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O. Summary. This paper is concerned with the problems of
selection and ranking of k non-central chi-squaredandnon-central F
populations, defined in terms of their non-centrality
parameters. We are interested in selecting the t largest
of the k populations and a subset containing the ¢
largest for which two procedures, named R, and R, are
given., It is required that the probability of a correct
selection using these procedures should be at least as large
as any given number p* < 1. We call this the "P  condition.'
The main part of the problem is to determine the least
favorable configurations of the parameter space for which
the probability of a correct selection: is miﬁimum. The
expression for the minimum value determines the smallest
sample size needed to satisfy the P* condition. The
least favorable configurations and the corresponding expressions
for the minimum ol the probability ofa correct selection are
obtained for R1 and R2.

The selection procedures Ry and R, suggest them-
selves naturally. Some operating characteristics of these
procedures dealing with a stochastically ordered family of

- populations are shown.
¥ This author's work was supported in part by National

Aeronautical and Space Administration Grant No. NGR 36-008-040
at The Ohio State University.
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The ranking of k multivariate normal populations with mean

column vectors ui" and covariance matrices Z; (i = 1,...,k) in terms

of the Mahalanobis [10 ] distance function 0; = “i 2£1ui

reduces to ranking (with respect to the non-centrality
parameters) the non-central chi-squaredor non-central Fpopulations . This

parametric distance function has wide applications in multivariate analysis .

1. Introduction. Bechhofer [ 3] used Ry (to be

described below) to rank the means of several normal popula-
tions with known variances. Gupta [4] used R, (to be
described below) to select a subset of.the given normal popula-
tions containing the largest mean. These procedures have
been also used for selection from binomial and some other
populations, Hall [ 7] has shown some optimal properties
of these rules.

Let TygeessTe be k = 2 given populations which
can be ordered by a real-valued parameter . Precisely,
each population generates a random variable '3 having a
{cumulative) distribution function H(x,e) which, we
assume, is non-increasing in o for_constant X . When.
this assumption holds we say that the given populations be-
g to a "stochastically ordered'family. Denote by CH

the value of ¢ for m.;

i3 1= 1.0,k We say that my

is larger than ug if 8; > ej. It is assumed that no a

priori information is available regarding the relative

values of the ei'S.




Two problems of selection are considered, which we.
propose to call Problem I and Problem IT, In Problem I it is
required to select the t 1largest of the k populations

- where 1 =t <k. In Problem II it is required to select
a subset of the k populatioms which contains the t largest
populations, In both the problems it is fufther required
that the probability of a correct selection is not smaller
than a pre-assigned quantity P*, 14%) <P <1. We shall
call this the np* condition". With regard to Problem II,
it will be observed that the P* condition can be satisfied
by including all the populations in the selected subset.
Therefore, any selection procedure that we may consider should
be such that the sizé of the selected subset or its expected
value, in case it is a random variable, is less than k.

If- eit='éj5 then ‘n; is not considered distinct from mj,
that is to say, the ranks of m; and w; can be interchanged .

i
However, in the limiting case in which all 8.'s are equal and

i
which is considered for evaluating the infimum of the probab-
ilityofa correct selection, the definition of a correct
selection is modified to mean the selection of a set of
"tagged" populations.
Let X3 denote a real-valued observation or the value
of such a-statistic based on several observations taken

from Ty . Order the Xk populations according to the values

of x;'s. For Problem I, R, selects the *t largest



populations according to this ordering, 1In case of a tie
between several populations for a giVen rank the selection
between the competing members may be made by any randonm
procedure not depending on the observations. If the distri-
butions involved are continuous the probability of the
occurrence of a tie 1s zero.

We denote the ordered values of a set of k numbers by
using square brackets around the subscript. Thus, X[i]
denotes the ith smallest number in the set {x;,...,%;}.

For Problem II, R, selects a subset of the k populations
such that mni 1is retained in the subset if and only if
d(xi’x[k-t+1]) < ¢ where ¢ 1is a positive number and

the function d represents a measure of distance. Two Such
functions will be considered, namely d, and d, given

by d1(y,z) =z - ym and dz(y,z) = z/y. The value of ¢

is determined by the P* condition., Clearly, the probability
of a correct selection as well as the size of the sslected
subset tend to increase with .

Let g denote the vector (91,...,ek) and Q the
space of all admissible values of 8. For example, O may
be the k-dimensional Euclidean space or the sub-space
{o: o3 20,1 = 1y000,k}. We denote by P,(g) the
probability of a correct selection for R, and by P,(g)
the probability of a correct selesction for R2 wvhen ¢ 1is

wae

the unknown parameter.



