THE UNIVERSITY OF MIGHIGAN

COLLEGE OF ENGINEERING department of nuclear engineering

Technical Report

An MO Theory of the Cubic Field

 Splitting of $3 \mathrm{~d}^{5}{ }^{6}$ S lons in II-VI Compounds of T_{d} Symmetry

This report was also a dissertation submitted by the first author in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The University of Michigan, 1966.

Corrections

Page

58, Eq. (5.27) Instead of
$\left[(18 / 625)\left(\delta_{1}^{\prime}\right)^{2}\left(\delta_{1}^{\prime}+E_{1}^{\prime}\right)\right]^{-1}$

$$
(18 / 625)\left[\delta_{1}^{\prime 2}\left(\delta_{1}^{\prime}+\varepsilon_{1}^{\prime}\right)\right]^{-1}
$$

$3 a(\sigma, \pi)=-\sum_{k \ell m}\left(E_{k E} E E_{m}\right)^{-1}$
66, Eq. (5.40)

$$
3 a(5, \pi)=-\left(\sum_{\mathrm{kg} \mathrm{~m}} \mathrm{E}_{\mathrm{k}} E E_{\mathrm{m}}\right)^{-1}
$$

An identifying

--- coupling, the spin S, and
$W\left(\frac{m}{1}^{\prime} \frac{m e}{n}\right)$
117, Eq. (C88)
133, Line 20
135, Eq. (G6)

W (MN, IN N)
$C_{0}=C_{1} \quad C_{2} \quad C_{3}=0$
$\operatorname{Lim} \mathrm{C}_{1 i} \rightarrow 0$
J An identifying
--- coupling the spin S and $\mathrm{W}\left(\mathrm{m}^{\prime} \frac{m e}{n_{\ell}}\right) \delta_{\ell l,}$
$W\left(\mathrm{~N}_{6}^{\prime} \mathrm{N}_{6} \mathrm{~N}_{\mathrm{O}}, \mathrm{NNT}^{\prime} \mathrm{N}_{3}\right)$
$C_{0}=C_{1}=C_{2}=C_{3}=0$
$\operatorname{Lim} C_{i} \rightarrow 0$

THE UNIVERSITYOFMICHIGAN COLIEGE OF ENGINEERING Department of Nuclear Engineering

Technical Report
AN MO THEORY OF THE CUBIC FIELD
SPLITTING OF $3 \mathrm{a}^{5} 6_{S}$ IONS IN II-VI COMPOUNDS OF T_{d} SYMMETRY

G. H. Azarbayejani

Chihiro Kikuchi

ORA Project 04381

Supported by:

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
GRANI NO. NsG-115-61
WASHINGTON, D. C.
administered through:
Page
LIST OF TABLES v
LIST OF FIGURES vii
CHAPTER
I. INTRODUCTION 1
II. EXPERIMENTAL DETERMINATIONS OF THE CUBIC FIELD SPLITTING OF THE $3 \mathrm{~d}^{5} \mathrm{~S}$-STATE IONS 7
III. THEORETICAL 19

1. Cubic Field Splitting 20
2. Hamiltonians 21
3. Wavefunctions 23
3.1 Ground State Wavefunction 23
3.2 Excited State Wavefunctions - Charge Transfer Wavefunctions 24
4. Matrix Elements of Spin Orbit Interaction 26
4.1 Reduced Matrix Elements 29
5. Coupling Coefficients of Spin Orbit Interaction $K_{J J}{ }^{\prime}\left(\begin{array}{l}S_{S}{ }^{\prime} T_{1} \\ h^{\prime} \\ h t\end{array}\right)$ 32
6. Single Orbital Reduced Matrix Elements
$\langle 1 / 2 \mathrm{a}||\zeta \underline{\ell} \cdot \underline{s}||1 / 2 \mathrm{~b}\rangle$ 37
IV. CUBIC FIELD SPLITTING 3a 39
7. Determination of the Lowest Order of ; Perturbation by $H_{p}=\sum_{i}^{\sum} \zeta_{i} \underline{\ell}^{i} \cdot \underline{s}^{i}$ that can Split ${ }^{6} \mathrm{~A}_{1}$ 39
8. Contribution to the Cubic Field Splitting 3a from Fourth Order Perturbation of ${ }^{6} A_{1}$ by $\sum_{i} \zeta_{i} \underline{\ell}^{i} \cdot \underline{s}^{i}$ 41
V. DISCUSSION 44
9. Contribution to 3a from Watanabe's Calculation 44
10. Contribution to 3 a from Powell's Calculation 45
11. Contribution to 3a from Low and Rosengarten Calculation 46

TABLE OF CONTENTS (Continued)
Page
4. Contribution to 3a from σ-Bonding Charge Transfer States 48
4.1 Bonding-Nonbonding Charge Transfer 50
4.2 Bonding-Nonbonding and Bonding- Antibonding Charge Transfer 50
5. Contribution to 3 a from π-Bonding Charge Transfer States 54
5.1 Determination of $3 \mathrm{a}\left(\sigma, \pi, t_{1} \rightarrow e_{a}\right)$ 55
5.2 Determination of $3 \mathrm{a}\left(\sigma, \pi, \mathrm{t}_{\mathrm{b}} \rightarrow \mathrm{e}_{\mathrm{a}}\right)$ 56
5.3 Determination of Total 3a(σ, π) 59
6. Comparison 60
7. Comparison with Measured 3 a of Fe^{3+} in ZnS , ZnSe and ZnTe 61
8. Comparison of $3(\sigma, \pi)$ of T_{d} and O_{h} Cases 65
VI. SUMMARY AND CONCLUSIONS 68

1. Summary 68
2. Conclusions 70
ACKNOWLEDGMENT 71
APPENDIX A. DEFINITION OF SYMBOLS 72
APPENDIX B. SPIN ORBIT COUPLING IN MO SCHEME 78
APPENDIX C. SPIN ORBIT MATRIX ELEMENTS FROM THREE AND FOUR ORBITAL WAVEFUNCTIONS 84
3. Charge Transfer Wavefunctions 84
4. Matrix Elements of $H_{p}=\sum_{i} \zeta_{i} \ell^{i} \cdot \underline{s}^{i}$ 85
5. Reduced Matrix Elements $\mathrm{R}_{\mathrm{jk}}\left(\mathrm{Sh}-\mathrm{S}^{\top} \mathrm{h}^{\prime}\right)$ 86
6. Homoconfiguration Three Orbital Reduced Matrix Elements 87
7. Hetero-Configuration Three Orbital
Reduced Matrix Elements 101
8. Hetero-Configuration Four Orbital
Reduced Matrix Elements 114
APPENDIX D. COUPLING COEFFICIENTS OF SPIN ORBIT MATRIX ELEMENTS TO THEIR REDUCED MATRIX ELEMENTS 118
9. Determination of K_{JJ} ' ($\mathrm{SS}^{\prime} \mathrm{T}_{1}$, $\mathrm{h}^{\prime} \mathrm{ht}$)
for $h=A_{1}$ 119
10. Determination of $K_{J J}{ }^{\prime}\left(S S^{\prime} T_{1}\right.$, $\left.h^{\prime} h t\right)$
for $h=h^{\prime}=T_{1}$ 122

TABLE OF CONTENTS (Concluded)

Page
APPENDIX E. FOURTH ORDER PERTURBATION 125
APPENDIX F. SPIN-ORBIT MATRIX ELEMENTS BETWEEN $\mid X$ ShM $\theta\rangle$ and $\left|X^{\prime} S^{\prime} h^{\prime} M^{\prime} \theta^{\prime}\right\rangle$ for $S \equiv S^{\prime}$ 130
APPENDIX G -- COVALENCY DEPENDENCE OF THE CHARGE TRANSFER CONTRIBUTION TO THE CUBIC FIELD SPLITTING 3a (σ, π) 133
REFERENCES 136
Table Page
2.1 Variation of separation of Mn^{++}ESR fine-structure components at $\theta=0$ as a function of $\rho=\mathrm{g} \beta \mathrm{H} / 2 \mathrm{a}=\varepsilon / \mathrm{a}$ 15
2.2 ESR results of $\mathrm{S}-$ state ions in II-VI compounds 16
2.3 Comparison of ESR results with predictions of ionictheory17
3.1 Double valued character table of group T_{d} 25
3.2 Charge transfer configurations and terms 27
3.3 Reduced matrix elements $\left.\left|\left\langle\chi_{I} S h\right|\right| \sum_{i} \zeta_{i} \underline{e}^{i} \cdot \underline{S}^{i}| | \chi_{i}^{\prime} S^{\prime} h^{\prime}\right\rangle\left.\right|^{2}$ 29
3.4 Reduced matrix elements $\left.\left|\left\langle x_{2} S h\right|\right| \Sigma_{i} \zeta_{i} \underline{\ell}^{i} \cdot \underline{s}^{i}| | x_{2}^{\prime} S^{\prime} h^{\prime}\right\rangle\left.\right|^{2}$ 30
3.5 Reduced matrix elements $\left.\left|\left\langle x_{3} S h\right|\right| \Sigma_{i} \zeta_{i} \underline{\ell}^{i} \cdot \underline{s}^{i}| | x_{3}^{\prime} S^{\prime} h^{\prime}\right\rangle\left.\right|^{2}$ 31
3.6 Transformation of ${ }^{6} E$ into the $I R^{\prime}$ s of double valued group $\mathrm{T}_{\mathrm{d}}^{\prime}: \quad|\langle\operatorname{ShM} \theta \mid \operatorname{ShJtT}\rangle|^{2}$ 33
3.7 Transformation coefficients of ${ }^{6} \mathrm{~T}_{1}$ into the IR's of double valued group $\mathrm{T}_{\mathrm{d}}^{\prime}: \quad\left|\left\langle 5 / 2 \mathrm{~T}_{1} \mathrm{M} \hat{\theta} \mid 5 / 2 \mathrm{~T}_{1} \mathrm{~J} t \theta\right\rangle\right|^{2}$ 34
3.8 Transformation coefficients of ${ }^{6} \mathrm{~T}_{2}$ into the IR's of
double valued group T^{\prime} : double valued group $\mathrm{T}_{\mathrm{d}}^{\prime}: \quad\left|\left\langle 5 / 2 \mathrm{~T}_{2} \mathrm{M} \theta \mid 5 / 2 \mathrm{~T}_{2} \mathrm{Jt} \mathrm{\tau}\right\rangle\right|^{2}$ 35
3.9 Coupling coefficients K_{JJ} 'for $\mathrm{h}=\mathrm{A}_{1}$ 36
3.10 Coupling coefficients $K_{J J}$ for $h=T_{1}$ 36
3.11 Coupling coefficients $\mathrm{K}_{\mathrm{JJ}}{ }^{\prime}$ for $\mathrm{h}=\mathrm{E}$ 36
3.12 Coupling coefficients $K_{J J}$, for $h=T_{2}$ 36
3.13 Single orbital reduced matrix elements 38
4.1 The coefficients $C_{i}\left(-2 / 6525 E_{6}\right)^{-1}$ 42
4.2 Calculated values of 3 for spin sextets 43
5.1 Calculated 3 a in Mn^{2+} in units of $10^{-4} \mathrm{~cm}^{-1}$ 46
5.2 Comparison of $\left.{ }^{(3 a}\right)_{L_{R}}$ with $(3 a)_{P}$ and (3a) Exp 47

LIST OF TABLES (Concluded)

Table Page
5.3 Numerical values of $3 \mathrm{a}(\sigma)$ in $(18 / 625)\left(\delta_{n}{ }^{T}\right)^{-3} \zeta_{d}{ }^{4}$ 52
Measured 3a of Fe^{3+} in $10^{-4} \mathrm{~cm}^{-1}$ 5.4 62
5.5 Estimated (3a) $P_{\text {for }} \mathrm{Fe}^{3+}$ in $10^{-4} \mathrm{~cm}^{-1}$ 63
5.6 Calculated $3 a(\sigma, \pi)$ of Fe^{3+} 64
5.7 Measured and calculated values of 3 a of Fe^{3+} 64
A-1 Definition of symbols 73
C-1 The values of (h) and (-1$)^{h}$ 95
Figure Page
2.1 The octahedral coordination in cubic II-VI compounds ($\mathrm{CaO}: \mathrm{Mn}$) 8
2.2 The tetrahedral coordination in cubic II-VI compounds (ZnTe:Mn) 82.3 ESR spectra of $\mathrm{V}^{2+}, \mathrm{Cr}^{3+}, \mathrm{Mn}^{2+}$ and Fe^{3+} in a singlecrystal of CaO at $\theta=\mathrm{H} \Lambda[100]=0$ and $\mathrm{T}=300^{\circ} \mathrm{K}$2.4 Differentiation of ESR absorption spectra in $\mathrm{ZnTe}: \mathrm{Mn}$2.5 (a) The splitting of $M_{S}=\frac{1}{2}$ and $-\frac{1}{2}$ levels into sixclose lying levels and (b) the splitting of the$M_{S}=\frac{1}{2} \leftrightarrow M_{S}=-\frac{1}{2}$ transition into six approximatelyequally spaced transitions.12
2.6 Energy level scheme of $3 \mathrm{~d}^{5}{ }^{6} \mathrm{~S}_{5 / 2}\left(\mathrm{Mn}^{2+}\right)$ in a tetrahedral field at $\theta=0$ 14
2.7 Assignment of ESR spectra of Mn^{2+} in both O_{h} and T_{d} cases: (The spectrum belongs to Mn^{2+} in cubic ZnS) 15
2.8 Comparison of experimental and theoretical values of 3 a 17
3.1 A schematic energy diagram of $\left\{\left[\Sigma \Lambda_{4}\right]^{-n '},{ }^{6} A_{1}\right\}$ complex 23
Symmetry elements of a tetrahedron 25
5.1 $\quad \sigma$-bonding molecular orbitals in II-VI compounds of T_{d} symmetry. 49
5.2 (a) Ground state of complex $\left[\Sigma \Lambda_{4}\right]^{-n '}$, (b) $t_{2}{ }^{b} \rightarrow e_{n}$ charge transfer states and their schematic energy levels, and (c) $t_{2}{ }^{b} \rightarrow t_{2}$ a charge transfer states and their schematic energy levels. 49
5.3 Molecular orbital and energy levels of (a) the ground level ${ }^{6} \mathrm{~A}_{1}$ and (b) the $t_{1} \rightarrow e_{a}$ electron transfer levels ${ }^{6} \mathrm{~T}_{1}$ and ${ }^{6} \mathrm{~T}_{2}$ 55
5.4 Molecular orbital and energy levels of (a) ground level ${ }^{6} A_{1}$ and (b) the $t_{b} \rightarrow e_{a}$ electron transfer levels ${ }^{6} T_{1}$ and ${ }^{6} T_{2}^{\prime}$ 57

Molecular orbital techniques have been employed to find the cubic field splitting 3 a of (3 d$)^{5}{ }^{6}$ S ions in II-VI compounds of T_{d} symmetry. The parameter $3 a$ is calculated by perturbation analysis, through spinorbit interaction $\sum_{i} \zeta_{i} \underline{e}^{i} \cdot \underline{s}_{4-p}^{i}$ between the ground state $t_{a}^{3} e_{a}^{2}{ }^{6} A_{1}$ and excited states $\mid t_{a} p^{i} S_{1} h_{1} e_{a}^{4-p} S_{2} h_{2}, \gamma S_{3} h_{3}, S h>$. Here t_{a}, e_{a} are the antibonding orbitals of the complex composed of the (3d) ${ }^{5}{ }^{6} S$ ion and its four nearest ligands and p and $4-p$ are the hole configurations of orbitals t_{a} and e_{a}, respectively.

The perturbation calculations have been carried out up to the fourth order which is the lowest order necessary for the splitting 3 a to occur. Moreover, these calculations have been limited to the very small number of states which arise exclusively from those initial states $t_{a}{ }^{p}$ $S_{1} h_{1}, e_{a}^{4-p} S_{2} h_{2} \ldots \ldots$. with $^{S_{1}}, S_{2} \ldots$ having their maximum value. The analytical result is found as

$$
3 a=\sum_{i=0}^{4} c_{i} \zeta_{d}^{4-i} \zeta_{p}^{i}
$$

where ζ_{d} and ζ_{p} are spin-orbit parameters of the d-orbitals of (3d) ${ }^{5}{ }^{6}$ S ion and p orbitals of the ligands respectively. The coefficients C_{i} are functions of coefficients of linear combinations of d and p orbitals which give rise to the molecular orbitals t_{a}, e_{a} and γ. They are also functions of energies $E_{j k}$ required for promotion of a hole from a state $\mid X_{j} S_{j} h_{j}>$ to another state $\mid X_{k} S_{k} h_{k}>$. The X_{j} and X_{k} in above states describe the hole configurations of orbitals t_{a}, e_{a}, γ and their coupling scheme.

Numerical results, obtained for states $\mid x S=5 / 2 h>$ of Fe^{3+} in the series of $\mathrm{ZnS}, \mathrm{ZnSe}$ and ZnTe compounds with a reasonable set of coefficients of linear combination of atomic orbitals and an average promotion energy of $32000 \mathrm{~cm}^{-1}$, indicate that the term $\mathrm{C}_{4} 5_{\mathrm{p}}^{4}$ contributes a large negative value to 3 a in agreement with experimentally determined $3 a$ of $\mathrm{Fe}^{3^{+}}$in ZnTe .

The importance of the concept of spin Hamiltonian in electron spin resonance (ESR) is very well known.* The techniques of the measurement of the parameters in this Hamiltonian are also well developed. However, the attempts to interpret the measured values of the parameters have met with partial degree of success.

A particularly puzzling discrepancy has been the ground state splitting of the iron group S-state ions in $I I-V I$ compounds of T_{d} symmetry. The first ESR measurement of this splitting was made on $\mathrm{ZnS}: \mathrm{Mn}$ by Matarrese and Kikuchi. ${ }^{l}$ This was followed by Watanabe's theory ${ }^{+}$which predicted the 3 a of a given S-state ion, in several compounds with the same formal charge, should decrease as the metal-ligand distance, R, increases. Predictions of this theory were given support by the measured 3a in II-VI compounds with O_{h} symmetry. Subsequent measurements showed that such is not always the case for every compound such as CdS:Mn and CdTe:Mn ${ }^{2}$. The 3 a in CdTe:Mn was larger than that in CdS:Mn. This observation indicated that the point charge model is not adequate for the explanation of 3 a in covalent II-VI compounds and the covalency effects should also be taken into account.

The purpose of this work is to explore the contributions to 3a caused by the above covalency effects present in such compounds such as CdTe by invoking the molecular orbital theory instead of the abovementioned point charge model. In order to obtain an insight into the sources of such contribution to 3 a , as well as to the mechanisms causing

[^0]the splitting to occur, a brief introduction to calculations based on the point charge model should be very helpful. Therefore, we proceed by giving a review of the previous work on 3 a first, and then, we arrive at the possible covalency phenomena affecting this parameter.

The ground state of the free ions $\mathrm{Cr}^{+}, \mathrm{Mn}^{2+}$ and Fe^{3+} is six fold degenerate with the spectroscopic classification of (3d) ${ }^{5}{ }^{6} S_{5 / 2}$. Substituting such an ion in the metal site of cubic II-VI compounds, such as Mn^{2+} in the Zn^{2+} site of ZnS , one finds from electron spin resonance (ESR) spectra of the system $\mathrm{ZnS}: \mathrm{Mn}^{1,2}$, that the ground state of the S state ion splits into a spin quartet U^{\prime} and a spin doublet $E^{\prime \prime}$. This splitting is called the cubic field splitting of a (3d) ${ }^{5}{ }^{6} S_{5 / 2}$ ion and is denoted by the parameter $3 a=E\left(U^{\prime}\right)-E\left(E^{\prime \prime}\right)$ with $E\left(U^{\prime}\right)$ and $E\left(E^{\prime \prime}\right)$ as the lowest energy values of levels of symmetries U^{\prime} and $E^{\prime \prime}$, respectively.

The crystalline cubic field can be expressed as: ${ }^{2} \mathrm{~V}=\mathrm{a}(15)^{-1}$ $\left(T_{0}^{4}+(5 / 14)^{1 / 2}\left(T_{4}^{4}+T_{-4}^{4}\right)\right.$. The matrix elements of tensors $T_{q}^{(k)}$ of V for two states $\mid \gamma \mathrm{L}_{\mathrm{L}}>$ and $\left|\gamma^{\prime} L^{\prime} M_{L}^{\prime}\right\rangle$ are:*

$$
\left\langle\gamma L M_{L}\right| T_{q}^{(k)} \left\lvert\, \gamma^{\prime} L^{\prime} M_{L}^{\prime}>=(-1)^{L-M_{L}}\left(\begin{array}{ccc}
L & k & L^{\prime} \\
-M_{L} & M^{\prime} \\
L^{\prime} &
\end{array}\right)\right.
$$

$$
\text { (x) }\left(\gamma L\left|\left|T^{(k)}\right|\right| \gamma^{\prime} L^{\prime}\right) \equiv 0, \quad \text { for } L=L^{\prime}=0 ; k=4
$$

This result indicates that the ground state ${ }^{6} S_{5 / 2}$ is not split by a cubic field but that the splitting is caused from admixture of the ground state by excited states through perturbation by spin orbit coupling, spin-spin interaction, etc.

[^1]A similar ground state splitting was manifested in an observation of the anisotropy of the magnetic susceptibility of paramagnetic crystals containing Mn^{2+} such as $\mathrm{Mn}\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{SO}_{4}\right)_{2} 6 \mathrm{H}_{2} 0$. To explain this, Van Vleck and Penney (1934) ${ }^{3}$ considered various higher order processes involving the cubic field V and the spin orbit interaction, $H_{p}=\sum_{i} \zeta_{i} \ell^{i} \cdot \underline{s} \underline{i}^{i}$ through intermediate excited states using the order of magnitude argument to estimate the resulting splitting. Later Pryce (1950), ${ }^{4}$ in explaining the same splitting for Fe^{3+}, pointed out the inadequacy of mechanisms proposed by Van Vleck ${ }^{3}$ and attributed the cubic ground state splitting of Fe^{3+} to a fifth order perturbation quartic in H_{p} and linear in V. The work by Pryce was followed by Watanabe (1957), 5 who based his calculations of the cubic splitting on the complimentary theorem in the crystalline field splitting of the transition ions. He argued that two ions with complementary electronic configurations, such as Ti^{3+} and Cu^{2+} whose ground level can be split by the first power of V, have always inverted splitting patterns with respect to each other when placed under the same crystalline environment. Based on this theorem, he concluded that a $3 d^{5}$ ion is its own complementary and that any splitting arising from the first power of V should be both positive and negative, and hence identically zero. Proving, in this way, that linear contributions of the cubic field cannot contribute to the splitting, he extended the fifth order perturbation suggested by Pryce to the sixth order so that the crystal field contribution could appear in the second power and spin orbit interaction in the fourth power. In addition, he included contributions from fourth and fifth order perturbations by cubic field, spin orbit and spin-spin interaction. In these calculations, the excited states considered were spin quartets; ${ }^{4} P,{ }^{4} D,{ }^{4} F$ and ${ }^{4} G$ of the $(3 \mathrm{~d})^{5}$ configuration with excited energies in the range of 30 to $50 \mathrm{x} 10^{4}$ cm^{-1}. The splitting 3 a obtained from these calculations is positive, and varies from about 10^{-3} to $10^{-4} \mathrm{~cm}^{-1}$. It seems to satisfy the scant experimental data available at the time. (See Table 1, Ref. 5.)

Upon comparing the excited state energies of $5 \times 10^{4} \mathrm{~cm}^{-1}$ and the cubic field splitting 3 a of the order of $10^{-3} \mathrm{~cm}^{-1}$ obtained from fifth and sixth order perturbations, there is an indication that none of the contributions which might arise from other excited multiplets of (3d) ${ }^{5}$ configuration can, a priori, be ignored. Indeed, there are spin doublets; ${ }^{2} S,{ }^{2} P,{ }^{2} D(3),{ }^{2} F(2),{ }^{2} G(2),{ }^{2} H$ and ${ }^{2} I$ lying in the region of 45 to $100 \times 10^{3} \mathrm{~cm}^{-1}$. Some of these such as ${ }^{2} \mathrm{I}$ and ${ }^{2} \mathrm{H}$ may be in the vicinity of ${ }^{4} \mathrm{D}$ and ${ }^{4} \mathrm{~F}$ and can contribute to the splitting. Powell et al (1960) ${ }^{6}$ took all of the doublets ${ }^{2}$ S..... ${ }^{2}$ I into account and carried out sixth order perturbation calculations with and without spin-spin interaction. They found that the inclusion of doublets increases the predicted splitting by one to two orders of magnitude as compared to the predicted splitting arising from spin quartets alone. Their calculated results, for the particular case of $\mathrm{Mg} 0: \mathrm{Mn}^{2+}$, agrees with experiments, provided that the spin orbit interaction constant, ζ_{d} of Mn^{2+}, is taken as 400 cm^{-1} and the cubic field strength, 10Dq of MgO , as $10500 \mathrm{~cm}^{-1}$. Both of these are unreasonably high. Low and Rosengarten (1963, 1964) 7,8 carried out calculations similar to that of Powell et al without spinspin interaction but they included the orbital polarization factor α, called Tree's correction factor. ${ }^{9}$ Their conclusion was that crystal field analysis is relatively successful in explaining the position of energy levels of the d^{5} manifold, but it is not capable of explaining the finer parameters such as the cubic field splitting, $3 a$, and the spectroscopic factor, g, both measured from ESR spectra of $3 d^{5}{ }^{6}$ S ions.

A comparison of the above theories with ESR measurements on Mn^{2+} in several compounds was made by Hall et al (1961). ${ }^{10}$ They observed that their measured 3 a for Mn^{2+}, in a number of fluorides and chlorides, could be accounted for by Powell's theory, whereas the agreement for Zn 0 got worse. For very covalent compounds, CdTe^{2} and $\mathrm{ZnTe},{ }^{11}$ a discrepancy of almost one to two orders of magnitude can be found. This indicates the inadequacy of Powell's purely ionic model for covalent systems. Another area in which both Powell's and Low's theories have failed is the spectroscopic g value. These theories predict a g value, for
an S -state ion such as Fe^{3+}, as less than the $\mathrm{g}_{\mathrm{e}}=2.0023$ of the free electron, in complete contradiction to experimental observations that the g parameter of Fe^{3+} is larger than 2.0023. Most of these investigators have attributed these irreconcilable discrepancies to the ligand-to-metal charge transfer processes such as those suggested by Fidone and Stevens ${ }^{12}$ and by Watanabe ${ }^{13-14}$ for the evaluation of $\Delta g=g-g_{e}$. An initial study for the determination of the charge transfer contribution to $3 a$, patterned after Watanabe's work, was carried out by Azarbayejani et a1. ${ }^{15}$

These calculations included the construction of appropriate molecular orbital (MO) wavefunctions and the allowance of ligand-to-metal electron transfer. In constructing the MO wavefunction, σ-bonding approximation was invoked and the cubic field splitting was obtained by a fourth order spin-orbit perturbation calculation.

It was found ${ }^{15}$ that $3 a \sim 3 a_{1}=0.1728 \lambda^{4} \beta^{6}\left(1-\varepsilon_{11} / \delta_{1}\right) \delta_{1}^{-3}$, where $\lambda=\zeta_{d}$ is the single electron spin orbit parameter, $\beta^{2}=1-\alpha^{2}$ is the covalency of the d orbitals of $3 d^{5}{ }^{6} S$ ion and ε_{11} and δ_{1} are related to ligand-to-metal electron transfer energy. From free ion optical spectra (Ref. 16, p. 437), an approximate value of $\zeta_{\mathrm{d}}=350 \mathrm{~cm}^{-1}$ may be taken, and from a comparison of the hyperfine structure constant in crystals to that of the free ion, $17 \beta^{2}$ may be estimated. For the particular case of $\mathrm{ZnS}: \mathrm{Mn}$ where $\zeta_{\mathrm{d}}=350 \mathrm{~cm}^{-1}, \beta^{2}=0.22$ energies δ_{1} of the order of 8000 to $10000 \mathrm{~cm}^{-1}$ give qualitative agreements with the measured 3a. The most encouraging aspect of these 3 a results is their correct trend for Mn^{2+} in going from ZnS to ZnTe because δ_{l} is expected to decrease as one goes from ZnS to ZnTe in accordance with Bube's conclusions on acceptor levels in II-VI compounds.*

In the present work, we have extended our previous analysis ${ }^{15}$ to include π-orbitals in addition to the σ-orbitals. This has introduced

[^2]extra orbitals in the charge transfer wavefunctions. Most of the desired spin orbit matrix elements for the determination of 3 a arise from the above wavefunctions and contain three or four orbitals. Since no expression for the evaluation of these matrix elements is available in the literature, general formulae for obtaining such matrix elements have been found first, and then, 3a has been calculated.

A brief introduction to the method of measuring $3 a$ and the values of 3 a for both the octahedral and tetrahedral II-VI compounds is given in II. Spin orbit matrix elements between excited spin multiplets is considered in III. The cubic field splitting 3 a from these charge transfer states, $t_{2}^{P} e^{4-p} \gamma$, is obtained in $I V$ and is discussed in V. Concluding remarks are given in VI.

EXPERIMENTAL DETERMINATION OF THE CUBIC FIELD SPLITTING OF THE $3 \mathrm{~d}^{5}$ S-STATE IONS

The purpose of this chapter is to give a brief introduction to the method of measuring the cubic field splitting, $3 a$, of the S-state ions such as $\mathrm{Cr}^{+}, \mathrm{Mn}^{2+}$ and Fe^{3+}.

The equipment employed consists of an electron spin resonance spectrometer such as the Varian V4502 EPR spectrometer in a 12-inch rotating electromagnet. Most of the measurements have been carried out at 4.2 and $77^{\circ} \mathrm{K}$ with a few being performed at $300^{\circ} \mathrm{K}$. The magnetic field, associated with a spectral line, has been obtained by first tuning a Varian F-8 Fluxmeter for the proton resonance at that field and then measuring of the proton resonance frequency by a Beckman 7370 electronic counter. The frequency of the microwave source used in the experiment was determined by first finding one of its subharmonics through Beckman transfer oscillator and then measuring the frequency of that subharmonic by the above mentioned counter.

The ESR spectra of Mn^{2+} in CaO and ZnTe are given in order to serve as representatives of ESR spectra of $3 d^{5}{ }^{6}$ S ions in octahedral and tetrahedral II-VI compounds.

In the octahedral case $\left(0_{h}\right)$, the paramagnetic $3 d^{5}{ }^{6}$ S ion is surrounded by six ligands or nonmetal nearest neighbors as shown in Fig. 2.1. These lie along the six crystallographic directions [100], [010], [001], [$\overline{1} 00$], [$0 \overline{1} 0]$ and [$00 \overline{1}]$ with the paramagnetic ion at the origin of the coordinate system.

On the other hand, in the tetrahedral case $\left(T_{d}\right)$, the paramagnetic $3 d^{5}{ }^{6}$ S ion is surrounded by four nearest neighbors lying along the four crystallographic directions [111], [$\overline{1} \overline{1} 1],[\overline{1} 1 \overline{1}]$ and [1高] as shown in Fig. 2.2.

The expression for the crystalline field of these ligands of the central ion is the same for both cases, provided the coordinate system is chosen as shown in Figs. 2.1 and 2.2.

Denoting the angle between the d.c. magnetic field and one of the coordinate axes such as z by θ, we have shown the spectra at $\theta=0$ for Mn^{2+} in CaO (Fig. 2.3) and ZnTe (Fig. 2.4). As mentioned above, the

Fig. 2.1. The octahedral coordination in cubic II-VI compounds ($\mathrm{CaO}: \mathrm{Mn}$).

Fig. 2.2. The tetrahedral coordination in cubic II-VI compounds ($\mathrm{ZnTe}: \mathrm{Mn}$).

Fig. 2.3. ESR spectra of $\mathrm{V}^{\wedge+}, \mathrm{Cr}^{3+}, \mathrm{Mn}^{2+}$ and Fe^{3+} in a single crystal of CaO at $\theta=H A[100]=0$ and $T=300^{\circ} \mathrm{K}$

MAGNETIC FIELD, H
Fig. 2.4. Differentiation of ESR absorption spectra in ZnTe:Mn
NOILdyOS日 $\forall=\forall$ 'HP/ $\forall P$
proper choice of the coordinate system has allowed us to analyze the spectra in both O_{h} and T_{d} cases by means of the same spin-Hamiltonian:*

$$
\begin{equation*}
H_{S}=g \beta_{e} \underline{H} \cdot S+A \underline{I} \cdot \underline{S}+a\left(S_{x}^{4}+S_{y}^{4}+S_{z}^{4}\right) / 6+\sum_{n} \underline{I}^{n} \cdot A_{n}^{\prime} \cdot \underline{S}-g_{N} \beta_{N} \underline{H} \cdot \underline{I} \tag{2.1}
\end{equation*}
$$

Here, g is the spectroscopic g factor, A, the hyperfine structure constant, $3 a$ the cubic crystalline field splitting, $A^{\prime}{ }_{n}$ is the superhyperfine coupling coefficient and the last term is the nuclear Zeeman effect. The brief reports on the measurements of g, A and $3 a$ of $\mathrm{ZnTe}: \mathrm{Mn}$ and $\mathrm{CaO}: \mathrm{Mn}$ obtained by using (2.1) are made previously. A brief introduction to the calculation of these parameters from the spin-Hamiltonian in (2.1) is as follows:

For $\theta=0$, the spin-Hamiltonian of (2.1) may be rewritten as

$$
\begin{equation*}
H_{S}(\theta=0)=g \beta_{e} H_{Z}+A I \cdot \underline{S}+a\left|T_{40}+\sqrt{5 / 14}\left(T_{44}+T_{4-4}\right)\right| / 15 \tag{2.2}
\end{equation*}
$$

in which

$$
\begin{equation*}
T_{40}=\left[35 S_{Z}^{4}-30 S^{* 2} S_{Z}^{2}+25 S_{Z}^{2}-6 S^{* 2}+3 S^{* 4}\right] / 8 \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
T_{4 \pm 4}=\sqrt{70} \mathrm{~S}_{ \pm}^{4} / 16 ; \quad \mathrm{S}^{* 2}=\mathrm{S}(\mathrm{~S}+1), \mathrm{S}_{ \pm}=\left(\mathrm{S}_{\mathrm{x}} \pm i \mathrm{~S}_{\mathrm{y}}\right) / \sqrt{2} \tag{2.4}
\end{equation*}
$$

The H_{s} in (2.1) can be expressed as

$$
H_{s}=H_{s}^{f s}+H_{s}^{h f s}
$$

[^3]where
\[

$$
\begin{equation*}
H_{s}^{f s}=g \beta_{e} H_{Z}+a\left[T_{40}+\sqrt{5 / 14}\left(T_{44}+T_{4-4}\right)\right] / 15 \tag{2.5}
\end{equation*}
$$

\]

and

$$
\begin{equation*}
H_{S}^{h f s}=A \underline{I} \cdot \underline{S} \tag{2.6}
\end{equation*}
$$

The energy of each M_{S} level can be obtained by solving the secular equation corresponding to the fine structure Hamiltonian $H^{f s}$ given in (2.5)

$$
\begin{equation*}
\left\|\left(\mathrm{H}_{\mathrm{s}}^{\mathrm{fs}}\right)_{\mathrm{MM}^{\prime}}-\mathrm{E} \delta_{\mathrm{MM}^{\prime}}\right\|=0 \tag{2.7}
\end{equation*}
$$

where

$$
\begin{aligned}
& \left(\mathrm{H}_{\mathrm{S}}^{\mathrm{fs}}\right)_{\mathrm{MM}^{\prime}}=\mathrm{X} \delta_{\mathrm{MM}^{\prime}}+\mathrm{y} \delta_{\mathrm{MM}^{\prime}} \pm 4 \\
& \mathrm{X}=\left[2 \mathrm{M} \mathrm{\varepsilon}+\mathrm{a}\left(14 \mathrm{M}^{4}-95 \mathrm{M}^{2}+184\right) / 48\right] \\
& \mathrm{y}=\sqrt{5 \mathrm{a} / 2}
\end{aligned}
$$

and

$$
\varepsilon=g \beta_{e} H / 2
$$

Substituting for (2.7) one finds:
$E\left(M_{S}= \pm 1 / 2\right)= \pm \varepsilon+a$
$E\left(M_{S}= \pm 3 / 2\right)= \pm 3 \varepsilon-3 a / 2 \pm 5 a^{2} / 32 \varepsilon$
$E\left(M_{S}= \pm 5 / 2\right)= \pm 5 \varepsilon+a / 2 \pm 5 a^{2} / 32$

Fig. 2.5. (a) The splittings of $M_{S}=\frac{1}{2}$ and $-\frac{1}{2}$ levels into six close lying levels and (b) the splitting of the $M_{S}=\frac{1 / 2}{2} \rightarrow M_{S}=-\frac{1}{2}$ transition into six approximately equally spaced transitions.

For many cases where the microwave frequency v_{0}, used for ESR measurements is about 10 KMC and a II-VI compound is the host material, the ratio $\varepsilon / a=0.01-0.1$ for $3 d^{5}{ }^{6} \mathrm{~S}$ ions $\mathrm{Cr}^{+}, \mathrm{Mn}^{2+}$ and Fe^{3+}. In such cases, one is able to use $A I \cdot \underline{S}$ as a perturbation on the first term of (2.5) which causes each M_{S} level to split into six close lying levels. As an example, the splittings of the $M_{S}=1 / 2$ and $-1 / 2$ levels are given in Fig. 2.5. For the allowed ESR transitions $\left(\Delta M_{S}= \pm 1, \Delta m_{I}=0\right)$ each $M_{S}-1 \leftrightarrow M_{S}$ transition will split in $2 I+1$ transitions. The number of $M_{S}-1 \leftrightarrow M_{S}$ transitions which can be observed distinctly is 2 S , provided that the parameter A in (2.8) is large enough to offset the effect of the line broadening.

The energy diagram of the M_{S} levels of a $3 d^{5}{ }^{6}$ S ion at $\theta=0$ is obtained as a function of $\rho=g \mathrm{BH} / 2 \mathrm{a}$ (Table 2.1 and Fig. 2.6). The numbers identify the upper M_{S} values. Thus, the five transitions $M_{S}=-5 / 2 \leftrightarrow M_{S}=-3 / 2 \ldots M_{S}=3 / 2 \leftrightarrow=5 / 2$ are designated by $-3 / 2$, $-1 / 2 \ldots . .5 / 2$, respectively. When the lines are well resolved one expects to observe $2 S(2 I+1)$ lines. This number for Mn^{2+} with $\mathrm{S}=5 / 2$ and $I=5 / 2$ is 30 (Figs. 2.3 and 2.7). These lines can be identified with the electronic and nuclear magnetic quantum numbers M_{S} and m_{I} by considering the fact that the intensity of the five lines $3 / 2 \ldots . .5 / 2$ belonging to any of the $2 I+1$ quintets should vary as $5: 8: 9: 8: 5$. Therefore, the following assignments are possible for both octahedral and tetrahedral cases (Fig. 2.7).

$$
\begin{aligned}
& \alpha_{1}, \lambda_{1} \text { correspond to } M_{S}= \pm 3 / 2 \leftrightarrow \pm 1 / 2 \\
& \beta_{i}, \delta_{1} \text { correspond to } M_{S}= \pm 5 / 2 \leftrightarrow \pm 3 / 2
\end{aligned}
$$

and

$$
\gamma_{i} \text { correspond to } M_{S}= \pm 1 / 2 \leftrightarrow \pm 1 / 2
$$

Fig. 2.6. Energy level scheme of $3 d^{5}{ }^{6} \mathrm{~S}_{5 / 2}\left(\mathrm{Mn}^{2+}\right)$ in a tetrahedral field at $\theta=0$.

Table 2.1. Variation of separation of Mn^{++}ESR fine-structure components at $\theta=0$ as a function of $\rho=g \beta H / 2 a=\varepsilon / a$

D	${ }^{\mathrm{E}}{ }_{5 / 2}{ }^{-\mathrm{E}_{\mathrm{F}}}$	${ }^{\mathrm{E}-3 / 2}{ }^{-\mathrm{E}_{\mathrm{F}}}$	${ }^{\text {E- }} 1 / 2{ }^{-E_{F}}$	$\mathrm{E}_{1 / 2} \mathrm{E}_{\mathrm{F}}$	$\mathrm{E}_{3 / 2} \mathrm{E}_{\mathrm{F}}$	$\mathrm{E}_{5 / 2} \mathrm{E}_{\mathrm{F}}$
0	-2.00	-2.00	1.00	1.00	1.00	1.00
1	-4.71	-4.62	0.00	2.00	1.71	5.62
2	-9.59	-7.57	-1	3	4.59	10.57
3	-14.56	-10.55	-2	4	7.05	15.55
4	-19.54	-13.54	-3	5	10.54	20.54
5	-24.53	-16.53	-4	6	13.53	25.54
6	-29.52	-19.53	-5	7	16.53	30.52
7	-34.52	-22.52	-6	8	19.52	35.52
10	-49.52	-31.51	-9	11	28.51	50.5
100	-499.5	-301.50	-99	101	298.5	500.5

Fig. 2.7. Assignment of ESR spectra of Mn^{2+} in both O_{h} and T_{d} cases: (The spectrum belongs to Mn^{2+} in cubic ZnS)

The next step to consider is the determination of the spin-Hamiltonian coefficients g, A and a of (2). For a fixed microwave frequency v_{o}, these coefficients can be measured as follows:

$$
\begin{align*}
& g=h \nu_{o} / \beta_{e}\left[\left(H_{\gamma 1}+H_{\gamma 6}\right)\right] / 2 \\
& |A|=g \beta_{e}\left[\left(H_{\gamma 6}-H_{\gamma 1}\right)\right] / 5 \tag{2.9}
\end{align*}
$$

and

$$
|a| \cong g \beta_{e}\left[\left(H_{\gamma 1}-H_{\alpha 1}\right)+\left(H_{\lambda 6}-H_{\gamma 6}\right)\right] / 5
$$

The signs of A and a can be determined relative to each other with the sign of a being determined independently by its measurement at low temperatures. The results of such measurements are given in Table 2.2 and $3 a$ and g are compared with predictions of the present theories of these parameters in Table 2.3 and Fig. 2.8. The agreement is generally satisfactory for the case of $\mathrm{MgO}, \mathrm{CaO}$ and SrS , whereas disagreement is observed for zinc and cadmium chalcogendies. These deviations from ionic theory which arise from larger covalency existing in the latter group compared to the former, have emphasized the need of a more

Table 2.2. ESR results of S-state ions in II-VI compounds

				cr^{+}			Mn^{++}			Fe^{++}		
$\begin{aligned} & J \\ & \frac{J}{U} \\ & \frac{H}{2} \end{aligned}$	5 5 告		-	$10^{-4} \mathrm{~cm}^{-1}$	8	$\begin{gathered} 3 \mathrm{a} \\ 10^{-4} \mathrm{~cm}^{-1} \end{gathered}$	$10^{-4} \mathrm{~cm}^{-1}$	8	$\begin{gathered} 3 \mathrm{a} \\ 10^{-4} \mathrm{~cm}^{-1} \end{gathered}$	\wedge	g	$\begin{gathered} 3 \mathrm{a} \\ 10^{-4} \mathrm{~cm}^{-1} \end{gathered}$
Mgo	$0_{h}{ }^{7}$	6	2.12	--	--	--	-81.0	2.0014	55		2.0037	615
CaO	$0_{h}{ }^{7}$	6	2.40	--	--	--	-80.7	2.0009	17.7		2.0052	191
Srs	$0_{n}{ }^{7}$	6	3.05	--	--	--	-17	2.0009	4.2		--	--
2 nO	$\mathrm{c}_{6 \mathrm{v}}{ }^{4}$	4	1.95	--	--	--	-74	2.0016	18		2.006	123
2nS	Td^{2}	4	2.36	13.4	1.9995	12	-64.9	2.0025	23.7		2.019	382
2nS	$\mathrm{C}_{6 \mathrm{~V}}^{4}$	4	--	--	--	--	--	--	--		2.018	384
znSe	$\mathrm{I}_{\mathrm{d}}{ }^{2}$	4	2.45	13.3	2.0016	16.05	--	--	--		--	144.9
2nSe	Cobr^{4}	4	-	--	--	--	-61.7	2.0055	32.1		--	--
2 nTe	Td^{2}	d	2.66	12.4	2.0023	19.80	-56.5	2.0075	88.9		2.09	-7800
Cds	$\mathrm{c}_{6 \mathrm{~V}}^{4}$	4	2.52	-	-*	--	-63.3	2.003	11.7		2.01	285
CdSe	Cbva^{4}	-	2.64	--	--	--	-62.7	2.005	4.3		--	--
CdTe	$\mathrm{T}_{\mathrm{d}}{ }^{2}$	4	2.80	12.8	1.9997	9.3	-35	2.0078	83.1		--	--

Table 2.3.* Comparison of ESR results with predictions of ionic theory

Material	Sym	${ }^{\text {r }}$ T	Cr^{+}	${ }^{{ }^{T} \mathrm{En}_{\mathrm{n}}++}$	Fe^{++}	Δg_{T}		${ }^{B_{E}}$ Mn^{++}	Fe^{++4}
MgO	0_{h}	1.000		1.000	1.000	<0		<0	>0
CaO	0_{h}	0.287		0.32	0.311	<0		<0	>0
SrS	0_{h}	0.026		0.07		<0		<0	
Zn0	$C_{6 v}^{4}$	6.635		0.76	0.316	<0		<0	>0
ZnS	$C_{6 v}^{4} \& T_{d}^{2}$	1.000	1.000	1.000	1.000	<0	<0	20	>0
ZnSe	$C_{6 v}^{4} \mathrm{cos}^{4} \mathrm{~d}^{2}$	0.685	1.34	2.198	0.38	<0	<0	>0	>0
ZnTe	$\mathrm{T}_{\mathrm{d}}^{2}$	0.301	1.65	3.751	-20	<0	20	0	>0
CdS	C_{60}^{4}	1.000		1.000		<0		0	>0
CdSe	$c_{6 v}^{4}$	0.624		3.67		<0		0	
CdTe	$\mathrm{T}_{\mathrm{d}}{ }^{2}$	0.345		7.02		<0	<0	0	

${ }^{*}$ The r_{T} and r_{E} are the theoretical and experimental ratios of 3a respectively and
 constant.

