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ABSTRACT

Molecular orbital techniques have been employed to find the cubic
field splitting 3a of (3d)5 6S ions in II-VI compounds of Td symmetry.
The parameter 3a is calculated by perturbation analysis, through spin-
orbit interaction Z cl .-s between the ground state t 3 ea2 6Al and
excited states |t p* S, by e, 4o S, hys ¥ S5 hy» S h >. Here ty,e, are
the antibonding orbitals of the complex composed of the (3d)5 65 ion and
its four nearest ligands and p and 4-p are the hole configurations of
orbitals t and e » respectively.

The perturbation calculations have been carried out up to the
fourth order which is the lowest order necessary for the splitting 3a to
occur. Moreover, these calculations have been limited to the very small
number of states which arise exclusively from those initial states t P
Sl hl’ ea4 P 52 h2 sessesees With Sl’ 82 ... having their maximum value,
The analytical result is found as

4

4-1 i
3a = ch Cd Z;p

i=o

where Cd and CP are spin-orbit parameters of the d-orbitals of (3d)

ion and p orbitals of the ligands respectively. The coefficients Ci are
functions of coefficients of linear combinations of d and p orbitals
which give rise to the molecular orbitals ta’ e and Y. They are also

a

functions of energies E,, required for promotion of a hole from a state

jk
|Xj Sj hj > to another state X Sk hk >. The Xj and X in above states
describe the hole configurations of orbitals ta’ e s Y and their coupling

scheme.

ix




Numerical results, obtained for states le = 5/2 h> of Fe3+ in

the series of ZnS, ZnSe and ZnTe compounds with a reasonable set of
coefficients of linear combination of atomic orbitals and an average pro-

motion energy of 32000 cm—l

, indicate that the term C4 Cp4 contributes
a large negative value to 3a in agreement with experimentally determined

3a of Fe3+ in ZnTe.
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CHAPTER I
INTRODUCTION

The importance of the concept of spin Hamiltonian in electron spin
resonance (ESR) is very well known.* The techniques of the measurement
of the parameters in this Hamiltonian are also well developed. However,
the attempts to interpret the measured values of the parameters have met
with partial degree of success.

A particularly puzzling discrepancy has been the ground state
splitting of the iron group S-state ions in II-VI compounds of T4 sym-
metry. The first ESR measurement of this splitting was made on ZnS:Mn

1 This was followed by Watanabe's theory+ which

by Matarrese and Kikuchi.
predicted the 3a of a given S-state ion, in several compounds with the
same formal charge, should decrease as the metal-ligand distance, R,
increases. Predictions of this theory were given support by the measured
3a in II-VI compounds with 0y, symmetry. Subsequent measurements showed
that such is not always the case for every compound such as CdS:Mn and
CdTe:Mn?. The 3a in CdTe:Mn was larger than that in CdS:Mn. This obser-
vation indicated that the point charge model is not adequate for the
explanation of 3a in covalent II-VI compounds and the covalency effects
should also be taken into account.

The purpose of this work is to explore the contributions to 3a
caused by the above covalency effects present in such compounds such as
CdTe by invoking the molecular orbital theory instead of the above-
mentioned point charge model. In order to obtain an insight into the

sources of such contribution to 3a, as well as to the mechanisms causing

*A. Abragam and M. H. L. Pryce, Proc. Roy. Soc. A, 205, 135 (1951).
Ibid, 206, 164. Ibid, 206, 173 (1951).

+See Reference 5.
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the splitting to occur, a brief introduction to calculations based on the
point charge model should be very helpful. Therefore, we proceed by
giving a review of the previous work on 3a first, and then, we arrive at
the possible covalency phenomena affecting this parameter.

The ground state of the free iomns Cr+, an+ and Fe3+ is six fold

degenerate with the spectroscopic classification of (3d)5 68 Sub-

stituting such an ion in the metal site of cubic II-VI compouiéz, such
as Mn2+ in the Zn2+ site of ZnS, one finds from electron spin resonance
(ESR) spectra of the system ZnS:Mnl»>2, that the ground state of the S-
state ion splits into a spin quartet U' and a spin doublet E". This
splitting is called the cubic field splitting of a (3d)5 685/2 ion and
is denoted by the parameter 3a = E(U') - E(E") with E(U') and E(E") as
the lowest energy values of levels of symmetries U' and E'", respectively.
The crystalline cubic field can be expressed as:2 V=a (15)_l
(To4 + (5/14)1/2 (T44 + T4_R). The matrix elements of tensors Tq(k) of

V for two states |y L M, > and ly' L M’L > are:”

<yLm|T By g > = DY/ ke
q L
M M

@ & L]T® ||yt 1) =0, forL=L'=0; k=4

This result indicates that the ground state 6S is not split

5/2
by a cubic field but that the splitting is caused from admixture of the
ground state by excited states through perturbation by spin orbit cou-

pling, spin-spin interaction, etc.

*
B. R. Judd, "Operator Techniques in Atomic Spectroscopy,' McGraw-Hill
Book Company, Incorporated, New York, (1963), p. 42




A similar ground state splitting was manifested in an observation
of the anisotropy of the magnetic susceptibility of paramagnetic crystals

2+
containing Mn such as Mn (NH (804)2 6H20. To explain this, Van

4)2
Vleck and Penney (1934) 3 considered various higher order processes
involving the cubic field V and the spin orbit interaction, Hp = % Ci £:§?
through intermediate excited states using the order of magnitude argu-
ment to estimate the resulting splitting. Later Pryce (1950)," in
explaining the same splitting for Fe3+,,pointed out the inadequacy of
mechanisms proposed by Van Vleck3and attributed the cubic ground state
splitting of Fe3+ to a fifth order perturbation quartic in H and

linear in V. The work by Pryce was followed by Watanabe (1957),°

who based his calculations of the cubic splitting on the complimentary
theorem in the crystalline field splitting of the transition ioms. He
argued that two ions with complementary electronic configurations, such
as T13+and Cu2+ whose ground level can be split by the first power of V,
have always inverted splitting patterns with respect to each other when
placed under the same crystalline environment. Based on this theorem,

he concluded that a 3d5 ion is its own complementary and that any split-
ting arising from the first power of V should be both positive and
negative, and hence identically zero. Proving, in this way, that linear
contributions of the cubic field cannot contribute to the splitting, he
extended the fifth order perturbation suggested by Pryce to the sixth
order so that the crystal field contribution could appear in the second
power and spin orbit interaction in the fourth power. In addition, he
included contributions from fourth and fifth order perturbations by cubic
field, spin orbit and spin-spin interaction. In these calculations, the

excited states considered were spin quartets; 4P, 4D, 4F and 4G of the

(3d)5 configuration with excited energies in the range of 30 to 50 x 104
cm*l. The splitting 3a obtained from these calculations is positive, and

3 4 -1

varies from about 10 ° to 10 ' ecm . It seems to satisfy the scant

experimental data available at the time. (See Table 1, Ref. 5.)



Upon comparing the excited state energies of 5 x 10“ cm™Ll and the

cubic field splitting Ja of the order of 10'5 em™1 obtained from fifth and

sixth order perturbations, there is an indication that none of the con-

tributions which might arise from other excited multiplets of (3d)s con-
figuration can, a priori, be ignored. Indeed, there are spin doublets;

ZS, 2P, 2D(3), 2F(2), 2G(2), ZH and 21 lying in the region of 45 to

100 x 103 cmhl. Some of these such as 21 and 2H may be in the vicinity

of 4D and 4F and can contribute to the splitting. Powell et al (1960)%

took all of the doublets 2S.....ZI into account and carried out sixth
order perturbation calculations with and without spin-spin interaction.
They found that the inclusion of doublets increases the predicted split-
ting by one to two orders of magnitude as compared to the predicted
splitting arising from spin quartets alone. Their calculated results,
for the particular case of MgO:Mn2+, agrees with experiments, provided

that the spin orbit interaction constant, ;d of Mn2+, is taken as 400

c:m_1 and the cubic field strength, 10Dq of MgO, as 10500 em™ L,

Both of these are unreasonably high. Low and Rosengarten (1963, 1964)7,8
carried out calculations similar to that of Powell et al without spin-
spin interaction but they included the orbital polarization factor a,
called Tree's correction factor.? Their conclusion was that crystal
field analysis is relatively successful in explaining the position of
energy levels of the d5 manifold, but it is not capable of explaining
the finer parameters such as the cubic field splitting, 3a, and the
spectroscopic factor, g, both measured from ESR spectra of 3d5 6S ions.

A comparison of the above theories with ESR measurements on an+
in several compounds was made by Hall et al (1961).1°¢ They observed
that their measured 3a for Mn2+, in a number of fluorides and chlorides,
could be accounted for by Powell's theory, whereas the agreement for
Zn0 got worse. For very covalent compounds, CdTe” and ZnTe,ll a dis-
crepancy of almost one to two orders of magnitude can be found. This
indicates the inadequacy of Powell's purely ionic model for covalent
systems. Another area in which both Powell's and Low's theories have

falled is the spectroscopic g value. These theories predict a g value, for

’
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an S-state ion such as Fe3+, as less than the 8o = 2.0023 of the free
electron, in complete contradiction to experimental observations that
the g parameter of Fe3+ is larger than 2.0023. Most of these investi-
gators have attributed these irreconcilable discrepancies to the ligand-
to-metal charge transfer processes such as those suggested by Fidone and

Stevens!?

and by Watanabe !3-1% for the evaluation of Ag = g - 8. An
initial study for the determination of the charge transfer contribution
to 3a, patterned after Watanabe's work, was carried out by Azarbayejani
et al.l®

These calculations included the construction of appropriate molec-
ular orbital (MO) wavefunctions and the allowance of ligand-to-metal
electron transfer. In constructing the MO wavefunction, o-bonding
approximation was invoked and the cubic field splitting was obtained by
a fourth order spin-orbit perturbation calculation.

It was found!® that 3a v 3a; = 0.1728 A* 6 (1 - ¢ /6 6,7,

1

where A = L4 is the single electron spin orbit parameter, B2 = 1 - az

is the covalency of the d orbitals of 3d5 6S ion and €11 and 61 are

related to ligand-to-metal electron transfer energy. From free ion
optical spectra (Ref, 16, p. 437), an approximate value of g = 350 cm--1
may be taken, and from a comparison of the hyperfine structure constant
in crystals to that of the free ion,!” 62 may be estimated. For the par-
1

s 82 = 0.22 energies 61 of the

ticular case of ZnS:Mn where Cd = 350 cm
order of 8000 to 10000 c:m_1 give qualitative agreements with the measured
3a. The most encouraging aspect of these 3a results is their correct

trend for an+ in going from ZnS to ZnTe because §, is expected to

1
decrease as one goes from ZnS to ZnTe in accordance with Bube's con-
*
clusions on acceptor levels in II-VI compounds.
In the present work, we have extended our previous analysis!® to

include s-orbitals in addition to the o-orbitals. This has introduced

*
R. H. Bube, "Photoconductivity of Solids," J. Wiley and Sons, Inc.,
New York (1960), p. 171 (Fig. 6.4-12).



extra orbitals in the charge transfer wavefunctions. Most of the desired
spin orbit matrix elements for the determination of 3a arise from the
above wavefunctions and contain three or four orbitals. Since no expres-
sion for the evaluation of these matrix elements is available in the
literature, general formulae for obtaining such matrix elements have
been found first, and then, 3a has been calculated.

A brief introduction to the method of measuring 3a and the values
of 3a for both the octahedral and tetrahedral II-VI compounds is given
in II. Spin orbit matrix elements between excited spin multiplets is
considered in III. The cubic field splitting 3a from these charge trans-
fer states, t2p ea—py,is obtained in IV and is discussed in V. Con-

cluding remarks are given in VI,




CHAPTER II

EXPERIMENTAL DETERMINATION OF THE CUBIC FIELD
SPLITTING OF THE 3d° S—STATE IONS

The purpose of this chapter is to give a brief introduction to the
method of measuring the cubic field splitting, 3a, of the S-state ions
such as Cr+, Mn2+ and Fe3+.

The equipment employed consists of an electron spin resonance
spectrometer such as the Varian V4502 EPR spectrometer in a 12-inch
rotating electromagnet. Most of the measurements have been carried out
at 4.2 and T7°K with a few being performed at 300°K. The magnetic
field, associated with a spectral line, has been obtained by first tuning
a Varian F-8 Fluxmeter for the proton resonance at that field and then
measuring of the proton resonance frequency by a Beckman 7370 electronic
counter. The frequency of the microwave source used in the experiment
was determined by first finding one of its subharmonics through Beckman
transfer oscillator and then measuring the frequency of that subharmonic
by the above mentioned counter.

The ESR spectra of Mn2+ in Ca0 and ZnTe are given in order to
serve as representatives of ESR spectra of 3d5 6S ions in octahedral and
tetrahedral II-VI compounds.

In the octahedral case (Oh)’ the paramagnetic 3d5 6S ion is sur-
rounded by six ligands or nonmetal nearest neighbors as shown in Fig. 2.1.
These lie along the six crystallographic directions [100], [010], [001],
[100], [010] and [001] with the paramagnetic ion at the origin of the
coordinate system.

On the other hand, in the tetrahedral case (Td), the paramagnetic
3d5 6S ion is surrounded by four nearest neighbors lying along the four
crystallographic directions [11l1], [iil], [111] and [111] as shown in
Fig. 2.2.



The expression for the crystalline field of these ligands of the
central ion is the same for both cases, provided the coordinate system
is chosen as shown in Figs. 2.1 and 2.2.

Denoting the angle between the d.c. magnetic field and one of the
coordinate axes such as z by 6, we have shown the spectra at 6 = 0 for

an+ in Ca0 (Fig. 2.3) and ZnTe (Fig. 2.4). As mentioned above, the

0
toov
i Y001
/
4]
Lolo) g Ce0—y
0 - —a’— Mn 1010}
/0
1
x 11001 {00t
<;20
Fig. 2.1. The octahedral coordination Fig. 2.2, The tetrahedral coordination
in cubic II-VI compounds (CaO:Mn). in cubic II-VI compounds (ZnTe:Mn).
1K r‘-JLJ )
i
Mn 2t (R et va

Fig. 2.3. ESR spectra of Vét, Cr3+, Mn?* and Fe3+ in a single crystal of
Ca0 at 6 = H A [100] = 0 and T = 300°K
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proper choice of the coordinate system has allowed us to analyze the

spectra in both 0h and Td cases by means of the same spin-Hamiltonian:*

4 4 4 n ./
= . . 6+) I +A -5 - .
Ho= 8B BS+AIS+a (5" +57+58 /64 1K 5 - g g HI

(2.1)

Here, g is the spectroscopic g factor, A, the hyperfine structure
constant, 3a the cubic crystalline field splitting, A'n is the super-—
hyperfine coupling coefficient and the last term is the nuclear Zeeman
effect. The brief reports on the measurements of g, A and 3a of
ZnTe:Mn and CaO:Mn obtained by using (2.1) are made previously. A
brief introduction to the calculation of these bParameters from the

spin-Hamiltonian in (2.1) is as follows:

For 6 = 0, the spin-Hamiltonian of (2.1) may be rewritten as

H (6 =0) =g B, HS, + AL'S + a Tuo + '\/5/14 (T44 + T4_4)) /15
(2.2)
in which
_ 4 *2 2 2 *2 *4 ‘
T40 = [35 Sz - 308 SZ + 25 SZ - 6S 7 + 38 ]/8 (2.3)

and
Tis = V705,716, s*2 = s(s+1), 5, = (5. + is )/ Vz @8
4t+4 + ’ S XxX— vy )
The Hs in (2.1) can be expressed as

fs hfs

*
B. Bleaney and K. W. H. Stevens "Paramagnetic Resonance" Repts. Prog.
Phys. 16, 108 (1953) p. 137.




.

11

where

fs _ ;
H™" =g8g, HS, +a [T40 + \/5/14 (T, * T4_4)]/15

and

(2.5)

(2.6)

The energy of each M, level can be obtained by solving the secular equa-

S

tion corresponding to the fine structure Hamiltonian Hfs given in (2.5)

|| @) = E syl =0
where
G5 = X Sy 3 Sy +4
X = [2Me + a (14M" - 95M° + 184)/48]
y =\ 5a/2
and

™
1

g B, H/2

Substituting for (2.7) one finds:

EMg=41/2) =tec+a
E (fg = + 3/2) = + 3c - 3a/2 + 5a°/32¢
E M, =+ 5/2) =+ 5¢ + a/2 + 5a2/32

2.7)

(2.8)
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Fig. 2.5. (a) The splittings of Mg = % and -% levels into six close
lying levels and (b) the splitting of the Mg = % <> Mg = - transition

into six approximately equally spaced transitioms.
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For many cases where the microwave frequency Vo, used for ESR
measurements is about 10 KMC and a II-VI compound is the host material,
the ratio e¢/a = 0.01 - 0.1 for 3d5 6S ions Cr+, Mn2+ and Fe3+. In such
cases, one is able to use AI'S as a perturbation on the first term of
(2.5) which causes each MS level to split into six close lying levels.,
As an example, the splittings of the MS = 1/2 and -1/2 levels are given
in Fig. 2.5. For the allowed ESR transitions (AMS =+1, AmI = () each
MS -1+ MS transition will split in 2I + 1 transitions. The number of
MS -1+~ MS transitions which can be observed distinctly is 2S, provided
that the parameter A in (2.8) is large enough to offset the effect of the
line broadening.

The energy diagram of the MS levels of a 3d5 6S ion at 6 = 0 is
obtained as a function of p = g BH/2a (Table 2.1 and Fig. 2.6). The
numbers identify the upper MS values. Thus, the five transitions
Mg = -5/2 + Mg = —3/2.....MS = 3/2 <> = 5/2 are designated by -3/2,
-1/2.....5/2, respectively. When the lines are well resolved one expects
to observe 2S(2I + 1) lines. This number for Mn2+ with S = 5/2 and
I =5/2 18 30 (Figs. 2.3 and 2.7). These lines can be identified with

the electronic and nuclear magnetic quantum numbers M. and my by con-

S
sidering the fact that the intensity of the five lines 3/2.....5/2
belonging to any of the 2I + 1 quintets should vary as 5:8:9:8:5. There-
fore, the following assignments are possible for both octahedral and

tetrahedral cases (Fig. 2.7).

@y Ai correspond to My = +3/2 =+ 1/2
Bi’ Gi correspond to Ms =+ 5/2 <+ 3/2

and
correspond to M_ = + 1/2 < + 1/2

Yy S
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M.' 5/2

Free Cublc
lon Filed Fleld

-20—
-30"_- M' "3/2
-3/2
-4or- -1/2 2 ~3/2> Mys-8/2
82 32
| | | ll Il |
-50 0
0 ) a6 8 [

Fig. 2.6. Energy level scheme of 3¢° 685/2 (Mn2*) in a
tetrahedral field at 6 = 0,

»
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Table 2.1. Variation of
components at 6 = 0
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separation of mn*tt ESR fine-structure
as a function of p = gBH/2a = €/a

Fig. 2.7. Assignment of ESR spectra of Mn2% in both 0y, and T4 cases:

The next step to consider is the determination of the spin-Hamiltonian

H

.

o | Fsz2Br | Bty Be | BB | Bu2 e | BaBe | BsyoBe
0 -2.00 -2.00 1.00 1.00 1.00 1.00
1 -4.71 -4.62 0.00 2.00 1.71 5.62
2 ~9.59 -1.57 -1 3 4,59 10.57
3 -14.56 -10.55 -2 4 7.05 15.55
4 -19.54 ~13.54 -3 5 10. 54 20,54
5 -24.53 -16.53 -4 6 13.53 25.54
6 -29.52 -19.53 -5 7 16.53 30.52
7 -34.52 -22.52 -6 8 19.52 35.52

10 -49.52 -31.51 -9 11 28.51 50.5

100 -499.5 -301.50 -99 101 298.5 500.5
my =<5/2 -372 ~1/2 172 372 5/2
|
Py "s| A
a, v, 8, A P6 ve B

(The spectrum belongs to Mn2+ in cubic ZnS)

coefficients g, A and a of (2).