Then

| (1.1) P,(g) = E:j m H(xye,) [1 - H(x,e,)1d B (x8)),
J&€  ugr,vad,v#j

and Pg(ﬁ) is the coefficient of yt_1 in the expression

(1.2) | I H(x,a.) + y[1 - H( )]
323 J u€l, veJ, v#j{ Bl T X80

{H(x,8,) - H(xo,ev) + yb1 - H(X,,ev)}} dH(Xaej)

+iZ:I Igel—) u;éij ved {H(X’eu) + y[:‘l - H(X’gu)]}

{F(x,8,) - H(x3e) + vl - H(x,0)] }d Hx,04),
where I denotes the set { [1],...,[k-t]}, J the set
{[k-t+1),...,[k]} and x° = d(e,x).

For a stochastically ordered family of populations
it is shown in section 2 that P1(£) is non-increasing
in each of the components e[i], i=1,...,k-t, and non-
decreasing in each of the components g[j],j = k-t4+1,y40.4Ke
Therefore, '

inf Py(g) = Pqle) - 1705,

P |

where g, denotes any vector point in Q whose components
A
* . . o
are all equal. Thus the P condition may be satisfied
only on a subset of 0 which may be termed a "preference"

zone. One such subset which we consider for the multivariate

normal problem to be described below is Q3 = an Qz, where

Qp = {g e 0 Ao g Opepery = 4

i

ay = {g ¢ dplepc gy patery) = 8230



for some 6y > 0, 6, > 1. Such a preference zone has

been considered by Sobel [11] for ranking Poisson populations.
For R, it is shown in section 2 that P2(§2 is non-

increasing in 9[1]""’e[k—t]' It follows that for

t =1,

Ainf Pz(g) = inf P2(go)
0 QO

where (C Q) is the set of all points 8.

Consider an application of these procedures to the
multivariate normal populations. Let us represent a
multivariate normal population with mean By and covariance

> 5 Where W3 is a column vector of p components and 2/
1 ) i

is a positive definite p x p matrix, i = 1,...,k. We rank
the k populations according to theg values of the parametric

! -1
functions T %
u lons gy “1,&3

My is called larger than s if

. s
Wi where ui is the transpose of H;. Then
1 -1 1 -1

. S e

1 4y By by Lj M

Suppose that a sample of size n; is drawn from Ty .

Denote the 1ith sample vector mean and covariance matrix

by x. and Si respectively; these are maximum likelihood

i
. . ~ a —‘ -1
estimates respectively of wy and 7, « Let U F Xy 1Xi
( ] .
—1 I T n, - P)
— i o - LA T "
and Vi - (Xi Si ' Xi) e nip [ vilel .l.ll Ui .L.Lu.S the

distribution of a non-central chi-squared random variable

with p degrees of freedom and non-centrality parameter

1 - . . .
b 1 My and ni Vi has the non-central F distribution

1

N,y
Mg



with p and (ni - p) degfees of freedom and non-centrality
parameter ny u;;g; wg (see [1] pp. 113-114). Two cases
may arise ., according as the population covariance matrices

are supposed to be known or unknown, In the first case we
use uy for X5 and carry out the procedures R1 and
R2 as described above. 1In the second case we use v, for
x; +. Detailed analysis is given for the first case only.

We shall consider only the case when the sample size
is same for each population, that is, n; = n, say, for all
i. From the point of view of the design of experiments the
equality of the ni's is suggested by the invariance of the
problem and of the selection procedures under permutation of
the labels of the populations, An expression is obtained
giving the smallest value of n requiréd to satisiy the P>|<
condition for the procedure Rj. Similar eiﬁression for the
smallest value of e required to satisfy the P* condition
is obtained for R2 when t = 1,

Let S denote the size of the selected subset in

Problem II. S 1is a random variable for R,j denote its

expected value by E(S). Then E(S) may be taken as a

O

crilerion for the suitability of the procedure R,. An

expression for RE(S8) is given in (5.2). It is shown that

Sup E(S) = Sup E(S) =k
0 o

To carry out the procedure R, for a given P* one needs to know
Y 1

* R
the smallest value of n satisfying  the P condition.