Fig. 2.8. Comparison of experimental and theoretical values of 3 a .
realistic theory which takes these covalency effects into account. In the next few chapters the dependence on the covalency of the parameters given in (9) is pursued with a greater emphasis on calculations related to the cubic field splitting 3a.

As mentioned in the last section, we intend to obtain the cubic field splitting $3 a$ by using the linear combination of atomic orbital molecular orbital (LCAO-MO) techniques. The wavefunctions constructed from these LCAO-MO's in a certain manner,* serve as excited states which admix to the ground state wavefunction through spin orbit interaction and cause a contribution to the cubic splitting $3 a$.

From this brief introduction, it is immediately evident that our task is twofold: (1) to construct the LCAO-MO (henceforth denoted by MO) and the desired wavefunctions and (2) to develop appropriate expressions for the matrix elements of the spin orbit interaction in the MO scheme.

Since we are primarily concerned with the cubic field splitting, 3a, in compounds of T_{d} symmetry, our effort will be directed toward the determination of the matrix elements of spin orbit interaction, $H_{p}=\sum_{i} \zeta_{i} \underline{\ell}^{i} \cdot \underline{s}^{i}$, between various wavefunctions of a complex, $\left[\Sigma \Lambda_{4}\right]^{-n^{\prime}}$, consisting of a $3 d^{5}{ }^{6} \mathrm{~S}$ ion ${ }^{* *} \Sigma$ and four ligands, $\Lambda_{1} \ldots \Lambda_{4}$, the whole complex being located in a cubic crystal $B \Lambda$. For example, in the case of manganese doped zinc sulfide, ($\mathrm{ZnS}: \mathrm{Mn}$), $\mathrm{Zn}=\mathrm{B}, \mathrm{S}=\Lambda, \mathrm{Mn}=\Sigma$, $n^{\prime}=6$ and the complex is $\left[\mathrm{MnS}_{4}\right]^{-6}$.

In order to limit our analysis to those formulae affecting just 3 a , we proceed by defining the cubic field splitting and the symmetry of the levels which give rise to that splitting.

[^4]
1. CUBIC FIELD SPLITTING

The following is a brief elaboration of the symmetry group of the states into which the ground state of the complex, $\left(\Sigma \Lambda_{4}\right)^{-n \prime}$ splits ($\Sigma=\mathrm{Cr}^{+}, \mathrm{Mn}^{2+}, \mathrm{Fe}^{3+}, \Lambda=\mathrm{S}^{--}, \ldots \mathrm{Te}^{--}$).

The symmetry ${ }^{*}$ of the ground state of the above complex is of A_{1} and has a total spin $S=5 / 2$. Thus, the ground state may be given as $\left.\left[\left[\Sigma \Lambda_{4}\right]^{-n^{\prime}} A_{1} S=5 / 2\right\rangle\right]$ or more simply by $\left|x_{0}{ }^{6} A_{1}\right\rangle$ where x_{0} denotes the MO's giving rise to the ${ }^{6} A_{1}$ state, their electronic configuration and finally, the total spin values and the irreducible representations, $S_{i} h_{i}$, of each of these MO which comprise X_{0}.

The symmetry group of the total Hamiltonian of the complex is $0 \times U_{2}$ where 0 is the group of symmetry operations of a cube in orbital space and U_{2} is the group of rotation in spin space. The representation of ${ }^{6} A_{1}$, in the full rotation double group, $G^{\prime}=R_{3} \times U_{2}$, is $J=5 / 2$. The irreducible representations of $J=5 / 2$ in $G=0 \times U_{2}$ are $E^{\prime \prime}+U^{\prime}$. According to the irreducibility principle, ${ }^{\dagger}$ the maximum number of levels created by the perturbation of $\left|A_{1} S=5 / 2\right\rangle=\left|{ }^{6} A_{1}\right\rangle$ will be the number of irreducible representations of $J=5 / 2$ in G which is two levels.

The cubic field splitting is defined as the energy separation of these two levels:

$$
\begin{equation*}
3 a=E\left(U^{\prime}\right)-E\left(E^{\prime}\right) \tag{3.1}
\end{equation*}
$$

where

$$
\begin{equation*}
E\left(\Gamma^{\prime}\right)=E^{(0)}\left(\Gamma^{\prime}\right)+E^{(1)}\left(\Gamma^{\prime}\right)+\ldots .+E^{(4)}\left(\Gamma^{\prime}\right) ; \Gamma^{\prime}=U^{\prime} \text { or } E^{\prime} \tag{3.2}
\end{equation*}
$$

[^5]Here, $E^{(n)}\left(\Gamma^{\prime}\right)(n=0,1 \ldots, 4 \ldots)$ are the $n^{\text {th }}$ order contribution to $\mathrm{E}\left(\Gamma^{\prime}\right)$. The 3a will be positive or negative depending on the relative magnitudes of $E\left(U^{\prime}\right)$ and $E\left(E^{\prime \prime}\right)$.

The Hamiltonians giving $E^{(n)}(\Gamma)$ will be examined in the next section.
2. HAMILTONIANS

We wish to consider a Hamiltonian of the complex, $\left[\Sigma \Lambda_{4}\right]^{-n '}$, which includes a zero ${ }^{\text {th }}$ order Hamiltonian, H_{0}, satisfying $H_{0} \psi_{n}=E_{n} \psi_{n}$ and a perturbation Hamiltonain, H_{p}, from whose matrix elements $M_{m n}$ between ψ_{m} and ψ_{n}, the corrections $\mathrm{E}^{(\mathrm{n})}(\Gamma)$ may be obtained. Denoting the above Hamiltonian by $H_{0}{ }^{\prime}$, one has

$$
\begin{equation*}
H_{0}^{\prime}=H_{0}+H_{p} \tag{3.3}
\end{equation*}
$$

In the present work, we limit out perturbation analysis to spin orbit interaction. Thus,*

$$
\begin{equation*}
H_{p}=\sum_{i}^{n^{\prime \prime}} \zeta_{i} \underline{\ell}^{i} \cdot \underline{s}^{i} \tag{3.4}
\end{equation*}
$$

and the zero ${ }^{\text {th }}$ order Hamiltonian, H_{O} is:

$$
\begin{equation*}
H_{o}=\sum_{i=1}^{n^{\prime \prime}}\left(P_{i}^{2} / 2 m_{i}-z e^{2} r_{i}^{-1}\right)+\sum_{i>j}^{n^{\prime \prime}} e^{2} r_{i j}^{-1}+\sum_{k=1}^{4} n_{i=1}^{n^{\prime \prime}} V\left(\underline{r}_{i k}\right) \tag{3.5}
\end{equation*}
$$

where $n^{\prime \prime}=37$, refers to the sum of the 32 valence electrons in the molecular orbitals of the complex, $\left(\Sigma \Lambda_{4}\right)^{-n^{\prime}}$, and the 5 electrons located in the d orbitals of the central ion Σ. The first term in (3.5), represents the kinetic and potential energies, the second one gives the

[^6]Coulomb and exchange energies and the last term gives the effect of four ligands, k, separated from the central ion by $r_{k} \cdot Z_{\alpha}$ in (3.5) refers to the effective charge of the central ion. The eigenfunctions and eigenvalues of (3.5) are usually obtained by approximate techniques. One of these is known as the self-consistent charge configuration (SCCC) method. Ballhausen ${ }^{23}$ used this last technique to construct the eigenvalues and eigenvectors belonging to the $\left[\mathrm{MnO}_{4}\right]^{-1}$ complex and very recently Basch et al ${ }^{24}$ extended the same method to the 32 complexes of transition ions in compounds with O_{h} or T_{d} symmetries. The latter authors give an energy diagram for the $\left[\mathrm{FeCl}_{4}\right]^{-2}$ complex. The levels lie from $-220 \times 10^{3} \mathrm{~cm}^{-1}$ to about $90 \times 10^{3} \mathrm{~cm}^{-1}$ and they are classified according to their symmetry as follows:

$$
\begin{equation*}
\left(1 a_{1}\right)^{2}\left(1 t_{2}\right)^{6}\left(2 a_{1}\right)^{2}\left(2 t_{2}\right)^{6}(1 e)^{4}\left(3 t_{2}\right)^{6}\left(t_{1}\right)^{6}(2 e)^{2}\left(4 t_{2}\right)^{4}\left(5 t_{2}\right)^{0}\left(3 a_{1}\right)^{0} \tag{3.6}
\end{equation*}
$$

where the superscripts are the electronic configurations and $1 a_{1}, l t_{2}$. . $.3 a_{1}$ have the symmetry $A_{1}, T_{2} \ldots A_{1}$ of the cubic point group. The MO configuration for Fe^{3+}, in tetrahedral complexes as well as Mn^{2+} and Cr^{+} in such complexes will be the same as in (3.6) except the configuration of ($4 t_{2}$) reduces from 4 to 3 . The orbitals we plan to use for the construction of the excited wavefunctions are $1 e, 3 t_{2}, t_{1}, 2 e$ and $4 t_{2}$. To simplify the notation, we label them $e_{b}, t_{b}, t_{1}, e_{a}$ and t_{a}, respectively. Here, the subscript b points out that e_{b} and t_{b} are bonding orbitals with E and T_{2} symmetries, respectively. Similarly, those with the subscript a are the antibonding orbitals, whereas t_{1}, which does not have any subscript, is a nonbonding orbital. A schematic energy diagram associated with the above five orbitals; $t_{b}, e_{b}, t_{1}, e_{a}$ and t_{a} and their corresponding electronic configurations characteristic of $\left[\Sigma \Lambda_{4}\right]^{-n}$ is given in Fig. 3.1.

Fig. 3.1. A schematic energy diagram of $\left\{\left[\Sigma \Lambda_{4}\right]^{-n},{ }^{6} A_{1}\right\}$ complex.
The $p \pi$ in Fig. 3.1 are linear combinations of the components of ligand p orbitals which are perpendicular to the interionic distance. The $p \sigma$ are the part of the p orbital projected along the interionic axis. Having defined the nature of the orbitals involved, we now proceed to construct the wavefunctions.

3. WAVEFUNCTIONS

We want to describe the spin values S_{i} and the irreducible representations, h_{i}, of the individual molecular orbitals (MO) giving rise to the ground state and excited states. A knowledge of these is necessary for the determination of spin-orbit matrix elements as will be seen later (see 4). Therefore, we first consider the ground state and then, discuss the excited ones.

3.1 Ground State Wavefunction

A description of the ground state wavefunction is being sought which emphasizes the symmetry, spin and irreducible representation of the molecular orbitals which constitute it.

The radial part of the individual wavefunction will not be included for simplicity and the spin orbit interaction parameter, $\zeta_{i}(r)$ of (3.4) will be considered as ζ_{d} for the d orbitals of ion Σ and ζ_{p} for the p orbitals of ligands Λ_{i} in the complex $\left[\Sigma \Lambda_{4}\right]^{-n}\left(\Sigma=\mathrm{Cr}^{+}\right.$, $\mathrm{Mn}^{2+}, \mathrm{Fe}^{3+} \cdot \Lambda_{\mathrm{i}}=0^{--}, \ldots \mathrm{T}^{--}$).

The orbital part of the ground state wavefunction can be deduced from Fig. 3.1, in the following form:
$\left|x_{0} e^{6} A_{1}\right\rangle=\left\{\left[\left(\Sigma \Lambda_{4}\right)^{-n^{\prime}}, c t_{b}^{6} e_{a}^{4} t_{1}{ }^{6} e_{a}^{2} t_{a}^{3} ;{ }^{6} A_{1}\right\rangle\right\} \rightarrow\left|t_{b}{ }^{6} e_{a}^{4} t_{1}{ }^{6} e_{a}^{2} t_{a}^{3}{ }^{6} A_{1}\right\rangle$
where

$$
\begin{equation*}
x_{o}^{e}=t_{b}{ }^{6} e_{a}^{4} t_{1}^{6} e_{a}^{2} t_{a}^{3} \text { is electron configuration } \tag{3.8a}
\end{equation*}
$$

or

$$
\begin{equation*}
x_{o}^{h}=t_{b}{ }^{o} e_{b}{ }^{o} t_{1}{ }^{o} e_{a}^{2} t_{a}^{3} \text { is hole configuration } \tag{3.8b}
\end{equation*}
$$

The irreducible representations of the molecular orbitals $t_{b}, e_{b} \ldots \operatorname{in}(3.7)-(3.8 b)$ are

$$
\begin{align*}
& \Gamma\left(t_{b}\right)=\Gamma\left(t_{a}\right)=T_{2} \\
& \Gamma\left(e_{b}\right)=\Gamma\left(e_{a}\right)=E \\
& \Gamma\left(t_{1}\right)= \tag{3.9}
\end{align*}
$$

The symmetry of the irreducible representations T_{2}, E and T_{1} of T_{d} group can be deduced from the character table of this group (Ref. 25, p. 383) given in Table 3.1.

The group classes C_{2}, C_{3}, σ_{d} and S_{4} of Table 3.1 are classes of symmetry elements of a tetrahedron as shown in Figure 3.2.

3.2 Excited State Wavefunctions - Charge Transfer Wavefunctions

We wish to describe here, the excited states created exclusively by the process of promoting one electron from one of the three orbitals t_{b}, e_{b} or t_{1} of $x_{o}{ }^{e}$ in (3.8a) to any of the two orbitals e_{a} and

Table 3.1. Double Valued Character Table of Group T_{d}

Bethe	Mulliken	1	R	$8 \mathrm{C}_{3}$	${ }^{8 C_{3} R}$	$6 \mathrm{C}_{2}$	$12 \sigma_{\mathrm{d}}$	$6 \mathrm{~S}_{4}$	$6 \mathrm{~S}_{4}{ }^{\mathrm{R}}$
r_{1}	$\mathrm{~A}_{1}$	1	1	1	1	1	1	1	1
r_{2}	$\mathrm{~A}_{2}$	1	1	1	1	1	-1	-1	-1
r_{3}	E	2	2	-1	-1	2	0	0	0
r_{4}	$\mathrm{~T}_{1}$	3	3	0	0	-1	-1	1	1
r_{5}	$\mathrm{~T}_{2}$	3	3	0	0	-1	1	-1	-1
r_{6}	E^{\prime}	2	-2	1	-1	0	0	$\sqrt{2}$	$-\sqrt{2}$
r_{7}	E^{\prime}		2	-2	1	-1	0	0	$-\sqrt{2}$
r_{8}	U^{\prime}	4	-4	-1	1	0	0	0	0

Fig. 3.2. Symmetry elements of a tetrahedron
t_{a} in $X_{o}{ }^{e}$. All other excited wavefunctions arising either from multiple charge transfer or from the irreducible representations, h_{i}, of terms of t_{a}^{p} and e_{a}^{5-p} which belong to spin values of $S_{i}=p / 2-1$ and $1 / 2(5-p)-1$ are ignored. A similar restriction is imposed upon h_{i} after charge transfer (hole transfer) occurs, and, as a result of this, all excited states arising from $t_{a} p^{\prime}$ and $e_{a}^{4-p^{\prime}}$ (after hole transfer, the sum of the hole configuration of t_{a} and e_{a} will be 4) which belong respectively to spin values of $S_{i}=p^{\prime} / 2-1$ or $\left(4-p^{\prime}\right) / 2-1$, are ignored. For
example, a hole transfer from $t_{a}{ }^{3}$ in (3.8b) gives $t_{a}{ }^{2}$ as a new hole configuration for this orbital. The irreducible representations, (IR) of $t_{a}{ }^{2}$ are

$$
\begin{equation*}
\Gamma\left(t_{a}^{2}\right)={ }^{3} T_{1}+{ }^{1} A_{1}+{ }^{1} E+{ }^{1_{2}} \tag{3.10a}
\end{equation*}
$$

and similarly,

$$
\begin{equation*}
\Gamma\left(e_{a}^{2}\right)={ }^{3} A_{2}+{ }^{1} A_{1}+{ }^{1} E \tag{3.10b}
\end{equation*}
$$

From the IR's (3.10a - 3.10b) only those with the maximum spin of these two shells, namely,

$$
r_{\max }\left(t_{a}^{2}\right)={ }^{3} T_{1}
$$

and

$$
\begin{equation*}
\Gamma_{\max }\left(e_{a}^{2}\right)={ }^{3} A_{2} \tag{3.11}
\end{equation*}
$$

are considered and all the remaining spin singlets are ignored. The electronic configurations of the complex, after charge transfer, and their corresponding terms constructed in the above scheme are given in Table 3.2.

Now we consider the determination of the spin
orbit matrix elements between spin sextets ${ }^{6} A_{1}$ of the ground state and the excited spin sextets and quartets given in Table 3.2.
4. MATRIX ELEMENTS OF SPIN ORBIT INTERACTION

The matrix elements of the spin orbit Hamiltonian, $H_{p}=\sum_{i}^{\Sigma_{i}} \underline{\ell}^{i} \cdot \underline{g}^{i}$, will be discussed in this section and Section 5.

A few initial comments are necessary to point out the need for the development of new formulae for evaluations of the desired matrix elements. Considering Table 3.2, it is evident that a matrix element between the

Table 3.2. Charge transfer conffgurations and terms

Hole	Configuration *					Spin Sextet			Spin Quartet ${ }^{+}$		
No.	t_{a}	$\mathbf{e a}_{\mathbf{a}}$	t_{1}	e_{b}	t_{b}	E	T_{1}	T_{2}	E_{1}	T_{1}	T_{2}
2	2	2	1	0	0	1	1	1	1	1	1
3	2	2	0	1	0		1	1		1	1
4	2	2	0	0	1	1	1	1	1	1	1
5	3	1	1	0	0		1	1		1	1
6	3	1	0	1	0	1			1		
7	3	1	0	0	1		1	1		1	1

${ }^{+}$These are the spin quartets obtalned from the spin sectets by allowing its total spin to add up to $3 / 2$ instead of $5 / 2$
*The MO's $t_{a}-\cdots t_{b}$ are 1 inear combinations of atomic orbitals as will be seen later (Sec. IV).
spin sextet of E symmetry from configuration 4 and the spin sextet of T_{1} symmetry from configuration 3 contain the four different orbitals, t_{a}, e_{a}, t_{1} and e_{b}, which participate in the construction of ${ }^{6} E$ and ${ }^{6} T_{1}$. Therefore, the final matrix elements depend on the coupling scheme of the above four orbitals in ${ }^{6} E$ and ${ }^{6} T_{1}$. The behavior of the sublevels, $S_{i} h_{i}$, arising from $t_{a}{ }^{\prime}, e_{a}^{4-p}$ and other orbitals t_{1}, e_{b} and t_{b} is unique for spin sextets, but varies for quartets and doublets which in turn gives rise to several hundred spin quartets and doublets. The best technique for the determination of matrix elements of any operator between a huge number of states with the same spin S and IR, h, but with different configurations is the method of Reduced Matrix Elements. Griffith ${ }^{26}$ has applied this technique to calculate the matrix elements of the spin orbit interaction between various, $S_{1} h_{1}$ of the cubic group. Our analysis follows his very closely and gives rise to new formulae for determination of the spin-orbit matrix elements between
pairs of the spin sextuplets arising from coupling of three or four orbits.*

As in Griffith (p. 82), the matrix elements of spin orbit interaction, $\sum_{i}^{\sum} \zeta_{i} \underline{\ell}^{i} \cdot \underline{s}^{i}$, from a pair of states $|X S h J t \tau\rangle$ and $\mid X^{\prime} S^{\prime} h ' J ' t \tau>c a n$ be given as:

$$
\begin{align*}
& \left\langle\left. x S h J t \tau\right|_{i} ^{\Sigma} \zeta_{i} \underline{\ell}^{i} \cdot \underline{s}^{i} \mid x^{\prime} S^{\prime} h^{\prime} J^{\prime} t \tau\right\rangle=\sum_{\substack{M M^{\prime} \\
\theta \theta^{\prime}}}\langle x S h J t \tau \mid x S h M \theta\rangle \\
& \text { (x) }\left\langle\left. x \operatorname{ShM} \theta\right|_{i} ^{\Sigma} \zeta_{i} \underline{\ell}^{i} \cdot \underline{s}^{i} \mid x^{\prime} S^{\prime} h^{\prime} M^{\prime} \theta^{\prime}\right\rangle\left\langle x^{\prime} S^{\prime} h^{\prime} M^{\prime} \theta^{\prime} \mid x^{\prime} S^{\prime} h^{\prime} J^{\prime} t \tau\right\rangle \tag{3.12}\\
& \left.\left.\equiv\langle x S h|\right|_{i} ^{\Sigma} \zeta_{i} \underline{\ell}^{i} \cdot \underline{s}^{i} \| x^{\prime} S^{\prime} h^{\prime}\right\rangle K_{J J}\left(\begin{array}{ccc}
s & S^{\prime} & T_{1} \\
h^{\prime} & h & t
\end{array}\right) \tag{3.13}
\end{align*}
$$

where S and h are the spin and irreducible representation (IR) of the state $\mid X S h>; M$ and θ are, respectively the components of S and h, t is an IR of the system in the cubic double group belonging to the resultant of the coupling of S and h; J is an identification number used wherever there are more than one t are, finally τ is one of the components of t. The first term in (3.13) is the reduced matrix of $\sum_{i} \zeta_{i} \underline{\ell}^{i} \cdot \underline{s}^{i}$ from states $\mid X S h>$ and $\mid X^{\prime} S^{\prime} h '>$ and the second one** is the coupling coefficient which is independent of X and χ^{\prime}. The study of the coupling coefficient will be reserved for Section 5. The reduced matrix elements will be elaborated further in the next subsection and new results, not found in the literature will be tabulated.

[^7]
4.1 Reduced Matrix Elements

Here, the reduced matrix elements (RME),

$$
\begin{equation*}
\langle x \operatorname{sh}|\left|\sum_{i} \zeta_{i} \underline{\ell}^{i} \cdot s^{i} \| x^{\prime} s^{\prime} h^{\prime}\right\rangle \tag{3.14}
\end{equation*}
$$

of (3.13), will be discussed further with particular attention to the effect of X and X^{\prime} on RME. There are three classes of RME depending on the nature of configurations X and X^{\prime} :
(1) Both X and X^{\prime} include three orbitals with the same configurations.
(2) Both X and X^{\prime} include three orbitals with different configurations.
(3) X and X^{\prime} include four orbitals with different configurations. The formulae for obtaining the reduced matrix elements, (RME), associated with these three classes of configuration are given in Sections 4, 5 and 6 of the Appendix C respectively. The numerical results are given here in Tables 3.3 through 3.5.

$\chi_{1}=\chi_{1}^{\prime}$	$\begin{aligned} & t_{b} t_{b} \\ & 2 a \end{aligned}$	${ }^{6} \mathrm{~T}_{1}{ }^{-6} \mathrm{~T}_{2}$	${ }^{6} \mathrm{~T}_{1}-{ }^{4} \mathrm{~T}_{2}$	${ }^{6} \mathrm{~T}_{1}-{ }^{6} \mathrm{E}$	${ }^{6} \mathrm{~T}_{1}-{ }^{4} \mathrm{E}$	${ }^{4} \mathrm{~T}_{1}-{ }^{6} \mathrm{~T}_{2}$	${ }^{4} \mathrm{~T}_{1}-{ }^{4} \mathrm{~T}_{2}$	${ }^{4} \mathrm{~T}_{1}-{ }^{6} \mathrm{E}$	${ }^{4} \mathrm{~T}_{1}-{ }^{4} \mathrm{E}$
$t_{a}^{34} A_{2}\left(e_{a} t_{b}\right)^{3} T_{2}$		21/20	6/5*	---	----	6/5	3/10*	---	---
$t_{a}{ }^{2}{ }^{3} T_{1}\left(e_{a}{ }^{2} t_{b}\right){ }^{4} \mathrm{~T}_{1}$	$t_{b} t_{b}$	7/20*	2/5	7/30*	8/30	2/5*	1/10	8/30*	2/30
	$t_{a} t^{\prime}$	7/20*	1/40*	7/30*	1/60*	1/40	9/40*	1/60	3/20*
$t_{a}{ }^{2}{ }^{3} T_{1}\left(e_{a}{ }^{2} e_{b}\right)^{4} E$	$t^{4}{ }^{\text {t }}$	21/20	3/40	---	---	3/40*	27/40	--	---
$t_{a}{ }^{34} A_{2}\left(e_{a} t_{1}\right)^{3} T_{2}$	${ }^{t}{ }_{1}{ }_{1}$	21/20*	6/5	---	---	6/5*	3/10	---	---
$\mathrm{t}_{\mathrm{a}}{ }^{2}{ }^{3} \mathrm{~T}_{1}\left(e_{a}{ }^{2} \mathrm{t}_{1}\right)^{4} \mathrm{~T}_{2}$	$t^{\prime} t_{a}$	7/20	1/40	7/10	1/20	1/40*	9/40	1/20*	9/20
	${ }^{t}{ }_{1}{ }_{1}$	7/20	2/5*	7/10*	4/5	2/5	1/10*	4/5*	1/5

*The sign of the square root of the numbers with asterisk is negative
$\dagger_{a a}=\langle I / 2 a||\zeta \underline{\ell} \cdot \underline{s}||I / 2 a\rangle$
Table 3.4. Reduced matrix elements $\left.\left|\left\langle x_{2} S h\right|\right| \sum_{i}^{\Sigma} \zeta_{i} \underline{\ell}^{i} \cdot \underline{s}^{i} \| x^{\prime}{ }_{2} S^{\prime} h^{\prime}\right\rangle\left.\right|^{2}$

				Sh $\mathrm{s}^{\text {'h }} \mathrm{h}^{\prime}$					
$x_{2}-x_{2}^{\prime}$	- bc	${ }^{6_{A_{1}} 6^{6} \mathrm{~T}_{1}}$	${ }_{A_{1}-{ }^{4}{ }_{1}{ }^{6}}$						
		7/5*	9/40						
	${ }_{5}{ }_{5}{ }_{6}$	7/5*	2/45						
		7/5	2/45*						
	$\varepsilon_{2} t_{1}$	7/5*	9/40						
	${ }_{\text {a }}{ }_{\text {a }}^{t_{1}}$	7/5*	2/45						
		${ }^{6{ }^{6} \mathrm{~T}_{1}{ }^{6} \mathrm{~T}_{2}}$				${ }^{4}{ }^{4}{ }_{1}{ }^{6}{ }^{\text {T }}$	${ }^{4}{ }_{T_{2}}{ }^{4}{ }^{4}$	${ }^{4}{ }^{4} T_{1}{ }^{\text {b }}{ }^{\text {b }}$	${ }^{4}{ }_{\mathrm{r}_{1}{ }^{4}{ }^{4} \mathrm{E}}$
	${ }_{\text {ta }}{ }_{\text {e }}$	${ }_{7} / 20$	1/00	${ }^{14 / 15 *}$	1/25*	1/60*	/40	$1 / 15$	3/5*
	${ }_{\mathrm{e}_{4} \varepsilon_{2}}$	${ }^{21 / 20}$	2/40	-	-	3/60*	27/40	-	-
	${ }_{4} t_{4}$	-	-	710	1/20*	-	-	1/20	9/20
		22/20*	3/40*	-	-	3/40	27/400*	-	-
	$\mathrm{f}_{\mathrm{a}} \mathrm{b}_{\mathrm{a}}$	1200	1/40*	-	-	1/40	/40	-	-

	$\chi^{\prime}{ }_{3}$	$\begin{gathered} \left\lvert\, \begin{array}{c} -1 / 2 \mathrm{c}\\|\|\boldsymbol{\varepsilon} \underline{\ell} \cdot \underline{s} \\| 1 / 2 \mathrm{~d}\rangle \\ =\mathrm{cd} \end{array}\right. \\ \hline \end{gathered}$	Sh-s'h'							
X_{3}			${ }^{6}{ }_{\mathrm{C}_{1}}{ }^{6}{ }^{6}$	${ }^{6} \mathrm{~T}_{1}-{ }^{4} \mathrm{~T}_{2}$	${ }^{6}{ }_{\mathrm{T}_{1}-{ }^{6} \mathrm{E}}$	${ }^{6} \mathrm{~T}_{1}-{ }^{4} \mathrm{E}$	${ }^{4} \mathrm{~T}_{1}{ }^{-6} \mathrm{~T}_{2}$	${ }^{4} \mathrm{~T}_{1}{ }^{4} \mathrm{r}_{2}$	${ }^{4} \mathrm{~T}_{1}-{ }^{6} \mathrm{E}$	${ }^{4} \mathrm{~T}_{1}{ }^{4} \mathrm{E}$
$\left(t_{a}{ }^{3}{ }^{4} \mathrm{~A}_{2} \mathrm{e}_{\mathrm{a}}\right)^{5} \mathrm{E}\left(t_{\mathrm{b}}{ }^{0} \mathrm{t}_{1}\right)^{2} \mathrm{~T}_{2}$	$\left(t_{a}{ }^{\left.3{ }^{4} A_{2} e_{a}\right)}{ }^{5} \mathrm{E}\left(t_{t_{b} t_{1}}{ }^{0}{ }^{2} \mathrm{~T}_{1}\right.\right.$	$\mathrm{t}_{\mathrm{b}} \mathrm{t}_{1}$	7/20*	2/5	-	-	2/5*	1/10	-	-
$\left(\mathrm{fa}^{3}{ }^{4}{ }^{4} \mathrm{E}^{\mathrm{e}}\right){ }^{5} \mathrm{E}\left(\mathrm{t}_{\mathrm{b}} \mathrm{e}_{\mathrm{b}}{ }^{0}\right)^{2}{ }^{2} \mathrm{~T}_{2}$	$\left(t_{a}{ }^{3}{ }^{4} A_{2} e\right)^{5}{ }^{5}\left(t_{b}{ }^{0} e_{b}\right)^{2} \mathrm{E}$	${ }_{5}{ }^{\text {e }}{ }_{b}$	-	-	7/10*	4/5	-	-	4/5*	2/10
$\left(\mathrm{I}_{\mathrm{a}}{ }^{3}{ }^{3} \mathrm{~T}_{1} e_{a}{ }^{2}{ }^{3}{ }_{A_{2}}{ }^{5}{ }^{5} \mathrm{~T}_{2}\left(\mathrm{r}_{\mathrm{b}} e_{b}{ }^{0}\right)^{2} \mathrm{~T}_{2}\right.$	$\left(t_{a}{ }^{\left.3{ }^{4} A_{2} e_{a}\right)^{5} I_{2}\left(t_{b}{ }^{0} e_{b}\right){ }^{2} E}\right.$	${ }_{5}{ }^{\text {e }}$ b	21/20	s/5*	-	--	6/5	3/10*	-	-
$\left(t_{a}{ }^{2}{ }^{3} \mathrm{~T}_{1} e{ }^{2}{ }^{3}{ }^{3}{ }_{A_{2}}{ }^{5}{ }^{5} \mathrm{~T}_{2}\left(t_{\mathrm{b}} \mathrm{t}_{1}{ }^{0}\right)^{2} \mathrm{~T}_{2}\right.$	($t_{a}{ }^{\left.3{ }^{4} A_{A_{2}} e_{a}\right)^{5} \mathrm{~T}_{2}\left(t_{b}{ }^{0} t_{1}\right)^{2}{ }^{2} \mathrm{~T}_{1}}$	$t_{\text {b }} t_{1}$	7/20*	2/5	7/10*	4/5	2/5*	3/20	4/5*	2/10
		$\mathrm{e}_{\mathrm{b}}^{\mathrm{t}_{\mathrm{b}}}$	7/20*	2/5	14/15	16/15*	2/5*	3/10	16/15	4/15*
$\left(t_{a}{ }^{2}{ }^{3} \mathrm{~T}_{1} \mathrm{e}_{\mathrm{a}}{ }^{2}{ }^{3} \mathrm{~A}_{2}\right){ }^{5} \mathrm{~T}_{2}\left(e_{\mathrm{b}} \mathrm{t}_{1}{ }^{0}{ }^{2}{ }^{2} \mathrm{~T}_{1}\right.$		$e_{b} t_{1}$	21/20	6/5*	-	-	6/5	3/10*	-	-
$\left(t_{a}{ }^{3}{ }^{4} \mathrm{~A}_{2} \mathrm{E}_{\mathrm{a}}{ }^{2} \mathrm{E}\right){ }^{5} \mathrm{E}\left(t_{1} t_{b}{ }^{0}\right)^{2}{ }^{2} \mathrm{~T}_{1}$	$\left(t_{a}^{3}{ }^{3 A_{2} e_{a}}\right)^{5} E\left(t_{1}{ }^{0} c_{b}\right)^{2}{ }^{2}{ }_{2}$	$t_{1} t_{b}$	7/20	2/5*	-	-	2/5	1/10*	-	--
$\left(t_{a}{ }^{3}{ }^{4} \mathrm{~A}_{2} \mathrm{ea}^{2} \mathrm{E}\right)^{5}{ }^{5}\left(t_{1} e_{b}\right)^{2}{ }^{2} \mathrm{~T}_{1}$	$\left(t_{a}{ }^{3}{ }^{4} A_{2} e^{\prime}\right)^{5}{ }^{5}\left(t_{1}{ }^{0} e_{b}\right)^{2} \mathrm{E}$	${ }_{5}{ }_{1}{ }^{\text {b }}$	-	-	7/10*	4/5	-	--	4/5*	2/10
$\left(\mathrm{c}_{\mathrm{a}}{ }^{3}{ }^{3} \mathrm{~T}_{1} \mathrm{e}_{\mathrm{a}}{ }^{2}{ }^{3}{ }_{\mathrm{S}_{2}}{ }^{5}{ }^{5} \mathrm{~T}_{2}\left(\mathrm{r}_{1} r_{b}{ }^{0}{ }^{2}{ }^{2} \mathrm{~T}_{1}\right.\right.$	$\left(t_{a}^{3}{ }^{4} A_{2} e_{a}\right)^{5} T_{2}\left(t_{1}{ }^{0} t_{b}\right)^{2}{ }^{2}$	$t_{1} t_{b}$	7/20*	2/5	7/30*	4/15	2/5*	3/20	4/15*	2/30
$\left(t_{a}{ }^{2}{ }^{3} \mathrm{~T}_{1} e_{a}{ }^{2}{ }^{3} \mathrm{~A}_{2}\right){ }^{5} \mathrm{~T}_{2}\left(t_{1} e_{b}{ }^{0}{ }^{2} \mathrm{~T}_{1}\right.$	$\left(t_{a}{ }^{\left.3{ }^{4} A_{2} e_{a}\right)^{5} T_{2}\left(t_{1}{ }^{0} \mathrm{e}_{\mathrm{b}}\right)^{2}{ }^{2} \mathrm{E}}\right.$	${ }^{t_{1} e_{b}}$	7/20	2/5*	-	-	2/5	1/10*	-	-

The siga of the square root of the numbers with asterisk is negative
5. COUPLING COEFFICIENTS OF SPIN ORBIT INTERACTION $K_{J J '}\left(\begin{array}{ll}S^{\prime} & \mathrm{T}_{1} \\ \mathrm{~h}^{\prime} & \mathrm{ht}\end{array}\right)$

Here, we want to obtain the coupling coefficients $K_{J J}$, , which were defined in (3.13). These coefficients couple the matrix elements of spin orbit interaction, from a pair of states identified by their ireducible representations $\mid J t>$ and $\mid J^{\prime} t>$ in the cubic double group, to the reduced matrix elements $\langle x S h|\left|\sum_{i}^{\Sigma} L_{i} \underline{\ell}^{1} \cdot \underline{s}^{i} \| x^{\prime} S^{\prime} h^{\prime}\right\rangle$. between the states $|\chi S h\rangle$, and $\mid \chi^{\prime} S^{\prime} h^{\prime}>$ from which the states $\mid J t>$ and $\left|J^{\prime} t\right\rangle$ are constructed.

Following (3.12-3.13), we have

where (Griffith, p.82):

$$
\begin{align*}
& K_{J J}{ }^{\prime}\left(\begin{array}{ll}
S S^{\prime} & T_{1} \\
K & h \\
t
\end{array}\right)=\Omega_{J J^{\prime}} \quad\left(\begin{array}{lll}
S S^{\prime} & T_{1} \\
h^{\prime} & h & t
\end{array}\right) \\
& =\sum_{\substack{\mathrm{MMM}^{\prime} \\
\theta \theta}}(-1)^{S-M^{\prime}+1}[-1]^{h+\theta} \overline{\mathrm{V}}\left(\begin{array}{l}
S S^{\prime} \\
-\mathrm{MM}^{\prime} \\
-\mathrm{r}
\end{array}\right) \mathrm{V}\binom{\mathrm{hh}^{\prime}}{-\theta \theta^{\prime}-\mathrm{T}} \\
& \text { (x) }\langle S h J t \tau \mid S h M \theta\rangle\left\langle S^{\prime} h^{\prime} M^{\prime} \theta^{\prime} \mid S^{\prime} h^{\prime} J^{\prime} t \tau\right\rangle \tag{3.15}
\end{align*}
$$

The symbol, $\bar{v}\left|\begin{array}{lll}a & b & c \\ a & B & \gamma\end{array}\right|$ in (3.15) is related* to 3-j symbols by $(-1)^{a+b+c}$, and $V\left|\begin{array}{lll}a & b & c \\ a & B & \gamma\end{array}\right|$ is related to V by $(-1)^{2(b-c)}$. The symbols,
 of the cubic double group with occurrence number or angular momentum J . The latter coefficients are given by Griffith (Ref. 16, pp. 400-408) for spin quartets, ${ }^{5} \mathrm{~T}_{2}$ and ${ }^{5} \mathrm{E}$ only. Therefore, the coefficients

[^8]<S h M 日|Sh Jt t> of $\mathrm{Sh}={ }^{6} \mathrm{E},{ }^{6} \mathrm{~T}_{1}$ and ${ }^{6} \mathrm{~T}_{2}$, which are not found in the literature, are obtained and given in Tables 3.6 to 3.8 .

Having obtained the coefficients, $\langle S h \mathrm{M} \theta| \mathrm{Sh} J t \tau$, we now are able to calculate the coupling coefficients, $K_{J J}{ }^{\prime}\left|\begin{array}{l}S_{h h '}^{\prime} \mathrm{T}_{1} \\ \mathrm{~h}\end{array}\right|$, for $\mathrm{h}=\mathrm{A}_{1}$ and $h^{\prime}=E . \quad T_{1}$ and $T_{2} . \quad$ These are given in Tables 3.9 to 3.12.

After substituting for reduced marrix elements and the coupling coefficients in matrix elements, $\langle x S h \mathrm{~J} t \tau| \sum_{i} \zeta_{i} \underline{\ell}^{i} \cdot \underline{s}^{i}\left|x^{\prime} S^{\prime} h^{\prime} J^{\prime} t \tau\right\rangle$, in (3.13), we find this quantity as a function of single electron reduced matrix elements such as

$$
t_{b} t_{b}, t_{a} t_{a}, \ldots t_{1} t_{1}, e_{a} t_{b}
$$

given in Tables 3.3 through 3.5. These matrix elements will be determined in the next section.

