s K/(1+]¢]) for ¢ real.

PROOFS. The function hl( A) is an analytic almost periodic function
for all A. Then by a theorem in [14], page 351 there exists a
number N such that the number of zeros of hl(x) in the box

L(a + 5,p-5,t*) = {A: @ + & S Reh & p-8, t*-1/2 5 Im A S t* + 1/2}
does not exceed N for any real t*, Moreover for each r >0 there
exists an m(r) > O such that for all A in [a,B] at a distance
greater than r from a zero of hl(x) the inequality ‘hl()")‘ z m(r)

holds,
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Thus Lemma 1 follows by applying Rouché' s Theorem.

Now let a be as in Lemma 2. $Since h(A) has only finitely
many zeros with real part greater than a-£€ for some € >0 it
follows from Lemma 1 that hl(k) has only finitely many zeros with
real part greater than 3-8/2- Therefore there exists an a¥,
a-€/2 s a* s a, and a K, >0 such that lhl()“)l z K, for all
M = a¥ + ik, &, real. Thus |h(a* + 18)"H = o(e™®) as |t -,
¢ real.

since A0 = (n()Mads AN ana [aagA(ax + 10)]| = 0(™)
as |& -, £ real, Lemma 2 follows.

With the aid of Lemma 2 one can now estimate the growth of
the solutions on the space QAT Let A be a finite set of eigenvalues
of A with the property that all other eigenvalues of A have real
part less that 2a-€ for a fixed real number a and some € > O.

Let u(:,0,h) be the solution of the nonhomogeneous equation that

satisfies U, = 0, 1.e., the solution given by the integral in the

Q

Corollary 1 of Section III. Let uy be the projection of wu, on the

t

space and u(t)Q = u%(o).

L7
1
Let C denote the set of continuously differentiable function

from [-r,0] into R" with the norm H¢Hi = sup {|p(6)] + ()|}
o€l -r,0]

1
THEOREM 1. Let ¢ € C°. Then there exist constants M and N such that
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() I (60 = M loll2

and
t

) 1Y s w120 Dn(n)%n 2
a

PROOF: In the proof of this theorem the fact that the formulas

0 «

[ e ™e(y)ay 5 £(x) = =] ™ Vg(y)ay

-00 N2 e

g(x) = =

gl

define a unitary transformation of the space L2(-w,w) and its in-
g T
verse will be used several times (see [10]). In the formulas J = lim [
-0 T 50 T

By standard Laplace transform methods

v ~AT

(6) w(t)® = [ Man) NS e h(1)ar)an
c o
a*+iT
where [ = lim I and a* is in Lemma 2. Now (6) can
c Toew g¥*-iT

be written

o t .
(7) - w0)® = 1 [ ettt alamie) 18712t Py(r)aryat .
-00 o]
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The function in the braces is an L function of & for each t and
L=l . .
O a*+it) is an L, function of ¢ by Lemma 2. Applying Schwartz's

inequality yields
Q b ax(t-1),, (2. 11/2
|u(e)®| = M ([ |e h(t)| dt}
(o]

from which the inequality (5) follows at once.

Let o e‘xp(A). Then

M 6-a)

(8) T(t)o" = e“[zxx) (=0(0) + J du(e)(de f ?(a)a0)

A(6-0) M 6-a)

+ f dn(e) f o(a)da} + f e o(a)dalar

o}

by [11].
The term containing f e Me-a)
o .
since it is an entire function of A and the contour can be shifted to

¢(a)da contributes nothing

Now
o) 7]
[ an(6)(& 1 MODp(a))aa =
- (] an(e)eM)p(0) + f du(e)f " ME-a)g ayaa

- - -1
From the matrix identity ({AB + C} PN l{I-(X:B+C) B}

one obtains
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[ Mt + f an(e)e®)e(0) =

c -

At
e

o Smane e A(") [f dn(e)e %1ane(0).

The first integral is integrable and is known to admit an estimate of

the form
At
e *%
”c_’“ aM §M2ea p

The second integral is absolutely convergent since x'lA(X)'l is

like X'z on ¢, and thus

*t

-1 o
| M ££A%T_ [{rdn(e)eke]dkl s e Ms .

c

For M = a*+ig, we have

-r

o 6 -r B
[ an(e) | MO gayan = [ ap | au(o)(eMp(e-p))

in v B
=J e [T [ an(e)d(e-p)1ap .
-r
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As a function of £ the above is an element of L2(-w,m)
whose norm can be estimated by M;H@ml By applying Schwartz's inequality

we obtain

o) 6 %
|1 a0 aue)) MO Mp(a)any| s e o) L.