This is determined from equation (3.6) or (3.7). Trhe values
lof n are unoer tabulation and will be published shortly.
For the procedure R2 one needs to know the smallest
value of € satisfying  the P* condition, For t =1
this is obtained from equation (4.2). Tables in Gupta [5j
and Armitage and Krishnaiah [27] provide solutions of & in some cases

when the covariance matrices are known,

2. Operating Characteristics of R1 and R A

o
few results on the minimization of P1(§) and P,(g)
follow from the followling lemma.

Lemma 2.1. " Let X = (X;,...,%) be a vector-valued
random variable of k = 1 1independent components such that
for each 1 the random variable Xi has the distribution

function H(Xi5 ei), which is non-increasing in ey for

constant x;, i =1, ...,k. If ¢(x) is a monotore function

of X; when the other components are fixed then E § &) is

monotone in 85 in the same direction.
Proof: For k = 1, see proof in [8]. For k > 1,

suppose that ¢ (x) is non-decreasing in X;. Let
*

. * s
= (849000985 _1908%, 05,92¢+0,8,), vhere 0; = 8- Denotlpg

by Ei the expectation with respect to X.i we get

~

E{W(X)iﬁj =& E'{¢(X 3 EqgeeesXy 40Xy 5%%s 8
*
SEE {v(X) 17.-.,}(1 1,X1+1,...,Xk,e }

E {4(X); 9 }.

The case when ¢(x) 1is non—lncreasing in x; can be treated

}

similarly. This completes the proof of the lemma.
*¥*¥ While this paper was in the process of publication, the
authors learnt that Desu M. Mahamunulu had obtained a similar
result in his paper "On a generalized goal in fixed-sample
ranking and selection problems", Technical Report No. 72,
‘Dept. of Statistics, Univ. of Minnesota, 1966.



Let us denote by X(i) the random variable of the ith
smallest population. Note that the X(i)'s are unknown
quantities, Let

$(X)

1 if max (X(1)""’X(k—t)) < min (X(k-t+1)’
coes Xg)
= 0 , otherwise.

Then ¢ (x) is non-increasing in X ;) for 1= 1,...,k-T
and non—decreasing in X(3) for j = k-t+1,...,k and
P,(9) = E ¢(X). Therefore, by Lemma 2.1, P,(g) 1is non-
increasing in e[i] for i =1,...,k-t and non-decreasing
in e[j] for j = k-t+1,..., k.

Similarly, define

o(X) = 1 Af A 5y K[y g S erd = Kbl 0k

= 0 otherwise.

Then ¢(x) is non-increasing in x.;y for i=1,..4,k-t
and P,(g) = B olX). Therefore, by the above lemma
P,(g) is non-increasing in é[i] for 1i=1,...,k-t.
Thus we have

Theorem 2.1. For a stochastically ordered family of

populations P1(9) is non-increasing in e[i] for
i=1,...,k-t and non-decreasing in 9r;- for

J = k-t+l,00ay k;_also P2(e) is non-increasing in 94 ]

e

for i = 1,...,k-t.

£ Py (e) = 1/(1@.' For

Cofollary 2.1, inf P1(e) = i o

n
9 e 9

@)

t =1, inT P

a 2(9) = inf P, {go).

29



For a fixed i 1let Py denote thé probability that
M. 1s included in the Subset selected by 32. Then
p; = E n(X), where
Wx) =1 if m; is included in the subset
selected by R2

i

0, otherwise,

Clearly, 7(x) is non-decreasing in x.

4 and, therefore, by

Lemma 2.1, 15 is non-decreasing in 84+ Thus, a desirable
characteristic of the procedure R2 for any stochastically
ordered family of populations is given by
Theorem 2.2, p; = pj for 6; = ej.
3. Problem I.(Normal).Consider the problem (described in section 1)of

selecting thet iargesf of k multivariate normal populations. First
we suppose that the populatlon covariance matrlces are known.
In this case we use uy s to rank the populatlons. By
Corollary 2.1 the P condition cannot be satisfied over
Q, the set of all k-dimensional vectors with non—negativé
components, Consider the infimum of P (e) over the subset

01. Applying Theorem 2.1, we obtain

(3.1) inf P,(g) = inf tf F (x,0) [1-F (x,0 + ng,) 30"
;[1 A 2 0 ) P

fp(x,e + ng,)dx,
where fp(x,g) and Fp(x,e) denote the density function and
the distribution function, respectively, of the non-central

chi-squared random variable with p degrees of freedom and



11

non-centrality parameter s. These functions can be

written as (see [9], p. 312)

-]
r .
SNCL o~8/2 z__é_g.___- f (x), x >0, § 20

1 p+a2r

r=0
and

r

-}
_ .-9/2
Fo(x,08) = e EZ_E%“—T- Fp+2r(x), x> 0, 8 20
r=o0 < T °

X(Y/2)-1e-X/2

function of a central chi-squared variable with « degrees

where f (x) = represents the density

of freedom, and
(x) T (

F (x) = [ £ (y)dy.
y ,foyyy

It is easily verified that

(3.2) 232 1 (xy0) = £, 5(x,0) - £ (x,0),
(3.3) 25%" Fp(X,e) = Fp+2(x,e) - Fp(x,e) = —2fp+2(X,e).