Table 3.6. Transformation of ${ }^{6} \mathrm{E}$ into the IR's of double valued group $\mathrm{T}^{\prime}{ }_{\mathrm{d}}$: $\mid\langle$ ShMe $|$ ShJt $\tau\rangle\left.\right|^{2}$

	E'		E'		10^{\prime}				$2 \mathrm{U}^{\prime}$			
$\mathrm{s} \quad \mathrm{M} \mathrm{h}_{\theta}$	a^{\prime}	B^{\prime}	${ }^{\prime \prime}$	$B^{\prime \prime}$	k	λ	μ	v	k	λ	μ	v
5/2 5/2 E U			5/12*					5/12				1/6*
3/2				1/12*	1/12*				5/6*			
1/2	1/2					1/2*						
-1/2		1/2					1/2					
-3/2			1/12*					1/12				5/6
-5/2				5/12*	5/12*				1/6			
5i2 5/2 Ev	5/12					5/12				1/6		
3/2		1/12					1/12*				5/6	
1/2			1/2					1/2				
-1/2				1/2	1/2*							
-3/2	1/12					1/12				5/6*		
-5/2		5/12					5/12*				1/6*	

*The sign of the square root of coefficients with asterisk is negative
Table 3.7. Transformation coefficients of ${ }^{6} \mathrm{~T}_{1}$ into the IR's of double valued group $\mathrm{T}^{\prime}{ }_{\mathrm{d}}$;

*The sign of the square root of number with asterisk is negative
Table 3.8. Transformation coefficients of ${ }^{6} \mathrm{~T}_{2}$ into the IR's of double valued group $\mathrm{T}_{\mathrm{d}}^{\prime}$

		3/2				5/2						7/2							
		U^{\prime}				E'		U^{\prime}				E''		E'		U'			
		k	λ	H	v	a^{\prime}	β^{\prime}	K	λ	μ	v	$\alpha^{\prime \prime}$	$B^{\prime \prime}$	${ }^{\prime}$	β^{\prime}	K	λ	น	v
5/2	1												5/12			7/12*			
	0					5/42			25/42					3/14			1/14		
	-1			2/3			5/21*			1/21*					1/84			1/28	
3/2	1					1/21*			5/21*					15/28			5/28		
	0			4/15*			3/14*			3/70*					5/42			5/14	
	-1				2/5*						16/35*	1/12							5/84
1/2	1			1/15			8/21			8/105					5/42			5/14	
	0				2/5						1/35*	1/3							5/21
	-1	1/5*						18/35					1/6*			5/42			
-1/2	1				1/5*						18/35	1/6							5/42
	0	$2 / 5$						1/35*					1/3*			5/21			
	-1		1/15			8/21*			8/105					5/42*			5/14		
-3/2	1	2/5*						16/35*					1/12*			5/84			
	-		4/15*			3/14	1/21		3/70*	5/21*				5/42*	15/28*		5/14	5/28	
-5/2	1		2/3			5/21			1/21*					1/84*			1/28		
	0						5/42*			25/42					3/14*			1/14	
	-1											5/12							7/12*

*The sign of the square root of the numbers with asterisk is negative

Table 3.9. Coupling coefficients $\mathrm{K}_{\mathrm{JJ}}{ }^{\prime}$ for $\mathrm{h}=\mathrm{A}_{1}$

J	J^{\prime}	S	S	t	$\left.K_{J}{ }^{\prime} J^{(S S T}{ }_{1},{ }_{1}{ }_{1}{ }^{T}{ }_{1} t\right)$
$5 / 2$	$5 / 2$	$5 / 2$	$5 / 2$	U^{\prime}	$(1 / 18)^{1 / 2}$ $(1 / 18)^{1 / 2}$

Table 3.10. Coupling coefficients $K_{J J^{\prime}}$ for $h=T_{1}$

J	J^{\prime}	S	S	t	$\left.\mathrm{K}_{.}{ }^{\prime} \mathrm{J}^{(S S T}{ }_{1}, \mathrm{~T}_{1} \mathrm{~T}_{1} \mathrm{t}\right)$
5/2	5/2	5/2	5/2	U^{\prime}	$(1 / 15)(5 / 7)^{1 / 2}$
				E' ${ }^{\prime}$	$(1 / 15)(5 / 7)^{1 / 2}$
			3/2	U^{\prime}	-(7/45) (5/7) ${ }^{1 / 2}$
				$E^{\prime \prime}$	-(5/45) (5/7) ${ }^{1 / 2}$
		$3 / 2$	3/2	$\mathbf{U '}^{\prime}$	-(1/2) (1/10) ${ }^{1 / 2}$
				E^{\prime}	-(1/2) (1/10)

Table 3.11. Coupling coefficients $\mathrm{K}_{J J}$ ' for $h=E$

J	J^{\prime}	S	S	t	$\left.\mathrm{K}_{J}{ }^{\prime} \mathrm{J}{ }^{(S S T} \mathrm{l}_{1,} \mathrm{~T}_{1} \mathrm{Et}\right)$	J	J^{\prime}	5	S	t	$\mathrm{K}_{\mathrm{J}, \mathrm{J}}\left(\mathrm{SST}_{1}, \mathrm{~T}_{1} \mathrm{~T}_{2} \mathrm{t}\right)$
5/2	1	5/2	$5 / 2$	U^{\prime}	(16/105)	5/2	1	3/2	5/2	U^{\prime}	-(2/15)
	2	5/2	5/2	$\mathbf{U '}^{\prime}$	$-(2 / 105)(10)^{1 / 2}$		2	3/2	5/2	U^{\prime}	$(1 / 60)(10)^{1 / 2}$
		5/2	5/2	$E^{\prime \prime}$	-(4/105) (5) ${ }^{1 / 2}$	5/2	2	3/2	5/2	$E^{\prime \prime}$	$(1 / 30)(5)^{1 / 2}$
			3/2	\mathbf{U}^{\prime}	$(1 / 10)(3 / 7)^{1 / 2}$		2	3/2	3/2	U^{\prime}	$-(1 / 10)(3 / 2)^{1 / 2}$
		5/2	3/2	$E^{\prime \prime}$	$(1 / 2)(3 / 35)^{1 / 2}$			3/2	3/2	E' ${ }^{\prime}$	$-(1 / 2)(3 / 10)^{1 / 2}$

Table 3.12. Coupling coefficients $K_{J J}$, for $h=T_{2}$

J	T^{\prime}	8	s	t	$\mathrm{K}_{\mathrm{J}} \mathrm{J}\left(\mathrm{SST}_{1}, \mathrm{~T}_{1} \mathrm{~T}_{2} \mathrm{t}\right)$		J	${ }^{\prime}$	s	s	t	$\mathrm{K}_{\mathrm{J}, \mathrm{J}}\left(\mathrm{SST}_{1}, \mathrm{~T}_{1} \mathrm{~T}_{2} \mathrm{t}\right)$	
5/2	3/2	5/2	5/2	$\mathbf{U '}^{\prime}$	--(8/35)	$(1 / 30)^{1 / 2}$	$\begin{aligned} & 5 / 2 \\ & 5 / 2 \end{aligned}$	7/2	5,2	3/2	$\mathrm{F}^{\prime \prime}$	(1/2)	$(1 / 105)^{1 / 2}$
	$5 / 2$	5/2	5/2	$\mathbf{U '}^{\prime}$	-(35/35)	$(1 / 105)^{1 / 2}$		3/2	3/2	5/2	${ }^{\prime \prime}$	(1/5)	$(1 / 30)^{1 / 2}$
	7/2	5/2	5/2	$\mathbf{U '}^{\prime}$	(8/21)	$(1 / 35)^{1 / 2}$	5/2	$\begin{aligned} & 5 / 2 \\ & 7 / 2 \end{aligned}$	$\begin{aligned} & 3 / 2 \\ & 3 / 2 \end{aligned}$	$\begin{aligned} & 5 / 2 \\ & 5 / 2 \end{aligned}$	$\begin{aligned} & \mathbf{u}^{\prime} \\ & \mathbf{u}^{\prime} \end{aligned}$	$\begin{gathered} (3 / 10) \\ -(1 / 3) \end{gathered}$	$\begin{aligned} & (3 / 35)^{1 / 2} \\ & (1 / 35)^{1 / 2} \end{aligned}$
		5/2	5/2	$8^{\prime \prime}$	(8/21)	$(1 / 5)^{1 / 2}$	5/2	7/2	3/2	5/2	E^{\prime}	-(1/3)	$(1 / 5)^{1 / 2}$
5/2	3/2	5/2	$3 / 2$	${ }^{\prime \prime}$	-(4/5)	$(1 / 105)^{1 / 2}$	5/2	3/2	3/2	3/2	u^{\prime}	(4/5)	$(1 / 30)^{1 / 2}$
								5/2	3/2	3/2	U^{\prime}	(3/10)) $(3 / 10)^{1 / 2}$
5/2	3/2	5/2	3/2	\mathbf{U}^{\prime}	-(9/10)	$(1 / 105)^{1 / 2}$		$7 / 2$	3/2	3/2	E'	-(1/2)	$(1 / 30)^{1 / 2}$

6. SINGLE ORBITAL REDUCED MATRIX ELEMENTS $\langle 1 / 2 \mathrm{a} \| \zeta \underline{\ell} \cdot \underline{\mathbf{s}}||1 / 2 \mathrm{~b}\rangle$ The matrix elements of $\sum_{i} \zeta_{i} \underline{\ell}^{i} \cdot \underline{s}^{i}$ from a pair of states with electronic configurations χ and χ^{\prime}, (3.8), are related, among other factors, to these configurations. This dependence on the electronic configuration of the orbitals giving rise to the above states, is manifested by the presence of single orbital reduced matrix elements of the type, $t_{a} t_{a}=\left\langle 1 / 2 t_{a}\right||\zeta \underline{\ell} \cdot \underline{s}|\left|1 / 2 t_{a}\right\rangle$ and $t_{a} e_{b}=\left\langle 1 / 2 t_{a}\|\zeta \underline{\ell} \cdot \underline{s}\| 1 / 2 e_{b}\right\rangle$ which appear in Tables 3.3 through 3.5. To find $t_{a} t_{a} \ldots$.... we should express them in terms of atomic symmetry orbitals.

Since the determination of the energies of the molecular orbitals t_{a}, e_{a} of Fig. 3.1 is beyond the scope of the present work, no numerical values of the coefficients of linear combinations of atomic symmetry orbitals, $d\left(e, t_{2}\right)$ and $p_{\pi}\left(t_{1}, e, t_{2}\right)$, (Fig. 3.1), are available. Therefore, we choose a set of arbitrary coefficients, $\alpha, \beta, k, \lambda, \mu$ and ν, to express the molecular orbitals, $t_{a}, e_{a}, t_{1}, e_{b}$ and t_{b}, as follows:

$$
\begin{align*}
& t_{a}=\kappa\left|d t_{2}\right\rangle-\lambda\left|\pi t_{2}\right\rangle-\mu\left|\sigma t_{2}\right\rangle-v\left|s t_{2}\right\rangle \\
& e_{a}=\alpha|d e\rangle-\beta|\pi e\rangle \\
& \left.t_{1}=\left\lvert\, \begin{array}{ll}
\pi & \left.t_{1}\right\rangle \\
t_{b}=\lambda^{\prime}\left|d t_{2}\right\rangle+k^{\prime}\left|\pi t_{2}\right\rangle+\mu^{\prime}\left|\sigma t_{2}\right\rangle+v^{\prime} \left\lvert\, \begin{array}{ll}
s & \left.t_{2}\right\rangle
\end{array}\right. \\
e_{b}=\beta|d e\rangle+\alpha|\pi e\rangle
\end{array} . \begin{array}{ll}
d
\end{array}\right.\right]
\end{align*}
$$

where all coefficients, $\alpha, \beta, \ldots . v^{\prime}$, are real and positive.

Moreover,

$$
\begin{equation*}
\alpha^{2}+\beta^{2}=\kappa^{2}+\lambda^{2}+\mu^{2}+\nu^{2}=\kappa^{\prime 2}+\lambda^{\prime 2}+\mu^{\prime 2}+\nu^{\prime 2}=1 \tag{3.17}
\end{equation*}
$$

Substituting for $t_{a}, \ldots . t_{b}$, we find the single orbital reduced matrix elements as given in Table 3.13:

Table 3.13. Single orbital reduced matrix elements

No.	a, b		No.	a, b	
1	${ }^{4} \mathrm{a}_{1}$	$\sqrt{3}$ \& 5_{p}	7	${ }^{t} 1^{t}{ }^{\text {a }}$	1/2 $\sqrt{3} \times \zeta_{p}$
2	${ }_{\text {e }} \mathrm{a}_{\mathrm{a}}$	$-3 \sqrt{2} a k \delta_{d}-3 \beta \lambda \zeta_{p}$	8	${ }^{t}{ }^{t}{ }^{\text {b }}$	$-1 / 2 \sqrt{3} \times \varepsilon_{p}$
3	${ }^{\text {a }}{ }^{\text {t }}$ b	$-3 \sqrt{2} a \lambda \zeta_{d}+3 \beta<\zeta_{p}$	9	${ }^{t}{ }_{\text {a }} \mathrm{t}_{\mathrm{b}}$	$-3 \sqrt{2} \times 15_{d}-3 / 2 \lambda \times \zeta_{p}$
4	${ }_{3}{ }^{t}{ }^{1}$	$-\sqrt{3} a s_{p}$	10	${ }^{t}{ }_{1}{ }^{1}$	3/2 5_{p}
5	$\mathrm{eb}^{\text {ta }}$	$-3 \sqrt{2} \mathrm{~B} k \zeta_{\mathrm{d}}+3 a \lambda \zeta_{\mathrm{p}}$	11	${ }^{t}{ }_{\text {a }} \mathrm{t}_{\mathrm{a}}$	$3 \mathrm{k}^{2} \zeta_{d}+3 / 2 \mathrm{k}^{2} \zeta_{p}$
6	$\mathrm{e}_{\mathrm{b}} \mathrm{t}_{\mathrm{b}}$	$-3 \sqrt{2} \beta \lambda \delta_{d}-3 a \times \delta_{p}$	12	$t_{b} t_{b}$	$3 \lambda^{2} \varepsilon_{d}+3 / 2 k^{2} 5_{p}$

With the spin orbit matrix elements known, we can now proceed to formulate 3 a in the following section.

CUBIC FIELD SPLITTING 3a

In this section, we wish to obtain the contribution of spin orbit interaction to cubic field splitting 3 a, with the intention of carrying the calculations through the lowest order of perturbation required for the ground state, ${ }^{6} A_{1}$, to split. Our task, therefore, is to establish the lowest perturbation order first, and then, carry on the numerical computations to obtain an estimate of 3 a (under certain assumptions regarding the coefficients) for some special cases.

1. DETERMINATION OF THE LOWEST ORDER OF PERTURBATION BY
$H_{p}=\sum_{i} \zeta_{i} \underline{\ell}^{i} \cdot \underline{s}^{i}$ THAT CAN SPLIT ${ }^{6} A_{1}$
The first step in determining the lowest order perturbation required for the splitting of ${ }^{6} A_{1}$, is to find those coupling coefficients, $K_{J J}{ }^{\prime}\left(\begin{array}{c}S S^{\prime} T \\ h^{\prime} \\ h t\end{array}\right)$, which have different values for $t=U^{\prime}$ and $t=E^{\prime \prime}$ levels of ${ }^{6} \mathrm{~A}_{1}$. Because the energy associated with level $\mid \sigma_{\mathrm{A}_{1}} \mathrm{~J}=5 / 2 \mathrm{t}=\mathrm{U}^{\prime}>$ must differ from that energy associated with the level, $\left.\right|^{6} \mathrm{~A}_{1}, \mathrm{~J}=5 / 2$ $t=E^{\prime \prime}>$, in order for the matrix element of $\sum \zeta_{i} \underline{\ell}^{i} \cdot s^{i}$ to contribute toward splitting 3a. As shown in Appendix D, we have

$$
K_{J J^{\prime}}\left(\begin{array}{lr}
\mathrm{SS}^{\prime} \mathrm{T}_{1} \tag{4.1}\\
\mathrm{hA}_{1} & \mathrm{t}
\end{array}\right)=\sqrt{\frac{1}{(\mathrm{~K})} \frac{1}{(25+1)}} \delta_{S_{J} \delta^{\prime} J^{\prime} \delta_{h^{\prime} \mathrm{T}_{1}} .}
$$

and

$$
\begin{equation*}
K_{J J},\binom{\mathrm{SS}^{\prime} \mathrm{T}_{1}}{\mathrm{~T}_{1} \mathrm{~T}_{1} \mathrm{t}}=(-1)^{\mathrm{J}+\mathrm{S}} \quad \delta_{J J}, \overline{\mathrm{~W}}\binom{11}{\mathrm{SS}, \frac{1}{J}} \tag{4.2}
\end{equation*}
$$

It is immediately evident from (4.1)-(4.2), that the matrix elements between $\left|{ }^{6} \mathrm{~A}_{1}\right\rangle$ and $\left|{ }^{6} \mathrm{~T}_{1}\right\rangle$ and those between $\left|{ }^{6} \mathrm{~T}_{1}\right\rangle$ and $\left|{ }^{6} \mathrm{~T}^{\prime}{ }_{1}\right\rangle$ contribute the same amount to both levels $t=U^{\prime}$ and $t=E^{\prime \prime}$, and their contribution to 3 a vanishes.

The chains of the products of the matrix elements:*

$$
\begin{equation*}
\left\langle{ }^{6} A_{1}-{ }^{6} T_{1}\right\rangle\left\langle{ }^{6} T_{1}-{ }^{6}{ }_{A_{1}}\right\rangle \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle{ }^{6} A_{1}-{ }^{6} T_{1}\right\rangle \cdot\left\langle{ }^{6} T_{1}-{ }^{6} T_{1}^{\prime}{ }_{1}\right\rangle \cdot\left\langle{ }^{6} T_{1}^{\prime}-{ }^{6} A_{1}\right\rangle \tag{4.4}
\end{equation*}
$$

are the only nonvanishing products which give rise to terms for the evaluation of the second and third order energy contribution to levels with IR $t=U '$ and $t=E^{\prime \prime}$ of the ground state. These energy contributions are the same, and consequently, both second and third order contributions to 3a, by spin-orbit interaction, vanish. Moreover, contributions from higher than third order perturbation with excited states having T_{1} symmetry vanish too. The next perturbation order to consider is fourth order.

Considering Tables 3.11 and 3.12 , it is evident that for the excited states with T_{2} and E symmetries, the coupling coefficients, $K_{J J}{ }^{\prime}\left(\begin{array}{c}S S ' T_{1} \\ h h^{\prime} \\ h t\end{array}\right)$, differ for $t=U$ and $t=E '$. Therefore, a splitting will occur.

This indicates that the fourth order perturbation is the lowest one which contributes to the splitting.

$$
\bar{*}\left\langle{ }^{6} A_{1}-{ }^{6} T_{1}\right\rangle \equiv\left\langle{ }^{6} A_{1} \text { JtT }\right| \sum_{i} \zeta_{i} \underline{\ell}^{\prime} \cdot \underline{s}^{\prime}\left|{ }^{6} T_{1} J^{\prime} t^{\prime} \tau\right\rangle
$$

2. CONTRIBUTION TO THE CUBIC FIELD SPLITTING 3a FROM FOURTH ORDER PERTURBATION OF ${ }^{6} \mathrm{~A}_{1}$ BY $\sum_{i} \zeta_{1} \underline{\ell}^{\underline{1}} \cdot \underline{s}^{1}$

Here, we formulate the $3 a$ by considering the following relationships (3.1):

$$
\begin{equation*}
3 a=E\left(U^{\prime}\right)-E\left(E^{\prime \prime}\right) \cong E^{(4)}\left(U^{\prime}\right)-E^{(4)}\left(E^{\prime \prime}\right) \tag{4.5}
\end{equation*}
$$

where $E^{(4)}\left(U^{\prime}\right)$ and $E^{(4)}\left(E^{\prime \prime}\right)$ are the fourth order contribution from spin orbit interaction to the levels U^{\prime} and $E^{\prime \prime}$ of the ground state ${ }^{6} A_{1}$ of the S-state ion. The expression for $E^{(4)}\left(U^{\prime}\right)-E^{(4)}\left(E^{\prime \prime}\right)$ is:

$$
\begin{aligned}
& E^{(4)}\left(U^{\prime}\right)-E^{(4)}\left(E^{\prime \prime}\right)=-\sum_{\substack{m \ell p}}\left(E_{j} E_{k} E_{\ell}\right)^{-1}\left\{R_{o j} R_{j k^{\prime}} R_{k \ell} R_{\ell o}\right. \\
& \left.(x)\left[\left\{K_{o m}(0 j) K_{m n}(j k) K_{n p}(k \ell) K_{p o}(\ell o)\right\}_{U^{\prime}}-\left\{K_{o m}(0 j) K_{m n}(j k) K_{n p}(k \ell) K_{p o}(\ell o)\right\} E^{\prime \prime}\right]\right\}
\end{aligned}
$$

where

$$
R_{j k}=\left\langle x_{j} S_{j} h_{j}\right|\left|H_{p}\right|\left|x_{k} S_{k} h_{k}\right\rangle
$$

and

$$
\begin{equation*}
K_{m n}(j k)=K_{J_{m} J_{n}}\binom{s_{j} s_{k} T_{1}}{h_{k} h_{j} t} \tag{4.5a}
\end{equation*}
$$

The parameters x_{j}, $\ldots . x_{\ell}$ in (4.5a) represent the molecular electronic configuration and $\left|x_{j} S_{j} h_{j}\right\rangle$ characterize the orbital part of configuration X_{j}.

Substituting for the various parameters involved, the expression for $3 a$ will be of the form:

$$
\begin{equation*}
3 a^{(4)}=\sum_{i=0}^{4} c_{1} \zeta_{d}^{4-1} \zeta_{p}^{1} \tag{4.6}
\end{equation*}
$$

where C_{1} are complicated functions of the coefficients; $\alpha, \beta, k \ldots$ given in (3.16) and the promotion energies E_{i}, E_{j} and E_{k} of the excited states appearing in (4.6). The precise numerical values of $\alpha, 9$ and k could be obtained from solving eigenvalue equations from which the energies; $E_{1} \ldots E_{j}$ and E_{k} could be found too. As mentioned earlier, the determination of $E_{i} \ldots E_{k}$ is beyond the scope of the present work and as a result of this, we can use only a set of arbitrarily chosen numbers for both the coefficients and the energies involved. For the following set of coefficients:*

$$
\begin{aligned}
& \alpha^{2}=1-\beta^{2}=0.7 \\
& \kappa^{2}=0.8-\lambda^{2}=0.6, \\
& \mu^{2}+v^{2}=0.2
\end{aligned}
$$

and

$$
k \sim k^{\prime}, \lambda \sim \lambda^{\prime} ;
$$

we find the coefficients C_{f} of (4.6) as given in Table 4.1.

Table 4.1
The Coefficients $C_{1}(-2 / 5625$
$\left.E_{6}{ }^{3}\right)^{-1}$

C_{0}	C_{1}	C_{2}	C_{3}	C_{4}
87.17	-138.99	-164.94	14.63	35.75

[^9]Substituting for C_{i} in (4.6), one finds $3 a$ as a function of the ratio $\zeta_{\mathrm{p}} / \zeta_{\mathrm{d}}$. The result in units of $10^{-1} \zeta_{\mathrm{d}}{ }^{4} / \mathrm{E}_{6}{ }^{3}$ are given in Table 4.2.

Table 4.2
Calculated Values of 3a for Spin Sextets

$\zeta_{\mathrm{p}} / \zeta_{\mathrm{d}}$	$3 \mathrm{a}\left(10^{-1} \zeta_{\mathrm{d}}{ }^{4} / \mathrm{E}_{6}{ }^{3}\right)$	$\zeta_{\mathrm{p}} / \zeta_{\mathrm{d}}$	$3 \mathrm{a}\left(10^{-1} \zeta_{\mathrm{d}}{ }^{4} / \mathrm{E}_{6}{ }^{3}\right)$
0.5	0.07	6	-152.30
1	0.59	8	-507.40
1.5	0.993	10	-126.30
2	0.573	12	-2645
3	-5.30	16	-8443
4	-24.90	20	-20562

A discussion of these results will be given in the next section.

We want to give a brief discussion of various models used to calculate $3 a$, first, and then apply the result of these models to the $3 a$ of Fe^{3+} in the compounds $\mathrm{ZnS}, \mathrm{ZnSe}$, and ZnTe .

As ${ }^{\text {ºw }}$ mentioned in Chapter I, Watanabe ${ }^{5}$ was the first to calculate 3 a on the basis of the point charge model. His work was followed by Powe 11^{6} and by Low and Rosengarten. ${ }^{7,8}$ Azarbayejani, Kikuchi and Watanabe ${ }^{15}$ substituted the point charge model with the molecular orbital model and obtained the contributions to ground state splitting arising from charge transfer between σ-bonding and σ-nonbonding orbitals of the complex consisting of a central S-state ion and its four tetrahedrally coordinated neighbors. In the present work, the contribution to 3 a arising from charge transfer between the π-orbitals of the same complex has been found. To make an assessment of these various contributions to 3 a and their relative importance, we are considering all of the above-mentioned calculations, in turn, as follows.

1. CONTRIBUTION TO 3a FROM WATANABE'S CALCULATION

The cubic field splitting obtained by Watanabe is given in (15) of Ref. 5. The expression for 3a is as follows:

$$
\begin{align*}
(3 a)_{w} & =3(D q)^{2}\left[2.015+15.9 M_{0}-149.5 M_{2}-5.937\left(M_{0}-8 M_{2}\right)^{2}\right. \\
& \left.-0.388\left(M_{0}-8 M_{2}\right)^{2}(D q)^{2} 10^{-6}\right] \times 10^{-10} \mathrm{~cm}^{-1} \tag{5.1}
\end{align*}
$$

where $10 \mathrm{Dq}^{*}$ is the cubic field strength of the host compound around the S-state ion and is about 3000 to $4000 \mathrm{~cm}^{-1}$ for Mn^{2+} and 5000 to $6000 \mathrm{~cm}^{-1}$ for Fe^{3+}

[^10]in II-VI compounds of T_{d} symmetry. The coefficients M_{0} and M_{2} are (see Ref. 6, Part a) 0.204 and $0.0159 \mathrm{~cm}^{-1}$, respectively. Substituting for M_{0} and M_{2}, one obtains:
\[

$$
\begin{aligned}
(3 a)_{W} & =3(\mathrm{Dq})^{2}[2.015+15.94 \times 0.204-149.5(0.0159)-5.037(0.024 \\
& \left.-0.127)^{2}-0.0388(0.077)^{2}(\mathrm{Dq})^{2} \times 10^{-6}\right] \times 10^{-10} \mathrm{~cm}^{-1} \\
& =3(0 \mathrm{q})^{2}\left[2.015+0.87-0.029-2.25 \times 10^{-9}(\mathrm{Dq})^{2}\right] \times 10^{-10} \mathrm{~cm}^{-1}
\end{aligned}
$$
\]

or

$$
\begin{equation*}
(3 \mathrm{a})_{\mathrm{w}}=8.57 \times 10^{-10}(\mathrm{Dq})^{2}-76.5 \times 10^{-20}(\mathrm{Dq})^{4} \mathrm{~cm}^{-1} \tag{5.2}
\end{equation*}
$$

2. CONTRIBUTION TO 3a FROM POWELL'S CALCULATIONS

The ground state splitting given by Powell et al (Ref. 6, part b) can be expressed as:

$$
\begin{equation*}
(3 a)_{P}=K_{P} \zeta_{d}^{4}(D q)^{n} ; 3.5\left\langle\mathrm{n}\langle 6 ; D q\rangle 10^{3} \mathrm{~cm}^{-1}\right. \tag{5.3}
\end{equation*}
$$

The equation (5.3) was obtained by limiting their calculation to $\mathrm{Mg} 0: \mathrm{Mn}$ where MgO is an octahedral II-VI compound for which Dq is large (Dq $) 10^{-3} \mathrm{~cm}^{-1}$). For the II-VI compounds of T_{d} symmetry, Powell et al (Ref. 6a) give some numerical values of 3a as a function of (Dq) as given in Table 5.1.

[^11]Table 5.1. Calculated ${ }^{+}$3a $\mathrm{in} \mathrm{Mn}^{2+}$ in units of $10^{-4} \mathrm{~cm}^{-1}$

Dq $\left(\mathrm{cm}^{-1}\right)$	0	-200	-400	-600	-800	-1000
$(3 \mathrm{a})_{\mathrm{p}}$ with doublets	0	3.56	11.0	23.8	45.1	81.4
$(3 \mathrm{a})_{\mathrm{p}}$ without doublets $^{(3 a)}$ $(3 \mathrm{w}$ Eq. (5.2) 00.0 .115	0.338	0.668	1.09	1.59		

These values are obtained for the spin-orbit constant, $=400 \mathrm{~cm}^{-1}$ and spin-spin interaction constants, M_{0} and M_{2} as $0.284 \mathrm{~cm}^{-1}$ and $0.0159 \mathrm{~cm}^{-1}$, respectively.

The first row of Table 5.1 gives 3a arising from all spin multiplets within the $3 \mathrm{~d}^{5}$ manifold, whereas the second row is obtained without taking the spin doublets of the $3 d^{5}$ manifold into account. Watanabe's calculations are based on spin quartets alone and are given in the third row of Table 5.1. The numerical values of the first row of Table 5.1 give the total contributions from excited states generated within the $3 d^{5}$ manifold. Now, we consider the calculation by Low and Rosengarten.
3. CONTRIBUTION TO 3a FROM LOW AND ROSENGARTEN CALCULATIONS

The cubic field splitting given by Low and Rosengarten, (3a) LR, was obtained from the same spin quartets and doublets of (3d) ${ }^{5}$ manifold considered by Powell et al. However, the techniques used by the former authors differ from those of the latter. Low et al diagonalized the eneroy matrices of $E^{\prime}, E^{\prime \prime}$ and U^{\prime} levels which contain five parameters; $\mathrm{B}, \mathrm{C}, \mathrm{Dq}, \zeta_{\mathrm{d}}$ and α.* Powell el at, on the other hand, diagonalized the

[^12]energy matrices of A_{1}, A_{2}, E, T_{1} and T_{2} levels as functions of six parameters $B, C, D q, \zeta a, M_{0}$ and M_{2}, first. Then, they obtained the energies of levels $E^{\prime \prime}$ and U^{\prime} from the energy values of the above levels, $A_{1} \ldots T_{2}$ by sixth order perturbation.

The numerical values obtained by Low et al are given in Table 5.2. Considering Table 5.2, it is evident that (3a) ${ }_{L R}$ and (3a) ${ }_{P}$ are of the same order of magnitude, whereas (3a) ${ }_{W}$ (Table 5.1), calculated by Watanabe, is much less than these two. This is expected because both (3a) ${ }_{L R}$ and (3a) ${ }_{P}$ have been found by taking into account all spin multiplets of (3d) ${ }^{5}$ configuration, whereas (3a) W is obtained from spin quartets of (3d) ${ }^{5}$ only. As for (3a) ${ }_{L R}$ and $(3 a)_{p}$. the latter gives $3 a$ as a function of Dq and ζ_{d}. Therefore, it is more suitable for the calculation

Table 5.2.* Comparison of (3a) ${ }_{\text {LR }}$ with $(3 a)_{P}$ and (3a) Exp.

	Mn^{2+}			Fe^{3+}		
	MnF_{2}	MnCl_{2}	$\mathrm{Mn}\left(\mathrm{H}_{2}{ }^{0}\right)_{6}$	$\mathrm{MgO}=\mathrm{Fe}$	$\mathrm{Be}_{3} \mathrm{Al}_{2}\left(\mathrm{StO}_{3}\right)_{5}: \mathrm{Fe}$	$\mathrm{Fe}^{\left(\mathrm{H}_{2}\right)_{6}}$
$10^{-4 \mathrm{a})_{\mathrm{LR}}} \mathrm{~cm}^{-1}$		10			160	
$\begin{aligned} & \mathrm{Dq}\left(\mathrm{~cm}^{-1}\right) \\ & \zeta_{\mathrm{d}}\left(\mathrm{~cm}^{-1}\right) \end{aligned}$		$\begin{aligned} & 750 \\ & 320 \end{aligned}$			$\begin{array}{r} 1350 \\ 420 \end{array}$	
$(3 \mathrm{a})_{\mathrm{p}}\left(10^{-4} \mathrm{~cm}^{-1}\right)^{+}$		11			325	
(3a) Exp. ${ }^{\left(10^{-4} \mathrm{~cm}^{-1}\right)}$	12	6	20-30	615	450	350

[^13]of the 3a of a certain ion in compounds of different Dq. Thus, we choose (3a) as the contribution to 3 a from the excited states within the (3d) ${ }^{5} \stackrel{\mathrm{P}}{\text { configuration }}$ and, discuss the charge transfer contribution in the next section.
4. CONTRIBUTION TO 3a FROM σ-BONDING CHARGE TRANSFER STATES

The contribution to 3 a from the σ-bonding charge transfer states was obtained previously. ${ }^{15}$ Here, it will be reviewed briefly in order to make a comparison between this and the contribution of the π-bonding transfer states given in the next section.

The irreducible representations of the metal d orbital and ligand σ-orbitals in II-VI compounds of T_{d} symmetry are: *

$$
\begin{equation*}
h(d)=h(\ell=2)=e+t_{2} \tag{5.4}
\end{equation*}
$$

and

$$
\begin{equation*}
h(\sigma)=a_{1}+t_{2} \tag{5.5}
\end{equation*}
$$

Considering (5.4)-(5.5), it is evident that the molecular orbitals consist of a d orbital of e symmetry, a σ-orbital of a_{1} symmetry and a pair of orbitals comprised of metal d-orbital and ligand o-orbital of t_{2} symmetry. In the last two orbitals, the orbital with the higher energy is the antibonding, denoted by $t_{2}{ }^{a}$, whereas the one with the lower energy is called bonding and is denoted by $t_{2}{ }^{b}$. Thus, the molecular orbitals of interest to us, are (a_{1} is ignored):

$$
|e\rangle=|d e\rangle,\left|t_{2}^{a}\right\rangle=\alpha_{T}\left|d t_{2}\right\rangle-\beta_{T}\left|\sigma t_{2}\right\rangle
$$

and

$$
\begin{equation*}
\left|t_{2}^{b}\right\rangle=B_{T}\left|d t_{2}\right\rangle+\alpha_{T}\left|\sigma t_{2}\right\rangle \tag{5.6}
\end{equation*}
$$

[^14]The energy diagram for such bonding is given in Fig. 5.1.
The electronic configuration characteristic of the ground state, ${ }^{6} A_{1}$, of a tetrahedral complex of $3 d^{5}{ }^{6} S$ ion and 1 ts bonding-nonbonding and bonding-antibonding states are given in Fig. 5.2. The ${ }^{6} \mathrm{~T}_{1}{ }^{n}$ and ${ }^{6} T_{2}{ }^{n}$ in Fig. $5.2(b)$ result from an electron transfer from the $t_{2}{ }^{b}$ orbital to e^{n}, whereas the levels; ${ }^{6} E^{a},{ }_{b} T_{1}{ }^{a}$ and ${ }^{6} T_{2}{ }^{a}$ result from the above procens taking place between the $t_{2}{ }^{b}$ and $t_{2}{ }^{a}$ orbitals as shown in Fig. 5.2(c).

Fig. 5.1. σ-bonding molecular orbitals in II-VI compounds of T_{d} symmetry.

Fig. 5.2. (a) Ground state of complex $\left[\Sigma \Lambda_{4}\right]^{-n}$, (b) $t^{b}{ }^{b}-e^{n}$ charge transfer states and their schematic energy levels, and (c) $t_{2}{ }^{b}-t_{2}{ }^{a}$ charge transfer states and their schematic energy levels.

The contribution of these σ-bonding levels to 3 a depends on their stability for a given S-state ion in a given compound. In the case of compounds where levels ${ }^{6} \mathrm{E}^{a},{ }^{6} \mathrm{~T}_{1}{ }^{a}$ and ${ }^{6} \mathrm{~T}_{2}{ }^{\text {a }}$ may not be localized because of the small energy band gap of compound, only ${ }^{6} \mathrm{~T}_{1}{ }^{n}$ and ${ }^{6} \mathrm{~T}_{2}{ }^{n}$ can be taken into account. For the general case where anitbonding levels are also localized, the simultaneous effort of both antibonding and bonding levels on $3 a$ must be considered. The contribution, $3 a(\sigma)$, to the cubic field splitting $3 a$, from the above σ-bonding orbitals can be expressed as:*

$$
\begin{equation*}
3 a(\sigma)=E^{(4)}\left(U^{\prime}\right)-E^{(4)}\left(E^{\prime}\right) \tag{5.7}
\end{equation*}
$$

We first obtain the $3 a(\sigma)$ for ${ }^{6} \mathrm{~T}_{1}{ }^{\mathrm{n}}$ and ${ }^{6} \mathrm{~T}_{2}{ }^{\mathrm{n}}$ alone. Then, we include the states ${ }^{6} \mathrm{E}^{\mathrm{a}},{ }^{6} \mathrm{~T}_{1}{ }^{\text {a }}$ and ${ }^{6} \mathrm{~T}_{2}{ }^{\mathrm{a}}$.

4.1 Bonding-Nonbonding Charge Transfer

The contribution to $3 a(\sigma)$ from ${ }^{6} \mathrm{~T}_{1}{ }^{\mathrm{n}}$ and ${ }^{6} \mathrm{~T}_{2}{ }^{\mathrm{n}}$ will be 1dentified by $3 a(\sigma ; b-n)$. This can be obtained both from (4.11) or from the different techniques described in Appendix F. The result is: ${ }^{15}$

$$
\begin{equation*}
3 a(\sigma ; b-n)=0.1728 \beta_{T}^{6} \zeta_{d}^{4}\left(1-\varepsilon_{n} T / \delta_{n} T\right)\left(\delta_{n} T\right)^{-3} \tag{5.8}
\end{equation*}
$$

where $\beta_{T}{ }^{2}=1-\alpha_{T}{ }^{2}$ is the covalency of the d-orbitals of the S-state ion in the desired complex. ζ_{d} is the single electron spin orbit parameter and is the same as λ in Ref. 15. δ_{n}^{T} and ε_{n}^{T} are as shown in Fig. 5.1.
4.2 Bonding-Nonbonding and Bonding-Antibonding Charge Transfer llaing the same techniques as those employed for the bondingnonbonding process, one finds the contributions to $3 a(\sigma)$ arising from

[^15]${ }^{6} \mathrm{~T}_{1}{ }^{\mathrm{n}},{ }^{6} \mathrm{~T}_{2}{ }^{\mathrm{n}},{ }^{6} \mathrm{E}^{\mathrm{a}},{ }^{6} \mathrm{~T}_{1}{ }^{\mathrm{a}}$, and ${ }^{6} \mathrm{~T}_{2}{ }^{\mathrm{a}}$ as shown in Appendix F . The result is a function of the coefficients of atomic orbitals α_{T} and $\beta_{T}\left(\alpha_{T}{ }^{2}\right.$ $=1-\beta_{T}{ }^{2}$) in the molecular orbitals used, and the energies; $\delta_{\mathrm{n}}{ }^{T}, \varepsilon_{\mathrm{n}}{ }^{T}$, $\delta_{a}^{T}, \varepsilon_{a 1}^{T}{ }^{T}$ and $\varepsilon_{a 2}^{T}$ as shown in Fig. 5.1. For a particular case where
\[

$$
\begin{equation*}
\varepsilon_{\mathrm{n}}^{\mathrm{T}}=\varepsilon_{\mathrm{a} 1}^{\mathrm{T}}=\varepsilon_{\mathrm{a} 2}^{\mathrm{T}}=0 \tag{5.9}
\end{equation*}
$$

\]

and with the assumption that*

$$
\begin{equation*}
\delta_{a}^{T}=r \delta_{n}^{T} \tag{5.10}
\end{equation*}
$$

one finds that:

$$
\begin{gather*}
3 \mathrm{a}(\sigma)=(108: 625)\left(\delta_{\mathrm{n}}^{\mathrm{T}}\right)^{-3}(\mathrm{x}) \\
(\mathrm{x})\left[{\beta_{T}}^{4}-2\left(1-\beta_{T}{ }^{4}\right) \mathrm{r}^{-1}+\left(1-{\beta_{T}}^{2}\right)\left(3-5{\beta_{T}}^{2}\right) \mathrm{r}^{-2}\right]{\beta_{T}}^{2} \zeta_{\mathrm{d}}{ }^{4} \tag{5.11}
\end{gather*}
$$

The parameter r and its power denote the presence of ${ }^{6} \mathrm{~T}_{1}{ }^{\mathrm{a}}$, ${ }^{6} \mathrm{~T}_{2}{ }^{\mathrm{a}}$ or ${ }^{6} \mathrm{E}^{\mathrm{a}}$ in the matrix elements from which $3 \mathrm{a}(\sigma)$ is obtained. Thus, the first term in the bracket in (5.11) represents contributions arising exclusively from ${ }^{6} T_{1}{ }^{n}$ and ${ }^{6} T_{2}{ }^{n}$, whereas the last two terms give the contribution arising from the presence of both ${ }^{6} T_{1}{ }^{n}$ and ${ }^{6} T_{2}{ }^{n}$, and ${ }^{6} E^{a}$, ${ }^{6} \mathrm{~T}_{1}{ }^{\mathrm{a}}$ and ${ }^{6} \mathrm{~T}_{2}{ }^{\mathrm{a}}$. An examination of (5.11) reveals that only for $\mathrm{r} \rightarrow 0$ or $\delta_{a}^{T} \rightarrow \infty$ one obtains $\left.3 a(\sigma)\right\rangle 0$. Numerical values of $3 a(\sigma)$ as functions of both $\beta_{\mathrm{T}}{ }^{2}=1-\alpha_{\mathrm{T}}{ }^{2}$ and r can be found from the following relationships:

$$
\begin{equation*}
3 \mathrm{a}\left(\sigma,{\beta_{\mathrm{T}}}^{2}=0.2\right)=\left[(18 / 625)\left(\delta_{\mathrm{n}}^{\mathrm{T}}\right)^{-3}\right]\left[0.048-2.3 \mathrm{r}^{-1}+1.92 \mathrm{r}^{-2}\right] \zeta_{\mathrm{d}}{ }^{4} \tag{5.12}
\end{equation*}
$$

${ }^{*} r$ is a real number chosen as the ratio of the two energies δ_{a}^{T} and δ_{n}^{T}.

$$
\begin{equation*}
3 a\left(\sigma, \beta_{T}^{2}=0.3\right)=\left[(18 / 625)\left(\delta_{\mathrm{n}}^{\mathrm{T}}\right)^{-3}\right]\left[0.162-3.3 \mathrm{r}^{-1}+1.89 \mathrm{r}^{-2}\right] \zeta_{\mathrm{d}}{ }^{4} \tag{5.13}
\end{equation*}
$$

$$
\begin{equation*}
3 \mathrm{a}\left(\sigma, \beta_{\mathrm{T}}{ }^{2}=0.4\right)=\left[(18 / 625)\left(\delta_{\mathrm{n}}^{\mathrm{T}}\right)^{-3}\right]\left[0.384-4.03 \mathrm{r}^{-1}+1.44 \mathrm{r}^{-2}\right] \zeta_{\mathrm{d}}{ }^{4} \tag{5.14}
\end{equation*}
$$

The numerical values obtained from (5.12)-(5.14) are given
in Table 5.3.
An examination of Table 5.3 indicates that a positive contribution to $3 \mathrm{a}(\sigma)$ takes place only in very covalent compounds ($\beta_{\mathrm{T}}{ }^{2}=0.4$) and for $\delta_{a}^{T}: \delta_{n}{ }^{T}=12$. The latter condition is unrealistic because for δ_{n}^{T} in the order of 1-2 e.v., δ_{a}^{T} must be 12-24 e.v. which makes E^{a}, $\mathrm{T}_{1}{ }^{\mathrm{a}}$ and $\mathrm{T}_{2}{ }^{\mathrm{a}}$ levels unstable. Thus, one can conclude that:
(1) $3 \mathrm{a}(\sigma)$ is positive if only bonding-nonbonding states are localized $\left|\delta_{a}^{T} / \delta_{n}^{T} \rightarrow \infty\right|$.
(2) $3 a(\sigma)$ is negative when both bonding-nonbonding and bondingantibonding states are localized, and $r=\delta_{a}^{T}: \delta_{n}{ }^{T}$ is 1-10.
(3) $3 \mathrm{a}(\sigma)$ depends only on ζ_{d} as shown in (5.12)-(5.13).

Since $3 a(\pi)$ depends on both ζ_{d} and ζ_{p}, ${ }^{*}$ it is desirable to elaborate further on the absence of ζ_{p} in $3 a(\sigma)$. The fact that $3 a(\sigma)$ does not depend on ζ_{p} is intuitively clear since σ orbitals arise from atomic s and p_{z} orbitals, and since the matrix elements of spin orbit

Table 5.3. Numerical values of $3 \mathrm{a}(\sigma)$ in $(18 / 625)\left(\delta_{n}\right)^{-3} r_{d}^{4}$

[^16]interaction between such pairs of atomic orbtials, automatically vanish. To put this in a more rigorous language, we will consider the part of the matrix elements of $H_{p}=\sum_{i}^{i} \zeta_{i} \underline{l}^{i} \cdot \underline{s}^{i}$ between a pair of states of antibonding orbitals $\left.\mathrm{t}_{\mathrm{a}}=\alpha_{\mathrm{T}}|\mathrm{dt}\rangle_{2}\right\rangle^{\mathrm{P}}-\beta_{\mathrm{T}}\left|\sigma \mathrm{t}_{2}\right\rangle$. The matrix elements arising exclusively from the ligand σ orbitals have the general form of ${ }^{+}$
\[

$$
\begin{equation*}
M_{a a}\left(\sigma, m \xi, m^{\prime} \eta^{\prime}\right)=\left\langle 1 / 2 \mathrm{~m}_{\mathrm{a}} \quad \xi\right| \zeta \underline{\ell} \cdot \underline{\mathrm{s}}\left|1 / 2 \mathrm{~m}^{\prime} \sigma t_{2} \eta^{\prime}\right\rangle \tag{5.15}
\end{equation*}
$$

\]

where (Ref. 23, p. 108):

$$
\begin{align*}
& \left|\sigma t_{2} \xi\right\rangle=\left|\sigma t_{2} \mathrm{yz}\right\rangle=(1 / 2)\left(\sigma_{1}+\sigma_{3}-\sigma_{2}-\sigma_{4}\right) \tag{5.16}\\
& \left|\sigma t_{2} n\right\rangle=\left|\sigma t_{2} \mathrm{zx}\right\rangle=(1 / 2)\left(\sigma_{1}+\sigma_{2}-\sigma_{3}-\sigma_{4}\right) \tag{5.17}
\end{align*}
$$

and

$$
\begin{equation*}
\sigma_{k}=a_{s}(k)+b p_{z}(k), a^{2}+b^{2}=1, k=1, \ldots, 4 \tag{5.18}
\end{equation*}
$$

Substituting in (5.15), we find that:

$$
M_{a a}\left(\sigma, m \xi, m^{\prime} n^{\prime}\right)=(1 / 4)\left[R_{1}-R_{2}-R_{3}+R_{4}\right]
$$

where
$R_{k}=a^{2}\langle 1 / 2 m s(k)| \zeta \underline{\ell} \cdot \underline{s}\left|1 / 2 m^{\prime} s(k)\right\rangle+b^{2}\left\langle 1 / 2 m p_{z}(k)\right| \zeta \underline{\ell} \cdot \underline{s}\left|1 / 2 m^{\prime} p_{z}(k)\right\rangle$
resulting in

$$
M_{a a}\left(\sigma, m \xi, m^{\prime} n\right)=(1 / 4)[R-R-R+R]=0
$$

[^17]Thus, the off-diagonal elements, $M_{a a}\left(\sigma, m \xi, m^{\prime} \eta^{\prime}\right)$, vanish. For diagonal elements, we have*

$$
M_{a a}(\sigma, m \xi, m \xi)=(1 / 4)\left[R_{1}+R_{2}+R_{3}+R_{4}\right]
$$

where

$$
\begin{align*}
\mathrm{R} & =\mathrm{b}^{2}\left\langle 1 / 2 \mathrm{~m} \mathrm{p}_{z}\right| \zeta \underline{\ell} \cdot \underline{s}\left|1 / 2 \mathrm{~m}^{\prime} \mathrm{p}_{z}\right\rangle=(1 / 2) \mathrm{b}^{2} \zeta_{\mathrm{p}}\left\langle\mathrm{p}_{z}\right| \ell_{z}\left|\mathrm{p}_{z}\right\rangle \delta_{\mathrm{mm}^{\prime}} \\
& =(1 / 2) \mathrm{b}^{2} \zeta_{\mathrm{p}}\langle\mathrm{p}||\ell||\mathrm{p}\rangle \overline{\mathrm{v}}\left|\begin{array}{c}
111 \\
000
\end{array}\right| \delta_{m m^{\prime}} \equiv 0 \tag{5.19}
\end{align*}
$$

Thus, we conclude that: (1) charge transfer from bonding to nonbonding σ-orbitals gives a positive contribution to $3 a$, (2) simultaneous bonding-nonbonding and bonding-antibonding charge transfer give a negative contribution to $3 a$ for $\delta_{a}^{T}: \delta_{n}^{T}$ varying from 1 to 10 , and (3) these contributions do not depend on ζ_{p}, the ligand spin orbit interaction.