For a fixed microwave frequency Voo

these coefficients can be measured as follows:

g = hv /8, [(H ) +H)]/2

||l =g 8, [(u

Y6
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and
v
lal =g 8, Ly - H,y) + (e - H D1/5

The signs of A and a can be determined relative to each other
with the sign of a being determined independently by its measurement at
low temperatures. The results of such measurements are given in
Table 2.2 and 3a and g are compared with predictions of the present
theories of these parameters in Table 2.3 and Fig. 2.8. The agreement
is generally satisfactory for the case of MgO, Ca0 and SrS, whereas dis-
agreement 1s observed for zinc and cadmium chalcogendies. These devia-
tions from ionic theory which arise from larger covalency existing in the

latter group compared to the former, have emphasized the need of a more

Table 2.2. ESR results of S-state ions in II-VI compounds

g ot ntt rettt
% E é g A '3 3a A 8 3a A [3 3a
H ! gl -4 -1 -4 -1 -4 -1 —4 -1 -4 -1
] o |[S] & |107em 10" cm 10 %em 10 'em 10
ugo [ o7 16212 -- -- -- -81.0 | 2.004 | 55 2.0037 613
cao | 9 | 6|20 -- -- -- -80.7 | 2.0009 | 17.7 2.0052 191
Sts °h7 6 | 3.05 - - -- -n 2.0009 4.2 - -
20 | cb |4 |r0s - - - -7 2.0016 | 18 2.006 123
28 | 12| a2 | 134 Ja9ees | 12 -64.9 | 2.0025 | 23.7 2.019 82
Zn8 063 4| -- - - - - - - 2.018 384
zase | 1,0 | 4 245 | 133 |2.0006 | 16.05 - - - -- 144.9
znse | cgb | 4| - - - - -61.7 | 2.0055 | s2.1 - -
zte | 7,2 | 4266 | 12,4 |2.0023 | 19.80 -56.5 | 2.0075 | 88.9 2.09 -7800
cas | ce | 4252 | - - - -63.3 | 2.003 1.7 2.01 283
case | cgb | 4] 2066 | -- - - -62.7 | 2.005 43 - -
cate | 1,2 [ 4f 280 | 12,8 |[1.9997 [ 9.3 -85 2.0078 | 83.1 - -




17

%
Table 2.3." Comparison of ESR results with predictions of ionic theory

Material Sym r. T AET ABE
T et wtt pett et omtt Rt

g0 0, 1.000 1.000 1.000 | <0 <0 >0
Ca0 o, 0.287 0,32 0.311 |<0 <0 >0
srs 0, 0.026 0.07 <0 <0
0 cej 6.635 0.76  0.316 | <0 <0 >0
zms  |c,d s 12| 1.000[1.000 1.000 1.000 |<o 0 ~0 >0
ZnSe Csi s1,2| oessli 2,208 039 <o © >0 >0
ZnTe 1,2 0.301f1.65  3.751 -20 | <0 0 >0
cds CG“, 1.000 1.000 <0 0 >0
cdse Csf, 0.624 3.67 <0 0
cdTe sz 0.345 7.02 <0 <0 0

*The rp and rg are the theoretical and experimental ratios of la respectively and
4g = g-2.0023, The ratio r7(d,§) = Jal:3al = (aoj: aoi)lo with a, being the lattice

constant.
350 3a(107cm™)
COMPARISON OF EXPERIMENT - 300
WITH CALCULATIONS OF WATA-
NABE, PGJ1 AND PGJ2
- 250
- 200
> (108+5C
£23Kk)
- 150

PGJ1 (DOUBLETS AND Wg, Nb)

WATANASE (o}

100

- 50

Na.Cl

- 2000 -1600  -1200  -800 <300 ) 400 800 1200 1600 2000

Na {¢m!)

Fig. 2.8, Comparison of experimental and theoretical values of 3a.
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realistic theory which takes these covalency effects into account. In
the next few chapters the dependence on the covalency of the parameters
given in (9) is pursued with a greater emphasis on calculations related

to the cubic field splitting 3a.




(3

CHAPTER III
THEORETICAL

As mentioned in the last section, we intend to obtain the cubic
field splitting 3a by using the linear combination of atomic orbital
molecular orbital (LCAO-MO) techniques. The wavefunctions constructed
from these LCAO-MO's in a certain manner,* serve as excited states which
admix to the ground state wavefunction through spin orbit interaction
and cause a contribution to the cubic splitting 3a.

From this brief introduction, it is immediately evident that our
task is twofold: (1) to comstruct the LCAO-MO (henceforth denoted by
MO) and the desired wavefunctions and (2) to develop appropriate expres-
sions for the matrix elements of the spin orbit interaction in the MO
scheme.

Since we are primarily concerned with the cubic field splitting, 3a,
in compounds of Td symmetry, our effort will be directed toward the
determination of the matrix elements of spin orbit interaction,

Hp = % Ci_&i-gé, between various wavefunctions of a complex, [I Aa]_n',
consisting of a 3d5 6S ion** Lz and four ligands, Al""AA’ the whole
complex being located in a cubic crystal BA. For example, in the case
of manganese doped zinc sulfide, (ZnS:Mn), Zn = B, S = A, Mn = I,

n' = 6 and the complex is [MnSA]_6.

In order to limit our analysis to those formulae affecting just 3a,
we proceed by defining the cubic field splitting and the symmetry of the

levels which give rise to that splitting.

%
The excited wavefunctions considered here, are those obtained from an

electron transfer from the ligand to the metal ion.

Fk
A summary of the symbols is given in Appendix A.

19
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1. CUBIC FIELD SPLITTING

The following is a brief elaboration of the symmetry group of the

- !
states into which the ground state of the complex, (I AA) n splits
+ 2+ 3+ -
’

(£ =Cr, Mn Fe”' ', A=S , .. Te ).
The symmetrfkof the ground state of the above complex is of Al and
has a total spin S = 5/2. Thus, the ground state may be given as
-n' _ >] : . 6 >
[[Z A4] Al S =5/2 or more simply by |xo Al where Xo denotes

the MO's giving rise to the A, state, their electronic configuration

1
and finally, the total spin values and the irreducible representations,
S.h

i i, of each of these MO which comprise Xg*
The symmetry group of the total Hamiltonian of the complex is
0 x U2 where 0 is the group of symmetry operations of a cube in orbital

space and U, is the group of rotation in spin space. The representation

2
of 6Al, in the full rotation double group, G' = Ry x U,, is J = 5/2.
The irreducible representations of J = 5/2 in G = 0 x U, are E'' + U',

2
According to the irreducibility principle,+ the maximum number of

levels created by the perturbation of |Al S = 5/2> = |6Al> will be the
number of irreducible representations of J = 5/2 in G which is two levels.
The cubic field splitting is defined as the energy separation of

these two levels:

3a = E(U') - E(E'") (3.1)

where

E (I'') = E(O) (r" + E(l) (r')y +....+ E(4) (r'); r'=1U"or E''
(3.2)

*Mulliken's notation (see Ref., 22) is used for all cases except when
mentioned otherwise. The state symmetries and energy terms are identi-
fied by the irreducible representations Ay, Ao, E, Ty, Tp, E', E'' and U'
or the cubic double group where the molecular orbitals are denoted by
the small letters aj, ag, t] and tj.

TV. Heine, "Group Theory in Quantum Mechanics,' University of Cambridge
Press, 1960, p. 45.
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Here, E(n)(F') (n=20, 1..., 4...) are the nth order contribution to
E(T''). The 3a will be positive or negative depending on the relative
magnitudes of E(U') and E(E'').

The Hamiltonians giving E(n)(F) will be examined in the next section.

2. HAMILTONTIANS

We wish to consider a Hamiltonian of the complex, [Z A4]_n', which
includes a zeroth order Hamiltonian, HO’ satisfying Hown = Enwn and a
perturbation Hamiltonain, H , from whose matrix elements an between
wm and wn’ the corrections E(n)(F) may be obtained. Denoting the above

Hamiltonian by HO', one has

H'=H +Hp (3.3)

In the present work, we limit out perturbation analysis to spin orbit

\ . *
interaction. Thus,

n" . A
_ i i
Y it G4
i

and the zeroth order Hamiltonian, H

0 is
nyy n'l 4 nvv
2 2 -1 2 -1
Ho = Z Pi /Zmi - Z e r, + Z e rij + Z V(Lik)
i=1 i>j k=1 i=1

(3.5)

where n'' = 37, refers to the sum of the 32 valence electrons in the

!
molecular orbitals of the complex, (ZA4) n , and the 5 electrons located
in the d orbitals of the central ion Z. The first term in (3.5), repre-

sents the kinetic and potential energies, the second one gives the

*
ti acts as an operator, being ;4 when operating on d parts of the ith

orbital and z, when operating on the p part of the ith orbital.
(Appendix B)
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Coulomb and exchange energies and the last term gives the effect

of four ligands, k, separated from the central ion by ry. Z, in
(3.5) refers to the effective charge of the central ion. The eigen-
functions and eigenvalues of (3.5) are usually obtained by approxi-
mate techniques. One of these is known as the self-consistent charge
configuration (SCCC) method. Ballha.usen25 used this last technique
to construct the eigenvalues and eigenvectors belonging to the
[MnOu]_l complex and very recently Basch et a.:LEI1L extended the same
method to the 32 complexes of transition ions in compounds with

Oh or Td symmetries. The latter authors give an energy diagram for
the [FeClLL]'2 complex. The levels lie from -220 x 10° cm~t to sbout
90 x 107 em~L and they are classified according to their symmetry as

follows:

(1ap?@e)®a? 26 %) (36 0 (1) 2) *he ) * (5¢,) 0 3a))°
(3.6)

where the superscripts are the electronic configurations and lal, lt2..
..3a1 have the symmetry Aj, Tp....A; of the cubic point group. The MO
configuration for Fe +, in tetrahedral complexes as well as Mn2+ and Cr+
in such complexes will be the same as in (3.6) except the configuration
of (4tp)reduces from 4 to 3. The orbitals we plan to use for the construc-
tion of the excited wavefunctions are le, 3t2, t» 2e and 4ty. To simplify
the notation, we label them ey, tys tl’ e, and ta’ respectively. Here,
the subscript b points out that e, and t, are bonding orbitals with
E and T2 symmetries, respectively. Similarly, those with the subscript
a are the antibonding orbitals, whereas tl’ which does not have any
subscript, is a nonbonding orbital. A schematic energy diagram associated
with the above five orbitals; tb’ eys tl, e, and ta and their corresponding
electronic configurations characteristic of [Z A
Fig. 3.1.

=n' . .
4] is given in
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Fig. 3.1. A schematic energy diagram of {[ZA[‘]"D', 6Al}comp1ex.

The pm in Fig. 3.1 are linear combinations of the components of
ligand p orbitals which are perpendicular to the interionic distance.
The po are the part of the p orbital projected along the interionic axis.
Having defined the nature of the orbitals involved, we now proceed to

construct the wavefunctions.

3. WAVEFUNCTIONS

We want to describe the spin values S, and the irreducible repre-

sentations, hi’ of the individual moleculai orbitals (MO) giving rise to
the ground state and excited states. A knowledge of these is necessary
for the determination of spin-orbit matrix elements as will be seen
later (see 4). Therefore, we first consider the ground state and then,

discuss the excited ones.

3.1 Ground State Wavefunction

A description of the ground state wavefunction is being
sought which emphasizes the symmetry, spin and irreducible representa-
tion of the molecular orbitals which constitute it,

The radial part of the individual wavefunction will not be
included for simplicity and the spin orbit interaction parameter, gi(r)
of (3.4) will be considered as %4 for the d orbitals of ion I and ¢

! )%
for the p orbitals of ligands Ai in the complex (I AA] mo(r o= crt,
Mn?t, Fedt - )

b cAi=O 'y LRI Te ).
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The orbital part of the ground state wavefunction can be

deduced from Fig. 3.1, in the following form:

e 6, \ _ -n' 646236> 646236
1%, A1>'{(ZA4) R P T AL 1}"": >

(3.7)
where
e _ 6 4 6 2 3 . . .
Xo = tb ea tl ea ta is electron configuration (3.8a)
or
h__o o o 2 3. . .
Xg = tb ey tl e, ta is hole configuration (3.8b)
The irreducible representations of the molecular orbitals
tb, e -+ in (3.7) - (3.8b) are
r (tb) =T (ta) = T2
T (eb) =T (ea) = E
r (tl) = Tl (3.9)

The symmetry of the irreducible representations T2, E and Tl

of Td group can be deduced from the character table of this group
(Ref. 25, p. 383) given in Table 3.1.

The group classes C and S4 of Table 3.1 are classes

2> €32 9
of symmetry elements of a tetrahedron as shown in Figure 3.2.

3.2 Excited State Wavefunctions - Charge Transfer Wavefunctions

We wish to describe here, the excited states created exclu-
sively by the process of promoting one electron from one of the three

orbitals tys & or ty of xoe in (3.8a) to any of the two orbitals e, and

—— ol ChE = TEE == = U O B B OB BBh B» B B2 B%Z B»%¢Zo &
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Table 3.1. Double Valued Character Table of Group Ty

Bethe Mulliken 1 R 8, 8C,R 6C, 1209 65,  6S,R
ry Ay 11 1 1 1 1 1 1
ry Az 1 1 1 1 1 -1 -1 -1
Ty E 2 2 -1 -1 2 0 0 0
T4 T 33 0 -1 -1 1

rg Ty 303 0 -1 1 -1 -1
le E' 2 -2 -1 0 0 V2 - /2
ry E'' 2 -2 1 -1 0o ~-V7Z V2
rg v 4 -4 -1 1 0 0 0

— v

Fig. 3.2. Symmetry elements of a tetrahedron

ta in xoe. All other excited wavefunctions arising either from multiple

charge transfer or from the irreducible representations, h,, of terms of
i
i1 = p/2 -~ 1 and 1/2 (5-p)-1

are ignored. A similar restriction is imposed upon h

tap and ea5-p which belong to spin values of S

i after charge

transfer (hole transfer) occurs, and, as a result of this, all excited

[ !
states arising from tap and ea4 P' (after hole transfer, the sum of the
hole configuration of t, and e, will be 4) which belong respectively

to spin values of Si =p'/2 -1 or (4-p')/2 - 1, are ignored. For
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3 in (3.8b) gives ta2 as a new hole con-

figuration for this orbital. The irreducible representations, (IR) of
2

t are
a

example, a hole transfer from t,

3p ¢+ g4 Ip (3.10a)

2
r (ta ) = 1 1 2

and similarly,

2

r (ea ) =TA, + A, + E (3.10b)

From the IR's (3.10a - 3.10b) only those with the maximum spin of these

two shells, namely,

2 3
I‘max (ta ) Tl
and

2 3
rmax (ea ) = A2 (3.11)
are considered and all the remaining spin singlets are ignored. The

electronic configurations of the complex, after charge transfer, and
their corresponding terms constructed in the above scheme are given in

Table 3.2.
Now we consider the determination of the spin
orbit matrix elements between spin sextets 6A1 of the ground state and

the excited spin sextets and quartets given in Table 3.2.

4, MATRIX ELEMENTS OF SPIN ORBIT INTERACTION .

The matrix elements of the spin orbit Hamiltonian, Hp - E 5 &?'53
will be discussed in this section and Section 5.

A few initial comments are necessary to point out the need for the
development of new formulae for evaluations of the desired matrix elements.
Considering Table 3.2, it is evident that a matrix element between the
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Table 3.2. Charge transfer configurations and terms

Hole Configuration * Spin Sextet Spin Quartet +.
No. ta e, tl ey tb E Tl Tz El Tl T2

2 2 2 1 0 0 1 1 1 1 1 1

3 2 2 0 1 0 1 1 1 1

4 2 2 0 0 1 1 1 1 1 1 1

5 K} 1 1 0 0 1 1 1 1

6 3 1 0 1 0 1 1

7 3 1 0 0 1 1 1 1 1

*These are the spin quartets obtained from the spin sectets by allowing
its total spin to add up to 3/2 instead of 5/2

*The MO's ty-—~-tp are linear combinations of atomic orbitals as will
be seen later (Sec. 1V).

spin sextet of E symmetry from configuration 4 and the spin sextet of T1

symmetry from configuration 3 contain the four different orbitals, ta’
e, tl and e s which participate in the construction of 6E and 6Tl.
Therefore, the final matrix elements depend on the coupling scheme of
the above four orbitals in 6E ?nd 6Tl. The behavior of the sublevels,

' —
Sihi’ arising from tap , ea4 P and other orbitals t e, and t, is

’
unique for spin sextets, but varies for quartets andldouglets wgich in
turn gives rise to several hundred spin quartets and doublets. The best
technique for the determination of matrix elements of any operator
between a huge number of states with the same spin S and IR, h, but with
different configurations is the method of Reduced Matrix Elements.
Griffith2® has applied this technique to calculate the matrix
elements of the spin orbit interaction between various, Sihi of the
cubic group. Our analysis follows his very closely and gives rise to

new fofmulae for determination of the spin-orbit matrix elements between
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pairs of the spin sextuplets arising from coupling of three or four

orbits.*

As in Griffith (p. 82), the matrix elements of spin orbit inter-

action, E gy Qiog}, from a pair of states IX ShJtt>and

|x'S'h'J't T > can be given as:

{xshJt rlfL T, &i'gilx's'h'J't Ty = Z {(xShJtrt|lxshM 0)
M M'
6 o'

x){x S h M eli , st xrsthre My s h'M 8" xSRI 1) (3.12)

ss' Ty
33" \n' h t (3.13)

(s nllg gy ahst s Yk

where S and h are the spin and irreducible representation (IR) of the
state IxSh>; M and 6 are, respectively the components of S and h, t is
an IR of the system in the cubic double group belonging to the resultant
of the coupling of S and h; J is an identification number used wherever
there are more than one t are, finally 7 is one of the components of t.
The first term in (3.13) is the reduced matrix of g Ci &F-g} from states
|Xx S h > and |x'S'h' > and the second one** is the coupling coefficient
which is independent of x and x'. The study of the coupling coefficient
will be reserved for Section 5. The reduced matrix elements will be

elaborated further in the next subsection and new results, not found in

the literature will be tabulated.

*Griffithze has given all the formulae needed, for evaluation of the
reduced matrix elements of spin orbit interaction, arising from two
orbits ty and e of cubic group. As a result of this, his book contains
tables for spin quartets only (see Ref. 26 p. 126)

*k
Kyy' is exactly the same as the QJJ' defined by Griffith (p. 82)
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4.1 Reduced Matrix Elements

Here, the reduced matrix elements (RME),

<X S h||t oy Wt sillx‘s'h'> (3.14)
1

of (3.13), will be discussed further with particular attention to the
effect of x and x' on RME. There are three classes of RME depending on

the nature of configurations yx and x':

(1) Both x and X' include three orbitals with the same

configurations.

(2) Both x aud x' include three orbitals with different

configurations.
(3) x and X' include four orbitals with different configurations,

The formulae for obtaining the reduced matrix elements, (RME), associated
with these three classes of configuration are given in Sections 4, 5 and
6 of the Appendix C respectively. The numerical results are given here

in Tables 3.3 through 3.5.

Table 3.3, Reduced matrix el%mentsT
|<x18h|[Zi6507 ™| [x)s > |

! 6. 6 6. 4 6. 6 .16_ 4 |4 6 4 4 4 6. |4, 4

X1 = Xj oz | T T2 | T To| T B Ty e | trp=try | Pyt |ty -Oe | e
34 R
* _——— ——— * ——— -
t, Az (eatb) Tz ot 21/20 6/5 6/5 3/10
e 230 e %) v e e | 77206 | 25 7730% | 8730 | 2/5% 1710 | 8730% | 2730
a 1 a b 1 b'b
tt, | 7720% | 1s0% | 7730% | 1/60% | 1740 | 9sa0% | 1760 | 3/20%
23 2 4 L L . . .
b, Ty (e %e) ‘B [t e |21/20 3/40 3/40% |27/40
t 3% (et 31, | ek, l21720% | ess = | = | ers» {310 | --- -
a B2 (et T, Iy
e 231 e Zey %t lee | 7720 1760 | 7/10 | 1720 1/40% | 9740 1720 | 9/20
a 1 a 1 2 a a
ety | 7720 | 2se | 2710 | a/s 2/5 1/10% | asse | 1/s

*The sign of the square root of the numbers with asterisk is negative

Taa ==<l/28,l€£ -§l|1/23>
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«sT/v | st79t] otse | xssz |wst/ot| stet|  ssz | wozse L% 1, (%) fa Gy, eV | 3 0% fr, v ol )
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— — | wo1/¢ s/9| - — | xsss | oz/12 %Yy 1, %uoP: G, Catv, 1, (B G Ay L A
ot/z | ws/v | -~ — | < |02 - - %Y 1, (%5 %y 3. Py, ") G, (B 31 (o,
— - o/t | asiz| - 19 HH~ Aoﬁunuv 3 Auuwc.\. m«uv NMN muoa: 1 A~u~<< mu:
m.ﬁap molauq NH.\HH uonaaq u«-ﬁ.ﬁo po = Y, € x
4,$ - us <p /1|57 2|3 /1>
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t
5.  COUPLING COEFFICIENTS OF SPIN ORBIT INTERACTION K, , (ﬁ? :%)

Here, we want to obtain the coupling coefficients K which were

1y
defined in (3.13). These coefficients couple the matrixJilements of
spin orbit interaction, from a pair of states identified by their irre-
ducible representations |J t > and |J't > in the cubic double group, to
the reduced matrix elements (x S hlli Ly _&i°§i| |x'S'h'>‘ between the
states [Xx 8 h >, and |Xx'S'h' > from which the states |[J t > and [J't >
are constructed.

