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SI”I,TISI.IEOUS ESTIMATION BY PARTIAL TOTALS 

FOR COMPARTMENTAL MODELS* 

John J .  Beauchamp 
Oak Ridge National Laboratory 

and 

Richard G. Cornel1 
Florida State University 

An estimation procedure is presented that may be used to 

simultaneously estimate the parameters in a multiple equation regression 

model. The regression models considered are shown to arise from 

radioactive tracer experiments using compartmental models. 

models the regression equations are shown to be linear combinations of 

the same exponential parameters, and the number of independent 

regression equations is also shown to be the same as the number of 

exponential parameters. 

For such 

The estimation procedure is developed under the assumption of 

equally spaced values of the independent variable. The first step of 

the procedure involves the simultaneous estimation of the exponential 

parameters by a generalized patial totals approach, and the second 

step involves the simultaneous estimation of the linear parameters 

using the estimates of the nonlinear parameters. 

presented that make the estimation procedure more versatile, and asymp- 

totic properties are also investigated. 

with generated data. 

Modifications are 

The procedure is illustrated 
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1. INTRODUCTION 

In this paper we present and evaluate some of the properties of an 

estimation procedure which can be 

the following set of n regression 

used to estimate the parameters present in 

equations : 

+ E  
ij (1.1) 

ij 
for i = 1,2,..., n and j = O,l,..., N - 1. In this expression Y and E 

represent random variables associated with the j th observation on the i 
ij 

th 

equation; x 

parameters that we estimate. 

is an independent variable; and the uik's and X ' s  are constant 3 k 

The estimation procedure developed in Section 3 

is for equally spaced values of x 

partmental models for radioactive tracer experiments give rise to regression 

In Section 2 we show that certain com- 
j' 

equations like (1.1). 

Since the exponential parameters A 1, A 2 , . . 4 ,  X appear in each one of n 
the regression equations of (l.l), we make use simultaneously of all of the 

observations on all of the equations being studied to estimate these para- 

meters. Beauchamp and Cornell [ Z ] ,  Turner et a1 [9], and Zellner [lo] present 

simultaneous least squares estimat.ion procedures. However, Zellner only con- 

siders linear regression equations, Turner et a1 assume that the covariance 

matrix of the e is known, and the iterative procedures in [ 2 ]  and [ 9 ]  are 

often difficult to compute. The procedure presented here provides a simple 

alternative to the least squares procedures or can be used to compute initial 

estimates for such procedures. 

is a generalization of the partial totals technique given by Cornel1 [SI, who 

considered the estimation problem for a single regression equation that is a 

ij 

The estimation procedure presented in Section 3 
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linear combination of exponential terms. 

of the procedure presented in Section 3 are investigated and some modifications 

are given which will make the procedure more versatile. 

the application of the procedure is given in Section 5. 

In Section 4 some of the properties 

An example showing 

2. MODELS 

The use of radioactive tracers in biological investigations is an 

example of an experimental situation which yields data that may be reasonably 

described by the set of regression equations given in (1.1). 

Schoenfeld [3]  and Sheppard [7] have discussed the formulation of mathematical 

models for such experiments. These formulations represent an organism by 

several chemical states or sites of a physiological substance designated as 

compartments. 

Berman and 

It is assumed that there are fixed transition probabilities or 

turnover rates from one compartment to another, and the whole system is assumed 

to be in steady state. 

the amounts of material in the compartments. 

ical system into a number of fixed compartments in merely an aid in analysis, 

since the various states or sites contain finer structure. However, the com- 

partmental analysis does prove itself useful in understanding some of the 

mechanics of the system. 

The turnover rates are assumed to be proportional to 

The concept of dividing a biolog- 

The mammillary and catenary systems, which are discussed in detail in 

the work by Sheppard [ 7 ] ,  are particular examples of such compartmentalized 

systems and are specified as follows: 

1) The catenary system involves (ntl) compartments that may be thought of as 

arranged in a chain-like manner where each compartment has non-zero transition 
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rates only with the comparcments adjacent to it. 

2) 

over rates with a central compartment but no turnover between the n peripheral 

compartments. 