5. CONTRIBUTION TO 3 a FROM π-BONDING CHARGE TRANSFER STATES

The last contribution to consider is that of the π-orbitals.
This was included in the calculations of $3 a$ in the previous chapter. From (4.17) we have:

$$
\begin{equation*}
3 a^{(4)}=3 a^{(4)}(\sigma, \pi)=\sum_{1=0}^{4} C_{i} \zeta_{d}^{4-1} \zeta_{p}^{1} \tag{5.20}
\end{equation*}
$$

The above result was obtained by substituting the promotion energies, for charge transfer among various orbitals $t_{b}, e_{b}, t_{1}, e_{a}$ and t_{a} of Fig. 3.1 by an average energy. To refine the above result further we consider the case of $t_{1} \rightarrow e_{a}$ electron transfer first and then discuss the

[^18]general case where all six transfers $t_{b} \rightarrow e_{a}, e_{b} \rightarrow e_{a}, t_{1}+e_{a}, t_{b} \rightarrow t_{a}$, $e_{b} \rightarrow t_{a}$ and $t_{1} \rightarrow t_{a}$ are taken into account.
5.1 Determination of $3 \mathrm{a}\left(\sigma, \pi, \mathrm{t}_{1} \rightarrow \mathrm{e}_{\mathrm{a}}\right.$)

The effect of $t_{1} \rightarrow e_{a}$ charge transfer states on $3 a(\sigma, \pi)$ will be discussed in this section. The symmetry and electronic configurations of the π-bonding molecular orbitals of $t_{1} \rightarrow e_{a}$ charge transfer are shown in Fig. 5.3.

Fig. 5.3. Molecular orbital and energy levels of (a) the ground level ${ }^{6} A_{1}$ and (b) the $t_{1} \rightarrow e_{a}$ electron transfer levels ${ }^{6} T_{1}$ and ${ }^{6}{ }_{T}$

3a $\left(\sigma, \pi, t_{1} \rightarrow e_{a}\right)$ can be obtained from the following relation.
$3 a\left(\sigma, \pi, t_{1} \rightarrow e_{a}\right)=-\left[\delta_{1}^{2}\left(\delta_{1}+\varepsilon\right)\right]^{-1}(18)^{-1}$

(x$)\left[\sum_{\mathrm{J}} \mathrm{K}_{5 / 2 \mathrm{~J}}\left(5 / 25 / 2 \mathrm{~T}_{1}, \mathrm{~T}_{2} \mathrm{~T}_{1} \mathrm{U}^{\prime}\left|\mathrm{K}_{\mathrm{J}} 5 / 2\right| 5 / 25 / 2 \mathrm{~T}_{1}, \mathrm{~T}_{1} \mathrm{~T}_{2} \mathrm{U}^{\prime}\right)\right.$
$\left.\left.-\sum_{\mathrm{J}^{\prime}} \mathrm{K}_{5 / 2} \mathrm{~J}^{\prime}\left(5 / 25 / 2 \mathrm{~T}_{1}, \mathrm{~T}_{2} \mathrm{~T}_{1} \mathrm{E}^{\prime \prime}\right) \mathrm{K}_{\mathrm{J}}, 5 / 2\left\{5 / 25 / 2 \mathrm{~T}_{1}, \mathrm{~T}_{1} \mathrm{~T}_{2} \mathrm{E}^{\prime \prime}\right)\right]\right\}$

Substituting for reduced matrix elements from Tables 3.3-3.4, and for $K_{J J}$, from Tables 3.9-3.12 one finds,
$3 a\left(\pi, t_{1} \rightarrow e_{a}\right)=-\left[\delta_{1}{ }^{2}\left(\delta_{1}+\varepsilon\right)\right]^{-1}$
(x) $[(-) \sqrt{7 / 5}(-) \sqrt{21 / 20}(+) \sqrt{21 / 20}(-) \sqrt{7 / 5}(-)(1 / 18)(128 / 9800)]$

$$
\left(e_{a} t_{1}\right)\left(t_{1} e_{a}\right)\left(t_{1} t_{1}\right)\left(t_{1} t_{1}\right)
$$

Substituing for $e_{a} t_{1}$ and $t_{1} t_{1}$ from Table 3.13 we find

$$
\begin{equation*}
3 a\left(\sigma, \pi ; t_{1} \rightarrow e_{a}\right)=-(9 / 1250)\left[\delta_{1}^{2}\left(\delta_{1}+\varepsilon\right)\right]^{-1} \beta^{2} \zeta_{p}^{4} \tag{5.21}
\end{equation*}
$$

5.2 Determination of $3 \mathrm{a}\left(\sigma, \pi ; t_{b} \rightarrow e_{a}\right)$

The contribution from $t_{b} \rightarrow e_{a}$ charge transfer can be obtained in a similar fashion. The energy diagram is as shown in Fig. 5.4.

Fig. 5.4. Molecular orbital and energy levels of (a) ground level ${ }^{6} \mathrm{~A}_{1}$ and (b) the $\mathrm{t}_{\mathrm{b}} \rightarrow \mathrm{e}_{\mathrm{a}}$ electron transfer levels ${ }^{6} \mathrm{~T}_{1}^{\prime}$ and ${ }^{6} \mathrm{~T}_{2}^{\prime}$

The effect of ${ }^{6} \mathrm{~T}_{1}$ and ${ }^{6} \mathrm{~T}_{2}^{\prime}$ on 3 a can be written as *

$$
3 a\left(\pi, t_{b}+e_{a}\right)=-\left[\delta_{i}^{2}\left(\delta_{i}^{\prime}+\varepsilon^{\prime}\right)\right]^{-1}
$$

(x) $\{(-) \sqrt{7 / 5}(+) \sqrt{21 / 20}(-) \sqrt{21 / 20}(+) \sqrt{7 / 5}[(-)(1 / 18)(128 / 9800)]$

$$
\begin{equation*}
\left.\left(e_{a} t_{b}\right)^{2}\left(t_{b} t_{b}\right)^{2}\right\} \tag{5.22}
\end{equation*}
$$

Table 3.13 gives

$$
\begin{equation*}
e_{a} t_{b}=-3 \sqrt{2} \alpha \lambda \zeta_{d}+\sqrt{3} \beta_{k} \zeta_{p} \tag{5.23}
\end{equation*}
$$

[^19]\[

$$
\begin{equation*}
t_{b} t_{b}=3 \lambda^{2} \quad \zeta_{d}+3 / 2 k^{2} \zeta_{p} \tag{5.24}
\end{equation*}
$$

\]

Suosti .ating for $e_{a} t_{b}$ and $t_{b} t_{b}$ in (5.22) one finds

$$
\begin{gather*}
3 a\left(\sigma, \pi ; t_{b} \rightarrow e_{a}\right)=(18 / 625)\left[\delta_{1}^{\prime 2}\left(\delta_{1}^{\prime}+\varepsilon^{\prime}\right)\right]^{-1} \\
(x)\left\{6 \alpha^{2} \lambda^{6} \zeta_{d}{ }^{4}+\left(6 \alpha^{2} \kappa^{2} \lambda^{4}-2 \sqrt{6} \alpha \beta k \lambda^{5}\right) \zeta_{d}{ }^{3} \zeta_{p}\right. \\
+\left(3 / 2 \alpha^{2} \lambda^{2} \kappa^{4}+\beta^{2} \kappa^{2} \lambda^{4}\right) \zeta_{d}{ }^{2} \zeta_{p}{ }^{2}+\left(\beta^{2} k^{4} \lambda^{2}-(3 / 2)^{1 / 2} \alpha \beta k^{5} \lambda\right) \\
\text { (x) } \left.\zeta_{d} \zeta_{p}^{3}+(4)^{-1} \beta^{2} \kappa^{6} \zeta_{p}{ }^{4}\right\} \tag{5.25}
\end{gather*}
$$

The numerical value of $3 a\left(\pi, t_{b} \rightarrow e_{a}\right)$ can be obtained from following coefficients

$$
\begin{gather*}
\alpha^{2}=1-\beta^{2}=0.7 \\
\kappa^{2}=0.8-\lambda^{2}=0.6 \tag{5.26}
\end{gather*}
$$

and it is found as

$$
\begin{gather*}
3 \mathrm{a}\left(\sigma, \pi ; \mathrm{t}_{\mathrm{b}} \rightarrow \mathrm{e}_{\mathrm{a}}\right)= \\
{\left[(18 / 625)\left(\delta_{1}^{2} \mid \delta_{1}^{\prime}+\varepsilon_{1}^{\prime}\right) \mid\right]^{-1}\left[.034 \zeta_{\mathrm{d}}^{4}+.0674 \zeta_{\mathrm{d}}{ }^{3} \zeta_{\mathrm{p}}\right.} \\
\left.+.0827 \zeta_{\mathrm{d}}{ }^{2} \zeta_{\mathrm{p}}{ }^{2}-.0487 \zeta_{\mathrm{d}} \zeta_{\mathrm{p}}^{3}+.0251 \zeta_{\mathrm{p}}^{4}\right] \tag{5.27}
\end{gather*}
$$

5.3 Determination of Total $3 \mathrm{a}(\sigma, \pi)$

The $3 a(\sigma, \pi)$ representing the effect of all charge transfer states of transfers $t_{b} \rightarrow e_{a}, e_{b} \rightarrow e_{a}, t_{1} \rightarrow e_{a}$, and $t_{b} \rightarrow t_{a}, e_{b} \rightarrow t_{a}$ and $t_{1} \rightarrow t_{a}$, can be expressed as (4.6) :

$$
\begin{equation*}
3 a(\sigma, \pi)=3 a^{(4)}=\sum_{i=0}^{4} c_{i} \zeta_{d}^{4-i} \zeta_{p}^{i} \tag{5.28}
\end{equation*}
$$

where C_{i} are functions of $\alpha, \beta, \kappa, \lambda$ and the charge transfer energies such as δ_{1} and δ_{1}^{\prime} in (5.21) and (5.27).

The numerical values of the coefficients C_{i} are calculated for $\alpha^{2}, \beta^{2}, K^{2}, \lambda^{2}$ as in (5.26) and for

$$
\delta_{1}=\delta_{1}+\varepsilon \sim \delta_{1}^{\prime}=E_{6}
$$

The results, given in Table 4.1, and 4.2 indicate that

$$
\begin{align*}
& 3 a^{(4)}>0 \\
& \zeta_{p} / \zeta_{d} \leq 2 \tag{5.29}
\end{align*}
$$

and

$$
\begin{align*}
& 3 a^{(4)}<0 \\
& \zeta_{\mathrm{p}} / \zeta_{\mathrm{d}} \geq 3 \tag{5.30}
\end{align*}
$$

For ligands O^{--}and S^{--}and S -state ions Mn^{2+} or Fe^{3+} the $\zeta_{\mathrm{p}} / \zeta_{\mathrm{d}} \leq 2$ holds and consequently

$$
\begin{equation*}
3 \mathrm{a}\left(\pi, 0^{--}\right), 3 \mathrm{a}\left(\pi, \mathrm{~s}^{--}\right)>0 \tag{5.31}
\end{equation*}
$$

whereas for Se^{--}and Te^{--}the condition $\zeta_{\mathrm{p}} / \zeta_{\mathrm{d}} \geq 3$ applies and one concludes that

$$
\begin{equation*}
3 a\left(\pi, S e^{--}\right), 3 a\left(\pi, T e^{--}\right)<0 \tag{5.32}
\end{equation*}
$$

Comparing sections 4 and 5 one concludes that (1) in both σ - and π-bonding schemes $t_{2} \rightarrow e$ charge transfer gives a positive contribution to 3 a , (2) $\mathrm{t}_{2}^{\mathrm{b}} \rightarrow \mathrm{e}$ charge transfer seems to be the most probable in σ-bonding scheme whereas the $t_{1} \rightarrow e$ transfer seems to be the most probable in $\bar{\pi}$-bonding scheme and gives a negative contribution to $3 a(\pi)$ and (3) the $3 a(\sigma)$, for an average charge transfer energy* $E_{6}(\sigma)$ is negative whereas $3 a(\pi)$, under similar condition is positive if $\zeta_{p} / \zeta_{d} \leq 2$. Now we proceed to the next section for comparison of (3a) ${ }_{w}$, $(3 a)_{p}, 3 a(\sigma)$ and $3 a(\pi) . \dagger$

6. COMPARISON

The five separate calculations given in Sections 1 through 5 can be compared now. To simplify this comparison we ignore the effects of spinspin interaction on 3a which appear as small corrections in calculations of Watanabe and those of Powell. This enables us to describe their results as functions of $\zeta_{d}{ }^{4}$ and (Dq) ${ }^{n}$. The result is

$$
\begin{align*}
(3 a)_{W} & =K_{W} \zeta_{d}^{4}(D q)^{2} \\
(3 a)_{P} & =K_{p} \zeta_{d}^{4}(D q)^{n} \quad 3.5<n<6 \\
3 a(\sigma) & =K_{\sigma} \zeta_{d}^{4} \\
3 a(\sigma, \pi) & =\sum_{i=0}^{4} C_{i} \zeta_{d}^{4-1} \zeta_{p}^{1} \tag{5.33}
\end{align*}
$$

[^20]where $(3 a)_{W}$ and $(3 a)_{p}$ are contributions to $3 a$ from calculations by Watanabe ${ }^{5}$ and by Powe 11^{6}, respectively, and $3 a(\sigma)$ and $3 a(\sigma, \pi)$ in (5.33) are contributions from charge transfer excited states. Since (3a) ${ }_{P}$ results from spin doublets and quartets of $3 d^{5}$ manifold, whereas (3a) W results from spin quartets alone, one immediately concludes that (3 a$)_{W}$ is included in (3a) ${ }_{P}$:
\[

$$
\begin{equation*}
{ }^{(3 a)_{W}}\left(\frac{(3 a)_{P}}{}\right. \tag{5.34}
\end{equation*}
$$

\]

In a similar fashion*

$$
\begin{equation*}
3 a(\sigma) \widehat{3 a}(\sigma, \pi) \tag{5.35}
\end{equation*}
$$

Therefore, the total contribution from spin multiplets within $3 d^{5}$ manifold and charge transfer states is

$$
\begin{equation*}
(3 a)_{\mathrm{P}}+3 \mathrm{a}(\sigma, \pi) \tag{5.36}
\end{equation*}
$$

The experimentally measured 3 a can be affected by spin quartets and doublets which arise as a result of charge transfer. In this case, 3a can be written as

$$
\begin{equation*}
3 a=(3 a)_{p}+3 a(\sigma, \pi)+(3 a)_{r} \tag{5.37}
\end{equation*}
$$

where (3a) represents the rest of terms ignored in the evaluation of $3 a(\sigma, \pi)$.
7. COMPARISON WITH MEASURED 3 a OF Fe^{3+} IN ZnS , ZnSe AND ZnTe

We want to compare the measured $3 a$ of Fe^{3+} in $\mathrm{Zns}, \mathrm{ZnSe}$ and ZnTe with 3 a in (5.37) on the assumption that (3a) $\mathrm{r}=0$.

The measured 3a of Fe^{3+} for above compounds are given in Table 2-2 and are repeated here in Table 5-4.

* $3 a(\sigma, \pi)=3 a(\pi) \quad$ [See the footnote to Eq. (5.26)]

TABLE 5.4
Measured ${ }^{\dagger}$ 3a of Fe^{3+} in $10^{-4} \mathrm{~cm}^{-1}$

ZnS	ZnSe	ZnTe
384	144.9	-7800

tReference 27

To find the contribution (3a) ${ }_{P}$ to the measured 3 a values in Table 5-4 we assume: (i) that the measured 3 a of Fe^{3+} in ZnS arises completely from $(3 a)_{P}$, (ii) the power n in (Dq) ${ }^{n}$ of the expression*

$$
(3 a)_{P}=K_{P} \zeta_{d}^{4}(D q)^{n}
$$

is equal to 4 and (iii) (Dq) is proportional to inverse fifth power of interionic distance R. With these assumptions, the ratios of (3a) of Fe^{3+} in $\mathrm{ZnS}, \mathrm{ZnSe}$ and ZnTe can be obtained as follows:

$$
\begin{equation*}
(3 a)_{\mathrm{P}}(\mathrm{ZnS}): \quad(3 \mathrm{a})_{\mathrm{P}}(\mathrm{ZnSe}): \quad(3 \mathrm{a})_{\mathrm{P}}(\mathrm{ZnTe})=10.1: 5.3: 1 \tag{5.38}
\end{equation*}
$$

The $(3 a)_{P}$ obtained from (5.38) are given in Table 5.5.

[^21]TABLE 5.5
Estimated $(3 \mathrm{a})_{\mathrm{P}}$ for Fe^{3+} in $10^{-4} \mathrm{~cm}^{-1}$

ZnS	ZnSe	ZnTe
384	204	38

The contribution $3 a(\sigma, \pi)$ can be obtained for the appropriate values of $\zeta_{\mathrm{p}} / \zeta_{\mathrm{d}}$. The $\zeta_{\mathrm{d}}{ }^{*}$ for Fe is $0.049 \mathrm{e} . \mathrm{v}$. and $\zeta_{\mathrm{p}}{ }^{\dagger}$ for S , Se and Te are 0.06 , 0.35 and 0.9 e.v., respectively. Thus, the $\zeta_{\mathrm{p}} / \zeta_{\mathrm{d}}$ ratios are $1.09,6.4$ and 16.4 for Fe^{3+} in the three compounds $\mathrm{ZnS}, \mathrm{ZnSe}$ and ZnTe respectively. The $3 \mathrm{a}\left(\sigma, \pi^{\mathrm{B}}\right.$) at these ratios of $\zeta_{\mathrm{p}} / \zeta_{\mathrm{d}}$ and for $\zeta_{\mathrm{d}}=0.049 \mathrm{e} . \mathrm{v}$. and $E_{6}=4 \mathrm{e} . \mathrm{v}$. is obtained from Table 4.2 as given in Table 5-6.

The sum of $(3 a)_{p}$ and $3 a(\sigma, \pi)$ is given in Table 5-7.

[^22]§
$$
3 a^{(4)}=\sum_{i=0}^{4} c_{i} \zeta_{d}^{4-i} \zeta_{p}^{i}
$$

Table 5.6. Calculated $3 a(\sigma, \pi)$ of Fe^{3+}

	ZnS	ZnSe	ZnTe
$\zeta_{\mathrm{p}} / \zeta_{\mathrm{d}}$	1.09	6.4	16.4
$3 \mathrm{a}(\sigma, \pi)$ $\left(10^{-4} \mathrm{~cm}^{-1}\right)$	0.564	-141.0	-6620

Table 5.7. Measured and calculated values of 3 a of Fe^{3+}

	ZnS	ZnSe	ZnTe
$(3 \mathrm{a}) \mathrm{P}^{+3 \mathrm{a}(\sigma, \pi)}$ $\left(\mathrm{nn} 10^{-4} \mathrm{~cm}^{-1}\right)$	384.56	63	-6582
$(3 \mathrm{a})$ $\left(10^{-4} \mathrm{Emp}^{-1}\right)$	384	144.9	-7800^{+}

A comparison of the calculated and measured 3a indicates that a ligand to metal charge transfer process is capable of accounting for the variation of 3 a of the Fe^{3+} in the series of $\mathrm{ZnS}, \mathrm{ZnSe}$ and ZnTe compounds. A detailed examination of the coefficient C_{4} of $\zeta_{p}{ }^{4}$ in the expression of $3 a^{(4)}$ in (4.6)* indicates that the sign of this coefficient is insensitive to coefficients of the linear combination of atomic orbitals α, β, k and λ in the molecular orbitals, whereas the coefficients of $\zeta_{d}{ }^{4} \cdots \zeta_{d} \zeta_{p}{ }^{3}$ are the sum of almost equal number of positive and negative terms. With small variations in such terms the sign and magnitude of these coefficients will change.

Therefore, the spin sextet and ligand to metal charge transfer approximations are valid for metals of higher formal valency and ligands for which $\zeta_{\mathrm{p}} / \zeta_{\mathrm{d}} \sim 10$. $\mathrm{ZnTe}: \mathrm{Fe}^{3+}$ meets both of these requirements. Hence, the agreement found should not be surprising.

[^23]In addition to Fe^{3+} discussed above Cr^{+}and Mn^{2+}, the other two S-state ions of $3 d^{5}$ configuration, deserve a brief discussion. In case of these two ions, in addition to the ligand to metal charge transfer process, employed for Fe^{3+}, another charge transfer should be taken into account. This latter charge transfer permits the transfer of an electron from the antibonding orbitals ${ }^{*} t_{a}$ and e_{a} to the higher lying antibonding orbitals localized in the vicinity of the next nearest neighbor metal ions such as $\mathrm{Mn} \rightarrow \mathrm{Zn}$ charge transfer in $\mathrm{ZnTe}: \mathrm{Mn}$. For brevity, this is called the outgoing charge transfer whereas the former one is called the incoming charge transfer. The matrix elements arising from such processes can be obtained from general expressions given in Chapter III with slight modifications. The evaluation of charge transfer energies, however, would involve the next nearest ions Zn and Cd in (Zn, Cd) ($\mathrm{S}, \mathrm{Se}, \mathrm{Te}$) compounds and more caution is needed for a correct assessment of such energies. The extension of present theory to these two ions has to be deferred to a later time when more accurate charge transfer energies are available.
8. COMPARISON OF $3(\sigma, \pi)$ OF T_{d} AND 0_{h} CASES

Considering Table 5-6 one finds that both the absolute value and the sign of 3 a is determined by the presence of ζ_{p} in the expression of $3 a(\sigma, \pi)=\sum_{i=0}^{4} C_{i} \zeta_{d}{ }^{4-i} \zeta^{i} p^{i}$. A question arises on the nature of the role of ζ_{p} in $3 \mathrm{a}(\sigma, \pi)^{i=0}$ of Fe^{3+} in compounds of 0_{h} symmetry.

Before considering the above question it is worthwhile to give a brief remark on the 3 a in T_{d} case. Recalling (5.37) the total expression of the 3 a is

$$
\begin{equation*}
3 a=(3 a)_{P}+3 a(\sigma, \pi)+(3 a)_{r} \tag{5.39}
\end{equation*}
$$

[^24]where $(3 a)_{P}$ is given in Table 5.1 and $3 a(\sigma, \Pi)$ and $(3 a)_{r}$ can be expressed as
\[

$$
\begin{aligned}
& 3 a(\sigma, \pi)=-\left(\sum_{k 1 m} E_{k} E_{1} E_{m}\right)^{-1}
\end{aligned}
$$
\]

and

$$
\begin{aligned}
& -\left(\mathrm{M}_{0 \mathrm{k}}^{\left.\left.\mathrm{ss}_{\mathrm{M}_{\mathrm{k} 1}} \mathrm{ss}_{\mathrm{M}_{1 \mathrm{~m}^{\prime}}} \mathrm{sq}_{\mathrm{M}_{\mathrm{m}}} \mathrm{qs}_{0}\right) \quad \mathrm{E}^{\prime}{ }^{\prime}\right]}\right.
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{k^{\prime} 1^{\prime} m^{\prime}}\left|E_{k}, E_{1}, E_{m^{\prime}}\right|^{-1}\left[\left(M_{0 k^{\prime}} \mathrm{sq}_{M_{k^{\prime} 1^{\prime}}}{ }^{\left.\prime q_{M_{1}} m^{\prime} q^{\prime} q_{M_{m}}{ }^{q s}\right)^{\prime} \mathrm{U}^{\prime}}\right.\right. \\
& \left.-\left(M_{O k} s q_{M_{k} l^{\prime}} q_{M_{M^{\prime}} m^{\prime}}{ }^{q q_{M_{m}}}{ }^{q s}\right) E^{\prime \prime}\right]
\end{aligned}
$$

 $\sum_{i} \zeta_{i} \underline{1}^{i} \cdot \underline{s}^{i}$ and the superscripts s, q and d refer to the spin sextet, quartet and doublet, respectively and $E_{n}, E_{n^{\prime}}$ and $E_{n^{\prime}} \prime(n=k, 1, m)$ refer to energies of these states.

An important distinction between II-VI compounds of O_{h} and T_{d} symmetries lies in the fact that the band gap energies in the former case
varies from* 4-8 e.v. whereas in the latter case it varies from 0.02-3.7 e.v. Therefore it is probable that the energies of quartets, E_{n}, and doublets, $E_{n}{ }^{\prime \prime}$, are below $8 \mathrm{e} . \mathrm{v}$. and as a result of this the spin quartets or doublets can be localized around the complexes of 0_{h} symmetry. Thus an a priori omission of $(3 a)_{r}$ does not seem to be a reliable approximation for the 0_{h} case. Another obstacle, in the O_{h} case is lack of experimental information on 3 a of Fe^{3+} in such compounds as SrSe or SrTe where ζ_{p} becomes significant. Therefore it is impossible to assess the contribution to $3 \mathrm{a}(\sigma, \pi)$ in the ocathedral case. In the case of Fe^{3+} in the tetrahedral compounds, such as CdTe or ZnTe where the energy band gaps are, respectively, 1.5 and 2.1 e.v., it is possible to assume that none of the charge transfer spin quartets are localized. As a result of this the (3a) may be ignored and only $3 a(\sigma, \pi)$ taken into account. In case of $\mathrm{ZnTe}: \mathrm{Mn}^{2+}$ where (3a) > 0 one may conjecture that the charge transfer spin quartets also contribute to $3 a(\sigma, \pi)$ as well as spin sextets of outgoing charge transfer process referred to in section 7.

[^25]CHAPTER VI
SUMMARY AND CONCLUSIONS

1. SUMMARY

A calculation of cubic field splitting of S-state ions in II-VI compounds was planned. To achieve this, the following steps were taken:
(1) Molecular orbital techniques were employed to construct the excited states of complexes $\left(\Sigma \Lambda_{4}\right)^{-n^{\prime}}$ with Σ as the S-state ion and Λ as $0, \mathrm{~S}$, Se or Te .
(2) A ligand to metal electron transfer process was taken into account and the excited states arising from such phenomenon were constructed with σ and π ligand orbitals.
(3) The cubic field splitting Ba was expressed as the lowest order splitting of the spinor levels U^{\prime} and $E^{\prime \prime}$ (Mullikan's notation) of the ground state as a result of perturbation by excited states through the spin orbit Hamiltonian,

$$
H_{p}=\sum_{i} \zeta_{i} \underline{e}^{i} \cdot \underline{s}^{i}
$$

(4) Utilizing group theory arguments, it was established that (a), the lowest order perturbation, was four and (b), at this order of perturbation the contribution to 3 a arises exclusively from the two groups of three excited states having symmetries of T_{1}, E, T_{1} or T_{1}, T_{2}, T_{1} respectively.
(5) Utilizing reduced matrix techniques the matrix elements of H_{p} between any pair of states

$$
|i k\rangle=\left|x_{i} s_{i} h_{i} J_{k} t \tau\right\rangle
$$

and

$$
|i \ell\rangle=\left|x_{j} s_{j}{ }_{j} j_{\chi} \pm \tau\right\rangle
$$

was obtained in terms of the reduced matrix elements $R_{i j}$ and the coupling coefficients $K_{k \ell}$ as follows:

$$
\begin{aligned}
\left\langle x_{i} s_{i} h_{i} J_{k} t \tau\right| H_{p}\left|x_{j} s_{j} h_{j} t \tau\right\rangle & =\left\langle x_{i} s_{i} h_{i}\right|\left|H_{p} \| x_{j} s_{j} h_{j} k_{k \ell}\right\rangle \\
& =R_{i j} K_{k \ell}
\end{aligned}
$$

where

$$
R_{i j}=\left\langle x_{i} s_{i} h_{i}\left\|H_{p}\right\| x_{j} s_{j} h_{j}\right\rangle
$$

and

$$
K_{k \ell}=K_{J_{k} J_{\ell}}\left(S_{i} S_{j} T_{1}, h_{j} h_{i} t\right)
$$

and $\mid J t \tau>$ is the component of the irreducible representation of angular momentum J in the cubic point group as defined by Griffith ${ }^{16}$ (p. 395).*
(6) Ba was obtained as a sum of the products of the four matrix elements:

$$
\begin{aligned}
& \left\langle x_{0}{ }^{6} A_{1} 5 / 2 t \tau\right| H_{p}\left|x_{i} S_{i} T_{1} J_{\ell} t \tau\right\rangle \\
& \left\langle x_{i} S_{i} T_{1} J_{\ell} t \tau\right| H_{p}\left|x_{j} S_{j} h_{j} J_{m} t \tau\right\rangle \quad h_{j}=E \text { or } T_{2} \\
& \left\langle x_{j} S_{j} h_{j} J_{m} t \tau\right| H_{p}\left|x_{k} S_{k} T_{1} J_{n} t \tau\right\rangle
\end{aligned}
$$

and

$$
\left\langle x_{k} S_{k} T_{1} J_{n} t \tau\right| H_{p}\left|x_{o}{ }^{6} A_{1} 5 / 2 t \tau\right\rangle
$$

$\overline{{ }^{*} \text { For example }} \overline{\mid 5 / 2 \text { U'v }\rangle=\sqrt{1 / 6}}[\sqrt{5}|5 / 2 \quad 5 / 2\rangle+|5 / 23 / 2\rangle]$
with $X_{i} \ldots x_{k}$ representing various electronic configurations giving rise to $\mathrm{S}_{\mathrm{i}} \mathrm{T}_{1} \ldots \mathrm{~S}_{\mathrm{k}} \mathrm{T}_{1}$.
(7) The numerical values of the 3 a of Fe^{3+} in $\mathrm{Zn}(\mathrm{S}, \mathrm{Se}, \mathrm{Te})$ compounds was obtained with restrictions of

$$
\begin{aligned}
& S_{i}=S_{j}=S_{k}=5 / 2 \\
& E_{i}=E_{j}=E_{k}=E_{6}
\end{aligned}
$$

and ζ_{d} and ζ_{p} as the spin orbit constants of metal and ligand orbitals. For appropriate values of ζ for $\mathrm{Fe}, \mathrm{S}, \mathrm{Se}$ and Te , and with $32,000 \mathrm{~cm}^{-1}$ for E_{6} it was found that the calculated 3 a accounts satisfactorily for the difference between measured values and the ionic contributions to the 3 a of Fe^{3+} in the compounds $\mathrm{ZnS}, \mathrm{ZnSe}$ and ZnTe .

2. CONCLUSIONS

Most of the conclusions drawn from this study concern the effect of charge transfer states on the cubic field splitting 3 a of S-state ions in II-VI compounds with tetrahedral symmetry. These conclusions are classified as follows:
(1) The cubic field splitting 3a of S-state ions in covalent II-VI compounds of tetrahedral symmetry depends strongly on the excited states arising from charge transfer from ligand π orbitals to metal d-orbitals.
(2) The effect of these π orbitals is relatively insensitive to the choice of promotion energies and coefficients of linear combinations of atomic orbitals.
(3) To refine present theory, it is necessary to establish (a), the energy levels beyond which excited states are no longer localized, (b), the perturbation order beyond which the contribution to the initial splitting 3a is negligible, and (c), a search for a few parameters characteristic of charge transfer state energies.
(4) To verify the predictions of this theory with experiments, it is desirable to (a) determine the sign of the 3 a of $\mathrm{Cr}^{+}, \mathrm{Mn}^{2+}$ and Fe^{3+} wherever it is in doubt, (b) prepare single crystals of (Mg, Ca, Sr) (Se, Te) which have ocathedral symmetry and to measure the 3 a of S-state ions, particularly Fe^{3+} in such compounds.

ACKNOWLEDGEMENT

The authors wish to acknowledge the useful comments of Professors H. Watanabe of Hokkaido University and T. M. Dunn of the University of Michigan.

Continuous encouragement by Dr. R. K. Mueller, Manager of the General Science and Technology Laboratory of the Bendix Research Laboratories Divison is deeply appreciated. The secretarial work by Elsie Wells and the final typing and art work by the Graphic Arts Department is sincerely appreciated.

APPENDIX A DEFINITION OF SYMBOLS

The frequently occurring symbols, in both the Latin and Greek alphabet, are defined in Table Al of this Appendix. The former group of symbols is given first and then the latter one.

TABLE A-1

DEFINITION OF SYMBOLS

${ }_{6} \mathrm{~A}_{1}$
3 a
C_{i}
$\mathscr{D}_{\text {i }}$
E''
e_{a}
e_{b}
E(${ }^{\prime}$)
$E\left({ }^{\prime \prime}\right)$
$E_{j k}$
E_{j}
H_{p}
h

Term designation of a state of space irreducible representation, A_{1}, and spin $S=5 / 2$.

The cubic crystalline field splitting of a 6S level.

Numerical coefficients of the expression for the charge transfer contribution.

Square root of the product of dimensions of space and spin representations h_{i} and S_{i} of a state $\left|S_{i} h_{i}\right\rangle$. Thus, for a state $\left|S_{i} h_{i}\right\rangle=\left|5 / 2 T_{i}\right\rangle$ one has $\mathcal{D}_{i}=$ $\left[\left(2 S_{i}+1\right)\left(h_{i}\right)\right]^{1 / 2}=[(6)(3)]^{1 / 2}=[18]^{1 / 2}$.

An irreducible representation of cubic double group as defined in Table 3-1.

Antibonding molecular orbital of symmetry E (Table 3.1). Bonding molecular orbital of symmetry E (Table 3.1). The lowest energy value of levels of symmetry U ' (Table 3.1)

The lowest energy value of levels of symmetry E'' (Table 3.1)

The energy difference of states 1 j and 1 k : $E_{j k}=E_{k}-E_{j}$.

The energy of state $1 j$ from that of ground state: $\mathrm{E}_{\mathrm{j}}=\mathrm{E}_{\mathrm{j}}-\mathrm{E}_{\mathrm{o}}$.
Perturbation Hamiltonian: $H_{p}=\Sigma_{i} \zeta_{i} \underline{\ell}^{i} \cdot \underline{s}^{i}=\sum_{k} \operatorname{su}(k)$
An irreducible representation of single valued cubic group.

An identifying number of the irreducible representation resulting from the coupling of spin S and the irreducible representation h of a state $|S h\rangle$ such as $U_{J}^{\prime}=U_{3 / 2}^{\prime}$ of the state $\left|5 / 2 T_{1}\right\rangle$, and $U_{J}^{\prime}=U_{2}^{\prime}$ of the state $|5 / 2 \mathrm{E}\rangle$. In the case of $h=T_{1}, T_{2}$ the index J behaves as total angular momentum associated with Russel Saunders level $|S L\rangle=|S L=1\rangle$ whereas for $h=A_{2}$, E it is a designating number.
$K_{J J}{ }^{\prime}\left(S S^{\prime} T_{1}, h^{\prime h t}\right) \quad$ Spin-orbit matrix element coupling coefficient between states \mid ShJt $\tau\rangle$ and $\left|S^{\prime} h^{\prime} J ' t \tau\right\rangle$.

Magnetic quantum number associated with spin S.
Molecular orbital.
Irreducible representation.
Total spin associated with a total level or its sublevels.

Single electron spin operator.
An irreducible representation in the cubic double group of the coupling, the spin S, and space irreducible representation h of a given state $|\mathrm{Sh}\rangle$ such as U^{\prime} of $\left|5 / 2 T_{1}\right\rangle$.

Antibonding orbital of symmetry T_{2} (Table 3.1)
Bonding orbital of symmetry T_{2} (Table 3.1)
Non-bonding molecular orbital of symmetry T_{1}.
An irreducible representation of cubic double group (Table 3.1)
$\mathrm{V}(\mathrm{abc}, \alpha \beta \gamma)$
Coupling coefficient of the components α and β of the irreducible representations a and b into the γ component of the irreducible representation c such as $\mathrm{V}\left(E T_{1} \mathrm{~T}_{2} \theta_{\mathrm{x}} \xi\right)=1 / 2$. The components θ, x, ξ of the

	representations $E, T_{1}, T_{2} \ldots$ and their symmetry properties are defined in Table A. 16 of Ref. 16.
$\overline{\mathrm{V}}$ ($a b c, \phi B \gamma)$	Coupling of ϕ and β components of spins a and b into γ components of spin c such as $\overline{\mathrm{V}}(5 / 25 / 21,1 / 2-1 / 20)=$ $(1 / 210)^{1 / 2}$. Tables of $\overline{\mathrm{V}}$ are given by Rotenberg et al. (Ref. 26 footnote of p. 86).
$W(a b c, d e f)$	An invariant product of four coefficients $V(a b k, \phi \beta \gamma)$...defined as $W(a b c, d e f)=\sum \alpha \beta \gamma \delta \varepsilon \phi V(a b c, \alpha \beta \gamma)$. $V(a e f, \alpha \varepsilon \phi) \cdot V(b f d, \beta \phi \delta) \cdot V(c d e, \gamma \delta \varepsilon)$. The tables of coefficients W (abc, def) are given by Griffith (Ref. 26 p. 114)
$\bar{W}(a b c, d e f)$	An invariant product of four coefficients $\overline{\mathrm{V}}(\mathrm{abc}, \alpha \beta \gamma)$...defined as $\bar{W}(a b c, \operatorname{def})=\Sigma \alpha \beta \gamma \delta \varepsilon \phi$ $a-\alpha+b-\beta+c-\gamma+d-\delta+e-\varepsilon+f-\phi$ (x) (-1) $\overline{\mathrm{V}}(\mathrm{abc}, \alpha \beta \gamma)$ (x) • $\overline{\mathrm{V}}(\mathrm{aef}, \alpha \varepsilon \phi) \cdot \overline{\mathrm{V}}(\mathrm{bfd}, \beta \phi \delta) \cdot \overline{\mathrm{V}}(\mathrm{cde}, \gamma \delta \varepsilon)$. Values of \bar{W} are the same as the $6-J$ symbols corresponding to $\mathrm{a}, \mathrm{b}, \ldots$, , f and the latter are given by Rotenberg et al. (Ref. 26 footnote of p. 86).
$W\left(N_{i} N_{j} N_{o}, N_{k} N_{1} N_{m}\right)$	Product of a W and \bar{W} coefficient as $W\left(N_{i} N_{j} N_{o}, N_{k} N_{1} N_{m}\right)=$ $\bar{W}\left(S_{i} S_{j} 1, S_{k} S_{1} S_{m}\right)(x) W\left(h_{i} h_{j} T_{1}, h_{k} h_{1} h_{m}\right)$.
X (abc, def,ghk)	An invariant sum of the products of six coefficients $V(a b c, \alpha \beta \gamma)$, ... $V(c f k, \gamma \phi k)$ expressed as $X(a b c, d e f, g h k)=$ $\sum \alpha \beta \gamma \delta \varepsilon \phi \eta_{\theta k} V(a b c, \alpha \beta \gamma)$. (x) $V(\operatorname{def}, \delta \varepsilon \phi) \cdot V($ ghk, $\eta \theta \kappa) \cdot V(\operatorname{adg}, \alpha \delta \eta) \cdot V(b e h, \beta \varepsilon \theta)$ (x) $V(c f k, \gamma \phi K)$. These X coefficients are defined by Griffith (Ref. 26).