In the same way as the above

o 6
11 a7 an(o)f MO Do(ajan |1 = e g

C -r o}

Thus the estimate (4) is obtained for all @ € 29(A). The
estimate (4) remains true for all continuously differentiable ¢ since

A(a) is dense in ¢t

COROLLARY 1. If g =0 in III(1)b) then

IT ()¢l s Me*Yp| for all ¢ e C .
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V. APPLICATIONS: STABILITY AND INTEGRAL MANIFOLDS.

In this section two applications are given to illustrate
how the previously developed theory of linear equations can be used
to study weakly nonlinear systems., It is hoped that this section
will indicate the possibility of further extensions and applications.
The first application is the analogue of a well known stability theorem
by first approximation for ordinary differential equations. The second
is an extension of the method of integral manifolds to this new
class of equations.-

The general outline of the proofs given below is the same

as in the case of ordinary differential equations, but certain

technical details are markedly different.

V.1l. Stability
Our proof of the stability theorem is modeled on the
standard proof using Gronwall's inequality (see [15] and [16]).

For this we need the following:

LEMMA 1. There exists a constant K > 0 independent 3£ a,p > 0, such

that any function wu that is continuous for all t 2 O and satisfies

t
u(t) s a+ pJ u(s)eds}l/2 for t 20
0

2
also satisfies the inequality wu(t) = oK exp B t/2.




e

PROOF. ©Note that there is no loss in generality by taking o = 1.

Consider the continuous linear operator I from C([0,E],R) into

itself for each E >0 defined by
t

(Tu)(t) = 1 + BLS u(s)Zas)

o}

1/2

Observe that I has the following property: if u(t) £ v(t) for
t € [0,E], E 2 0, then (Iu)(t) s (Iv)(t) for t e [0,E]. Hence
by (11, p. 61, it follows that any function w continuous for
t 2 0 will dominate functions satisfying (1) if (Iw)(t) > w(t)
for t 2 0. That is if w satisfies (Iw)(t) > w(t) for all
t 20 and u(t) satisfies (1) then wu(t) s w(t) for t 2 0.
Observe that if v satisfies Iv = v; (Iv)(t) = v(t),
t 2 0; then w= Bv, B> 1 satisfies (Iw)(t) >w(t) for t 2 O.
Hence we must only analyze the equation Iv = v.
By a simple application of the contracting mapping
principle one finds that I has a fixed point in C([0,E],R)
for E sufficiently small. Denote this fixed point by u and
then 1u satisfies the differential equation

2 2

2
. B u B
(2) u = —E { =1 } = _Eu {

1
1-

l} for 0 <t <E,
e
Clearly u can be shown to exist for t 2 E and hence for t 2 O.
Moreover it is clear from (2) that u admits an estimate of the

form u(t) & Kexp (Bgt/E).
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Now consider the eguation

t t
(%) x(t) = 1) + g(x,) + [ f(x)as + [ F(s,x_)as
g g

X0=CP,q>€C.

where F 1is a continuous mapping from [T,m) X SE into Rn where
Sp = {p € C: ||9|l <E)} and also T £ g. Also assume F is Lipschitzian
in the second argument on all of [T,®) X Sp and let | P(t,9)| =
o(lof|]) wniformly in t as ¢ -o.

Furthermore let g be such that the estimates of section
IV apply and let A be the infinitesimal generator of the semigroup

generated by (3) with F = 0.

