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66, Eq. (5.40)

74, Line i

74, Line 18

89, Eq. (c17)

117, Eq. (C88)

133, Line 20

135, Eq. (G6)
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ABSTRACT

Molecular orbital techniques have been employed to find the cubic

field splitting 3a of (3d) 5 6S ions in II-VI compounds of T d symmetry.

The parameter 3a is calculated by perturbation analysis, through spin-

_i --_i'si--between the ground state t 3 ea 2 6AI andorbit interaction E

taPi 4-p aexcited states I S1 h ea $2 h' Y $3 h3' S h >. Here ta,e a are

the antibonding orbitals of the complex composed of the (3d) 5 6S ion and

its four nearest ligands and p and 4-p are the hole configurations of

orbitals ta and ea, respectively.

The perturbation calculations have been carried out up to the

fourth order which is the lowest order necessary for the splitting 3a to

occur. Moreover, these calculations have been limited to the very small

number of states which arise exclusively from those initial states t p

4-p a
S1 hI, ea S2 h2 ......... with SI, S2 ... having their maximum value.

The analytical result is found as

4

I i3a = Ci 4-i _P

i=o

5 6S
where _d and _p are spin-orbit parameters of the d-orbitals of (3d)

ion and p orbitals of the ligands respectively. The coefficients C. arei

functions of coefficients of linear combinations of d and p orbitals

which give rise to the molecular orbitals ta, e and y. They are alsoa

functions of energies Ejk required for promotion of a hole from a state

IXj S.j h.j > to another stateIx k Sk hk >. The Xj and Xk in above states

describe the hole configurations of orbitals ta, ea' y and their coupling

scheme.

ix



Numerical results, obtained for states I×S = 5/2 h> of Fe3+ in

the series of ZnS, ZnSeand ZnTe compoundswith a reasonable set of

coefficients of linear combination of atomic orbitals and an average pro-
-i 4

motion energy of 32000 cm , indicate that the term C4 _p contributes
a large negative value to 3a in agreementwith experimentally determined
3a of Fe3+ in ZnTe.
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CHAPTER I

INTRODUCTION

The importance of the concept of spin Hamiltonian in electron spin

resonance (ESR) is very well known.* The techniques of the measurement

of the parameters in this Hamiltonian are also well developed. However,

the attempts to interpret the measured values of the parameters have met

with partial degree of success.

A particularly puzzling discrepancy has been the ground state

splitting of the iron group S-state ions in II-VI compounds of Td sym-

metry. The first ESR measurement of this splitting was made on ZnS:Mn

by Matarrese and Kikuchi. I This was followed by Watanabe's theory + which

predicted the 3a of a given S-state ion, in several compounds with the

same formal charge, should decrease as the metal-ligand distance, R,

increases. Predictions of this theory were given support by the measured

3a in II-VI compounds with Oh symmetry. Subsequent measurements showed

that such is not always the case for every compound such as CdS:Mn and

CdTe:Mn 2. The 3a in CdTe:Mn was larger than that in CdS:Mn. This obser-

vation indicated that the point charge model is not adequate for the

explanation of 3a in covalent II-VI compounds and the covalency effects

should also be taken into account.

The purpose of this work is to explore the contributions to 3a

caused by the above covalency effects present in such compounds such as

CdTe by invoking the molecular orbital theory instead of the above-

mentioned point charge model. In order to obtain an insight into the

sources of such contribution to 3a, as well as to the mechanisms causing

*A. Abragam and M. H. L. Pryce, Proc. Roy. Soc. A, 205, 135 (1951).

Ibid, 206, 164. Ibid, 206, 173 (1951).

+See Reference 5.



the splitting to occur, a brief introduction to calculations based on the

point charge model should be very helpful. Therefore, we proceed by

giving a review of the previous work on 3a first, and then, we arrive at
the possible covalency phenomenaaffecting this parameter.

The ground state of the free ions Cr+, Mn2+ and Fe3+ is six fold

degenerate with the spectroscopic classification of (3d)5 6S5/2. Sub-

stituting such an ion in the metal site of cubic II-VI compounds,such
Mn2+ Zn2+as in the site of ZnS, one finds from electron spin resonance

(ESR)spectra of the system ZnS:Mnl,2, that the ground state of the S-

state ion splits into a spin quartet U' and a spin doublet E". This

splitting is called the cubic field splitting of a (3d)5 6S5/2 ion and

is denoted by the parameter 3a = E(U') - E(E") with E(U') and E(E") as

the lowest energy values of levels of symmetries U' and E", respectively.
The crystalline cubic field can be expressed as: 2 V = a (15) -I

(To4 + (5/14) 1/2 (T44 + T4_O)._ The matrix elements of tensors
(k)

T of
q

V for two states IY L _ >and IV' L' M' L > are:

< y L _I Tq (k) IY' L' M' L

(x) (y L I IT(k) llY' L') - 0, for L = L' = 0; k = 4

This result indicates that the ground state 6S5/2 is not split

by a cubic field but that the splitting is caused from admixture of the

ground state by excited states through perturbation by spin orbit cou-

piing, spin-spin interaction, etc.

B. R. Judd, "Operator Techniques in Atomic Spectroscopy," McGraw-Hill

Book Company, Incorporated, New York, (1963), p. 42
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A similar ground state splitting was manifested in an observation

of the anisotropy of the magnetic susceptibility of paramagnetic crystals

containing Mn 2+ such as Mn (NH4) 2 (SO4) 2 6H20. To explain this, Van

Vleck and Penney (1934) 3 considered various higher order processes

involving the cubic field V and the spin orbit interaction, H = _ _i £_si
p i -- --

through intermediate excited states using the order of magnitude argu-

ment to estimate the resulting splitting. Later Pryce (1950), 4 in

explaining the same splitting for Fe 3+, pointed out the inadequacy of

mechanisms proposed by Van Vleck3and attributed the cubic ground state

splitting of Fe 3+ to a fifth order perturbation quartic in H and
P

linear in V. The work by Pryce was followed by Watanabe (1957), 5

who based his calculations of the cubic splitting on the complimentary

theorem in the crystalline field splitting of the transition ions. He

argued that two ions with complementary electronic configurations, such

as Ti3+and Cu 2+ whose ground level can be split by the first power of V_

have always inverted splitting patterns with respect to each other when

placed under the same crystalline environment. Based on this theorem,

he concluded that a 3d 5 ion is its own complementary and that any split-

ting arising from the first power of V should be both positive and

negative, and hence identically zero. Proving, in this way, that linear

contributions of the cubic field cannot contribute to the splitting, he

extended the fifth order perturbation suggested by Pryce to the sixth

order so that the crystal field contribution could appear in the second

power and spin orbit interaction in the fourth power. In addition, he

included contributions from fourth and fifth order perturbations by cubic

field, spin orbit and spin-spin interaction. In these calculations, the

excited states considered were spin quartets; 4p, 4D, 4 F and 4G of the

(3d) 5 configuration with excited energies in the range of 30 to 50 x 104

-i
cm . The splitting 3a obtained from these calculations is positive, and

varies from about 10 -3 to 10 -4 -icm It seems to satisfy the scant

experimental data available at the time. (See Table i, Ref. 5.)

i



Upon comparing the excited state energies of _ x l04 cm -1 and the

cubic field splitting 3a of the order of lO -3 cm -1 obtained from fifth and

sixth order perturbations, there is an indication that none of the con-

tributions which might arise from other excited multiplets of (3d) 5 con-

figuration can, a priori, be ignored. Indeed, there are spin doublets;

2S, 2p, 2D(3) ' 2F(2) ' 2G(2) ' 2H and 21 lying in the region of 45 to

100 x 103 cm-I. Some of these such as 21 and 2H may be in the vicinity

of 4D and 4F and can contribute to the splitting. Powell et al (1960) 6

took all of the doublets 2S ..... 2I into account and carried out sixth

order perturbation calculations with and without spin-spin interaction.

They found that the inclusion of doublets increases the predicted split-

ting by one to two orders of magnitude as compared to the predicted

splitting arising from spin quartets alone. Their calculated results,

for the particular case of Mg0:Mn 2+, agrees with experiments, provided

that the spin orbit interaction constant, _d of Mn 2+, is taken as 400
-1

am and the cubic field strength, lODq of MgO, as I0900 cm -I.

Both of these are unreasonably high. Low and Rosengarten (1963, 1964) 7,8

carried out calculations similar to that of Powell et al without spin-

spin interaction but they included the orbital polarization factor a,

called Tree's correction factor. 9 Their conclusion was that crystal

field analysis is relatively successful in explaining the position of

energy levels of the d5 manifold, but it is not capable of explaining

the finer parameters such as the cubic field splitting, 3a, and the

spectroscopic factor, g, both measured from ESR spectra of 3d 5 6S ions.

A comparison of the above theories with ESR measurements on Mn 2+

in several compounds was made by Hall et al (1961). 10 They observed

that their measured 3a for Mn 2+, in a number of fluorides and chlorides,

could be accounted for by Powell's theory, whereas the agreement for

11Zn0 got worse. For very covalent compounds, CdT_and ZnTe, a dis-

crepancy of almost one to two orders of magnitude can be found. This

indicates the inadequacy of Powell's purely ionic model for covalent

systems. Another area in which both Powell's and Low's theories have

failed is the spectroscopic g value. These theories predict a g value, for
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an S-state ion such as Fe 3+, as less than the ge = 2.0023 of the free

electron, in complete contradiction to experimental observations that

the g parameter of Fe 3+ is larger than 2.0023. Most of these investi-

gators have attributed these irreconcilable discrepancies to the ligand-

to-metal charge transfer processes such as those suggested by Fidone and

Stevens 12 and by Watanabe 13-14 for the evaluation of Ag = g - ge" An

initial study for the determination of the charge transfer contribution

to 3a, patterned after Watanabe's work, was carried out by Azarbayejani

et al. 15

These calculations included the construction of appropriate molec-

ular orbital (MO) wavefunctions and the allowance of ligand-to-metal

electron transfer. In constructing the MO wavefunction, u-bonding

approximation was invoked and the cubic field splitting was obtained by

a fourth order spin-orbit perturbation calculation.

It was found 15 that 3a _ 3a I = 0.1728 %4 $6 (i - Eli/61) 61-3 ,

where % = _d is the single electron spin orbit parameter, _2 = 1 - 2

is the covalency of the d orbitals of 3d5 6S ion and _ii and 61 are

related to ligand-to-metal electron transfer energy. From free ion

-i
optical spectra (Ref, 16, p. 437), an approximate value of _d = 350 cm

may be taken, and from a comparison of the hyperfine structure constant

in crystals to that of the free ion, l? B2 may be estimated. For the par-

ticular case of ZnS:Mn where _d = 350 cm-l, B2 = 0.22 energies _i of the

order of 8000 to i0000 cm -I give qualitative agreements with the measured

3a. The most encouraging aspect of these 3a results is their correct

trend for Mn 2+ in going from ZnS to ZnTe because _i is expected to

decrease as one goes from ZnS to ZnTe in accordance with Bube's con-

,
clusions on acceptor levels in II-VI compounds.

In the present work, we have extended our previous analysis 15 to

include _-orbitals in addition to the o-orbitals. This has introduced

R. H. Bube, "Photoconductivity of Solids," J. Wiley and Sons, Inc.,

New York (1960), p. 171 (Fig. 6.4-12).



extra orbitals in the charge transfer wavefunctions. Most of the desired

spin orbit matrix elements for the determination of 3a arise from the

above wavefunctions and contain three or four orbitals. Since no expres-
sion for the evaluation of these matrix elements is available in the

literature, general formulae for obtaining such matrix elements have

been found first, and then, 3a has been calculated.

A brief introduction to the method of measuring 3a and the values

of 3a for both the octahedral and tetrahedral II-Vl compoundsis given

in II. Spin orbit matrix elements between excited spin multiplets is

considered in III. The cubic field splitting 3a from these charge trans-
e4-PT_is obtained in IV and is discussed in V. Con-P

fer states, t 2
cluding remarks are given in Vl.
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CHAPTER II

EXPERIMENTAL DETERMINATION OF THE CUBIC FIELD
SPLITTING OF THE 3d 5 S-STATE IONS

The purpose of this chapter is to give a brief introduction to the

method of measuring the cubic field splitting, 3a, of the S-state ions

such as Cr+, Mn 2+ and Fe 3+.

The equipment employed consists of an electron spin resonance

spectrometer such as the Varian V4502 EPR spectrometer in a 12-inch

rotating electromagnet. Most of the measurements have been carried out

at 4.2 and 77°K with a few being performed at 300°K. The magnetic

field, associated with a spectral line, has been obtained by first tuning

a Varian F-8 Fluxmeter for the proton resonance at that field and then

measuring of the proton resonance frequency by a Beckmsn 7370 electronic

counter. The frequency of the microwave source used in the experiment

was determined by first finding one of its subharmonics through Beckman

transfer oscillator and then measuring the frequency of that subharmonic

by the above mentioned counter.

The ESR spectra of Mn 2+ in Ca0 and ZnTe are given in order to

serve as representatives of ESR spectra of 3d 5 6S ions in octahedral and

tetrahedral II-VI compounds.

In the octahedral case (Oh) , the paramagnetic 3d 5 6S ion is sur-

rounded by six ligands or nonmetal nearest neighbors as shown in Fig. 2.1.

These lie along the six crystallographic directions [i00], [010], [001],

[i00], [0_0] and [001] with the paramagnetic ion at the origin of the

coordinate system.

On the other hand, in the tetrahedral case (Td) , the paramagnetic

3d 5 6S ion is surrounded by four nearest neighbors lying along the four

crystallographic directions [iii], [iii], [iii] and [iii] as shown in

Fig. 2.2.
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The expression for the crystalline field of these llgands of the I

central ion is the s_e for both cases, provided the coordinate system

is chosen as show in Figs. 2.1 and 2.2. I
Denoting the angle between the d.c. magnetic field and one of the

coordinate axes such as z by e, we have show the spectra at e = 0 for

Mn 2+ in CaO (Fig. 2.3) and ZnTe (Fig. 2.4). As mentioned above, the I

• !

]° ,; |

/ _"°°' ._..__/ _ I

.._,2 oo,, ,. |

_o ,. |

Fig. 2.1. The octahedral coordinatlon Flg, 2.2. The tetrahedral coordination i
in cubic ll-Vl compounds (CaO._). in cubic ll-Vl compounds (ZnTe.Mn).

!

!
M.2÷ pe$# C,3# ,2*

Fig. 2.3. ESR spectra of V¢+ Mn 2+ Fe 3+, Cr 3+, and in a single crystal of

CaO at 8 = H A [100] = 0 and T = 300°K
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proper choice of the coordinate system has allowed us to analyze the

spectra in both Oh and Td cases by means of the same spin-Hamiltonian:*

4 4
H = g _e H'S + AI'S + a (S + Ss -- x y

+ S 4)/6 +_In'A I "S - gN BN H-I
z n n --

(2.1)

Here, g is the spectroscopic g factor, A, the hyperfine structure

constant, 3a the cubic crystalline field splitting, A' is the supern

hyperfine coupling coefficient and the last term is the nuclear Zeeman

effect. The brief reports on the measurements of g, A and 3a of

ZnTe:Mn and Ca0:Mn obtained by using (2.1) are made previously. A

brief introduction to the calculation of these parameters from the

spin-Hamiltonian in (2.1) is as follows:

For 8 = 0, the spin-Hamiltonian of (2.1) may be rewritten as

H (8 = 0) = g B HS Z + AI'S + as e T40 + _(T44 + T4_4) ) /15

(2.2)

in which

(2.3)

and

T4_+4 = _/_ S+4/16;_ S.2 = S(S + i), S_+ = (Sx_ + iSy)/ _/_ (2.4)

|

I

I

I

I

I

I

I

I

I

I

The H in (2.1) can be expressed as
S

fs hfs
H =H +H
s s s

B. Bleaney and K. W. H. Stevens "Paramagnetic Resonance" Repts. Prog.

Phys. 16, 108 (1953) p. 137.
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where

H fSs = g Be HSz + a IT40 + _ (T44 + T4_4)]/15 (2.5)

and

hfs
H = AI'S (2.6)
s

The energy of each M S level can be obtained by solving the secular equa-

tion corresponding to the fine structure Hamiltonian H fs given in (2.5)

il "Hfs"s )m_' - E 6m_,11 = o (2.7)

where

fs

(Hs)MM' = X 6MM , + y 6MM , +4

X = [2ME + a (14M 4 - 95M 2 + 184)/48]

y = "_'-_12

and

e = g B H/2
e

Substituting for (2.7) one finds:

E (MS = + 1/2) = +_ e + a

E (MS = ! 3/2) = _ 3E - 3a/2 _ 5a2/32e (2.8)

E (MS = ! 5/2) = ! 5E + a/2 ! 5a2/32
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-.5/2
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1/2 1/2
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I /2
I
I

MS" 1/2 _ MS" -1/2

(b)

312 S/2

S/2
3/2
1/2

-1/2
-3/2
-5/2

- 1/2

v

H

Fig. 2.5. (a) The splittings of MS - _ and -_ levels into six close

lying levels and (b) the splitting of the M S - ½ *-+M S = -½ transition

into six approximately equally spaced transitions.
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For many cases where the microwave frequency Vo, used for ESR

measurements is about i0 KMC and a II-VI compound is the host material,

the ratio E/a ffi0.01 - 0.i for 3d 5 6S ions Cr+, Mn 2+ and Fe 3+. In such

cases, one is able to use A_'S as a perturbation on the first term of

(2.5) which causes each MS level to split into six close lying levels.

As an example, the splittings of the M S = 1/2 and -1/2 levels are given

in Fig. 2.5. For the allowed ESR transitions (AM S ffi_ i, Am I = O) each

M S - 1 _-+ MS transition will split in 21 + i transitions. The number of

M S - 1 _-+ MS transitions which can be observed distinctly is 2S, provided

that the parameter A in (2.8) is large enough to offset the effect of the

line broadening.