$\overline{\mathrm{X}}$ (abc, def, ghk)	This is similar to $\mathrm{X}(\mathrm{abc}, \mathrm{def}, \mathrm{ghk})$ defined above except instead of $\mathrm{V}(a b c, \alpha \beta \gamma)$, one takes $\overline{\mathrm{V}}(a b c, \alpha \beta \gamma)$. Thus $\overline{\mathrm{X}}\left(\mathrm{abc}\right.$, def,ghk) $=\Sigma_{\alpha \beta \gamma \delta \varepsilon \phi n \theta \kappa} \overline{\mathrm{~V}}(\mathrm{abc}, \alpha \beta \gamma)$. (x) $\mathrm{V}(\operatorname{def}, \delta \epsilon \phi) \cdot \overline{\mathrm{V}}\left(\mathrm{ghk}, \eta \theta_{k}\right) \ldots . . . \overline{\mathrm{V}}(\mathrm{cfk}, \gamma=\kappa)$. The coefficients X are given by Howell (Ref. 26 footnote p. 86)
$\begin{array}{r} \boldsymbol{\chi}\left(N_{i} N_{j} N_{k}, N_{i}^{\prime} N_{j}^{\prime} N_{k}^{\prime},\right. \\ \left.N_{a} N_{b} N_{o}\right) \end{array}$	$\begin{aligned} & \text { Product of coefficients } \bar{X} \text { and } X \text { related to } N_{i} N_{j} N_{k} \text {, } \\ & N_{i}^{\prime} N_{j}^{\prime} N_{k}^{\prime}, N_{a} N_{b} N_{o} \text { as follows: } \mathcal{X}\left(N_{i} N_{j} N_{k}, N_{i}^{\prime} N_{j}^{\prime} N_{k}^{\prime}, N_{a} N_{b} N_{o}\right) \\ & =\bar{X}\left(S_{i} S_{j} S_{k}, S_{i}^{\prime} S_{j}^{\prime} S_{k}^{\prime}, S_{a} S_{b} 1\right) \cdot X\left(h_{i} h_{j} h_{k}, h_{i}^{\prime} h_{j}^{\prime} h_{k}^{\prime}, h_{a} h_{b} T_{1}\right) . \end{aligned}$
Λ	The ligands surrounding the metal ion of II-VI compounds such as S^{--}, Se^{--}and Te^{--}.
Σ	The S-state ion substituting the metal ion of a II-VI compound such as Mn^{2+} in Zn site of ZnS single crystals.
$\left(\Sigma \Lambda_{4}\right)^{-n '}$	A complex formed of an S-state ion and its four nearest neighbors, with a formal negative charge of n^{\prime}. For $\Sigma=\mathrm{Cr}^{+}, \mathrm{Mn}^{2+}$ or Fe^{3+} the number n^{\prime} is, 7,6 or 5 respectively.
ζ_{i}	Single electron spin orbit inter-action of an electron in the ith orbitals.
${ }^{\text {a }}$ d	ζ_{d} of a d orbital of the S-state ion.
ζ_{p}	ζ_{p} of a p orbital of the ligands S , Se or Te .
τ	Component of t denoting an irreducible representation of the cubic double group. The properties of these components are given by Griffith (Ref. 16).
x^{\prime}	Electron configuration of five orbitals $t_{a}, e_{a}, t_{1}, e_{b}$ and t_{b} as defined in (3.8a).
χ	Hole configuration of the five orbitals t_{a}, e_{a}, t_{1}, e_{b} and t_{b} as defined in (3.8b).

$$
\begin{array}{ll}
|\chi \operatorname{Shj} t \tau\rangle & \tau \text { component of } J t h \text { irreducible representation } t \\
& \text { arising from coupling of spin } S \text { and space irreducible } \\
& \text { representation } h \text { of the state }|S h\rangle \text { belonging to the } \\
& \chi \text { configuration. } \\
\left\langle x \operatorname{Sh}\left\|H_{p}\right\| x^{\prime} S^{\prime} h^{\prime}\right\rangle \quad & \begin{array}{l}
\text { Reduced matrix element of } H_{p} \text { between states }|x S h\rangle \\
\\
\text { and }\left|x^{\prime} S^{\prime} h^{\prime}\right\rangle .
\end{array}
\end{array}
$$

APPENDIX B

SPIN ORBIT COUPLING IN MO SCHEME

This Appendix gives the appropriate form of the spin orbit interaction Hamiltonian $H_{S O}$ in the molecular orbital (MO) scheme. The expres. sion of $H_{S O}$ for an n electron system is*

$$
\begin{align*}
\mathrm{H}_{S O} & =\frac{\beta e}{m c}\left[\Sigma_{\alpha} Z_{\alpha} r_{i \alpha}^{-3}\left(\underline{r}^{i} \times \underline{p}^{i}\right) \cdot \underline{s}^{i}\right. \\
& \left.-\sum_{i \neq j} r_{i j}{ }^{-3}\left(\underline{r}^{i j} \times \underline{p}^{i}\right) \cdot\left(\underline{s}^{i}+2 \underline{s}^{j}\right)\right] \tag{B1}
\end{align*}
$$

where α refers to all nuclei; $r_{i \alpha}$ is the distance between electron i and nucleus α, Z_{α} is the charge of nucleus α; i and j refer to all electrons in the complex and the remaining parameter have their usual meanings. The first sum in (B1) gives the spin orbit interaction of each electron in the Coulomb field of all the nuclei in the complex whereas the second sum describes the interaction of each electron in the field of the other electrons and also the coupling of each spin with the orbital magnetic moment of the other electrons (spin-other-orbit interaction). The $H_{\text {SO }}$ can be rewritten as:

$$
\begin{equation*}
H_{S O}=\Sigma_{i \alpha} H_{i \alpha}-\Sigma_{i \neq j} H_{i j} \tag{B2}
\end{equation*}
$$

[^26]where
\[

$$
\begin{equation*}
H_{i}=(\operatorname{Be} / \mathrm{mc}) Z_{\alpha} r_{i \alpha}^{-3}\left(\underline{r}^{i} \times \underline{p}^{i}\right) \cdot \underline{s}^{i}=\xi_{\alpha}\left(r_{i \alpha}\right) \underline{\ell}^{i \alpha} \cdot \underline{s}^{i} \tag{B3}
\end{equation*}
$$

\]

and

$$
\begin{equation*}
H_{i j}=\beta e(m c)^{-1} r_{i j}{ }^{-3}\left(\underline{r}^{i j} x \underline{p}^{i}\right) \cdot\left(\underline{s}^{i}+2 \underline{s}^{j}\right) \tag{B4}
\end{equation*}
$$

Misetich and Buch^{+}have shown that for the molecular orbital wavefunctions ψ_{o} and ψ_{n} related to symmetry wavefunctions ϕ_{o} and ϕ_{n} of a given term of the free central ion of the complex, one has

$$
\begin{equation*}
\left\langle\psi_{o}\right| H_{S O}\left|\psi_{n}\right\rangle=\left\langle\psi_{o}\right| \Sigma_{i}^{\prime} \xi_{c}\left(r_{i c}\right) \underline{\ell}^{i c} \cdot \underline{s}^{i}+\Sigma_{i, L}^{\prime} \xi_{L}\left(r_{i L}\right) \underline{\ell}^{i} \cdot \underline{s}{ }^{i}\left|\psi_{n}\right\rangle \tag{B5}
\end{equation*}
$$

The parameters $\xi_{c}\left(r_{i c}\right)$ and $\xi_{L}\left(r_{c L}\right)$ in (B5) give the spin orbit constants ζ_{c} and ζ_{L} after being integrated over $r_{i c}$ and $r_{i L}$ respectively except for the fact that their numerical values depend on the coefficients of linear combination of atomic orbitals used.

In the general case where the MO wavefunctions ψ_{0} and ψ_{n} cannot be related directly to free ion such as the charge transfer states in a complex $\left[\Sigma \Lambda_{4}\right]^{-n^{\prime}}$, the spin orbit interaction can be considered in a slightly different way. Considering (B1) - (B4) and denoting the single electron spin orbit interaction by $\mathrm{H}_{\mathrm{SO}}(i)$, one has:

$$
\begin{align*}
H_{S O}(i) & =\Sigma_{\alpha} H_{i \alpha}-\sum_{j(\neq i)} H_{i j}=\Sigma_{\alpha} \xi_{\alpha}\left(r_{i \alpha}\right) \underline{\ell}^{i \alpha} \cdot \underline{s}^{i}-\sum_{j(\neq i)} H_{i j} \\
& =\xi_{c}\left(r_{i c}\right) \underline{e}^{i c} \cdot \underline{s}^{i}+\Sigma_{L} \xi_{L}\left(r_{i L}\right) \underline{\ell}^{i L} \cdot \underline{s}^{i}-\sum_{j(\neq i)} H_{i j} \tag{B6}
\end{align*}
$$

[^27]where the parameters c and L denote central and ligand ions respectively. The matrix element of $H_{S O}{ }^{(i)}$ between the ground state ψ_{0} and an excited state of the system ψ_{n} is
\[

$$
\begin{gather*}
\left\langle\psi_{O}\right| H_{S O}(i)\left|\psi_{n}\right\rangle=\langle i| H_{i c}+\Sigma_{L} H_{i L}\left|i^{\prime}\right\rangle \\
\quad-\sum_{j(\neq i)}\langle i j| H_{i j}\left|i^{\prime} j\right\rangle \tag{BT}
\end{gather*}
$$
\]

The single orbital wavefunctions i and j can be described as

$$
\begin{align*}
& |i\rangle=k_{i}\left|i_{c}\right\rangle-\lambda_{i}\left|i_{L}\right\rangle \tag{BE}\\
& |j\rangle=k_{j}\left|j_{c}\right\rangle-\lambda_{j}\left|j_{L}\right\rangle \tag{By}
\end{align*}
$$

where

$$
\begin{equation*}
\kappa_{i}^{2}+\lambda_{i}^{2}=1 \tag{B10}
\end{equation*}
$$

substituting in (B7) one finds:

$$
\begin{align*}
& \left\langle\psi_{0}\right| H_{S O}(i)\left|\psi_{n}\right\rangle=k_{i}{ }^{K^{\prime}}{ }_{i}\left\langle i_{c}\right| H_{i c}\left|i^{\prime}{ }_{c}\right\rangle+\lambda_{i} \lambda^{\prime}{ }_{i}\left\langle i_{L}\right| \Sigma_{I L} H_{L i}\left|i^{\prime}{ }_{L}\right\rangle \\
& -\varepsilon_{j}{ }^{k_{i}{ }^{\prime}{ }_{i}{ }_{i}\left\langle i_{c}{ }^{j}{ }_{c}\right|{ }^{\prime}{ }_{j}{ }^{2} H_{i j}\left|i^{\prime}{ }_{c}{ }^{j}{ }_{c}\right\rangle} \\
& -\varepsilon_{j} \lambda_{i} \lambda^{\prime}{ }_{i}\left\langle i_{L} j_{L}\right| \lambda_{j}{ }^{2} H_{i j}\left|i_{L}{ }^{j}{ }_{L}\right\rangle \\
& =k_{i}{ }^{\prime}{ }_{i}\left\langle i_{c}\right| H_{i c}-\Sigma^{\prime}{ }_{j}\left\langle j_{c}\right| \kappa_{j}{ }^{2} H_{i j}\left|j_{c}\right\rangle\left|i^{\prime}{ }_{c}\right\rangle \\
& +\lambda_{i} \lambda^{\prime}{ }_{i}\left\langle i_{L}\right| \Sigma_{L} H_{i L}-\Sigma^{\prime}{ }_{j}\left\langle j_{L}\right| \lambda_{j}{ }^{2} H_{i j}\left|j_{L}\right\rangle\left|i^{\prime}{ }_{L}\right\rangle \tag{B11}
\end{align*}
$$

If both i_{c} and $i^{\prime}{ }_{c}$ have the same radial wavefunctions then the radial integration of the first sum gives the spin orbit constant of the central ion for the orbital i_{c} being corrected for a change in the electron density in orbitals j, measured by $k_{j}{ }^{2}$. Since in this work, the molecular orbitals i_{c} are constructed from d orbitals of the central ion, they have the same radial part. Thus the first term in (B11) can be expressed as*

$$
\begin{align*}
& { }_{K_{i} K^{\prime}}{ }_{i}\left\langle i_{c}\right| H_{i c}-\sum_{j(\neq i)}^{\prime}\left\langle j_{c}\right| k_{j}{ }^{2} H_{i j}\left|j_{c}\right\rangle \cdot\left|i^{\prime}{ }_{c}\right\rangle \\
& =k_{i}{ }^{\prime}{ }_{i}\left\langle\left.\left. i_{c}\right|_{c} \underline{e}^{i c} \cdot \underline{s}^{i}\right|_{i}{ }_{c}\right\rangle^{\prime} \tag{B12}
\end{align*}
$$

Similarly the radial parts of i_{L} and $i^{\prime}{ }_{L}$ in the second term of (B11) are the same. Thus

$$
\begin{gather*}
\lambda_{i} \lambda^{\prime}{ }_{i}\left\langle i_{L}\right| \Sigma_{L} H_{i L}-\sum_{j}\left\langle j_{L}\right| \lambda_{j}{ }^{2} H_{i j}\left|j_{L}\right\rangle\left|i_{L}^{\prime}\right\rangle \\
=\lambda_{i} \lambda^{\prime}{ }_{i}\left\langle i_{L}\right| \Sigma_{L} \zeta_{L} \underline{e}^{i L} \cdot \underline{s}^{i}\left|i^{\prime}{ }_{L}\right\rangle \tag{B13}
\end{gather*}
$$

Now we cefine a spin-orbit interaction operator $\zeta_{i} \underline{\ell}^{i} \cdot \underline{s}^{i}$ such that

$$
\begin{equation*}
\zeta_{i} \underline{\ell}^{i} \cdot \underline{s}^{i}\left|i_{c}\right\rangle=\zeta_{d} \underline{\ell}^{d i} \cdot \underline{s}^{i}\left|i_{c}\right\rangle \tag{B14}
\end{equation*}
$$

and

$$
\begin{equation*}
\zeta_{i} \underline{\ell}^{i} \cdot \underline{s}^{i}\left|i_{L}\right\rangle=\zeta_{p} \underline{\ell}^{p i} \cdot \underline{s}^{i}\left|i_{L}\right\rangle \tag{B15}
\end{equation*}
$$

[^28]The parameters d and p in (B14) - (B15) indicate that i_{c} and i_{L} are constructed from d and p atomic orbitals respectively. Substituting in (B11) one finds

$$
\begin{align*}
& \left\langle\psi_{d}\right|{ }^{H}{ }_{S O}(i)\left|\psi_{n}\right\rangle=\kappa_{i}{ }^{\prime}{ }_{i}{ }_{i}\left\langle i_{c}\right| \zeta_{i} \underline{e}^{i} \cdot \underline{s}^{i}\left|{ }_{i}{ }_{c}\right\rangle \\
& +\lambda_{i} \lambda^{\prime}{ }_{i}\left\langle i_{L}\right| \zeta_{i} \underline{\ell}^{i} \cdot \underline{s}^{i}\left|i^{\prime}{ }_{L}\right\rangle \\
& \cong\langle | k_{i}\left\langle i_{c}\right|-\lambda_{i}\left\langle i_{L}\right|| | \zeta_{i} \underline{\ell}^{i} \cdot \underline{s}^{i} \mid \\
& \left.\left|k^{\prime}{ }_{i}\right| i^{\prime}{ }_{c}\right\rangle-\lambda^{\prime}{ }_{i}\left|i^{\prime}{ }_{c}\right\rangle| \rangle \\
& \cong\langle i| \zeta_{i} \underline{\ell}^{i} \cdot \underline{s}^{i}\left|i^{\prime}\right\rangle \\
& =\left\langle\psi_{0}\right| \zeta_{i} \underline{e}^{i} \cdot \underline{s}^{i}\left|\psi_{n}\right\rangle \tag{B16}
\end{align*}
$$

Since

$$
\begin{equation*}
H_{S O}=\Sigma_{i} H_{S O}(i) \tag{B17}
\end{equation*}
$$

then

$$
\left\langle\psi_{0}\right| H_{S O}\left|\psi_{n}\right\rangle=\left\langle\psi_{0}\right| \sum_{i} \zeta_{i} \underline{e}^{i} \cdot \underline{s}^{i}\left|\psi_{n}\right\rangle
$$

resulting in

$$
\begin{equation*}
H_{S O}=\Sigma_{i} \zeta_{i} \underline{\ell}^{i} \cdot \underline{s}^{i}=\sum_{i} \operatorname{su}(i) \tag{B18}
\end{equation*}
$$

where

$$
\begin{equation*}
\underline{u}(i)=\zeta_{i} \underline{\ell}^{i} \tag{B19}
\end{equation*}
$$

and

$$
\begin{equation*}
s u(i)=\zeta_{i} \underline{e}^{i} \cdot \underline{s}^{i} \tag{B20}
\end{equation*}
$$

In (B16) - (B20) $\zeta_{i} \underline{\ell}^{i}$ behaves as operators defined in (B14) and (B15). The above definition of spin orbit Hamiltonian for the charge transfer states of a complex $\left(\Sigma \Lambda_{4}\right)^{-n^{\prime}}$ is certainly an approximate definition which will not be adequate for the precise evaluation of the matrix elements of $H_{S O}$ but is sufficient compared to other approximations made in construction of the molecular orbitals $|i\rangle$ and excited wavefunctions $\left|\psi_{n}\right\rangle$.

APPENDIX C
SPIN ORBIT MATRIX ELEMENTS
FROM THREE AND FOUR ORBITAL WAVEFUNCTIONS

The purpose of this Appendix is to give the spin orbit matrix elements between charge transfer states consisting of three or four types of distinct orbitals each having at least one electron such as those in Table 3-1. The spin orbit matrix elements between pair of states consisting of only two orbitals have been calculated by Tanabe and Kamimura* and by Griffith. ${ }^{+}$The ligand to metal charge transfer process, in cubic complexes of S-state ions, results at least in three open shells of electrons two of these around metal and the third around the ligand. Thus the desired states consist of at least three orbitals. As a result of this the formulae by above authors should be modified and extended to be applicable for these wavefunctions.

We proceed by giving a brief description of charge transfer wavefunctions first and then discuss the matrix elements of $H_{p}=\Sigma_{1} \zeta_{i} s^{1} \cdot \underline{\ell}^{1}$ between them.

1. CHARGE TRANSFER WAVEFUNCTIONS

A description of the orbital part of the ligand to metal charge transfer wavefunctions, in complex $\left[\Sigma \Lambda_{4}\right]^{-n}$, will be given here. Their radial part is omitted for simplicity; it must, however, be taken into account in a more refined analysis of this subject.

Considering Table 3.1, one finds the electronic configurations $p, q, . . t$ and the representations $t_{a}, e_{a}, t_{1}, e_{b}$ and t_{b} of the orbitals in a charge transfer state. Denoting the spin and magnetic quantum number of the participating orbitals by $S_{i} M_{i}$ and their space irreducible representation(IR) by $h_{i} \theta_{i}$ one can describe a charge transfer state of $\operatorname{spin} S M$ and irreducible representation $h \theta$ as follows.

ॠY. Tanabe and H. Kamimura "C :he Absorption Spectra of Complex Ions IV. The Effect of the Spin-Orbit Interaction and the Field of Lower Symmetry on d-Electrons in Cubic Field" J. Phys. Soc. Japan 13, 394 (1958)
+J.S. Griffith (Ref.26)

$$
\begin{equation*}
\left.\left|x_{i} \operatorname{ShM} \theta\right\rangle=\left[t_{a}^{p} S_{1} h_{1} M_{1} \theta_{1}, e_{a}^{q} S_{2} h_{2} M_{2} \theta_{2}, \cdots t_{b}^{t} S_{5} h_{5} M_{5} \theta_{5} ; \operatorname{ShM} \theta\right\rangle\right] \tag{C1}
\end{equation*}
$$

For example one of the states arising from the first row of Table 3.2 18

$$
\begin{gather*}
\left|x_{1} 5 / 2 T_{1} 5 / 2 Z\right\rangle=\mid t_{a}^{2} 1 T_{1} 1 x_{,} e_{a}^{2} 1 A_{2} 1 a_{2}, t_{1}{ }^{1} 1 / 2 \mathrm{~T}_{1} 1 / 2 y \\
\left.e_{b}{ }^{0} 0 A_{1} 0 a_{1}, t_{b}{ }^{0} 0 A_{1} 0 a_{1} ; 5 / 2 T_{1} 5 / 2 Z\right\rangle \\
=\mid t_{a}{ }^{2} 3 T_{1} 1 x_{,}, e_{a}^{2} 3 A_{2} 1 a_{2}, t_{1}{ }^{1} 2 T_{1} 1 / 2 y \\
\left.e_{b}{ }^{0} 1_{A_{1}} a_{1} ;{ }^{6} T_{1} 5 / 2 Z\right\rangle \tag{C2}
\end{gather*}
$$

where X_{i} in (C2), as before, denotes the manner by which the five orbitals $t_{a}, e_{a}, \ldots ., t_{b}$ have coupled to give ${ }^{6} T_{1}$ in (C2).
2. MATRIX ELEMENTS OF $H_{p}=\Sigma_{i} \zeta_{i} \underline{\ell}^{\mathbf{i}} \cdot \underline{\underline{s}}^{\mathbf{1}}$

The matrix elements of H_{p} between pairs of charge transfer states $\left|x_{j} S h M \theta\right\rangle$ and $\left|x_{k} S^{\prime} h^{\prime} M^{\prime} \theta^{\prime}\right\rangle$ will be obtained in this section. To simplify the notation the above matrix element will be denoted by $M_{j k}$ (ShM $\left.\theta-S^{\prime} h^{\prime} M^{\prime} \theta^{\prime}\right)$:

$$
\begin{gather*}
M_{j k}\left(S h M \theta-S^{\prime} h^{\prime} M^{\prime} \theta^{\prime}\right)=\left\langle x_{j} S h M \theta\right| H_{p}\left|x_{k} S^{\prime} h^{\prime} M^{\prime} \theta^{\prime}\right\rangle \\
=R_{j k}\left(S h-S^{\prime} h^{\prime}\right) Q\left(S h M \theta-S^{\prime} h^{\prime} M^{\prime} \theta^{\prime}\right) \tag{c3}
\end{gather*}
$$

where

$$
\begin{equation*}
R_{j k}\left(S h-S^{\prime} h^{\prime}\right)=\left\langle x_{f} S h\right|\left|H_{p}\right|\left|x_{k} S^{\prime} h^{\prime}\right\rangle \tag{C4}
\end{equation*}
$$

is called the reduced matrix element and $Q\left(S h M \theta-S^{\prime} h^{\prime} \theta^{\prime}\right)$ is the coefficient of the coupling of $|S h M \theta\rangle$ and $\left|S^{\prime} h^{\prime} M^{\prime} \theta^{\prime}\right\rangle$ through spin orbit interaction
and it is independent of J and k as will be seen later. Now we consider $R_{j k}\left(S h-S^{\prime} h^{\prime}\right)$ and leave $Q\left(S h M O-S^{\prime} h^{\prime} M O^{\prime}\right)$ for Appendix D.
3. REDUCED MATRIX ELEMENTS $R_{j k}$ (Sh-S'h')
$R_{j k}$ depends on x_{j} and x_{k}. The x_{j} and x_{k}, in turn, depend on the configuration p, q, \ldots, t of orbitals $t_{a}, e_{a}, \ldots, t_{b}$ as shown in (C1). Therefore the reduced matrix elements $R_{j k}$ between a pair of states $|j\rangle$ and $|k\rangle$ can be characterized by the configurational numbers p_{j}, q_{j}, \ldots t_{j} and $p_{k}, q_{k}, \ldots t_{k}$ in these two states. Considering this fact in mind and observing Table 3.2, one immediately finds that there are three classes of reduced matrix elements as follows:

$$
\begin{align*}
& p_{j}=p_{k}, q_{j}=q_{k}, u_{j}=u_{k} u=r, s, t \tag{i}\\
& p_{j}=p_{k} \pm 1, q_{j}=q_{k} \mp 1, u_{j}=u_{k} u=r, s, t \tag{ii}\\
& p_{j}=p_{k}, q_{j}=q_{k} ; u_{j} \neq u_{k} u=r, s, t \tag{iii}
\end{align*}
$$

The numbers $p, q, \ldots t$ in (C5) - (C7) are given in rows of the hole configuration column in Table 3.2. In case (i) both states $|f\rangle$ and $|k\rangle$ have three open orbitals with the same configuration such as $\left|x_{j}{ }^{6} \mathrm{~T}_{1}\right\rangle$ and $\left|x_{k}{ }^{6} \mathrm{~T}_{2}\right\rangle$ of the first row in Table 3.2. R_{jk} in this case may be called homo-configuration three orbital reduced matrix element. In case (ii) the orbitals involved are the same but their configuration differ and therefore the R_{jk} of this case is called hetero-configuration three orbital reduced matrix element. In case (iii) only one of the five orbitals t_{a}, e_{a}, t_{1}, e_{b} and t_{b} remains closed in both states $|j\rangle$ and $|k\rangle$ such as $t_{b}{ }^{\text {in }}{ }^{6}{ }^{6} T_{1}$ of row 2 and ${ }^{6} \mathrm{~T}_{2}$ of row 3 in Table 3.2 . The $R_{j k}$ of this case will be called hetero-configuration four orbital reduced matrix elements. These three cases will be considered in the following sections.
4. HOMOCONFIGURATION THREE ORBITAL REDUCED MATRIX ELEMENTS

Here we consider the case of $R_{j k}$ between states $|j\rangle$ and $|k\rangle$ with both $|j\rangle$ and $|k\rangle$ containing three open orbitals of the same symmetry and configuration.

The $R_{j k}$ in this case can be expressed as

$$
\begin{equation*}
R_{j k}\left(S h, S^{\prime} h^{\prime}\right)=\left\langle x_{j} S h\right|\left|H_{p} \| x_{k} S^{\prime} h^{\prime}\right\rangle \tag{C8}
\end{equation*}
$$

where

$$
\begin{align*}
& \left|x_{j} S h\right\rangle=\left|\left[a^{p} S_{1} h_{1}\left(b^{q_{S}} S_{2} h_{2} c^{r} S_{3} h_{3}\right) S_{4} h_{4}\right]_{j} ; S h\right\rangle \tag{C9}\\
& \left|x_{k} S^{\prime} h^{\prime}\right\rangle=\left|\left[a^{p} S_{1}^{\prime} h_{1}^{\prime}\left(b^{q_{S}^{\prime}} h_{2}^{\prime} c^{r} S_{3}^{\prime} h_{3}^{\prime}\right) S_{4}^{\prime} h_{4}^{\prime}\right]_{k} ; S^{\prime} h^{\prime}\right\rangle \tag{C10}
\end{align*}
$$

The orbitals a, b and c, in (C8) - (C10), represent three of the five orbitals $t_{a}, e_{a} \ldots, t_{b}$ of Table 3.2 and the subscripts f and k denote the coupling of such orbitals.

Since the perturbation Hamiltonian $H_{p}^{*}=\sum_{i} \zeta_{1} \cdot \underline{\ell}^{1} \cdot \underline{s}^{1}=\sum_{i} \underline{s} \cdot \underline{u}$ (i) is in terms of single electron operators we must express the total wavefunction in terms of the single electron orbital which constitute such a wavefunction. To obtain this we rewrite (C8) as follows:+

$$
\begin{align*}
& R_{j k}\left(S h-S^{\prime} h^{\prime}\right)=\left\langle a^{p_{S}} h_{1}\left(b^{q_{S}} h_{2} c^{r_{S}} h_{3}\right) S_{4} h_{4}, S h\right| \mid \sum_{i=1}^{p} \underline{s}^{i} \cdot \underline{u}^{1}+\sum_{i=p+1}^{p+q} \underline{s} \cdot \underline{u}(1) \\
& \left.+\sum_{i=p+q+1}^{p+q+r} \underline{s} \cdot \underline{u}(i)| | a^{p} S_{1}^{\prime} h_{1}^{\prime}\left(b^{q^{\prime}} S_{2}^{\prime} h_{2}^{\prime} c^{r_{S}} S_{3}^{\prime} h_{3}^{\prime}\right) S_{4}^{\prime} h_{4}^{\prime}, S^{\prime} h^{\prime}\right\rangle \\
& =R_{j k}\left[p(q r) p, S h-S^{\prime} h^{\prime}\right]+R_{j k}\left[p(q r) q, S h-S^{\prime} h^{\prime}\right]+R_{j k}\left[p(q r) r, S h-S^{\prime} h^{\prime}\right] \tag{C11}
\end{align*}
$$

[^29]the first sum operates on electrons in a^{p}, the second on b^{q} and the third on c^{r} and
\[

$$
\begin{align*}
& R_{j k}\left[p(q r) p, S h-S^{\prime} h^{\prime}\right]=\left\langle a^{p^{\prime}} S_{1} h_{1}\left(b^{q_{S}} S_{2} h c^{r} S_{3} h_{3}\right) S_{4} h_{4} ; S h\right| \mid \sum_{1=1}^{p} \\
& \left.\underline{s^{\prime}} \underline{\underline{u}(1)(1 \cdot 1)(1 \cdot 1) \|}\|(x)\| a^{p} S_{1}^{\prime} h_{1}^{\prime}\left(b^{q} S_{2}^{\prime} h_{2}^{\prime}, c^{r} S_{3}^{\prime} h_{3}^{\prime}\right) S_{4}^{\prime} h_{4}^{\prime}, S^{\prime} h^{\prime}\right\rangle \tag{C12}\\
& R_{j k}\left[p(q r) q, S h-S^{\prime} h^{\prime}\right]=\left\langle\left[a^{p} S_{1} h_{1}\left(b^{q} S_{2} h_{2} c^{r} S_{3} h_{3}\right) S_{4} h_{4}, S h| |\right.\right. \\
& (1 \cdot 1) x\left(\sum_{k=1}^{p} \underline{\underline{s}} \cdot \underline{u}(k) x(1 \cdot 1)\right) \|\left[a^{p} S_{1}^{\prime} h_{1}^{\prime}\left(b^{q} S_{2}^{\prime} h_{2}^{\prime} c^{r} S_{3}^{\prime} h_{3}^{\prime}\right) S_{4}^{\prime} h_{4}^{\prime}, S^{\prime} h^{\prime}\right\rangle \tag{C13}\\
& R_{j k}\left[p(q r) r, S h-S^{\prime} h^{\prime}\right]=\left\langle a^{p} S_{1} h_{1},\left(b^{q_{S}} S_{2} h_{2}, c^{r} S_{3} h_{3}\right) S_{4} h_{4}, S h\right| \mid \\
& \left.(1 \cdot 1) x(1 \cdot 1) \times \sum_{k=1}^{r} \underline{s} \cdot \underline{u}(k) \| a^{p} S_{1}^{\prime} h_{1}^{\prime}\left(b^{q} S_{2}^{\prime} h_{2}^{\prime}, c^{r} S_{3}^{\prime} h_{3}^{\prime}\right) S_{4}^{\prime} h_{4}^{\prime}, s^{\prime} h^{\prime}\right\rangle \tag{C14}
\end{align*}
$$
\]

The symbols $1 \cdot 1$ represent double tensor operators of zero rank which operate on their respective part in (C12) - (C14). The first symbol 1 of $1 \cdot 1$ acts as a spin operator with $S=M_{s}=0$ and the second symbol $\cdot 1$ of $1 \cdot 1$ acts as the irreducible representation A_{1} of the cubic group. $R_{j k}$, in (C12) - (C14), should be determined by the techniques of double tensor operators on coupled systems.

This subject is discussed by Griffith ${ }^{26}$ and will be given here as follows.

Let a system n of electrons to be composed of two separate and independent parts ℓ and m. Then

$$
\begin{equation*}
|\ell m n v\rangle=\sum_{\lambda \mu}\langle\ell \lambda m \mu \mid \ell m n v\rangle|\ell \lambda\rangle|m \mu\rangle \tag{C15}
\end{equation*}
$$

gives the $|n v\rangle$ state in terms of products of $|\ell \lambda\rangle$ and $|m \mu\rangle$. Now the reduced matrix elements of a single electron operator* D_{δ}^{d} op, rating on the $|\ell \lambda\rangle$ part can be described in terms of $|n \nu\rangle$ states as follows ${ }^{+}$
$\left.\left\langle\ell m n v\left\|^{d}\right\| \mid \ell^{\prime} m^{\prime} n^{\prime} v^{\prime}\right\rangle=(-1)^{\ell+n+n^{\prime}+d} \sqrt{(n)(n)^{\prime}}\left\langle\ell\left\|D^{d}\right\| \ell^{\prime}\right\rangle W \left\lvert\, \begin{array}{l}\ell^{\prime} \ell d \\ n n^{\prime} m\end{array}\right.\right)$

$$
\begin{equation*}
(x) \delta_{m m} \text { ' } \tag{C16}
\end{equation*}
$$

Similarly an operator E^{e} operating on $|m \mu\rangle$ states has the reduced matrix elements

$$
\langle\ell m n|\left|E^{e}\right|\left|\ell^{\prime} m^{\prime} n^{\prime}\right\rangle=(-1)^{\ell+m^{\prime}+n+e} \sqrt{(n)\left(n^{\prime}\right)}\langle m|\left|E^{e}\right|\left|m^{\prime}\right\rangle W \left\lvert\, \begin{align*}
& m^{i} m e! \tag{C17}\\
& n n^{\prime} \cdots x_{n}
\end{align*}\right.
$$

where (n) and (n)' are dinensions of these two irreducible representations and W coefficients behave as six j symbols. For spin orbit init.action both orbital and spin wavefunctions of each electrons should be taken into account. Considering, m, \ldots, n^{\prime} as space representations of the states and operators involved one will add $S_{1}, S_{2} \ldots S^{\prime}$ for spin part. Thus (C16) can be rewritten as

$$
\begin{align*}
& \left\langle S_{1} \ell S_{2} m S n\right|\left|D^{p d}\right|\left|S_{1}^{\prime} \ell^{\prime} S_{2} m^{\prime} S^{\prime} n^{\prime}\right\rangle=(-1)^{S_{1}+S^{\prime}+p+\ell+m^{\prime}+n^{\prime}+d} \\
& \text { (x) }\left[\begin{array}{lll}
(2 S+1) & \left.\left.\left(2 S^{\prime}+1\right)(n)\left(n^{\prime}\right)\right] \left.^{1 / 2}\left\langle S_{1} \ell\right|\left|D^{p d}\right|\left|S_{1}^{\prime} \ell^{\prime}\right\rangle \bar{W}\binom{S_{1} S_{1}^{\prime} p}{S_{1} S^{\prime} S_{2}} \right\rvert\, \begin{array}{c}
\ell \ell \ell^{\prime d} \\
n n^{\prime} m
\end{array}\right) \\
(x) \delta_{S_{2} S_{2}^{\prime}} \delta_{m m^{\prime}}
\end{array}\right. \text { (C18)}
\end{align*}
$$

[^30]and
$$
\left\langle\mathrm{s}_{1} \ell \mathrm{~S}_{2} \mathrm{mSn}\right|\left|\mathrm{E}^{\mathrm{pe}} \| \mathrm{S}_{1}^{\prime} \ell \mathrm{S}_{2} \mathrm{~m}^{\prime} \mathrm{S}^{\prime} \mathrm{n}^{\prime}\right\rangle=(-1)^{\mathrm{S}_{1}+\mathrm{S}_{2}+\mathrm{S}+\mathrm{q}+\mathrm{h}_{1}+\mathrm{h}_{2}+\mathrm{h}+\mathrm{e}}
$$
(x) $\left.\left[(2 S+1)(2 S+1)(n)^{\prime} n^{\prime}\right)\right]^{1 / 2}\left\langle S_{2} \|^{\prime}\right|\left|E^{q e}\right|\left|S_{2}^{\prime} m^{\prime}\right\rangle \bar{W}\binom{S_{2} S_{2} q}{S^{\prime} S_{1}} W\binom{m m e}{n n^{\prime} \ell}$
\[

$$
\begin{equation*}
\text { (x) } \quad \delta_{S_{l} S_{l}^{\prime}}^{\prime} \quad \delta_{\ell \ell \prime} \tag{C19}
\end{equation*}
$$

\]

Following (C17) the reduced matrix elements in (C12) - (C14) can be decomposed as follows:

$$
\mathrm{R}_{j k}\left(\mathrm{Sh}^{\prime} \mathrm{S}^{\prime} \mathrm{h}^{\prime}, \mathrm{p}\right)=(-1)^{\mathrm{S}_{1}+\mathrm{S}_{4}+\mathrm{S}+1+\mathrm{h}_{1}+\mathrm{h}_{4}^{\prime}+\mathrm{h}+\mathrm{T}_{1}}
$$

(x) $\left[(2 S+1)\left(2 S^{\prime}+1\right)(h)\left(h^{\prime}\right)\right]^{1 / 2}\left\langle a^{p} S_{1} h_{1}\left\|\sum_{i=1}^{p}(\underline{s}(i) \cdot \underline{u}(i))^{1 T} 1\right\| a^{p} S_{1}{ }^{\prime} h^{\prime}{ }_{1}\right\rangle$

$$
-\left(\begin{array}{ccc}
\mathrm{S}_{1}^{\prime} \mathrm{S}_{1} & 1 \tag{C20}\\
\mathrm{~S}^{2} & \mathrm{~S}^{\prime} & \mathrm{S}_{4}
\end{array}\right) \quad \mathrm{W}\left(\begin{array}{ccc}
\mathrm{h}_{1}^{\prime} & \mathrm{h}_{1} \mathrm{~T}_{1} \\
\mathrm{~h}^{\prime} & \mathrm{h}^{\prime} & \mathrm{h}_{4}
\end{array}\right) \quad \delta_{\mathrm{S}_{4} \mathrm{~S}_{4}^{\prime}} \quad \delta_{\mathrm{h}_{4} \mathrm{~h}_{4}^{\prime}}
$$

The $R_{j k}\left[p(q r) q, S h-S^{\prime} h^{\prime}\right]$ and $R_{j k}\left[p(q r) r, S h-S^{\prime} h^{\prime}\right]$ must be obtained in two stages. First the part of the system represented by $S_{4} h_{4}$ should be decoupled from the part represented by $S_{1} h_{1}$ and then the parts $S_{2} h_{2}$ and $\mathrm{S}_{3} \mathrm{~h}_{3}$ in $\mathrm{S}_{4} \mathrm{~h}_{4}$ should be treated as in (c20). Denoting part represented by $\mathrm{S}_{4} \mathrm{~h}_{4}$ as $\mathrm{R}_{\mathrm{jk}}(\mathrm{q}, \mathrm{r})$ and considering (Cl6) - (C20) one finds

$$
\begin{align*}
R_{j k}(q, r)= & (-1) S_{1}+S_{4}+S^{+1+h_{1}}+h_{4}^{\prime}+h+T_{1}(x)\left[(2 S+1)\left(2 S^{\prime}+1\right)(h)\left(h^{\prime}\right)\right] 1 / 2 \\
& \left\langle\left(b^{q_{S}} S_{2} h_{2}, c^{r} S_{3} h_{3}\right) S_{4} h_{4}\left\|\sum_{k=1} \underline{s}(k) \cdot \underline{u}(k)\right\|\left(b^{q_{S}^{\prime}} h_{2}^{\prime} c^{r} S_{3}^{\prime} h_{3}^{\prime}\right) S_{4}^{\prime} h_{4}^{\prime}\right\rangle \\
& (x) \bar{W}\left(\begin{array}{ll}
S_{4}^{\prime} S_{4} & 1 \\
S & S^{\prime} \\
S_{1}
\end{array}\right) W\left(\begin{array}{ll}
h_{4}^{\prime} h_{4} T_{1} \\
h^{\prime} & h_{1}
\end{array}\right){ }_{S_{1} S_{1}^{\prime}} \delta_{h_{1} h_{1}^{\prime}} \tag{C21}
\end{align*}
$$

The term*

$$
\begin{gather*}
T=\left\langle b^{q} S_{2} h_{2} c^{r} S_{3} h_{3}\right) S_{4} h_{4} \| \sum_{k=1}^{q} \underline{s} \cdot \underline{u}(k)+\sum_{k=1}^{r} s u(k) \\
\left.\|\left(b^{q} S_{2}^{\prime} h_{2}^{\prime} c^{r} S_{3}^{\prime} h_{3}^{\prime}\right) S_{4}^{\prime} h_{4}^{\prime}\right\rangle \tag{cen}
\end{gather*}
$$

in (C21), should be factorized in the same manner described in (C19) (C20) .

$$
\begin{aligned}
& T=(-1)^{S_{2}+S_{3}+h_{2}+h_{3}^{\prime}}\left[\left(2 S_{4}+1\right)\left(2 S_{4}^{\prime}+1\right)\left(h_{4}\right)\left(h_{4}^{\prime}\right)\right]^{1 / 2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (x) }\left\langle b^{q^{\prime}} S_{2} h_{2} \| \sum_{k=1}^{q} s u(k)\right|\left|b^{q} S_{2}^{\prime} h_{2}^{\prime}\right\rangle
\end{aligned}
$$

$$
\begin{align*}
& \text { (x) } \left.\left\langle c^{r^{s}} S_{3} h_{3}\left\|\sum_{k=1}^{r} \operatorname{su}(k)\right\| c^{r} S_{3}^{\prime} h_{3}^{\prime}\right\rangle\right] \tag{C24}
\end{align*}
$$

Substituting in (C21) one finds $R_{j k}\left(S h-S^{\prime} h^{\prime}, q\right)$ and $R_{j k}$ (SheS' $h^{\prime}, q r$) of (C13) and (C14) as the coefficients of $\left\langle b^{q_{S}} h_{2}\left\|\sum_{k} s u(k)\right\| b^{q} S_{2}^{\prime} h_{2}^{\prime}\right\rangle$ and $\left\langle c^{r} s_{3} h_{3}\left\|\sum_{k} s u(k)\right\| c^{r} s_{3} h_{3}^{\prime}\right\rangle$ respectively. Thus,

$$
\begin{aligned}
& R_{j k}\left[p(q r) q, S h-S^{\prime} h^{\prime}\right]= \\
& \delta_{S_{1} S_{1}^{\prime}} \\
& \delta_{h_{1} h_{1}^{\prime}}(-1) S_{1}+S_{4}+S_{1}+h_{1}+h_{4}^{\prime}+h+S_{2}+S_{3}+h_{2}+h_{3}+S_{4}+h_{4}
\end{aligned}
$$

[^31]\[

$$
\begin{align*}
& \text { (x) } \delta_{S_{3}} S_{3}^{\prime} \quad \delta_{h_{3} h_{3}^{\prime}}\left[(2 S=1)\left(2 S^{\prime}+1\right)\left(h^{\prime}\right)\left(2 S_{4}+1\right)\left(h_{4}\right)\left(h_{4}^{\prime}\right)(h)\right]^{1 / 2} \\
& \text { (x) } \overline{\mathrm{W}}\binom{\mathrm{~S}_{4} \mathrm{~S}_{4}^{\prime} 1}{S^{\prime} S_{1}} \overline{\mathrm{~W}}\binom{\mathrm{~S}_{2}^{\prime} \mathrm{S}_{2}^{1}}{\mathrm{~S}_{4} \mathrm{~S}_{4}^{\prime} \mathrm{S}_{3}} \mathrm{~W}\left(\begin{array}{c}
\mathrm{h}_{4}^{\prime} \mathrm{h}_{4} \mathrm{~T}_{1} \\
\mathrm{~h} \\
\mathrm{~h} \\
\mathrm{~h}_{1}
\end{array}\right) \mathrm{W}\binom{\mathrm{~h}_{2}^{\prime} \mathrm{h}_{2} \mathrm{~T}_{1}}{\mathrm{~h}_{4} \mathrm{~h}_{4}^{\prime} \mathrm{h}_{3}} \\
& \text { (x) }\left\langle b^{q^{q}} S_{2} h_{2} \| \sum_{k} s u(k)\right|\left|b^{q^{\prime}} S_{2}^{\prime} h_{2}^{\prime}\right\rangle \tag{C25}
\end{align*}
$$
\]

and
$R_{j k}\left[p(q r) r, S h-S^{\prime} h^{\prime}\right]=\delta_{S_{1} S_{1}^{\prime}} \quad \delta_{h_{1} h_{1}^{\prime}}(-1) S_{1}+S_{4}+h_{1}+h_{4}+h+S_{2}+S_{3}+h_{2}+h_{3}$

$$
\begin{align*}
& (x)(-1)^{S_{4}+h_{4}} \delta_{S_{2} S_{2}^{\prime}} \quad \delta_{h_{2} h_{2}^{\prime}}\left[(2 S+1)\left(2 S^{\prime}+1\right)(h)\left(h^{\prime}\right)\left(2 S_{4}+1\right)\left(2 S_{4}+1\right)\left(h_{4}\right)\left(h_{4}^{\prime}\right)\right]^{1 / 2} \\
& \bar{W}\binom{S_{4}^{\prime} S_{4}^{1}}{S_{S}^{\prime} S_{1}} \bar{W}\binom{S_{3}^{\prime} S_{3} 1}{S_{4} S_{4}^{\prime} S_{3}} W\binom{h_{4}^{\prime} h_{4} T_{1}}{h^{\prime} h_{1}^{\prime} h_{1}} W\binom{h_{3}^{\prime} h_{3} T_{1}}{h_{4} h_{4}^{\prime} h_{2}} \\
& \left\langle c^{r} s_{3} h_{3}\left\|\sum_{k} s u(k)\right\| c^{r} s_{3}^{\prime} h_{3}^{\prime}\right\rangle \tag{C26}
\end{align*}
$$

Substituting in (C11) we have

$$
\begin{aligned}
R_{j k}\left(S h-S^{\prime} h^{\prime}\right) & =\left\langle\left[a^{p_{S}}{ }_{1} h_{1}\left(b^{q} S_{2} h_{2} c^{r} S_{3} h_{3}\right) S_{4} h_{4}\right]_{j}, S h \| \sum_{k=1}^{p+q+r} s u(k)\right. \\
\| & {\left.\left[a^{p} S_{1} h_{1}\left(b^{q^{\prime}} S_{2} h_{2} c^{r} S_{3} h_{3}\right) S_{4} h_{4}\right]_{k} S^{\prime} h^{\prime}\right\rangle } \\
& =R_{j k}\left[p(q r) p, S h-S^{\prime} h^{\prime}\right]+R_{j k}\left[p(q r) q, S h-S^{\prime} h^{\prime}\right](C 27) \\
& +R_{j k}\left[p(q r) r, S h-S^{\prime} h^{\prime}\right]
\end{aligned}
$$

The $R_{j k}$ in (C27) are given in (C20) and (C25) - (C26). They are given here in simpler form as follows:

$$
\begin{align*}
& \mathrm{R}_{\mathrm{jk}}\left[\mathrm{p}(\mathrm{qr}) \mathrm{p}, \mathrm{Sh}-\mathrm{S}^{\prime} \mathrm{h}^{\prime}\right](-1)^{\mathrm{S}_{1}+\mathrm{S}_{4}+\mathrm{S}+\mathrm{h}_{1}{ }^{+h_{4}^{\prime}+h^{\prime}}} \mathscr{D} \mathcal{D}^{\prime}\left\langle\mathrm{a}^{\mathrm{P}_{1} \mathrm{~h}_{1}}\right| \mid \\
& \left.\sum_{k} \operatorname{su}(k)| | a^{p_{S}} S_{1}^{\prime} h_{1}^{\prime}\right\rangle \quad W\binom{N_{1}^{\prime} N_{1} N_{0}}{N N N_{4}} \quad \delta_{N_{4} N_{4}^{\prime}} \tag{C28}\\
& R_{j k}\left[p(q r) q, S h-S^{\prime} h^{\prime}\right]=(-1){ }^{S_{1}+S_{4}+S+h_{1}+h_{4}+h+S_{2}+S_{3}+h_{2}+h_{3}^{\prime}+S_{4}^{\prime}+h_{4}^{\prime}, ~} \\
& \text { (x) } \mathscr{D} \mathscr{D}^{\prime} \mathscr{D}_{4} \mathscr{D}_{4} \cdot \boldsymbol{W}\binom{\mathrm{~N}_{2}^{\prime} \mathrm{N}_{2} \mathrm{~N}_{0}}{\mathrm{~N}_{4} \mathrm{~N}_{4}^{\prime} \mathrm{N}_{3}} \boldsymbol{W}\left(\begin{array}{ccc}
\mathrm{N}_{4}^{\prime} & \mathrm{N}_{4} \mathrm{No} \\
\mathrm{~N}^{\prime} \mathrm{N}^{\prime} & \mathrm{N}_{1}
\end{array}\right) \\
& \text { (x) }\left\langle b^{q^{\prime}} S_{2} h_{2} \| \sum_{k=1}^{q} s u(k)\right|\left|b^{q} S_{2}^{\prime} h_{2}^{\prime}\right\rangle \delta_{N_{1} N^{\prime}{ }_{1}} \delta_{N_{3} N_{3}} \tag{C29}
\end{align*}
$$

and

$$
\begin{align*}
& R_{j k}\left[p(q r) r, S h-S^{\prime} h^{\prime}\right]=(-1)^{S_{1}+S_{4}+S_{1}+h_{1}+h_{4}^{\prime}+h+S_{2}+S_{3}+h_{2}+h_{3}^{\prime}+S_{4}+h_{4}} \\
& \text { (x) } \mathscr{D D} \cdot \mathscr{D}_{4} \mathscr{D}_{4} \boldsymbol{W}\left(\begin{array}{c}
\mathrm{N}_{3}^{\prime} \\
\mathrm{N}_{3} \mathrm{~N}_{0} \\
\mathrm{~N}_{4} \\
\mathrm{~N}_{4} \mathrm{~N}_{2}
\end{array}\right) \boldsymbol{W}\binom{\mathrm{N}_{4}^{\prime} \mathrm{N}_{4} \mathrm{~N}_{0}}{\mathrm{NN}^{\prime} \mathrm{N}_{1}} \\
& \text { (x) }\left\langle c^{r} s_{3} h_{3}\left\|\sum_{k=1}^{r} s u(k)\right\| c^{r} s_{3}^{\prime} h_{3}^{\prime}\right\rangle \delta_{N_{1} N_{1}^{\prime}} \quad \delta_{N_{2} N_{2}^{\prime}} \tag{C30}
\end{align*}
$$

where

$$
\begin{align*}
& \mathscr{D}_{i}=\left[\begin{array}{ll}
\left(2 S_{i}+1\right) & \left(h_{i}\right)
\end{array}\right]^{1 / 2} \\
& \mathscr{W}\binom{N_{i} N_{j} N_{o}}{N_{k} N_{\ell} N_{m}}=\bar{W}\binom{S_{i} S_{j} 1}{S_{k} S_{\ell} S_{m}} W\left(\begin{array}{lll}
h_{i} & h_{j} T_{1} \\
h_{k} h & h_{m}
\end{array}\right) \\
& \delta_{N_{i} N_{j}}=\delta_{S_{i} S_{j}} \quad \delta_{h_{i}} h_{j} \tag{C31}
\end{align*}
$$

The coefficient \bar{W} in (C31) is defined as*

$$
\begin{aligned}
\bar{W}\left(\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right) & =\sum_{\alpha \beta \gamma \delta \varepsilon \phi}(-1) \\
& (x) \overline{\mathrm{V}}\left(\begin{array}{ccc}
a & b & c \\
-\alpha-\beta-\gamma
\end{array}\right) \overline{\mathrm{V}}\left(\begin{array}{lll}
a & e & f \\
\alpha & \varepsilon-\phi
\end{array}\right) \overline{\mathrm{V}}\left(\begin{array}{ccc}
d & b & f \\
-\delta & \beta & \phi
\end{array}\right) \overline{\mathrm{V}}\left(\begin{array}{ccc}
d & e & c \\
\delta-\varepsilon & \gamma
\end{array}\right)
\end{aligned}
$$

and

$$
\begin{equation*}
\overline{\mathrm{V}}\binom{\mathrm{~J}_{1} \mathrm{~J}_{2} \mathrm{~J}_{3}}{\mathrm{~m}_{1} \mathrm{~m}_{2}-\mathrm{m}_{3}}=\frac{(-1)^{2 \mathrm{~J}_{2}+\mathrm{J}_{3}-\mathrm{m}_{3}}}{\sqrt{2 \mathrm{~J}_{3}+1}} \quad\left(\mathrm{~J}_{1}{ }_{2} \mathrm{~J}_{3} \mathrm{~m}_{3} \mid \mathrm{J}_{1} \mathrm{~m}_{1} \mathrm{~J}_{2} \mathrm{~m}_{2}\right) \tag{C33}
\end{equation*}
$$

$\overline{\mathrm{V}}$ and $\overline{\mathrm{W}}$ are used for spin coupling coefficiencts whereas for coupling of space irreducible representations the simpler V and W are used where (Ref. 26, p. 10 and p. 33)

$$
\begin{equation*}
V(a b c, \alpha \beta \gamma)=\sqrt{c}\langle a b \alpha \beta \mid a b c \gamma\rangle \tag{C34}
\end{equation*}
$$

and

$$
\begin{gather*}
W(a b c d e f)=\Sigma \alpha \beta \gamma \delta \varepsilon \phi V(a b c, \alpha \beta \gamma) \\
(x) V(a e f, \alpha \varepsilon \phi) V(b f d, \beta \phi \delta) \quad V(c d e, \gamma \delta \varepsilon) \tag{C35}
\end{gather*}
$$

The numerical values of \bar{W} are taken from Rotenberg's tables of 6 J symbols** and W are obtained from Griffith's tables. ${ }^{\dagger}$ The dimensions of h_{i} entering D_{i} of (C31) are the same as their character under identity class in the character table. The (-1$)^{\mathrm{h}+\mathrm{i}}= \pm 1$ as defined by Griffith ${ }^{\dagger}$ (p. 15). Both of these numerical parameter are given in Table C.1.