THEOREM 1. Let all the eigenvalues of A have real parts less than

-a<0, let 9 ¢ Cl([—r,O},Rn),and let x(®) be the solution of

(3) with xo(m) = @. Then for any € >0, 0 <€ < a, there exists

a pair of constants p and L such that

() Iz @)l = Tl te (&) b2 6

provided Hmnl £ p.
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REMARK. Existence and uniqueness of a solution to equation (3) can
be established in a manner similar to that found in section II. The
present problem is slightly more complicated since the application

of the contracting mapping principle gives the existence of solutions
over an interval whose length depends on the norm of the initial
condition. This difficulty can be overcome by using a continuation
argument as in ordinary differential equations. Indeed it can be
shown that a solution of (3) can be extended either for all t 2z O

or until it reaches the boundary of SEo

PROOF. ILet x Dbe the solution of (3) corresponding to the con-

tinuously differentiable inital function ¢ € S As long as x(9)

E.
satisfies (3) then

t

(3) x(t) = T(t)e + [ (a W(t-s)}F(s,x)
ag

From the results of section IV there exist constants M and N

such that
t
- - -2 - 2 2
(6) Il s (ol Dy e s 228 (s, )| 2as) Y
o
and since |F(s,p)| = o(llpll) we can choose & p >0 such that

| F(s,9)| s vtz loll for all |l¢fl < p and so

t
A = Mol L + V2 (7 1100 Y
g
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and so by Lemma 1 ea(t'c)ﬂxtu s KWkMIlee(t—c) or thu s
KM| || le‘(a‘e)(t"’) for t z 0. The last estimate holds for all
t 2 o provided p 1is sufficiently small since the above estimate

implies that the solution does not leave SE.

V.2. Averaging and integral manifolds.

In this section, we shall show how the results of the
previous pages together with generalizations of well known pertur-
bational methods of ordinary differential equations can be used to
discuss the existence and stability of periodic solutions’and
integral manifolds of perturbed linear systems where the nonlinear
term is of a special type. The hypotheses are unnecessarily
restrictive and the presentation is given in this way for simplicity
only. Generalizations will be obvious to the reader acquainted with
the theory of oscillations for ordinary differential equationms.

Consider the linear system

a) X, = ¢ where ¢ € C,

(7)

o2
p

where € 2 0 is a parameter, v(9,€) = 9(0)-g(9,€), &(9,£), £(9,€)

are linear in ¢ and continuous in ¢, for all @ in C,
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0=¢€ = 60 with the continuity in ¢ being uniform in €. Further-
more, suppose g(9,€) has the nonatomic property I(5) uniformly

in €. The characteristic equation of (7) is

det A(ME) =0

AE) = MI-g(e* ,€)] - (e je).

We shall always assume that equation (8) has two simple roots

ev(e) ¥ in(e), o(e) = W, + ewl(e), w, >0, v(e), o(€) continuous

in €, 0s€ = CO, and the remaining roots have real parts = -5 < 0.
Notice that for € = 0, this hypothesis implies that (7) has a two
parameter family of periodic solutions of period EW/wO to which

all other solutions (with smooth enough initial data) approach as

t 20, For € >0, there is a two parameter family of solutions

[ corresponding to the characteristic roots €v(€) ¥ iw(€)] which

are exponentially stable. We shall let @ ) be a basis

e = (PP
for the solutions in C generated by the roots A = {(Ev(€) ¥ iw(€)]}

and ¥, = col (v

e a corresponding basis for the solutions of

the adjoint equation, (Y8,¢c) = TI.
Suppose F: R X C -»R% is continuous and F(t,p), t € Ry

® € C has continuous second derivatives with respect to @ and

consider the nonlinear equation

a) x(t)

b) x(t)

¢(t-0), o-r = t = o,
t t
Y‘(q>,€)+g(xt,8)+ J f(xT,S)d't + & f F(T,x,r)d‘r,t 2z g.
o o]

(9)
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Notice that formal differentiation of this equation with respect

to t yields
(10) X(t) = gk, ,€) + £(x,,€) + EF(t,x.);

that is, an equation of neutral type where the nonlinearity does
not involve the derivative of X. An equation of this type with
F(t,9) independent of t was encountered by Miranker [17] and
Brayton [13] in the theory of transmission lines. Similar
equations have also been studied by Marchenko and Rubanik [18] in
connection with some mechanical vibration problems.