The energy diagram of the MS levels of a 3d 5 6S ion at 0 = 0 is

obtained as a function of p = g BH/2a (Table 2.1 and Fig. 2.6). The

numbers identify the upper Ms values. Thus, the five transitions

MS = -5/2 +-+M S = -3/2 ..... M S = 3/2 _-+ = 5/2 are designated by -3/2,

-1/2 ..... 5/2, respectively. When the lines are well resolved one expects

to observe 2S(21 + I) lines. This number for Mn 2+ with S = 5/2 and

I = 5/2 is 30 (Figs. 2.3 and 2.7). These lines can be identified with

the electronic and nuclear magnetic quantum numbers M S and m I by con-

sidering the fact that the intensity of the five lines 3/2 ..... 5/2

belonging to any of the 21 + 1 quintets should vary as 5:8:9:8:5. There-

fore, the following assignments are possible for both octahedral and

tetrahedral cases (Fig. 2.7).

ai' %i correspond to M S = _ 3/2 _-+_ 1/2

8i' _i correspond to M S = _ 5/2 *-+_ 3/2

and

71 correspond to Ms = ± 112 4-+Z 112.
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Table 2.1. Variation of separation of Mn ++ ESR fine-structure

components at 8 = 0 as _ function of P = gBH/2a = c/a

E-5/z-E F E-312:E F E- I/2-E F EI/2-E F E3/2-EF E5/2-E F

0 -2.00

1 -4.71

2 -9.59

3 -14.56

4 -19.54

5 -24.53

6 -29.52

7 -34.52

i0 -49.52

lO0 -499.5

-2.OO

-4.62

-7.57

- I0.55

-13.54

-16.53

-19.53

-22.52

-31.51

-301.50

1.00

0.00

-I

-2

-3

-4

-5

-6

-9

-99

1.00

2.00

3

4

5

6

7

8

II

i01

1.00

1.71

4.59

7.05

10.54

13.53

16.53

19.52

28.51

298.5

1.00

5.62

10.57

15.55

20.54

25.54

30.52

35.52

50.5

500.5

m =-5/2 -3/2 - 1/2

H

Fig. 2.7. Assignment of ESR spectra of Mn 2+ in both Oh and T d cases:

(The spectrum belongs to Mn 2+ in cubic ZnS)

The next step to consider is the determination of the spin-Hamiltonian

coefficients g, A and a of (2). For a fixed microwave frequency v ,
O

these coefficients can be measured as follows:

g = hVo/B e [(Hyl + Hy6)]/2

]A[ = g Be [(by6 - Hyl)]/5 (2.9)
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and

la[ -_ g Be [(H 1 - Hal) 4- (HX 6 - lt¢6)]/5

The signs of A and a can be determined relative _o each other

with the sign of a being determined independently by its measurement at

low temperatures. The results of such measurements are given in

Table 2.2 and 3a and g are compared with predictions of the present

theories of these parameters in Table 2.3 and Fig. 2.8. The agreement

is generally satisfactory for the case of MgO, CaO and SrS, whereas dis-

agreement is observed for zinc and cadmium chalcogendles. These devia-

tions from ionic theory which arise from larger covalency existing in the

latter group compared to the former, have emphasized the need of a more

Table 2.2. ESR results of S-state ions in II-VI compounds

J !_ :o
7

H80 Oh 6 2.12

Clio Oh? 6 2.40

$r8 Oh7 6 3.05

ZnO C 4 4 1.95
6v

ZnS Td2 6 2.36

ZnS C6_ 4 --

ZnSe Td2 A 2.45

ZnSe C6_ 4 --

ZnTe Td2 _ |,66

CdS C6_ 4 |,Sa

6 4 1.64
CdSe C6v

CdTe Td| _ |,80

Cr+ Hn4-+

A 8 38 A $ 3a

10-4cu-I 10-4cn -1 10-4ca -1 lO-4cu -1

...... -81.0 2.0014 55

....... 80.7 2.0009 17.7

...... -77 2.0009 4.2

....... 74 2.0016 18

13.4 1.9995 12 -64.9 2.0025 23.7

13.3 2.0016 16.05 ......

....... 61.7 2.0055 52.1

12.4 2,0023 19.80 -56.5 2.0075 88.9

....... 65.3 2.003 11.7

....... 62.7 2.005 6.3

12,8 1.9997 9,3 -55 2.0078 83.1

Fe4-I-F

A 8 3a

10-4cm-1

2.0037 615

2.0052 191

2.006 123

2.019 382

2.018 384

-- 16A.9

2.09 -78OO

2.01 285

I
I

I
I

I
I

I
I
I

I
I
I

I
I
I
I
I
I
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Table 2.3.* Comparison of ESR results wlth predictions of ionic theory

Material Sym r T r E Ag T AgE

Cr+ Mn4"_ Fe 4-_ Cr + Nn 44 Fe 4-¢'_

MgO Oh 1.000 1.000 1.000 <0 <0 >0

CaO Oh 0.287 0.32 0.311 <0 <0 >0

SrS Oh 0.026 0.07 <0 <0

ZnO C 4 6.635 0.76 0.316 <0 <0 >0
6v

ZnS C _ Td 26v _ 1.000 1,000 1.000 1.000 <0 <0 _0 >0

ZnSe C 4 & Td2 0.685 1.34 2.198 0,_ <0 <0 >0 >06v

ZnTe Td2 0.301 1.65 3.751 -20 <0 _0 0 >0

&

Cd$ C6v 1.000 1.000 <0 0 >0

4
CdSe C6v 0,624 3.67 <O 0

CdTe Td2 0.345 7.02 <0 <0 0

*The rT and r E are the theoretical and experimental ratios of 3a respectively and

_g = g-2.0023. The ratio rT(J, j) = 3al:3aJ - (aoJ: aol)lO wlth % being the lattice
constant.

COMPARISON OF EXPERIMENT

WITH CALCULATIONS OF WATA-

NABE, PGJI AND PGJ2

350 3o(lO'4cm "v)

300

- 2OO

#
I

\

( IOB+SC

,23Kk)

WATANABE (o)

(DOUBLETS AND Wam}(b}

ZnTe
I00

I
I

II
I

KMgF

ZnO :_J.J (el

I I I I I I..
- 2000 - 1600 - 1200 - 800 - 400 400 800 1200 1600 2000

no (cm")

Flg. 2.8. Comparison of experimental and theoretical values of 3a.
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realistic theory which takes these covalency effects into account. In

the next few chapters the dependence on the covalency of the parameters

given in (9) is pursued with a greater emphasis on calculations related

to the cubic field splitting 3a.
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CHAPTER III

THEORETICAL

As mentioned in the last section, we intend to obtain the cubic

field splitting 3a by using the linear combination of atomic orbital

molecular orbital (LCAO-MO) techniques. The wavefunctions constructed

from these LCAO-MO's in a certain manner, serve as excited states which

admix to the ground state wavefunction through spin orbit interaction

and cause a contribution to the cubic splitting 3a.

From this brief introduction, it is immediately evident that our

task is twofold: (i) to construct the LCAO-MO (henceforth denoted by

MO) and the desired wavefunctions and (2) to develop appropriate expres-

sions for the matrix elements of the spin orbit interaction in the MO

scheme.

Since we are primarily concerned with the cubic field splitting, 3a,

in compounds of Td symmetry, our effort will be directed toward the

determination of the matrix elements of spin orbit interaction,

Hp = 1_ _i £i "•SI, between various wavefunctions of a complex, [E A4 ]-n' ,

consisting of a 3d 5 6S ion** E and four ligands, AI .... A4, the whole

complex being located in a cubic crystal BA. For example, in the case

of manganese doped zinc sulfide, (ZnS:Mn), Zn = B, S = A, Mn = Ep

= 6 and the complex is [MnS4] -6.n'

In order to limit our analysis to those formulae affecting just 3a,

we proceed by defining the cubic field splitting and the symmetry of the

levels which give rise to that splitting.

The excited wavefunctions considered here, are those obtained from an

electron transfer from the ligand to the metal ion.

A summary of the symbols is given in Appendix A.

19
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i. CUBICFIELDSPLITTING

The following is a brief elaboration of the symmetry group of the
_n !

states into which the ground state of the complex, (Z A4) splits

(Z = Cr +, Mn 2+, Fe 3+, A = S--, .. Te--).

The symmetry of the ground state of the above complex is of A l and

has a total spin S = 5/2. Thus, the ground state may be given as

[ o >] %[E A4] AI S = 5/2 or more simply by IX° > where Xo denotes

the MO's giving rise to the 6AI state, their electronic configuration

and finally, the total spin values and the irreducible representations,

Sihi, of each of these MO which comprise Xo.

The symmetry group of the total Hamiltonian of the complex is

0 x U2 where 0 is the group of symmetry operations of a cube in orbital

space and U2 is the group of rotation in spin space. The representation

of 6AI, in the full rotation double group, G' = R3 x U2, is O = 5/2.

The irreducible representations of J = 5/2 in G = 0 x U2 are E'' + U'.
f

According to the irreducibility principle, the maximum number of

levels created by the perturbation of IAI S = 5/2#= 16Al_Will be the

number of irreducible representations of J = 5/2 in G which is two levels.

The cubic field splitting is defined as the energy separation of

these two levels:

where

3a = E(U') - E(E'') (3.1)

E (F')= E (0) (F')+ E (I) (F')+ .... + E (4) (F'); F' = U' or E''

(3.2)

Mulliken's notation (see Ref. 22) is used for all cases except when

mentioned otherwise. The state symmetries and energy _e±m_ are identi-

fied by the irreducible representations A1, A 2, E, T1, T2, E', E'' and U'

oz the cubic double group wh_re the molecular orbitals are denoted by

the small letters al, a2, tI and t2.

%V. Heine, "Group Theory in Quantum Mechanics," University of Cambridge

Press, 1960, p. 45.

I

I
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th
Here, E(n)(F ') (n = 0, i..., 4...) are the n order contribution to

E(F'). The 3a will be positive or negative depending on the relative

magnitudes of E(U') and E(E'').

The Hamiltonians giving EinJ(F) will be examined in the next section.

2. HAMILTONIANS

_n !

We wish to consider a Hamiltonian of the complex, [_ A4] , which
th

includes a zero order Hamiltonian, HO, satisfying HO_ n = En_ n and a

perturbation Hamiltonain, H , from whose matrix elements Mmn between
P (n)

_m and _n' the corrections E (F) may be obtained. Denoting the above

Hamiltonian by HO' , one has

!

H 0 = HO + H (3.3)P

In the present work, we limit out perturbation analysis to spin orbit

interaction. Thus,*

iI n''
IS

Hp _. _i _i

th
and the zero order Hamiltonian, H 0 is:

I 2 -i 2 -iH ° = - Z e r.1 + e ri. +

i--i i>j k=l i=l

(3.4)

V(_ik)

(3.5)

where n'' = 37, refers to the sum of the 32 valence electrons in the
-n !

molecular orbitals of the complex, (EA 4) , and the 5 electrons located

in the d orbitals of the central ion E. The first term in (3.5), repre-

sents the kinetic and potential energies, the second one gives the

_i acts as an operator, being _d when operating on d parts of the i th

orbital and _p when operating on the p part of the ith orbital.
(Appendix B)
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Coulomband exchangeenergies and the last term gives the effect

of four ligands, k3 separated from the central ion by rk. Z_ in

(3.5) refers to the effective charge of the central ion. The eigen-

functions and eigenvalues of (3.5) are usually obtained by a_proxi-

mate techniques. One of these is knownas the self-consistent charge

configuration (SCCC)method. Ballhausen23 used this last technique

to construct the eigenvalues and eigenvectors belonging to the

[Mn04]-I complex and very recently Basch et a124 extended the same

method to the 32 complexes of transition ions in compoundswith

Oh or Td symmetries. The latter authors give an energy diagram for
the [FeCI4]-2 complex. The levels lie from -220 x 103 cm-I to about

90 x 103 cm-I and they are classified according to their symmetry as

follows:

..(lal]2(It2 )6..(2aI_2(2t2)6(le)4(3t2 )6..(tl] 6(2e)2..(4t2]4(5t2 ) 0..(3al_0
(3.6)

where the superscripts are the electronic configurations and lal, it2..
..3a I have the symmetryAI, T2.... A1 of the cubic point group. The MO

Mn2+configuration for Fe3+, in tetrahedral complexes as well as and Cr+

in such complexeswill be the sameas in (3.6) except the configuration
of (4t2) reduces from 4 to 3. The orbitals we plan to use for the construc-

tion of the excited wavefunctions are le, 3t2, tl, 2e and 4t 2. To simplify

the notation, we label them eb, tb, tl, ea and ta, respectively. Here,
the subscript b points out tha_ eb and t b are bonding orbitals with

E and T2 symmetries, respectively. Similarly, those with the subscript

a are the antibonding orbitals, whereas tl, which does not have any
subscript, is a nonbonding orbital. A schematic energy diagram associated

with the above five orbitals; tb, eb, tl, ea and ta and their corresponding
configurations characteristic of [Z A4]-n' is given inelectronic

Fig. 3.1.

I
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d (e, t2) /

t@

St 2 i f % "'

li,6,1i,
'O'elq

, % .,., ._/2'21

tb\
__/ I t2

Fig. 3.1. A schematic energy diagram of _[EA4]-n' , 6A l}cOmplex.

The p_ in Fig. 3.1 are linear combinations of the components of

ligand p orbitals which are perpendicular to the interionic distance.

The p_ are the part of the p orbital projected along the interionic axis.

Having defined the nature of the orbitals involved, we now proceed to

construct the wavefunctions.

3. WAVEFUNCTIONS

We want to describe the spin values Si and the irreducible repre-

sentations, hi, of the individual molecular orbitals (MO) giving rise to

the ground state and excited states. A knowledge of these is necessary

for the determination of spln-orblt matrix elements as will be seen

later (see 4). Therefore, we first consider the ground state and then,

discuss the excited ones.

3.1 Ground State Wavefunction

A description of the ground state wavefunction is being

sought which emphasizes the symmetry, spin and irreducible representa-

tion of the molecular orbitals which constitute it.

The radial part of the individual wavefunction will not be

included for simplicity and the spin orbit interaction parameter, _i(r)

of (3.4) will be considered as _d for the d orbitals of°ion E and

for the p orbitals of ligands A.I in the complex [E A4] (E = Cr+

Mn 2+, Fe 3+. Ai = O--, ... Te --)"
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The orbital part of the ground state wavefunction can be

deduced from Fig. 3.1, in the following form:

i> _[ -n' 6 4 6 2 3,6AI>_ + tb6ea4tl 6 2 3 6AI>e 6A = (ZA4) c tb e t I e t • I e tIXo ' a a a a a

where
(3.7)

or

e 6ea4tl6ea2ta3X° = tb is electron configuration

Xoh = tb°eb °tl °ea 2ta3 is hole configuration

(3.8a)

(3.8b)

The irreducible representations of the molecular orbitals

tb, eb... in (3.7) - (3.8b) are

F (tb) = F (ta) = T2

F (eb) = F (ea) = E

F (tl) = TI (3.9)

The symmetry of the irreducible representations T2, E and TI

of Td group can be deduced from the character table of this group

(Ref. 25, p. 383) given in Table 3.1.

The group classes C2, C3, od and S4 of Table 3.1 are classes

of symmetry elements of a tetrahedron as shown in Figure 3.2.

3.2 Excited State Wavefunctions - Charge Transfer Wavefunctions

We wish to describe here, the excited states created exclu-

sively by the process of promoting one electron from one of the three

e
orbitals tb, eb or tI of Xo in (3.8a) to any of the two orbitals ea and

I
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Table 3.1. Double Valued Character Table of Group Td

Bethe Mulllken 1 R 8C 3 8C3R 6C 2 12(7d 6S 4 6S4R

rl

r 2

r 3

r4

r 5

r 6

r7

r 8

A1

A2

E

T 1

T2

E'

E tv

U'

1 1 1 1 1 1 1 1

1 1 1 1 1 -I -I -i

2 2 -i -I 2 0 0 0

3 3 0 0 -I -I 1 1

3 3 0 0 -i 1 -I -I

2 -2 1 -1 o o ¢'r -4_-
2 -2 i -i 0 0 - _T _-

4 -4 -i 1 0 0 0 0

_,,,,,,,_ l C2' 54

/

./

6

_ Y

Fig. 3.2. Symmetry elements of a tetrahedron

e

ta in Xo . All other excited wavefunctions arising either from multiple

charge transfer or from the irreducible representations, hi, of terms of
5-p

tap and ea which belong to spin values of Si = p/2 - 1 and 1/2 (5-p)-I

are ignored. A similar restriction is imposed upon h i after charge

transfer (hole transfer) occurs, and, as a result of this, all excited

states arising from t p' 4-p'and e (after hole transfer, the sum of the
a a

hole configuration of t and e will be 4) which belong respectively
a a

to spin values of Si = p'/2 - 1 or (4-p')/2 - i, are ignored. For
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3 in (3.8b) gives t 2example, a hole transfer from ta a as a new hole con-

figuration for this orbital. The irreducible representations, (IR) of

2
t are
a

r (ta2) = 3T1 + IA1 + IE + IT2 (3.10a) I

and similarly,

r (Ca2) = 3A2 + IA I + IE (3.lOb)

From the IR's (3.10a - 3.10b) only those with the maximum spin of these

two shells, namely,

rmax (ta2) = 3TI

and

(ea2) = (3.11)rmax 3A2

are considered and all the remaining spin singlets are ignored. The

electronic configurations of the complex, after charge transfer, and

their corresponding terms constructed in the above scheme are given in

Table 3.2.

Now we consider the determination of the spin

orbit matrix elements between spin sextets 6AI of the ground state and

the excited spin sextets and quartets given in Table 3.2.

4. MATRIX ELEMENTS OF SPIN ORBIT INTERACTION

The matrix elements of the spin orbit Hamiltonlan, Hp

will be discussed in this section and Section 5.

A few initial comments are necessary to point out the need for the

development of new formulae for evaluations of the desired matrix elements.

Considering Table 3.2, it is evident that a matrix element between the

I
I
I

" _ _i -_ "s_,

!

!
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Table 3.2. Charge transfer configurations and terms

llole Configuration * Spin Sextet Spin Quartet +

No. t a e a t 1 e b t b E T 1 T 2 E 1 T 1 T 2

2 2 1 0 0

2 2 0 1 0

2 2 0 0 1

3 1 1 0 0

3 1 0 1 0

3 1 0 0 1

1 1

1

1 1

1

1

1

1 I

1

1 1

1

1

1

1 1

I 1

I 1

1 1

1 1

+These are the spin quartets obtained from the spin sectets by allowing

its total spln to add up to 3/2 instead of 5/2

*The MO'a ta.... tb are linear combinations of atomic orbltals as will

be seen Tater (Sec. IV).

spin sextet of E symmetry from configuration 4 and the spin sextet of TI

symmetry from configuration 3 contain the four different orbitals, t
a'

ea, tI and eb, which participate in the construction of 6E and 6T 1.

Therefore, the final matrix elements depend on the coupling scheme of

in 6E and 6T I. The behavior of the sublevels,the above four orbitals

Sihi, arising from t p'a , ea4-P' and other orbitals tl, eb and tb is

unique for spin sextets, but varies for quartets and doublets which in

turn gives rise to several hundred spin quartets and doublets. The best

technique for the determination of matrix elements of any operator

between a huge number of states with the same spin S and IR, h, but with

different configurations is the method of Reduced Matrix Elements.

Griffith 26 has applied this technique to calculate the matrix

elements of the spin orbit interaction between various, Sih i of the

cubic group. Our analysis follows his very closely and gives rise to

new formulae for determination of the spin-orbit matrix elements between
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pairs of the spin sextuplets arising from coupling of three or four
orbits. *

As in Grlffith (p. 82), the matrix elements of spin orbit inter-

Z £i.si
action, i _i , from a pair of states IX S h J t • > and

Ix'S'h'J't • > can be given as:

Z £i'si 'S'h'J' T> I<X S h J t Tli _i IX t =

MM'

8 8'

<X S h J t TIX S h M O>

Z £i'si 'S'h'M'(x)<x S h M eli Ki IX 8'><x'S'h'M'8' Ix'S'h'J't T>

-- <X S h Ili ¢i IIx'S'h' > Kjj, ' h t

(3.12)

(3.13)

where S and h are the spin and irreducible representation (IR) of the

state [xSh>; M and 0 are, respectively the components of S and h, t is

an IR of the system in the cubic double group belonging to the resultant

of the coupling of S and h; J is an identification number used wherever

there are more than one t are, finally T is one of the components of t.

The first term in (3.13) is the reduced matrix of l_ _i £i'si from states

IX S h > and Ix'S'h' > and the second one** is the coupling coefficient

which is independent of X and X'. The study of the coupling coefficient

will be reserved for Section 5. The reduced matrix elements will be

elaborated further in the next subsection and new results, not found in

the literature will be tabulated.

*Griffith 26 has given all the formulae needed, for evaluation of the

reduced matrix elements of spin orbit interaction, arising from two

orbits t2 and e of cubic group. As a result of this, his book contains

tables for spin quartets only (see Ref. 26 p. 126)

!

Kjj, is exactly the same as the _jj defined by Griffith (p. 82)
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4.1 Reduced Matrix Elements

Here, the reduced matrix elements (RME),

i

(3.14)

of (3.13), will be discussed further with particular attention to the

effect of X and X' on RME. There are three classes of RME depending on

the nature of configurations × and ×':

(i) Both X and X' include three orbitals with the same

configurations.

(2) Both X and X' include three orbitals with different

configurations.

(3) X and X' include four orbitals with different configurations.

The formulae for obtaining the reduced matrix elements, (RME), associated

with these three classes of configuration are given in Sections 4, 5 and

6 of the Appendix C respectively. The numerical results are given here

in Tables 3.3 through 3.5.