[^32]TABLE C-1
The Values of (h) and (-1$)^{\mathrm{h}}$

h	A_{1}	$\mathrm{~A}_{2}$	E	T_{1}	$\mathrm{~T}_{2}$
$(-1)^{\mathrm{h}}$	1	-1	1	-1	1
$(\mathrm{~h})$	1	1	2	3	3

The last unknown in $R_{j k}(p, p), \ldots R_{j k}(r, r)$ in (C28) - (C30) is the single orbital reduced matrix elements of the type

$$
\begin{align*}
\rho(p p) & =\left\langle a^{p} S h\right|\left|\sum_{k=1}^{p} s u(k)\right|\left|a^{p} S^{\prime} h^{\prime}\right\rangle \\
& ={ }_{p}\left\langle a^{p} P_{S h}\right|\left|s u(p) \| a^{p} S^{\prime} h^{\prime}\right\rangle \tag{C36}
\end{align*}
$$

To obtain $\rho(\mathrm{pp})$ we express it in terms of its matrix elements between pairs of $\left|a^{\mathrm{P}} \mathrm{ShM} \theta\right\rangle$ and $\left|a^{p_{S}^{\prime}} h^{\prime} \mathrm{M}^{\prime} \theta^{\prime}\right\rangle$.

$$
\begin{aligned}
& =\left\langle a^{p} \operatorname{ShM} \theta\right|\left[\sum_{k=1} \operatorname{su}(\kappa)\right]_{-i i}^{1}{ }^{T} 1\left|a^{p^{\prime}} S^{\prime} h^{\prime} M^{\prime} \theta^{\prime}\right\rangle
\end{aligned}
$$

Multiplying both sides by $(-1)^{S-M} \bar{V}\left(S, S^{\prime} 1,-M M^{\prime}-i\right)$ and $V\left(h h^{\prime} T_{1} \quad \theta \theta^{\prime} i\right)$ and summing over the six parameter $-\mathrm{M}, \ldots \mathrm{i}$ one finds

$$
\begin{align*}
& \rho(\mathrm{pp})=\mathrm{p} \sum_{\substack{M M^{\prime} \mathrm{i} \\
\theta \theta^{\prime}}}\left\langle\left.\mathrm{a}^{\mathrm{p}} \operatorname{ShM\theta |[su(\mathrm {p})]} \begin{array}{l}
1 \mathrm{~T} \\
1 \\
-\mathrm{ii}
\end{array} \right\rvert\, \mathrm{a}^{\left.\mathrm{p}_{S^{\prime}} h^{\prime} \mathrm{M}^{\prime} \theta^{\prime}\right\rangle}\right\rangle(\mathrm{x}) \\
& \text { (x) }(-1)^{S-M} \bar{V}\left(S S^{\prime} 1,-M M^{\prime}-i\right) \cdot V\left(h h^{\prime} T_{1}, \theta \theta^{\prime} i\right) \tag{C37}
\end{align*}
$$

In terms of the coefficients of fractional parentage (cfp) we have*

$$
\left.\left.\left|a^{p_{S h M}}\right\rangle=\sum_{\substack{S_{1} M_{1} m \\ h_{1} \theta_{1} \alpha}}\left\langle a^{p-1} S_{1} h_{1}, a\right|\right\} a^{p_{S h}}\right\rangle\left\langle\left. S_{1^{\frac{1}{2} M_{1} m}} \right\rvert\, S_{1^{\frac{1}{2}} S M}\right\rangle
$$

(x) $\left\langle h_{1} a \theta_{1} \alpha \mid h_{1} a h \theta\right\rangle\left|a^{p-1} S_{1} h_{1} M_{1} \theta_{1}\right\rangle \cdot|a m \alpha\rangle$

Substituting for $\left|a^{p} \operatorname{ShM\theta }\right\rangle$ and $\left|a^{p^{\prime}}{ }^{\prime} h^{\prime} M^{\prime} \theta^{\prime}\right\rangle$ in (C37) one finds

$$
\begin{aligned}
& \left.\left|[s u(p)]{ }_{-i i}^{1 T_{1}}\right| a a^{\prime} \alpha^{\prime}\right\rangle \cdot\left|a^{p-1} S_{1}^{\prime} h_{1}^{\prime} M_{1}^{\prime} \theta_{1}^{\prime}\right\rangle
\end{aligned}
$$

$$
\begin{align*}
& \text { (x) }(-1)^{S_{1}}{ }^{-M_{1}} \overline{\mathrm{~V}}\left(S S^{\prime} 1,-M M^{\prime}-i\right) \cdot V\left(h h^{\prime} T_{1}, \theta \theta^{\prime} i\right) \tag{C39}
\end{align*}
$$

[^33]The matrix element in (C39) can be abbreviated as follows:

$$
\begin{align*}
& \left\langle a^{p-1} S_{1} h_{1} M_{1} \theta_{1}\right| \cdot\langle a m \alpha| s u(p)\left|a m^{\prime} \alpha^{\prime}\right\rangle \cdot\left|a^{p-1} S_{1}^{\prime} h_{1}^{\prime M} M_{1}^{\prime}\right\rangle \\
& =\langle a m \alpha| s u\left|a m^{\prime} \alpha^{\prime}\right\rangle \cdot \delta_{S_{1} S_{1}^{\prime}} \delta_{h_{1} h_{1}^{\prime}} \delta_{M_{1} M_{1}^{\prime}} \delta_{\theta_{1} \theta_{1}^{\prime}} \\
& =\langle 1 / 2 a||s u||1 / 2 a\rangle(-1)^{1 / 2-m} \overline{\mathrm{~V}}\left(1 / 21 / 21, m m^{\prime}-1\right) v\left(a a{ }^{\prime} T_{1}, \alpha \alpha^{\prime} 1\right) \\
& \delta_{S_{1} S_{1}^{\prime}} \cdot \delta_{M_{1} M^{\prime}} \cdot \delta_{h_{1} h_{1}^{\prime}} \cdot \delta_{\theta_{1} \theta_{1}^{\prime}} \tag{C40}
\end{align*}
$$

The remaining coupling coefficients in (C39) may also be expressed in terms of \bar{v} and V. Thus

$$
\begin{gather*}
\left\langle S_{1} 1 / 2 S M \mid S_{1} 1 / 2 M_{1} m\right\rangle=(2 S+1)^{1 / 2}(-1)^{1+S-M} \overline{\mathrm{~V}}\left(S_{1} 1 / 2 S, M_{1} m-M\right) \tag{C41}\\
\left\langle h_{1} a h \theta \mid h_{1} a \theta_{1} \alpha\right\rangle=(h)^{1 / 2} \quad V\left(h_{1} a h_{1}, \theta_{1} \alpha \theta\right) \tag{C42}
\end{gather*}
$$

Substituting in (C39) and considering the effect of $\delta_{S_{1} S_{1}^{\prime}}, \ldots .$.
$\delta_{\theta_{1} \theta_{1}^{\prime}}$ in (C40) one finds

$$
\rho(p, p)=\frac{p}{\substack{S_{1} M \mathrm{mM}^{\prime} \mathrm{m}^{\prime} 1 \mathrm{~m}^{\prime} \\ \\ h_{1} \theta_{1} \theta \theta^{\prime}}}(-1)^{S-M+1+S-M+1 / 2-m} \mathscr{D} \mathscr{D}^{\prime}(-1)^{+1+S^{\prime}-M^{\prime}}
$$

$$
(x)\left\langle a^{p} S h\left\{\left|a, a^{p-1} S_{1} h_{1}\right\rangle \cdot\left\langle a^{p-1} S_{1} h_{1}, a\right|\right\} a^{p} S^{\prime} h^{\prime}\right\rangle
$$

(x) $\overline{\mathrm{V}}\left(\mathrm{S}_{1} 1 / 2 S, M_{1} m-M\right) \overline{\mathrm{V}}\left(1 / 2 \quad 1 / 2 \quad 1,-\mathrm{mm}^{\prime}-1\right) \overline{\mathrm{V}}\left(S_{1}^{\prime} 1 / 2 S^{\prime}, M_{1}^{\prime} m^{\prime}-M^{\prime}\right) \overline{\mathrm{V}}\left(S_{1}^{\prime} 1-M M^{\prime}-1\right)$
(x) $V\left(h_{1} a h, \theta_{1} \alpha \theta\right) V\left(a a T_{1}, \alpha \alpha^{\prime} i\right) V\left(h_{1}^{\prime} a h^{\prime}, \theta_{1}^{\prime} \alpha^{\prime} \theta^{\prime}\right) V\left(h h^{\prime} T_{1}, \theta \theta^{\prime} 1\right)$

$$
\begin{equation*}
(\mathrm{x})\langle 1 / 2 \mathrm{a}||\mathrm{su}||1 / 2 \mathrm{a}\rangle \tag{C43}
\end{equation*}
$$

The coefficients $\overrightarrow{\mathrm{V}}$ and V may be rearranged according to the rules*

$$
\left.\left.\left.\bar{v}\binom{a b c}{\alpha \beta \zeta}=\bar{v} \right\rvert\, \begin{array}{l}
c a b \tag{C44}\\
\zeta \alpha \beta
\end{array}\right)=(-1)^{a+b+c} \bar{v} \left\lvert\, \begin{array}{c}
b a c \\
B \alpha \zeta
\end{array}\right.\right)=(-1)^{a+b+c} \bar{v}\binom{a b c}{-\alpha-\beta-\zeta}
$$

and

$$
\begin{equation*}
v\binom{a b c}{a \beta_{\zeta}}=(-1)^{a+b+c} v\binom{b a c}{B \alpha \zeta} . \tag{C45}
\end{equation*}
$$

Carrying through symmetry operations of (C44) and (C45), on coefficients $\overline{\mathrm{V}}$ and V in (C43), one finds

$$
\begin{gathered}
\overline{\mathrm{V}}\left(S_{1} 1 / 2 S, M_{1} m-M\right) \ldots=(-1)^{2\left(S_{1}+S^{\prime}\right)} \overline{\mathrm{V}}\left(\begin{array}{cc}
1 / 2 & 1 / 2 \\
-m m-1
\end{array}\right) \overline{\mathrm{v}}\binom{1 / 2 S^{\prime} S_{1}}{\mathrm{~m}^{\prime} M^{\prime} M} \overline{\mathrm{v}}\binom{1 / 2 S_{1} S^{\prime}}{m-M_{1} M_{1}^{\prime}} \\
\overline{\mathrm{V}}\left(\begin{array}{cc}
1 & S^{\prime} \\
1-\mathrm{M}^{\prime}
\end{array}\right)
\end{gathered}
$$

and

$$
\sum_{m_{1} \mathrm{mM}^{\prime} 1 \mathrm{~m}^{\prime}} \overline{\mathrm{V}\left(S_{1} 1 / 2 S M \mathrm{~m}-M\right)} \cdot \overline{\mathrm{V}} \ldots=\sum_{M_{1} \mathrm{mMm}^{\prime} 1 M^{\prime}}(-1)^{-S_{1}+S+S^{\prime}+\left(m-m-1-M-M^{\prime}-M_{1}\right)}
$$

(x) $(-1)^{+2+S-S^{\prime}+S_{1}-\left(m-m+i-M-M^{\prime}-M_{1}\right)}$

[^34]\[

(x) \overline{\mathrm{V}}\left($$
\begin{array}{ccc}
1 / 2 & 1 / 2 & 1 \tag{C46}\\
-m^{\prime} & m-1
\end{array}
$$\right) \overline{\mathrm{v}}\binom{1 / 2 S^{\prime} S_{1}}{m^{\prime}-M^{\prime} M_{1}} \overline{\mathrm{v}}\binom{1 / 2 S_{1} S^{\prime}}{-m^{\prime}-M_{1} M} \overline{\mathrm{v}}\binom{1 S S^{\prime}}{i-M M^{\prime}}
\]

The first three powers of (-1) result into

$$
\begin{align*}
& (-1)^{+S^{\prime}-M^{\prime}+1 / 2-m-S-S^{\prime}-S_{1}+\left(m^{\prime}-m+i-M-M^{\prime}-M_{1}\right)} \\
= & (-1)^{S^{\prime}-M^{\prime}+1 / 2-m+S-S^{\prime}-S_{1}-M^{\prime}-M^{\prime}-M_{1}}=(-1)^{1 / 2-2 M+S-S_{1}} \\
= & (-1)^{-\left(1 / 2+S+S_{1}\right)+1}=(-1)^{1 / 2+S+S_{1}+1} \tag{C47}
\end{align*}
$$

Similarly the four V coefficients can be rearranged as follows

$$
\begin{align*}
& v\binom{h_{1} a h}{\theta_{1} \alpha \theta} v(\ldots) \ldots=(-1)^{T_{1}+h_{1}+h^{\prime}+a} v\left(\begin{array}{cc}
a a^{a T} & 1 \\
\alpha^{\prime} \alpha & i
\end{array}\right) \quad v\binom{a h^{\prime} h}{\alpha^{\prime} \theta^{\prime} \theta} \\
& v\left(\begin{array}{ll}
a h_{1} & h \\
\alpha & \theta_{1}
\end{array}\right) \quad v\left(\begin{array}{ccc}
T_{1} & h^{\prime} & h^{\prime} \\
1 & \theta & \theta^{\prime}
\end{array}\right) \tag{C48}
\end{align*}
$$

Substituting in (C43) we find

$$
\begin{gather*}
\rho(p, p)=p \sum_{S_{1} h_{1}}(-1)^{S+S_{1}+1 / 2+h_{1}+h^{\prime}}\left\langle a^{p} S_{h}\left\{\left|a, a^{p-1} S_{1} h_{1}\right\rangle\left\langle a^{p-1} S_{1} h_{1} a\right|\right\}\right. \\
a^{\left.p^{\prime} S^{\prime} h^{\prime}\right\rangle\langle 1 / 2 a||s u||1 / 2 a\rangle(x)} \tag{x}
\end{gather*}
$$

$$
\begin{align*}
& \text { (x) } \sum(-1)^{1 / 2+1 / 2+1+S+S+S^{\prime}+S_{1}-\left(m^{\prime}-m+1-M-M^{\prime}-M_{1}\right)} \\
& \mathrm{MmM}_{1} \mathrm{M}^{\prime} \mathrm{Im}^{\prime} \\
& \text { (x) } \bar{v}\left(\begin{array}{cc}
1 / 2 & 1 / 2 \\
\\
-m^{\prime} m-1 & 1
\end{array}\right) \bar{v}\left(\begin{array}{cc}
1 / 2 & s^{\prime} s \\
m^{\prime}-M^{\prime} M_{1}
\end{array}\right) \bar{v}\binom{1 / 2 S_{1} S^{\prime}}{-m-M_{1} M^{\prime}} \bar{v}\binom{1 s S^{\prime}}{1-M^{\prime} M} \\
& \text { (x) } \sum_{\theta^{\prime} \alpha \theta \theta^{\prime} \alpha^{\prime}} v\binom{a a T_{1}}{\alpha^{\prime} \alpha 1} v\binom{a h^{\prime} h_{1}}{\alpha^{\prime} \theta^{\prime} \theta_{1}} v\binom{a h_{1} h^{\prime}}{\alpha \theta^{\prime} \theta^{\prime}} v\binom{T_{1} h^{\prime}}{1 \theta \theta^{\prime}} \tag{C49}
\end{align*}
$$

The second and third sums are identical to (C32) and (C35) respectively. Thus they can be substituted by their appropriate \bar{W} and W coefficients. The final result $1 s^{*}$

$$
\begin{equation*}
\rho(p, p)=G_{a}^{p} \quad\left(S h-S^{\prime} h^{\prime}\right)\langle 1 / 2 a||s u||1 / 2 a\rangle \tag{C50}
\end{equation*}
$$

where

$$
\begin{align*}
& G_{a}^{p}\left(S h-S^{\prime} h^{\prime}\right)= \\
& \sum_{S_{1} h_{1}}(-1)^{S+S_{1}+1 / 2+h^{\prime}+h_{1}+a}\left\langlea ^ { p } S h \left\{\left|a, a^{p-1} S_{1} h_{1}\right\rangle\left\langle a^{p-1} S_{1}^{\prime} h_{1}^{\prime}, a\right\}\right.\right. \\
& \text { (x) } p\left[(2 S+1)\left(2 S^{\prime}+1\right)(h)\left(h^{\prime}\right)\right]^{1 / 2} \\
& (x) \bar{W}\left(1 / 21 / 21, S S^{\prime} S_{1}\right) \cdot W\left(a \quad a T_{1}, h h^{\prime} h_{1}\right) \tag{C51}
\end{align*}
$$

${ }^{\star} p, q$ and r must be less than half shell numbers. If not they should be substitutde by $p^{\prime}=2(a)-p, q^{\prime}=2(b)-q$ and $r^{\prime}=2(c)-r$ where (a), (b) and (c) are dimensions of a, b and c respectively.

Substituting in (C28) - (C30) we have*

$$
\begin{gather*}
R_{j k}\left[p(q r) p, S h-S^{\prime} h^{\prime}\right]=(-1)^{S p} \mathscr{D} \mathscr{D} W\left(N_{1}^{\prime} N_{1} N_{0}, N_{N^{\prime}} N_{4}\right) \\
(x) G_{a}^{p}\left(S_{1} h_{1}-S^{\prime} h^{\prime}\right)\langle 1 / 2 a||s u||1 / 2 a\rangle \delta_{N_{4} N_{4}^{\prime}}, \tag{C52}\\
R_{j k}\left[p(q r) q, S h-S^{\prime} h^{\prime}\right]=(-1)^{S q} \mathscr{D} \mathscr{D}, \mathscr{D}_{4} \mathscr{D}_{4}^{\prime} W_{\left(N_{2}^{\prime} N_{2} N_{0}, N_{4} N_{4}^{\prime} N_{3}\right)} \\
W\left(N_{4}^{\prime} N_{4} N_{0}, N_{\left.N^{\prime} N_{1}\right)}\right.
\end{gather*}
$$

$$
\begin{equation*}
\text { (x) } G_{b}^{q}\left(S_{2} h_{2}-S_{2}^{\prime} h_{2}^{\prime}\right)\langle 1 / 2 b||s u||1 / 2 b\rangle \delta_{N_{1} N_{1}^{\prime}} \quad \delta_{N_{3} N_{3}^{\prime}} \tag{C53}
\end{equation*}
$$

$$
\begin{gather*}
R_{j k}\left[p(q r) r, S h-S^{\prime} h^{\prime}\right]=(-1)^{\mathrm{Sr}} \mathscr{D D} \cdot \mathscr{D}_{4} \mathscr{D}_{4}^{\prime} U_{\left(N_{3}^{\prime} N_{3} N_{0}, N_{4} N_{4}^{\prime} N_{2}\right)} \\
\text { (x) } W\left(\mathrm{~N}_{4} \mathrm{~N}_{4}^{\prime} \mathrm{N}_{0}, N N^{\prime} \mathrm{N}_{1}\right) \\
\mathrm{G}_{\mathrm{c}}^{\mathrm{r}}\left(\mathrm{~S}_{3} \mathrm{~h}_{3}-\mathrm{S}_{3}^{\prime} \mathrm{h}_{3}^{\prime}\right)\langle 1 / 2 \mathrm{c}||\mathrm{su}||1 / 2 \mathrm{c}\rangle \delta_{\mathrm{N}_{1} \mathrm{~N}_{1}^{\prime}} \delta_{\mathrm{N}_{2} \mathrm{~N}_{2}^{\prime}} \tag{C54}
\end{gather*}
$$

5. HETERO CONFIGURATION THREE ORBITAL REDUCED MATRIX ELEMENTS $R_{j k}{ }^{\prime}\left(p q r s h, p q r^{\prime} S^{\prime} h^{\prime}\right)$

Here, we consider the reduced matrix elements $R_{j k}$ between states $|j\rangle$ and $\left|k^{\prime}\right\rangle$ with both having three open orbitals of the same symmetry but different configurations.

[^35]The $R_{j k}$, in this case, can be expressed as

$$
\begin{equation*}
R_{j k^{\prime}}\left(S h, S^{\prime} h^{\prime}\right)=\left\langle x_{j} S h\right|\left|H_{p} \| x_{k}, S^{\prime} h^{\prime}\right\rangle \tag{C55}
\end{equation*}
$$

where

$$
\begin{align*}
& \left|x_{j} S h\right\rangle=\left|\left[a^{p} S_{1} h_{1}\left(b^{q-1} S_{2} h_{2} c^{r} S_{3} h_{3}\right) S_{4} h_{4}\right]_{j} ; S h\right\rangle \tag{C56}\\
& \left|x_{K} S^{\prime} h^{\prime}\right\rangle=\left|\left[a^{p} S_{1}^{\prime} h_{1}^{\prime}\left(b^{q_{S}} S_{2}^{\prime} h_{2}^{\prime} c^{r-1} S_{3}^{\prime} h_{3}^{\prime}\right) S_{4} h_{4}^{\prime}\right]_{k^{\prime}} S^{\prime} h^{\prime}\right\rangle \tag{C57}
\end{align*}
$$

The orbitals a, b and c, in (C56) - (C57) represent three of the five orbitals $t_{a}, e_{a}, \ldots, t_{b}$ of Table 3-2.

Subscripts j and k ' denote the electronic configuration and coupling scheme of the three orbitals a, b and c. The determination of $R_{j k}{ }^{\prime}$ follows that of the $R_{j k}$ defined in (C12) - (C14). Considering these equations, $R_{j k^{\prime}}$ can be written as follows:

$$
\begin{align*}
& R_{j k^{\prime}}\left(S h-S^{\prime} h^{\prime}\right)=\left\langle a^{p} S_{1} h_{1}\left(b^{q-1} S_{2} h_{2} c^{r} S_{3} h_{3}\right) S_{4} h_{4} ; S h\right| \mid \\
& \left.(x) \sum_{k=1}^{p+q+r} \operatorname{su}(k) \| a^{p} S_{1}^{\prime} h_{1}^{\prime}\left(b^{q} S_{2}^{\prime} h_{2}^{\prime} c^{r-1} S_{3}^{\prime} h_{3}^{\prime}\right) S_{4}^{\prime} h_{4}^{\prime} ; S^{\prime} h^{\prime}\right\rangle \\
& \quad=R_{j k}\left(S h-S^{\prime} h^{\prime}, p\right)+R_{j k}\left(S h-S^{\prime} h^{\prime}, q r\right) \tag{C58}
\end{align*}
$$

where

$$
\begin{gather*}
R_{j k}\left(S h-S^{\prime} h^{\prime}, p\right)=\left\langle a^{p} S_{1} h_{1}\left(b^{q-1} S_{2} h_{2} c^{r} s_{3} h_{3}\right) s_{4} h_{4}, S h\left\|\sum_{k=1}^{p} s u(k)\right\|\right. \\
\left.(x) \| a^{p} S_{1}^{\prime} h_{1}^{\prime}\left(b^{q} S_{2}^{\prime} h_{2}^{\prime} c^{r-1} S_{3}^{\prime} h_{3}^{\prime}\right) S_{4}^{\prime} h_{4}^{\prime} ; s^{\prime} h^{\prime}\right\rangle \tag{C59}
\end{gather*}
$$

and

$$
\begin{align*}
& R_{j k^{\prime}}\left(S h-S^{\prime} h^{\prime}, q r\right)=\left\langle a^{p} S_{1} h_{1}\left(b^{q-1} S_{2} h_{2} c^{r} S_{3} h_{3}\right) S_{4} h_{4}, S h\right| \mid \sum_{k=p+1}^{p+q+r} s u(k) \| \\
& \left.(x) \| a^{p} S^{\prime} h^{\prime}\left(b q S_{2}^{\prime} h_{2}^{\prime} c^{r-1} S_{3}^{\prime} h_{3}^{\prime}\right) S_{4}^{\prime} h_{4}^{\prime} ; S^{\prime} h^{\prime}\right\rangle \tag{C60}
\end{align*}
$$

The $R_{j k}$ (Sh-S'h',p) of (C59) is given in (C20), whereas $R_{j k}$, of (C60) is a new type of reduced matrix element to be examined in the following. Considering (C21) and (C31) one finds that

$$
\begin{aligned}
& R_{j k}\left(S h-S^{\prime} h^{\prime}, q r\right)=(-1)\left(S_{1}+S_{4}+h_{1}+h_{4}^{\prime}+h\right)(x) \mathscr{D} \mathscr{D}^{\prime} \\
& (x)\left\langle\left(b^{q-1} S_{2} h_{2}, c^{r} S_{3} h_{3}\right) S_{4} h_{4}\right|\left|\sum_{k=1}^{q+r} \operatorname{su}(k)\right|\left|\left(b^{r} s_{2}^{\prime} h_{2}^{\prime} c^{r-1} S_{3}^{\prime} h_{3}^{\prime}\right) S_{4}^{\prime} h_{4}^{\prime}\right\rangle
\end{aligned}
$$

$$
\begin{equation*}
\text { (x) } \mathscr{W}\left(N_{4}^{\prime} N_{4} N^{\prime}, N^{\prime} N_{1}\right) \quad \delta_{N_{1}} N_{1}^{\prime} \tag{C61}
\end{equation*}
$$

where as in (C31)

$$
\mathscr{D}_{i}=\left[\begin{array}{ll}
\left(2 S_{i}+1\right) & \left(h_{i}\right) \tag{C62}
\end{array}\right]^{1 / 2}
$$

and

$$
\begin{align*}
& W\left(N_{i} N_{j} N_{0}, N_{k} N_{\ell} N_{m}\right)=\bar{W}\left(S_{i} S_{j} 1, S_{k} S_{\ell} S_{m}\right)(x) \\
&(x) W\left(h_{i} h_{j} T_{1}, h_{k} h_{\ell} h_{m}\right) \equiv \bar{W}\left[\begin{array}{l}
S_{i} S_{j} 1 \\
S_{k} S_{\ell} S_{m}
\end{array}\right] W\left[\begin{array}{l}
h_{i} h_{j} T_{1} \\
h_{k} h_{\ell} h_{m}
\end{array}\right] \tag{C63}
\end{align*}
$$

The dimensions (h_{1}) of h_{i} in (C62) are $1,1,2,3$ or 3 for $h_{1}=A_{1}, A_{2}$, E, T_{1} or T_{2} irreducible representations of the cubic group, \bar{W} and W are related to the 6 j symbols as defined in (C32) - (C35). The last term to be determined in (C61) is:

$$
\begin{gather*}
R_{j k},[q-1, r ; q, r-1]=\left\langle\left(b^{q-1} s_{2} h_{2}, c^{r} s_{3} h_{3}\right) s_{4} h_{4}\right| \mid \sum_{k=1}^{q+r} s u(k) \| \\
\text { (x) } \left.\|\left(b^{q} s_{2}^{\prime} h_{2}^{\prime} c^{r-1} S_{3}^{\prime} h_{3}^{\prime}\right) s_{4}^{\prime} h_{4}^{\prime}\right\rangle \tag{C64}
\end{gather*}
$$

Before considering $\mathrm{R}_{\mathrm{jk}} \mathrm{I}^{(\mathrm{q}-1, \mathrm{r}, \mathrm{q}, \mathrm{r}-1) \text {, a preliminary investigation }, ~}$ of the permutational part of the simplification of the bra $\left\langle z^{\prime}\right|$ of $b^{q-1} c^{r}$ and the et $|z\rangle$ of $b^{q} c^{r-1}$ is helpful. For any single electron operator, $F=\varepsilon_{k} f(k)$, the matrix element between $\left\langle Z^{\prime}\right|=\left\langle\left(b^{q-1} c^{r} \mid\right.\right.$ and $|\mathrm{z}\rangle=\left|\mathrm{b}^{\mathrm{q}} \mathrm{c}^{\mathrm{r}-1}\right\rangle$ may be described as follows:

$$
\begin{aligned}
& |z\rangle=[q!(r-1):(q+r-1)!]^{-1 / 2} \sum_{\mu}(-1)^{\mu} p_{\mu}\left|b^{q} \alpha\right\rangle \cdot\left|c^{r-1} B^{\prime}\right\rangle \\
& \left\langle z^{\prime}\right|=[(q-1)!r!(q+r-1):]^{-1 / 2} \sum_{\nu}(-1)^{v} p_{v}\left\langle b^{q-1} \alpha^{\prime}\right|\left\langle c^{r_{B}}\right|
\end{aligned}
$$

Then,

$$
\begin{align*}
& \left\langle z^{\prime}\right| F|z\rangle=[q!(r-1)!(q+r-1)!]^{-1 / 2}\left\langle z^{\prime}\right| \sum_{\mu}(-1)^{\mu} P_{\mu} F\left|b^{q_{\alpha}} \quad c^{r-1} B^{\prime}\right\rangle \\
& \left.\quad=\sum_{\mu, \nu}^{q+r-1}(-1)^{\mu+\nu} p_{\nu}\left\langle b^{q-1} \alpha^{\prime} \mid \cdot\left\langle c^{r} B\right| p_{\mu} F \mid b^{\prime} q_{\alpha}\right\rangle c^{r-1} B_{B^{\prime}}\right\rangle \\
& \text { (x) }[q!(q-1)!r!(r-1)!(q+r-1)!(q+r-1)!]^{-1 / 2} \tag{C65}
\end{align*}
$$

where $\left\langle b^{q-1} \alpha^{\prime}\right| \cdot\left\langle c^{r} \beta\right|$ is a simple product. The next step is to express the $\left|b^{q_{\alpha}}\right\rangle$ and $\left|c r^{r}\right\rangle$ as function of their coefficients of fractional parentage:

$$
\begin{align*}
& \left.\left.\left|b^{q_{\alpha}}\right\rangle=\sum_{\alpha^{\prime}}\left\langle b^{q-1} \alpha^{\prime \prime}, b\right|\right\} b^{q_{\alpha}}\right\rangle \cdot\left|b^{q-1} \alpha^{\prime \prime} \cdot b, \alpha\right\rangle \tag{C66}\\
& \left|c^{r} \beta\right\rangle=\sum_{\beta^{\prime \prime}}\left\langlec ^ { r _ { \beta } } \left\{\left|c, c^{r-1} \beta^{\prime \prime}\right\rangle \cdot\left|c, c^{r-1} \beta^{\prime \prime}, \beta\right\rangle\right.\right. \tag{C67}
\end{align*}
$$

where $\alpha, \beta, \alpha^{\prime}$ and β^{\prime} in (C66) - (C67) denote the characterizing symbols of $\left|b^{q}\right\rangle, \ldots \ldots\left|c^{r}\right\rangle$, such as $S_{2}^{\prime} h_{2}^{\prime}$ in (C61) for $\left|b^{q}\right\rangle$. Substituting in (C65), we find:

$$
\begin{align*}
& \left\langle z^{\prime}\right| F|z\rangle=[q!(r-1)!(q+r-1)!]^{-1} \sum_{\alpha^{\prime}, \beta^{\prime \prime}} \sum_{\mu, v}(-1)^{\mu+\nu} P_{\nu} \\
& \text { (x) }\left\langlec ^ { r _ { \beta } } \left\{\left|c, c^{r-1} \beta^{\prime \prime}\right\rangle \cdot\left\langle c \cdot c^{r-1} \beta^{\prime \prime}, \beta\right| \cdot\left\langle b^{q-1} \alpha^{\prime}\right| p_{\mu} F\left|b^{q-1} \alpha^{\prime \prime} \cdot b, \alpha\right\rangle\right.\right. \\
& \text { (x) } \left.\left.\left|c^{r-1} \beta_{\beta^{\prime}}\right\rangle\left\langle b^{q-1} \alpha^{\prime}{ }^{\prime}, b\right|\right\} b^{q_{\alpha}}\right\rangle(q / r)^{1 / 2} \tag{C68}
\end{align*}
$$

Considering that

$$
F=\sum_{k=1}^{q+r-1} f(k)
$$

one has

$$
\sum P_{\mu} F=(q+r-1)!F
$$

Substituting in (C68) one has

$$
\begin{aligned}
& \text { (x) }\left\langle c, c^{r-1} \beta^{\prime \prime}, \beta\right| \cdot\left\langle b^{q-1} \alpha^{\prime}\right| F\left|b^{q-1} \alpha^{\prime \prime} \cdot b, \alpha\right\rangle\left|c^{r-1} \beta^{\prime}\right\rangle \\
& \text { (x) } \left.\left.\left\langle b^{q-1} \alpha^{\prime \prime}, b\right|\right\} b^{q} \alpha\right\rangle(q / r)^{1 / 2} \\
& =\sum_{\alpha^{\prime}, \beta^{\prime \prime}}[q(r-1)!]^{-1}, \sum_{v} P \sum_{v}\left\langle c^{r} \beta\left\{\left|c, c^{r-1} \beta^{\prime \prime}\right\rangle\left\langle b^{q-1} \alpha^{\prime \prime}, b\right|\right\} b^{q_{\alpha}}\right\rangle \\
& \left\langle c, c^{r-1} \beta^{\prime \prime}, \beta\right| \cdot\left\langle b^{q-1} \alpha^{\prime}\right| F(q)\left|b^{q-1} \alpha^{\prime \prime} \cdot b, \alpha\right\rangle\left|c^{r-1} B^{\prime}\right\rangle(q / r)^{1 / 2} \\
& =\sum_{\alpha^{\prime}, \beta^{\prime}}[q!(r-1)!]^{-1}\left\langle c^{r_{\beta}}\left\{\left|c, c^{r-1_{\beta^{\prime}}}\right\rangle\left\langle a^{q-1} \alpha^{\prime \prime}, b\right|\right\} b^{q_{\alpha}}\right\rangle \\
& \text { (x) }\langle\mathrm{c}| \mathrm{f}|\mathrm{~b}\rangle(\mathrm{r}-1)!\delta_{\beta^{\prime} \beta^{\prime}}(\mathrm{q}-1)!\delta_{\alpha^{\prime} \alpha^{\prime \prime}} \cdot(\mathrm{q} / \mathrm{r})^{1 / 2} \cdot(\mathrm{qr}) \\
& =(q r)^{1 / 2}\left\langle c^{r_{B}}\left\{\left|c, c^{r-1} \beta^{\prime}\right\rangle\left\langle b^{q-1} \alpha^{\prime}, b\right|\right\} b^{q_{\alpha}}\right\rangle\langle c| f|b\rangle
\end{aligned}
$$

Thus

$$
\begin{align*}
& \left\langle b^{q-1} \alpha^{\prime}, c^{r} B\right| \sum_{k}^{q+r-1} f(k)\left|b^{q} \alpha, c^{r-1} \beta^{\prime}\right\rangle \\
= & \left.\left.(q r)^{1 / 2}\left\langle b^{q-1} \alpha^{\prime}, b\right|\right\} b^{q_{\alpha}}\right\rangle\left\langlec ^ { r _ { B } } \left\{\left|c, c^{r-1} \beta^{\prime}\right\rangle \cdot\langle c| f|b\rangle\right.\right. \tag{C69}
\end{align*}
$$

We now apply (C69) to obtain

$$
L=\left\langle\left(b^{q-1} s_{2} h_{2}, c^{r} s_{3} h_{3}\right) s_{4} h_{4}\left\|\sum_{k=1}^{q+r} s u(k)\right\|\right.
$$

$$
\begin{equation*}
\text { (x) } \left.\|\left(b^{q} S_{2}^{\prime} h_{2}^{\prime}, c^{r-1} s_{3}^{\prime} h_{3}^{\prime}\right) s_{4}^{\prime} h_{4}^{\prime}\right\rangle \tag{C70}
\end{equation*}
$$

$$
\begin{equation*}
=\sum_{1 M_{4}^{M_{4}^{\prime} \theta_{4} \theta_{4}^{\prime}}}(-1)^{S_{4}-M_{4}}\left\langle b^{q-1} S_{2} h_{2} c^{r} S_{3} h_{3}: S_{4} h_{4}^{M \theta \mid} \sum_{k} s u(k)\right| b^{q} S_{2}^{\prime} h_{2}^{\prime} \tag{C71}
\end{equation*}
$$

(x) $\left.c^{r-1} S_{3}^{\prime} h_{3}^{\prime}, S_{4}^{\prime} h_{4}^{\prime} M^{\prime} \theta^{\prime}\right\rangle \bar{V}\left(S_{4} S_{4}^{\prime} 1,-M M^{\prime} 1\right) V\left(h_{4} h_{4}^{\prime} T, \theta \theta^{\prime}-1\right)$.