The mammillary system involves n peripheral compartments that have turn- 

From the discussion in the preceding paragraphs, the following set of 

dFfferentia1 equations is formed to describe the general (n+l) - compartment 

dx 
n+l 

for i = 1,2,.*., n + 1, where E(Y (x)) is the expected amount of labeled 

material in the ith compartment at time x, T 

material in the hth compartment flowing to the ith compartment per unit time, 

i 
is the fractional amount of ih 

and n+l 

hfi 

Berman and Schoenfeld [3] show that the solution of (2.1) is given by 

for i = 1,2, ..., n + 1 where the constants aik are functions of the T 
the initial conditions of the experiment. 

and 

Let T be an (n+l> x (n+l) matrix 
ih 

whose diagonal elements are given by T and off diagonal elements are given by ii 
X1,-.., X are the characteristic roots of T. Throughout this Then lo,  n ih --T 

paper we assume that the characteristic roots of T are real and distinct. 

From equation (2 .2)  w e  note that the number of exponential terms in 

each equation is determined by the number of non-zero characteristic roots of 
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the natrix T, which is either n or ntl when these roots are distinct and which 

is also equal to the rank of T. By writing down the matrix T for the general 

(n+l) - compartment catenary and mammillary systems, we can show that the rank 
of T is equal to n, so exactly one’A, say ho,  is zero. In addition, for the 

case when the amount of tracer material in the system is known and fixed, we 

can express the system of equations given in equation (2.2) in terms of a new 

quantity which represents the proportion of labeled material in the compartments 

at a time X. For this case there are only n independent equations in (2.2) 

is fixed for all X. We may now combine the above results into the following 

theorem : 

Theorem 1: The regression model used to describe the general (n+l) - compart- 
ment catenary and mammillary systems, when a fixed and known amount of tracer 

material is present in these systems, is  given by the model in equation (1.1). 

Thus the model given by equation (1.1) includes models arising i n  two classes 

of compartmental models of interest in.tracer experiments. 

During the development of the estimation procedure given in the next 

section, the only assumption that we need to make about the random variables 

is that E(E ) = 0 for all i and j. However, additional assumptions are 
iJ 

needed in order to investigate some of the properties of the estimators found 

by this procedure and these will be given in Section 4. 
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3. PARTIAL TOTALS ESTIMATION 

I n  t h i s  s e c t i o n  we  present  the p a r t i a l  t o t a l s  es t imat ion  technique 

f o r  t h e  model i n  equation (1.1) f o r  tuo cases. 

Case I: The regress ion  model is  given by 

n -A x 
i j  ’ Y = c aik e k j + €  

ij k = l  
(3.1) 

f o r  i = 1,2, . . . ,  n and j = O,l,..., (n+l) M - 1, where t h e  observable random 

Comparing (1.1) and (3.1) w e  no te  i d 0  v a r i a b l e  Y takes  on values  denoted by y 
ij 

t h a t  aio= 0 and N = (n+l)M. 

Case 11: The regress ion  model is given by 

(3.2) 

f o r  i = 1,2,..., n and j = 0,1,..., (n+2) M - 1, where t h e  observable random 

v a r i a b l e  Y 

note  t h a t  N = (nS2)M. 

Comparing (1.1) and (3.2) w e  
i j  

t akes  on values  denoted by y 
i j  

I n  the  above two cases w e  a re  assuming t h a t  n and M are p o s i t i v e  

i n t e g e r s ,  t h e  c o e f f i c i e n t s  uik a r e  real numbers, and the  exponents Ak are 

d i s t i n c t  p o s i t i v e  real numbers. 

spaced values  of t h e  independent va r i ab le  x 

W e  want t o  t ake  our observat ions a t  equal ly  

so w e  a l s o  assume t h a t  x * cj 
j’ j 

where c i s  a p o s i t i v e  constant.  

The es t imat ion  of t h e  exponential  parameters w i l l  involve the  appl i -  

cation of a p a r t i a l  t o t a l s  approach similar t o  t h a t  presented by Cornel1 

[4,5]. 

t h e  regress ion  model given by Case I. 

equat ion i n t o  (n+l) groups each containing M observat ions.  