Following (3.12 - 3.13), we have

11 1,1 SS'T
S . PUREL - . tQrh ! 1
hotex|ze 2 §_leth1> (xshllg ) _8_||xsh>KJJ.(h' -

where (Griffith, p.82):
K ss' 11| _ g sS' Ty
JI'{Kht JI' |h' h t

S-M'+1 h+6 — [sS' 1 hh! Ty
ZE: (-1) (-1} v —MM'r)v(—ee'-r)

MM’
66
x) ShJtrlshu €><§‘h'M'e'|S'h'J't €> (3.15)
The symbol, V (g g s, in (3.15) is related” to 3-j symbols by
(_l)a+b+c, and V (2 g $, is related to V by (_1)2(b—c)' The symbols,

<ShJt tlS h M 6 > are coefficients of coupling S and h to obtain t
of the cubic double group with occurrence number or angular momentum J.
The latter coefficients are given by Griffith (Ref. 16, pp. 400-408) for

spin quartets, 5T2 and 5E only. Therefore, the coefficients

*
U. Fano and G. Racah, "T~~educible Tensorial Sets,' Academic Press,
New York, (1959) p. 50

)
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<S h M 6|S hJt 1> of Sh = 6E, 6Tl and 6Tz, which are not found in the

literature, are obtained and given in Tables 3.6 to 3.8.
Having obtained the coefficients, <S h M OIS h Jt 1>, we now are

SS'Tl) _
able to calculate the coupling coefficients, KJJ'(hh' el for h = A1
and h' = E. T, and T,. These are given in Tables 3.9 to 3.12.

1 2
After substituting for reduced matrix elements and the coupling

coefficients in matrix elements, <x ShJt r||§ Ty &}ﬂ§i|x'8'h'J't €>,
in (3.13), we find this quantity as a function of single electron reduced

matrix elements such as

tptps tataseeertity, et

given in Tables 3.3 through 3.5. These matrix elements will be determined

in the next section.

Table 3.6. Transformation of YE into the IR's of double valued group T'4e
|(shMo | shatt )| 2

Jt
\ E' E'! 1u' 2u’
T
S M h a' 8! a'! g'' K A u v 13 A u v

]
5/2 5/2 E u 5/12% 5/12

3/2 1/12% | 1/12% 5/6%

1/2 1/2 1/2%

-1/2 1/2 1/2

-3/2 1/12% 1/12 5/6

-5/2 5/12% | 5/12% 1/6

5/2 E v |5/12 5/12 1/6

(91}
~.
~N

3/2 1/12 1/12% 5/6

1/2 1/2 : 1/2

-1/2 1/2 1/2+*

~3/2 1/12 1/12 5/6%

-5/2 5/12 5/12% 1/6%

*The sign of the square root of coefficients with asterisk is negative
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Table 3.9. Coupling coefficients

KJJI for h = Al

Table 3.10. Coupling coefficients

KJJ' for h = T

1
J J S ] t KJ.J(SSTI'AlTlt) J J' s S t KJ,J(SSTI’TlTlt)
si2 |sr2 | sr2 | sz | (1/18)}/2 siz | si2 | si2 | siz o | ansy st/
g /1812 | ansy /2
32 | v | -qsas) simtf?
et | -(srasy (5112
w2 {32 | v | -ar2) aneyt/?
e | -/2) /10
Table 3.11. Coupling coefficients Kjj' for h = E
J J' [ S t KJ.J(SSTl.TlEt) J J' S S t KJ,J(SSTI'Tszt)
5/2 s/2 s/2 uw | er10s) s;2 1 32 sz v | -ens
s/2 372 v | -2105) (oyl/? 2 32 s12 v | aseoy aol/?
s;2 82 et | -wrosy Y | s;z 2 a2z s;z k| asey (2
2 v | ano amt’? 2 32 32 v | -anoeiptf?
s/2 a2 e | ) ormt/? 32 32 8| -/ Gnnt/?
Table 3.12., Coupling coefficients K;yqy for h = T
JJ 2
J T 8 S t kJ.J(ssrl'Tszc) J J' s s t KJ.J(SSTI’Tszt)
s;2 32 si2 si2 u | -3y anot/|s;z w2 sz o3z E| (1/105)112
s/2  s/2 s/2 ' | -3s/38) o2 s;2 a2 32 s;z vt} sy (1/30)1/2
1/2 \
172 2 s/2 v 8/21) a/sls;2 sz a2 s;2z u | (3/10) (3/35)
/ 3 ! ®/21) s/2 1/2 3/2 572 u'| -(1/3) (1/35)1/2
s;2 sz e| w2y sz w2 a2 osiz BV -3 (1/5)1;:
s/2 32 s/2 32 v | ~sy oY% ls;z 32 32 32wt | w/s) (1730 .
s;2 32 32 u'| /10 (3/10)1;2
s/2 s/2 s/;2 32 v | -0 (11052 2 32 2 el -/ @
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6. SINGLE ORBITAL REDUCED MATRIX ELEMENTS <1/2 allz &-s||1/2 b>

2test from a pair of states with

The matrix elements of % Ty
electronic configurations x and x', (3.8), are related, among other
factors, to these configurations. This.dependence on the electronic con-
figuration of the orbitals giving rise to the above states, is manifested
by the presence of single orbital reduced matrix elements of the type,
t,t, = <1/2 callc 2es||1/2 ta>and t,e, = <1/2 cal lz 2°s]|1/2 eb> which
appear in Tables 3.3 through 3.5. To find tata...., we should express
them in terms of atomic symmetry orbitals.

Since the determination of the energies of the molecular orbitals
ta’ e, of Fig. 3.1 is beyond the scope of the present work, no numerical
values of the coefficients of linear combinations of atomic symmetry
orbitals, d(e, t2) and I%(tl’ e, t2), (Fig. 3.1), are available. There-
fore, we choose a set of arbitrary coefficients, a, B, k, A, u and v, to

express the molecular orbitals, ta’ e t e. and t,, as follows:

I’ b b

£, = k|d t2> - A|m t2> - ulo t2>- v]s t2>
of d e> - Bln ;>

a

ty = Ki t1>

(0]
1l

- 1] ] t ]
t, = A'ld t2>+K | m t2>+u |o t2>+v |s t2>
e, = g|d e> + ofm %> (3.16)
where all coefficients, o, B,.... V', are real and positive.
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Moreover,

2

o + 82 = K2 + Az + uz + vz = K'z

2

w22+ 0w (3

Substituting for ta,....tb, we find the single orbital reduced matrix

elements as given in Table 3.13:

Table 3.13. Single orbital reduced matrix elements

No. | a, b <1/2a|}cees|]1/2b> No. a, b <1/2al{ce-s||1/2b>

1 et; Vis ¢ 7 t,t, 172 Y3 2 R

2 e‘t. -3 V2ac«x 8y - I8 Cp 8 tltb -1/2 ﬁx Cp

3 ‘gtb -3 20X5d+38xcp 9 t.tb -3 2-:).:d-3/2x'<cp
4 ~ty -Vi3a £, 10 6t 3/2 ¢

5 0ty | -3 V2« tgt dadg 11 t,t, 3 2 gy + 3/2 k2 5

6 ety -3V282 tg- 3ax & 12 t,ty 3 a2 tq + 372 x2 <

With the spin orbit matrix elements known, we can now proceed to

formulate 3a in the following section.
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CHAPTER IV
CUBIC FIELD SPLITTING 3a

In this section, we wish to obtain the contribution of spin orbit
interaction to cubic field splitting 3a, with the intention of carrying
the calculations through the lowest order of perturbation required for
the ground state, 6Al, to split. Our task, therefore, is to establish
the lowest perturbation order first, and then, carry on the numerical
computations to obtain an estimate of 3a (under certain assumptions
regarding the coefficients) for some special cases.

1. DETERMINATIQN OF THE LOWEST ORDER OF PERTURBATION BY
Ho= %, al-sh THAT CAN SPLIT 6a,
The first step in determining the lowest order perturbation re-

quired for the splitting of 6Al, is to find those coupling coefficlents,

Ky (S?'i%), which have different values for t = U' and t = E" levels
of 6Al- Because the energy associated with level |6Al J=5/2t=0 >
must differ from that energy associated with the level, |6Al, Jd = 5/2
t = E" >, in order for the matrix element of 2 {j gi-si to contribute

toward splitting %a. As shown in Appendix D, we have

ss't;} [ 1
Ko hA, t T V(R (25 + 1) ‘SSJ‘SS'J'dh'Tl (4.1)
and
SS'T J+S [ 1
1 _ wiil1
Kyg T, Tt -1 Spgr ¥ ‘SS'J (4.2)

39
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It is immediately evident from (4.1)-(4.2), that the matrix elements
between |6Al> and |6T1> and those between |6Tl> and |6T'l>contribute
the same amount to both levels t = U'and t = E'', and their contribution
to 3a vanishes.

The chains of the products of the matrix elements:*

<6A1 - 6T1> <6:r1 - 6Al> (4.3)

and

6 6 6 6., 6., 6
<Al— Tl> . <Tl— Tl> .<Tl— Al> (4.4)

are the only nonvanishing products which give rise to terms for the
evaluation of the second and third order energy contribution to levels
with IR t = U' and t = E'' of the ground state. These energy contribu-
tions are the same, and consequently, both second and third order con-
tributions to 3a, by spin-orbit interaction, vanish. Moreover, con-
tributions from higher than third order perturbation with excited states
having Tl symmetry vanish too. The next perturbation order to consider
is fourth order.

Considering Tables 3.11 and 3.12, it is evident that for the excited
SS'Tl

states with T, and E symmetries, the coupling coefficients, KJJ' (hf hel?

2
differ for t = U and t = E''. Therefore, a splitting will occur.
This indicates that the fourth order perturbation is the lowest

one which contributes to the splitting.

*
6, 6 - 6 1..1]6 Tet
<Al T1>_<A1Jt'r|§ g, &'08' %1 et




2. CONTRIBUTION TO THE CUBIC FIELD SPLITTING 3a FROM
FOURTH ORDER PERTURBATION OF 6A; BY I ¢ L il
i
Here, we formulate the 3a by considering the following relation-
ships (3.1):

3a = EQU') - EGE') ~ E @y - ® &' (4.5)

where E(A)(U') and E(A)(E") are the fourth order contribution from spin

6A of the

orbit interaction to the levels U' and E'' of the ground state 1

S~-state ion. The expression for E(a)(U') - E(A)(E") is:

(4) oy (4) g1 -1
EV(UY) - ENV(E )"'Z(EjEkEg) {‘ojRijszzo

jkL
mnp

(x)[{(om(oj)Kmn(jk)Knp(kz)Kpo(ﬁLo}U,-{Kom(oj) Kmn(Jk)Knp(kz)Kpo(loﬁg' ,]}

where

R,, = S,h H S, h
1k <xjjjll pllxkkk>
and
S,5, T
- k71
Kmn(jk) KJ J leh ¢ (4.5a)
mn\ kj
The parameters X,, «se., Xg in (4.5a) represent the molecular

electronic configuration and |ijth>> characterize the orbital part of
configuration xj'
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Substituting for the various parameters involved, the expression
for 3a will be of the form:

4

) _ b-1
3a Zci %4 r i (4.6)
P
i=0

where Ci are complicated functions of the coefficients; a, B, Kk ....
given in (3.16) and the promotion energies Ei’ E.1 and Ek of the excited
states appearing in (4.6). The precise numerical values of a, 3 and x
could be obtained from solving eigenvalue equations from which the ener-

3

determination of Ei"’Ek

a result of this, we can use only a set of arbitrarily chosen numbers

gies; E,...E, and E, could be found too. As mentioned earlier, the
i k

is beyond the scope of the present work and as

for both the coefficients and the energies involved. For the following

set of coefficients:*

ol =1 -8%=0.7,

k2 = 0.8 - A2 = 0.6,

uz + \’2 o= O.Z,
and

kv, AnvAY

we find the coefficients C, of (4.6) as given in Table 4.1.

Table 4.1
The Coefficients C, (~2/5625 E¢)) ™
o ! © | % | %

87.17 | -138.99 | -164.94 | 14.63 | 35.75

*
(See 3.16)
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Substituting for Ci in (4.6), one finds 3a as a function of the

ratio cp/cd. The result in units of 10—l ;d4/E63 are given in Table 4.2.

Table 4.2

Calculated Values of 3a for Spin Sextets

VI ECN CUR | VI EE C T e A
0.5 0.07 6 -152.30

1 0.59 8 =507.40
1.5 0.993 10 -126.30

2 0.573 12 -2645

3 -5.30 16 -8443

4 -24.90 20 -20562

A discussion of these results will be given in the next section.




CHAPTER V
DISCUSSION

We want to give a brief discussion of various models used to cal-
culate 3a, first, and then apply the result of these models to the 3a
of Fe3+ in the compounds ZnS, ZnSe, and ZnTe.

As’was mentioned in Chapter I, Watanabe® was the first to calcu-
late 3a on the basis of the point charge model. His work was followed
by Powell® and by Low and Rosengarten.’*® Azarbayejani, Kikuchi and
Watanabe!S substituted the point charge model with the molecular orbital
model and obtained the contributions to ground state splitting arising
from charge transfer between o-bonding and o-nonbonding orbitals of the
complex consisting of a central S-state ion and its four tetrahedrally
coordinated neighbors. In the present work, the contribution to 3a
arising from charge transfer between the m-orbitals of the same complex
has been found. To make an assessment of these various contributions
to 3a and their relative importance, we are considering all of the

above-mentioned calculations, in turn, as follows.

1. CONTRIBUTION TO 3a FROM WATANABE'S CALCULATION
The cubic field splitting obtained by Watanabe is given in (15)

of Ref. 5. The expression for 3a is as follows:

2 2
(3a)w = 3 (Dgq)~ [2.015 + 15.9 MO - 149.5 M2 - 5.937 (M0 - 8M2)

o -1

- 0.388 (M, - 81)° oq)? 1078 x 10710 em (5.1)

2)

where 10 Dq* is the cubic field strength of the host compound around the
S-state ion and is about 3000 to 4000 cm

for Fe3+

*See the first footnote on the following page.

Li

-1
1 for Mn2t and 5000 to 6000 cm
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in II-VI compounds of Td symmetry. The coefficients MO and M2 are

(see Ref. 6, Part a) 0.204 and 0.0159 cm_l, respectively. Substituting

for MO and M2, one obtains:

(3a) = 3 (Dg)? [2.015 + 15.94 x 0.204 - 149.5 (0.0159) - 5.037 (0.024
- 0.127)% - 0.0388 (0.077)% (g)? x 107%] x 10710 ¢t
= 3 (vQ)? [2.015 + 0.87 - 0.029 - 2.25 x 10~° (dg)?] x 10720 cnL
or
Ga)_ = 8.57 x 1070 dq)? - 76.5 x 10720 (pg)* em" (5.2)

2. CONTRIBUTION TO 3a FROM POWELL'S CALCULATIONS
The ground state splitting given by Powell et al (Ref. 6, part b)

can be expressed as:

(3a)P = KP Cd4 (Dq)rl ; 3.5 <n < 6 ; Dq> 103 cm_l (5.3)
The equation (5.3) was obtained by limiting their calculation to
Mg0O:Mn where Mg0 is an octahedral II-VI compound for which Dq is large
Gk1> 10'-3 cm_l). For the II-VI compounds of Td symmetry, Powell et al
(Ref. 6a) give some numerical values of 3a as a function of (Dq) as

given in Table 5.1.

*Ref. 16, Table 11.3 p. 310 gives 10 Dq [Mn (H20)6]2+ and [Fe (H20)6]3+
as 8300 and 14700, respectively. Pappalardo and Dietz (Phys. Rev 123
1188 (1961) have concluded Dq (CdS):Ni) = -0.85 x 4/9 Dq[Ni (H20)6].
Thus, in an analogous way, 10 Dq [CdS:Mnc*] = -3100.
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Table 5.1. Calculated® 3a in Mn?% in units of 10~4 cm™1

Dq

(@Y 0 -200 | -400 |-600 | -800 | -1000
(Ga)yp .

with doublets 0 3.56 11.0 23.8 45.1 81.4
(3a),,

without doublets 0 0.115 0.338] 0.668 1.09 1.59
(3a),

Eq. (5.2) 0 0.35 1.4 3.15 5.6 8.75

-1

TThese values are obtained for the spin-orbit constant, = 400 cm
and spin-sgin interaction constants, My and My as 0.284 cm~l and
0.0159 cm~1, respectively.

The first row of Table 5.1 gives 3a arising from all spin multiplets

within the 3d5 manifold, whereas the second.row is obtained without
taking the spin doublets of the 3d5 manifold into account. Watanabe's
calculations are based on spin quartets alone and are given in the third
row of Table 5.1. The numerical values of the first row of Table 5.1
glve the total contributions from excited states generated within the

3d5 manifold. Now, we consider the calculation by Low and Rosengarten.

3. CONTRIBUTION TO 3a FROM LOW AND ROSENGARTEN CALCULATIONS

The cubic field splitting given by Low and Rosengarten, (3a)LR,
was obtained from the same spin quartets and doublets of (3d)5 manifold
considered by Powell et al. However, the techniques used by the former
authors differ from those of the latter. Low et al diagonalized the
eneroy matrices of E', E'' and U' levels which contain five parameters;

B, C, Dq, and a.* Powell el at, on the other hand, diagonalized the

%

B C are Racah coefficients, Dq is the cubic crystal field strength,
a is Tree's correction factor and Mo and My are spin-spin interaction
parameters.
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energy matrices of Aq, Ag, E, Ty and Tp levels as functions of six
parameters B, C, Dg, {3, My and My, first. Then, they obtained the

y values of the above levels,

h
i_J
(0]
3
F_J
[6)]
g
4]
[
£2
~

energies o
Al....T2 by sixth order perturbation.
The numerical values obtained by Low et al are given in Table 5.2.
Considering Table 5.2, it is evident that (3a)LR and (3a)P are
of the same order of magnitude, whereas (3a)w (Table 5.1), calculated by
Watanabe, is much less than these two. This is expected because both
(3a)LR and (3a%, have been found by taking into account all spin multi-
plets of (3d)5 configuration, whereas (3a)w is obtained from spin quartets
of (3d)5 only. As for (3a)LR and (3a%,. the latter gives 3a as a

function of Dq and L Therefore, it is more suitable for the calculation

Table 5.2.%* Comparison of (3a)yy with (3a)p and (3a)Exp'

Mn2+ Fe3+
MnF2 MnCl2 Mn(“20)6 Mg0:Fe Be3A12(8103)5:Fe Fe(HzO)6
(3a)
-4 EI; 10 160
10 cm
-1
Dq(em ) 750 1350
Cd(Cm—l) 320 420
Ga),, a0 4emHt 11 325
Ga)g, o a0l | 12 6 | 20-30 615 450 350
LXP e

*
(3a),r is the 3a calculated by Low and Rosengarten, (3a)p is the 3a
calculated by Powell and (3a)gxp is the experimentally determined value

of 3a.

+(3a) are obtained from the relationship;(3a)Pl = Kp T (Dq)* and from
the numerical values of (3a)P at Dq = 1000 cm™~ and Qd = 376 cm~1l,



of the 3a of a certain ion in compounds of different Dq. Thus, we
choose (3a) as the contribution to 3a from the excited states within
the (3d)5 configuration and, discuss the charge transfer contribution

in the next section.

4, CONTRIBUTION TO 3a FROM o-BONDING CHARGE TRANSFER STATES

The contribution to 3a from the o-bonding charge transfer states
was obtained previously.!® Here, it will be reviewed briefly in order
to make a comparison between this and the contribution of the w-bonding
transfer states given in the next section.