3.3. Reduced matrix el_ments _Table

;<XlShlJ2i;iii._illXlS'h'>l

Xl = X'I

ta3 4A 2 (eat b) 3T 2 tbt b 21/20

ta2 3T 1 (ea2t b) 4T 1 tbt b 7/20*

t t 7/20*
a a

ta2 3T 1 (ea2eb) 4E tat a 21120

f

ta 3 4A 2 (earl) 3T 2 tlt I 21/20"

ta 2 3T 1 (ea2tl) 4T 2 tat a 7/20

tlt I 7/20

6TI_6T 2 6TI-4T 2 6TI-6E 6TI-4E 4TI-6T 2 4TI-4T 2 4TI-6E 4TI-4 E

6/5* ......

2/5 7/30* 8/30

1/40" 7/30* 1/60"

3140 ......

6/5 ......

I

1/4o 7/lO 1/20

2/5* 7/10. 4/5

6/5 3/10"

2/5* 1/10

1/40 9/40*

3/40" 27/40

615" 3/10

1/40" 9/40

2/5 I/i0"

8/30*

1/6o

1/20"

4/5*

2/30

3/20*

9/20

1/5

The sign of the square root of the numbers with asterisk is negative
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,TI)5. COUPLING COEFFICIENTS OF SPIN ORBIT INTERACTION Kjj, _ ht

Here, we want to obtain the coupling coefficients Kjj,, which were

defined in (3.13). These coefficients couple the matrix elements of

spin orbit interaction, from a pair of states identified by their irre-

ducible representations IJ t > and IJ't > in the cubic double group, to

the reduced matrix elements <X S hll _ _i £i'sillx'S'h_ ° between the

states IX S h >, and Ix'S'h' > from which the states IJ t > and IJ't >

are constructed.

Following (3.12 - 3.13), we have

where (Grlffith, p.82):

Kjj, K h JJ' h' h

y "I(_l)S-M'+l[_l]h+e _- , v__ee,_ r
rMM '

e8

(3.15)

Ia _ _I in (3.15) is related* to 3-J symbols byThe symbol, V a

(-i) a+b+c {a _ cl . The symbols,
, and V is related to V by (-i) 2(b-c)

a y

< S h J t TIS h M 8 > are coefficients of coupling S and h to obtain t

of the cubic double group with occurrence number or angular momentum J.

The latter coefficients are given by Grlfflth (Ref. 16, pp. 400-408) for

spin quartets, 5T 2 and 5E only. Therefore, the coefficients

U. Fano and G. Racah, "Y-_oduclble Tensorfal Sets," Academic Press,

New York, (1959) p. 50
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<S h M OIS h J t T> of Sh = 6E, 6T 1 and 6T2, which are not found in the

literature, are obtained and given in Tables 3.6 to 3.8.

Having obtained the coefficients, <S h M 81S h J t 3>, we now are

able to calculate the coupling coefficients, Kjj, hh' , for h = A 1

and h' = E. TI and T2. These are given in Tables 3.9 to 3.12.

After substituting for reduced maurix elements and the coupling

< £i i ' 'h'J' T>coefficients in matrix elements, X S h J t _II_ _i- "_ Ix s t ,

in (3.13), we find this quantity as a function oc single electron reduced

matrix elements such as

tbt b, tat a, .... tlt I, eat b,

given in Tables 3.3 through 3.5. These matrix elements will be determined

in the next section.

Table 3.6. Transformation of 6E into the IR's of double valued group T' d"

l<ShMel shJtT>I2

S__Mh_Mh Jt

512 512 E u

312

112 112

-I12

-312

-5/2

512 512 E v 5/12

312

1/2

-112

-3/2 1/12

-5/2

112

1/12'

112

5112" 5/12"

1/2 1/2"

1/2"

5/12

1112

1/2

1/12 5/6

I/6

1/6

1/12" 5/6

I/2

1112 516"

5/12 5/12" 116"

The sign of the square root of coefficients with asterisk is negative
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Table 3.9. Coupling coefficients

Kjj'for h = A 1

J' $ S t Kjtj(SSTItAITIL)

512 5/2 5/2 u' (1/18) 1/2

Ett (1/18) 1/2

Table 3.10. Coupling coefficients

Kjj, for h = T 1

J

5/2

J' S S t Kj,j(SSTI,TITIt)

5/2 5/2 5/2 U' (1/15) (5/7)1/2

E" (1/15) (5/7) 1/2

312 0' -(7/45) (517)112

E" -(5/45) (5/7) 1/2

3/2 3/2 U' -(1/2) (1/10) 1/2

E' -(1/2) (1/10)

Table 3.11. Coupling coefficients Kjj, for h = E

J J' S $ t Kj,j(SSTI,TIEt) J J' S S t Kj,j(SSTI,TIT2t)

512 1
2

s/2

,lit

i

3/2
SIS
7/2

513 5/2 O'

512 5/2 U'

5/2 S/2 E"

312 U'

512 312 E"

(161105)

-(21105) (10)1/2

-(&1105) (5)112

(1110) (317)1/2

(112) (3/35) 1/2

5/2

5/2

1 312 5/2 O'

2 3/2 5/2 U'

2 3/2 512 E"

2 3/2 3/2 U'

3/2 3/2 Ett

-(2115)

(116o) (lO)112

(1/3o) (5)112

-(1/1o)(312) 112

-(1/2)(3/10) 1/2

Table 3.12. Coupling coefficients Kjj, for h = T2

8 8 t Kj,j(SSTITIT2 t) J J' S S . t Kj,j(SSTI,TIT2t)

S12 512 u'

512 512 O'

512 512 O'

5/3 S/2 B"

5/2 312 U'

-(8/35) (1130) 1/2

-(35135) (11105) 1/2

(6121) (1/35) 1/2

(8121) (115) 112

-(415) (11105) 1/2

5/2 712 5/2 3/2 E'': i
5/2 3/2 3/2 5/2 U*

5/2 5/2 3/2 5/2 U'
5/2 7/2 3/2 5/2 U'

3/2 3/2 O' -(9110) (I1105) 112

512 7/2 3/2 5/2 E'

5/2 3/2 3/2 3/2 U'

5/2 3/2 3/2 O'

7/2 3/2 3/2 E'

(1/2) (11105) 1/2

(1/5) (1/30) 1/2

(3/10) (3/35) 1/2
-(1/3) (1/35) 1/2

' -(1/3) (115) 1/2

(4/5) (1/30) 1/2

(3/10) (3/10) 1/2

' -(1/2) (1/30) 1/2

I

I

i

I

I

I

I

I

I

I



I

I

i

I

I

I

I

I

I

I

I

!

I

I

i

I

I

I

37

J \

6. SINGLE ORBITAL REDUCED MATRIX ELEMENTS (1/2 alJ _ _'_IIi/2 b>

The matrix elements of _ _i %i'si from a pair of states with
I

electronic configurations X and X', (3.8) , are related, among other

factors, to these configurations. This dependence on the electronic con-

figuration of the orbitals giving rise to the above states, is manifested

by the presence of single orbital reduced matrix elements of the type,

tata = <1/2 talE_ _'_I[ I/2 ta)and taeb = <1/2 taj[_ _'_IIi/2 eb> which

appear in Tables 3.3 through 3.5 • To find t t .... , we should express
aa

them in terms of atomic symmetry orbitals.

Since the determination of the energies of the molecular orbitals

ta, ea of Fig. 3.1 is beyond the scope of the present work, no numerical

values of the coefficients of linear combinations of atomic symmetry

orbitals, d(e, t2) and _(tl, e, t2) , (Fig. 3.1), are available. There-

fore, we choose a set of arbitrary coefficients, _, 8, K, %, _ and _, to

express the molecular orbitals, ta, ea' tI, eb and tb, as follows:

ta_Idt2>_ tD _ t2>_IstD

t__ tD+_ _D+_ _D+_ _#
eb =Bld e> + _I_ e> (3.16)

where all coefficients, _, B, .... _', are real and positive.
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Moreover,

2 82 2 X2 2 2 ,2 ,2 ,2 ,2+ = ¢ + + p + 9 = K + X + p + 9 = 1 (3.17)

Substituting for ta, .... tb, we flnd the single orbital reduced matrix

elements as glven in Table 3.13:

Table 3.13. Single orbital reduced matrix elements

,o. ,,b <xn,ll_._lt_nb> _o. ,,b <ln, ll_'!lllnb>

I eat I _/_B _p 7 tlt a 112 "_X _p

2 eat a -3 "_ a _ _d - 3 B X [p 8 tlt b -I/2 "_ _ [p

3 eat b -3"_a _ _d + 3 B K _p 9 tat b -3"_K X _d - 3/2 X _ _p

4 _.otl - _/_a _p 10 tlt 1 3/2 _p

5 ebt a -3"_ 8 K _d + 3 s X _p 11 tat a 3 K2 _d + 3/2 g2 _p

6 ebt b -3"_ 8 _ _d - 3 a g _p 12 tbt b 3 X2 _d + 3/2 _2 _p

Wlth the spln orbit matrix elements known, we can now proceed to

formulate 3a in the following section.
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CHAPTER IV

CUBIC FIELD SPLITTING 3a

In this section, we wish to obtain the contribution of spin orbit

interaction to cubic field splitting 3a, with the intention of carrying

the calculations through the lowest order of perturbation required for

the ground state, 6AI, to split. Our task, therefore, is to establish

the lowest perturbation order first, and then, carry on the numerical

computations to obtain an estimate of 3a (under certain assumptions

regarding the coefficients) for some special cases.

i. DETERMINATION OF THE LOWEST ORDER OF PERTURBATION BY

H = Z _i %i'si THAT CAN SPLIT 6A1
P i

The first step in determining the lowest order perturbation re-

quired for the splitting of 6AI, is to find those coupling coefficients,

Kjj. (SS'TI U' E"h' ht), which have different values for t = and t = levels

of 6A I. Because the energy associated with level 16AI J = 5/2 t = U' >

must differ from that energy associated with the level, 16AI , J = 5/2

t = E" >, in order for the matrix element of _ _i _ i'si to contribute

toward splitting 3a. As shown in Appendix D, we have

SS'TII = /_(I 1 _Sj6S,Kjj, hA 1 tI _) (25 + i) J'6h'Tl
(4.1)

and

! l

fSS'Tll= (_l)J+S_,_j _,_l_J_Jss, (4.2)

39
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It is immediately evident from (4.1)-(4.2), that the matrix elements

between 16A1>and 16T_ and those between 16Tl>and 16T'l>contribute
the sameamountto both levels t = U'and t = E'' and their contribution

to 3a vanishes.

The chains of the products of the matrix elements:*

I
!
i

(4.3)

and

are the only nonvanishing products which give rise to te_s for the

evaluation of the second and third order energy contribution to levels

with IR t = U' and t = E'' of the ground state. These energy contribu-

tions are the same, and consequently, both second and third order con-

tributions to 3a, by spin-orbit interaction, vanish. Moreover, con-

tributions from higher than third order perturbation with excited states

having T1 symmetry vanish too. The next perturbation order to consider

is fourth order.

Considering Tables 3.11 and 3.12, it is evident that for the excited

states with T 2 and E symmetries, the coupling coefficients, Kjj' h_ ht '

differ for t = U and t = E''. Therefore, a splitting will occur.

This indicates that the fourth order perturbation is the lowest

one which contributes to the splitting.

I

I
I
I

I
I
I

AI-6T - <6A I Jt_l .E _i -_'"s' I J't'
i
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2. CONTRIBUTION TO THE CUBIC FIELD SPLITTING 3a FROM

FOURTH ORDER PERTURBATION OF 6A 1 BY E _i _i'si

Heret we formulate the 3a by considering the following relation-

ships (3.1):

3a = E(U') - E(E") _ E (4) (U') - E (4) (E'') (4.5)

where E(4)(U ') and E(4)(E '') are the fourth order contribution from spin

orbit interaction to the levels U' and E'' of the ground state 6A I of the

S-state ion. The expression for E(4)(U ') - E(4)(E '') is:

E(4)(U ') -E(4)(E '') = -I(EjEkE£)-I{RojRjkRk_R_o

Jk_

mnp

(x) [(Kom(°_ )'n (J k) Knp (k _)Kpo (_°}U, -(Kom(°_ ) ,n (J k) Knp (l_) Kpo ( £°)_E,, 1}

where

and

I Sj SkTII

Kmn(Jk) - KjmJn _hkh j tl (4.5a)

The parameters Xj, _nd o, X£ in (4.5a)represent the molecularelectronic configuration IxjSjhj characterize the orbital part of

configuration Xj.
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Substituting for the various parameters involved, the expression

for 3a wlll be of the form:

4

I 4-I i3a(4) = CI _:d _:p

i,,o

(4.6)

where Ci are complicated functions of the coefficients; a, B, z ....

given in (3.16) and the promotion energies El, Ej and Ek of the excited

states appearing In (4.6). The precise numerical values of a, q and K

could be obtained from solving eigenvalue equations from which the ener-

gles! Ei...E j and Ek could be found too. As mentioned earlier, the

determination of Ei...E k is beyond the scope of the present work and as

a result of this, we can use only a set of arbitrarily chosen numbers

for both the coefficients and the energies involved. For the following

set of coefficients:*

and

2 62a = I - = 0.7,

2 _2K = 0.8 - .. 0.6,

2 V2+ " 0.2,

K _ K', X _ _'

we find the coefficients C_ of (4.6)as given in Table 4.1.

(See 3.16)

Table 4.i

The Coefficients Ci (-2/5625 E63)-I

c6 ci ......._2 c3 c,
L.87.17 -!38.99 -164.94 14.63 35.75

I
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Substituting for C. in (4.6), one finds 3a as a function of the
1

ratio _p/_d" The result in units of 10 -1 _d4/E6 3 are given in Table 4.2.

Table 4.2

Calculated Values of 3a for Spin Sextets

_p/_d 3a (10 -I _d4/E63) _p/_d 3a (i0 -I _d4/E63)

0.5 0.07

i 0.59

1.5 0.993

2 0.573

3 -5.30

4 -24.90

6

8

i0

12

16

20

-152.30

-507.40

-126.30

-2645

-8443

-20562

A discussion of these results will be given in the next section.



CHAPTER V

DISCUSSION

We want to give a brief discussion of various models used to cal-

culate 3a, first, and then apply the result of these models to the 3a

of Fe 3+ in the compounds ZnS, ZnSe, and ZnTe.

As'was mentioned in Chapter I, Watanabe 5 was the first to calcu-

late 3a on the basis of the point charge model. His work was followed

by Powell 6 and by Low and Rosengarten. 7,8 AzarbayeJanl, Kikuchl and

Watanabe 15 substituted the point charge model with the molecular orbital

model and obtained the contributions to ground state splitting arising

from charge transfer between o-bondlng and _-nonbondlng orbltals of the

complex consisting of a central S-state ion and its four tetrahedrally

coordinated neighbors. In the present work, the contribution to 3a

arising from charge transfer between the _-orbltals of the same complex

has been found. To make an assessment of these various contributions

to 3a and their relative importance, we are considering all of the

above-mentloned calculations, in turn, as follows.

i. CONTRIBUTION TO 3a FROM WATANABE'S CALCULATION

The cubic field splitting obtained by Watanabe is given in (15)

of Ref. 5. The expression for 3a is as follows:

(3a) w = 3 (Dq) 2 [2.015 + 15.9 M 0 - 149.5 M 2 - 5.937 (M 0 - 8M2 )2

_ _ i0-i0 -i
0.388 (M 0 8M2)2 (Dq) 2 10-6] x cm (5.1)

where i0 Dq* is the cubic field strength of the host compound around the

-I Mn 2+ -i
S-state ion and is about 3000 to 4000 cm for and 5000 to 6000 cm

for Fe 3+

*See the first footnote on the following page.

4A

I

I
I

I
I
I
I

I
I

I
I

I

I
I
I

I
I
I

I



I

I

I

I
I
I

I
I

I
I
I
I

I
I

I
I

I
I

45

in II-VI compounds of Td symmetry. The coefficients M 0 and M 2 are
-i

(see Ref. 6, Part a) 0.204 and 0.0159 cm , respectively. Substituting

for M 0 and M2, one obtains:

(3a) w = 3 (Dq)
2

[2.015 + 15.94 x 0.204 - 149.5 (0.0159) - 5.037 (0.024

- 0.127) 2 - 0.0388 (0.077) 2 (Dq) 2 x 10-6 ] x i0 -I0 cm -I

= _ _ i0-i0 -i3 (Dq) 2 [2.015 + 0.87 0.029 2.25 x 10-9 (Dq) 2] x cm

or

= i0-i0 10-20 4 -I(3a) 8.57 x (Dq) 2 - 76.5 x (Dq) cm (5.2)
w

2. CONTRIBUTION TO 3a FROM POWELL'S CALCULATIONS

The ground state splitting given by Powell et al (Ref. 6, part b)

can be expressed as:

(3a)p = Kp _d4 (Dq)n ; 3.5 <n < 6 ; Dq> 103 cm -I (5.3)

The equation (5.3) was obtained by limiting their calculation to

Mg0:Mn where MgO is an octahedral II-VI compound for which Dq is large

(Dq > 10 -3 cm-l). For the II-VI compounds of Td symmetry, Powell et al

(Ref. 6a) give some numerical values of 3a as a function of (Dq) as

given in Table 5.1.

*Ref. 16, Table 11.3 p. 310 gives i0 Dq [Mn (H20)6 ]2+ and [Fe (H20)6] 3+

as 8300 and 14700, respectively. Pappalardo and Dietz (Phys. Rev 123

1188 (1961) have concluded Dq (CdS):Ni) = -0_85 x 4/9 Dq[Ni (H20)6]-?--
Thus, in an analogous wsy, i0 Dq [CdS:Mn 2+] = -3100.

I
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Table 5.1. Calculated + 3a in Mn 2+ in units of 10-4 cm-I

Dq

(cm-1)

(3a)p

with doublets

(3a)p
without doublets

0 -200

0 3.56

-400 -600 -800 -I000

II.0 23.8 45.1 81.4

0 0.115 0.338 0.668 1.09 1.59

(3a) w

Eq. (5.2)
0 0.35 1.4 3.15 5.6 8.75

-1
TThese values are obtained for the spln-orbit constant, = 400 cm
and spln-spin interaction constants, M0 and H2 as 0.284 cm-1 and
0.0159 cm-I, respectlvely.

The first row of Table 5.1 gives 3a arising from all spin multiplets

within the 3d5 manifold, whereas the second,row is obtained without

taking the spin doublets of the 3d 5 manifold into account. Watanabe's

calculations are based on spin quartets alone and are given in the third

row of Table 5.1. The numerical values of the first row of Table 5.1

give the total contributions from excited states generated within the

3d 5 manifold. Now, we consider the calculation by Low and Rosengarten.

3. CONTRIBUTION TO 3a FROM LOW AND ROSENGARTEN CALCULATIONS

The cubic field splitting given by Low and Rosengarten, (3a)LR,
5

was obtained from the same spin quartets and doublets of (3d) manifold

considered by Powell et al. However, the techniques used by the former

authors differ from those of the latter. Low et al diagonalized the

enerey matrices of E', E'' and U' levels which contain five parameters;

B, C, Dq, _d and a.* Powell el at, on the other hand, diagonalized the

B, C are Racah coefficients, Dq is the cubic crystal field strength,

a is Tree's correction factor and M0 and M 2 are spin-spin interaction

parameters.
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energy matrices of AI, A2, E, TI and T 2 levels as functions of six

parameters B, C, Dq, _d, M0 and H2, first. Then, they obtained the

energies of levels E" and _T,__"_'_ +_'-_........._"o_ va!ue_ .... of th_ shove levels,

A I .... T 2 by sixth order perturbation.

The numerical values obtained by Low et al are given in Table 5.2.