F i r s t  w e  consider  t h e  est imat ion of t he  exponent ia l  parameters f o r  

We group t h e  observat ions from each 

Then t h e  following 
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partial totals are formed: 

q M-1 qM-1 n q M-1 

q M-1 

Eij iq j=(q-l)M 
= c  + c (3.3) 

for i = 1,2,..., n and q = l,Z,..., n + 1 where 

c =  c E(Yij)* 
iq j=(q-l)M 

Now for each value of i and equally spaced values of x Cornell [ 5 ]  shows 

for each single regression equation that the following equation is satisfied: 
j' 

for i = 1,2,..., n where the A 

exp (-XkcM). i.e.,hr equals the sum of all possible products of the terms 

exp (-AkcM) taken r at a time, r = l,Z,..., n. 

A. = 1. 

in the n unknowns Ar. 

are the elementary symmetric functions of the r 

In addition, we define 

Therefore, since i = 1,2,..., n, in equation ( 3 . 4 )  we have n equations 

Hence by substituting 

q M-1 
yij s =  

iq j= (q-1) M 

for E iq 1: 

these estimators of the elementary symmetric functions we may now obtain 

estimators of exp ( - A  cM) for k = 1,2,..., n. Using the same properties of 

elementary symmetric functions that Cornel1 [5] used for the single equation 

problem, the estimators of exp (-XkcM), IC = 1,2,..., n, are obtained by finding 

we may easily solve for estimators of hr which are denoted by L . From 

k 
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t h e  n r o o t s  of  t h e  polynomial equation 

n n-1 n-2 n w - L 1 w  + L  w - . . r  + (-1) Ln = 0. 2 (3.5) 

Since t h e  order ing  of t h e  exponent ia l  parameters i s  a r b i t r a r y  w e  take  the  

order ing  t o  be  A1 < X 2  < ... < An. 

w1 > w2 > ... > w 

k = 1 , 2  ,..., n. 

Then the  roo t s  of (3-5) are denoted by 
A 

and t h e  estimsrtors of X aye given by A = (-l/cM) I n  wk, n k k 

For t h e  Case I1 model given by equat ion (3 .2) ,  w e  group t h e  obser- 

va t ions  i n t o  (n+2) groups each containing M observat ions,  and then form t h e  

fol lowing p a r t i a l  t o t a l s :  

q = 1,2,.. . ,  n + 1, where t h e  p a r t i a l  t o t a l s  

S' = Siq - Si,q+l f o r  i = 1,2,.,.2 R and 
i q  

q M-1 

E Y i j  . s =  
iq j=(q-l)M 

For each S' t h e r e  is  a corresponding C' = - ci,q+l, and Cornel1 [SI 

shows t h a t  t he  following equation i s  s a t i s f i e d  f o r  each i b y  t he  
iq i q  i q  

f o r  i = 1,2, . . . ,  n. 

C' ' s  have been s u b s t i t u t e d  f o r  C 

same as those def ined earlier. 

mators of t h e  exponent ia l  parameters using t h e  S' ' s  i n s t ead  of t h e  S 

i = 1,2,.. . ,  n and q = 1,2,..  ., n+l, 

This  set cf eqcet ions is the  same as ( 3 " 4 )  except tL-.: 

' s .  The Ar, r = 0,1,2, . ." ,  n, are the  i q  fq  

We now proceed c s  i n  Case I t o  ob ta in  es;i- 

' s ,  i q  i q  

A t  t h i s  po in t  we  want t o  estimate t h e  c o e f f i c i e n t s  i n  the  set of 

To obtain these  es t imators  w e  s u b s t i t u t e  t h e  equat ions (3.1) and (3.2). 

e s t ima to r s  of  t h e  X found by t h e  par t ia l  t o t a l s  procedure descr ibed above, k' 
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into our set of n independent equations. 

regression equations which are linear in the unknown coefficients a 

fore, to estimate these coefficients we use the weighted least squares proce- 

dure as given by Zellner [lo] if it is reasonable to assume that the covari- 

ance matrix of the random variables E 

plier. 

mated covariance matrix as discussed by Beauchamp and Cornel1 [2 ]  and Telser 

(81, So our estimation procedure involves two main steps: (1) the estimation 

of the exponential or nonlinear parameters by a generalized partial totals 

approach; and (2) 

After doing this we have a set of n 

There- ik’ 

is known apart from a constant multi- 

Otherwise, we apply a weighted least squares procedure using an esti- 
i j 

the estimation of the coefficients or linear parameters by 

a weighted least squares approach after substituting the estimates of the non- 

linear parameters into the regression equations. 

the exponential parameters are required in the analysis of compartmental data, 

in which case only the first of these steps would be applied. 