The irreducible representations of the metal d orbital and ligand
o-orbitals in II-VI compounds of Td symmetry are:*

h(d)=h(=2)=e+t (5.4)

2

and

h (o) =a, + t (5.5)

1 2

Considering (5.4)-(5.5), it is evident that the molecular orbitals
consist of a d orbital of e symmetry, a c-orbital of a; symmetry and
a pair of orbitals comprised of metal d-orbital and ligand oc-orbital of
t2 symmetry. In the last two orbitals, the orbital with the higher

a’ whereas the one with the lower
b
5
orbitals of interest to us, are (al is ignored):

le) = lae) , |tza>= aglat, ) - Bylot,)

|t2b>= BT[dt2>+ aTlot2> (5.6)

*
Ballhausen, "Introduction to Ligand Field Theory," McGaw-Hill Book
Company, New York (1962), p. 53 [Eq. (3.34)], p. 171.

energy is the antibonding, denoted by t,

energy 1s called bonding and is denoted by t Thus, the molecular

and
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The energy diagram for such bonding is given in Fig. 5.1,

The electronic configuration characteristic of the ground state,

Al’ of a tetrahedral complex of 3d5 6S ion and its bonding-nonbonding
and bonding-antibonding states are given in Fig. 5.2. The 6 1“ and

6 n in Fig. 5.2(b) result from an electron transfer from the tzb orbital
to en, whereas the levels; 6 a’ 6 1 nd 6T2 result from the above proc-
ess taking place between the tzb and tz orbitals as shown in Fig. 5.2(c).
2 "
/ T \
/ \
/ \
/ \
a9 [, \ 0 (1)
—_— M /
\ i /
\ //
\
b /
AN T T
Teiely

Fig. 5.1. o-bonding molecular orbitals in II-VI compounds of T4 symmetry.

a a a
1 ]
\ 2 l’m—'\ '2 r'"ﬂ-\ 2
\ n 7 \ n I/ \‘ .ﬂ
— -44—;— S — -
/
\ ’ \ 7 1
6ro — ¥ e’
6 " 2 6To
—— T 1
6T " 2 T T
1 5 ot
5 +¢
-AI\ST + IT
o [} al
\ST sT
n
6 6 6 °
A‘__._. A] A‘
(a) (b) (c)

Fig. 5.2. (a) Ground state of complex [IA, ]"n (b) t -en charge
transfer states and their schematic energy 1evels, and (c% t2 -tz charge
transfer states and their schematic energy levels.
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The contribution of these u-bonding levels to 3a depends on their

stability for a given S-state ion in a given compound. 1In the case of

compounds where levels 6Ea, 6Tla and 6T a may not be localized because

2
of the small energy band gap of compound, only 6T1n and 6

Tzn can be

taken into account. For the general case where anitbonding levels are
also localized, the simultaneous effort of both antibonding and bonding
levels on 3a must be considered. The contribution, 3a(c), to the cubic

field splitting 3a, from the above o-bonding orbitals can be expressed

*
as!
3a(0) = ¥ @ - e® @) (5.7)
6. n 6. n
We first obtain the 3a(o) for T1 and '1‘2 alone. Then, we
include the states 6Ea, 6Tla and 6Tza.

4.1 Bonding-Nonbonding Charge Transfer

1“ and 6'1‘2n will be identi-

fied by 3a(o;b-n). This can be obtained both from (4.11) or from the dif-

The contribution to 3a(o) from 6T

ferent techniques described in Appendix F. The result is:15

4

3a(ojb-n) = 0.1728 B (1 - ¢ 1/6 1) (anr)'3 (5.8)

6
T %4

where BTZ =1 - aTZ is the covalency of the d-orbitals of the S-state

ion in the desired complex. 4 is the single electron spin orbit param-

eter and is the same as A in Ref. 15. GnT and enT are as shown in

Fig‘ 5.1.

4.2 Bonding-Nonbonding and Bonding-Antibonding Charge Transfer

Tleing the same techniques as those employed for the bonding-

nonbonding process, one finds the contributions to 3a(o) arising from

*
For definition of U' and E'' see Table 3.1
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6 6 6 6
Tln, Tzn, 6Ea, Tla, and "T.,® as shown in Appendix F. The result is

2
a function of the coefficients of atomic orbitals e and BT (aT2
=1- BTZ) in the molecular orbitals used, and the energies; GnT, enT,

6aT, CTal and ETaZ as shown in Fig. 5.1. For a particular case where

€ = g =¢ =0 (5.9)

*
and with the assumption that
§ " =1ré (5.10)

one finds that:

3a(o) = (108:625) (snT>'3 (x)

-1

(x) [BT4 - 2(1 - BTA) e qa- BTZ)(B ~s BTZ) r_2] 8T2 cd4

(5.11)

6
The parameter r and its power denote the presence of T a,
6. a 6_a

T2 or E

the first term in the bracket in (5.11) represents contributions arising
6

in the matrix elements from which 3a(c) is obtained. Thus,

exclusively from 6T % and Tzn, whereas the last two terms give the

1
contribution arising from the presence of both 6'1‘1n and 6T2n, and 6Ea,

6T1a and 6Tza. An examination of (5.11) reveals that only for r - 0 or
GaT - © one obtains 3a(o)> 0. Numerical values of 3a(o) as functions
2

of both ST =1 - aT

4
L4

(5.12)

3a(o, BTZ = 0.2) = [(18/625) (GnT)_B} [0.048 - 2.3rfl + 1.92 r_z]

* T
r is a real number chosen as the ratio of the two energies da and 6nT.

and r can be found from the following relationships:
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-

3a(o, 8,0 = 0.3) = [(18/625) 6. H [0.162 - 3.3+ 1,89 r‘z] ¢,

o

(5.13)

3a(o, BTZ = 0.4) =[(18/625) (anT)'3] 0.384 - 4.03 1
b

-2 4
+ l.44 ] %4

(5.14)

The numerical values obtained from (5.12)-(5.14) are given
in Table 5.3.

An examination of Table 5.3 indicates that a positive contri-
bution to 3a(o) takes place only in very covalent compounds (BT2 = 0.4)

and for éaTzénT = 12, The latter condition is unrealistic because for

GnT in the order of 1-2 e.v., GaT must be 12-24 e.v. which makes Ea,
Tla and Tza levels unstable. Thus, one can conclude that:

(1) 3a(o) is positive if only bonding-nonbonding states are
localized (5aT/5nT > m).

(2) 3a(o) 1is negative when both bonding-nonbonding and bonding-
antibonding states are localized, and r = GaT36nT is 1-10.

(3) 3a(o) depends only on L4 as shown*in (5.12)-(5.13).

Since 3a(wm) depends on both Zq and Cp’ it is desirable to etiaborate
further on the absence of Cp in 3a(o). The fact that 3a(o) does not
depend on Cp is intuitively clear since ¢ orbitals arise from atomic

s and P, orbitals, and since the matrix elements of spin orbit

Table 5.3. Numerical values of 3a(o) in (18/625) ((‘EnT)—3 ;dA

r 1.2 1.6 2 5 10 12 14 16 18 20
8,2
0.2 -0.54 | -0.6 -0.60 | -0.34 } -0.17 | -0.134 | -0.106 | -0.088 { ~0.072 | -0.062
0.3 -1.25 | -1.14 | -0.94 | -0.42 | -0.15 | -0.100 | ~0.064 | -0.037 | -0,015 0.002
0.4 -1.85 | -1.55 | -1.26 | ~0.37 | -0.0) 0.058 0.103 0.138 0.165 0.187

*
See Section 5.

v f
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interaction between such pairs of atomic orbtials, automatically vanish.

To put this in a more rigorous language, we will consider the part of

the matrix elements of H_ = E Ly &}'g} between a pair of states of anti-
bonding orbitals t, = aT|dté> - BT|0t2>. The matrix elements arising

exclusively from the ligand ¢ orbitals have the general form of:+
Mo (0, m¢, m'n') =<1/2 m ot, Elz 2+s|1/2 m' ot, n'> (5.15)

where (Ref. 23, p. 108):

]ot2 €> = Iot2 y£> = (1/2)(0l + Oy = 0y - 04) (5.16)

|ct2 ﬂ> = Iot2 z£> = (1/2)(01 + 0, = Og = 04) (5.17)

and

]
=
-
"3
~

o = a (k) + b p_(K), a2 +b2 =1, k (5.18)

k

Substituting in (5.15), we find that:

Maa (0, mg, m'n) =(l/4)[R1 - R2 N R3 + R4]

where
R = a’ <1/2 ms(k)|z 2°s|1/2 m' s(k)> + b2 <1/2 mp_ (k)|z 2°s|1/2 m' pz(k)>
resulting in

Maa (0, mg, m'n) =(1/4)[R-R-R+R] =0

+ . . , .
¢ and n are the components of Tp irreducible representation behaving
as yz and zx.
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Thus, the off-diagonal elements, Maa (0, mg, m'y"), vanish. For diagonal

*
elements, we have

M, (0, mE, mE) -=(1/4D[R1 + R, + Ry + R,]

2 3

where

R = b2 <1/2 mop |z 2s/1/2m' pz>=(1/2)b2 % <pz|£z|pz> S pum!
= (1/2)b° ¢ <p”2|lp> 7 (3(1)3) 5,20 (5.19)

Thus, we conclude that: (1) charge transfer from bonding
to nonbonding o-orbitals gives a positive contribution to 3a, (2) simul-
taneous bonding-nonbonding and bonding~antibonding charge transfer give
a negative contribution to 3a for GaTzﬁnT varying from 1 to 10, and (3)
these contributions do not depend on Qp, the ligand spin orbit interaction.

5. CONTRIBUTION TO 3a FROM n-BONDING CHARGE TRANSFER STATES
The last contribution to consider is that of the m-orbitals.
This was included in the calculations of 3a in the previous chapter.
From (L4.17) we have:
4

33(4) = 33(4)(0,n) =:E: C1 cdb-i cpi (5.20)

i=0

The above result was obtained by substituting the promotion energies,

for charge transfer among various orbitals Yps €ps T, €4 and t, of Fig.

3.1 by an average energy. To refine the above result further we consider

the case of tl > e_ electron transfer first and then discuss the

a

*o.
v (ééé) in (5.19) 1is vector coupling coefficient of two vectors.
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general case where all six transfers t > e , e *e , t. *e , t >t
b a a a’ b a

e +t and t, * t are taken into account.
b a 1 a

b 1

5.1 Determination of 3a (o,m, ty > ea)

The effect of ty >e, charge transfer states on 3a (o,m) will
be discussed in this section. The symmetry and electronic configurations
of the w-bonding molecular orbitals of tl > e, charge transfer are shown
in Fig. 5.3.

/ /
\ \

/ﬁ / H— \\\"‘ ,: /—_—m—“\t\
1/ \ /4 W\
(. —Hi—" > i——>

LY 77 W

5“’6

6, 6

(o) (b)

1

Fig. 5.3. Molecular orbital and energy levels of (a) the ground
level 6A; and (b) the t] + e, electron transfer levels 6T, and 6T2
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3a (o,m, t, > ea) can be obtained from the following relation.

3a (o,m, ty > ea) = - [612 (61 + e)]-l (18)-l

w0 {(6A1| 5,152, 151 192,01 1162, 0, 1 1168,)

(X)[ZKs/z J (5/2 52Ty, T, Ty U') s 512 (5’2 521y, T T, U']
a |

- EE:Ks/z 3 (5/2 5/2 T, T, T, E") Kiv 579 t5/2 5/2 T, T, T, E")]:}
J!

Substituting for reduced matrix elements from Tables 3.3 - 3.4, and for

KJJ, from Tables 3.9 - 3.12 one finds,

3a (mw, tl > ea) = - [612 (51 + e)] -1
(x) [(-) V775 (=) V21720 (+) 21720 (=) (775 (-) (1/18)(128/9800)]
(e t) (tre ) (tt) (tyty)

Substituing for eatl and tlt1 from Table 3.13 we find

3a (o,m; t, > ea) = - (9/1250) [512 (61 + e)] -1 82 Cp4 (5.21)

5.2 Determination of 3a (o, tb - ea)

The contribution from t, > e, charge transfer can be obtained

in a similar fashion. The energy diagram is as shown in Fig. 5.4.

.



57
/‘“"H*'\ / ”' \
/’ A AR /,/’ h NN
_Hm__ — — _ﬂ“.__B,__
\\\ ‘Iﬁl //;Y (\\\ ’n‘ /,/,
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6AI 6Al
(a) (b)

Fig. 5.4. Molecular orbital and energy levels of (ag ground level 6A1
and (b) the ty, * ey electron transfer levels Ti and 6Té

The effect of 6Ti and 6T5 on 3a can be written as *

dalx, t, ve ) = - 167 (6] +eN17!
(x) {(-)\/7/5 (+)'v21/20 (—)'\/21/20 (+)'\/7/5 [(~-)(1/18)(128/9800)]
(eacb)z(cbtb)z} (5.22)
Table 3.13 gives
eatb = - 31/5'“A5d +\/3-8xcp (5.23)

The fact that 3a (m, ty + ea) & 3a(o ity > e ) and also 3a(x) = 3a(o,x)
is evident from the cholce of «2 é = 0.8 <"1 in (5.26). The reason

is that the only role played by o orbitals is to reduce the coefficient
of x and A of dt, and xnt; orbitals in molecular orbitals of t; symmetry.
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2 2
£ty = 3x Ly + 3/2 « cp (5.24)

Suosti .uting for eat and tbt in (5.22) one finds

b b

3a(o,mse, > e ) = (18/625)[6]°(8) + )17

b
2.6 4 224 5., 3
(x){éa)\cd + (6 kA = 26 apaa T e

2,2 4

+(3/20"2 ¢ + 82K 2 2

ERERE 8222 - (3/2) %800y

2.4
R

3 -1 2 6_4
(x) cdcp + (4) B k cp :} (5.25)

‘The numerical value of 3a(n, ty ea) can be obtained from following

coefficients

Kk~ =0.8 - 2" =0.6 (5.26)
and it is found as

3a(o,n;t, > ea) =

b
[(18/625)(‘5i2)‘5i + ei))] -1 [.034 cdl‘ +.0674;d3¢;p

2 3

2 4
+ .0827 - .0487 + ,0251 5.27
4 Cp Cde Cp ] ( )
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5.3 Determination of Total 3a(o,n)

The 3a(o,m) representing the effect of all charge transfer
states of transfers tp + ey, ep > €5, t] > €5, and ty, » tas €b » Ly and

t; = ty, can be expressed as (4.6):

4
(4) 4ei i
3a(o,m) = 3a = C. 4 (5.28)
Z=('_)

where Ci are functions of a,B,k,A and the charge transfer energies such
as 61 and Gi in (5.21) and (5.27).
The numerical values of the coefficients Ci are calculated

for az,BZ,KZ,Az as in (5.26) and for

§, = 8§

~ ! -
1 + ¢ 61 E

1 6

The results, given in Table 4.1, and 4.2 indicate that

3a(4)>0

Cp/Cd.i 2 (5.29)
and

3a(4) <0

£/t 23 (5.30)

For ligands 0 and S  and S-state ioms Mn2+ or Fe3+ the

cp/cd < 2 holds and consequently

3a(n,0 ), 3a(x,S ) > 0 (5.31)
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whereas for Se and Te  the condition Cp/Cd > 3 applies and one con-

cludes that
3a(x, Se” ), 3a(x, Te ) < O (5.32)

Comparing sections 4 and 5 one concludes that (1) in both
o- and % -bonding schemes t; + e charge transfer gives a positive contri-
bution to 3a, (2) tg + e charge transfer seems to be the most probable
in o-bonding scheme whereas the t; + e transfer seems to be the most
probable in i-bonding scheme and gives a negative contribution to 3a(n)
and (3) the 3a(o), for an average charge transfer energy*Eg(c) is nega-
tive whereas 3a(t), under similar condition is positive if cp/cd < 2.

Now we proceed to the next section for comparison of (3a)w,
(3a)p. 3a(o) and 3a(m).t

6. COMPARISON

The five separate calculations given in Sections 1 through 5 can be
compared now. To simplify this comparison we ignore the effects of spin-
spin interaction on 3a which appear as small corrections in calculations
of Watanabe and those of Powell. This enables us to describe their results

as functions of Cda and (Dq)n. The result 1is
4 2
(3a),, = K_ ¢, (Dq)

4
(3a), = K, &, ()" 3.5 <n <6

4
3a(g) = Ko cd
4 4-1 1
Ja(o,n) = Z Cy Ty ¢ (5.33)
1=0

*Let GaT: GnT = r =1 1in (5.11)
Y3a() = 3a(0,m)

.
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where (3a)w and (3a)P are contributions to 3a from calculations by
Watanabe® and by Powelle, respectively, and 3a(og) and 3a(o,7) in (5.33) are
contributions from charge transfer excited states. Since (3a)P results
from spin doublets and quartets of 3d° manifold, whereas (3a)y results
from spin quartets alone, one immediately concludes that (3a)y is included
in (3a)P:

(3a)wC(:3a)P (5.34)
In a similar fashion*
3a(o){ 3a(o,m) (5.35)

Therefore, the total contribution from spin multiplets within 3d5

manifold and charge transfer states is
(3a)P + 3a(o,x) (5.36)

The experimentally measured 3a can be affected by spin quartets and
doublets which arise as a result of charge transfer. 1In this case, 3a

can be written as

3a = (3a)P + 3a(o,x) + (3a)r (5.37)

where (3a), represents the rest of terms ignored in the evaluation of

3a(o,n).

7. COMPARISON WITH MEASURED 3a OF Fe3+ IN ZnS, ZnSe AND ZnTe

We want to compare the measured 3a of Fe3+ in Zns, ZnSe and ZnTe
with 3a in (5.37) on the assumption that (3a), = O.
The measured 3a of Fe3+ for above compounds are given in Table 2-2

and are repeated here in Table 5-4.

*3a(o,t) = 3a(x) [See the footnote to Eq. (5.26)]
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TABLE 5.4
Measured 3a of Fe3+ in 10—4 cm_1
ZnS ZnSe ZnTe
384 144.9 -7300

TReference 27

To find the contribution (3a)P to the measured 3a values in Table 5-4

we assume: (i) that the measured 3a of Fe3+ in ZnS arises completely from

(3a)P, (ii) the power n in (Dq)™ of the expression*

4 n
is equal to 4 and (iii) (Dq) is proportional to inverse fifth power of
interionic distance R. With these assumptions, the ratios of (3a)P of
Fe3+ in ZnS, ZnSe and ZnTe can be obtained as follows:

(3a)P(ZnS) : (3a)P(ZnSe) : (3a)P(ZnTe) = 10,1:5.3:1. (5.38)

The (3a)P obtained from (5.38) are given in Table 5.5.

*KP, in (3a)P = Kp Cd4 (Dg)™, depends on several parameters such as Racah
coefficients B and C. TFor simplicity, however, both this and 74 are
assumed to remain constant in three compounds ZnS, ZnSe and ZnTe.
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TABLE 5.5

Estimated (3a)P for Fe3+ in 10_4 cm_l

ZnS ZnSe ZnTe

384 204 38

The contribution 3a(o,t) can be obtained for the appropriate values
of zp/tq. The fq* for Fe is 0.049 e.v. and ¢pT for S, Se and Te are 0.06,
0.35 and 0.9 e.v., respectively. Thus, the cp/cd ratios are 1.09, 6.4
and 16.4 for Fe3+ in the three compounds ZnS, ZnSe and ZnTe respectively.
The 3a(0,ﬂ§)at these ratios of Cp/cd and for g = 0.049 e.v. and Eg = 4 e.v.
is obtained from Table 4.2 as given in Table 5-6.

The sum of (Ba)p and 3a(o,n) is given in Table 5-7.

*Ref. 16, p. 431, ( £q of Fe® is chosen instead of {4 of Fe3+ because
the effective charge of Fe in ZnSe and ZnTe is expected to be close to
zZero).

t+J. Dimmock et al "Band Structure of PbS, PbSe and PbTe," Phys. Rev. 135,
A824(1964) .

4 . .
§ (4) _ 4-1i i
3a E Ci Cd Ep

i=20



64

Table 5.6. Calculated 3a(o,t) of Fe3+

ZnS ZnSe ZnTe
CP /;d 1.09 6.4 16.4
3a(o, M
(10~4cm—1) 0.564 -141.0 -6620

Table 5.7. Measured and calculated values of 3a of Fe3+

ZnS ZnSe ZnTe
(3a)P+Sa(o,n)
(in lO-Acm~l) 384.56 63 -6582
(3a)
L, 384 144.9 ~7800"
(10 cm )

A comparison of the calculated and measured 3a indicates that a
ligand to metal charge transfer process is capable of accounting for the
variation of 3a of the Fe3+ in the series of ZnS, ZnSe and ZnTe compounds.