Considering Table 5.2, it is evident that (3a)L R and (3a)p are

of the same order of magnitude, whereas (3a) W (Table 5.1), calculated by

Watanabe, is much less than these two. This is expected because both

(3a)LR and (35)P have been found by taking into account all spin multi-

plots of (3d) configuration, whereas (3a)w is obtained from spin quartets

of (3d) 5
only. As for (3a)L R and (3a)p. the latter gives 3a as a

function of Dq and _d" Therefore, it is more suitable for the calculation

Table 5.2.* Comparison of (3a)LR with (3a)p and (3a)Exp.

(3a)LR

10 -4 cm -I

Dq(cm -I)

_d(cm -I)

(3a)p (lO-4em-l) +

(3a)Exp.(lO-4cm-1)

MnF 2

Mn 2+

MnCI 2

IO

750

320

11

12 6

Fe 3+

Mn(H20) 6 MgO:Fe ge3Al2(SlO3)6:Fe Fe(H20) 6

IbO

1350

420

325

20-30 615 450 350

(3a)LR is the 3a calculated by Low and Rosengarten, (3a)p is the 3a

calculated by Powell and (3a)Ex D is the experimentally determined value
of 3a.

+(3a)p are obtained from the relationship;(3a)p_ = Kp _d 4 (Dq) 4 and from

the numerical values of (3a)p at Dq = i000 cm-i and _d = 376 cm-1.
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of the 3a of a certain ion in compoundsof different Dq. Thus, we

choose (3a) as the contribution to 3a from the excited states within
5 P

the (3d) configuration and, discuss the charge transfer contribution
in the next section.

4. CONTRIBUTIONTO3a FROMo-BONDINGCHARGETRANSFERSTATES

The contribution to 3a from the o-bonding charge transfer states

was obtained previously. 15 Here, it will be reviewed briefly in order

to makea comparison between this and the contribution of the _-bonding

transfer states given in the next section.
The irreducible representations of the metal d orbital and ligand

o-orbitals in II-VI compoundsof Td symmetry are:

h (d) = h (4 = 2) = e + t 2 (5.4)

and

h (o) = aI + t2 (5.5)

Considering (5.4)-(5.5), it is evident that the molecular orbitals

consist of a d orbital of e symmetry, a o-orbital of aI symmetry and

a pair of orbitals comprised of metal d-orbital and ligand o-orbital of

t2 symmetry. In the last two orbitals, the orbital with the higher

energy is the antibonding, denoted by t2a, whereas the one with the lower

energy is called bonding and is denoted by t2b. Thus, the molecular

orbitals of interest to us, are (aI is ignored):

and

,e> = ,de> , ,t2a>= sT1dt2>- BT,ot2>

Ballhausent "Introduction to Ligand Field Theory," McGaw-Hill Book

Company, New York (1962), p. 53 [Eq. (3.34)], p. 171.
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The energy diagram for such bonding is given in Fig. 5.1.

The electronic configuration characteristic of the ground state,

6AID of a tetrahedral complex of 3d5 6S ion and its bondlng-nonbondlng

are given in Fig+ 5.2. The 6Tln and
and bondlng-antlbondlng states

6T2n in Fig. 5.2(b) result from an electron transfer from the t2b orbital

to en, whereas the levels; 6Ea,b6Tla and 6T2a result from the above proc-

ess taking place between the t2 and t2a orbltals as shown in Fig. 5.2(c).

o

t2

, fit ,,
I \

/ \
/ \

I \

":I('2'" _ "" tt ,/

\ /

\ b i I
\ t2 110111 /

Illtll

002)

Fig. 5.1. o-bonding molecular orbitals in II-Vl compounds of Td symmetry.

0 o 0

,-4tl-_'+ . /-_--, '+ ,'-+H+-_'2
/ % n

__t _ 't/-- ,, ,,, / C .- C--
% I % I % I b

_t.l_, b %.._._1 b '.._1.1 '2
t 2 t2

6T o _"6EO

6 n 2 ____..6T1
T 2 m

+"']T_+ III-++++'+0'.:+.: i1_+:+,:,

(o1 /hI (c)

Fig. 5.2. (a) Ground state of complex [EA4]-n' , (b) t,b-e n charge

transfer states and their schematic energy levels, and (c_ t2b-t2 a charge

transfer states and their schematic energy levels.
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The contribution of these o-bondlng levels to 3a depends on their

stability for a given S-state ion in a given compound. In the case of

compounds where levels 6Ea, 6Tla and 6T2a may not be localized because

of the small energy band gap of compound, only 6Tln and 6T2n can be

taken into account. For the general case where anltbonding levels are

also localized, the simultaneous effort of both antlbondlng and bonding

levels on 3a must be considered. The contribution, 3a(o), to the cubic

field spllttlng 3a, from the above o-bondlng orbltals can be expressed

as:

3a(o) = E (4) (U') - E (4) (E'') (5.7)

We first obtain the 3a(o) for 6Tln and 6T2n alone. Then, we

include the states 6Ea, 6Tla and 6T2a.

4.1 Bondlng-Nonbonding Charge Transfer

The contribution to 3a(o) from 6Tln and 6T2n will be identi-

fied by 3a(o;b-n). This can be obtained both from (4.11) or from the dif-

ferent techniques described in Appendix F. The result is: 15

3a(0;b-n) = 0.1728 BT 6 _d 4 (i - enT/_nT) (_nT) -3 (5.8)

where 8T 2 = i - aT2 is the covalency of the d-orbitals of the S-state

ion in the desired complex. _d is the single electron spin orbit param-
T T

eter and is the same as A in Ref. 15. 6 and e are as shown in
n n

Fig. 5.1.

4.2 Bondlng-Nonbonding and Bondlns-Antlbonding Charge Transfer

u=_.g the same techniques as those employed for the bonding-

nonbonding process, one finds the contributions to 3a(o) arising from

For definition of U' and E'' see Table 3.1
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6Tln , 6T2n , 6Ea, 6Tla , and 6T2a as shown in Appendix F . The result is

a function of the coefficients of atomic orbitals sT and BT (_T 2

= i - BT2) in the molecular orbitals used, and the energies; 6nl , EnT ,

6 T CTal Ta ' and E a2 as shown in Fig. 5.1. For a particular case where

T T T
E = _ _ _ = 0 (5.9)

n al a2

and with the assumption that

T = r 6 T (5.10)
a n

one finds that:

3a(o) = (108:625) (6nT) -3 (x)

.... ] BT 2 _d
(x) 8T4 2 (i BT 4) r-I + (I BT2)(3 5 BT2) r-2 4

(5.11)

The parameter r and its power denote the presence of 6Tla ,

6T2 6Eaa or in the matrix elements from which 3a(o) is obtained. Thus,

the first term in the bracket in (5.11) represents contributions arising

exclusively from 6Tln and 6T2n, whereas the last two terms give the

contribution arising from the presence of both 6Tln and 6T2n, and 6Ea,

6Tla and 6T2a. An examination of (5.11) reveals that only for r ÷ 0 or

6 T + _ one obtains 3a(o)> O. Numerical values of 3a(o) as functions
a

of both BT2 = i - _T 2 and r can be found from the following relationships:

2
3a(o, BT = 0.2)= [(18/625)(_nT) -3] [0.048- 2.3r-i + 1.92 r-2] _d 4

(5.12)

* T
r is a real number chosen as the ratio of the two energies 6

a

T
and 6 .

n

I
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2
3a(o, BT = 0.3)= [(18/625)(6nT)-3 ] [0.162 - 3.3 r-i + 1.89 _-2] _d4

(5.13)

3a(o, 8T 2 = 0.4) ffi[(18/625) (6nT)-3][0 .384 - 4.03 r-I + 1.44 r-2[ _d 4
J

(5.14)

The numerical values obtained from (5.12)-(5.14) are given

in Table 5.3.

An examination of Table 5.3 indicates that a positive contri-

2
bution to 3a(o) takes place only in very covalent compounds (8T = 0.4)

and for 6 T T:6 = 12. The latter condition is unrealistic because for
a n

6nT in the order of 1-2 e.v., 6aT must be 12-24 e.v. which makes Ea,

Tla and T2a levels unstable. Thus, one can conclude that:

(i) 3a(a) is positive if only bonding-nonbonding states are

localized (6aT/_nT ÷ _I"

(2) 3a(o) is negative when both bonding-nonbonding and bonding-

T T
antibonding states are localized, and r = 6a :6n is i-i0.

(3) 3a(o) depends only on _d as shown in (5.12)-(5.13).

Since 3a(_) depends on both _d and _p, it is desirable to elaborate

further on the absence of _p in 3a(a). The fact that 3a(o) does not

depend on _p is intuitively clear since c orbitals arise from atomic

s and Pz orbitals, and since the matrix elements of spin orbit

Table 5.3. Numerical values of 3a(a) in (181625) (6nT)-3 _d4

1.2 1.6 2 5 I0 12 14 16 18

0.2 -0.S& -0.6 -0.60 -0.34 -0.17 -0.134 -0.106 -0.088 -0.072

0.3 -1.25 -1.14 -0.94 -0.42 -0.15 -0.100 -0.064 -0.037 -0.015

0.4 -1.85 -1.55 -1.26 -0.37 -0.03 0.058 0.103 0.138 0.165

20

-0.062

0,002

0.187

See Section _.
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interaction between such pairs of atomic orbtials, automatically vanish.

To put this in a more rigorous language, we will consider the part of

the matrix elements of Hp = _ i. i_i _ _ between a pair of states of anti-

bonding orbitals t = aTldt_ - BTl°t_'"_/ • z! The matrix elements arising
a +

exclusively from the ligand o orbitals have the general form of:

Maa (o, m_, m'n') = _.i/2 mot 2 _I_ __'sIl/2 m' ot 2 n>
(5.15)

where (Ref. 23, p. 108):

lot 2 g>= lot 2 yz_ = (1/2)(01 + 0"3 - 0 2 - 04) (5.16)

lot2 n>-- lot2 zx> = (1/2)(o I + o2 - o3 - c_4) (5.17)

and

ok = a (k) + b pz(k) a 2 + b 2 -- i, k = i,.. 4 (5.18)
S ' '

Substituting in (5.15), we find that:

M (o m_, m'n') =(I/4)[R 1 - R2 - R 3 + R4]aa '

where

% = a2 <i/2 m s(k),_ __'s,i/2 m' s(k)) + b 2 <i/2 m pz(k)[_ __'s,i/2 m' pz(k)_

resulting in

M (a, m_, m'_) =(II4)[R - R - R + R] = 0
aa

+_ and U are the components of T 2 irreducible representation behaving

as yz and zx.
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Thus, the off-diagonal elements, M am

elements, we have

(o, mE, m'_'), vanish. For diagonal

Maa (o, mE, mE) =(I/4)[R I + R 2 + R 3 + R4]

where

= (1/2)b2 Cp_Pl I_l Ip> _ ioo01 6m, ---o (s.z9}

Thus, we conclude that: (i) charge transfer from bonding

to nonbonding o-orbitals gives a positive contribution to 3a, (2) simul-

taneous bonding-nonbonding and bonding-antibonding charge transfer give

a negative contribution to 3a for _ T:_ T varying from 1 to I0, and (3)
a n

these contributions do not depend on _ , the ligand spin orbit interaction.
P

5. CONTRIBUTION TO 3a FROM _-BONDING CHARGE TRANSFER STATES

The last contribution to consider is that of the _-orbitals.

This was included in the calculations of 3a in the previous chapter.

From (4.17) we have:

4

I i (5.20)3a (4) = 3a(4)(0,_) = CI _d 4-i _p

i=o

The above result was obtained by substituting the promotion energies,

for charge transfer among various orbitals tb, eb, tl, ea and ta of Fig.

3.1 by an average energy. To refine the above result further we consider

the case of tI ÷ ea electron transfer first and then discuss the

10001 in (5,19) is vector coupling coefficient of two vectors,

I
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general case where all six transfers tb + ea, eb + ea, tI ÷ ea, tb + ta J

eb + ta and tI ÷ ta are taken into account.

5.1 Determination of 3a (o,_, tI + ea)

The effect of tI + ea charge transfer states on 3a (o,_) will

be discussed in this section. The symmetry and electronic configurations

of the _-bondlng molecular orbltals of tI + ea charge transfer are shown

in Fig. 5.3.

'" '° TTTI III \ I \

I \\ II/ II \e. I |tl '

P fltltl t1 _ fl]lt \\_' Illll '_

'_,, IIlIll /-- \_ \ //4

_, /I /
IIII / eb _ /

\ lltlll 1% \ tl_lfl /
lilill _ lilill

6TI

61+,

61

CT2

6AI 6AI

(o) (b)

Fig. 5.3. Molecular orbital and energy levels of (a) the ground

level 6A I and (b) the tI + ea electron transfer levels 6T 1 and 6T 2

I
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I

I

3a (o,_, t I ÷ ea) can be obtained from the following relation. I

I

Substituting for reduced matrix elements from Tables 3.3 - 3.4, and for

Kjj, from Tables 3.9 - 3.12 one finds,
I

612 )] -i
3a (_, t I ÷ Ca) = - (61 +

(x)[()V_ ()Vn_ (+)_ ()V_Tr()

(eatl)(tlea)(tltl)(tlt I)

(1/18) (128/9800)]

I

I
I

Substituing for eat I and tlt I from Table 3.13 we find

3a (o,_; t I ÷ Ca) =- (9/1250) [612 (61 + e)] -I 82 _p4
(5.21)

5.2 Determination of 3a (o,_; tb ÷ Ca)

The contribution from tb ÷ e a charge transfer can be obtained

in a similar fashion. The energy diagram is as shown in Fig. 5.4.

I
I
I
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I Ill ill

/ i,i \ / iii \

,,,,,, _# '/" .;__ i,ll_ _

\'. '"'" -- _t" ,,,, .Ill, ####
% 'l'l / % Illll /

I
I

I
I
I

I

6 •

T 2

(b)

Fig. 5.4. Molecular orbital and energy levels of (a} ground level
and (b) the tb -_ ea electron transfer levels bT i and 6T_ 6AI

The effect of 6T i and 6T_ on 3a can be written as

I
3a(_, tb _e ) - - [612 (6i +c')] -I

I
(x) {(-)'V'_ (+)'Vr_"_ (-)'_/20 (+)'V'_ [ (-) (1/18) (128/9800) ]

(eatb) 2 (tbtb) 2) (5.22)

Table 3.13 gives

eat b _ - 3"_ak_ d +_'_SK_
P

(5.23)

The fact that 3a (_, tb _ ea) _ 3a(ox_;t b _ e ) and also 3a(_) _ 3a(o,_)
is evident from the choice of K2 + _z = 0.8 <al in (5.26). The reason

is that the only role played by o orb_tals is to reduce the coefficient

of z and A of dt 2 and _t 2 orbltals in molecular orbltals of t2 symmetry.
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tbtb = 3X2 _d + 3/2 K2_p (5.24)

Suosti.ating for eatb and tbt b in (5.22) one finds

! !

3a(°'_;tb + ea) _- (18/625)[612(61 + ¢ )]-l

(x)(6 _2X6_d4 + (6 _2_2X4 - 2_BKX5)_d3_p

+(3/2_2_2_ 4 + B2K2X4) _d 2
2 + (B2K4X2 _ (3/2)I/2_BK5X)

P

(x) _d_p 3 + (4) -1 82K6_p4_
(5.25)

The numerical value of 3a(n, tb + ea) can be obtained from following

coefficients

2 = 1_82 = 0.7

2 %2K = 0.8 -- : 0.6 (5.26)

and it is found as

3a(o,_;t b ÷ ea) =

[(18/625)(_i_161 + Ei)l]-i [.034 _d4 +.0674_d3_ p

_d2_ p 4]+ .0827 2 _ .0487 _d_p 3 + .0251_p
(5.27)
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5.3 Determination of Total 3a(o,_

The 3a(o_) representing the effect of all charge transfer

states of transfers tb ÷ ea, eb _ Ca, tI ÷ Ca, and tb ÷ ta, eb ÷ ta and

tI ÷ ta, can be expressed as (4.6):

3a(q,_) = 3a (4) =

4

I Ci _ 4-i_ id p
i-- o

(5.28)

where Ci are functions of _,B,_,% and the charge transfer energies such

as 61 and 61 in (5.21) and (5.27).

The numerical values of the coefficients C. are calculated
i

for a2,B2,K2,%2 as in (5.26) and for

= _. ' =E 661 61 + c 61

The results, given in Table 4.1, and 4.2 indicate that

3a(4)>0

_p/_d _ 2 (5.29)

and

3a (4) <0

_p/_d _ 3 (5.30)

For ligands 0-- and S-- and S-state ions Mn 2+ Fe 3+or the

_p/_d _ 2 holds and consequently

3a(_,O ), 3a(_,S ) > 0 (5.31)



6O

whereas for Se-- and Te-- the condition _p/_d _ 3 applies and one con-

cludes that

3a(_, Se--), 3a(_, Te--) < 0 (5.32)

Comparing sections 4 and 5 one concludes that (I) in both

o- and x-bondlng schemes t2 _ e charge transfer gives a positive contri-

bution to 3a, (2) t_ _ e charge transfer seems to be the most probable

in o-bonding scheme whereas the tI + e transfer seems to be the most

probable in _-bondlng scheme and gives a negative contribution to 3a(_)

and (3) the 3a(o), for an average charge transfer energy*E6(o) is nega-

tive whereas 3a(_), under similar condition is positive if _p/_d _ 2.

Now we proceed to the next section for comparison of (3a) w,

(3a)p, 3a(o) and 3a(_).#

6. COMPARISON

The five separate calculations given in Sections 1 through 5 can be

compared now. To simplify this comparison we ignore the effects of spin-

spin interaction on 3a which appear as small corrections in calculations

of Watanabe and those of Powell. This enables us to describe their results

as functions of _d 4 and (Dq) n. The result is

(3a) W = K _d4(Dq) 2

(3a)p = Kp _d4(Dq) n 3.5 <n<6

3a(o) = K° _d 4

4

3a(o,_) = _= Ci _d4-i _pi
i 0

#k

Let 6aT: 6nT = r = I in (5.11)

t3a(_) - 3a(o,_)

(5.33)
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where (3a) W and (3a)p are contributions to 3a from calculations by

Watanabe 5 and by Powell 6, respectively, and 3a(o) and 3a(o,_) in (5.33) are

contributions from charge transfer excited states. Since (3a)p results

from spin doublets and quartets of 3d 5 manifold, whereas (3a) W results

from spin quartets alone, one immediately concludes that (3a) W is included

in (3a)p:

In a similar fashion*

(3a)w_a) P (5.34)

3a(o)_a (a,_) (5.35)

Therefore, the total contribution from spin multiplets within 3d 5

manifold and charge transfer states is

(3a)p + 3a(o,_) (5.36)

The experimentally measured 3a can be affected by spin quartets and

doublets which arise as a result of charge transfer. In this case, 3a

can be written as

3a = (3a)p + 3a(o,_;) + (3a) r
(5.37)

where (3a) r represents the rest of terms ignored in the evaluation of

3a(o,_).

7. COMPARISON WITH MEASURED 3a OF Fe 3+ IN ZnS, ZnSe AND ZnTe

We want to compare the measured 3a of Fe 3+ in Zns, ZnSe and ZnTe

with 3a in (5.37) on the assumption that (3a) r = O.

The measured 3a of Fe 3+ for above compounds are given in Table 2-2

and are repeated here in Table 5-4.