Here

$$
\left\langle\mathrm{b}^{\mathrm{q}-1} \mathrm{~S}_{2} \mathrm{~h}_{2} \mathrm{c}^{\mathrm{r} \mathrm{~S}_{3} \mathrm{~h}_{3} ; \mathrm{S}_{4} \mathrm{~h}_{4} \mathrm{M}_{4} \theta_{4} \mid} \underset{\mathrm{M}_{2} \theta_{2} \mathrm{M}_{3} \mathrm{M}_{3}^{\prime} \mathrm{m}}{=} \sum_{2}\left\langle\mathrm{~s}_{2} \mathrm{~S}_{3} \mathrm{M}_{2} \mathrm{M}_{3} \mid \mathrm{s}_{2} \mathrm{~s}_{3} \mathrm{~s}_{4}^{\mathrm{M}}\right\rangle\right.
$$

$$
(x)\left\langle h_{2} h_{3} \theta_{2} \theta_{3} \mid h_{2} h_{3} h_{4} \theta_{4}\right\rangle\left\langle b^{q-1} S_{2} h_{2} M_{2} \theta_{2}\right|\left\langlec ^ { r } S _ { 3 } h _ { 3 } \left\{\mid c, c^{r-1}\right.\right.
$$

$$
\left.\mathrm{S}_{3}^{\prime} \mathrm{h}_{3}^{\prime} \mathrm{M}_{3}^{\prime} \theta_{3}^{\prime}\right\rangle\left\langle 1 / 2 \mathrm{~S}_{3}^{\prime} \mathrm{mM}_{3}^{\prime} \mid 1 / 2 \mathrm{~S}_{3}^{\prime} \mathrm{S}_{3} \mathrm{M}_{3}\right\rangle\left\langle\operatorname{ch}_{3}^{\prime \mu \theta_{3}^{\prime}} \mid \mathrm{ch}_{3}^{\prime} \mathrm{h}_{3} \theta_{3}\right\rangle
$$

$$
\begin{equation*}
\left\langle c^{r-1} S_{3}^{\prime} h_{3}^{\prime} M_{3}^{\prime} \theta_{3}^{\prime}\right|\langle c \mathrm{mu}| \tag{C72}
\end{equation*}
$$

Also,

$$
\begin{aligned}
\left|b^{q} S_{2}^{\prime} h_{2}^{\prime} c^{r-1} S_{3}^{\prime} h_{3}^{\prime} S_{4}^{\prime} h_{4}^{\prime} M_{4}^{\prime} \theta_{4}^{\prime}\right\rangle & \sum_{M_{2}^{\prime} M_{2}^{\prime} M_{3} m^{\prime}} \\
& \theta_{2} \theta_{2} \theta_{3}^{\prime} \mu^{\prime}
\end{aligned}
$$

$$
\begin{gathered}
\left.\left.(x)\left\langle h_{2}^{\prime} h_{3}^{\prime} \theta_{2}^{\prime} \theta_{3}^{\prime} \mid h_{2}^{\prime} h_{3}^{\prime} h_{4}^{\prime} \theta_{4}^{\prime}\right\rangle\left\langle b^{q-1} s_{2} h_{2}, b m^{\prime} \mu^{\prime}\right|\right\} b^{q} S_{2}^{\prime} h_{2}^{\prime}\right\rangle \\
\left\langle s_{2} 1 / 2 M_{2} m^{\prime} \mid s_{2} 1 / 2 S_{2}^{\prime} M_{2}^{\prime}\right\rangle\left\langle h_{2}^{b \theta_{2} \mu^{\prime}}\right| h_{2}^{\left.b h_{2}^{\prime} \theta_{2}^{\prime}\right\rangle\left|b m^{\prime} u^{\prime}\right\rangle\left|c^{r-1} s_{3}^{\prime} h_{3}^{\prime} M_{3}^{\prime} \theta_{3}\right\rangle} \\
\text { (x) }\left|b^{q-1} S_{2}^{\prime} h_{2}^{\prime} M_{2}^{\prime} \theta_{2}^{\prime}\right\rangle
\end{gathered}
$$

Substituting in (C71), one finds:

$$
\begin{aligned}
& (\mathrm{qr})^{1 / 2} \overline{\mathrm{~V}}\left(\mathrm{~S}_{4} \mathrm{~S}_{4}^{\prime} 1,-\mathrm{M}_{4} \mathrm{M}_{4}^{\prime}-1\right) \\
& \text { (x) }\left\langle S_{2} S_{3} M_{2} M_{3} \mid S_{2} S_{3} S_{4} M_{4}\right\rangle\left\langle 1 / 2 S_{3}^{\prime} m M_{3}^{\prime} \mid 1 / 2 S_{3}^{\prime} S_{3} M_{3}\right\rangle \\
& \text { (x) }\left\langle\mathrm{S}_{2}^{\prime} \mathrm{S}_{3}^{\prime} \mathrm{M}_{2}^{\prime} \mathrm{M}_{3}^{\prime} \mid \mathrm{S}_{2} \mathrm{~S}_{3} \mathrm{~S}_{4} \mathrm{M}_{4}\right\rangle\left\langle\mathrm{S}_{2} 1 / 2 \mathrm{M}_{2} \mathrm{~m}^{\prime} \mid \mathrm{S}_{2} 1 / 2 \mathrm{~S}_{2}^{\prime M_{2}^{\prime}}\right\rangle \\
& \text { (x) } V\left(h_{4}^{\prime} h_{4} T_{1}, \theta_{4}^{\theta} \frac{1}{4}\right. \text { i) } \\
& \text { (x) }\left\langle h_{2}^{\prime} h_{3} \theta_{2} \theta_{3} \mid h_{2} h_{3} h_{4} \theta_{4}\right\rangle\left\langle\operatorname{ch}_{3}^{\prime \mu \theta_{3}} \mid \operatorname{ch}_{3}^{\prime} h_{3} \theta_{3}\right\rangle \\
& \text { (x) }\left\langle h_{2}^{\prime} h_{3}^{\prime} \theta_{2} \theta_{3} \mid h_{2}^{\prime} h_{3}^{\prime} h_{4}^{\prime} \theta_{4}^{\prime}\right\rangle\left\langle h_{2}^{b \theta_{2} \mu^{\prime}} \mid h_{2} b h_{2} \theta_{2}^{\prime}\right\rangle \\
& \text { (x) }\left\langle c^{r-1} S_{3} h_{3}\left\{\left|c, c^{r-1} S_{3}^{\prime} h_{3}^{\prime}\right\rangle\left\langle b^{q-1} S_{2} h_{2}, b\right|\right\} b^{q} S_{2}^{\prime} h_{2}^{\prime}\right\rangle
\end{aligned}
$$

$$
\begin{align*}
& (x)\left\langle b^{q-1} S_{2} h_{2} M_{2} \theta_{2}\right|\left\langle c^{r-1} S_{3}^{\prime} h_{3}^{\prime} M_{3}^{\prime} \theta_{3}^{\prime}\right|\langle c m \mu| s u \mid \\
& \text { (x) }\left|b m^{\prime} \mu^{\prime}\right\rangle\left|c^{r-1} S_{3}^{\prime} h_{3}^{\prime} M_{3}^{\prime} \theta_{3}^{\prime}\right\rangle\left|b^{q-1} S_{2} h_{2} M_{2} \theta_{2}\right\rangle \tag{C74}
\end{align*}
$$

The individual coefficients appearing in (C74) can be simplified further as follows:

$$
\begin{aligned}
& \langle c m \mu| s u\left|b m^{\prime} \mu^{\prime}\right\rangle=(-1)^{1 / 2-m} \bar{v}\left(1 / 21 / 21,-m m^{\prime}-1\right)[-1]^{c-\mu} \\
& \text { (x) } V\left(\begin{array}{c}
\text { b } \left.T_{1},-\mu \mu^{\prime} i\right)\langle 1 / 2 c||s u||1 / 2 b\rangle, ~
\end{array}\right. \\
& \left\langle S_{i} S_{j} M_{i} M_{j} \mid S_{i} S_{j} S_{k} M_{k}\right\rangle=\left(2 S_{k}+1\right)^{1 / 2}(-1)^{2 S_{j}}+S_{k}-M_{k} \\
& \text { (x) } \bar{V}\left(S_{i} S_{j} S_{k}, M_{i} M_{j}-M_{k}\right)
\end{aligned}
$$

and

$$
\left\langle h_{i} h_{j} \theta_{i} \theta_{j} \mid h_{i} h_{j} h_{k} \theta_{k}\right\rangle=\left(h_{k}\right)^{1 / 2} v\left(h_{i} h_{j} h_{k}, \theta_{i} \theta_{j} \theta_{k}\right)
$$

Substituting for coefficients in (C74), we find

$$
\begin{aligned}
& \text { L. } \sum \\
& \mathrm{IM}_{4} \mathrm{M}_{2} \mathrm{M}_{3} \mathrm{MM}^{\prime} \mathrm{M}_{2}^{\prime} \mathrm{M}_{3}^{\prime} \mathrm{m}^{\prime} \\
& \theta_{4} \theta_{2} \theta_{3}{ }^{\mu} \theta^{\prime} \theta_{2}^{\prime} \theta_{3}^{\prime} \mu^{\prime} \\
& (\mathrm{qr})^{1 / 2} \mathscr{D}_{4} \mathscr{D}_{4}^{\prime} \mathscr{D}_{2}^{\prime} \mathscr{D}_{3}\left\langle\mathrm{c}^{\mathrm{r}} \mathrm{~S}_{3} \mathrm{~h}_{3}\left\{\left|\mathrm{c}, \mathrm{c}^{\mathrm{r}-1} \mathrm{~S}_{3}^{\prime} \mathrm{h}_{3}\right\rangle\left\langle\mathrm{b}^{\mathrm{q}-1} \mathrm{~S}_{2} \mathrm{~h}_{2} \mathrm{~b}\right|\right\} \mathrm{b}^{\mathrm{q}} \mathrm{~S}_{2}^{\prime} \mathrm{h}_{2}^{\prime}\right\rangle
\end{aligned}
$$

(x) $\overline{\mathrm{V}}\left(\mathrm{S}_{4} \mathrm{~s}_{4}^{\prime} 1,-\mathrm{M}_{4} \mathrm{M}_{4}-\mathrm{i}\right) \overline{\mathrm{V}}\left(\mathrm{s}_{2} \mathrm{~S}_{3} \mathrm{~S}_{4} ; \mathrm{M}_{2} \mathrm{M}_{3}-\mathrm{M}_{4}\right) \overline{\mathrm{V}}\left(1 / 2 \mathrm{~s}_{3}^{\prime} \mathrm{s}_{3},-\mathrm{m}-\mathrm{M}_{3}^{\prime}+\mathrm{M}_{3}\right)$
(x) $\overline{\mathrm{V}}\left(\mathrm{S}_{2}^{\prime} \mathrm{S}_{3}^{\prime} \mathrm{S}_{4}^{\prime},-\mathrm{M}_{2}-\mathrm{M}_{3}+\mathrm{M}_{4}^{\prime}\right) \overline{\mathrm{V}}\left(\mathrm{S}_{2} 1 / 2 \mathrm{~S}_{2}^{\prime}, \mathrm{M}_{2} \mathrm{~m}^{-M_{2}^{\prime}}\right) \overline{\mathrm{V}}\left(1 / 21 / 21,-\mathrm{mm} \mathrm{m}^{\prime}-1\right)$
(x) $V\left(h_{4} h_{4}^{\prime} T_{1}, \theta_{4} \theta_{4} i\right) V\left(h_{2} h_{3} h_{4}\right) V\left(c h_{3}^{\prime} h_{3}, \mu \theta_{3}^{\prime} \theta_{3}\right)$
(x) $V\left(h_{2}^{\prime} h_{3}^{\prime} h_{4}^{\prime}, \theta_{2}^{\prime} \theta_{3}^{\prime} \theta_{4}^{\prime}\right) V\left(h_{2} b h_{2}^{\prime}, \theta_{2}^{\mu} \theta_{2}^{\prime}\right) V\left(c \quad T_{1}, \mu \mu\right.$ i)
$=(-1) \mathrm{S}_{2}-\mathrm{S}_{2}+\mathrm{S}_{3}-\mathrm{S}_{3}+\mathrm{h}_{2}+\mathrm{h}_{2}+\mathrm{h}_{3(\mathrm{qr})^{1 / 2} \mathscr{D}_{2} \mathscr{D}_{3} \mathscr{D}_{4} \mathscr{D}_{4},}$
$\left.\left.(x)\left\langle b^{q-1} S_{2} h_{2}, b\right|\right\} b^{q} S_{2}^{\prime} h_{2}^{\prime}\right\rangle\left\langle c^{r} S_{3} h_{3}\left\{\left|c, c^{r-1} S_{3}^{\prime} h_{3}^{\prime}\right\rangle\right.\right.$ $\langle 1 / 2 \mathrm{c}\|\mathrm{su}\| 1 / 2 \mathrm{~b}\rangle$
(x) $\sum_{\substack{1 M_{4} M_{2} M_{3} m}} \overline{\mathrm{~V}}\left(\mathrm{~S}_{2} \mathrm{~S}_{3} \mathrm{~S}_{4}, \mathrm{M}_{2} \mathrm{M}_{3}-\mathrm{M}\right) \overline{\mathrm{V}}\left(\mathrm{S}_{3} \mathrm{~S}_{3}^{\prime} 1 / 2, \mathrm{M}_{3}-\mathrm{M}_{3}^{\prime}-\mathrm{m}\right)$

$$
\text { (x) } \overline{\mathrm{V}}\left(\mathrm{~S}_{2}^{\prime} \mathrm{S}_{3}^{\prime} \mathrm{S}_{4}^{\prime},-\mathrm{M}_{2}^{\prime}-\mathrm{M}_{3}^{\prime} \mathrm{M}^{\prime}\right) \overline{\mathrm{V}}\left(\mathrm{~S}_{4} \mathrm{~S}_{4}^{\prime} 1,-\mathrm{M}_{4} M_{4}^{\prime}-i\right)
$$

$$
\text { (x) } \overline{\mathrm{V}}\left(\mathrm{~S}_{2} \mathrm{~S}_{2}^{\prime} 1 / 2,-\mathrm{M}_{\overline{2}} \mathrm{M}_{2}^{\prime m^{\prime}}\right) \overline{\mathrm{V}}\left(1 / 21 / 21, \mathrm{~m}^{\prime}-\mathrm{m}-1\right)
$$

(x) $\sum_{\mu \theta_{2} \theta_{3} \theta_{4}^{i}} v\left(h_{2} h_{3} h_{4}, \theta_{2} \theta_{3} \theta_{4}\right) v\left(h_{3} h_{3}^{\prime} c, \theta_{3}^{\prime} \theta_{3}^{\prime} \mu\right) v\left(h_{2}^{\prime} h_{3}^{\prime} h_{4}^{\prime}, \theta_{2}^{\prime} \theta_{3}^{\prime} \theta_{4}^{\prime}\right)$ $\mu^{\prime} \theta_{2}^{\prime} \theta_{3}^{\prime} \theta_{4}^{\prime}$

$$
\begin{equation*}
\text { (x) } V\left(h_{4} h_{4}^{\prime} T_{1}, \theta_{4} \theta_{4}^{\prime} 1\right) V\left(h_{2} h_{2}^{\prime} b, \theta_{2} \theta_{2} \mu\right) V\left(c b T_{1}, \mu^{\prime}{ }^{\prime} 1\right) \tag{C76}
\end{equation*}
$$

The sums in (C76) are the same as the $9-j$ symbol* and defined as:
$\mathrm{X}[\mathrm{abc}, \operatorname{def}, \mathrm{ghk}]=\sum \alpha \beta \gamma \delta \varepsilon \phi \eta \theta \mathrm{k} \quad \mathrm{V}\left(\mathrm{abc}, \alpha \beta_{\gamma}\right) \cdot \mathrm{V}(\operatorname{def}, \delta \varepsilon \phi)$
(x) $(g h k, \eta \theta k) \cdot V(a d g, \alpha \delta \eta) \cdot V(g e h, \eta \varepsilon \theta) \cdot V(c f k, \gamma \phi k)$

Substituting for the sums in (C76) and recalling from (C64) and (C70) that, $R_{j k^{\prime}}(q-1, r ; q, r-1) \equiv L$, one has

$$
\begin{gathered}
R_{j k^{\prime}}(q-1, r ; q, r-1)=(-1)^{S_{2}-S_{2}^{\prime}+S_{3}^{\prime}-S_{3}+h_{2}+h_{2}^{\prime}+h_{3}+h_{3}^{\prime}}(q r)^{1 / 2} \\
\left.\left.\left\langle b^{q-1} S_{2} h_{2}, b\right|\right\} b^{q} S_{2}^{\prime} h_{2}^{\prime}\right\rangle\left\langlec ^ { r } S _ { 3 } ^ { \prime } h _ { 3 } ^ { \prime } \left\{\left|c, c^{r-1} S_{3} h_{3}\right\rangle\right.\right.
\end{gathered}
$$

$$
\begin{equation*}
(x)\langle 1 / 2 c||s u||1 / 2 b\rangle \tag{C78}
\end{equation*}
$$

where

$$
\left.\begin{array}{c}
\chi\left[N_{i} N_{j} N_{k}, N_{\ell} \mathbb{N}_{m} N_{n}, \mathbb{N}_{b} N_{c} N_{o}\right]=\bar{X}\left[S_{i} S_{j} S_{k}, S_{\ell} S_{m} S_{n}, 1 / 21 / 21\right.
\end{array}\right]
$$

[^36]and the remaining coefficients have their usual meanings. Substituting in (C61) and taking into account (C58) - (C60), one finds
\[

$$
\begin{align*}
& \left\langle a^{p} S_{1} h_{1}\left(b^{q-1} S_{2} h_{2}, c^{r} S_{3} h_{3}\right) S_{4} h_{4}, \operatorname{Sh}\right| \mid \sum_{k} s u(k) \\
& \text { (x) } \left.\| a^{p} S_{1}^{\prime} h_{1}^{\prime}\left(b^{q} S_{2}^{\prime} h_{2}^{\prime}, c^{r-1} S_{3}^{\prime} h_{3}^{\prime}\right) S_{4}^{\prime} h_{4}^{\prime} ; S^{\prime} h^{\prime}\right\rangle \\
& =R_{j k^{\prime}}\left(S h-S h^{\prime}\right)=R_{j k}\left(S h-S_{n}^{\prime}, p-p\right) \\
& +R_{j k^{\prime}}\left[p,(q-1, r, S h)-\left(q, r-1, \text { Śs }^{\prime}\right)\right] \\
& =(-1) \mathrm{S}_{1}+\mathrm{S}_{4}+\mathrm{S}+\mathrm{h}_{1}+\mathrm{Sh}_{4}+\mathrm{h} \boldsymbol{D} \mathscr{D}^{\prime} \mathscr{W}\left(\mathrm{N}_{4}^{\prime} \mathrm{N}_{4} \mathrm{~N}_{0}, \mathrm{NN}^{\prime} \mathrm{N}_{1}\right) \\
& \text { (x) } G_{a}^{p}\left(S_{1} h_{1}-S_{1}^{\prime} h_{1}^{\prime}\right)\langle 1 / 2 a||s u|\left|1 / 2 a^{\prime}\right\rangle \delta_{N_{4} N_{4}^{\prime}} \\
& +(-1)^{\mathrm{S}_{1}+\mathrm{S}_{4}+\mathrm{S}+\mathrm{h}_{1}+\mathrm{h}_{4}+\mathrm{h}} \mathscr{D} \mathscr{D}^{\prime} \quad W\left(\mathrm{~N}_{4}^{\prime} \mathrm{N}_{4} \mathrm{~N}_{0}, \mathrm{NN}^{\prime} \mathrm{N}_{1}\right) \delta_{\mathrm{N}_{1} \mathrm{~N}_{1}^{\prime}} \\
& \text { (x) (-1) }{ }^{\left.\mathrm{S}_{2}-\mathrm{S}_{2}+\mathrm{S}_{3}-\mathrm{S}_{3}+\mathrm{h}_{2}+\mathrm{h}_{2}+\mathrm{h}_{3}+\mathrm{h}_{3} \quad \text { (qr }\right)^{1 / 2}} \\
& \left.\left.(x)\left\langle b^{q-1} S_{2} h_{2}, b\right|\right\} b^{q} S_{2}^{\prime} h_{2}^{\prime}\right\rangle \cdot\left\langlec ^ { r } S _ { 3 } ^ { \prime } h _ { 3 } ^ { \prime } \left\{\left|c, c^{r-1} S_{3} h_{3}\right\rangle\right.\right. \\
& \text { (x) } \mathscr{D}_{2} \mathscr{D}_{3} \mathscr{D Q}_{4} \mathscr{D}_{4} \quad \mathcal{X}\left[\mathrm{~N}_{2} \mathrm{~N}_{3} \mathrm{~N}_{4}, \mathrm{~N}_{2}^{\prime} \mathrm{N}_{3}^{\prime} \mathrm{N}_{4}^{\prime}, \mathrm{N}_{\mathrm{b}} \mathrm{~N}_{c} \mathrm{~N}_{0}\right] \\
& \text { (x) }\langle 1 / 2 c||s u||1 / 2 \mathrm{~b}\rangle \text {. } \tag{C80}
\end{align*}
$$
\]

The complex conjugate of etero-configuration; three orbital reduced matrix elements can be obtained from (C80) by appropriate symmetry transformation on W and X coefficients in this equation. The result is:

$$
\begin{align*}
& R_{k_{j}}\left(S^{\prime} h^{\prime}-S h\right)=\left\langle a^{p} S_{1}^{\prime} h_{1}^{\prime}\left(b^{q} S_{2}^{\prime} h_{2}^{\prime} c^{r-1} S_{3}^{\prime} h_{3}^{\prime}\right) S_{4}^{\prime} h_{4}^{\prime} ; S^{\prime} h^{\prime}\left\|\sum_{k} s u(k)\right\|\right. \\
& \left.(x) \| a^{p} S_{1} h_{1}\left(b^{q-1} S_{2} h_{2} c^{r} S_{3} h_{3}\right) S_{4}^{\prime h}, s h\right\rangle \\
& =R_{K j}\left(p, S^{\prime} h^{\prime}-s h\right)+R_{k_{j}^{\prime}}\left[p,\left(q, r-1, S^{\prime} h^{\prime}\right)-(q-1, r, S h)\right] \tag{C81}
\end{align*}
$$

where

$$
\begin{gather*}
R_{L_{j}^{\prime}}\left(p, S^{\prime} h^{\prime}-S h\right)=(-1)^{S_{1}^{\prime}+S_{4}^{\prime}+S^{+}+h_{1}^{\prime}+h_{4}+h} \mathscr{D} \mathscr{D}^{\prime} \quad W\left(N_{1} N_{1}^{\prime} 1, N^{\prime} N_{4}\right) \\
\text { (x) } G_{a}^{p}\left(S_{1}^{\prime} h_{1}^{\prime}-S_{1} h_{1}\right)\langle 1 / 2 a||s u||1 / 2 a\rangle \delta_{N_{4}^{\prime} N_{4}} \tag{C82}
\end{gather*}
$$

and

$$
\begin{align*}
& \mathrm{R}_{\mathrm{k}^{\prime} j}\left[\mathrm{p},\left(\mathrm{q}, \mathrm{r}-1, \mathrm{~s}^{\prime} \mathrm{h}^{\prime}\right)-(\mathrm{q}-1, \mathrm{r}, \mathrm{sh})\right]=(-1) \mathrm{S}_{1}^{\prime}+\mathrm{S}_{4}^{\prime+\mathrm{S}^{\prime}+\mathrm{h}_{1}^{\prime}+\mathrm{h}_{4}+\mathrm{h}^{\prime}} \\
& \mathscr{D} \mathscr{D}^{\prime} \cdot \mathscr{W}\left(\mathrm{N}_{4} \mathrm{~N}_{4}^{\prime} \mathrm{N}_{\mathrm{o}}, \mathrm{~N}^{\prime} \mathrm{NN}_{1}^{\prime}\right)(\mathrm{qr})^{1 / 2} \\
& (\mathrm{x})\left\langle\mathrm{b}^{\mathrm{q}_{2}^{\prime} \mathrm{h}_{2}^{\prime}}\left\{\left|\mathrm{b}, \mathrm{~b}^{\mathrm{q}-1} \mathrm{~S}_{2} \mathrm{~h}_{2}\right\rangle \cdot\left\langle\mathrm{c}, \mathrm{c}^{\mathrm{r}-1} \mathrm{~S}_{3} \mathrm{~h}_{3}\right|\right\} \mathrm{c}^{\mathrm{r}} \mathrm{~S}_{3} \mathrm{~h}_{3}\right\rangle\langle 1 / 2 \mathrm{~b}||\mathrm{su}||1 / 2 \mathrm{c}\rangle \\
& \text { (x) } \mathscr{D}_{2} \mathscr{D}_{3}^{\prime} \mathscr{D}_{4} \mathscr{D}_{4}^{\prime} \cdot \boldsymbol{X}\left[\mathrm{N}_{2}^{\prime} \mathrm{N}_{3}^{\prime} \mathrm{N}_{4}^{\prime}, \mathrm{N}_{2} \mathrm{~N}_{3} \mathrm{~N}_{4}, \mathrm{~N}_{\mathrm{b}} \mathrm{~N}_{\mathrm{c}} \mathrm{~N}_{\mathrm{o}}\right] \delta_{\mathrm{N}_{1}^{\prime} \mathrm{N}_{1}} \tag{C83}
\end{align*}
$$

Recalling (C56) - (C57), one finds that in both X_{j} and $X_{k_{r}}$ the a^{p} parts of the system appears first and then b^{q}, b^{q-1} and c^{r-1}, c^{r} parts. Moreover, part b^{q} and c^{r-1} are always coupled together, first, and then their results are coupled to a^{p}. The desired matrix elements are not, however, arranged in this fashion and appropriate recouplings and couplings are needed to bring the three participating parts of the system in the above form. This has been done by using the following formula:

$$
\begin{aligned}
& \left\langle\left[S_{1} h_{1} S_{2} h_{2}\right]_{\varepsilon}^{\left.S_{\varepsilon} h_{\varepsilon}, S_{3} h_{3} ; S_{h}| | \sum_{k} s u(k)| |\left[S_{1}^{\prime} h_{1}^{\prime} S_{2}^{\prime} h_{2}^{\prime}\right] S_{\varepsilon}^{\prime} h_{\varepsilon}^{\prime}, S_{3}^{\prime} h_{3}^{\prime}, S^{\prime} h^{\prime}\right\rangle}\right. \\
& =\sum_{S_{\phi} S_{\phi}^{\prime} h \phi^{h} h_{\phi}^{\prime}}(-1) S_{1}+S_{2}+S_{3}+S_{1}+S_{1}^{\prime}+S_{2}^{\prime}+S_{3}^{\prime}+S^{\prime}+h_{1}+h_{2}+h_{3}+h_{1}^{\prime}+h_{2}^{\prime}+h_{3}^{\prime}+h+h^{\prime}
\end{aligned}
$$

(x) $\underset{\varepsilon}{\mathscr{D} \mathscr{D}^{\prime} \mathscr{D}} \mathscr{\Phi}_{\phi}^{\prime} \cdot W\left(N_{1} N_{2} N_{\varepsilon}, N_{3} N_{\phi}\right) \cdot W\left(N_{1}^{\prime} N_{2}^{\prime} N_{\varepsilon}^{\prime} N_{3}^{\prime} N^{\prime} N_{\phi}^{\prime}\right)$
(x) $\left\langle S_{1} h_{1}\left(S_{2} h_{2} S_{3} h_{3}\right) S_{\phi} h_{\phi}, S h\right|\left|\sum_{k} s u(k)\right|\left|S_{1}^{\prime} h_{1}^{\prime}\left(S_{2}^{\prime} h_{2}^{\prime} S_{3}^{\prime} h_{3}^{\prime}\right), S_{\phi}^{\prime} h_{\phi}^{\prime}, S^{\prime} h^{\prime}\right\rangle$
(C84)

For the spin sextets, the sum reduces to one term because there is only one $S_{\phi} h_{\phi}$ and one $S_{\phi}^{\prime} h_{\phi}^{\prime}$ which results in the same $S h$ and $S^{\prime} h^{\prime}$. The values of R_{jk} ' are given in Table 3-4. Now, we consider the problem of four orbital reduced matrix elements.
6. HETERO-CONFIGURATION FOUR ORBITAL REDUCED MATRIX ELEMENTS

$$
R_{j k^{\prime}}\left(p q r s-1 S h, p q r-1 s S^{\prime} h^{\prime}\right)
$$

Here, we consider the reduced matrix elements $R_{j k^{\prime}}$, between states
$|j\rangle$ and $\left|k^{\prime \prime}\right\rangle$ both having four orbitals of the same symmetry. Two of these have the same configuration p and q in both $|f\rangle$ and $\left|k^{\prime \prime}\right\rangle$, whereas the remaining two have configurations r and $s-1 \ln |j\rangle$ and $r-1$ and s in $\left|k^{\prime \prime}\right\rangle$. Therefore,

$$
\begin{align*}
& R_{j k^{\prime \prime}}\left[(p q r s-1) S h-(p q r-1 s) s^{\prime} h^{\prime}\right] \\
= & \left\langle x_{j}(p q r, s-1) S h\right|\left|\sum_{k} s u(k)\right|\left|x_{k} \prime^{\prime}(p q r-1, s) s^{\prime} h^{\prime}\right\rangle \tag{C85}
\end{align*}
$$

where

$$
\begin{equation*}
\left|x_{j}(p q r, s-1) S h\right\rangle=\left|\left(a^{p} s_{1} h_{1} b^{q} s_{2} h_{2}\right) s_{3} h_{3}\left(c^{r} s_{4} h_{4} d^{s-1} s_{5} h_{5}\right) s_{6} h_{6} ; S h\right\rangle \tag{C86}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|x_{k} \prime^{\prime}(p q r-1 s) s^{\prime} h^{\prime}\right\rangle=\left|\left(a^{p} s_{1}^{\prime} h_{1}^{\prime} b^{q} S_{2}^{\prime} h_{2}^{\prime}\right) s_{3}^{\prime} h_{3}^{\prime}\left(c^{r-1} s_{4}^{\prime} h_{4}^{\prime} s s_{5} h_{5}\right) s_{6} h_{6} ; s h\right\rangle \tag{C87}
\end{equation*}
$$

A11 states can be arranged according to $\left|x_{j}(p q r s-1) s h\right\rangle$ and $\left.X_{k}{ }^{\prime},(p q r-1, s) S^{\prime} h^{\prime}\right)$ by transformation similar to (C84). Hence the remaining calculations will be 1imited to the determination of $\mathrm{R}_{\mathrm{jk}} \mathrm{I}^{\prime}$ [(pqrs-1) Sh -(pqr-1s) s'h'.

$$
\text { Using (C16) - (C17), one decomposes } R_{j k^{\prime}}\left[(p q r, s-1) h-(p q r-1 s) s^{\prime} h^{\prime}\right]
$$

in terms of $R_{j k}(p q)$ and $R_{j k^{\prime}}(r, s) . \quad R_{j k}(p, q)$ and $R_{j^{\prime}}(r s)$ are, respectively, similar to the $R_{j k}(q r)$ given in (C21) and the $R_{j k}{ }^{\prime}(q r)$ given in (C61), except for the subscripts of various spin operators S_{i} and irreducible representations h_{i}. Taking this into account, one can immediately write down the $R_{j k}{ }^{\prime \prime}$ as follows:

$$
R_{j k^{\prime}}\left[(p q r s-1) h-(p q r-1 s) S^{\prime} h^{\prime}\right]=R_{j k}{ }^{\prime}\left(p q r s, S h-S^{\prime} h^{\prime}\right)
$$

$$
\begin{aligned}
& =\left\langle\left(a^{p} S_{1} h_{1} b^{q} S_{2} h_{2}\right) S_{3} h_{3}\left(c^{r} S_{4} h_{4} d^{s-1} S_{5} h_{5}\right) S_{6} h_{6} ; S h\right|\left|\sum_{k} s u(k)\right| \mid \\
& \text { (x) }\left|\left|\left(a^{p} S_{1}^{\prime} h_{1}^{\prime} b^{q} S_{2}^{\prime} h_{2}^{\prime}\right) S_{3}^{\prime} h_{3}^{\prime}\left(c^{r-1} S_{4}^{\prime} h_{4}^{\prime} d^{s} S_{5}^{\prime} h_{5}^{\prime}\right) S_{6}^{\prime} h_{6}^{\prime} ; s^{\prime} h^{\prime}\right\rangle\right. \\
& =(-1)^{\mathrm{S}_{1}+\mathrm{S}_{2}+\mathrm{S}_{3}+\mathrm{S}_{6}+\mathrm{S}_{3}^{\prime}+\mathrm{S}^{\prime}+\mathrm{h}_{1}+\mathrm{h}_{2}^{\prime}+\mathrm{h}_{3}+\mathrm{h}_{3}^{\prime}+\mathrm{h}_{6}^{\prime}+\mathrm{h}^{\prime}} . \mathscr{D} \mathscr{D}^{\prime} \mathscr{D}_{3} \mathscr{D}_{3}^{\prime} \\
& \text { (x) } \boldsymbol{W}\left(\mathrm{N}_{1}^{\prime} \mathrm{N}_{1} \mathrm{~N}_{\mathrm{o}}, \mathrm{~N}_{3} \mathrm{~N}_{3} \mathrm{~N}_{2}\right) \quad W\left(\mathrm{~N}_{3}^{\prime} \mathrm{N}_{3} \mathrm{~N}_{0}, \quad \mathrm{NN}^{\prime} \mathrm{N}_{6}\right) \\
& \text { (x) } G_{a}^{P}\left(S_{1} h_{1}-S_{1}^{\prime} h_{1}^{\prime}\right)\langle 1 / 2 a||s u||1 / 2 a\rangle \delta_{N_{2} N_{2}^{\prime}} \quad \delta_{N_{6} N_{6}^{\prime}} \\
& +(-1){ }^{\mathrm{S}_{1}+\mathrm{S}_{2}+2 \mathrm{~S}_{3}+\mathrm{S}_{6}+\mathrm{S}^{\prime}+\mathrm{h}_{1}^{\prime}+\mathrm{h}_{2}^{\prime}+\mathrm{h}_{6}^{\prime}+\mathrm{h}^{\prime} \mathscr{(D) D} \mathscr{D}_{3}} \\
& \text { (x) } \left.\left.W N_{2}^{\prime} \mathrm{N}_{2} \mathrm{~N}_{\mathrm{o}}, \mathrm{~N}_{3} \mathrm{~N}_{3}^{\prime} \mathrm{N}_{1}\right) \cdot W \mathrm{~N}_{3}^{\prime} \mathrm{N}_{3} \mathrm{~N}_{0}, \mathrm{NN} \mathrm{~N}_{6}\right) \\
& \text { (x) } \mathrm{G}_{\mathrm{b}}^{\mathrm{q}}\left(\mathrm{~S}_{2} \mathrm{~h}_{2}-\mathrm{S}_{2}^{\prime} \mathrm{h}_{2}^{\prime}\right)\langle 1 / 2 \mathrm{~b}||\mathrm{su}||1 / 2 \mathrm{~b}\rangle \cdot \delta_{\mathrm{N}_{1} \mathrm{~N}_{1}^{\prime}} \quad \delta_{\mathrm{N}_{6} \mathrm{~N}_{6}^{\prime}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (x) } \left.\left.\left\langle c, c^{r-1} S_{4}^{\prime} h_{4}^{\prime}\right|\right\} c^{r} S_{4} h_{4}\right\rangle \cdot\left\langled ^ { s } S _ { 5 } ^ { \prime } h _ { 5 } ^ { \prime } \left\{\left|d, d^{s-1} S_{5} h_{5}\right\rangle\right.\right.
\end{aligned}
$$

$$
\begin{align*}
& \text { (x) } \mathbb{W}\left(N N^{N}, N N^{\prime} N^{\prime}\left(N_{4} N_{5} N_{6}, N_{4}^{\prime} N_{5}^{\prime} N_{6}^{\prime}, N_{c} N_{d} N_{o}\right)\right. \\
& \text { (x) } 1 / 2 c| | s u| | 1 / 2 d, \delta_{N_{3} N_{3}^{\prime}} \tag{C88}
\end{align*}
$$

The matrix elements $\mathrm{R}_{\mathrm{jk}}{ }^{\prime}$, are given in Table 3.5.

The purpose of this Appendix is to discuss the relationships between the matrix elements of spin orbit interaction between a pair or state and its corresponding reduced matrix element between the same states.

The states which are suitable for calculation of spin orbit interaction are those behaving as the irreducible representations t of the spinor group. The spin orbit matrix elements arising from $\mid \chi_{j} \operatorname{shj} t \tau$ and $\left|x_{k} S^{\prime} h^{\prime} J^{\prime} t^{\prime} \tau^{\prime}\right\rangle$ of the two states $\left|x_{j} S h\right\rangle$ and $\left|x_{k} S^{\prime} h^{\prime}\right\rangle$ can be expressed as * (3.13)

$$
\begin{gather*}
\left\langle x_{j} \operatorname{ShJt\tau }\right| \Sigma_{k} \operatorname{su}(k)\left|x_{k} S^{\prime} h^{\prime} J^{\prime} t^{\prime} \tau^{\prime}\right\rangle \\
=\left\langle x_{j} \operatorname{Sh}\right|\left|\Sigma_{k} \operatorname{su}(k)\right|\left|x_{k} S^{\prime} h^{\prime}\right\rangle \cdot K_{J J^{\prime}}\left(S S^{\prime} T_{I^{\prime}}, h^{\prime} h t\right) \delta_{t t^{\prime}} \delta_{\tau \tau^{\prime}} \tag{D1}
\end{gather*}
$$

```
* Considering (5.22) and (2.20) of Ref. 26 one has
    \(\langle x \operatorname{ShJt\tau }| \Sigma_{i \alpha \beta}\left[\left|\zeta_{i} \ell^{i}\right|_{\alpha}{ }^{T} .\left(s^{i}\right)_{\beta} T_{1}\right] \gamma{ }^{A_{1}}\left|x^{\prime} S^{\prime} h^{\prime} J^{\prime} t^{\prime} \tau^{\prime}\right\rangle\)
    \(\left.\left.=\langle x \operatorname{ShJt\tau }| \mid \Sigma_{i \alpha \beta}\left[\mid \zeta_{i} \ell^{i}\right)_{\alpha} \mathrm{T}_{1}\left(s^{i}\right)_{\beta} \mathrm{T}_{1}\right]_{\gamma} \mathrm{A}_{1}| | x^{\prime} S^{\prime} h^{\prime} J^{\prime} t^{\prime} \tau^{\prime}\right\rangle\)
    (x) \(V\left(t t^{\prime} A_{1}, \tau \tau^{\prime} \gamma\right)\)
    \(=\langle\chi \operatorname{ShJ} t|\left|\Sigma_{i \alpha \beta}\left[\left|\zeta_{i} \ell^{i}\right|_{\alpha} T_{1}\left(s^{i}\right)_{\beta} T_{1}\right] A_{1}\right|\left|x^{\prime} S^{\prime} h^{\prime} J^{\prime} t^{\prime}\right\rangle\)
    \([(t)]^{-1 / 2} \delta_{t t^{\prime}} \delta_{\tau \tau}\),
```

The $\left\langle x_{j} S h\right|\left|\Sigma_{k} s u(k)\right|\left|x_{k} S^{\prime} h^{\prime}\right\rangle$ was discussed in Appendix C. Here we focus our attention on $\mathrm{K}_{\mathrm{JJ}}{ }^{\prime}$. This coefficient may be also called the spin orbit matrix coupling coefficient or simply $S-O$ matrix coupling coefficient. Moreover, it is written in several different forms as occasion demands. These are:

$$
\begin{equation*}
\mathrm{K}_{\mathrm{JJ}}{ }^{\prime} \equiv \mathrm{K}_{\mathrm{JJ}}{ }^{\prime} \quad\left(\mathrm{SS}^{\prime} \mathrm{T}_{1}, \mathrm{~h}^{\prime} \mathrm{ht}\right) \equiv \mathrm{K}_{\mathrm{JJ}}{ }^{\prime}\binom{\mathrm{SS}^{\prime} \mathrm{T}_{1}}{\mathrm{~h}^{\prime} \mathrm{ht}} \tag{D2}
\end{equation*}
$$

The coefficient $K_{J J}{ }^{\prime}$ is obtained from the formula (Ref. 26, p. 82)

$$
\begin{align*}
& K_{J J^{\prime}}\left(S S^{\prime} T_{1}, h^{\prime} h t\right)=\sum_{r M M^{\prime} \theta \theta}(-1)^{S-M^{\prime}+1}[-1]^{h+\theta} \\
& (x) \bar{V}\left(S S^{\prime} 1,-M M^{\prime} r\right) V\left(h h^{\prime} T_{1},-\theta \theta^{\prime}-r\right) \\
& \text { (x) }\langle\operatorname{ShJt\tau } \mid \operatorname{ShM} \theta\rangle \cdot\left\langle S^{\prime} h^{\prime} M^{\prime} \theta^{\prime} \mid S^{\prime} h^{\prime} J^{\prime} t \tau\right\rangle \tag{D3}
\end{align*}
$$

The numerical values of $K_{J J}$, are given in Tables (3.9) - (3.12). The cases where $h=A_{1}$ and $h=h^{\prime}=T_{1}$ are of particular importance for evaluation of spin orbit matrix elements between ground state ${ }^{6} A_{1}$ of (3d) ${ }^{5}$ S ions in crystals and charge transfer states and will be examined in more detail as follows.

1. DETERMINATION OF $K_{J J}$ ($\left(S^{\prime} T_{1}, h^{\prime} h t\right)$ for $h=A_{1}$

Here, we consider the coupling coefficient which relates the matrix elements of the spin orbit interaction between the ground state ${ }^{6} A_{1}$ and charge transfer excited states to its corresponding reduced matrix elements.

We represent the above charge transfer excited state by $\left|X^{\prime} S^{\prime} h^{\prime} J ' t \tau\right\rangle$ where, as before, x^{\prime}, S^{\prime} and h^{\prime} are, respectively, the electronic configuration, spin, and irreducible representation of the cubic group of this state and $\mathrm{J}^{\prime}, \mathrm{t}$ and τ are pseudo-angular momentum, irreducible representation of the state in spinor group and its component, respectively. Instead of the ground state ${ }^{6} A_{1}, 5 / 2$, the state $\left|S A_{1} J \tau\right\rangle$ will be used and the result will be applied to the particular case of $\left.\left.\right|^{6} \mathrm{~A}_{1}, 5 / 2 \tau\right\rangle$.