A detailed examination of the coefficient C4 of cp& in the expression of

3a(4)1n (4.6)* indicates that the sign of this coefficient is insensitive

to coefficients of the linear combination of atomic orbitals a,B,x and X
3

Cde

are the sum of almost equal number of positive and negative terms. With

in the molecular orbitals, whereas the coefficients of Cd4 . 4 e

small variations in such terms the sign and magnitude of these coefficients

will change.

Therefore, the spin sextet and ligand to metal charge transfer
approximations are valid for metals of higher formal valency and ligands
for which cp/cd-10. ZnTe:Fe3+ meets both of these requirements. Hence,

the agreement found should not be surprising.

*See the footnote 8 on the preceding page
tSee Ref . 27
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In addition to Fe3+ discussed above Cr+ and Mn2+, the other two
S-state ions of 3d5 configuration, deserve a brief discussion. 1In case
of these two ions, in addition to the ligand to metal charge transfer
process, employed for Fe3+, another charge transfer should be taken into
account. This latter charge transfer permits the transfer of an electron
from the antibonding orbitalé*ta and e, to the higher lying antibonding
orbitals localized in the vicinity of the next nearest neighbor metal ioms
such as Mn>Zn charge transfer in ZnTe:Mn. For brevity, this is called the
outgoing charge transfer whereas the former one is called the incoming
charge transfer. The matrix elements arising from such processes can be
obtained from general expressions given in Chapter III with slight modi-
fications. The evaluation of charge transfer energies, however, would
involve the next nearest ions Zn and Cd in (Zn, Cd) (S, Se, Te) compounds
and more caution is needed for a correct assessment of such energies.,
The extension of present theory to these two ions has to be deferred to
a later time when more accurate charge transfer energies are available.

8. COMPARISON OF 3(o,z) OF T, AND Oh CASES

d
Considering Table 5-6 one finds that both the absolute value and the
sign of 3a is determined by the presence of Cp in the expression of
3a(o,n) = zé' C, Qd4_i Cpi. A question arises on the nature of the role
i=0 1
of o in 3a(o,t) of Fe3+ in compounds of 0h symmetry.
Before considering the above question it is worthwhile to give a

brief remark on the 3a in Td case. Recalling (5.37) the total expression

of the 3a is

3a = (3a)P + 3a(o,n) + (Ba)r (5.39)

*The orbitals t, and e, are the half filled orbitals which are localized
near the S-state ion and in ionic case form the components of the d
orbitals of the S-state ions.
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where (3a)p is given in Table 5.1 and 3a(o,N) and (32), can be expressed
as

-1
3a(o,l) = - (Ejklm EkElEm)
SSs SS sS SSs SS SS. Ss Ss
{[MOR M1 Mip Mpo 1 opr T Do Mg My Mg ] E'} (5.40)
and 1
- : - ss, Ss,  Sq, Qs
3a_ {Zklm'(EkElEm') Mok Mk1 Mim' Mn'o ) U

I SSs SSs Sq qs
[MOk M1 Mymr Mpro } E'

-1 ss sq qq,, gs
* Z:kl'm'(EkEl'Em') Mok M M1t Moo | o
e SBy Sy 99y gs
Ok "k1' Mi'm' Tm'o | B

-1
+ Z k'l'm' (Ek'El'Em')

sq,, 49, qq, QS
Mok' Merar Myprpr Mprg ) U’

El'

sq, 99, 99, 98
Mo® Mgr1r Myt Mpvo

-1 s d s
+ z:k}llvm'(EklElllEmJ MOk'qu'l'?dMlv‘m'th'g Uv

)

d
- (MOk?quvl'?dMll|mlqulgs) EIJ
(5741)

The Mois, Mkiq, ——— Mlvmqq in (5.4]1) are the matrix element of HP =
4 Ciliﬂgi and the superscripts s, q and d refer to the spin sextet,
quartet and doublet, respectively and En’ En' and Env:(n = k, 1, m) refer
to energies of these states,
An important distinction between II-VI compounds of 0y, and T4
symmetries lies in the fact that the band gap energies in the former case
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varies from" 4-8 e.v. whereas in the latter case it varies from 0.02-3.7
e.v. Therefore it is probable that the energies of quartets, Envy, and
doublets, En"’ are below 8 e.v. and as a result of this the spin quartets
or doublets can be localized around the complexes of 0Oy symmetry. Thus

an a priori omission of (3a)r does not seem to be a reliable approximation
for the O case. Another obstacle, in the Op case is lack of experimental
information on 3a of Fe3+ in such compounds as SrSe or SrTe where o
becomes significant. Therefore it is impossible to assess the contribution
to 3a(o,n) in the ocathedral case. 1In the case of Fe3+ in the tetrahedral
compounds, such as CdTe or ZnTe where the energy band gaps are, respec-
tively, 1.5 and 2.1 e.v., it is possible to assume that none of the charge
transfer spin quartets are localized. As a result of this the (3a)r may

be ignored and only 3a(o,n) taken into account. In case of ZnTe:Mn2t
where(3a%;p9 one may conjecture that the charge transfer spin quartets

also contribute to 3a(o,n) as well as spin sextets of outgoing charge

transfer process referred to in section 7.

*See R. Bube, "Photoconductivity of Solids" John Wiley and Sons, Incor-
porated, New York, (1960) p. 233




CHAPTER VI
SUMMARY AND CONCLUSIONS

1. SUMMARY

A calculation of cubic field splitting of S-state ions in II-VI
compounds was planned. To achieve this, the following steps were taken:

(1) Molecular orbital techniques were employed to construct the
excited states of complexes (ZAA)_n' with I as the S-state ion and
A as 0, S, Se or Te.

(2) A ligand to metal electron transfer process was taken into
account and the excited states arising from such pbenomenon were con-
structed with ¢ and w ligand orbitals.

(3) The cubic field splitting 3a was expressed as the lowest
order splitting of the spinor levels U' and E'' (Mulliken's notation)
of the ground state as a result of perturbation by excited states through

the spir orbit Hamiltonian,

(4) TUtilizing group theory arguments, it was established that
(a), the lowest order perturbation, was four and (b), at this order of
perturbation the contribution to 3a arises exclusively from the two

groups of three excited states having symmetries of Tl’ E, T] or Tl’ T2,

Tl respectively.
(5) Utilizing reduced matrix techniques the matrix elements of

HP between any pair of states

|15
l.@

lxi Si hi Jk t {>

., S. - I &
|XJ j 7% é

and
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was obtained in terms of the reduced matrix elements Rij and the coupling

coefficients Kkz as follows:

<Xi S; hy 3 tT IHPI Xj 85 byt T> <Xi S, hiHHpHXj Sy by Kkz>

= Riy Ky

where

o
]

. s, h.|lE |y, s. h,>
5 <x1 : 1||p||xJ 5 b

and

K, = KJkJJL (8; 8y Ty, by by )

and [J tT > is the component of the irreducible representation of angular
momentum J in the cubic point group as defined by Griffithl® (p. 395).%*
(6) 3a was obtained as a sum of the products of the four matrix

elements:

6
<Xo A, 5/2 mlup]xi 5, T, J, t'r>
<Xi s, T, J, tTIHpIXj 55 by Iy t'r> hy = EorT,
<Xj S, by Iy tTal[xk S, Ty I t'r>

and

6
<Xk 5, T; I tT[Hp]xo A, 5/2 tT>

*For example |5/2 Ijv> =1/6 ['\[? |5/2 5/2> + |5/2 3/2>]




70

with Xg veee Xy representing various electronic configurations giving

rise to S, T. .... S, T..
i1 k "1 34
(7) The numerical values of the 3a of Fe~ 1in Zn(S, Se, Te) com-

pounds was obtained with restrictions of

S, =S8, =8 =5/2

and L4 and Cp as the spin orbit constants of metal and ligand orbita}i.
For appropriate values of [ for Fe, S, Se and Te, and with 32,000 cm

for E6 it was found that the calculated 3a accounts satisfactorily for
the difference between measured values and the ionic contributions to

the 3a of Fe3+ in the compounds ZnS, ZnSe and ZnTe.

2. CONCLUSIONS

Most of the conclusions drawn from this study concern the effect
of charge transfer states on the cubic field splitting 3a of S-state ions
in II-VI compounds with tetrahedral symmetry. These conclusions are
classified as follows:

(1) The cubic field splitting 3a of S-state ions in covalent
II~-VI compounds of tetrahedral symmetry depends strongly on the excited
states arising from charge transfer from ligand m orbitals to metal
d-orbitals.

(2) The effect of these 7 orbitals is relatively insensitive to
the choice of promotion energies and coefficients of linear combinations
of atomic orbitals.

(3) To refine present theory, it is necessary to establish (a),
the energy levels beyond which excited states are no longer localized,
(b), the perturbation order beyond which the contribution to the initial
splitting 3a is negligible, and (c), a search for a few parameters

characteristic of charge transfer state energies.
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(4) To verify the predictions of this theory with experiments, it
is desirable to (a) determine the sign of the 3a of Cr+, Mn2+ and Fe3+
wherever it is in doubt, (b) prepare single crystals of (Mg, Ca, Sr)
(Se, Te) which have ocathedral symmetry and to measure the 3a of S-state

ions, particularly Fe3+ in such compounds.
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APPENDIX A
DEFINITION OF SYMBOLS

The frequently occurring symbols, in both the Latin and Greek
alphabet, are defined in Table Al of this Appendix. The former group
of symbols is given first and then the latter one.

T2




»

E"

E(U")

E(e' v)

jk

[P

TABLE A-1
DEFINITION OF SYMBOLS

Term designation of a state of space irreducible

representation, A,, and spin § = 5/2.
The cubic crystalline field splitting of a 6S level.

Numerical coefficients of the expression for the

charge transfer contribution.

Square root of the product of dimensions of space
and spin representations h and S of a state |S h, >
Thus, for a state IS h, > |5/2 T, >one has 9

1/2 _ 1/2 1/2
[(28; + D(hy)] = [(6)(3)] = [18]

An irreducible representation of cubic double group

as defined in Table 3-1.
Antibonding molecular orbital of symmetry E (Table 3.1).
Bonding molecular orbital of symmetry E (Table 3.1).

The lowest energy value of levels of symmetry U'
(Table 3.1)

The lowest emergy value of levels of symmetry E''
(Table 3.1)

The energy difference of states 1j and 1lk:

Ejk = Ek - Ej.

The energy of state 1j from that of ground state:

E, =E, -E .
J J °

Perturbation Hamiltonian: Hp =I.0, & s = E su(k)

An irreducible representation of single valued

cubic group.
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An identifying number of the irreducible represen-
tation resulting from the coupling of spin S and the
irreducible representation h of a state [Sh)such
as U' = U', of the state |5/2 T1>, and Uj = U! of

J 3/2 2

the state |5/2 E>. In the case of h = T,, T, the

index J behaves as total angular momentum associated
with Russel Saunders level |SL> = |sL = l) whereas

for h = A2, E it is a designating number.

Spin-orbit matrix element coupling coefficient

between states | ShJtT >and ]S'h'J'tT).
Magnetic quantum number associated with spin S.
Molecular orbital.

Irreducible representation.

Total spin associated with a total level or its

sublevels.
Single electron spin operator.

An irreducible representation in the cubic double
group of the coupling, the spin S, and space irre-
ducible representation h of a given state [Sh)

such as U' of |5/2 Ty )-

Antibonding orbital of symmetry T2 (Table 3.1)
Bonding orbital of symmetry T2 (Table 3.1)
Non-bonding molecular orbital of symmetry Tl’

An irreducible representation of cubic double group
(Table 3.1)

Coupling coefficient of the components o and B
of the irreducible representations a and b into the
y component of the irreducible representation c¢ such

as V (ET;T,6xE) = 1/2. The components 6, x, & of the




V (abe, ¢8Y)

W(abc,def)

W(abc,def)

aV(N N NN NN

X(abc,def,ghk)

)
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representations E, Tl, T2 ... and their symmetry

properties are defined in Table A.16 of Ref. 16.

Coupling of ¢ and B components of spins a and b into

Y components of spin ¢ such as V (5/2 5/2 1, 1/2 -1/2 0) =
(1/210)1/2,
(Ref. 26 footnote of p. 86).

Tables of V are given by Rotenberg et al.

An invariant product of four coefficients V(abk, ¢8vy)

..defined as W(abc,def) = ZaBySed V(abc,aBy).
V(aef,oe¢) * V(bfd,R¢8) - V(cde,ySe). The tables
of coefficients W (abc,def) are given by Griffith
(Ref. 26 p. 114)

An invariant product'of four coefficients V(abc,aBy)
..defined as W(abc,def) = ZaByscd
a-a+b-p+c—-y+d-S+e-c+f-¢
(x) (-1) V(abc,aBy)
(x) - V(aef,acd) * V(bfd,B¢s) - V(cde,yse).
Values of W are the same as the 6-J symbols corre-
sponding to a, b, ... ,f and the latter are given by

Rotenberg et al. (Ref. 26 footnote of p. 86).

Product of a W and W coefficient as ﬂV(N N N ,N
W (S S 1,8 S) (x) W (h h T h ).

N =
K> 1"m 1’ khl
An invariant sum of the products of six coefficients
V(abc,aBy), ... V(cfk,y¢k) expressed as X (abc,def,ghk) =
ZaByde¢n bk V(abe,aBy).

(x) V(def,8e¢) * V(ghk,nbk) * V(adg,adén) *+ V(beh,Bed)

(x) V(cfk,y¢x). These X coefficients are defined by

Griffith (Ref. 26).




X(abc,def, ghk)
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b
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This is similar to X(abc,def,ghk) defined above except
instead of V(abc,0By), one takes V(abc,0By). Thus
X(abc,def,ghk) = §a8y6€¢n9K V(abc,a?y).

(x) V(def,ded) - V(ghk,nbk) «..... V(cfk,y:k). The
coefficients X are given by Howell (Ref. 26 footnote p. 86)

Product of coefficients X and X related to N, N N

k’
A |
NN N, N NbN as follows: X (N.N NN 'N! Nk,NaNbNO)
= ' . [
x(slstk 'S’ JEMEIS 1)+ X(hy h hk,h hjh h_h T).

The ligands surrounding the metal ion of II-VI compounds

such as S, Se  and Te .

The S-state ion substituting the metal ion of a II-VI

compound such as Mn2+ in Zn site of ZnS single crystals.

A complex formed of an S-state ion and its four nearest
neighbors, with a formal negative charge of n'. For

+ + +
L =Cr, an or Fe3 the number n' is, 7, 6 or 5

respectively.

Single electron spin orbit inter-action of an electron

in the ith orbitals.

Cd of a d orbital of the S-state ion.

Cp of a p orbital of the ligands S, Se or Te.

Component of t denoting an irreducible representation
of the cubic double group. The properties of these
components are given by Griffith (Ref. 16).

Electron configuration of five orbitals tos @ i &

and t, as defined in (3.8a).

Hole configuration of the five orbitals ta’ e s tl’

and t, as defined in (3.8b).

% b

>



IXShjtT)

(shl 8 [[x's™n')

77

T component of Jth irreducible representation t
arising from coupling of spin S and space irreducible
representation h of the state iSh) belonging to the

X configuration.

Reduced matrix element of Hp between states leh)
and |x'S'h'>.




APPENDIX B
SPIN ORBIT COUPLING IN MO SCHEME

This Appendix gives the appropriate form of the spin orbit imter-

action Hamiltonian HSO in the molecular orbital (MO) scheme. The expres:

. .k
sion of HSO for an n electron system is

_ Be -3 .4 _ 4, . i
H50 = me [Za 2o Tia " xp) ' =&
- rij‘3 @l ox phy- et + 2§3>] (B1)
if3

where o refers to all nuclei; L is the distance between electron i and
nucleus a, Za is the charge of nucleus a; i and j refer to all electrons
in the complex and the remaining parameter have their usual meanings.
The first sum in (Bl) gives the spin orbit interaction of each electron
in the Coulomb field of all the nuclei in the complex whereas the second
sum describes the interaction of each electron in the field of the other
electrons and also the coupling of each spin with the orbital magnetic
moment of the other electrons (spin-other-orbit interaction). The HSO
can be rewritten as:

H,, =1L (B2)

SO i Mo ” Zi+j Hij

o
H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One and Two
Electron Atoms (Springer - Verlag, Berlin, 1957), p. 181.
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where

_ -3
Hi = (Be/me) Za T,

io (gixzi)-§i=§ (r, )

|

(B3)

and

- -1 -3 , ij iy | i j
Hij Be(mc) rij (r~ x p) (s + 2sY) (B4)

. . + .
Misetich and Buch have shown that for the molecular orbital wave-
functions wo and wn related to symmetry wavefunctions ¢o and ¢n of a

given term of the free central ion of the complex, one has

- ' iC_ i ii
<wo[HSO|wn> _<wolzi F’c i(ric) s 4 Zi,L gL (riL) Ls |wn> (B5)
The parameters EC (ric) and gL (rcL) in (B5) give the spin

orbit constants Cc and =3 after being integrated over r.. and r,; respec-

tively except for the fact that their numerical values depend onLthe
coefficients of linear combination of atomic orbitals used.

In the general case where the MO wavefunctions wo and wn cannot be
related directly to free ion such as the charge transfer states in a
complex [Z A4]_n', the spin orbit interaction can be considered in a
slightly different way. Considering (B1l) - (B4) and denoting the single

electron spin orbit interaction by Hso(i), one has:

i) = _ i i
Ho (1) = L, H -Z Hij =z £ (riu) 2% st - Z Hij
i ($1) 3(41)
ic i il i
=&, (r; ) &8 + I g, (ry) &77s" - Z Hi."l (B6)
i ($1)

A. A. Misetich and T. Buch, "Gyromagnetic Factors and Spin-Orbit Coupling
in Ligand Field Theory," J. Chem. Phys. 41, 2524 (1964).
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where the parameters c and L denote central and ligand ions respectively.
The matrix element of Hso(i) between the ground state wo and an

excited state of the system wn is

<“’o|Hso(]'L)|“’n>= <i|Hic I HiL'i'>
- Z <ij IHij li'j> (B7)

i (i)

The single orbital wavefunctions i and j can be described as

|i>= Kilic>- AiIiL> (B8)
|j>= Kjijc>— Ajle> (B9)

where

kK, + X, =1 (B10)

wubstituting in (B7) one finds:

<‘”o|Hso(i)”’n>= DT <ic|Hicli'c>+ Ay <iLlZL HLili'L>
- 1, ke’ <icjc||<j2 Hijli'cjc>

LA My < A IAJZ HiinLjL>

“1<'y <i “ J<J ijle>|i'c>

o . 8
+ )‘i)"i< LRy - 2y <3L ijIJL>ll L> (B11)




31

If both iC and i'c have the same radial wavefunctions then the radial
integration of the first sum gives the spin orbit constant of the central
ion for the orbital iC being corrected for a change in the electron
density in orbitals j, measured by sz. Since in this work, the molec-
ular orbitals iC are constructed from d orbitals of the central ion,
they have the same radial part. Thus the first term in (B1ll) can be

expressed as’

1 . _ 1 . 2 . RO |
i< i<lc’Hic Z <Jc’Kj Hij|3c> 'l c>

i (41)
- ' , ic i)., \
= kK" <1c|cc L .sT 4 c> (B12)

Similarly the radial parts of iL and i'L in the second term of (Bll) are

the same. Thus

o il .,
—>\.>\1<1L|ZL g, & st L> (B13)

Now we define a spin-orbit interaction operator s &l-sl such that

. at-st1 >= ldi-sili > (B14)
i— — "¢ d— — "¢

and

i 4, \_, ,pi i,
ty 2 §|1L> L 11L> (B15)

* 3 . . . . .
The prime sign on (ichc &}nglli'c> in (B12) indicates it has been
integrated over ric
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The parameters d and p in (Bl4) - (B15) indicate that ic and iL

are constructed from d and p atomic orbitals respectively. Substituting

in (B11) one finds
<¢,dlﬂso(i)|¢n>= KiK'i <ic|§i &i.gili'c>
A <iL|Ci -&i"s‘i‘li'L>
: <‘Ki <ic|‘*i <iL| ey £727]
CHEES ERSREL )
SR

= <wo|ci &i'§i|¢n> (B16)

Since
H, = Zi H, (i) (B17)
then
<wo|HSOIwn>= <w0| ‘L:, ¢ 255ty )

resulting in

Hy, = 5, ¢, &8t =Z su(i) (B18)




.
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where

u(i) = ¢, gt (B19)

and

su() = ¢, g-st (B20)

In (B16) - (B20) Ci g? behaves as operators defined in (B1l4) and (B1l5).
The above definition of spin orbit Hamiltonian for the charge transfer
states of a complex (I A4)—n' is certainly an approximate definition
which will not be adequate for the precise evaluation of the matrix
elements of HSO but is sufficient compared to other approximations made

in construction of the molecular orbitals |i> and excited wavefunctions

[V,




APPENDIX C

SPIN ORBIT MATRIX ELEMENTS
FROM THREE AND FOUR ORBITAL WAVEFUNCTIONS

The purpose of this Appendix is to give the spin orbit matrix ele-
ments between charge transfer states consisting of three or four types
of distinct orbitals each having at least one electron such as those in
Table 3-1. The spin orbit matrix elements between pair of states con-
sisting of only two orbitals have been calculated by Tanabe and Kamimura*
and by Griffith.t The ligand to metal charge transfer process, in cubic
complexes of S-state ions, results at least in three open shells of elec-
trons two of these around metal and the third around the ligand. Thus
the desired states consist of at least three orbitals. As a result of
this the formulae by above authors should be modified and extended to be
applicable for these wavefunctions.