If the space C is decomposed by A = {€v(€) ¥ iw(e)},
then the theory of section 3 shows that system (3) is equivalent

to the system

8) x, = 0¥(t) + ¥, ¥(t) = (%,x,)

(1) 1) H(t) = Byy(£)+€¥,(OF(s,0,3(t)4Y)

t
Q _ Q Q Q
c) x = Te(t-o)xc+ Efc[dSWé’t_s]F(s,Qey(s)+xs)ds, t 2z o,

where the eigenvalues of B, are (Ev(€) % iuxe)};Be is determined

€
by ¢€(9) = @e(o)exche, -r £ 620, Ta(t), t 2 0 designates the
semigroup of transformations associated with (7) and Wy . 1is the
J

kernel function associated with the variation of constants formula

II(3); that is, Wé(t) satisfies II(4) for 0 € =€ . The
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matrix EE can actually be chosen as

ev(e) ~a(€)

oe}
]

(&) ev(e)

The above hypotheses on the characteristic equation (8)
and the estimates of section 4 imply that there are positive constants

K,c such that

t t
&) 1/ T . In(s)as| = x(/ (=4 n(e)])?) />
g ’ a

(12)

w

-ct
b) g (00 s k™ot , t=zo,

for all bounded functions h(s) and 0 =€ = €,

If y =col(y;,¥p), ¥ =0 cos &, y, = p sin {, then

equations (11b),(1lc) are equivalent to

a) é = w(€) + € Z(tfg:p:X%:S)
(13) Q
b) B = ER(t,,0,%E)
Q Q, of ~ Q
c) xg =Tg(t-0)x+ ef [a We t_S]F(s,g(s),p(s),xs,e)ds, t 2 a,
o b

where
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a) F(t,8,0,9,€) = Flt,0(0 5008 § + @ gsin t) + 0]

E

(14) 1) 2(£,6,p,0,8) = = [-¥,,(0)sin Lr¥y(0)cos LIF(t,E,0,,€)

c) R(t,¢,0,9,€)

V(€)p+ W]E(O)COS §+W28(O) sin Q]F(t,g,p,CP,E) .

Suppose that the functions f, Z, R are almost periodic
in t uniformly with respect to the other variables [F(t,p) in
(10) almost periodic in t uniformly with respect to ©®© will imply

this] and suppose that

def 1 T
a) Zo(p,e) = lim 3 [ Z(t+s, t+s, p,0,€)ds
T = 0
(15)
def 1 T
b) Ro(p,e) = lim ;‘ff R(t+s, {+s, p,0,€)ds ;
T 5 0

that is, the mean values of Z, R are independent of t, . Notice
that these mean values are computed slightly differently then in
Q

ordinary differential equations. As in[ ], we have put X, = 0
and this is the basic fact that allows the theory to go through in
a simple way. On the other hand, it makes some estimates more
delicate as we shall see below.

Following the same type of reascning as in ordinary dif-
ferential equations (see [ 6] or [19]), there is a transformation

of wvariables

(16) ¢t > ¢ +eu(t,t,0,8), o —op +Ev(t,,0,€)
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such that system (13) is equivalent to the system

2) L =ale) +€ 2 (p,€) +€ Zy(t,8,0,5€)
(1) B) b =€ R(pE) + € R(,L,0,X0E)
t
&) o = T, (t-0)xd s &f [a ¥l | 1P (s,L(s),0(s),x0,8)as
g

where Fl(t,g,p,@,e) = f(t,§+€u,p+8v,¢,8), the functions Zl’ Rl
have the same smoothness properties as Z, R, are almost periodic
in t wuniformly with respect to the other variables, periodic in
¢ of period 2m, and the functions zl(t,g,p,o,e), Rl(t,g,p,o,e)
as well as their lipschitz constants with respect to §,p approach
zero as € — 0.

Equations of type (17) can arise from system (9) without
the severe restrictions made above on the characteristic equation
(8). In fact, there could be any number of roots of (8) with zero
real parts for € = O. The main part of the assumption that we have
used is the dependence of the roots on € near € = 0. In this case,
various transformations on (11b) yield equation of the form (17) with
(,0 vectors of not necessarily the same dimension. Also, some roots
(a finite number) of (8) could have positive real parts for € = O.
This adds an extra equation to (17) which can be easily discussed.
For the sake of generality in the applications, we will assume that
{,p are vectors of dimension p,q, respectively, and the functions in

(17) are 2r-periodic in the components of the vector § = (gl,...,gp).
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If a: R X Rp —>Rq, B:RX Rp — C are given functions,

we say that the set

(18) S(a,B) = {(t,8,0,9) & p = ot,6), ® = B(t,), t €eR, § ¢ RP}

is an integral manifold of (17) if for every 6 in RP, o in R

and ¢(t) = ¢(t,0,6), £(0,0,6) = 6, the solution of (1lla) with

Q
Py X

the triple §(t), p(t) = a(t,{(t)), xo = B(t,£(t)) 1is a solution

replaced by a(t,t), B(t,t), respectively, it follows that

of (17).