*3a(o,_) = 3a(_) [See the footnote to Eq. (5.26)]
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TABLE5.4

Measured_3a of Fe3+ in 10-4 cm-I

ZnS

384

ZnSe

144.9

ZnTe

-7800

_Reference 27

To find the contribution (3a)p to the measured 3a values in Table 5-4

we assume: (i) that the measured 3a of Fe 3+ in ZnS arises completely from

(3a)p, (ii) the power n in (Dq) n of the expression*

(3a)p = _ _d4(Dq) n

is equal to 4 and (iii) (Dq) is proportional to inverse fifth power of

interionic distance R. With these assumptions, the ratios of (3a)p of

Fe 3+ in ZnS, ZnSe and ZnTe can be obtained as follows:

(3a)p(ZnS) : (3a)p(ZnSe) : (3a)p(ZnTe) = 10.1:5.3:1. (5.38)

The (3a)p obtained from (5.38) are given in Table 5.5.

*Kp, in (3a)p = Kp _d 4 (Dq) n, depends on several parameters such as Racah

coefficients B and C. For simplicity, however, both this and _d are

assumed to remain constant in three compounds ZnS, ZnSe and ZnTe.
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TABLE 5.5

Estimated (3a)p for Fe 3+ in 10 -4 cm -I

ZnS

384

ZnSe

204

ZnTe

38

The contribution 3a(o_) can be obtained for the appropriate values

of _p/_d" The _d* for Fe is 0.049 e.v. and _pt for S, Se and Te are 0.06,

0.35 and 0.9 e.v., respectively. Thus, the _p/_d ratios are 1.09, 6.4

and 16.4 for Fe 3+ in the three compounds ZnS, ZnSe and ZnTe respectively.

The 3a(o,_§)at these ratios of _P/_d and for _d = 0.049 e.v. and E6 = 4 e.v.

is obtained from Table 4.2 as given in Table 5-6.

The sum of (3a)p and 3a(o,x) is given in Table 5-7.

I

I
I

I

*Ref. 16, p. 4319 ( _d of Fe ° is chosen instead of _d of Fe 3+ because

the effective charge of Fe in ZnSe and ZnTe is expected to be close to

zero).

tJ. Dimmock et al "Band Structure of PbS, PbSe and PbTe," Phys. Rev. 135,

A824(1964).

4

3a(4) I _d4-i _pi
§ = C.

i

i = 0
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Table 5.6. Calculated 3a(o,_) of Fe 3+

ZnS ZnSe ZnTe

_p /_d 1.09 6.4 16.4

3a(o,_

.lO-4cm-l) 0.564 -141.0 -6620

Table 5.7. Measured and calculated values of 3a of Fe 3+

(3a).+3a(o,_)
Y

(in lO-4cm -I)

(3a)Exp.

(lO-4cm -] )

ZnS

384.56

384

ZnSe

63

144.9

ZnTe

-6582

A comparison of the calculated and measured 3a indicates that a

ligand to metal charge transfer process is capable of accounting for the

variation of 3a of the Fe 3+ in the series of ZnS, ZnSe and ZnTe compounds.

A detailed examination of the coefficient C 4 of _p4 in the expression of

3a(4) in (4.6)* indicates that the sign of this coefficient is insensitive

to coefficients of the linear combination of atomic orbitals _,B,K and

3
in the molecular orbitals, whereas the coefficients of _d 4

_d_p
@

are the sum of almost equal number of positive and negative terms. With

small variations in such terms the sign and magnitude of these coefficients

will change.

Therefore, the spin sextet and ligand to metal charge transfer

approximations are valid for metals of higher formal valency and ligands

for which _p/_d_lO. ZnTe:Fe 3+ meets both of these requirements. Hence,

the agreement found should not be surprising.

*See the footnote § on the preceding page

tSee Ref. 27
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In addition to Fe 3+ discussed above Cr + and Mn 2+, the other two

S-state ions of 3d 5 configuration, deserve a brief discussion. In case

of these two ions, in addition to the ligand to metal charge transfer

process, employed for Fe 3+, another charge transfer should be taken into

account. This latter charge transfer permits the transfer of an electron

from the antibonding orbital_t a and ea to the higher lying antibonding

orbitals localized in the vicinity of the next nearest neighbor metal ions

such as Mn÷Zn charge transfer in ZnTe:Mn. For brevity, this is called the

outgoing charge transfer whereas the former one is called the incoming

charge transfer. The matrix elements arising from such processes can be

obtained from general expressions given in Chapter III with slight modi-

fications. The evaluation of charge transfer energies, however, would

involve the next nearest ions Zn and Cd in (Zn, Cd) (S, Se, Te) compounds

and more caution is needed for a correct assessment of such energies.

The extension of present theory to these two ions has to be deferred to

a later time when more accurate charge transfer energies are available.

8. COMPARISON OF 3(_,_) OF Td AND Oh CASES

Considering Table 5-6 one finds that both the absolute value and the

sign of 3a is determined by the presence of _p in the expression of
4

= _ C _d4-i _pl. A question arises on the nature of the role3a(o,_)
i=0 i

of _p in 3a(o,_) of Fe 3+ in compounds of Oh symmetry.

Before considering the above question it is worthwhile to give a

brief remark on the 3a in Td case. Recalling (5.37) the total expression

of the 3a is

3a = (3a)p + 3a(o,_) + (3a) r (5.39)

*The orbitals ta and ea are the half filled orbitals which are localized
near the S-state ion and in ionic case form the components of the d

orbitals of the S-state ions.
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where (3a)p is given in Table 5.1 and 3a(_,_) and (3a)r
as

can be expressed

and

3a(o•_) = -

_[ ss ss SS SS -M0k Mkl Mlm Mm0 I U'

3a = -

Lr

IEkl m EkEIEml -I

- SS SS SS SS -- tM0kMkl Mzm M_0 J E'
J

[| ss ss sq

Eklm,(gkEiEm,}-I LIM0k Mkl Mlm, Mm,qS) U ,
"I

l ss ss sq 1 'I-I_°_&_"_'&'_l_'
J

_M SSM sq_ qqM qsl

+ Ekl'm'IEkEl'Em')-ll_'=0k =_kl' =_l'm' =_m'0 jo,
L"

_M s_u sqM qqM qs_ ]

]
-l[I sq qq_ qqM qs_

f-

+ ' i' "_l'm' =_m'0 / U'

lu sq_ qqM qqM qsl _'I

-|_Ok' "_'i' "'l'm' "_m'O I _ l

-{_ q )sq , wdl,flt dqM qsOk' Mk'l 'm' "_m'0

(5.40)

U !

(5:41)

SS _ =The M0k • Mk_ q .... Ml,m _q in (5.4!) are the matrix element of Hp

_ili.s i and the superscripts s, q and d refer to the spin sextet•_.._ .
quartet and doublet, respectively and En, En, and En,,(n = k, i, m) refer

to energies of these states.

An important distinction between II-VI compounds of Oh and Td

symmetries lies in the fact that the band gad energies in the former case

I

I
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varies from* 4-8 e.v. whereas in the latter case it varies from 0.02-3.7

e.v. Therefore it is probable that the energies of quartets, En, , and

doublets, En,,, are below 8 e.v. and as a result of this the spin quartets

or doublets can be localized around the complexes of Oh symmetry. Thus

an a priori omission of (3a) r does not seem to be a reliable approximation

for the Oh case. Another obstacle, in the Oh case is lack of experimental

information on 3a of Fe 3+ in such compounds as SrSe or SrTe where _p

becomes significant. Therefore it is impossible to assess the contribution

to 3a(o,_) in the ocathedral case. In the case of Fe 3+ in the tetrahedral

compounds, such as CdTe or ZnTe where the energy band gaps are, respec-

tively, 1.5 and 2.1 e.v., it is possible to assume that none of the charge

transfer spin quartets are localized. As a result of this the (3a) r may

be ignored and only 3a(o,_) taken into account. In case of ZnTe:Mn2+

where Oa_> 0 one may conjecture that the charge transfer spin quartets
exp.

also contribute to 3a(o,_) as well as spin sextets of outgoing charge

transfer process referred to in section 7.

*See R. Bube, "Photoconductivity of Solids" John Wiley and Sons, Incor-

porated, New York, (1960) p. 233



CHAPTERVl
SUMMARYANDCONCLUSIONS

i. SUMMARY

A calculation of cubic field splitting of S-state ions in II-VI
compoundswas planned. To achieve this, the following steps were taken:

(i) Molecular orbital techniques were employed to construct the
-n !

excited states of complexes (EA4) with E as the S-state ion and

A as 0, S, Se or Te.

(2) A ligand to metal electron transfer process was taken into

account and the excited states arising from such phenomenon were con-

structed with o and _ ligand orbitals.

(3) The cubic field splitting 3a was expressed as the lowest

order splitting of the spinor levels U' and E'' (Mulliken's notation)

of the ground state as a result of perturbation by excited states through

the spit orbit Hamiltonian,

H = Y _i _i'si
P i

(4) Utilizing group theory arguments, it was established that

(a), the lowest order perturbation, was four and (b), at this order of

perturbation the contribution to 3a arises exclusively from the two

groups of three excited states having symmetries of TI, E, T] or TI, T2,

TI respectively.

(5) Utilizing reduced matrix techniques the matrix elements of

H between any pair of states
P

and

lik> = IXi Si hi Jk t •>

I.i = Jxj sj _ _

68
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was obtained in terms of the reduced matrix elements R.. and the coupling
ij

coefficients _ as follows:

<Xi S'l hi Jk t T IHp[ Xj Sj h.t_] T_ = <Xi Si hi] IHpllXj Sj hj Kk% >

= Rij Kk_

where

and

Rij--(×isih_llHpllxjsjhj_

_ -- KJkj% (Si Sj TI, hj h i t)

and IJ tT > is the component of the irreducible representation of angular

momentum J in the cubic point group as defined by Griffith 16 (p. 395).*

(6) 3a was obtained as a sum of the products of the four matrix

elements:

and

_X ° 6A 1 5/2 tTIHplXi Si T 1 J_ tT>

Xi Si TI J% tTIHpIXj S. h. J tT_ h. = E or T 2j j m j

Xj Sj h. J tT IXk Sk T I J tT_] m IHp n

Xk Sk T1 Jn t_IHplXo 6AI 5/2 tT>

*For example 15/2 UV> = _ [_I5/2 5/2> + 15/2 3/2>]
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with Xi .... Xk representing various electronic configurations giving

rise to S i T1 .... Sk TI.

(7) The numerical values of the 3a of Fe 3+ in Zn(S, Se, Te) com-

pounds was obtained with restrictions of

si = sj = sk= 5/2

Ei = Ej = Ek = E 6

and _d and _p as the spin orbit constants of metal and ligand orbitals.
-i

For appropriate values of _ for Fe, S, Se and Te, and with 32,000 cm

for E6 it was found that the calculated 3a accounts satisfactorily for

the difference between measured values and the ionic contributions to

the 3a of Fe 3+ in the compounds ZnS, ZnSe and ZnTe.

2. CONCLUSIONS

Most of the conclusions drawn from this study concern the effect

of charge transfer states on the cubic field splitting 3a of S-state ions

in II-VI compounds with tetrahedral symmetry. These conclusions are

classified as follows:

(I) The cubic field splitting 3a of S-state ions in covalent

II-Vl compounds of tetrahedral symmetry depends strongly on the excited

states arising from charge transfer from ligand _ orbitals to metal

d-orbitals.

(2) The effect of these _ orbitals is relatively insensitive to

the choice of promotion energies and coefficients of linear combinations

of atomic orbitals.

(3) To refine present theory, it is necessary to establish (a),

the energy levels beyond which excited states are no longer localized,

(b), the perturbation order beyond which the contribution to the initial

splitting 3a is negligible, and (c), a search for a few parameters

characteristic of charge transfer state energies.
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(4) To verify the predictions of this theory with experiments, it

is desirable to (a) determine the sign of the 3a of Cr+, Mn 2+ and Fe 3+

wherever it is in doubt, (b) prepare single crystals of (Mg, Ca, Sr)

(Se, Te) which have ocathedral symmetry and to measure the 3a of S-state

ions, particularly Fe 3+ in such compounds.
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APPENDIXA

DEFINITIONOFSYMBOLS

The frequently occurring symbols, in both the Latin and Greek

alphabet, are defined in Table A1 of this Appendix. The former group
of symbols is given first and then the latter one.
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C.
l

9.
i

E vv

e
a

%

E(U')

E(e' ')

Ejk

E.
3

H
P

h
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TABLE A-I

DEFINITION OF SYMBOLS

Term designation of a state of space irreducible

representation, AI, and spin S = 5/2.

The cubic crystalline field splitting of a 6S level.

Numerical coefficients of the expression for the

charge transfer contribution.

Square root of the product of dimensions of space

and spin representations h i and Si of a state Isihi>.

Thus, for a state ISihi>= 15/2^T i)One has _i =

[(2S i + l)(hi)]i/2 = [(6)(3)] I/2 =[18] I/2.

An irreducible representation of cubic double group

as defined in Table 3-1.

Antibonding molecular orbital of symmetry E (Table 3.1).

Bonding molecular orbital of symmetry E (Table 3.1).

The lowest energy value of levels of symmetry U'

(Table 3.1)

The lowest energy value of levels of symmetry E''

(Table 3.1)

The energy difference of states lj and ik:

Ejk = Ek - Ej.

The energy of state lj from that of ground state:

E.=E.-E.
3 3 o

Perturbation Hamiltonian: H = _i.si Z su(<)
p Zi_i = K

An irreducible representation of single valued

cubic group.



Kjj' (SS'Tl,h'ht)

M

MO

IR

S

s

t a

tb

t I

U'

V(abc,_By)
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An identifying numberof the irreducible represen-

tation resulting from the coupling of spin S and the

irreducible representation h of a state ISh>such
v v v = v of

as Uj = U312 of the state 1512 TI> , and Uj U2

the state 15/2 E>. In the case of h = TI, T 2 the

index J behaves as total angular momentum associated

with Russel Saunders level ISL> = Ise = i> whereas

for h = A2, E it is a designating number.

Spin-orbit matrix element coupling coefficient

between states I ShJtT >and IS'h'J'tT>.

Magnetic quantum number associated with spin S.

Molecular orbital.

Irreducible representation.

Total spin associated with a total level or its

sublevels.

Single electron spin operator.

An irreducible representation in the cubic double

group of the coupling, the spin S, and space irre-

ducible representation h of a given state ISh>

such as U' of 15/2 Tl>.

Antibonding orbital of symmetry T2 (Table 3.1)

Bonding orbital of symmetry T2 (Table 3.1)

Non-bonding molecular orbital of symmetry T I.

An irreducible representation of cubic double group

(Table 3.1)

Coupling coefficient of the components _ and B

of the irreducible representations a and b into the

y component of the irreducible representation c such

as V (ETIT2@x_) = 1/2. The components @_ x_ _ of the
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(abc,_By)

W(abc,def)

W(abc,def)

_/(NiNjNo,NkNIN m)

X(abc,def,ghk)
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representations E, TI, T 2 ... and their symmetry

properties are defined in Table A.16 of Ref. 16.

Coupling of _ and B components of spins a and b into

y components of spin c such as V (5/2 5/2 l, 1/2 -1/2 0) =

(1/210) 1/2 . Tables of V are given by Rotenberg et al.

(Ref. 26 footnote of p. 86).

An invariant product of four coefficients V(abk,_By)

...defined as W(abc,def) = E_By_e_ V(abc,_By).

V(aef,_) • V(bfd,B_6) • V(cde,y_E). The tables

of coefficients W (abc_def) are given by Griffith

(Ref. 26 p. 114)

An invariant product of four coefficients V(abc,_By)

...defined as W(abc,def) = E_By_c_

a-_+b-B+c-y+d-6+e-s+f-_

(x) (-i) V(abc, _By)

(x) • V(aef,_s_) • V(bfd,B_) • V(cde,y6c).

Values of W are the same as the 6-J symbols corre-

sponding to a, b, ... ,f and the latter are given by

Rotenberg et al. (Ref. 26 footnote of p. 86).

Product of a W and W coefficient as _/(NiNjNo,N_NINm).. =

(SiSjI,SkSiSm) (x) W (hihjTl,hkhlhm).

An invariant sum of the products of six coefficients

V(abc,_By), ... V(cfk,y_K) expressed as X (abc,def,ghk) =

E_By_qSK V(abc,_By).

(x) V(def,6c_) • V(ghk,nS_) • V(adg,e6n) • V(beh,B_0)

(x) V(cfk,y#K). These X coefficients are defined by

Griffith (Ref. 26).



X(abc,def,ghk}

X(N N N. ,N'N'NI'
i j k i j K,

NaNbNo)

A

(ZA4)-n'

_d

_p

T

X !

X
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This is similar to X(abc,def,ghk) defined above except

instead of V(abc,_By), one takes V(abc,_By). Thus

X(abc,def,ghk) = Z By6e_ne K V(abc,_By).

_X) V(def, 8e_) V(ghk,_9<) ...... V(cfk,?_K). The

coefficients X are given by Howell (Ref. 26 footnote p. 86)

Product of coefficients X and X related to N.N Nk,lj
II!

NiNjNk' NaNbNo as follows: ._(NiNjNk,N_N_N_,NaNbN o)

= X(SiSjSk,S_SjS_,SaSbl) • X(hihjhk,h_h;h_,hahbTl).

The ligands surrounding the metal ion of II-VI compounds

such as S , Se and Te .

The S-state ion substituting the metal ion of a II-VI

Mn 2+compound such as in Zn site of ZnS single crystals.

A complex formed of an S-state ion and its four nearest

neighbors, with a formal negative charge of n'. For

Z Cr+, Mn 2+ Fe 3+= or the number n' is, 7, 6 or 5

respectively.

Single electron spin orbit inter-action of an electron

in the ith orbitals.

_d of a d orbital of the S-state ion.

_p of a p orbital of the ligands S, Se or Te.

Component of t denoting an irreducible representation

of the cubic double group. The properties of these

components are given by Griffith (Ref. 16).

Electron configuration of five orbitals ta, ea, tI, eb

and tb as defined in (3.8a).

Hole configuration of the five orbitals ta, ea' tl'

eb and tb as defined in (3.8b).
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component of Jth irreducible representation t

arising from coupling of spin S and space irreducible

representation h of the state iSh> belonging to the

X configuration.

Reduced matrix element of H
P

and Jx'S'h'>.

between states IxSh>



APPENDIX B

SPIN ORBIT COUPLING IN MO SCHEME

This Appendix gives the appropriate form of the spin orbit inter-

action Hamiltonian HSO in the molecular orbital (MO) scheme. The expres

sion of HSO for an n electron system is

B__e[Z Z -3 (r i x ?) • s iHSO = mc ri_ -- --
[

(r lj x pl).(# + 2sj_ (BI)

where _ refers to all nuclei; r. is the distance between electron i and

nucleus e, Z is the charge of nucleus e; i and j refer to all electrons

in the complex and the remaining parameter have their usual meanings.

The first sum in (BI) gives the spin orbit interaction of each electron

in the Coulomb field of all the nuclei in the complex whereas the second

sum describes the interaction of each electron in the field of the other

electrons and also the coupling of each spin with the orbital magnetic

moment of the other electrons (spin-other-orbit interaction). The HSO

can be rewritten as:

= Zis H.I= - Zi'JT Hij (B2)HSO

H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One and Two

Electron Atoms (Springer - Verlag, Berlin, 1957), p. 181.
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where

H. (Be/mc) Z r. -3 ( i ' i .s (B3)= x i) . s = _ (ri_) £i_ i

and

H.. _e(mc) -I -3 " "= r.. ( ij x pm) . ( m + 2sJ) (B4)
13 _j - --

Misetich and Buch + have shown that for the molecular orbital wave-

functions _o and _n related to symmetry wavefunctions ¢o and _n of a

given term of the free central ion of the complex_one has

= _ic si Z '. _L _isi<_oIHs01_n> <_olZi ' _c (ric) -- "-- + I,L (riL) " '_n> (B5)

The parameters _c (ric) and _L (rcL) in (B5) give the spin

and _L after being integrated over r and respec-orbit constants _c ic riL

tively except for the fact that their numerical values depend on the

coefficients of linear combination of atomic orbitals used.