We proceed by giving a brief description of charge transfer wave-
functions first and then discuss the matrix elements of Hp = ziciﬁ} . &}

between them.

1. CHARGE TRANSFER WAVEFUNCTIONS

A description of the orbital part of the ligand to metal charge
transfer wavefunctions, in complex [ZAA]_n, will be given here. Their
radial part is omitted for simplicity; it must, however, be taken into
account in a more refined amalysis of this subject.

Considering Table 3.1, one finds the electronic configurations p,q,..t
and the representations ts €y tl, ey and ty of the orbitals in a charge
transfer state. Denoting the spin and magnetic quantum number of the

participating orbitals by SiMi and their space irreducible representation

by hiei
representation h6 as follows.

*Y. Tanabe and H. Kamimura ''C . “he Absorption Spectra of Complex Ioms IV.
The Effect of the Spin-Orbit Interaction and the Field of Lower Symmetry
on d-Electrons in Cubic Field" J. Phys. Soc. Japan 13,394 (1958)

+3.5. Griffith (Ref.26)

8L

(IR)

one can describe a charge transfer state of spin SM and irreducible
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IxiShM6> - [tap 5,h M6, eaq SZhZMZBZ""tbt SShSMSBS;ShM(i)]
(c1)

For example one of the states arising from the first row of Table 3.2
is

Ix;5/2 1, 5/22) =|¢ ? 1) 1x, e ? 1a,la,, cll 1/21, 1/2y

0 0
ey OAj0a, t 7 0A) Oa); 5/2 T, 5/2z>

1

=|';323.T1 1x, ea2 3A,1a,, t,

21, 1/2y

0y, . .6
ey 1A ;01 5/2z> (c2)

where Xy in (C2), as before, denotes the manner by which the five orbitals

ta’ €ar resees tb have coupled to give 61 in (c2).

1

2. MATRIX ELEMENTS OF Hp = zict&i . Bi

The matrix elements of H_ between pairs of charge transfer states
IxJShMe> and kas'h'M'e'> will be obtained in this section. To simplify

the notation the above matrix element will be denoted by M,, (ShM6-S'h'M'0'):

jk

—S'Th'M'A') = tThiM'g!
My, (ShMO-5'h'M'0') <xjsm«elup|xks h'M e)

= Rjk(Sh—S'h') Q(ShMe-S'h'M'8"') (c3)

where
-C'h') = 1t
Rjk(Sh S'h') <ijh| lnpl |st h ) (c4)

is called the reduced matrix element and Q(ShM6-S'HM'6') 1s the coefficient
of the coupling of |ShM9> and IS'h'M'O') through spin orbit interaction
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and it 18 independent of j and k as will be seen later. Now we consider
Rjk(Sh-S’h') and leave Q(ShMO-S'h'MO') for Appendix D.

3. REDUCED MATRIX ELEMENTS Rjk(Sh-S'h')

Rjk depends on xJ and X * The xj and Xy o in turn, depend on the
configuration p, q, ..., t of orbitals ta,ea ceey tb as shown in (Cl).
Therefore the reduced matrix elements Rjk between a pair of states |j>
and |k> can be characterized by the configurational numbers pj, Qoo 200
tj and Pps Qps * oo tk in these two states. Considering this fact in mind
and observing Table 3.2, one immediately finds that there are three classes

of reduced matrix elements as follows:

1) pj =P 9y T Qe Uy =y us r,s,t (C5)

(11) Py =P * 1Ly qy = 9 ¥ 1, uy = U u =Tt (ceé)

(111) pj = Py 9y < 93 uj ¢ u U =r,s,t (c7)

The numbers p,q, ... t in (C5) - (C7) are given in rows of the hole
configuration column in Table 3.2. In case (1) both states |j> and
|k) have three open orbitals with the same configuration such as |xj6T1>

and |xk6T2> of the first row in Table 3.2. in this case may be called

R
homo-configuration three orbital reduced matri: element. In case (i1) the
orbitals involved are the same but their configuration differ and therefore
the Rjk of this case is called hetero-configuration three orbital reduced
matrix element. In case (1ii) only one of the five orbitals ta’ e tl’

e and t remains closed in both states |j) and |lc> such as tb in 6T1 of
row 2 and 6T2 of row 3 in Table 3.2. The Rjk of this case will be called
hetero-configuration four orbital reduced matrix elements. These three

cases will be considered in the following sections.
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4. HOMOCONFIGURATION THREE ORBITAL REDUCED MATRIX ELEMENTS

Here we consider the case of Rjk between states |j> and |k>

with both Ij) and |k> containing three open orbitals of the same symmetry
and configuration.

The Rjk in this case can be expressed as

Tyt - 1] 1]
Ry, (Sh, §'h') = <ijh||Hp||xks h > (C8)
where
- I[P q r X
lijh> |[a 5,h; (b5 hc S3h3)84h4] j,5h> (c9)
LA W Parys Qerpt oLart e TH! «Q'H!
% r1> l[a sih) (bYsphye s3h3)s4h4]k,s h > (C10)

The orbitals a, b and c, in (C8) - (C10), represent three of the
five orbitals ta, e, +e» tb of Table 3.2 and the subscripts j and k denote
the coupling of such orbitals.

* I: i 4 2:

Since the perturbation Hamiltonian Hp = - PR AR s'u (1) is
in terms of single electron operators we must express the total wave-
function in terms of the single electron orbital which constitute such a

wavefunction, To obtain this we rewrite (CS) as follows:t

" p q r SHIE DO O P
Ry (Sh-5'h') ==<a 5,hy (98,0, cs b )s b, , shl| ;ga.g u 1=%;1 seu()

pHatr .
+ Yy _gﬂg(i)llapsihi(bqséhéc 53h3)Siht,S' b >
i=ptq+l

= Ryglp(ar)p,sh-8'h'] + Ryylplar)q,Sh-8'h'] + Rsp[p(ar)r,sh-8'h' ]
(C11)

* i
To simplify notation gi&i is substituted by u

1‘To simplify notation the brackets [""]j and [....]} are omitted from
Iijh and kas'h' in (C11).
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the first sum operates on electrons in ap, the second on b4 and the third

P
r
Ryxlp(ar)p,Sh-s'n'] = <apslh1 (b78,h, 7S hy) 8,0y Sh||£§£

sruM DD G |laPs] by ©Isihy, c"Sih1ISih;, STh')
(€12)

R., [p(qgr)q,Sh-S'h' - [ p q r
setplar)aq, ] < a’S,h, (b78,h,c 5,0 )8 b, ,Shl |

P
11 - : Pt (595 h! TS h!)S!
@-1x| ) 8 ulox(@-1) |1[aPs1h; (65 3hac s 3h1)8 0, S h' )
(c13)

R _Qt = p q r
selp(ar)r,sn-s'n' ] =(aPs by, (35 b, ,c 5,008, h, ,Sh] |

r
(1-D)xDx ) s-ulk) I|apS'lh'l(quéhé,crséhé)szhz‘,s'h'> (C14)
k=1

The symbols 11 represent double tensor operators of zero rank which
operate on their respective part in (C12) - (Cl4). The first symbol
1l of 1°1 acts as a spin operator with § = MS = 0 and the second symbol
*1 of 1°1 acts as the irreducible representation A1 of the cubic group.
Rjk’ in (C12) - (Cl4), should be determined by the techniques of double
tensor operators on coupled systems.

This subject is discussed by Criffith2® and will be given here as
follows.

Let a system n of electrons to be composed of two separate and

independent parts £ and m. Then

|£mnv> = 2: (2Amu|£mnv> |2A>|mu> (c15)
Au
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.

gives the |nv> state in terms of products of |1A> and |md> Now the
reduced matrix elements of a single electron operator* D: op: rating on

the |2A> part can be described in terms of |nv) states as follows?
y b '+ g
(Lm n v||D ||2'm'n'v ) n V(n) (n)’ <2|ID |12 ) (nn%g)
(x) Gmm' (Cl16)

Similarly an operator E® operating on |mu> states has the reduced matrix

elements

<imn||E llz m'n ) = (- 1)1+m +n+eW/( Y(n") (mIIE ||n1)w ‘m mf‘

X

(C17)

where (n) and (n)' are dimensions of these two irreducible representations
and W coefficients behave as six j symbols. For spin orbit inie._action
both orbital and spin wavefunctions of each electrons should be taken

into account., Considering, m, ..., n' as space representations of the
states and operators involved one will add Sl’ Sz...S' for spin part.

Thus (C16) can be rewritten as

' it
<Slﬂ,SzmSnl IDpdl Isig'szmvsvno> - (_l)Sl+S +p+L+m'+n'+d

_ S.S:p '
(x) [(zs+1) (2S'+1) (n)(n')] 1/2 <slz||Dpd||siz'> W sls}sz w(ﬁi,:)

(C18)

*Dd5 is the component of operator behaving as component of the irreducible
representation d.

tRef. 26, p. 47



and S,+S,+S+q+h, +h _+hte
<slz SzmSn|IEpeHSiR'SZm'S'n')-- nt? 172

SZSZq mme

(x) [(28+1)(2$+1)(n)'n')] 172 <Szm||qu||Sém'> W (S s's | ¥laate
1

(x) Bg5)  Bgp (c19)

Following (C17) the reduced matrix elements in (C1l2) - (C14) can

be decomposed as follows:

S,+S,+S+1+h_+h ) +h+T
Ry (Sh=s'h',p) = (-1 14T

P
(0 [(2s+1) 2s'+1) () (0] 2 (a"slhlili);l (a0 + w@)M1]laPs; 00 )

s,'s, 1 h' h T
111 s 5

171 W
h h'h s,S' h,h'

W .
S 878, 4 654 By

(Cc20)

The Rjk[p(qr)q,Sh—S'h'] and Rjk[p( qr)r,Sh-S'h'] must be obtained in
two stages. First the part of the system represented by Sph) should be
decoupled from the part represented by Sih, and then the parts Sphp and
85h5 in Suhu should be treated as in (C20). Denoting part represented
by Syh), as Rjk(q,r) and considering (C16) - (C20) one finds

]
SI+SA+S+1+h1+h 4+h+T

1 ' 1]1/2
Ry (@) = (1) G [(2s+1) (25'42) (0) (1))

GRS R NN IK§1 500" u) || (695303 <755 hDS;h;)

[} 1

515, 1 ) hih, T,
L 1]

58" 8 h h' hy 151 1M1

(x) W

(c21)

.
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The term®

r

q
T = <bq82h2crs3h3)sah4|| 351 seuc) + K{:l su (k)

Qorpr TYorps "t
| (b SyhicTSIhi)S b ) (ce2)

in (C21), should be factorized in the same manner described in (C19) -
(Cc20).

S.+S.+h_+h!
= - 2 3 2 3 ] t 1/2
T = (-1) [(254+1)(zs 4+1Xthhh)]
L ] [} ]
sy+h _[sss, 1) [nah,Ty
() | (1) %s.s' Sn.nr ¥ls s's. |¥ln n'n
3°3 "33 4°4°3 443

q
) (b%,h, | |K);',1 su(x) | [bIs1h! )

sis.1 | _ [hih.T

4ty _ [ 5353 3
+(-1) S5t Snnt Ylssrs | ¥ h3h'h1
252 hohy 45459 ALY
r
r Carpn
(x) <c 5 h, | |.<)=:1 su(x) | |c 83h3> (C24)

Substituting in (C21) one finds R k(Sh-—S'h',q) and R k(Sh-S'h',qr) of

(C13) and (Cl4) as the coefficients of <bq52h2|| Z su(x) | |bqséhé> and
r r K

<c S3h3| | 2.; su(x)|]|e S3h:'3 )respectively . Thus,

Rjk[P( qr)qJ Sh-S"h' } = 6515i

S,+S,+5+h_ +h '+h+S_+5.+h_+
8, o (e1) L4 L AT ety gty

11

*Hereafter s(k) * u(x) = su(k)




[(25=1) 28'+1) (0") (25,41) () () ()] 112

(x) § ' 8 (]
8383 h3hy
s,5'1 s!s,1 h'h,T h!h,T
T RO I R Y
L ] 1
58'S, 5,5155 h h by h,hih,
q Qo0
(x)<b S?_h2| I g su(k)||b S5h) > (C25)
and S.+S,+h_ +h,+h+S_+S_+h _+h
Riw[p(gr)r,Sh-s'h'] = 8¢ g 6, v (1) 114 273723
J 181 MM
S4*hy, 1/2
(x) (-1) § , O ' [(ZS+1)(ZS'+1) (h) (h") (2S,+1) (28,+1) (h,) (h; )]
s.s' °h.,h 4 4 4
22 MM
s's, 1 s's.1 h'h,T hlh,T
=4 = [7373 I RS B I s g
] L L ]
s s's, 5,545, h h'hy h,hih,
r Taret
<c 5,0, ‘{, su() | e th3> (C26)
Substituting in (Cll) we have
ptatr
atht!') = p q r
R, {Sh-8 'h ) <[a s,h, (bI8,h,c 53h3)84h4] 425h 1 Z su(x)
k=1

P q r 1t
||[a 5,h (b35,h,c S3h3)84h4] . S'h )

Ry[p(ar)p,Sh-8'h'] + Ryc[p(ar)q,Sh-s'h'] (C27)

+ Rjk[ p(qr)r,Sh-8'h']
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The Rjk in (C27) are given in (C20) and (C25) - (C26). They are given

here in simpler form as follows:

S +S,+S+h +h'+h'

o1 (1) 14T T
Ryk[p(ar)p,Sh-s'n'] (-1) Qﬂ'épslhlll
N!N.N
110
z su(k) | |aPs!n! w Sy N
~ 1 1> N N N4 4Ny, (c28)
S.+S,+S+h_ +h,+h+S +S_ +h. +h'+S'+h!

Ryx[p(ar)a,Sh-s'h' = (-1) 1724 T T TR T 3T TRy,

, NINN N} N No
x) 29 9494'10 °\ w
1) 1]
N, NN, N N' N
(x) <vs_n. || 2 su(x) | [b9sint) & 8
x 22!y 2"2) SNt NN, (C29)

k=1

and

' +h!+S,+h
§,+8,+S+h +h+h+S +5 40 +h 45 +h,

Rjk[p(qr)r,Sh-S'h'] = (-1)

N! N_N NI!N,N
x) 99 99 W 330l wf b4e
1)
N4 N4N2 NN N1
r
(x)<ch h, || Z su(x) | |ch'h'> O T
330 373/ NjNJOUNNJ (C30)
where
_ 1/2
91 = [(zsi +1) (hi)
N,N,N $.S.1 h,h,T
Wijo - @ i7j )w(ijl
NkNILNm Skslsm hkh hm
8 = § 8 (C31)
NiNj Sisj hihj
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- *
The coefficient W in (C31) is defined as

5 abec _ }E: (-1) a-a+b-B+c-y+d-S+e-etf-¢
de f oByded
_|abec _laef}_ dbf) [fdec
(x) v \ v v
-a—B-y a e-¢ -6 B ¢ S-e v
and _[313,93 ( 1)2J2+J3—m3 |
v = (J,J3,Jm, (I m I, m,) (c33)
1727373'71717 272
M, m,=my \/ 2J 3-!-l

V and W are used for spin coupling coefficiencts whereas for coupling
of space irreducible representations the simpler V and W are used where

(Ref. 26, p. 10 and p. 33)

V(abc,aBy) =\/E- (abaBIabcy> (C34)

and

W(abcdef) = ZaBySe¢ V(abec,aBY)
(x) V(aef,ac¢) V(bfd,B48) V(cde,Yde) (C35)

The numerical values of W are taken from Rotenberg's tables of 6J symbols**
and W are obtained from Griffith's tables.+ The dimensions of hi entering
Di of (C31) are the same as their character under identity class in the
character table. The (—l)h+i = + 1 as defined by Griffith+ (p. 15).

Both of these numerical parameter are given in Table C.l.

*
V. Fano and G. Racah '"Irreducible Tensorial Sets'" Academic Press,
New York 1959, pp. 50-54

*k
M. Rotenberg, R. Bivins, N. Metropolis and J.K. Wooten, "The 3-j and
6-j symbols." The Technology Press, Massachusetts Institute of
Technology (1959).

+Ref. 26, p. 114

L
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TABLE C-1
The Values of (h) and (-1)B

h A1 A2 E Tl T2
S0 L T T R I Y
(h) 1 a2 3] 3

The last unknown in Rjk (p,p),...Rjk (r,r) in (C28) - (C30) is the single

orbital reduced matrix elements of the type

p
p(pp) = {a’sh|| L su(x)||aPs'n')
k=1
= p {aPsh||su(p)||aPs'n") (C36)

To obtain p(pp) we express it in terms of its matrix elements

between pairs of IapShM8> and |apS'h'M'e'>.

ss'1 )\ [nh'T
(aPsn]| | & Su(K)] LTy lePsnr) -nS ™My vl !
k=1 mr'-if \e6'i

aPs'h'M'e")

1T
= (apShMO’ [ E: su(K)] 1

k=1 -ii
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Multiplying both sides by -5 MF (5,8'1, -MM'-i) and V(hh'T, 86'i)
and summing over the six parameter -M,...i one finds
| Z 1T
o(pp) = (aPshmMo]| [su(p) ] aPS'h'M'6") (%)
-ii
66‘
S-M = ' "= ' L
(x) (-1) V (ss'l, -MM'-i) + V(hh'T, ,00'1i) (c37)

l’

In terms of the coefficients of fractional parentage (cfp) we have®

|apsm@ =ZS o & 1g L ,a|} aPsh)(s 2y m[S }SM)
11
h,

10L
(x) (hya a|h ahe)|aP" s n M 6 ) [ama ) (C38)

Substituting for lapShM6> and |apS'h'M'e'> in (C37) one finds

{aPsh |a,ap_lSlhl><Sl3gSM|Sll/g_Mlm>(x)
f(p,p) _
—l
SlMlmMM'ls'M'm' <hlah6lhla61a>'<§p 1 16[ <ama|
hlelaee 1hlel
1T
| [su(p)] . |am o > 1M16i>

(x) (hjad]a ‘hiah'6'><Si1/2M]'_m|Si1/2S'M'><ap Sihj,a @aps'h'>

x) 1D51™1 ¥ (ss'1,-MM'-i) -V (hh'T,,66"1) (C39)

*
Ref. 26, p. 62
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The matrix element in (C39) can be abbreviated as follows:

<ap—lslth191| . (ama [su(p) |am'a! > . Iap_lsihiMi6>

=(am ofsulam'a’' ) § $ S s
( ) 5151 hphp MMy Cejer

=(1/2a||su|[1/2a )(-1)1/2"‘“ V(1/2 1/2 1, mm'=1) v (aa'T;,00'1)

§ R S (C40)
1°1 MM hihy 6.8

The remaining coupling coefficients in (C39) may also be expressed in
terms of V and V. Thus

<Sll/ZSMlsll/2Mlm>= (25+1)1/2 (_q)1#S-M V(s,1/25,mm-4)  (ca1)

<hlah8|hla91a> = (n)1/2 V(h,a h,6, a6) (C42)

Substituting in (C39) and considering the effect of §

Sls ' 900
8 v in (C40) one finds 1
0.6
11
S-M+14+S-M+1/2- +14S'-M!
e(p,p) = p E (-1) / "99' (-1)
SlM mMm' im'
1]
hlele 6

(x)< aPsh {Ia,ap_181h1> . <ap_lslhl,al} aPs'n! >
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(x) V(sll/zs, Mlm-M)V(l/z 1/2 1,-mm'—i)V(Si1/ZS',M’m'—M’)V(ssil—MM'—i)

1

(x) V(h ah,68,a8) V(aaT ,aa'i) V(hjah', 6a'8') V(hh'T ,06'1)

(x) (1/2a[|su|| 1/2a> (C43)

The coefficients V and V may be rearranged according to the rules*

abe cab bac abc
v (usg) - ¥ (;ae) = (-n¥hre g Ba;) = (-1)3*P*ey —a—B—c)
(c44)
and
abe bac
v (asc) = (-1)8tPte (Ba;)- (C45)

Carrying through symmetry operations of (C44) and (C45),on coefficients
V and V in (C43),one finds

_ w_[1/2 172 1) [1/2s's.\ _[1/28,S'
V(slllzs, Mlm-M)...= (-1)2(Sl+S )% v 11§ 1
-m m-1 m'M'M m-M, M!
11
{1 ss’
Vo
and

j{: V(Sll/ZSM m-M) ° Vv ...= ZE: (_1)—31+S+S'+(m—m—i-M—M —Ml)

] ! 1 1
mlmMm im MlmMm iM

(%) (_1)+2+S S +Sl (m-m+1i-M-M Ml)

*Ref. 26 p. 77 and p. 15
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<i

_ 1/2 1/2 1 1/28" S _ 1/2515' 1SS!
(x) V
m'-M' M

-m' m-1i -m-M.,M i-MM' (c46)

1

The first three powers of (-1) result into

1M m_c_at_ " s MM
(_l)+S M'+1/2-m-5-S Sl+ (m'-m+i-M-M Ml)

"-M'+1/2-m+5-5' =S -M-M"' - 1/2-2M+5=5
= (o1)S'M'+1/2-mkS-5"' -5 -M-M" -}y ~(-1) Y/ 1

—(1/2+s+sl) +1 1/2+s+sl+1 (c4?7)

=(~1) =(-1)

Similarly the four V coefficients can be rearranged as follows

h, ah T,+h +h'+a a aT a h'h
il v,y .=t ! v 1y
elae a'a i a'6'e
ahl h Tlh h'
v v (C48)
a 619 i60896'

Substituting in (C43) we find

1) S*HSTHL/2+h b p-1 -1
p(p,p) = p Z 1+1/24y pSh {Ia a Slhl> <ap Slhlal}
apS'h'> <1/2a] [sul Il/23> (x)
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1/241/2+4145+5+S '+sl- (m'-m+i-M-M' -Ml)
(x) Z (-1)
1 1
MliM im
[z 121\ _[1/2 s's)_ [1/2s;8'\ [ 1ss'
(x) v ' v \'
-m'm-1 m'—M'M1 -m-Mlﬂ' 1-M'M
, aaTy ah'hy ahih' Tphh'
(x) A ' \' \/ (C49)
8'a66'a’ \a'ai a'e'el o 6'6" 160’

The second and third sums are identical to (C32) and (C35) respectively.