THEOREM 1. Suppose Wg £ Te(t)cpQ satisfy (12) and there is a p
s 2852y a2

o}

such that RO(pO,O) = 0 and the eigenvalues of BRO(pO,O)/Bp have

nonzero real parts. Then there is an 80 > 0 and functions

o : R xR’ -rY, By : R X rP > ¢, 0 (t58), Be(t,t) continuous

in t,{,€ for teR, { cB’,0s€ % €_, almost periodic in t

wiformly with respect to §, periodic in the components of { of

period 2m, a =p_, B, =0 such that S(ag,Be) in (18) is an

integral manifold of (17) for 0 s¢€ = €« Furthermore, if 7y, = (aé,Be),

then Byé(t,g)/atﬁoagil...Bgip exists and is continuous for B_ = k,

50+Bl+...+ﬁp s k+§ 1if the functions in {17) have k lipschitz

continuous derivatives with respect to ¢t d (k+£) lipschitz

continuous derivatives with respect to (§,p,¢Q). Finally, the

manifold S(Oé’ﬁe) is asymptotically stable* if the matrix BRo(po)/Bp

*The stability here is the same sense as in Section V.l; namely Cl
perturbations in the initial data.
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has all eigenvalues with negative real parts and unstable if there

is one eigenvalue with a positive real part.

Sketch of the proof: We only give the main elements of the proof of

Theorem 2 since it is so similar to the usual ones in the theory of
ordinary differential equations. Also, to avoid so many formulas,
we assume all eigenvalues of EdeBRO(po,O)/Bp have negative real

parts and |expEt| = Kexp(-ct), t 2 0. Letting p - p+ P, the

equations (17) become

a) °§ = (D2(€) + € zl(tygyp)xg,ve)
(19) %) b =€Ep +€ R (t,8,0,%5€)

t
) Ay = Telt-)ng + € [ Lo\ IFi(5,8(s),0(s) €008

where ub(o) =W Fl(t,c,p,¢,€) = Fl(t,g,po+p,¢,€) and Zl’ﬁl
satisfy the following properties. For any given r > 0, 81 > 0,

H > 0, there exist a constant Kl >0 and a continuous nondecreasing
function v(€), 0 =€ = €, such that v(0) = 0 and

1Z,(t,£,0,0,€)| = v(€), [R (%,£,0,0,€)] = v(E),
|F,(¢,£,0,0,€)| =K,
lZl(t,C,p,cp,E:)-Zl(t,C,pl,¢l,e)| é

S [v(€) + kHI| E-¢, ]+ o-0g| 14K, llo-0, I,
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(20)

lﬁl(t, g’ D,CP,S)—-R-l(t, Cl, pl’q)l’e)l s
£ [v(€)+KH]| §-€ [+ v(r)+v(€)+K H]| o-p, | +K, l0-p, |,

IFl(t,l;,p,cp,e)-fl(t,§,p,cp,8)| g Kl[l E-Cll +l p'pll +”cP"q)l“]

for t e R, ¢, L€ B,p,00€ RY, |0yl eyl = v, 9,9.¢ ¢, Jlollllo |l = =
and 0 =€ = 81. Of course, all functions are almost periodic in
t and periodic in €.

Let ;fi(éi,Dl) be the class of continuous functions

@t R X R’ »R? which are bounded by D, and have lipschitz

1
constant Ai with respect to the second variable. Similarly,
let ¥,(4,,D,) be the class of B : R X R® »C. We introduce the
uniform norm in these spaces and designate the norm by Ikﬂbg s ”ﬁ”g’,
1 2
Qa € él(Al’Dl)’ B €(‘§2(A2,D2)°
It is convenient to introduce some notation. For « e:?&(éi,Dl),

B € &,(4,,D,), we abbreviate the collection (t,8,0(t,t),B(t,t),€)

by (t,£,a,B8,€). Also let

o
n

(v(e) +KlD2) ( 1+Al) +K, A,
(21)

o
U

v(€) + KD,

and then it follows from (14) that
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A