Considering (D3), we have

$$
\begin{aligned}
& K_{J J}{ }^{\prime}\left(S S^{\prime} T_{1}, h^{\prime} A_{1} t\right)=\sum_{r M^{\prime} \theta \theta^{\prime}}(-1)^{S-M^{\prime}+1}[-1]^{h+\theta} V\binom{S S^{\prime} 1}{-M^{\prime} r^{\prime}} \\
& \text { (x) } V\binom{A_{1} h^{\prime} T_{1}}{i \quad \theta-r}\left\langle S A_{1} J t \mid S A M i\right\rangle \cdot\left\langle S^{\prime} h^{\prime} M^{\prime} \theta^{\prime} \mid S^{\prime} h^{\prime} J t \tau\right\rangle \\
& \text { Considering Griffith }{ }^{17} \text {, p. 117, gives: } \\
& V\binom{A_{1} h^{\prime} T_{1}}{i \quad \theta-r}=\frac{1}{\sqrt{\left(T_{1}\right)}} \delta_{T_{1} h^{\prime}} \cdot \delta_{r, \theta^{\prime}}
\end{aligned}
$$

also ${ }^{17}$ (p. 77)

$$
\overline{\mathrm{V}}\binom{S S^{\prime} 1}{-M^{\prime} r}=(-1)^{2 S^{\prime}+S-M} \sqrt{\frac{1}{(2 S+1)}}\left\langle 1 S^{\prime} r M^{\prime} \mid 1 S^{\prime} S M\right\rangle
$$

Thus

$$
\begin{aligned}
& K_{J J}{ }^{\prime}\left(S S^{\prime} T_{1}, h^{\prime} A_{1} t\right)=(-1)^{S-M^{\prime}+1}[-1]^{A+i} \\
& \sqrt{\frac{1}{\left(\mathrm{~T}_{1}\right)} \cdot \frac{1}{(2 \mathrm{~S}+1)}} \cdot \sum_{\substack{\mathrm{rMM} \\
\theta \theta^{\prime}}} \delta_{\mathrm{T}_{1} \mathrm{~h}_{1}^{\prime}} \cdot \delta_{\theta^{\prime} \mathrm{r}} \\
& \text { (x) }\left\langle 1 S^{\prime} r M^{\prime} \mid 1 S^{\prime} S M\right\rangle \cdot\left\langle S A_{1} J t \tau \mid S A M \theta\right\rangle\left\langle S^{\prime} h^{\prime} M^{\prime} \theta^{\prime} \mid S^{\prime} h^{\prime} J^{\prime} t \tau\right\rangle \\
& =\sqrt{\frac{1}{\left(\mathrm{~T}_{1}\right)} \frac{1}{(2 \mathrm{~S}+1)}}(-1)^{\mathrm{S}+1} \sum_{\mathrm{MM}^{\prime} \mathrm{r}}(-1)^{-\mathrm{M}^{\prime}}\left\langle 1 \mathrm{~S}^{\prime} \mathrm{rM}^{\prime} \mid 1 \mathrm{~S}^{\prime} \mathrm{SM}\right\rangle \\
& \text { (x) }\left\langle S A_{1} J t \tau \mid S A_{1} M \theta\right\rangle\left\langle S^{\prime} T_{1} M^{\prime} r \mid S^{\prime} h^{\prime} J^{\prime} t^{\prime} \tau\right\rangle \\
& =\sqrt{\frac{1}{\left(T_{1}\right)} \frac{1}{(2 S+1)}}(-1)^{S+1} \sum_{M}\left\langle S A . J t \tau \mid S A_{1} M \theta\right\rangle \sum_{M^{\prime} M^{\prime} r}(-1)^{-M^{\prime}} \\
& \text { (x) }\left\langle 1 S^{\prime} r M^{\prime} \mid 1 S^{\prime} S M\right\rangle\left\langle 1 S^{\prime} r M^{\prime} \mid 1 S^{\prime} J^{\prime} M^{\prime}\right\rangle\left\langle J^{\prime} M^{\prime \prime} \mid J^{\prime} t \tau\right\rangle \\
& =\sqrt{\frac{1}{\left(T T_{1}\right)} \frac{1}{(2 S+1)}}(-1)^{S+1} \sum_{M M^{\prime}}\left\langle S A J t \tau \mid S A_{1} M \theta\right\rangle\left\langle J^{\prime} ' \mid J^{\prime} t \tau\right\rangle \sum_{M^{\prime} r}(-1)^{-M^{\prime}} \\
& \text { (x) }\left\langle 1 S \mathrm{SM}^{\prime} \mid 1 \mathrm{~S}^{\prime} \mathrm{SM}\right\rangle\left\langle 1 \mathrm{~S}^{\prime} \mathrm{rM} \mathrm{M}^{\prime} \mid 1 S^{\prime} \mathrm{J}^{\prime} \mathrm{M}^{\prime \prime}\right\rangle \\
& =\sqrt{\frac{1}{\left(T_{1}\right)} \cdot \frac{1}{(2 S+1)}} \sum_{M^{\prime}{ }^{\prime}}\left\langle S A_{1} J t \tau \mid S A_{1} M \theta\right\rangle\left\langle J^{\prime} M^{\prime} \cdot \mid J^{\prime} t \tau\right\rangle \delta_{M M}{ }^{\prime}, \delta_{S J}{ }^{\prime} \delta_{h^{\prime} T_{1}} \\
& =\sqrt{\frac{1}{\left(T_{1}\right)} \cdot \frac{1}{(2 S+1)}} \sum_{M}\left\langle{S A_{1} J t\left|S A_{1} M \theta\right\rangle\langle S M| S t \tau}{ }^{M} \delta_{S J^{\prime}} \cdot \sqrt{\frac{1}{\left(T_{1}\right)} \frac{1}{(2 S+1)}} \delta_{S J^{\prime}} \delta_{h^{\prime} T_{1}}\right.
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\mathrm{K}_{\mathrm{JJ}}{ }^{\prime}\binom{\mathrm{SS}^{\prime} \mathrm{T}_{1}}{\mathrm{~h}^{\prime} \mathrm{A}_{1} \mathrm{t}}=\sqrt{\frac{1}{3(2 \mathrm{~S}+1)}} \delta_{\mathrm{SJ}} \delta_{\mathrm{SJ}^{\prime}} \delta_{\mathrm{h}^{\prime} \mathrm{T}_{1}} \tag{D4}
\end{equation*}
$$

Several important conclusions may be drawn from (D4):
(i) The spin orbit interactions couples the ground states only to excited states $\left.\left|x{ }^{6} T_{1} \quad 5 / 2 t\right\rangle\right\rangle$ and $\left|X^{4} T_{1 i} 5 / 2 t T\right\rangle$
(ii) The matrix element is independent of t and, as a result of this, no splitting will occur from a second order perturbation.
The matrix elements are independent of S^{\prime} and thus, the energy shift resulting from ${ }^{4} \mathrm{~T}_{1 i}$ and ${ }^{6} \mathrm{~T}_{1 i}$ depends only on their reduced matrix elements.
The next important coupling coefficient to determine is between $\left|x_{i} S h\right\rangle$ and $\left|x_{i}^{\prime}{ }^{\prime}{ }^{\prime} h^{\prime}\right\rangle$ where h, h^{\prime} have T_{1}, symmetry.
2. DETERMINATION OF $K_{J J}$, (SS' T_{1}, h ' ht) for $\mathrm{h}=\mathrm{h}^{\prime}=\mathrm{T}_{1}$

The coupling coefficients relating a matrix element of the spin orbit interaction between a pair of charge transfer excited states whose irreducible representation in the cubic point group is T_{1} will be analyzed in this section. The importance of considering this coefficient is apparent from (D4):

$$
K_{J J}{ }^{\prime}\left(S^{\prime} T_{1}, h_{1} t\right)=\sqrt{1 / 3(2 S+1)} \delta_{S J} \cdot \delta_{S J}{ }^{\prime} \quad \delta_{h^{\prime} T_{1}},
$$

which indicates that the ground state ${ }^{6} A_{1}$ couples to charge transfer excited states of T_{1} symmetry alone and is not split by that. Consequently, a splitting by spin orbit interaction of the ground state ${ }^{6} \mathrm{~A}_{1}$ of the complex $\left[\begin{array}{lll}\Sigma & \Lambda_{4}\end{array}\right]^{-n}$ may occur through higher than second order
perturbation and through the intermediary states, two of which, at least, must have symmetry T_{1}. Therefore, determination of $K_{J J}$, related to such states of T_{1} symmetry deserves particular attention and we begin by studying K_{JJ}, (SS' $\mathrm{T}_{1}, \mathrm{~T}_{1} \mathrm{~T}_{1} \mathrm{t}$) as follows (D3):

$$
\begin{gathered}
K_{J J^{\prime}}\binom{\mathrm{SS}^{\prime} \mathrm{T}_{1}}{\mathrm{~T}_{1} \mathrm{~T}_{1} \mathrm{t}}=\sum_{\mathrm{rMM}{ }^{\prime} \theta \theta^{\prime}}(-1)^{\mathrm{S}-\mathrm{M}^{\prime+}+1}[-1]^{\mathrm{T}_{1}+\theta} \overline{\mathrm{V}}\binom{\mathrm{SS} \mathrm{~S}^{\prime} 1}{-\mathrm{MM}{ }^{\prime} \mathrm{r}} \mathrm{~V}\binom{\mathrm{~T}_{1} \mathrm{~T}_{1} \mathrm{t}}{-\theta \theta^{\prime}-\mathrm{r}} \\
(\mathrm{x})\left\langle\mathrm{ST}_{1} \mathrm{Jt} \mathrm{\tau} \mid \mathrm{ST} \mathrm{~T}_{1} \mathrm{M} \theta\right\rangle \cdot\left\langle\mathrm{S}^{\prime} \mathrm{T}_{1} \mathrm{M}^{\prime} \theta^{\prime} \mid \mathrm{S}^{\prime} \mathrm{T}_{1} \mathrm{~J}^{\prime} \mathrm{t} \mathrm{\tau}\right\rangle
\end{gathered}
$$

where

$$
\begin{aligned}
& \overline{\mathrm{V}}\binom{S S^{\prime} 1}{-M^{\prime} r}=\sqrt{\frac{1}{2 S+1}}\left\langle S^{\prime} 1 M^{\prime} r \mid S M\right\rangle ; V\binom{T_{1} T_{1} T_{1}}{-\theta \theta^{\prime} r}=V\binom{111}{\theta \theta^{\prime} r} \\
& \langle\operatorname{ShJt} \mid \operatorname{ShM} \theta\rangle=\sum_{M^{\prime \prime}}\left\langle\operatorname{ShJt\tau } \mid \mathrm{JM}^{\prime \prime}\right\rangle\left\langle\mathrm{JM}^{\prime \prime} \mid \operatorname{Sim} \theta\right\rangle \\
& \left\langle S^{\prime} h^{\prime} M^{\prime} \theta^{\prime} \mid S^{\prime} h^{\prime} J^{\prime} t \tau\right\rangle=\sum_{M^{\prime \prime}}\left\langle S^{\prime} h^{\prime} M^{\prime} \theta^{\prime} \mid S^{\prime} J^{\prime} M^{\prime \prime}{ }^{\prime}\right\rangle\left\langle J^{\prime} M^{\prime \prime} \mid S^{\prime} 1 J^{\prime} t \tau\right\rangle
\end{aligned}
$$

Thus

$$
\begin{aligned}
K_{J J}^{\prime}\binom{S^{\prime} T_{1}}{T_{1} T_{1} t}= & \sum_{M M^{\prime} M^{\prime} \prime \prime} \cdot \sum_{r M^{\prime} \theta \theta} \overline{\mathrm{V}}\binom{S^{\prime} 1}{-M M^{\prime} r} \overline{\mathrm{~V}}\binom{111}{-\theta \theta r} \sqrt{(2 J+1)\left(2 J^{\prime}+1\right)} \\
& (x) \overline{\mathrm{V}}\binom{S^{\prime} 1 J^{\prime}}{M^{\prime} \theta^{\prime} M^{\prime} \prime^{\prime}} \overline{\mathrm{V}}\binom{\mathrm{~S} 1 \mathrm{~J}}{M-\theta M^{\prime}} \\
& \text { (x) }\left\langle S 1 J t \tau \mid M^{\prime \prime}\right\rangle\left\langle J^{\prime} M^{\prime \prime \prime} \mid 1 S^{\prime} J^{\prime} t \tau\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \text { (x) } \sqrt{\left(2 J^{\prime}+1\right)(2 J+1)}\left\langle s 1 J t \tau \mid M^{\prime}{ }^{\prime}\right\rangle\left\langle J^{\prime} M^{\prime} '^{\prime} \mid s^{\prime} 1 J^{\prime} t \tau\right\rangle \\
& =\sum_{M^{\prime}{ }^{\prime} M^{\prime} \prime^{\prime}}\left(\frac{1}{2 J+1}\right) \delta_{J J} \prime^{\prime} \delta_{M^{\prime} M^{\prime} \prime^{\prime},} \bar{W}\binom{111}{S S S^{\prime} J} \sqrt{\left(2 J^{\prime}+1\right)(2 J+1)} \\
& \text { (x) }\left\langle s_{1} J t \tau \mid J M^{\prime}\right\rangle\left\langle J^{\prime} M^{\prime} \mid J^{\prime} t \tau\right\rangle \\
& =\sum_{M^{\prime} \prime} \overline{\mathrm{W}}\binom{111}{\mathrm{SS}^{\prime} \mathrm{J}}\left\langle\mathrm{Jt} \mathrm{\tau} \mid \mathrm{JM}^{\prime}{ }^{\prime}\right\rangle\left\langle\mathrm{JM}^{\prime} \cdot \mid \mathrm{Jt} \mathrm{\tau}\right\rangle \delta_{J J}{ }^{\prime}=\overline{\mathrm{W}}\binom{111}{\mathrm{SS} \mathrm{I}^{\mathrm{J}}} \delta_{\mathrm{JJ}}{ }^{\prime}
\end{aligned}
$$

APPENDIX E FOURTH ORDER PERTURBATION

This Appendix gives the formulae necessary for the evaluation of the fourth order correction to the energy of the degnerate state ${ }^{6} A_{1}$ of the complex ${ }^{*}\left[\Sigma \Lambda_{4}\right]^{-n^{\prime}}$. In Chapter IV it was shown that the fourth order is the lowest order of spin-orbit perturbation of ${ }^{6} A_{1}$ by charge transfer states which can lift the degeneracy of ${ }^{6} A_{1}$ and contribute to the cubic field splitting 3a. Therefore, to determine 3a one must employ fourth order perturbation formulae.

These formulae can be obtained from the general expressions of nth order perturbation given by Corson ${ }^{+}$

$$
\begin{gather*}
E_{n}^{(s)} H^{r}=\sum_{j k}\left\langle H^{r, s}\right| V\left|H^{j}, k\right\rangle\left\langle H^{j, k} \mid K^{r, s} ; n-1\right\rangle \\
-\sum_{V=2}^{n-2} E_{V}^{(s)} H^{r}\left\langle H^{r, s} \mid K^{r, s} ; n-v\right\rangle j \neq r
\end{gather*}
$$

where $\left|H^{r, s}\right\rangle,\left|H^{j, k}\right\rangle$ are respectively the ground and excited states being involved in evaluation of $E_{n}(s) H^{r}$, the superscripts s and k in $\left|H^{r, s}\right\rangle$ and $\left|H^{j}, k\right\rangle$ designate the $s t h$ and kth degenerate states belonging to the energy levels H^{r} and H^{j},

[^37]\[

$$
\begin{align*}
& \left\langle H^{j, k} \mid K^{r, s} ; n\right\rangle=-\sum_{\ell, m} \frac{\left\langle H^{j, k}\right| V\left|H^{\ell m}\right\rangle\left\langle H^{\ell m} \mid K^{r, s} ; n-1\right\rangle}{H^{j}-H^{r}} \\
& \quad+\sum_{\nu=1}^{n-1} \frac{E_{\nu}^{(s)} H^{r}\left\langle H^{j, k} \mid K^{r, s} ; n-v\right\rangle}{H^{j}-H^{r}} j \neq r \tag{E2}
\end{align*}
$$
\]

and

$$
\begin{equation*}
\left\langle H^{j, k} \mid K^{r, s}, 1\right\rangle=\left(H^{r}-H^{j}\right)^{-1}\left\langle H^{j}, k\right| V\left|H^{r, s}\right\rangle . \tag{E3}
\end{equation*}
$$

Substituting in (E1) - (E2) one obtains the desired $E_{n}{ }^{(s)}$. The ${ }^{6} A_{1}$ ground state of the complex $\left[\Sigma \Lambda_{4}\right]^{-n}$, behaves as angular momentum $J=5 / 2$. The irreducible representations of $J=5 / 2$ in the cubic double group are E'' and U'. Thus

$$
\begin{equation*}
E_{n}^{(s)}{ }^{6} A_{1}=E^{(n)}(s) ; s=U^{\prime} \text { or } E^{\prime \prime} \tag{E4}
\end{equation*}
$$

For determination of the cubic field splitting, 3a, up to fourth order perturbation, a much simpler formulation is enough as will be seen below. 3a is the difference of the energy corrections $E^{(4)}$ (U') and $E^{(4)}\left(E^{\prime \prime}\right)$,

$$
\begin{equation*}
3 a=E^{(4)}\left(U^{\prime}\right)-E^{(4)}\left(E^{\prime \prime}\right), \tag{E5}
\end{equation*}
$$

and fourth order perturbation is the lowest one giving rise to such splitting. Thus all terms containing $E_{\nu}{ }^{(s)} H^{r}=E^{(\nu)}(s)$ will vanish and the only contributing terms to (E5) are obtainable from the general formula

$$
\begin{align*}
& E^{(4)}(s)-E^{(4)}\left(s^{\prime}\right)=E_{4}^{(s)} H^{r}-E_{4}^{\left(s^{\prime}\right)} H_{H}^{r} \\
& \quad=\sum_{j k}\left[\left\langle H^{r, s}\right| V\left|H^{j, k}\right\rangle\left\langle H^{j, k} \mid K^{r, s}, 3\right\rangle\right. \\
& \left.\quad-\left\langle H^{r, s}\right| V\left|H^{j, k}\right\rangle\left\langle H^{j, k} \mid K^{r, s}, 3\right\rangle\right] \tag{E6}
\end{align*}
$$

where

$$
\begin{align*}
&\left\langle H^{j}, \mathrm{k} \mid K^{r}, \mathrm{~s}, 3\right\rangle=-\sum_{\ell, m} \frac{\left\langle H^{j, k}\right| V\left|H^{\ell, m}\right\rangle\left\langle H^{\ell, m} \mid K^{r, s}, 2\right\rangle}{H^{j}-H^{r}} \\
&+\sum_{\nu=1}^{n-1} \frac{E_{v}^{(s)} H^{r}\left\langle H^{j}, k\right.}{}\left|K^{r, s} ; 3-v\right\rangle \tag{E7}\\
& H^{j}-H^{r}
\end{align*}
$$

and

$$
\begin{align*}
&\left\langle H^{\ell, m} \mid K^{r, s}, 2\right\rangle\left.=-\sum_{p, q} \frac{\left\langle H^{\ell, m}\right| V\left|H^{p}, q\right\rangle\left\langle H^{p}, q\right.}{}|V| H^{r}, s\right\rangle \\
&\left(H^{p}-H^{r}\right)\left(H^{r}-H^{\ell}\right) \tag{E8}\\
&\left.+E_{i}(s) \frac{H^{r}\left\langle H^{p}, q\right.}{H^{j}-K^{r}, s}, 1\right\rangle \\
& r
\end{align*}
$$

Substituting in (E6) and eliminating terms having $\mathrm{E}^{(\mathrm{s})}$ one immediately finds that:

$$
\begin{align*}
& 3 a=-\sum_{j k ; \ell m, p q}\left\{\left\langle H^{r}, U^{\prime}\right| V\left|H^{j}, k\right\rangle\left\langle H^{j}, \mathrm{k}\right| V\left|H^{\ell m}\right\rangle\left\langle H^{\ell m}\right| V\left|H^{p q}\right\rangle\right. \\
&(x)\left\langle H^{p q}\right| V\left|H^{r}, U^{\prime}\right\rangle\left[\left(H^{j}-H^{r}\right)\left(H^{\ell}-H^{r}\right)\left(H^{p}-H^{r}\right)\right]^{-1} \\
&-\left\langle H^{r}, E^{\prime \prime}\right| V\left|H^{j}, k\right\rangle\left\langle H^{j}, k\right| V\left|H^{\ell m}\right\rangle\left\langle H^{\ell m}\right| V\left|H^{p q}\right\rangle \\
&\left.(x)\left\langle H^{p q}\right| V\left|H^{r}, E^{\prime \prime}\right\rangle\left[\left(H^{j}-H^{r}\right)\left(H-H^{r}\right)\left(H^{p}-H^{r}\right)\right]^{-1}\right\} \tag{E9}
\end{align*}
$$

or more simply

$$
\begin{align*}
3 a & =-\sum_{j \ell p, k m q}\left(E_{j} E_{\ell} E_{p}\right)^{-1}\left\{V\left(r U^{\prime}, j k\right) V(j k, \ell m) V(\ell m, p q) V\left(p q, r U^{\prime}\right)\right. \\
& \left.-V\left(r E^{\prime \prime}, j k\right) V(j k, \ell m) V(\ell m, p q) V\left(p q, r E^{\prime \prime}\right)\right\} \tag{E10}
\end{align*}
$$

where

$$
\mathrm{v}\left(\mathrm{rU} \mathrm{U}^{\prime}, \mathrm{jk}\right)=\left\langle\mathrm{H}^{\mathrm{ru}}\right| \mathrm{V}\left|\mathrm{H}^{\mathrm{j}, \mathrm{k}}\right\rangle
$$

and

$$
\begin{equation*}
E_{i}=H^{i}-H^{r} ; \quad i=j, l, p \tag{E11}
\end{equation*}
$$

Since spin orbit interaction is diagonal in U^{\prime} and $E^{\prime \prime}$ we can substitute for $k \mathrm{~m}$ and q in (E10)

$$
\begin{equation*}
\mathrm{J}_{\mathrm{k}} \mathrm{U}^{\prime}, \mathrm{J}_{\mathrm{m}} \mathrm{U}^{\prime}, \ldots . . . \mathrm{J}_{\mathrm{q}} \mathrm{E}^{\prime \prime} \tag{E12}
\end{equation*}
$$

APPENDIX F

SPIN-ORBIT MATRIX ELEMENTS BETWEEN
$|x \operatorname{ShM} \theta\rangle$ AND $\left|X^{\prime} S^{\prime} h^{\prime} M^{\prime} \theta^{\prime}\right\rangle \quad F O R S \equiv S^{\prime}$

In this Appendix we consider a different method of finding spinorbit matrix elements which is applicable to pair of states of the same spin value, $S=S^{\prime}$. This technique is particularly useful for the evaluation of the contribution to the cubic field splitting 3a from the spin sextuplets of charge transfer states. Since $S=5 / 2$ for all states it can be considered as a constant and integration to be carried out over the orbital part of spin-orbit Hamiltonian only. Thus, instead of bases of the spinor group, $|J t \tau\rangle$, we choose the bases $|h \theta\rangle$ of the single valued cubic group for the evaluation of the matrix elements.

Following (9.26) of Ref. 16 and considering the fact that for $S=5 / 2$, there is only one state $|h \theta\rangle$ for any of the charge transfer states given in Table 3.2 one can describe the spin-orbit matrix elements in the $|\operatorname{ShM} \theta\rangle$ scheme as follows:

$$
\begin{align*}
& \langle x \operatorname{Sh} M \theta| \sum_{i} \zeta_{i} \underline{\ell}^{i} \cdot \underline{s}^{i}\left|x^{\prime} \operatorname{Sh}^{\prime} M^{\prime} \theta^{\prime}\right\rangle \\
= & \left.\sum_{i}\langle x \operatorname{Sh} M \theta| \zeta_{i} \underline{\ell}^{i}\left|x^{\prime} S^{\prime} M \theta^{\prime}\right\rangle \cdot\left\langle x \operatorname{Sh}^{\prime} M \theta^{\prime}\right| \underline{s}^{i} \mid x^{\prime} S h^{\prime} M^{\prime} \theta^{\prime}\right)
\end{align*}
$$

The vector \underline{s}^{i} in (F1) can be replaced as follows*

$$
\begin{gather*}
S(3+1)\left\langle x S h^{\prime} M \theta^{\prime}\right| \underline{s}^{i}\left|x^{\prime} S h^{\prime} M^{\prime} \theta^{\prime}\right\rangle \\
=\left\langle x \operatorname{Sh}^{\prime} M \theta^{\prime}\right| \underline{s}\left|x^{\prime} S h^{\prime} M^{\prime} \theta^{\prime}\right\rangle\left\langle x^{\prime} S^{\prime} M^{\prime} \theta^{\prime}\right| \underline{s^{i}} \cdot \underline{s}\left|x^{\prime} \operatorname{Sh}^{\prime} M^{\prime} \theta^{\prime}\right\rangle \tag{F2}
\end{gather*}
$$

[^38]where
\[

$$
\begin{align*}
& \underline{s}^{i} \cdot \underline{S}=\underline{s}^{i} \cdot \underline{s}^{i}+\underline{s}^{i} \cdot \underline{S}^{\prime} \\
= & (1 / 2)(3 / 2)+(1 / 2)[S(S+1)-(1 / 2)(3 / 2)-(S-1 / 2)(S+1 / 2)] \\
= & (1 / 2)(S+1) . \tag{F3}
\end{align*}
$$
\]

Substituting in (F1) and (F2) one finds

$$
\begin{gather*}
\left\langle x \operatorname{Sh}^{\prime} M \theta^{\prime}\right| \underline{s}^{i}\left|x^{\prime} S^{\prime} M^{\prime} \theta^{\prime}\right\rangle=\frac{(1 / 2)(S+1)}{S(S+1)}\left\langle x^{S h} h^{\prime} M \theta^{\prime}\right| \underline{s}\left|x^{\prime} S h^{\prime} M^{\prime} \theta^{\prime}\right\rangle \\
\left.=\left\langle x \operatorname{Sh}^{\prime}\right\rangle \theta^{\prime}\left|(2 S)^{-1} \underline{S}\right| S^{\prime} M^{\prime} \theta^{\prime}\right\rangle \tag{F4}
\end{gather*}
$$

and

$$
\begin{gather*}
\langle x \operatorname{ShM} \theta| \sum_{i} \zeta_{i} \underline{\ell}^{i} \underline{s}^{i} \mid x \operatorname{Sh}^{\left.\prime M^{\prime} \theta^{\prime}\right\rangle} \\
=(2 S)^{-1}\langle x \operatorname{ShM} \theta| \underline{s}\left|x^{\prime} \operatorname{Sh} M^{\prime} \theta\right\rangle \cdot \sum_{i}\left\langle x \operatorname{ShM}^{\prime} \theta\right| \zeta_{i} \underline{\ell}^{i}\left|\operatorname{Sh}^{\prime} M^{\prime} \theta^{\prime}\right\rangle \tag{F5}
\end{gather*}
$$

To obtain the cubic field splitting from these matrix elements one carries a fourth order perturbation calculation on one of the components of \underline{S} such as S_{x} and selects those states $|i \theta\rangle$ which would result to a nonvanishing term $\mathrm{bS}_{\mathrm{x}}{ }^{4}$. Comparing this term with the spin Hamiltonian given in (2.1) one immediately finds that the contribution from the spin sextuplets of the charge transfer states to 3 a is

$$
\begin{equation*}
[3 a(\sigma, \pi)]_{s}=18 \sum_{j} b_{j} \tag{F6}
\end{equation*}
$$

where j covers all fourth order perturbation channels giving rise to terms of $b_{j} S_{x}^{4}$. Our initial results ${ }^{15}$ were obtained by this very simple technique. The disadvantage of this method is its limitation to a fixed manifold of spin S and, consequently, it is not applicable to spin quadruplets and doublets of the complex $\left[\begin{array}{lll}\Sigma & \Lambda_{4}\end{array}\right]^{-n^{\prime}}$ which has a ground state spin $S=5 / 2$. Moreover, in this technique an apriori knowledge of the spin-Hamiltonian is necessary which is in contrast to the method described in the text.

APPENDIX G
 COVALENCY DEPENDENCE OF THE CHARGE TRANSFER CONTRIbUTION TO THE CUBIC FIELD SPLITTING 3a (σ, I)

In this Appendix, we examine the dependence of the cubic field splitting, $3 a(\sigma, \Pi)$ on the covalency of the molecular orbitals involved.

Recalling (4.6) one has

$$
\begin{equation*}
3 a(\sigma, \pi)=3 a^{(4)}=\sum_{i=0}^{4} C_{i} \zeta_{d}^{4-i} \zeta_{p}^{i} \tag{G1}
\end{equation*}
$$

Here, ζ_{d} is the spin orbit interaction constant of the d orbitals of the S -state ion (e.g. Mn^{2+}), ζ_{p} is the spin orbit interaction constant of the p orbitals of the surrounding ligands [e.g. S in $\mathrm{ZnS}: \mathrm{Mn}$] and C_{i} are functions of the coefficients of linear combinations of atomic d and p orbitals.

Now, a question arises on the nature of the coefficients C_{i} in the limit of ionic approximation where the coefficients of ligand orbitals vanish.

To investigate this we examine $3 \mathrm{a}\left(\sigma, \pi ; \mathrm{t}_{1} \rightarrow \mathrm{e}_{\mathrm{a}}\right.$) of (5.21) and $3 a\left(\sigma, \pi ; t_{b} \rightarrow e_{a}\right)$ of (5.25). The first one is

$$
\begin{equation*}
3 \mathrm{a}\left(\sigma, \pi ; \mathrm{t}_{1} \rightarrow \mathrm{e}_{\mathrm{a}}\right)=-(9 / 1250)\left[\delta_{1}^{2}\left(\delta_{1}+\varepsilon_{1}\right)\right]^{-1} \beta_{\mathrm{p}}^{2} \zeta^{4} \tag{G2}
\end{equation*}
$$

Comparing (G2) with (G1) one finds for $3 a\left(\sigma, \pi ; t_{1} \rightarrow e_{a}\right)$

$$
C_{0}=C_{1} \quad c_{2} \quad C_{3}=0
$$

and

$$
\begin{equation*}
C_{4}=-(9 / 1250)\left[\delta_{1}^{2}\left(\delta_{1}+\varepsilon_{1}\right)\right]^{-1} \beta^{2} \tag{G3}
\end{equation*}
$$

where δ_{1} and $\delta_{1}+\varepsilon_{1}$ are energies required for a ligand to metal electron transfer as shown in Fig. 5.3 and β^{2} is the covalency of the de orbitals of the S-state ion as described in (3.16). For an S-state ion in a II-IV compound with higher ionicity δ_{1} increases whereas β^{2} decreases. Thus at the ionic limit where $\beta^{2} \rightarrow 0$ one has

$$
\begin{align*}
& \operatorname{Lim}_{4} \rightarrow 0 \tag{G4}\\
& \beta^{2} \rightarrow 0
\end{align*}
$$

and consequently

$$
\begin{align*}
& \operatorname{Lim} 3 a\left(\sigma, \pi ; t_{1} \rightarrow e_{a}\right) \rightarrow 0 \tag{G5}\\
& \beta^{2} \rightarrow 0
\end{align*}
$$

Now we examine $3 a\left(\sigma, \pi ; t_{b} \rightarrow e_{a}\right)$. The coefficients C_{i} of this term are given in (5.25) as follows:

$$
\begin{aligned}
& C_{0}=\left[(18 / 625)\left[\delta_{1}^{\prime 2}\left(\delta_{1}^{\prime}+\varepsilon_{1}^{\prime}\right)\right]^{-1} 6 \alpha^{2}\right] \lambda^{6} \\
& C_{1}=\left[(18 / 625)\left[\delta_{1}^{\prime 2}\left(\delta_{1}^{\prime}+\varepsilon_{1}{ }^{\prime}\right)\right]^{-1}\left(6 \alpha^{2} \kappa^{2}-2 \sqrt{6} \alpha \beta \kappa \lambda\right)\right] \lambda^{4} \\
& C_{2}=\left[(18 / 625)\left[\delta_{1}^{\prime 2}\left(\delta_{I}^{\prime}+\varepsilon_{1}^{\prime}\right)\right]^{-1}\left(3 \alpha^{2} \kappa^{4} / 2+\beta^{2} \kappa^{2} \lambda^{2}\right)\right] \lambda^{2} \\
& C_{3}=\left[(18 / 625)\left[\delta_{1}^{\prime 2}\left(\delta_{1}^{\prime}+\varepsilon_{1}^{\prime}\right)\right]^{-1}\left[\beta \kappa^{4} \lambda-(\sqrt{6} / 2) \alpha \kappa^{5}\right]\right] \beta \lambda
\end{aligned}
$$

and

$$
C_{4}=\left[(18 / 625)\left[\delta_{1}^{\prime 2}\left(\delta_{1}^{\prime}+\varepsilon_{1}^{\prime}\right)\right]^{-1}(4)^{-1} \kappa^{6}\right] \beta^{2}
$$

At the ionic limit both β and λ approach to zero whereas $\delta_{1}{ }^{\prime}$ and $\delta_{1}^{\prime}+\varepsilon_{1}^{\prime}$ increase. Thus

$$
\begin{aligned}
& \operatorname{Lim}_{1 i} \rightarrow 0 ; \quad i=0,1, \ldots, 4 \\
& \beta, \lambda \rightarrow 0
\end{aligned}
$$

and consequently

$$
\begin{align*}
& \operatorname{Lim}_{\beta, \lambda} 3 \mathrm{a}\left(\sigma, \pi ; t_{\mathrm{b}} \rightarrow \mathrm{e}_{\mathrm{a}}\right) \rightarrow 0 \tag{G7}\\
& \beta
\end{align*}
$$

The vanishing of $3 a\left(\sigma, \pi, t_{a} \rightarrow e_{a}\right)$ and $3 a\left(\sigma, \pi, t_{b} \rightarrow e_{a}\right)$ follows from the fact that in each term contributing to $3 a(\sigma, \pi)$ of (G1) there is at least one spin orbit matrix element of the type $t_{a} t_{1}, t_{a} e_{b}$, and $t_{a} t_{b}$ where

$$
a b=\langle 1 / 2 a||\zeta \underline{\ell} \cdot \underline{s}||1 / 2 b\rangle ; \quad a, b=e_{a}, t_{a}, t_{1}, t_{b}, e_{b} .
$$

The reduced matrix elements ab are given in Table 3.13. It is evident from this Table that all such reduced matrix elements contain β and or λ. Both of these vanish at ionic approximation and consequently all contributions to $3 \mathrm{a}(\sigma, \pi)$ of (G1) vanish at the ionic limit as expected.

REFERENCES

1. L. M. Mattarrese and C. Kikuchi, "Paramagnetic Resonance Absorption in Single Crystals of Zincblende," J. Phys. Chem. Solids 1, 117 (1956).
2. J. Lambe and C. Kikuchi, "Paramagnetic Resonance of CdTe:Mn and CdS:Mn," Phys. Rev. 119, 1256 (1960).
3. J. H. Van Vleck and W. G. Penney, Phil. Mag. 17, 961 (1934).
4. M. H. L. Pryce, "Spin-Spin Interaction Within Paramagnetic Ions," Phys. Rev. 80, 1107 (1950).
5. H. Watanabe, "On the Ground Level Splitting of Mn^{2+} and Fe^{3+} in Nearly Cubic Crystalline Field," Prog. Theoret. Phys. 18, 405 (1957).
6. M. J. D. Powe11, J. R. Gabriel and D. F. Johnston, "Ground State Splitting for $3 \mathrm{~d}^{5}$. S Ions in a Cubic Field," (a) Phys. Rev. Letters 5, 145 (1960). (b) Ibid, Proc. Roy. Sec. (London) A264, 503 (1961).
7. W. Low and G. Rosengarten, "The Ground State Splitting and Optical Spectra of d^{5} Configuration in Cubic Crystalline Fields," Paramagnetic Resonance Vol. I, Edited by Low, Academic Press, New York, (1963), p. 314.
8. W. Low and G. Rosengarten, "The Optical Spectrum and Ground State Splitting of Mn^{2+} and Fe^{3+} Ions in the Crystal Field of Cubic Symmetry, J. Mol. Spectroscopy 12, 319 (1964).
9. R. E. Tree, Phys. Rev. 83, 756 (1951).
10. T. P. P. Hall, W. Hayes and F. I. B. Williams, "Paramagnetic Resonance of Manganese," Proc. Phys. Soc. (London) 78, 883 (1961).
11. G. H. Azarbayejani and C. Kikuchi, "ESR of Mn^{2+} in $\mathrm{ZnTe}, "$ Bull. Am. Phys. Soc. 6, 117 (1961).
12. I. Fidone and K. W. H. Stevens, "The g-Value of S-state Ions," Proc. Phys. Soc. (London) 73, 116 (1959).
13. H. Watanabe, "g-Values of S-state Ions," Bull. Am. Phys. Soc. 8, 439 (1963).
14. H. Watanabe, "g-Value of Fe^{3+} in Cubic II-VI Crystals," J. Phys. Chem. Solids 25, 1471 (1964).
15. G. H. Azarbayejani, C. Kikuchi and H. Watanabe, "Cubic Field Splitting 3a of S-state Ion in Tetrahedral Coordination," Bull. Am. Phys. Soc. 9, 38 (1964).
16. J. S. Griffith, "The Theory of Transition Metal Ions," Cambridge University Press (1961).
17. R. S., Title, "Electron Paramagnetic Resonance Spectra of Cr^{+}, Mn^{2+} and Fe^{3+} in Cubic $\mathrm{ZnS}, "$ Phys. Rev. 131, 623 (1963).
18. C. Kikuchi and G. H. Azarbayejani, "Spin Resonance Properties of $\mathrm{ZnTe}: \mathrm{Mn}$ and of Other $\mathrm{A}_{\mathrm{II}} \mathrm{B}_{\mathrm{VI}}$ Compounds," J. Phys. Soc. Japan 17, Sup1. B-I, 453 (1962).
19. F. S. Ham and G. Ludwig, "Paramagnetic Properties of Iron Group Ions in Tetrahedral Coordination," Paramagnetic Resonance, Academic Press, New York (1963), p. 130
20. G. H. Azarbayejani, "Microwave Interactions at Crystal Defect Centers, Part III. Mn^{2+} EPR Results in $\mathrm{A}_{\mathrm{II}} \mathrm{B}_{\mathrm{VI}}$ Compounds," Proj. 04275-2-F, Office of Research Administration, Ann Arbor (1963).
21. See Reference 2.
22. R. S. Mulliken, "Electronic Structures of Polyatomic Molecules and Valence, IV. Electronic States, Quantum Theory of the Double Bond," Phys. Rev. 43, 279 (1933).
23. C. J. Ballhausen and H. Gray, "Molecular Orbital Theory," W. A. Benjamins, Inc., New York (1964).
24. H. Basch, A. Viste, and H. B. Gray, "Molecular Orbital Theory for Octahedral and Tetrahedral Metal Complexes," J. Chem. Phys. 44, 10 (1966).
25. See Reference 16.
26. J. S. Griffith, "The Irreducible Tensor Method for Molecular Symmetry Groups," Prentice Hall, New Jersey (1962).
27 . a) $\mathrm{ZnS}: \mathrm{Fe}^{3+}$; R. S. Title, Phys. Rev. 131, 623 (1963)
b) $\mathrm{Zn} \mathrm{Se}: \mathrm{Fe}^{3+}$; J. Dieleman, Philips Res. Repts. 20, 206 (1965)
c) $\mathrm{Zn} \mathrm{Te}: \mathrm{Fe}^{3+}$; J. C. Hensel, Bull. Am. Phys. Soc. $\underline{9}$, 244 (1964)

[^0]: *A. Abragam and M. H. L. Pryce, Proc. Roy. Soc. A, 205, 135 (1951). Ibid, 206, 164. Ibid, 206, 173 (1951).
 ${ }^{+}$See Reference 5.

[^1]: * ${ }^{\text {B . R. Judd, "Operator Techniques in Atomic Spectroscopy," McGraw-Hill }}$ Book Company, Incorporated, New York, (1963), p. 42

[^2]: *R. H. Bube, "Photoconductivity of Solids," J. Wiley and Sons, Inc., New York (1960), p. 171 (Fig. 6.4-12).

[^3]: *B. Bleaney and K. W. H. Stevens "Paramagnetic Resonance" Repts. Prog. Phys. 16, 108 (1953) p. 137.

[^4]: *The excited wavefunctions considered here, are those obtained from an electron transfer from the ligand to the metal ion. $* *$

 A summary of the symbols is given in Appendix A.

[^5]: Mulliken's notation (see Ref. 22) is used for all cases except when mentioned otherwise. The state symmetries and energy tesims are identified by the irreducible representations $A_{1}, A_{2}, E, T_{1}, T_{2}, E^{\prime}, E^{\prime \prime}$ and U^{\prime} or the cubic double group where the molecular orbitals are denoted by the small letters a_{1}, a_{2}, t_{1} and t_{2}.
 ${ }^{\dagger}$ V. Heine, "Group Theory in Quantum Mechanics," University of Cambridge Press, 1960, p. 45.

[^6]: ${ }^{*} \zeta_{i}$ acts as an operator, being ζ_{d} when operating on d parts of the i th orbital and ζ_{p} when operating on the p part of the i th orbital. (Appendix B)

[^7]: *Griffith ${ }^{26}$ has given all the formulae needed, for evaluation of the reduced matrix elements of spin orbit interaction, arising from two orbits t_{2} and e of cubic group. As a result of this, his book contains tables for spin quartets only (see Ref. 26 p. 126)
 ${ }^{* *} \mathrm{~K}_{\mathrm{JJ}}{ }^{\prime}$ is exactly the same as the $\Omega_{\mathrm{JJ}}{ }^{\prime}$ defined by Griffith (p. 82)

[^8]: *U. Fans and G. Racah, "Producible Tensorial Sets," Academic Press, New York, (1959) p. 50

[^9]: *(See 3.16)

[^10]: *See the first footnote on the following page.

[^11]: *Ref. 16, Table 11.3 p. 310 gives $10 \mathrm{Dq}\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ and $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ as 8300 and 14700 , respectively. Pappalardo and Dietz (Phys. Rev 123 1188 (1961) have concluded $\mathrm{Dq}(\mathrm{CdS}): \mathrm{Ni})=-0.85 \times 4 / 9 \mathrm{Dq}\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]$. Thus, in an analogous way, $10 \mathrm{Dq}\left[\mathrm{CdS}: \mathrm{Mn}^{2+}\right] \cong-3100$.

[^12]: ${ }^{*} B, C$ are Racah coefficients, $D q$ is the cubic crystal field strength, α is Tree's correction factor and M_{0} and M_{2} are spin-spin interaction parameters.

[^13]: * (3a) ${ }_{\text {LR }}$ is the $3 a$ calculated by Low and Rosengarten, ($\left.3 a\right)_{P}$ is the $3 a$ calculated by Powell and (3a) Exp is the experimentally determined value of 3 a .
 ${ }^{+}(3 a)_{p}$ are obtained from the relationship; (3a) $P_{1}=K_{P_{\varphi}} \zeta_{d}{ }^{4}$ (Dq) ${ }^{4}$ and from the numerical values of $(3 a)_{P}$ at $D q=1000 \mathrm{~cm}^{-1}$ and $\zeta_{d}=376 \mathrm{~cm}^{-1}$.

[^14]: *Ballhausen, "Introduction to Ligand Field Theory," McGaw-Hill Book Company, New York (1962), p. 53 [Eq. (3.34)], p. 171.

[^15]: *For definition of U^{\prime} and $E^{\prime \prime}$ see Table 3.1

[^16]: ${ }^{*}$ See Section 5.

[^17]: ${ }^{+} \xi$ and η are the components of T_{2} irreducible representation behaving as yz and zx .

[^18]: ${ }^{{ }^{*}} \overline{\mathrm{~V}}\binom{111}{000}$ in (5.19) is vector coupling coefficient of two vectors.

[^19]: ${ }^{\star}$ The fact that $3 a\left(\pi, t_{b} \rightarrow e a\right) \equiv 3 a\left(\sigma_{3} \pi ; t_{b} \rightarrow e_{a}\right)$ and also $3 a(\pi) \equiv 3 a(0, \pi)$ is evident from the cholco of $k^{2}+\lambda^{2}=0.8<1$ in (5.26). The reason $1 s$ that the only role played by σ orbitals is to reduce the coefficient of k and λ of dt_{2} and πt_{2} orbitals in molecular orbitals of t_{2} symmetry.

[^20]: ${ }^{*}$ Let $\delta_{a}{ }^{T}: \quad \delta_{n}{ }^{T}=r=1 \ln (5.11)$
 $\dagger_{3 a(\pi)} \equiv 3 a(0, \pi)$

[^21]: $* K_{p}$, in $(3 a)_{p}=K p \zeta_{d}^{4}(D q)^{n}$, depends on several parameters such as Racah coefficients B and C. For simplicity, however, both this and ζ_{d} are assumed to remain constant in three compounds $\mathrm{ZnS}, \mathrm{ZnSe}$ and ZnTe .

[^22]: *Ref. 16, p. 431, (ζ_{d} of Fe° is chosen instead of ζ_{d} of Fe^{3+} because the effective charge of Fe in ZnSe and ZnTe is expected to be close to zero).
 †J. Dimmock et al "Band Structure of $\mathrm{PbS}, \mathrm{PbSe}$ and PbTe ," Phys. Rev. 135, A824(1964).

[^23]: *See the footnote S on the preceding page
 +See Ref. 27

[^24]: *The orbitals t_{a} and e_{a} are the half filled orbitals which are localized near the S-state ion and in ionic case form the components of the d orbitals of the S-state ions.

[^25]: *See R. Bube, "Photoconductivity of Solids" John Wiley and Sons, Incorporated, New York, (1960) p. 233

[^26]: *H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One and Two Electron Atoms (Springer - Verlag, Berlin, 1957), p. 181.

[^27]: ${ }^{+}$A. A. Misetich and T. Buch, "Gyromagnetic Factors and Spin-Orbit Coupling in Ligand Field Theory," J. Chem. Phys. 41, 2524 (1964).

[^28]: ${ }^{*}$ The prime sign on $\left\langle i_{c}\right| \zeta_{c} \underline{\ell}^{i c} \cdot \underline{s}^{i}\left|i^{\prime} c\right\rangle$ in (B12) indicates it has been
 integrated over $r_{i c}$

[^29]: *To simplify notation $\underline{\zeta}_{1} \underline{l}^{1}$ is substituted by \underline{u}^{1}
 $\dagger_{\text {To simplify }}$ notation the brackets $[\ldots .]_{j}$ and $[\ldots]_{k}$ are omitted from $\mid x_{j} S h$ and $\mid x_{k} S^{\prime} h^{\prime}$ in (C11).

[^30]: ${ }^{{ }_{\mathrm{D}} \mathrm{d}_{\delta} \text { is the component of operator behaving as component of the irreducible }}$ representation d.
 $\dagger_{\text {Ref. }}$ 26, p. 47

[^31]: *Hereafter $\underline{s}(k) \cdot \underline{u}(\kappa) \equiv \operatorname{su}(\kappa)$

[^32]: *V. Fano and G. Racah "Irreducible Tensorial Sets" Academic Press, New York 1959, pp. 50-54
 ${ }^{* *}$ M. Rotenberg, R. Bivins, N. Metropolis and J.K. Wooten, "The 3-j and 6-j symbols." The Technology Press, Massachusetts Institute of Technology (1959).
 ${ }^{\dagger}$ Ref. 26, p. 114

[^33]: *Ref. 26, p. 62

[^34]: *Ref. 26 p. 77 and p. 15

[^35]: * Sp, Sq and Sr are the sum of powers of (-1) in $\rho(\mathrm{pp}), \rho(\mathrm{qq})$ and
 $\rho(\mathrm{rr})$ respectively.

[^36]: *They are also called X coefficients (See Ref. 26)

[^37]: + See Appendix A
 ${ }^{+}$E. M. Corson "Perturbation Methods in Quantum Mechanics of n-Electron," Hofner, New York (1951) p. 75

[^38]: *E.U. Condon and G. Fi. Shortley, "The Theory of Atomic Spectra," Cambridge University Press (1959) p. 61