Let A denote the integral on the right side of (3.1).
Differentiating with respect to 6 and making use of (3.2)
and (3.3) we have

B et) [RTUT (k0 (1-F (xy0m 503

20 S

fp(x,e+n 51)f (x,0)dx

p+2

[so] _ t“
+  (t-1) I Fg t (x,8) {1-F (x,8+n 67)} 2
0

fp+2(X,9+n 61)fp(X,e+n 61)dX -+
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1 9 k-t t-1
5 [ Fp (x,0) {1—Ep(x,9+n 84) )
(0]
{fp+2(x,e+n 6) -fp(x,efn 8,) 1 dx.

Integrating by parts the third integral on the right in the

above equation we have

2o (k-t) | P tx,0) (1-F (x,0n & D1
26 S

{ p+2(x etn 8, ) fp(x,e) -fp+2(Xye)fp(X,e¥n 54) }ax.

By Lemma 3.1 given at the end of this section, f(x,e)/f (x,0)
p+2
is non-increasing in ¢. Hence, —%3-5 0.
Next consider the infimum of P1(e) over (. Like

(3.1) we obtain

w —t -1 ]
(3.4) inf P,(g) = inf t [ F K (xy0) {1-F _(x,8 e)}t s (x,y8,0)0x%-
o P p 2 P 2
Q2 620 O
Denote the integral on the right side of (3.4) by B, Differentiating

with respect to g we have

B (k1) f P e 1 - B 0,000

0,8,8) - p+2(xq9); (x,8,0)] dx

By the help of Lemma 3.1 it can be shown that the quantity
inside the square brackets above is non-negative.

Since %% < 0 and -%f = 0, we conclude that P1(g) is
minimized on 93 at the vector point A whose components

are given by
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(3‘5) )\[i]: 61/(62—1), i:“l,...,k-t

i

61 62/(62"1),i:k“t+1,101,k,
and the smallest n required to satisfy the P condition

of the problem is obtained from the eguation

ng

o ns &
. - k-t 1 1°2
(3.6) inf Py(g) =t [ P (x, o270 U1 - (%, ysl

25 o 2 2
ng, s y
12 - p
fp(x, 62__1)dx = P

Similarly in the second case where  the population

!
covariance matrices are unknown, using vy to rank the
populations, the probability of a correct selection is again

minimized at ) in 03. The smallest value of n required

b " d

* . . . .
to satisfy the P condition in.this case is obtained from the

equation ..

© ng, -- ' né. §

o _ k-t 1 fl_G __.___.1_...%
(3.7) 1gf P1(§) =t IOGp,n—p (x, EET—~)Q p’nﬁg, 62—1)}
3
ng, §
192 %

gp,n_p(X, 62"'1 )d.X - P b

where gp,q(x,e) and Gp,q(x,e) denote the density

function and the distribution function respectively of the
ratio of a non-central chi-squared variable with p degrees
of freedom and non-centrality parameter ¢ and an independent
central chi-squared variable with q degrees of freedom.

These functions can be written as (see [1], p. 11h)

-1
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~a/2 2 (p/2)+r-1rRidip) o* .
g (x,08) = S— x P 2 2 . T , x >0 ,
p)q ’ F(g') R + _q + T n 2 1'!

2 r=o (1+x)2 7 2 F(§+r)

- *® - 0.9
8/2 R X X(p/2)+r 1T (2.2+r)

G (x,8) = &~ y 2
Pya F(%) z’ 2"r1 56 -% + % + 7
(1+x) r (5r)

i

dx,x > 0.

To derive the equation (3.7) we use the following

relations,which are easily verified.