IRy (t,8,0,8,€)] 5 v(€) + [b+v(D,)ID +K D,

A

lf‘;l(‘t,g,a,ﬁ,e)l Kl(l+Dl+D2)

A

i Zl(t,c,a,ﬁ,e)—-z-l(t, gl’al’ﬁl’e)l al C' gll +b”a'al”é’l+Kl”5‘61”52

(22)

A

| ﬁl(t‘) Q:Q)B ,e)'ﬁl(t) gl)al)al’e)‘ [ a+V(Dl)Al]| C‘Cll +[ b+V(Dl) ]“ a'alngl"'

+

A

|F (t,8,0,p,€)-F (t,8,,0,,8,€)] 5 K ((1+a48,)] £-¢;| Hloy- gllg;llal-ﬁgnge}

With the constants defined as above choose 'el > 0 and continuous

AJ.(E',),DJ.(E!), osese), Ae), D,(€) 20 as € 50 such that,

l,

for O.S_S.S_E',l,

s "
v(e) + [b+v(Dl)]Dl+ KD, S ch/K ;
8K1(1+D1+D2) s D2~/2c/K 3

a+bA_L+2v(Dl)Al+KlA2 s Alc/2K ;
23 exx Ac s 4, s min [KK ke, 1/4] ;

(23)

c-a > ¢/2; c-€a >c/2 ; A 4K < K/k4; 2b°41 5 b

Alab+K(b+v(Dl)) < c/b; 1+81<_.2Ls:2/5c2 s 4

Let 6(4,D) = 7(a),D;) X {4,,D,) and for any Y in 3(A,D),
v = (a,p), define [ = II<>4|5l + KKlllﬂllﬁe/h- For any 71 = (a,B)

in é’(A,D), let ¢(t,0,6,7), §(0,0,6,7Y) = 6, be the solution of
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(19a) with (D,xt) replaced by 71(t,{) and define a transformation

Ty by

a) Tr = (T;7,T,7)
(24) b) (lej(o 8) =¢€ f e"eEu l(u+c,§(u+a 7,8,1),7,8)du

¢) (T,1)(0,0) =€ J [duwg‘,_u]'fl(uw,o,e,‘r),Y,E',)du .

We shall show that this equation has a unique solution in
;Z(AvD) for 0=¢ = 80. This will prove the existence of an integral
manifold. From (12),(22) and (23), we have ”Tlﬁlﬁf Dys ||T2f||¢2 s D,.

From the Lipschitz constant of Z

; in (22) and (19a),

we obtain

‘ C(um}c’el’Tl)-g(uwig)eg’rg)‘ s

—8 au|

-€au K
6 |+(e ‘l)[b” l- 2”& + = IB Be“{e

for -o < us= 0.

Using this fact and the estimates (22),(23), we have

)
~~
+3

3
S
7~

Q
D
N
W
>
Y
1
D
-+
=
'
-{
N
~
=

A

| (257,)(9,0)-(2,7,)(0,8)| 5 2] 0-6, 1 H ry-vl o/,

for 0 € s€.. This implies T :{(A,D) »%(A,D) and is a

l.
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contraction since ”TYi‘TYé” < Hyi_yéﬂg/h for 0 =€ =€,. This
completes the proof of the existence of an integral manifold and
also shows that the integral manifold is lipschitzian in ¢.

To obtain the smoothness properties of the manifold
S(Oé’ac) one proceeds in exactly the same manner as above except
making use of a different class of functions éa)fg. For example,
to show that Oé’Be have continuous first derivatives with respect
to ¢ if the functions in (17) have continuous first derivatives
with respect to g,p,wQ one defines ‘éi(éi’nl) to be a class of
functions @ : R X R® -»R® such that |oft,t)| s Dy, [d(t,8)/d¢ = D,
for all t,{. The class ¢52(A2,D2) is defined in the same manner.
Using the same definition of T as in (24), one shows by a
proper choice of Aﬁ(e),Dj(e) -0 as € -0 that T has a unique
fixed point in ‘C%.X ﬁ;. The other derivatives are analyzed in
exactly the same manner.