Sometimes only estimates of 

4. EVALUATION AND MODIFICATIONS 

From the presentation of the estimation procedure in the preceding 

section, it can easily be seen that the S 

means = S /M and 5’ = S: /M, respectively, and the estimators of the 

and S’ could be replaced by the 
iq iq 

iq iq iq =q 

exponential parameters would remain the same. 

of the exponential parameters as functions of these sample means, we can 

demonstrate the consistency of these estimators as M -+ Q) under the following 

assumptions: 

(1) 

of j, are uncorrelated with E(E ) = 0. 

By thinking of our estimators 

For each value of i = 1,2,..., n, the random variables E. for all values 
ij ’ 

i3 
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corresponding observations y 

comon variance. 

(3) 

For each value of i and q 

ij 

For each value of i and q 
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the random variables E associated with the 

in S or S' as given in Section 3 have 
ij 

iq iq 

the domain of the independent variable is of 

constant length J for S 

(4) 

coefficients, where a 

i, k = 1,2, ..., n, and assume that the determinant of a is unequal to zero. 

or S' where i = 1,2, ..., n and q = 1,2,. .., n+l. i9 iq 
For the linear coefficients aik, let a be the n x n matrix of these 

is the element in the ith row and kth column for ik 

The demonstration of the consistency as M -+ 00 of the exponential 

parameters of our regression model involves the application of the Tchebycheff 

theorem given in Cramer [ 6 ] ,  and follows the same line of argument as used by 
. 

Cornel1 [4,5]. Then the estimators of the linear parameters are also consis- 

tent if these estimators are continuous functions of the 

covariance matrix of the E ' s  is specified apart from a 

or is replaced by a consistent estimator in the weighted 

culations. 

ij 

.I 

Xk's and if the 

constant multiplier 

least squares cal- 

Under the four assumptions given at the beginning of this section 

plus the additional assumpticn that the estimators of the exponential para- 

meters possess continuous second order devivatives of every kind with respect 

to the or 5- Beauchamp [l] demonstrates that ir (;-A) has a limiting 
iq iq ' 

A 

multivariate normal distribution,where A represents the vector of estimators 

of the exponential parameters whose true values are given in the vector A,  as 

M -f a. The mean vector of this limiting distribution is shown to be equal to 

the zero vector and, for Case I, the covariance matrix of this limiting dis- 

tribution is shown to be equal to F R F T where 
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the  supe r sc r ip t  T represents  t h e  transpose of a matr ix  o r  vec tor ,  and R 

r ep resen t s  t h e  n x n (n+l) matrix 

fo r  a l l  i and q where S converges i n  pro- 
iq 

evaluated at  t h e  point  S - 
i q  - qiq 

b a b i l i t y  t o  

-?.k(q-l)J ->. J 
e (1-e 1. A similar r e s u l t  holds f o r  ik = -  ,y - n a  1 

“q k = l  ’k 

Case XI. 

I n  t h e  above discussion the  es t imat ion  procedure w a s  developed 

i j  
assuming only one observat ion f o r  d i f f e r e n t  values  of x 

can be replaced by t h e  mean of t he  observations f o r  each value of x without 

changing the  es t imat ion  equations given earlier. 

x 

ber  of values  of x taken f o r  each p a r t i a l  t o t a l  S are unequal, then we 

th ink  of the  

However, each y 
j’ 

1 
I f  some of t h e  values  of 

i n  equations (3.1) and (3.2) are not equal ly  spaced o r  if some of the  num- 
j 

j iq 
‘ s  as approximations t o  a reas  under the  curve found by 

iq 
p l o t t i n g  E(Yi(x)) aga ins t  x and suggest t he  following modif icat ions t o  t h e  
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e s t ima t ion  procedure: 

(1) 

of i n t e r v a l s ,  each i n t e r v a l  being the same length.  