_ 2 = ‘ -
(3.9 %28 8p5q (™0 = Bpip q(30) - gy g(x,0),
. e = -
(3.9 285G, ,(x6,0) = 6,5 ((x,0) = G (x,0)
o -P~I-I' P s}
; QE_Z - fxxz r(Grotrrhax 2 5 4%
T FO+r+1 pted-
» 4y p=p 2Tl "0 B3 p et q-2
for q 2.7 (3) r=o0 (1+x) p )

Summarizing the above discussion we have

Theorem 3.1, The probabilityof @ correct selection

using the procedure R1 is minimized on Q3 at the point
A given by (3.5). The smallest value of n required to
satisfy the P*  condition is obtained from equation (3.6)
or (3.7) according as the population covariance matrices are
known or unknown, |
The following Lemma has been cited above (for proof
see [9] p. 313). - ®
Lemna 3.1. Let h(z) = (E:bi VA E;aizi, where the
i=o _ i=o
constants aiﬁbi are >0 and z:aizi and E:bizi

converge for all =z > O. If the sequence {bi/ai} is monotona then

h(z) is a monotone function of 2z in the same direction.



W

. Problem IT (Normal).Consider R, for the problem (described

in section 1) of selecting a subset containing the t largestof k multi-

wriztenarmal populations, If the difference d1 is used for the distance function

d describing R, then it is easily seen that the probability of a
correct selection approaches its minimum value 1/(%) as

the parameters become large. However, using the ratio d, for the

2
distance function ¢ we have from Corollary 2.1 for t = 1 ,

w k-1
(%.1) 1gf P,(8) 1gf Io My _q Hex, ne{i])dH( X,ne

1l

k7

<« k-1
= inf I H (ex,n9)dH (x,n0) ,
=0 "o

where H(-s) = F_(-s- or G e3e ccordin h
(+ %) p( ) p,n—p( »*) according as the
population covariance matricesare known or unknown and Where

£ > 1., By the help of Lemma 3.1 the last integral on the
right side of(4.1) can be shown to be non-decreasing in 6., The
smallest value of ¢ required to satisfy the P* condition
is, therefore, determined by the equation
o

(4.2) [ (e a2 (x) = P
0

2
where H(x) = H(x,0) represents the central chi-squared
distribution funetion. Fp(-) or the central F distribution function
G_ ().,  For the speéial case k = 2 and the population
covariance. matrices known, Gupta [6] obtains (4.2) with k=2 and
H(-) = Fb(.); he also treats problem II for any k when covariance

matrices are known but restricts his discussicn to large values

of p only.
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5., Size of the Selected Subset. The size of the subset

selected by R2 is a random variable., Denote the size by
S and its expected value by E(S). Then E(S) may be
taken as a measure of the efficiency of the procedure R2.
Let pi denote the probability that m; 1s included in

the selected subset, then

(5.1) E(S) = ) py
Suppose that ei =6 for i=1,,..,m and 6; > © for
i=m+ 1,,..4yk. Then E(S) is the coefficient of yt—1 in

the polynomial expansion of

52 1oy £ ad {H(ex,0.) + yl1 - H(ex,0.)1} {E(ex,0) +
(o] J =m+1 J J

y[1 - H(ex, 6)11% 1a H(x,9)

e k

= E: {H(ex,0.) +
Yl ——— o 3— m+ 1, j#1 J

yl1 - H(sx,ej)]}{H(ax,e) +
"ol
| yl1 - H(ex,0)1)" d H (x, o)
Let H(-») = F (+»»). Differentiating with respect to ©

we obtain (— DE(Sl m) as the coefficient of yt"1 in
k
o0 I k :
§ KT I (F_(ex,6.) + y[1 - F (sx,ey}}
o o gmmet, J#1 P J P
i=m+1

F, (ex,8) + y[1 - F (ax,e)]}m‘1 {e 1y,

p+2 (ex, G)L (x, .»

Z(X,e)fp(sx,ei)
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W

+ m(m = 1) g - 1{Fp(ex,ej) + y‘[1 - Fp(sx,ej)]}

(Fyex,0) + y L1 - B (ex,00] 177 fer o(x,0)8 (ex,0)

£ o(x,0) fp(x,e)x]'dx :

By the help of Lemma 3.1 it can be shown that

8

(x, e)f (e x, .) (ex,6) f (x, .) > 0 for 6. = 86,

p¢2 p+2 - i
Hence
fajgaigl— =0 .
The same result holds for H () = G (-»*). Therefore,

pyni-p

Sup E(S) = Sup E(S)

0 QO

= coefficient of y° ! in XT%§ Lin

fw{ﬁ(ex,e) +yh - H(ex,e)]}k—1dﬂ(x,e)1
o]

= coeificient of yt 1 in —K§

= k. _ 1-

Thus we have

1]

[2]

Theorem 5.1. S%P E(S) = k .
A
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