We will not prove the stability result since it again
involves complicated estimates of the above type and the reader
can easily supply the details by following the standard procedure
in the method of integral manifolds in ordinary differential
equations together with the lemma 1 of section V.l.

It is clear that Theorem 2 has an interpretation in the
original equation (9) at the beginning of this section. For simplicity,
we state an important corollary for the special case when F in (9)
is independent of t. The notations are the ones given at the

beginning of this section.




COROLIARY 1. Suppose F(t,9) = F(p) for all t and let

(25)  G(e) =v(0)e +

ar
1 = L
+ 5 fo [WlO(O)cos s+¢20(0)sin s]F[p(Qlocos 4, sin s)]ds.

If there is a p_ such that G(po) #0, dG(po)/dp # 0, then there
is an €, >0, a constant w*(€) and a function x*(t,€), continuous

in t,€ and having a continuous derivative with respect to +t,

1A

e <t <o, 0EE =€

lJ

x*(t,0) = p 9, (0)cosw t+9, (0)sinw t],

w*(0) = @, x*(t+0o*(€),8) = x*(t,€) such that x*(t,€) satisfies

(9) and since it is differentiable satisfies (10). The periodic
solution x*(+,€) is orbitally asymptotically stable* if dG(p O)/dp <0
and unstable if dG(po)/dp > 0.

As an example, consider the equation
(26) x(t) = ax(t-r)-px(t) - arx(t-r) + €F(x,)

where € 20, r >0, Y>B >0, a=af) = ao(l+6), where o  is

*
A periodie solution x(t) of (10) is called asymptotically

orbitally stable if the orblt , of x in C 1is asymptotically
stable in the sense of (1 perturgaglons.
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the unique real number in (0,1) such that the characteristic
equation III(35) for the linear system III(33) has two purely
imaginary roots ¥ iwo, wo > 0, and the remaining rbots have real
parts < -5 < 0. Brayton [13] has shown that such an o exists.
This implies that there is an 61 >0 such that the equation

(27) - al€)re™™Ma B o+ ale)re™ =0

has two simple roots €Ev(€) ¥ iw(€), o(0) = W, v(€),w(€) continuous

in 0=¢€ = Sl, and the remaining roots have real parts < -53<0

for 0 =€ = Gl. We are writing the equation (26) in differential

form for simplicity in notation but it always understood that

solutions are defined by means of the integrated form of this equation.
In the discussion of this example, we use the notations

introduced at the end of section III. A straightforward computation

on the characteristic equation (27) shows that

gC + wOD

C +0D

where C,D are defined in III(L40). Using the formulas for Y¥(0)
in III(4), it is easily seen that the function G(p) in (25) is

given by
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BC+wbD

G = G*
(p) Eg:;g— (e)
(29)
2r

1 . ‘ .
5 fO(Dcos §+031n s)F(p(Qlocos s4p, sin s))ds

o 1
* - -
G*(p) =5+ Eem

From Corollary 1, we can now state the following resultt equation
(26) will have an asymptotically orbitally stable periodic solution
if there exists a p_ such that G*(po) =0, dG*(po)/dp <0 and
an unstable one if G*(po) =0, dG*(pO)/dp > 0.

In the particular case where F(Xt) = h(x(t)) relation
(29) yields

2r

G D %F [ h(pcos {)cos tdat
o 0

+

V] ko)

G*(p) =

and the criterion for existence of a periodic solution is the same
as the one obtained by Brayton [13]. However, we can also say
something about the stability of the solution. In the particular
case, when h(x) = -XE, an easy computation yields G*(p) =
(0/2)[1-5Cp2/h(6C+a5D)] and G*(p)) = 0, dG*(p )/de = -1 for
pi = h(BC+abD)/BC. Thus, the equation has an asymptotically
orbitally stable periodic solution.

As another illustration, suppose F(th = -x5(t-s),

0= s =2r. Then
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2
(2/p)G*(p) = 1- ) [C cos wbs-D sin wos] .
l+(|EBC4<»0D)

As before, if C cos W, s - D sin W, s > 0, the we obtain an asymp-
totically orbitally stable periodic solution. To find the limitations
on s for which this inequality remains valid is difficult since
W, depends upon all parameters in the linear differential equation
III(33).

This example illustrates the application of the general
theory to autonomous systems, but it is clear that Theorem 2 is

equally applicable to nonautonomous equation.
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