(2) 

each observat ion y by /2. 

(3) 

these  weighted averages i n  the  p lace  of t h e  2 ' s  given earlier. I n  order  

f o r  t h e  l i m i t i n g  p rope r t i e s  of the  estimators t o  hold,  w e  must continue t o  

assume t h a t  t he  domain of the  independent v a r i a b l e  f o r  each pa r t i a l  t o t a l  

remains constant  as the  number of observations i n  each p a r t i a l  t o t a l  becomes 

la rge .  

t i a l  parameters. 

Divide the  domain of t he  independent va r i ab le  i n t o  the  des i red  number 

Add the  observat ions i n  each of these  new i n t e r v a l s  toge ther ,  weighting 

i j 

Divide these  new p a r t i a l  t o t a l s  by the  sum of the  weights,  and s u b s t i t u t e  

i q  

The above modif icat ions are usefu l  f o r  t he  es t imat ion  of the  exponen- 

The es t imat ion  of the  l i n e a r  parameters, given the  exponen- 

t i a l  estimates, remains unchanged. 

5. 

I n  t h i s  s ec t ion  w e  apply t h  

EXAMPLE 

es t imat ion  pro dure developed i n  Sect ion 

3 t o  t h e  set of da ta  given i n  Table 1. The d a t a  given i n  t h i s  t a b l e  were 

manufactured f o r  t he  regress ion  model given i n  equation (5.1) by adding random 

dev ia t e s  t o  ca lcu la ted  expected values. The model given by (5.1) is  a s p e c i a l  

case of (1.1) which a r i s e s  by observ ing . the  proport ions of r ad ioac t ive  t r n c e r  

present  i n  two out  of t he  t h r e e  compartments of e i t h e r  a catenary o r  m a m m i l -  

l a r y  system. The regress ion  model of i n t e r e s t  is given as follows: 

1 5  ' + E  
-A x -h2X j 

j + (l-crl) e Y l j  = a1 e 

-A2xj 
+ % *  Y = 1 - a  e -AIXj - (l-a2) e 

2j 2 
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TABLE 1---Data t o  be f i t t e d  by general ized p a r t i a l  t o t a l s  
es t imat ion  procedure 

x. (=j) 
J Y; =l -Y  2 j P a r t i a l  To ta l s  

0.99580 

0.86755 

0.75378 

0.68462 

0.58998 

0.49806 

0.49066 

0.35738 

0.98.526 

0.90118 

0.78387 

0.72374 

0.64451 

0.58602 

0.57477 

0.43660 

Sll = 5.23783 

SZ1 = 5.63595 

~~ 

8 0.31896 

9 0.32844 

10 0.24684 

11 0.29593 

1 2  0.18045 

13 0.25398 

14 0.17297 

15 0.16266 

0.44126 

0.43487 S12 = 1.96023 

0.34459 

0.38054 SZ2 = 2.00562 

0.28662 

0.33810 

0.29868 

0.28096 

16 

1 7  

18 

19 

20 

2 1  

22 

23 

0.15076 

0.12821 

0.12233 

0.15341 

0.13334 

0.08309 

0.09083 

0.09450 

0.24881 

0.22204 S13 = 0.95647 

0.24219 

0.29722 S23 = 1.82865 

0.24112 

0.17590 

0.19781 

0.20356 
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Ins tead  of recording the  observations y 

of (5.1), w e  record y* 

on the  second regress ion  equation 
2 j  

= 1 - y2j so t h a t  
2 j  

- A  x -x2xj  
j + (1-01~) e 

E(Ylj) In  tnis example, x j  = j ,  

E(YGj) = a2 e 

i s  of t h e  same funct iona l  form as 

j = O- , l , . , . ,  23, and w e  have a Case I model with n = 2 s ince  w e  have two 

exponent ia l  parameters. Therefore,  M = 8 from ( 3 . 3 ) ,  and we d iv ide  each set  