In the general case where the MO wavefunctions _o and _n cannot be

related directly to free ion such as the charge transfer states in a
-n'

complex [E A4] , the spin orbit interaction can be considered in a

slightly different way. Considering (BI) - (B4) and denoting the single

electron spin orbit interaction by Hso(i) , one has:

Hso(i) = Z_ Hi_ - I HIj = Z _ --Ei_ i I• _ _ (ri_) .s - Hij

j (+i) j(_i)

__ic si __iL i I= _c (ric) "-- + ZL _n (riL) .s - Hij (B6)

j (_i)

+A. A. Misetich and T. Buch, "Gyromagnetic Factors and Spin-Orbit Coupling

in Ligand Field Theory," J. Chem. Phys. 41, 2524 (1964).
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where the parameters c and L denote central and ligand ions respectively.

The matrix element of Hso(i) between the ground state _o and an

excited state of the system _n is

j (#i)

The single orbital wavefunctions i and j can be described as

(BS)

(B9)

where

2 2
_. +%. = i
l l

(BIO)

_ubs%ituting in (B7) one finds:

<_o'Hso(i)'_n>: _iK'i <ic'Hicli'c>+ %i%'i <iLl_' L HLi'i'L_

< I2- Z K.K' icJ c K. H. li' "j Z i J zj C3 C

- Zj %.%'1i <iLJLI%j 2 H'IjliLjL>

: K.K' <iclH.Z i ZC

(BII)

I
I

I
I

I
I

I
I

I
I
I
I

I
I
I
I

I

I

I



I

I

l

I

I

l

l

I

I

I

l

I

i

t
l

1
I

I

81

If both i and i' have the same radial wavefunctions then the radial
c c

integration of the first sum gives the spin orbit constant of the central

ion for the orbital i being corrected for a change in the electron
c

density in orbitals j, measured by K. 2 Since in this work, the molec-
J

ular orbitals i are constructed from d orbitals of the central ion,
c

they have the same radial part. Thus the first term in (BII) can be

expressed as*

K' K 2 H. " c>_ _<_c_ z <__ _I_>l_'
j (#i)

= KiK' i (icl_ c siC.sili'c) ' (m12)

Similarly the radial parts of iL and i'

the same. Thus

in the second term of (BII) are
L

J

• !2_ij,_L>i L>

= _i_'i<iLI% % __iLsili'L> (BI3)

Now we define a spin-orbit interaction operator _i -- --

ei'silic> = _d %di'sili_i- - - c

hi- si such that

(BI4)

and

_i %i'siliL> = _p _Pi'siliL> (BI5)

The prime sign on _icL_c%iC'si i'c> in (BI2) indicates it has been
integrated over ric
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The parameters d and p in (BI4) - (BI5) indicate that ic and iL

are constructed from d and p atomic orbitals respectively. Substituting

in (BII) one finds

<_dIHso(i) I_n> = KK'i i <icICi £i'sili'c>

+ kil' i <iLl_ i _i'si

(BI6)

Since

HSO = Z.i Hso(i) (BI7)

then

resulting in

HSO Zi _i £i. i I= s = su(i)

i

(BI8)



I
I

I
I

I

B3

where

and

_(i) = _i Ai (BI9)

I su(i) = _i %i'si

I
i

i
I
I

I

i
I

(B20)

In (BI6) - (B20) _i _i behaves as operators defined in (BI4) and (BI5).

The above definition of spin orbit Hamiltonian for the charge transfer
-n'

states of a complex (Z A4) is certainly an approximate definition

which will not be adequate for the precise evaluation of the matrix

elements of HSO but is sufficient compared to other approximations made

in construction of the molecular orbitals Ii> and excited wavefunctions

l+n>
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APPENDIX C

SPIN ORBIT MATRIX ELEMENTS

FROM THREE AND FOUR ORBITAL WAVEFUNCTIONS

The purpose of this Appendix is to give the spin orbit matrix ele- •

Uments between charge transfer states consisting of three or four types

of distinct orbitals each having at least one electron such as those in
am

Table 3-1. The spin orbit matrix elements between pair of states con- B

slstlng of only two orbltals have been calculated by Tanabe and Kamlmura*

and by Grlffith. + The ligand to metal charge transfer process, in cubic i

complexes of S-state ions, results at least in three open shells of elec-

trons two of these around metal and the third around the llgand. Thus R

the desired states consist of at least three orbitals. As a result of

this the formulae by above authors should be modified and extended to be m
applicable for these wavefunctlons, i

We proceed by giving a brief description of charge transfer wave-

= Ei_s I . £i ifunctions first and then discuss the matrix elements of Hp

between them.

i. CHARGE TRANSFER WAVEFUNCTIONS i

A description of the orbital part of the ligand to metal charge

transfer wavefunctions, in complex [EA4 ]-n, will be given here. Their R

radial part is omitted for slmplicity_ it must, however, be taken into

account in a more refined analysis of this subject, i

Considering Table 3.1, one finds the electronic configurations p,q,..t

and the representations ta, ea, t I, eb and tb of the orbltals in a charge •

transfer state. Denoting the spin and magnetic quantum number of the

participating orbltals by SiM i and their space irreducible representatlon (IR)

by hi8 i one can describe a charge transfer state of spin SM and irreducible B

representation h8 as follows.

*Y. Tanabe and H. Kamimura "C _he Absorption Spectra of Complex Ions IV. N

The Effect of the Spin-Orblt Interaction and the Field of Lower Symmetry

on d-Electrons in Cubic Field" J. Phys. Soc. Japan 1--3,394 (1958) •

+J.S. Griffith (Ref.26) U
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I

I

I

8_

is

IxiShMS>" [ta p SIhlMIe I, eaq S2h2M282,..-tb t SshsM585;ShMS>]

(Cl)

For example one of the states arising from the first row of Table 3.2

Ixisn Tl 5nz>=lta2 IT 1 lx, e2 IA21a2, tll I/2T1 l/2y

ebOOAlOal, tbO OA 10al; 5/2 T 1 5/2Z>

ta23Tl 2=i Ix, ea 3A21a 2, tll2Tl I/2y

ebOIAlal;6Tl 5/2Z> (C2)

where Xi in (C2), as before, denotes the manner by which the five orbltals

ta, ea, ..... , tb have coupled to glve 6T 1 in (C2).

2. MATRIX ELEMENTS OF H = Zi_i£i • si
p --

The matrix elements of H between pairs of charge transfer states

>IxjShMe and [×kS'h'M'8'> will be obtained in this section. To simplify

the notation the above matrix element will be denoted by Mjk(ShMO-S'h'M'O'):

' = 'h'M'8 >Mjk (ShMe-S'h H'e') <xjShMelHplXkS '

where

- ajk(Sh-S'h') Q(ShMS-S'h'M'e')

'h'
Rjk(Sh-S'h') = <xjShl IHpl Ixks >

(C3)

(C4)

is called the reduced matrix element and Q(ShMe-S'_M'8') Is the coefficient

of the coupling of Isle)and IS'h'M'8' > through spln orbit interaction



and it is independent of J

Rjk(Sh-S'h') and leave Q(ShM0-S'h'MO')

3. REDUCED MATRIX ELEMENTS Rjk(Sh-S'h')

Rjk depends on Xj

configuration p,

Therefore the reduced matrix elements Rjk

and Ik> can be characterized by

tj and Pk' qk' ''"

and observing Table 3.2, one immediately finds that

of reduced matrix elements as follows:

(1)

(ii)

(iii)

86 " |

I

and k as will be seen later• Now we consider I

M0- '] 'MO') for Appendix D.

!
TS j] (Sh-S'h')

and Xk. The Xj and Xk , in turn, depend on the I

q, ..., t of orbitals ta,e a ..., tb as shown in (CI).

uc d matrix el ements Rjk between a pair of states lJ> I

ar cterized b: the configurational numbers pj, qj, ...

• tk in these two states. Considering this fact in mind I
le 3.2, one ilmediately finds that there are three classes

elements as :ollows: I

PS = Pk' qJ = qk' uj = uk u = r,s,t (C5) I

PJ = Pk * i, qj = qk _ i, uj== uk u = r,s,t (C6) I

PJ = Pk' qJ = qk; uj # uk u r,s,t (C7)

!
The numbers p,q, ... t in (C5) - (C7) are given in rows of the hole

column in Table 3.2. In case (i) both states lJ> andconfiguration

Ik> have._three open orbltals with the same configuration such "as Ixj6TI _.

and IXk6T2)- of the first row in Table 3.2. Rjk in this case may be called

homo-conflguratlon three orbital reduced matrix element. In case (ll) the

orbltals involved are the same but their configuration differ and therefore

the Rjk of this case is called hetero-conflguratlon three orbital reduced

matrix element. In case (ill) only one of the five orbitals ta, ea, tl,

eb and tb remains closed in both states lJ> and Ik> such as tb in 6T 1 of

row 2 and 6T 2 of row 3 in Table 3.2. The R_k of this case will be called
J

hetero-conflguration four orbital reduced matrix elements. These three

cases will be considered in the following sections.

I

I

I

I

I

I
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o HOMOCONFIGURATION THREE ORBITAL REDUCED MATRIX ELEMENTS

Here we consider the case of Rjk between states {j>and {k>
with both lJ> and Ik> containing three open orbltals of the same symmetry

and configuration.

The Rjk in this case can be expressed as

where

5k(_h,_'h'_--(×jshtl._If×ks'h'>

,x,sh>.,[aPSlh,(bqS2h2crS,h3,S4h4},,S,>

(C8)

(C9)

(clo)

I The orbitals a, b and c, in (C8) - (CI0), represent three of the

five orbitals ta, ea .., tb of Table 3.2 and the subscripts J and k denote

I the coupling of such orbitals.

Since the perturbation Hamiltonlan H*p = i_ _i.£1.sl = i_ _._ (1) is

I in terms of single electron operators we must express the total wave-

function in terms of the single electron orbital which constitute such a

wavefunction. To obtain this we rewrite (C8) as follows: +I

I
I

Rjk(Sh-S'h') = <aPSlhl(bqS2h 2 crs3h3)S4h 4, Shll si'u i + s'u(1)
i=l i= 1

p+q+r %

, , q , , r , , S' h')+ Z _s'u(i) JJaPSlh l(b $2h2c SBh3)S_h_,

i=p+q+l

= Rjk[p(qr)p,Sh-S'h' ] + Rjk[p(qr)q,Sh-S'h'] + Rjk[p(qr)r,Sh-S'h' ]

(Cll)

I
I

I

* i
To simplify notation !i_ i is substituted by

#To simplify notation the brackets [.... ]j and [.... ]k are omitted from

IxjSh and IXkS'h' in (Cll).
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the first sum operates on electrons in ap, the second on bq and the third

r
on c and

Rjk[p(qr)p, Sh-S' h' ]

s.u_(1)(i.i)(i.l) I I

--<aPSlh I (bqS2h2crs3h3)S4h4 ; Shlli_=l

t t ! r t t t t tht >(x) flaps{ hI (bqS2h 2, c S3h3)S4h4, S

Rjk[p( q:r)q,Sh-S' h' ] =< [aPSlh l(bqS2h2crS3h3)S4h4,Shll

(Cl2)

(l'l)x 1 p , , q , , r , , ' ' 'h'
fsu(k)x(l 11 [a Slh l(b $2h2c S3h3)S4h4,S >

(C13)

Rjk[p(qr)r, Sh-S'h' ] = <aPSlhl,(bqS2h2,crs3h3)S4h4,Shtl

r

(I I)X(I.I)xZ s.u(k) II p ' ' q ' ' r , , ' ',S'h'>• a Slhl(b $2h2,c S3h3)S4h 4
k=l

(cz4)

The symbols I'I represent double tensor operators of zero rank which

operate on their respective part in (C12) - (C14). The first symbol

1 of I'i acts as a spin operator with S = M = 0 and the second symbol
8

•I of i'I acts as the irreducible representation A 1 of the cubic group.

Rjk, in (C12) - (C14), should be determined by the techniques of double

tensor operators on coupled systems.

This subject is discussed by Grlffith 26 and will be given here as

follows.

Let a system n of electrons to be composed of two separate and

independent parts £ and m. Then

XU

(C15)

, m

-ii

I

m

I

m

!

m
m

!

!

!
I
m
m
i
i
I
i
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gives the In_>state in termsof productsof I_x>and I_>. Nowthe
d

reduced matrix elements of a single electron operator* D 6 op, rating on

the IgA> part can be described in terms of Inv> states as follows+

<_mn _llDdl I_'m'n'_'> = (-l)£*n+n'+d_/(n)(n)' <_llDdll_'> w (_'_dInn'm

(x) 6ram, (C16)

Similarly an operator Ee operating on Imu) states has the reduced matrix

elements

<_mnllEell_'m'n'> = (_l)£+m'+n+ev(n)(n,) <mllEellm'>W Im_ e! _
nn ._ _

(C17)

where (n) and (n)' are dimensions of these two irreducible representations

and W coefficients behave as six J symbols. For spin orbit IntL.actlon

both orbital and spin wavefunctions of each electrons should be taken

into account. Considering, m, ..., n' as space representations of the

states and operators involved one will add SI, $2...S' for spin part.

Thus (C16) can be rewritten as

< SltS2mSnl IDPdl lS_t'S2m'S'n'> = (_l)Sl+S'+p +£+m'+n'+d

I lwI- 
(x) [(2S+I)(2S'+I)(n)(n')] 1/2 <SI£[IDPdlls_£, > W kS S'S2I [nn'm}

(x) %2s_ 8_m' (ClS)

*Dd6 is the component of operator behaving as component of the irreducible

representation d.

#Ref. 26, p. 47
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and <s1_s2_snSiEpeiisi_s2mso>"_1)s1+s2+s+q+.1+.2+.+e

(:oe)
(x) 8 ,

SiSl 5_, (C19)

Following (C17) the reduced matrix elements in (C12) - (C14) can

be decomposed as follows:

SI+S 4+S+l+h l+h _+h+T 1

Rjk(Sh-S'h',p) = (-i)

I

I
I

I

I

i_1=(__(i). __(i))lTlll_PSl'h'l> II

I
W S S' S4 W h' h4] 6S4S' 4 6h4h' 4

The Rjk[p(qr)q, Sh-S'h'] and Rjk[p(qr)r,Sh-S'h'] must be obtained in

two stages. First the part of the system represented by S4h 4 should be

decoupled from the part represented by Slh I and then the parts S2h 2 and

S}h 3 in S4h 4 should be treated as in (C20). Denoting part represented

by S4h 4 as Rjk(q,r ) and considering (C16) - (C20) one finds

Sl+S4+S+l+hl+h'4+h+Tl

Rjk(q,r) = (-i) (x) [(2S+l)(2S'+l)(h)(h')]1/2

<(bqS2h 2 , crS3ha)S4h411 _. _s(<)'u(<) II(bqS_h__ crs3'h_)S;h;,>
I<:=1

(c21)

(*) _/s s'sI wkhh' h1 hlS{ %lhi

I
I
I

I
I
I

I
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The term

q r

K,ffil Kffil

II q, , r, , , , >(b $2h2c S3h3)S4h 4 (c22)

l in (C21), should be factorized in the same manner described in (C19) -

(C20).

S2+S3+h24h;

+l)_ _)_')4z - (-i) L[(2s4+1)(2s,4 ,]I/2

1 S_+h_

b S2h 2 >
1 (x)<bqS2h211K=l g su(K)llq ''

1 (_)<_s?311Y._u(_)ll-_o'_'c _3n3 (C24)

Substituting in (C21) one finds Rjk(Sh-S'h', q) and Rjk(Sh-S'h',qr) of

(C13) and (C14) as the coefficients of <bqS2h2ll Z su(K) llbqs_h_ > and
K

<crs3h3l{_. su(K)lJcrs3h_ >respectlvely. Thus,
K

Rjk[ p(qr) q, Sh-S' h' ] ,, 6SISI

I
I

i

6hlhi(_l)Sl+S4+S+hl+h4+h+S2+S3+h2+h3+S4+h4

Hereafter S(K) • U(K) - SU(K)
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(x)
_S3S_) _h3h3 [(2S.l)(2S,+l)(h,)(2S4+l)(h4)(h_)(h) ] 1/2

(x) _ _ w w

ss's 1 _s4s_s3 _h h hl. / _h4h_h 3

(x)<bqS2h211 _. su(<) lhq_'h'__2-2 >
K

(C25)

and Sl+S4+hl+h4+h+S2+S3+h2+h 3

Rok[p(qr)r,Sh_S,h, ] = 6SISI 6hlhl (-i)

(s s41/  s s31)w h h4T1)w h h3T1/W _S4S_S 3 _h h'h I _h4h_h 2S S' S I

< crS3h31 I Z su(K) II cr_'_'_3-3 >
K

(C26)

Substituting in (CII) we have

11[aPSlh(bqS2h2crS3h3)S4h4]k

p+q+r

,Sh II )-:. s=(<)
K=I

S'h' >

= Rjk[p(qr)p,Sh-S' h' ]

+ Rjk[ p(qr) r, Sh-S' h' ]

+ Rjk[p(qr)q,Sh-S'h' ] (C27)

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

i
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The Rjk in (C27) are given in (C20) and (C25) - (C26). They are given

here in simpler form as follows:

Sl+S4+S+hl+h4+h'Ejk[p(qr)p,Sh_S,h, ] (-i) _9_9' PSIhll I

Z su(_)l P ' ' INININ°)K la Slhl> _ _N N N4 6N4N¼ (C28)

Sl+S4+S+hl+h4+h+S2+S3+h2+h_+S_+h_

Rjk[p(qr)q, Sh-S'h']= (-i)

N_N2No I

q

(x) <bqS2h211 E

K=I

q t !

su(<)[[b $2h2> 6NIN, 1 6N3N3

and

Rjk[P (qr)r,Sh-S'h'] : (-I)

Sl+S4+S+hl+h¼+h+S2+S3+h2+h3+S4+h4

where

_N 4 N4N 2 _N N'N 1

r

r , ,

_)i : [(2Si +i) (hi)] 1/2

("_"_"o_ Isi_j1 I_i_l

6NiNj = 6SiSj 6hih j

(C29)

(c3o)

(C31)
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The coefficient W in (C31) is defined as

-- (-i) a-_+b- _+c-y+d-6+e-c+f-

d e f _By6e_

 bc) i:b:l(dec)(x)
v_-=-_-_ _ _-¢ - _ 6-_ y

and

_I JIJ2J3 I=

_mlmm-m3 _

(JiJ2J3m 31JlmlJ2m2 ) (C33)

and W are used for spin coupling coefficiencts whereas for coupling

of space irreducible representations the simpler V and W are used where

(Ref. 26, p. i0 and p. 33)

and

V(abc,aBy) =-_- (abc_Blabcy > (C34)

W(abcdef) = E_By6s_ V(abc,_By)

(x) V(aef,ee_) V(bfd,8_6) V(cde,y6e) (c35)

The numerical values of W are taken from Rotenberg's tables of 6J symbols**

and W are obtained from Griffith's tables _ The dimensions of h entering• i

D. of (C31) are the same as their character under identity class in the
l

character table• The (-i) h+i = + 1 as defined by Griffith % (p. 15).

Both of these numerical parameter are given in Table C.I.

V. Fano and G. Racah "Irreducible Tensorial Sets" Academic Press,

New York 1959, pp. 50-54

M. Rotenberg, R. Bivins, N. Metropolis and J.K. Wooten, "The 3-j and

6-j symbols." The Technology Press, Massachusetts Institute of

Technology (1959)•

tRef. 26, p. 114
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TABLE C-I

The Values of (h) and (-i) h

h

h
(-1)

(h)

AI

i

i

A
2

-I

E

2

T 1 T2

-i 1

3 3

The last unknown in Rjk (p,p),...Rjk (r,r) in (C28) - (C30) is the single

orbital reduced matrix elements of the type

I
p(pp) = <aPShll £

i K--1

su(K) IlaPS'h'>

= p <aPSh] Isu(P) llaPS'h'> (C36)

I
I

I

To obtain p(pp) we express it in terms of its matrix elements

between pairs of IaPShMS> and IaPS'h'M '8'>.