Thus they can be substituted by their appropriate W and W coefficients.
The final result 1s*

o(p,p) = ¢® (5h-5'h") ( 1/2a||sul|1/2a) (C50)

where

cP(sh-5'h") (-1) (aPsnila,a 5,h WP sh)

S1h
|apS'h'>

@ p [2s+) s+ @) 0]

(x) W (1/2 1/2 1, 5 8' §;)'W (a a Ty, hh'h,) (c51)

P, q and r must be less than half shell numbers. If not they should be
substitutde by p' = 2(a)-p, q'=2(b)-q and r'=2(c)-r where (a), (b) and
(c) are dimensions of a, b and c respectively.
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Substituting in (C28) - (C30) we have®

. S
Ry lp(ar)p,8n-8'n'] = (-1) pDQ'Z(/(NiNlNOs N N'N,)

() 68 (s;h;-5'n") (172 allsul[1/2a) 6“4“4' ’ (c52)

1t = Sq y 1 1]
Rjk[p(qr)q,Sh-S h'] =(-1) QQ'DL‘QAW(NZNZNO,N&N&N?’)

1 1]
W(Na N, N, NN Nl)

(x) 6 (s,h-s!h!) {1/2 b||sul|1/2b)6. ., & .
S b 2°2 7272 ( > NlNl N3N3 (C53)
an

R. RN Sr '
slPlar)r,sh-sthr 1= (-1)5F 29 D QW NN N N NIN)

(x) W(NQN;‘NO, NN'Nl)

r
G5 (S3h,-53h3) <1/2c||su||l/2c> N (C54)

11 272

5. HETERO CONFIGURATION THREE ORBITAL REDUCED MATRIX ELEMENTS

Rjk,(pqr Sh, pq'r'S'n')

Here, we consider the reduced matrix elements Rjk-between states
|j> and |K> with both having three open orbitals of the same symmetry but

different configurations.

*Sp, Sq and Sr are the sum of powers of (-1) in p(pp), p(qq) and
p(rr) respectively.
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The R in this case, can be expressed as

k!
Ry, s = (xysnl B T’ ) (€55)
where
- P q-1 r .
|ijh) I[a 5,0, (b777S, hyc s3h3)84hl’] j,Sh> (C56)
xS 'h') = |[apsih'l(bqs,éhécr—lséhé)sahl"] oS ) (c57)

The orbitals a, b and ¢, in (C56) - (C57) represent three of the

five orbitals ta’ € 5 seny tb of Table 3-2.

a
Subscripts J and k' denote the electronic configuration and coupling

scheme of the three orbitals a, b and c. The determination of Rjk'

follows that of the RJk defined in (C12) - (Cl4). Considering these

equations, Rjk,can be written as follows:

—c'h'y = ¢ aP q-1 r .
Ryper (Sh-5'h") <a s,h, (6375 hyc 54h,)8,h,35h| |

ptq+r 1
(x) i su(x) | |aPs]h! (bIsihic™ "s3h3) 8 hys S'h'>

k=1

- Rjk(Sh—S'h',p) + Rjk,(Sh—S'h',qr) (C58)

where
R, (Sh-S'h',p) = <apS h. b9 1 h cTs.h,) s, h Shl[zp: su(x) ||
ik 'P 1M 2"2° 237375476 by

4 p!vqler“lvg'v,vy
x)|]a Slhl(b Szhzc s3h3)54h4, s'h > (C59)
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and
+q+
R, ,(Sh-S'h',qr) = (aPs 1 (bq ls h,c's 3h3)S, b, ,Sh] | e )}
k' +d 2° 4% Y, . v
k=p+l
(x) ||aPs'h (bgsphic™ 1 S;hy;S'h’ > (C60)
The Rjk(Sh-S'h',p) of (C59) is given in (C20), whereas Rjk' of

(C60) is a new type of reduced matrix element to be examined in the
following. Considering (C21) and (C31) one finds that

,(8h=S'h',qr) = (-1)(sS ¥, hythi+h) (%) 29

Rk 1

@ (s h,c%s,h,)8,h 15 suco |l Fsin: )sjh) )
x Szz’°S3344K2=:1 su sjpse” s3hy)s)h,

(x) aV(N NN, NN'N ) . (c61)
11
where as in (C31)
_ 1/2
9, = [ () (c62)
and
W (N NjN NkNlN ) =W (S Sjl 8, 5,5 ) (x)
S.S.1 h.T
() W (hyh,T), hyhyh) = 3y fy 131 (C63)
Skslsm hkhlhm
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The dimensions (hi) of h
E, T1 or T2
related to the 6] symbols as defined in (C32) - (C35). The last term to
be determined in (C61) is:

1 in (C62) are 1, 1, 2, 3 or 3 for h1 = Al’ AZ’

irreducible representations of the cubic group, W and W are

+r
-1
Rik? [q-l. r; q, r—l]=<(bq S)hys c"'53h3)s,‘hl‘llfz1 su(x) ||

() |1(bIsphic™ sinys;h; ) (c64)

Before considering Rjk,(q-l,r,q,r—l), a preliminary investigation
of the permutational part of the simplification of the bra (Z'| of
bq-lcr and the ket |Z> of chr—l is helpful. For any single electron
operator, F = Zkf (k), the matrix element between (Z"= ((bq—lcr| and
IZ) = |chr—1> may be described as follows:

|z) = [q!(r-l)! (q + r-—1)!]~1/2 Y (—l)uﬁjbq u>- |Cr'13'>
u

Gl o= [t et @+ e 2L oY) (3 et (e
\Y

Then,

<Z'iF|Z>= [q!(r-l)!(q+r-1)!]'1/2<zv| § (_l)u PuFIbqa Ct_lB')

qtr-1

- u):v (-n¥*ty P, <bq'1a'l . <ch|PuF|bqa> cr'18'>
(x) [q! (a=1)1r! (e-1)! (atr-1)1 (qer-1)1] /2 (C65)
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where<§q-la'| . <cr8| is a simple product. The next step is to express
the Ibqa> and Icr8> as function of their coefficients of fractional

parentages:

|bqa>= az':' <bq-1a;',b|} bqa>‘ |bq—1a" + b, a> (C66)
Icr8>= BZ” <cr8 Qc,cr_l B") . |c,cr-1B", 8) (C67)

where a,B,0' and B' in (C66) - (C67) denote the characterizing symbols

of |bd yesane ct , sugh as S!'h! in (C61) for b9 ). Substituting in
£ 272

(C65), we find:

2: (_1)u+v >
‘u,

\Y

\Y

' _ Ve 1Y ! _ye]-1
(z'[F1z) = [at-D(q + 1] a'):.’s

(x) <cr8 {:c,cr-ls" > . <c.cr_18",8l ‘<pq_1a'|PuF|bq—1a" -b,a)

-1, q-1 4, q 1/2
(x) |cr B b* Ta'', b‘}b a ) (q/r)
> < ) -

Considering that

q+ r-1
F = z £(k) ’

k=1

one has

): PHF =(q+r-1)!F
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Substituting in (C68) one has
(z'I¥lz) - [a! (x-1) ] -1 Zv -1 Za,.e.,<ch{c,cr_lB">
SO IR Gt L R X B C
. @ {(p3larr, bﬁb%) (q/r) Y2

- Z B['c'll(r:—l) E]_l ‘ Z P <chﬁc,cr_18"><bq_1a",b§bqa>

te

(e, et (o7t r@ [ ar + b, 0}l ) (/2

= Z [q! (r-1) 3]—1<cr8 {|c,cr_18' '> <aq-la' '\b I}bqa >

a"’Bli

(x) <c|f|b>(r—1)! Sgrgr (@1 1800000 (q/r) L2, (qr)

= (qr)l/2 <cr8{|c,cr_18'> <bq-1a', bl} bqa> <c|f|b>

Thus
+r-1

q -
<bq—1a', e8| Z f(K)lbqa, ck 18')
K

- @t (7, b}“‘ﬁ} S QC’CHB'> (el (c69)

’
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We now apply (C69) to obtain

L.l q-1 r +
- <(b S,hps¢ S3hy) §,h, || i& su(x) ||
K=

@ 1 Isghs, < sing) sing ) (c70)

imM M) 6,6

- Z - S[‘—Mg‘ q-1 r . Z Qaryt
(-1) <l> 5,h,¢7S,h,:5,h, Mo | . su(k) [bIs5hy
4644 (c71)

(x) " 'syny, szhaﬁ'e'> V (5,8, 1,-M M'{) V (h,hT, 80'-1),

Here
q-1 r . : _ >
<b S,h,c S3hy58,h M0, | = ) ' <§253M2M3|52s334M
M,0 M M! m
2727373
)
929293 u
(x)(h,h.0.0. | hohoh 8 (b3 s h m o |le¥s.h lc,cF 7t
23273 2374 4> 2727272 33 i
tl.tm?t? 1 1 1 1 ' 1
S3h3M363> <1j283mM3 |1/ZS3S3M3> <ch3u93 |ch3h393 >
S
<c 83h3M363| <c mu | (€c72)
Also,
Iqu'h'cr-IS'h'S'h'M'e' = Z S'S'M'M'I s S S M
272 P3"3%74° (525331 S,545,M, )
1 RVa] |
M2M2M3m
LR
629293u
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(x) (h:.,_h39265 hyhihio} > ( pd-1s S,hps bm'y' I} bqséhé >
(51124 |s,1/25 3 ><h2bezu | hybhjes) [bm'u > |c"1s5h5M593>
(x) |69 s!niu! °2>

222

Substituting in (C71), one finds:

L. Z Z 8 gy 67

' 1 '
:I.H M M2M3M3m M2 M3

849, 8,8303¥ 620,
(qr:)]'/2 V(Sasz;,-MaMz-i)

(x) <s2 MMy [5,8, 4M4><1/2 Sim M'| 1/2s! s3u3>
(x) <8283M2M5|828384M4 ><821/2M2m' |s,1/253M >
(x) V(hlh,T), 0,6, 1)

(x) <h2h39263|h a°a> (chéue3|ch5h3ea>
(x)<h2 39263|h h! 695) <h2b62u |h,bh,8) >

(x) (ar"1s3h3{]c, < Lsgng Y (b3 8,n z,b}bq 203 )

.
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-1 -1
(x)<bq SthMzezl <cr SéhéMéB:',‘ | <cmu|su|

r-1 q-1
@ Jomu ) Jem sgngses b5 s,n 0, ) @)

The individual coefficients appearing in (C74) can be simplified further

as follows:

<Cmu|su|b m'u'> = (_1)1/2—m

V (1/2 1/2 1, -m m'-1) [-1]°‘u
) V(e b T, ~uui){(1/2 c||su]|1/2 b)Y

. 1/2 2s
<sistiMj|sistkMk>= (25, +41) 7T (-1) 3+ s, M

(x) V (sisjsk, MiMj-M.k)

and
h,h,6,6, |h,h,h 6 =(h)l/2V(hhh 0,6,6, )
173717311 %k k 197k "1°3°k
Substituting for coefficients in (C74), we find
LJ _ Z (-1)52 S) + 53 =Sy hy+h,+h,
MM !
iM4M2M3MM M2M3m
fatpg?,, !
649263u 0 6263u

1/2 ! o r r-1_, q-1 q
@) 9,589 (c"s;h, {l"’ " syhy ) (b Szhzb}’ 55 hy)
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i v . _ ot ' _
x) Vv (54541 -M,M, -1) V(SZSBSA,M2M3 M4) \ (1/25353, m-~ M3+M )

5, talal _M "y U ' M'y U - _
(x) v (828384, M, M3+M4) vV (8,1/28,,M,m-M)) V (1/2 1/2 1, -m m'-1)
(x) v (h4 3T 6,1) V (h,h 3 h,) V (c h3 3 9593)

!

(C75)
S.-S, + S.-S., + h, + h, + h 1/29999,
= (-1) 2 "2 3 73 2 2 3(qr) et

(x) bq_lszhz, }bq s! hé><c S.h {c,cr—lséhé >
<1/2 c|lsull1/2 b>

(x) Z v (

iMl;MZMBm

1
M 4M2M3

-M) V ( Sy ' 1/2, M-

57835, MM, 3~M3-m)

x) Vv (8,558, ,-My-MzM") V (8,8;1,-M M -1)

(x) V (5,8 1/2, m') V (1/2 1/2 1, m'-m-1)

~MaMom
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t tnt L AN ) 1atnt
(x) E: V(h2h3h4,626364) vV ( h3h3c, 6363u) A (h2h3ha,629§64)
u 9263641
LN - N1 -2
u 626364

' ' ' 14y
(x) v (h4h4T1,04941) \' (hzhzb,ezezu) \ (Cle,Pu(é;B)

The sums in (C76) are the same as the 9-j symbol® and defined as:
X |abc, def, ghk] = ZIaBySe¢nbk V (abc,aBy)- V (def,ded)

(x) (ghk,néx)-V (adg,odn)»V (geh,med) -V (cfk,y¢k) (c77)

Substituting for the sums in (C76) and recalling from (C64) and (C70)
that, Rjk,(q—l,r; q, r-1) = L, one has

S.,-S!+S!-S_+h_+h'!+h_+h!

2 "2 737372727373 1/2

Rjk. (q-1,r;q,r-1) = (-1) (qr)

-1 -1
< be Szhz,bl} qu:'Zhé > <crséhéﬂc,cr S3hy >

(X)QQQQ' xfN N L, N'N'N',N NN
2344 234 234 bco

(x) {1/2¢||sul]1/20) - (C78)
where

(x) X [hihjhk, hhh, b Tl] . (C79)

%
They are also called X coefficients (See Ref. 26)
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and the remaining coefficients have their usual meanings. Substituting

in (C61) and taking into account (C58) - (C60), one finds
p q-1 r
<a S;h; (b3778,h,, ¢85hy) Shy, shi| ZK su (k)

Parpt (ndcrnt I larpe tht.Qtp!
() ||aPsihy (b9s5hs, c"TUsihy) SihysS'h >

=R,,, (Sh-8n) = R, (Sh-$H, p-p)

1k’ 1k

+ Rjk' [P, (q_]-,r, Sh) -—(q,r—l, S’l’;)]

_ (_1)Sl+Sa+S+hl+ShL+h99, WSS, WN)

(x) €0 (s;h;-Sih!) <1/Za| |sul |1/2a'> 6N4NA

Sl+S 4+ S+h1+h 4+h
- ' ' '
+ (-1) DD W(Nl‘NaNo, NN Nl)esNlNi

5, -5, +5 -5 +h_+h_+h_+h
2
(x) (-1) 2723737272373 (qr)l/

OG5 hg, ol Potsing ) (s (S

DD X INTN?
x) 22,99 [N2N3N4, NININ, NbNCNo]

0 (1/2¢]|sul|1/2 b) - (C80)
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The complex conjugate of etero-configuration; three orbital reduced
matrix elements can be obtained from (C80) by appropriate symmetry

transformation on W and X coefficients in this equation. The result is:

YR .= Pertptndarpnt Fdars tTht.gtht
R.p4(S'h'~5h) (2Psqnjdsghs T ising) sihissth | szu(K)H
P q-1 r
() [laPs by (6% 75 h e s0h,) s, sh>
= Ruj(P,S'h'-Sh) + Rk.j [p, (q,r—l,s'h')—(q—l,r,Sh)] (c81)
where
si+ Sl’++ s+h i+h 4+h
Ry (p,8'h'-sh)=(-1) DD U(N,N'LI,N'NN,)
3 11 4
P o(arpr_
) 6P (s}h!-g h) <1/Za| |sul |l/2a> g, (c82)
and

S1+5,+8"+h +h +h'
Rklj [P, (q,r-l,S'h') - (q-l,r,Sh)] = (-1)

LI L (] 1 1/2
DD W(N4N4No, N'NND) (qr)

) (b3 {Ib,bq‘1 S,h, )’ <c,cr_lSBh39cr83h3><l/2b ||sul| l/2c>

D99 D -
(x)# %%, 2, X[NEN?’N[‘, N,NoN, NchNO] i (C83)
1M1
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Recalling (C56) - (C57), one finds that in both X, and x; the aP
r~1

parts of the system appears first and then bq, bq_1 and ¢ R c’ parts.
Moreover, part b4 and c:r—1 are always coupled together, first, and then
their results are coupled to aP. The desired matrix elements are not,
however, arranged in this fashion and appropriate recouplings and couplings
are needed to bring the three participating parts of the system in the

above form. This has been done by using the following formula:

. ] 1 ty, ? 1 1 |} 1 ] ]
<[Slh152h2]sehs, A Shllg- su(K)||[Slh182h2] Sth!,55h),5"h >

S +S_+5_+545' 45! +5' 48" ' +h'+h' '
i E: oy g5 845 #8145 S h +h +h th) +h)+hithin

1NN, N3NN¢) . &V(NiNéNéNéN'N& )

(x) (s-lhl(szh S.h.) S

253N, ¢h¢, Sh||ZK:su('<)|ISihi(S'h'S'h'),S&hé,S'h'>

2233

(C84)

For the spin sextets, the sum reduces to one term because there is only
one S¢h¢ and one s$h$ which results in the same Sh and S'h'., The values

of Rjk' are given in Table 3-4. Now, we consider the problem of
four orbital reduced matrix elements.

6. HETERO~-CONFIGURATION FOUR ORBITAL REDUCED MATRIX ELEMENTS

Rjk,.(pqrs-ISh,pqr-ls S'h')

Here, we consider the reduced matrix elements R k' between states

3

.
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Ij) and lk") both having four orbitals of the same symmetry. Two of
these have the same configuration p and q in both |j>and Ik"), whereas
the remaining two have configurations r and s-1 in |j) and r-1 and s

in |k">. Therefore,

Rjk" [(pqr s-1) Sh- (pqr-1s) S'h']

=%y par,s-1sh| | £ sut) | 1x01 (par-1,8)s"n" )
k (c85)

where

= P q r .
|xj (pqr,s-1) Sh> | (a Syhyb8,hy)85h, (e Sahad SShS)s6h6’Sh>
(Cc86)

and

- LY q
(c87)

All states can be arranged according to Ix (pqrs—l)Sh) and
xk..(pqr- »8)S'h' )by transformation similar to (C84) Hence the remaining
calculations will be limited to the determination of Rjk,,[(pqrs-l)Sh-(pqr-ls)

S'h'].