of observat ions i n t o  th ree  groups each containing e igh t  observat ions.  Then w e  

form t h e  p a r t i a l  t o t a l s  

8 q-1 
S =  c Yij' (5.2) 
iq j=8(q-1) 

f o r  i = 1,2  and q = 1 ,2 ,3 .  The values of these  par t ia l  t o t a l s  are given i n  the  

las t  column of Table 1. Using equation (3.4) w e  are now ab le  t o  use the  set of 

equat ions given below t o  obta in  estimates of the  elementary symmetric func t ions  

of exp (-8X1) and exp (-8X,), denoted by L1 and L2: - 

= -  
sll L2 - 3 2  L1 ' s13 

'21 L2 - '22 L1 e; - '23 

o r  

5.23783L2 - 1.96023L1 = - 0,95647 

5.63595L2 - 2.80562L1 = - 1.82865 

(5.3) 

(5.4) 

Solving the  set  of equations given i n  (5.4),  w e  f i n d  L1 = 1.14810 and 

L2 = 0.24706. E s t i m a t e s  of exp (-8hl) and exp (-8X2) are found by obta in ing  
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the roots of the quadratic equation 

w2 - 1.14810~ + 0.24706 = 0. (5.5) 

The roots of (5.5) are given b y 1 7 ~  = 0.86123 and v2 = 0.28687. 

our estimates of h 

A2 = [-ln(0.28687)]/8 = 0.15609, respectively. 

Therefore, as 
A 

and X2 we take A1 = [-ln(0.86123)]/8 = 0.01868 and 1 
A 

The next step in our estimation procedure is to estimate the linear 

parameters, a1 and a2. 

random normal variables to calculated expected values and taking 

E(Elj) = all = 0.001; E(€ ) = u = 0.001; and E(€ E ) = u12 = 0.0009 for 

all j. 

matrix $2 of the random variables E is known. We may rewrite our regression 

model in equation (5.1) as 

The observations in Table 1 were generated by adding 

2 2 
2j 22 1j 2j 

Therefore in this particular example we may assume that the covariance 

ij 

-A x - A  x -A x 
lj ' Y - e  j = al(e j-e * j) + € 

1j 
-1 x. -1 .. x -A x 

"2 J = a2(e 1 j-e 2 j) + l - Y  - e  
2j 

(5.6) 

If X1 and X2 were known, then the usual weighted least squares estimators of 

"1 and a2 would be given by 

-A1 -A2 -23X1 -23A2 - (0.001 0.0009) z = (O,e -e ,...,e -e )T9 = U**OI, a** - 0.0009 0.001 , 
-23X2 

Y** = (Yl0-1; Y l p  9 9 y1,23-e ; -Y20; 
'p 

>' 
'X2. -23A2 

l-Y2p , ; l-Y2,23-e 
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I is a 12 x 12 identity matrix, and @ represents the Kronecker or direct 

product of two matrices. We now substitute the estimators X and h into 

equation (5.7) giving us the estimates of the parameters a and a denoted 

by a1 = 0.12880 and a2 = 0.25528, respectively. 

A 

1 2 

1 2’ 
rz 2 

In case we do not know the true values of all, aZ2, and u12, we 
A n 

substitute A and X 

equation least squares estimates of a 

into the regression equations and obtain the single 1 2 

and a2. These are given by 1 
A A 

= 0.10900 and a2 = 0.27569. Using these estimates and the same procedure 
A 

as given by Beauchamp and Cornel1 [ 2 ]  or Telser [8],we find all 

u 

R in (5.7), our new estimates of a1 and a2 are given by 0.14735 and 0.27007, 

respectively. 

0.00064, 
A A 

= 0.00074 and a12 = 0.00058, Substituting these estimates into the matrix 22 

The results of these calculations are summarized in Table 2. 

Graphs of the original data (x) and the fitted regression equations of our 

model are given in Figures 1 through 4. 
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TABLE 2--Estimates of parameters in equation (5.1) 

Parameter Generalized Partial Totals 

Q Known $2 Unknown 

1 (Y 

a2 

5 

0 e 12880 0.14735 

0.25528 0.27007 

0 01868 0.01868 

0.15609 0.15609 
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