] i T 1 'h'M' 'I = <aPShM@I _isu(K)= -ii "laPs 8 >

!

I

I

I

I
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Multiplying both sides by (-i) S-M V (S,S'l, -MM'-i) and V(hh'T 1 ee'i)

and summing over the six parameter -M,...i one finds

0(PP) = P <aPShM8] [su(p) ] aPs'h'M'O (x)

MM'i --11

ee'

(x) (-i) S-M V (SS'I, -MM'-i) • V(hh'Tl,Oe'i) (C37)

In terms of the coefficients of fractional parentage (cfp) we have*

IaPShM_ =_SIMI m <aP-iSlhl,al)aPsh><SI_MImlSI½SM >

hlSl_

(x) <hlael_lhlahe>laP-iS!hlMiel> •lama > (C38)

Substituting for laPShM8> and laPS'h'M'O'> in (C37) one finds

' ,ap- is ih

<aPSh Is i>< SI½SMI SI½MIm> (x)

f(p,p) = p

SIMImMM' iS 'M'm' <hlah8 [hlaSl_ >" <aP-iSlhlM 1o I"<am_ l

hlSl_e 8'ihl81 s '

IT

I[su(p)] 11am'_'>" laP-lslhlMiei >
-ii

, , , , , ,_ , 'M'><aP-isihl l_ aPS'h'k(x) <hlael= Thlah e ><S I_MlmlsI½s ,a

(x) (-I)SI-MI V (SS'I,-MM'-i) V (hh'Tl, ee'i) (C39)

Ref. 26, p. 62

I

1

I
I
I

I
I
I
I

I
I
I

I

I

I

I
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I
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The matrix element in (C39) can be abbreviated as follows:

=(am,_lsulam'_'>" _SlSl %lhl _M1Mi6elel

=<l/2al Isul ll/2a >(-1) TM V(1/2 1/2 1, mm'_i) V (aa'Tl,C_c_'i)

%isl. _MIM,._hlhi"6elel, <c40)

The remaining coupling coefficients in (C39) may also be expressed in

terms of V and V. Thus

I SlI/2SMISII/2MIm>= (2S+I) I/2 (-I) I+S-M V(SII/2S,MIm-M) (C41)

I <hlahelhlael _> = (h) I/2 V(hla h,el_8)
(C42)

I

I

!

I

Substituting in (C39) and considering the effect of 6SiSl ,.....

_elel in (C40) one finds

p(p,p) = p /.

S 1M mMm' ira'

hlOle 8 '

(-l)S-M+l+S-M+i/2-m 9, (_l)+l+S'-M'

I

I

I

I

I
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' '-M')_(SSiI-M_' i)(x) V(SII/2S , MIm-M)V(I/2 1/2 l,-mm'-i)V(S_i/2S',Mlm

(x) V(hlah,Ol_O ) V(aaTl,_a't) V(h[ah', Oi_'O') V(hh'Tl,OO'i)

(x)(l/2alIsull i/2a> (C43)

The coefficients _ and V may be rearranged according to the rules*

and

{abe)(cab _ _ _ _B I = (-i) _Ibac_ I abe}a+b+c V_Bm_I = (_l)a+b+c_ l_m_8_ _

(C44)

[abc I Ibacl

V _mB_I = (-i) a+b+c V _Bm_' (C45)

Carrying through symmetry operations of (C44) and (C45),on coefficients

and V in (C43),one finds

- m-i _m'M'M m-MIM i

and

I V(SII/2SM m-M) " V ...= L

mlmMm'im' MImMm'IM'

(-i)- SI+S+S '+ (m-m- i-M-M '-M I)

(x) (-I)+2+S-S'+SI-(m-m+i-M-M'-MI)

*Ref. 26 p. 77 and p. 15
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l/2s,sl)cl/2sls,/ lss,
m'-M'M 1 _-m-MIM I _i-MM'I

The first three powers of (-i) result into

(_I)+S '-M'+I/2-m-S-S '-SI+ (m'-m+i-M-M'-Ml)

= (_I)S'-M'+I/2-m+S-S'-SI-M-M'-MI =(_I)I/2-2M+S-SI

=(_I)-(I/2+S+SI) +i =(_I)I/2+S+SI+I

Similarly the four V coefficients can be rearranged as follows

hlah ) Tl+hl+h'+aV 81a e V(...) .. = (-1) ( (ahh)V a aT I V

a'a i/ ='e'e

cahlh)(T1hh,)V 818 V i 8 8'

Substituting in (C43) we find

p(p,p) = p _.

Slh I

aPs' h'> <i/2a ''su ''I/2a> (x)

(C46)

(C47)

(C48)
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(x) I

MmMIM' ira'

(-I)
I/2+I/2+I+S+S+S'+SI-(m'-m+I-M-M'-MI)

(1/2 1/2 1)II/2 S'S)(I/2SIS' )
(x) _ _

l-m'm-i m'-M'M 1 -m-MIM'

v(aaTl 1 V( ah'hl ahlh' I Tlhh' (C49)

The second and third sums are identical to (C32) and (C35) respectively.

Thus they can be substituted by their appropriate W and W coefficients.

The final result is*

0(P,P) = GP (Sh-S'h') < 1/2al Isul [1/2a> (c50)a

where

_P(sh--Slh') " Z ( -- l ' S"_S l'_'l / 2"_hI ' "_h l'l'a < aP S h _ a 9 _1 P- l S lh l><aP" l _ {hl. lla }

a Slhl

laPs 'h' >

(x) p [(2S+1) (2S'+1) (h) (h')] 1/2

(x) W (1/2 1/2 I, S S' SI)'W (a a TI, hh'h I)
(C51)

p, q and r must be less than half shell numbers. If not they should be

substitutde by p' - 2(a)-p, q'=2(b)-q and r'=2(c)-r where (a), (b) and

(c) are dimensions of a, b and c respectively.
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Substituting in (C28) - (C30) we have*

Rok[p(qr)p, Sh-S'h' ] = (-I)SP_)_),_/(N]NINo, N N'N4)

(c52)

R.jk[P( qz')q.,Sh-S'h'] =(-1) Sq ._I,]D4]_ _/._/(N:_N2No,N_N_N3)

_/(N_ N4 No, N N'NI)

(x)oU(S2h2-s_,h_,)<_/2bl Isu111/206.1.1_"3"_ <C53>
and

(x) _#'(N4N_No, NN'NI)

r - ' ' <1/2cl I_,-,II]-/2c>
Oc(S3h 3 S3h 3) 6NIN{ 6N2N _

(c54)

5. HETERO CONFIGURATION THREE ORBITAL REDUCED MATRIX ELEMENTS

Rjk,(pqr Sh, pq'r'S'h')

Here, we consider the reduced matrix elements Rjk, between states

lJ> and I_> with both having three open orbltals of the same symmetry but

different configurations.

*Sp, Sq and Sr are the sum of powers of (-i) in 0(PP), #(qq) and

o(rr) respectively.
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where

in this case, can be expressed as
The Rjk,

Rjk,(Sh,S'h') ,,<xjsh] [Hp[IXk,S'h'> (c55)

(c56)

(C57)

The orbltals a, b and c, in (C56) - (C57) represent three of the

flve orbltals ta, ea, ..., tb of Table 3-2.

Subscripts J and k' denote the electronic configuration and coupling

scheme of the three orbltals a, b and c. The determination of Rjk,

defined In (C12) - (C14). Considering these
follows that of the Rjk

equations, Rjk, can be written as follows:

Rjk ,(Sh-S'h') = < aPSlh l(bq-IS2h2crS3h3) $4h4 ;Shl[

p+_+r laPS;h;(bqS_h_cr_ls_h_)
K=I

. Rjk(Sh_S' h',p) + Rjk,(Sh-S'h',qr)

where

Rjk(Sh-S'h' ,p) ffi<aP Slhl (bq-i s2h2cr $3h3) $4h4, Sh II

P

su(K)lI_l

(css)

(x) lla p , , q , , r-i , ,Slhl(b $2h2c s3h3) S_h_; S h')
(C59)
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and

a p+qp_r
Rjk, (Sh-S'h' ,qr) = PSlhl(bq-ismh2crS3h3) $4h4, Sh Il Su(K) [[

K-- 1

(x) l iaPs'h '(bqs_h_cr-ls_h3)s_h _;s'h' > (C60)

The Rjk(Sh-S'h',p ) of (C59) is given in (C20), whereas Rjk , of

(C60) is a new type of reduced matrix element to be examined in the

following. Considering (C21) and (C31) one finds that

Rjk, (Sh-S'h' ,qr) : (-i) (SI+S44 hl+h_+h ) (x) _ _'

(x) <(bq-is2h2,crS3hB)S4h4llq_r SU(K) Il r , , r-i , , , , >(b $2h2c s3h3)s4h 4
K:I

(x) _/(N_N4N , NN'NI) 6NINI (C61)

where as in (C31)

and

_)i : [(2Si+l) (hi)]i/2 (C62)

W(NiNjNo,NkN_N m) : W (SiSjl, SkS_S m) (x)

FSiSjl ] [hihjTl]
(x) W (hihjTl, hkh_h m) -W W

kSkS_Sm] thkh_hmJ

(C63)
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The dimensions (hi) of hi in (C62) are I, i, 2, 3 or 3 for h i = A I, A 2,

E, T 1 or T 2 irreducible representations of the cubic group, W and W are

related to the 6J symbols as defined in (C32) - (C35). The last term to

be determined in (C61) is:

(x) I I(bqs_h_cr-lS_h_)S_h_ > (C64)

Before considering Rjk,(q-l,r,q,r-1), a preliminary investigation

of the permutational part of the simplification of the bra <Z'[ of

bq-lc r and the ket [Z> of bqc r-1 is helpful. For any single electron

operator, F = lkf (k), the matrix element between(Z'[--<(bq-lcrl and

IZ)= Ibqcr-l>may be described as follows:

[Z> = [q'(r-1)_ (q + r-1)_]-l/2 Z (-1)UPIb q _>" Icr-lB'>
B B

<z'l = [<q-l)' r= <q+ _-1)']-1/2 _, __1),, % <b q-1 a'l<crBI

Then,

q+r-i

= E (-1)la+v Pv < bq-la' [

]ljx_

•<c_i.._i_,o>o_-_')

(x) [q! (q-l) lrl (r-l) ! (cl+r-1) t (q+r-1) l ]-112 (C65)
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I
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parentages:

(c66)

(C67)

where =,B,_' and B' in (C66) - (C67) denote the characterizing symbols

> > .._o(c6_..o.f_> _o_..u.o__of Ibq Icr , such as S2h 2_eeloe •

I (C65), we find:

I _ DB" IJ,V

P
V

I
I

I

<.)<o,__c.c,-_,,> •<_.o*-_.,,_i.<_-_o.a_,,I_-_o,, ._.o>

(x) ]cr-I8'> <bq-l='', bl) bq=> (q/r) I/2
(C68)

Considering that

q+ r-I

F : _.. f(k) ,

K=I

one has

I
P F : (q + r-l)_ F

U



106

Substituting in (C68) one has

I
I
I

i

(x).<bq-l_ '', b_bq_> (q/r) I/2

" _''.B[''q:(r-1):]-i' _v Pv<cr_c'cr-lB''><bq-la'''b_bqu>

c,e ',BI " bq-lU'lF(q) lbq-l_ '' " b, a Icr-1 B, (q/r)l/2

_tt B_t p

I

I

I

I

I

(_)<=Iflb>(r-Z): a_,B,,(n_z),a i/2.
• (_'(_'' ' (q/r) (qr)

= (qr)I/2<crB_c'cr-IB'> < bq-l(_', bl_bqc_> <elflb>

Thus

, q+r-i<"_-_o'J_lE _<_I_%,o_-_'>

(c69)
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now apply (C69) to obtain

L " <(bq-ls2h2,crS3h3 )

q+r

s4u411_l su(Oll

(x)

IM M' O 0'
4444

II_bqS_h_,_-1 , , , ,S3h 3) S4h 4 >

(__)_,-"_<_-_/_,_..._,_,_I_u(_)I__._
k

(c70)

Here

(C71)

(X) er-]S;h; ' _4"'4"'R'h"M'O'> V ($4S_4 1,-M M'i) V (h4h;_T, OO'-i).

< bq-lS2h2 crS3h3;S4h4M4041 M202M3M; m

I

O20203

<er-l='_'_'*'l <e mul,,3,,3Li3v3

-I
I ! !

M2M2M3 TM

! !

02020 31a

S2S3S4M4 >

Also,

_II..11ulI _I

Ibq S_h_c r-] S;h; o4u4r'4_4 >

(C72)
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Substituting in (C71), one finds:

I..Y. 7. Y.
iM4";, _2M3_:_,,, MI_M;,,'

e' e2e3e_ ' 'e4 4 e2e2e3_

h4-e 4 S4-M4
(-1) (-_)

(qr) i/2 _(S4S_!,_H4M__i)

(x) V(h_h4TI, 040 _ i)

c, c Szh 2 >

I
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(c74)

The individual coefficients appearing in (C74) can be simplified further

as follows:

<cmPlsulb m'.'>= (-1)l/2-m V (1/2 1/2 1,-m m'-i)[-1] c-p

(x) v (c b T1, -u .'i) <1/2 cl Isul ll/2 b > ,

< s,sjN,MjIS,SjSk_>= (2Sk+l)l/2(-1)2Sj+ Sk_M k

(x) V (SiSjSk, MiMj-M k)

and

hlhjelojlhlhjhkOk> = (hk)i/2 V(hlhjh k, OiOjO k)

Substituting for coefficients in (C74), we find

e4e2e3 _ e'e2e3u' '-'

S2-S _ + S; -S3+ hl+h2+h 2
(-1)
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(x) V (S4S_I,-M4M4-i) V(S2S3S4;M2M3-M4) V (I/2s_s3,-m-M_+M3)

(x) V (S_S_S_,-M2-M3+M_) V (S21/2S_,M2m-M_)V (I/2 i/2 i, -m m'-i)

(x) V (h4h_Tl,e4e4i) V (h2h3h4) V (c h{h3, _e_e 3)

(X) V (h_h_h_,8_8_8_) V (h2b h_,02_ 0_) V (c b TI, _ _ i)

$2-$2 + $3-$3 + h2 + h2 + h3(qr)I/2__,
=(-I) 2344

I_ { cr-I(x)<bq-is2h 2, b bq S_h_><crs3h 3 c, S_h_ >

<1/2 =11_u111/2b>

(x) I V (S2S3S4, M2M3-M) V ( $3S _ 1/2, M3-M_-m)

iM4M2M3m

M_M_M_m'

(c75)

, , , M, M'M') _ (S4 '(x) V ($2 $3 $4'-"2-"3"" S4i'-M4M_-i )

(x) V ($2S _ II2,-M_M_m') V (112 112 i, m'-m-i)
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(x) Y.
e28384i

utAtAIA vv2v3v4

V(h2h3h4,e2e3e 4) V (h3h_c , e_e_u) v (h_h_h_,e_e_e_)

(x) V (h4h_Tl,O4e_i) V (h2h_b,e2o2u) V (cbTi,pv'i)
(C76)

The sums in (C76) are the same as the 9-J symbol* and defined as:

X [abc, def, ghk] = Z_By_E_nOK V (abc,_By). V (def,_E_)

(x) (ghk,nBK)-V (adg,a6n),V (geh,_ee).V (cfk,y@K) (C77)

Substituting for the sums in (C76) and recalling from (C64) and (C70)

that, Rjk ,(q-l,r; q, r-l) = L, one has

I ! ! !s -s +s -s +h +h +h +h

Rjk,(q-l,r;q,r-l) = (-i) 2 2 3 3 2 2 3 3(qr)i/2

NN l_ , N'N'N',N N N ]

(x)<1/2_IIsulll/2b>• _c78)

where

X[NiNjNk, NfNmNn, NbNcNo] = X [SiSjSk, S£SmSn, 1/2 1/2 i]

(X) X [hihjhk, h£hmhn, b c TI] •

They are also called X coefficients (See Ref. 26)

(C79)
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and the remaining coefficients have their usual meanings. Substituting

in (C61) and taking into account (C58) - (C60), one finds

<aPSlhI (bq-is2h2 , crs3h3) S4h4, Shll _. K su(K)

' ' S'h'
(x) ]laPSlhl (bqSmh 2, cr-is_h_) S_h_; >

= Rjk , (Sh-{h) -- Rjk(Sh-S_ , p-p)

+ Rjk,[p,(q-l,r,Sh)-(q,r-l, {h)]

= (-i) SI4S4+S+hI+Sh¼+h _) _)' _/(N_N4N o, NN'N I)

+ (-L)
SI+S4+ S+hl+h4+h

_)_)' _6/(N_N4N o, NN'NI) 6NINI

S2-S2+S3- S3+h2+h 2+h3+h3 i/2
(x) (-i) (qr)

(x)_/bq-is2h 2, b')bqS_h_> '< crs3h3_z,cr-is3h3>

(x) _g)'_23"g)'_'44 "_[N2N3N4' w'_'_'2"'3"'4' NbNcNo]

(c8o)
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The complex conjugate of etero-configuration; three orbital reduced

matrix elements can be obtained from (C80) by appropriate symmetry

transformation on W and X coefficients in this equation. The result is:

R.I_ j (s'h'-Sh) = <aPs_hi(b qS2h2' ' cr-ls_h_) S;h;_;S'h' II E su(_)l I
K

(x) [ aPSlhl(bq-is2h2crs3h3) $4h4, sh >

where

RI_j(P,S'h'-sh) + Rl_j[p, (q,r-l,S'h')-(q-l,r,Sh)]

R14j (p, s'h'-Sh)=(-l)

Si+S_÷S÷hi+h4 +h

9 9' VJ(NINiI,N'NN 4)

(c81)

(C82)

and

_,j [p, (q,r-l,s'h')- (q-l,r,sh)] = (-i)

S_+ S_+ s'+hi+h4+h'

9 9'' _(N4NIN o, N'NN i) (qr) I/2

(x) <b q ''S2h2 <Ib,bq-Is2h2>" <c,cr-is3h3_crs3h3><i/2b ,'su''I/2e>

(x)9293% 91" I_'[N_N_N_, N2N3N4, NbNcNo] 6N._N1
(C83)
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Recalling (C56) - (C57), one finds that in both Xj and X k the ap

, r-i rparts of the system appears first and then bq bq-I and c , c parts.

Moreover, part bq and c r-I are always coupled together, first, and then

their results are coupled to ap. The desired matrix elements are not,

however, arranged in this fashion and appropriate recoupllngs and couplings

are needed to bring the three participating parts of the system in the

above form. This has been done by using the following formula:

I (-I)

+ S' ' ' S' ' ' ' '
S 1 $2+$3+S+ I+S2+$3+ +hl+h2+h3+hl+h2+h3+h+h

_)_)'_)_) ' . W(NIN2N e N3NN _)(x)
EE_ WCNI"_N'E___

' K , , , , v , S'h' S'h'(x) <Slhl(S2h2S3h3 ) S#h+ Shll_su(K) llSlhl(S2h2S3h3), +..+, >

(c84)

For the spin sextets, the sum reduces to one term because there is only

one %h_ and one s_h$ which results in the same Sh and S'h'. The values

of Rjk, are given in Table 3-4. Now, we consider the problem of

four orbital reduced matrix elements.

o HETERO-CONFIGURATION FOUR ORBITAL REDUCED MATRIX ELEMENTS

Rjk,,(pqrs-lSh,pqr-ls S'h')

Here, we consider the reduced matrix elements Rjk,, between states
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[J > and [k"> both having four orbltals of the same symmetry. Two of

these have the same configuration p and q in both lJ>and [k">, whereas

the remaining two have configurations r and s-1 in IJ> and r-1 and s

in Ik">. Therefore,

Rjk,, [(pqr s-l) Sh- (pqr-ls) S'h']

"<xj (pqr,s-1)shl I _. su(k)I IXk,, (pqr-l,s)S'h' >
k

where

r s-I ;Sh >IXj(pqr,s-l)Sh> = l(aPSlhlbqS2h2)s3h3(c s4h4d Ssh5)s6h 6

(cas)

(C86)

and

IXk, t(pqr-ls) S'h'>= I(aP'' q''Slhlb S2h2)S;h;(cr-ls_h_sS5h5)S6h6;Sh >

(co7)

All states can be arranged according to IXj(pqrs-l)sh> and

Xk,,(pqr-l,s)S'h'>by transformation similar to (C84). Hence the remaining

calculations will be limited to the determination of Rjk, t[(pqrs-l)Sh-(pqr-ls )

S'h_.