Using (C16) -~ (C17), one decomposes Rjk,,[(pqr,s-l) h—(pqr-]s)ghv]
in terms of Rjk(pq) and Rjk'(r’S)‘ Rjk(p’q) and Rjk.(rs) are, respectively,
similar to the Rjk(qr) given in (C21) and the Rjk,(qr) given in (C61),
except for the subscripts of various spin operators Si and irreducible
representations hi' Taking this into account, one can immediately write

down the R k' s follows:

3

jk"[(l’qfs 1) h-(pqr-1s)s’ h'] = Ryyro(pars,sh-s'h’)
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- p q r s-1 .
{(aPs;h bIs,h,) 5,0, (s h, 0 schy) sehg s shl | ZKsu(K)H

Patrt1i9ctntyetpnt ¢l Lo 1 a8 a1y atht, ot |
() || (aPsihibIssng) sihy(c™ s hid®sthl) S{hls'h )

S,+S,+S_+S_+S!+S8'+h_+hl+h +hl+h +h'

] ] ]
(x)W(NlNlNO,N N.N.) W(N3N3No, NN'N

37372 6)

(x) GP(S,h,-S'n!) {1/2a||su|l1/2a)s, ., &
a < > N2N2

11 111 N N’

6 6
S.+S.+2S_+S_+S'+h!+h!+h'+h'9D 9'D D
+5,425 45 +5!+h +h ) +hi+h'D D' 3
+ (1)
1 1 . ) ]
(x) Z(/NZNZNO,N3N3N1) Z(/N3N3NO,NN N6)
(x) 63(5,h,-S!h!) <1/2b||su||1/2b>- 5 §
b 22 272 NN} NN

S_.4S_+S+h.+h'+h
sen 28 2009909

r-1 Y . s s-1
(x) <c,c sl"hU} c S4h4> <d Sih! {ld,d s5h5>




Yot
j—
~

(X)W (N N N ,NN'N ) ﬁ:(NAN 'NIN!

(x) fi/zcllsu||1/2dﬁ §

The matrix elements R

jk' |

A RAVALLPE
N.N!

33

are given in Table 3.5.

NcNdNo)

(c88)




APPENDIX D

COUPLING COEFFICIENTS OF SPIN ORBIT MATRIX ELEMENTS
TO THEIR REDUCED MATRIX ELEMENTS

The purpose of this Appendix is to discuss the relationships
between the matrix elements of spin orbit interaction between a pair or
state and its corresponding reduced matrix element between the same
states.

The states which are suitable for calculation of spin orbit inter-
action are those behaving as the irreducible representations t of the
spinor group. The spin orbit matrix elements arising from lx.ShjtT>

and |y S'h'J't'T'> of the two states |x.Sh> and |x S'h'>can be expressed
* k 3 k
as’ (3.13)

1 1 1] 1 ]
<ijth'r|ZK su(K)lka h'J't't >

= \i \i . 1 1
<ijh|!2K su(k) | [x,S"h") K, (SS'T,, h'ht) 6 ., 6, (01)

*
Considering (5.22) and (2.20) of Ref. 26 one has

i T i A TQIpt et ot
<xSthT|ZiaB[(§i£ )a 1 (s, Tl]y 1lx's'h'J't 'r>
= i T i A tQIpt et t
_<xSthTl|ZiaB[(CiZ )a 1 (s Tl]Y 1]]x's'n'J'e T>
(x) v(et! Al’ ' )
= i T i T A tQiRt ! v>
<xSth||ZiaB[(cil )a 1 (s )B 1] 1l x's'h'J't

(1% s,

tt' 1t

118
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The <ijhI|ZK su(K)lkaS'h'> was discussed in Appendix C. Here
we focus our attention on KJJ,. This coefficient may be also called the
spin orbit matrix coupling coefficient or simply S-0 matrix coupling
coefficient. Moreover, it is written in several different forms as

occasion demands. These are:

= 1 ' - SS'Tl
Kygr ¥ Kyp0 (88'T, h'he) = Kipr (h. - (D2)
The coefficient KJJ, is obtained from the formula (Ref. 26, p. 82)
' ' _ _1yS-M'+1 . . h+6
KJJ, (ss Tl’ h'ht) = E: (-1) [-1]
rMM'66
(x) V (88'1, -MM'r) V (hh'T , -66'-r)
(%) <SthT|ShM6>'<S'h'M'8'|S'h'J't'r> (D3)
The numerical values of KJJ, are given in Tables (3.9) - (3.12). The
cases where h = Al and h = h' = Tl are of particular importance for

. . . . 6
evaluation of spin orbit matrix elements between ground state Al of

(3d)3 6S ions in crystals and charge transfer states and will be examined

in more detail as follows.

1. DETERMINATION OF K

gpr (S8'T

1° h'ht) for h = Al

Here, we consider the coupling coefficient which relates the
matrix elements of the spin orbit interaction between the ground state
Al and charge transfer excited states to its corresponding reduced

matrix elements.
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We represent the above charge transfer excited state by lx'S'h'J'tT>
where, as before, x', S' and h' are, respectively, the electronic con-
figuration, spin, and irreducible representation of the cubic group of
this state and J', t and T are pseudo-angular momentum, irreducible
representation of the state in spinor group and its component, respec-

tively. Instead of the ground state 6A 5/2, the state |S A1 J T) will

1’

be used and the result will be applied to the particular case of
6

| A, 5/2 T).

Considering (D3), we have

K (ss'T

S-M'+1 h+6
33 1’ h'Alt) = Z (-1) [-1] \Y

rMM'e0"'

Ss'1
-MM'r

A h' T
x) V .l

<s A Jt|SAM1> <s h'M'6'|s'h' Jt'r>

Considering Griffithl7, p. 117, gives:

A h T

16r) -T‘(—?T Th"r,e'

alsdrkp. 77)

\'

sS'1y _ 25 '+S-M 1 VoMt 1t
_MM,r) = (-1) _\/(23+1) <1s ™' |18 SM>




Thus
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- ]
Kypv (S8'T), h'Ajt) = (-1)SMHL g4t

\/cr Y @D rrzm, oryhy " Bgrr

06"

@ (15" |lS'SM>°<S AlJtTISAM6><S'h'M'6' |S'h'3 ey
T’I‘i_)(Z%_-l-l) D) ™ (1s'ru’ | 157w

(x) <s A Jtt|s A1M6><S'T1M'r|S'h'J't"r>

ﬁﬁ (-1 SHZ <SAJtT|SAM6> Z

M''M'r

(x) <lS'rM' |lS'SM><lS'rM' |1s'a M '><J'M"|J'tT>

= (T_i)"(_zsi—l) -1)St Z <SAJtT|SAMe><JM"!J tr> Z 1™

mll

(x) <18rM' |lS'SM><lS'rM' |1s'3'M" '>

\/(T) . (zs+1) Z <s A Jtt|s AM6><J Mg t‘r> Syprt 185516y

}m"

1 1 11
’\/(Tl) " ZstD Z<SA1“'SA1M9><SM'S“ s3t Y (T)) (285+1) ©
M

T

3

sI°n' Ty




Therefore

s8'T, -
Kigr h'ae] W/3(2s+1) 83 Ssyt 6h'Tl (D4)

Several important conclusions may be drawn from (D4):

(i) The spin orbit interactions couples the ground states only

to excited states |x 6T1 5/2tT>and|x 4T1i 5/2t‘f>

(ii) The matrix element is independent of t and, as a result
of this, no splitting will occur from a second order
perturbation.

(iii) The matrix elements are independent of S' and thus, the
energy shift resulting from 4T1i and 6Tli depends only on
their reduced matrix elements.

The next important coupling coefficient to determine is between

IxiSh> and Ix'iS'h'> where h, h' have T,, symmetry.

2. DETERMINATION OF K (sS'T h'ht) for h=h' =T

JJ' 1 1

The coupling coefficients relating a matrix element of the spin
orbit interaction between a pair of charge transfer excited states whose
irreducible representation in the cubic point group is Tl will be analyzed
in this section. The importance of considering this coefficient is

apparent from (D4):

' = 3
K e (SS'T), h Ajt) W/1/3 (2541) 81 * 8gpr Spup

l,

which indicates that the ground state 6A1 couples to charge transfer

excited states of T1 symmetry alone and is not split by that. Conse-

quently, a splitting by spin orbit interaction of the ground state 6Al
|

of the complex [I !&4]-n may occur through higher than second order
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perturbation and through the intermediary states, two of which, at least,
must have symmetry Tl. Therefore, determination of KJJ. related to such
states of T1 symmetry deserves particular attention and we begin by

studying K (SS'Tl, TlTlt) as follows (D3):

AL
1 1 |
ss'T, | i S+l e o [S8'1 TiT1t
K lrre] = -1 -1 v Y '
\ 171 A0 66" \ - x -00'-r
VAT 1at]qt '
(x) <s$lJtr|STlMe> (s'TM'6'[s'T ' tr)
where
ss'l ) : (TlTlTl 111
, =\ [ —— T . =
v —MM'r) V 25+1 (s'u'e|sm); v \_60'r Veerr

(shat|shme) =Z (shatr|am' 1) (' [s1m6)

Mll
<S'h'M'6'|S'h'J'tT> = E:: (s'h'M'e'ls'J'Mﬁ"> (ot rr|st1grer)
M'V'
Thus
$S'T; SS'1 ) [111
K.’ = Z . Z v v (2J+1) (23 '+1)
JJ TlTlt MMM ™' 60 —MM'I‘, k—eer V )
_ | st _ | s1
(X) \Y MlelMlvl \ r\i__eMVI

(x) <51JtrynV'> <J'M"'|lS'J'tr>
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S1J
M-6M''

SSl 111 SlJ' 7
-66'r MeM"'

M'M''' M"r
ge'

) V@3 +D) 2+ (s1aee | It ls 1 er)

111

) Y (23'+1) (23+1)

§s'J

Z (2J+l) 8330 Syrrwrre ¥

M' 'M' LR}
o {syaer|om D{amr ' arer)

111

111
= Z W(SS'J) <JtT|JM"><JM"|JtT> 6JJ' = W{sle, 6\]-‘]-I
Ml'

»
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APPENDIX E
FOURTH ORDER PERTURBATION

This Appendix gives the formulae necessary for the evaluation of
the fourth order correction to the energy of the degnerate state 6A1 of
the complex* [z A4]_n'. In Chapter IV it was shown that the fourth order
is the lowest order of spin-orbit perturbation of 6Al by charge transfer
states which can 1lift the degeneracy of 6Al and contribute to the cubic
field splitting 3a. Therefore, to determine 3a one must employ fourth
order perturbation formulae.

These formulae can be obtained from the general expressions of nth

"
order perturbation given by Corson’

En(s) Bt = ij(Hr’SIVIHj’k><Hj’k|Kr’S; n-1)

n-2
- Z Ev(s) ut (8525 |k"°%; nv) 41 (E1)
v=2

where |Hr,s>’ |HJ’k> are respectively the ground and excited states being

involved in evaluation of En(s) Hr, the superscripts s and k in |Hr,s)

and IHJ’k> designate the sth and kth degenerate states belonging to the

energy levels 1" and HJ,

*
+See Appendix A
E. M. Corson "Perturbation Methods in Quantum Mechanics of n-Electron,"
Hofner, New York (1951) p. 75

125
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H H

CLIEAE _Z (Hj’klvlﬂszH’Ller’s; n-1)
i LT
L,m

n-1 (s) .r ( j,ky,T,s
E ut {ud F|kT %, n-v
+Z 3 Hj_Hr' n> itr (E2)
v=1
and
<Hj’k|1<r’s,1>= @ - it <Hj’k|V|Hr’s> . (E3)
(s) 6

Substituting in (E1) - (E2) one obtains the desired Er . The A
— ' .

ground state of the complex [Z Aa] n, behaves as angular momentum J = 5/2.

The irreducible representations of J =15/2 in the cubic double group

are E'' and U'. Thus

(s) 6
En Al

= E(n)(s); s =U"'" or E"' (E4)
For determination of the cubic field splitting, 3a, up to fourth
order perturbation, a much simpler formulation is enough as will be seen

below. 3a is the difference of the energy corrections E(é) (U') and
(&) o
E (E'"),

3a = @y - ¥ @y, (E5)

and fourth order perturbation is the lowest one giving rise to such splitting.

Thus all terms comntaining Ev(s) nt = E(V)(s) will vanish and the only

contributing terms to (E5) are obtainable from the general formula

»
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e () - E® (1) - E4(S) B - Ea(s')nr

= Z [(Hr’slvmj ’k> <Hj ’ler’S,3>

jk

-<Hr’S|V|Hj’k><Hj’k|Kr’s ,3>] (E6)

where
CLEED 5 (d Xyt Esm k708 )
bl .
j_our
by B - H
n-1 -
g (8) yr <HJ’k|Kr’S; 3—\)>
+ Z N 3 - (E7)
oot W - "
and
<H2,ler,s 2>= g <H2’m|V|Hp’q><Hp’q|V|Hr’s>
P,q WP - w5yt - 5Y
r P,q r,s
+ E_(s) H <H' |K™? ,1> (E8)
i wd ~ut
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Substituting in (E6) and eliminating terms having E(S) one immediately
finds that:
] . .
= ) {(W vl <Y v ) (v P9

jk;im,pq

(x) <Hpq|v|Hr’U'> [(Hj - @ - BN @P - Hr)]‘l
- <Hr’E"Ivlﬂj’k><Hj’klv|um><ﬁmlvlﬂpq>

o (P v et Had - i@ - wH @R - Hr)]‘l} (E9)

or more simply

3a = - 2 (EjEﬂ,Ep)—l {V(rU',jk) V(jk,2m) V(&m,pq) V(pq,rU')
j4p,kmg
- V (zE'',jk) V(jk,2m) V(&m,pq) V(pq,rE")} (E10)
where

1 s
V(rU',jk) =<HrU |v|ud ’k>
and

E, = H -H; 1i=3,%p (E11)
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Since spin orbit interaction is diagonal in U' and E'' we can

substitute for k m and q in (E10)

JUL JU, . JqE"

(E12)



APPENDIX F

SPIN-ORBIT MATRIX ELEMENTS BETWEEN
|x ShMé > AND |x'S'h'M'6') FOR S = S'

In this Appendix we consider a different method of finding spin-
orbit matrix elements which is applicable to pair of states of the same
spin value, S = S'. This technique is particularly useful for the
evaluation of the contribution to the cubic field splitting 3a from the
spin sextuplets of charge transfer states. Since S = 5/2 for all states
it can be considered as a constant and integration to be carried out
over the orbital part of spin-orbit Hamiltonian only. Thus, instead of
bases of the spinor group, |Jtr>, we choose the bases |h6> of the single
valued cubic group for the evaluation of the matrix elements.

Following (9.26) of Ref. 16 and considering the fact that for
S = 5/2, there is only one state |h6> for any of the charge transfer
states given in Table 3.2 one can describe the spin-orbit matrix elements
in the |ShM6) scheme as follows:

i.i ' Mgt
<x ShM0|Z r.h s [x'sh'M'e’
i

=Z (x shme|z 2" |x"sh'me")(x sh'me' |s¥|x"sh" 6" (rL)
i
The vector E} in (F1l) can be replaced as follows™

503 + 1) (x Sh'Me’ |§i|x'Sh'M'e'>

=<X Sh'Me" |§|X'Sh'M'9')<x'Sh'M'9' I_§_i'§|x'Sh'M'9'> (F2)

*
E.U. Condon and G.E. Shortley, '"The Theory of Atomic Spectra,' Cambridge
University Press (1959) p. 61
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where

(1/2)(3/2) + (1/2) [S(S + 1) - (1/2)(3/2) - (S - 1/2)(S + 1/2)]

(1/2)(s + 1). (F3)

Substituting in (Fl1) and (F2) one finds

- 1/2) s+ 1)

1] 1) i L ] L '>
(x sn'mo’ |t [x"sh'ure TS

X Sh'Me'|§]x'Sh'M'6'>

= <x Sh'Me" | (zs)‘l§|5h'M'e'> (F4)

and

(x shio| Z £ 878" [x sner)

1

= @257t <x ShM6[§|x'ShM'e> Z(X ShM'GI?;i&iISh'M'e'> (F5)
i

To obtain the cubic field splitting from these matrix elements one carries
a fourth order perturbation calculation on one of the components of S
such as SX and selects those states |ue> which would result to a non-
vanishing term be4. Comparing this term with the spin Hamiltonian given
in (2.1) one immediately finds that the contribution from the spin

sextuplets of the charge transfer states to 3a is

(32 (5, D] = 18 Z b, (F6)
J
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where j covers all fourth order perturbation channels giving rise to
terms of bjsx4' Our initial results!® were obtained by this very simple
technique. The disadvantage of this method is its limitation to a fixed
manifold of spin S and, consequently, it is not applicable to spin quad-
ruplets and doublets of the complex [IX Aa]_n' which has a ground state

spin § = 5/2. Moreover, in this technique an apriori knowledge of the

spin-Hamiltonian is necessary which is in contrast to the method described

in the text.
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APPENDIX G

COVALENCY DEPENDENCE OF THE CHARGE TRANSFER CONTRIBUTION
TO THE CUBIC FIELD SPLITTING 3a (o,Il)

In this Appendix, we examine the dependence of the cubic field
splitting, 3a(o,ll) on the covalency of the molecular orbitals involved.

Recalling (4.6) one has

4
& b-i i
3a(o,m) = 3a = iio C; &4 Z, (G1)

Here, Cd is the spin orbit interaction constant of the d orbitals of
the S-state ion (e.g. Mn2+), Cp is the spin orbit interaction constant
of the p orbitals of the surrounding ligands [e.g. S in ZnS:Mn] and Ci
are functions of the coefficients of linear combinations of atomic d
and p orbitals.

Now, a question arises on the nature of the coefficients Ci in the

limit of ionic approximation where the coefficients of ligand orbitals

vanish.
To investigate this we examine 3a(o,1r;tl - ea) of (5.21) and
3a(0,ﬂ;tb - ea) of (5.25). The first one is
2 -1 .2 4
3a(c,n,t1 > ea) = - (9/1250)[6l (61 + sl)] B Cp (G2)

Comparing (G2) with (Gl) one finds for 3a(0,n;tl+ ea)
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and

c, = ~(9/1250) [8,% (8, + e 17T 87 (©3)

where 61 and 61 + ey are energies r;quired for a ligand to metal electron
transfer as shown in Fig. 5.3 and B~ is the covalency of the de orbitals
of the S-state ion as described in (3.16). For an S-state ion in a

II-IV compound with higher iomicity 61 increases whereas 82 decreases.

2
Thus at the ionic limit where B~ - 0 one has

Lim C, > O (G&)
B2 » 0
and consequently

Lim 3a(o,m;t
B2 > 0

17 ea) -0 (G5)

Now we examine 3a(o,m;t, - ea). The coefficients Ci of this term

b
are given in (5.25) as follows:

¢y = [(18/625) 18" %6, + ;)17 6 o ],

c, = [(18/625)[61'2(61’ +e 16 P P -2 VB a s k] "
c, = [(18/625)[61'2(61' + e DTGB M2+ g F b

¢, =[ @sreasyts, (st + e;017 8 A ~(/B/2) 1) ex
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and

“ " [(18/625)[51'2(61' +e N1 O ]82

At the ionic limit both B and A approach to zero whereas 61' and
] ]
61 + €1 increase. Thus
Lim C ;> 0; i=0,1, ..., 4 (G6)
By A >0
and consequently
Lim 3a(c,ﬂ;tb > ea) -0 (G7)

BsA > 0

The vanishing of 3a(c,1r,ta -> ea) and 3a(o,m,t, > ea) follows from the

b
fact that in each term contributing to 3a(o,m) of (Gl) there is at least

s orbit i
one spin matrix element of the type tatl, taeb, and tatb where

ab = <i/2 allz £°s||1/2 b> 5 a,b=e_, t

a’ tar Fpr Yo &y -

The reduced matrix elements ab are given in Table 3.13. It is
evident from this Table that all such reduced matrix elements contain
B and or A. Both of these vanish at ionic approximation and consequently
all contributions to 3a(o,r) of (Gl) vanish at the ionic limit as

expected.
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