Using (C16) - (C17), one decomposes Rjk,,[(pqr,s-i ) h-(pqr-ls){h']

in terms of Rjk(pq) and Rjk,(r,s). Rjk(P, q) and Rjk,(rs) are, respectively,

similar to the Rjk(qr) given in (C21) and the Rjk,(qr) given in (C61),

except for the subscripts of various spin operators Si and irreducible

representations h i . Taking this into account, one can in_nediately write

down the Rjk,, as follows:

Rjk ,,[(pqrs-l) h-(pqr-ls)S'h'] = Rjk,,(pqrs,Sh-S'h')
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ffi<(apslhlbqS2h2)S3h3(crS4h4ds-IS5h5) S6h6;shll ESU(K) II
K

(x)[[(aPSihlbq ' '- ' '- r-1 s'h's4h4dSshs)s_h_; >S2h2) S3h3( c , , s , ,

t t t ! ! !

= (-i) SI+ $2+$3+ s6+ s3+s +hl+h2+h3+h3+h6+h "@_)'_3_)3 '

(x)_V(NININo,N3N3N2) /_/(N_N3N o, NN'N 6)

(x) GP(SI-lh -S'h',l_l. <l/2a[ Isu] [1/2a>6N2N: _ 6N6N_

SI+$2+2 $3+S 6+S' +hi+h_+h_+h '_)_)'%_
+ (-z)

(x) _/N_N2No,N3N_NI ) " /_/N_N3No,NN'N 6)

(x) -b'Cq(s2-2h-S'h'_2_2. <1/2blIsu111/2b>. 6.1.£ 6N6N_

+ (-z) (rs)z/

I
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(x)_{/(N N N ,NN'N ) J;(N4N5N6,N_N_N_,NcNdNo)

\

(x) "i/2ellsulil/2d; 6N3N_

The matrix elements Rjk,,are given zn Table 3.5.

(c88)



APPENDIX D

COUPLING COEFFICIENTS OF SPIN ORBIT MATRIX ELEMENTS

TO THEIR REDUCED MATRIX ELEMENTS

The purpose of this Appendix is to discuss the relationships

between the matrix elements of spin orbit interaction between a pair or

state and its corresponding reduced matrix element between the same

states.

The states which are suitable for calculation of spin orbit inter-

action are those behaving as the irreducible representations t of the

spinor group. The spin orbit matrix elements arising from IxjShjtT>

and JXkS'h'J't'T' > of the two states JxjSh> and JXkS'h'>can be expressed

as (3.13)

K 'h'J't'T'><xjShJt_JE su(K) IXkS

--(xjShJ JEK su(K) JJXkS'h' > (SS'T 1 h'ht) 6•Kjj, , tt' 6, (DI)

Considering (5.22) and (2.20) of Ref. 26 one has

T! (si) B TI]y AlJx'S'h'J't'_' >

TI (si) B TI]y AIJ Ix'S'h'J't'T'>

(x) V(tt' AI, TT' y)

TI JJX

[(t)] -I/2 6tt, 6TT'
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The <xjShIIE K su(K) IIXkS'h'> was discussed in Appendix C. Here

we focus our attention on Kjj,. This coefficient may be also called the

spin orbit matrix coupling coefficient or simply S-O matrix coupling

coefficient. Moreover, it is written in several different forms as

occasion demands. These are:

,TI)Kjj, --Kjj, (SS'TI, h'ht) - Kjj, hS ht (D2)

The coefficient Kjj, is obtained from the formula (Ref. 26, p. 82)

Kjj, (SS'TI, h'ht) = I (-I)S-M'+I [-l]h+e

rMM'88

(x) V (SS'I, -MM'r) V (hh'Tl, -ee'-r)

(D3)

The numerical values of Kjj, are given in Tables (3.9) - (3.12). The

cases where h = AI and h = h' = TI are of particular importance for

evaluation of spin orbit matrix elements between ground state 6A I of

(3d) 5 6S ions in crystals and charge transfer states and will be examined

in more detail as follows.

i. DETEIhMINATION OF Kjj, (SS'TI, h'ht) for h = A 1

Here, we consider the coupling coefficient which relates the

matrix elements of the spin orbit interaction between the ground state

6A 1 and charge transfer excited states to its corresponding reduced

matrix elements.

I
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We represent the above charge transfer excited state by Ix'S'h'J'tT_

where, as before, X', S' and h' are, respectively, the electronic con-

figuration, spin, and irreducible representation of the cubic group of

this state and J', t and T are pseudo-angular momentum, irreducible

representation of the state in spinor group and its component, respec-

tively. Instead of the ground state 6AI, 5/2, the state IS A 1 J _> will

be used and the result will be applied to the particular case of

16AI , 5/2 T>.

Considering (D3), we have

Kjj, (SS'TI, h'Alt) = (_I)S-M'+I [_l]h+e _VI_MM,rllSS'I

'TII

(x) V_i 8_ r <S AIJtlSAMi>'<S'h'M'8'IS'h'JtT >

Considering Griffith 17, p. 117, gives:

. IAlh' TII

_ 0rI° _ 6Tlh' "_r,8'

alsolT(p. 77)

2S'+S-M_I (2S+I) IS'rM'IIS'SM

I

I
I

I
i
I

I
I
I

I
I
I
I

I

I

I

I
I

I



121

Thus

Kjj, (SS'TI, h'Alt ) = (-i) S-M'+I [-i] A+i

I _ 1 . 1 . 1 5Tlh_ . 5e, r
(TI) (2S$I) rMM'

88'I

I
I 1 1= (TT) (2_+i)

S+I
(-i) L (-i)

MFItr

IS'rM'IIS'SM

(x) <S AiJtTi S AIMS>0'TIM'rIS'h'J't'T>

!
S+l

M M' 'M'r

(x) <IS'rM' ,IS'SM>¢S'rM'ilS'J'M''>0'M''IJ'tT>

= (T) (2S/rl)
(-i)s+i I <SAJtTIs

MM tt M'r

(x) <ISrM' [iS' SM><IS'rM' llS' J'M' '>

I (T_)" (2S$I)I <S AIJt_IS

MM 11

AIMS>0'M' ' IJ' tT> 6MM, ,6Sj, 6h,Tl

.._ 1 1(Ti) (2S+i) 5SJSh, T1

|
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Therefore

SS'TII
i 6h (D4)

3(2S+1) 6SJ 6SJ' 'T I

Several important conclusions may be drawn from (D4):

(i) The spin orbit interactions couples the ground states only

to excited states IX 6T I 5/2tT>andIx 4Tli _/2tT>

(ii) The matrix element is independent of t and, as a result

of this, no splitting will occur from a second order

perturbation.

(iii) The matrix elements are independent of S' and thus, the

energy shift resulting from 4Tli and 6Tli depends only on

their reduced matrix elements.

The next important coupling coefficient to determine is between

'.S'h'> where h, h' have TI, symmetry.IxiSh > and IX l

2. DETERMINATION OF Kjj, (SS'TI, h'ht) for h = h' = T 1

The coupling coefficients relating a matrix element of the spin

orbit interaction between a pair of charge transfer excited states whose

irreducible representation in the cubic point group is T 1 will be analyzed

in this section. The importance of considering this coefficient is

apparent from (D4):

Kjj, (SS'TI, h Alt) = _i/3 (2S+I) 6Sj • 6Sj , 6h,Tl '

which indicates that the ground state 6A I couples to charge transfer

excited states of T I symmetry alone and is not split by that. Conse-

quently, a splitting by spin orbit interaction of the ground state 6A I

_n !

of the complex [E A4] may occur through higher than second order

I

1

I

I

1
I

I
I
I

I
I
I
I
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perturbation and through the intermediary states, two of which, at least,

must have symmetry TI. Therefore, determination of Kjj, related to such

states of T1 symmetry deserves particular attention and we begin by

studying Kjj, (SS'TI, TITIt ) as follows (D3):

SS'TI (-I)S-M'+I [-l]Tl+e V i V

Kjj, T1Tlt -- rNN'ee' _-NN'r -ee'-r

where

/SS'l _ (v
TITITII

-OO'r

M tl

M t T!

Thus

SS'TI>Kjj' kTiTlt = • V k-MM' r J
MM' 'M' '' rM' 88

/iii 1

l_OOrj V(2J+I)(2J'+I)

isiJ) siJ)
(x) V M'O'M''' V IM-OM''

<x)<s_t._,,><_,_,,,l_s,_,_>
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(x) _ (2J'+l) (2J+l) <SiJt_ IJM' '><J'M'''IS'IJ'tT>

i

I

I
I

i

_ (s_ I_''>0'_''I_'_>
I
I
I

I
I
I

I
I

I
I

I
I

( ) -r111)i 6M' 'M' WISS'J _ (2J'+l) (2J+l) II _ _JJ' ,,

M' 'M' ''
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APPENDIX E

FOURTH ORDER PERTURBATION

This Appendix gives the formulae necessary for the evaluation of

to the energy of the degnerate state 6A1 ofthe fourth order correction

[E A4]-n'. In Chapter IV it was shown that the fourth ordercomplex*the

spin-orbit perturbation of 6A 1 by charge transferis the lowest order of

can lift the degeneracy of 6A I and contribute to the cubicstates which

field splitting 3a. Therefore, to determine 3a one must employ fourth

order perturbation formulae.

These formulae can be obtained from the general expressions of nth

order perturbation given by Corson +

E (s) Hr = E <Hr'Slv HJ'k><HJ'klKr's n-l>
n jk

n-2

I E (s) H r<Hr,slKr,s ; n-_> j + r (El)

_--2

where IHr's>, IHJ'k> are respectively the ground and excited states being

involved in evaluation of E (s) Hr the superscripts s and k in IHr's>
n

and IHJ'k> designate the sth and kth degenerate states belonging to the

energy levels H r and Hj,

See Appendix A

+E. M. Corson "Perturbation Methods in Quantum Mechanics of n-Electron,"

Hofner, New York (1951) p. 75
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I

and

<HJ'klKr's; n>=-I <HJ'klvIH_m><H_mlKr's;. n-l>
H] _ H r

_,m

n-i (s) Hr

+ I E Hj<Hj'klKr's-H r n-v> j # r (E2)

_=i

<HJ,klKr,S,l>= (Hr - HJ) -I<Hj'klVIHr's> . (E3)

Substituting in (El) - (E2) one obtains the desired E (s). The 6A 1n
-n !

ground state of the complex [E A4] , behaves as angular momentum J = 5/2.

The irreducible representations of J =_5/2 in the cubic double group

are E'' and U'. Thus

En(S) 6AI _-E(n)(s); s = U' or E'' (E4)

For determination of the cubic field splitting, 3a, up to fourth

order perturbation, a much simpler formulation is enough as will be seen

below. 3a is the difference of the energy corrections E (4) (U') and

E (4) (E''),

3a = E (4) (U') - E (4) (E''), (E5)

and fourth order perturbation is the lowest one giving rise to such splitting.

Thus all terms containing E (s) Hr = E(V)(s) will vanish and the only

contributing terms to (E5) are obtainable from the general formula

I
I
I
I
I
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E(4)(s) _ E(4)(s ,) : E4(S) Hr _ E4(S')Hr

--j_k [<Hr'SIvIHJ'k><HJ'kIKr's,3>

- <Hr' s IV,HJ 'k> <HJ 'k IKr's ,3>]

_S I__-_ <H j kivlH£'m><H£'m[Kr 2>

Hj _ Hr
Z,m

+

n-i (s) 'kIKr's 3-_>
I Ev Hr<HJ ;

Hj _ Hr
"o=1

H%'mIKr's,2>: - E
P,q

<He,mIvIHP,q><HP,q IVlHr's>

(Hp - Hr)(M r - H _)

+ E, (s) Hr <HP,qlKr,s i>

x Hj _ H r

(E6)

(E7)

(E8)
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Substituting in (E6) and eliminating terms having E(s). one immediately

finds that:

3a = - I
jk; %m,pq

<<Hr'U' IV,HJ 'k> <HJ 'k 1V IH_m><H£mlv ,HPq >

(x) <HPq,vIHr'U'> [(Hj - Hr)(_- Hr)( Hp - Hr)] -I

_ <Hr,E' 'IVI HJ 'k> <HJ 'k IV 1ll_m> <H£mlv IHPq >

(x) <HPqlVIHr'E''>[(HJ - Hr)(H - Hr)( Hp - Hr)] -I}

or more simply

where

3a = - /.

j_p,kmq

and

(EjE_Ep)-I<v(rU',jk) V(jk,£m) V(£m,pq) V(pq,rU')

V (rE'',jk) V(jk,£m) V(£m,pq) V(pq,rE'')}

V(rU',jk) =<H rU' IVIH j'k>

E. = H I - Hr; i = j,_,p
I

(E9)

(EIO)

(Ell)

I
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Since spin orbit interaction is diagonal in U' and E'' we can

substitute for k m and q in (El0)

JkU', JmU', ...... J E''
q

(El2)



APPENDIXF

SPIN-ORBITMATRIXELEMENTSBETWEEN
Ix ShMS"I> AND Ix'S'h'M'8'_> FOR S - S'

In this Appendix we consider a different method of finding spin-

orbit matrix elements which is applicable to pair of states of the same

spin value, S = S'. This technique is particularly useful for the

evaluation of the contribution to the cubic field splitting 3a from the

spin sextuplets of charge transfer states. Since S = 5/2 for all states

it can be considered as a constant and integration to be carried out

over the orbital part of spin-orbit Hamiltonian only. Thus, instead of

bases of the spinor group, IJtr>, we choose the bases lhe> of the single

valued cubic group for the evaluation of the matrix elements.

Following (9.26) of Ref. 16 and considering the fact that for

S = 5/2, there is only one state lhe> for any of the charge transfer

states given in Table 3.2 one can describe the spin-orbit matrix elements

in the IShMe# scheme as follows:

<X ShMSl I _i-£i'si'X'Sh'M'8'>

i

I /" i: \×ShMel_i__1×'Sh'_e'>-<×Sh'_0'Isil×'sh'_'e'/
i

(FI)

The vector i in (FI) can be replaced as follows*

S(S + i)<X Sh'MS'Isilx'Sh'M'%'>

E.U. Condon and G.}i. Shortley, "The Theory of Atomic Spectra," Cambridge

University Press (1959) p. 61
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where

i i i sis • S = s - s + • S'

= (1/2) (3/2) + (1/2) [S(S + i) - (1/2) (3/2) - (S - 1/2)(S + 1/2)]

= (1/2)(S + i). (F3)

Substituting in (FI) and (F2) one finds

= S (S + i) X Sh'M0' lsix'Sh'M' 0'

= <X Sh'Me' I(2S)-Islsh'M'e,> (F4)

and

i

i

(F5)

To obtain the cubic field splitting from these matrix elements one carries

a fourth order perturbation calculation on one of the components of S

such as Sx and selects those states lue> which would result to a non-
4

vanishing term bS . Comparing this term with the spin Hamiltonian givenx

in (2.1) one immediately finds that the contribution from the spin

sextuplets of the charge transfer states to 3a is

[3a (a, H)]s = 18 I bj (F6)

J
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where j covers all fourth order perturbation channels giving rise to

terms of bjSx4. Our initial results 15 were obtained by this very simple

technique. The disadvantage of this method is its limitation to a fixed

manifold of spin S and, consequently, it is not applicable to spin quad-

ruplets and doublets of the complex [E A4 ]-n' which has a ground state

spin S = 5/2. Moreover, in this technique an apriori knowledge of the

spin-Hamiltonian is necessary which is in contrast to the method described

in the text.
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APPENDIX G

COVALENCY DEPENDENCE OF THE CHARGE TRANSFER CONTRIBUTION

TO THE CUBIC FIELD SPLITTING 3a (o,H)

In this Appendix, we examine the dependence of the cubic field

splitting3 3a(o,H) on the covalency of the molecular orbitals involved.

Recalling (4.6) one has

4

3a(o,w) = 3a (4) = >_ Ci _d4-i _pi
i=0

(GI)

Here, _d is the spin orbit interaction constant of the d orbitals of

the S-state ion (e.g. Mn2+), _p is the spin orbit interaction constant

of the p orbitals of the surrounding ligands [e.g. S in ZnS:Mn] and C.
I

are functions of the coefficients of linear combinations of atomic d

and p orbitals.

Now, a question arises on the nature of the coefficients C. in the
i

limit of ionic approximation where the coefficients of ligand orbitals

vanish.

To investigate this we examine 3a(o,_;t I ÷ ea) of (5.21) and

3a(o,_;t b + ea) of (5.25). The first one is

÷ ]-i B2 4
3a(o,w;t I ea) = _ (9/1250)[_12(61 + cI) _p (G2)

Comparing (G2) with (GI) one finds for 3a(o,W;tl÷ ea)

CO = CI C2 C 3 = 0

133
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I

and

2 -i B2
C4 -- -(9/1250) [61 (61 + e1)] (G3)

where 61 and _I + _i are energies required for a ligand to metal electron

transfer as shown in Fig. 5.3 and B2 is the covalency of the de orbitals

of the S-state ion as described in (3.16). For an S-state ion in a

II-IV compound with higher ionicity 61 increases whereas 82 decreases.

Thus at the ionic limit where B2 + 0 one has

!

!

I

I
Lim C$ ÷ 0 (G4)

B2 + 0

and consequently

Lim 3a(a,_;t I ÷ ea) + 0

B2 ÷ 0

(G5)

Now we examine 3a(a,_;t b + ea).

are given in (5.25) as follows:

The coefficients C. of this term
I

CO = [(18/625)[61,2(61,+ _i,)]-i 6 2 ]16 I

4

[ 22 ]CI (18/625)[61 61 + el')]-l(6 _ K - 2 _ C_ B K 1) I

C2 = [(18/625)[61,2(61, + el,)]-l(3 2 K4/2 + B2 <2 12)]12

C3 = [ (18/625)[61'2(6 l' -II el')]-I[B K41 -(_'/2) G <5]]BX
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and

_i' + el

C4 = [(18/625)[61'2(_ I' + el')]-l(4) -I K6 ]82

At the ionic limit both 8 and I approach to zero whereas _i' and

' increase. Thus

Lim Cli + 0;

8, I ÷ 0

i = 0, i, ..., 4 (G6)

and consequently

Lim 3a(o,_;t b ÷ ea) + 0

8,1 ÷ 0

(G7)

The vanishing of 3a(o,n,ta + ea) and 3a(o,n,t b ÷ ea) follows from the

fact that in each term contributing to 3a(o,n) of (GI) there is at least

one spin orbit matrix element of the type tatl, taeb_ and tat b where

ab = <1/2 all_:!'s111/2 b>; a, b = t a t 1, t b ebea , , , •

The reduced matrix elements ab are given in Table 3.13. It is

evident from this Table that all such reduced matrix elements contain

8 and or _. Both of these vanish at ionic approxima%ion and consequently

all contributions to 3a(o,_) of (GI) vanish at the ionic limit as

expected.
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