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and

Richard G. Cornell
Florida State University

An estimation procedure is presented that may be used to
simultaneously estimate the parameters in a multiple equation regression
model. The regression models considered are shown to arise from
radioactive tracer experiments using compartmental models. For such
models the regression equations are shown to be linear combinations of
the same exponential parameters, and the number of independent
regression equations is also shown to be the same as the number of
exponential parameters.

The estimation procedure is developed under the assumption of
equally spaced values of the independent variable. The first step of
the procedure involves the simultaneous estimation of the exponential
parameters by a generalized patial totals approach, and the second
step involves the simultaneous estimation of the linear parameters
using the estimates of the nonlinear parameters. Modifications are
presented that make the estimation procedure more versatile, and asymp-
totic properties are also investigated. The procedure is illustrated

with generated data.
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1. INTRODUCTION
In this paper we present and evaluate some of the properties of an
estimation procedure which can be used to estimate the parameters present in
the following set of n regression equations:

n -A, X

- LI
Yij o + kilaik e + eij (1.1)

for i = 1,2,..., nand j = 0,1,..., N - 1. In this expression Yij and Eij
represent random variables associated with the jth observation on the ith
equation; xj is an independent variable; and the aik's and Ak's are constant
parameters that we estimate. The estimation procedure developed in Section 3

is for equally spaced values of x In Section 2 we show that certain com-

j.
partmental models for radioactive tracer experiments give rise to regression
equations like (1.1).

A

Since the exponential parameters A g3 An appear in each one of

1*
the regression equations of (1.1), we make use simultaneously of all of the
observations on all of the equations being studied to estimate these para-
meters. Beauchamp and Cornell [2], Turner et al [9}, and Zellner [10] present
simultaneous least squares estimation procedures. However, Zellner only con-
siders linear regression equations, Turner et al assume that the covariance
matrix of the eij is known, and the iterative procedures in [2] and [9] are
often difficult to compute. The procedure presented here provides a simple
alternative to the least squares procedures or can be used to compute initial
estimates for such procedures. The estimation procedure presented in Section 3

is a generalization of the partial totals technique given by Cormell [5], who

considered the estimation problem for a single regregsion equation that is a
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linear combination of exponential terms. In Section 4 some of the properties
of the procedure presented in Section 3 are investigated and some modifications
are given which will make the procedure more versatile. An example showing

the application of the procedure is given in Section 5.

2. MODELS

The use of radioactive tracers in biological investigations is an
example of an experimental situation which yields data that may be reasonably
described by the set of regression equations given in (1.1). Berman and
Schoenfeld [3] and Sheppard [7] have discussed the formulation of mathematical
models for such experiments. These formulations represent an organism by
several chemical states or sites of a physiological substance designated as
compartments. It is assumed that there are fixed transition probabilities or
turnover rates from one compartment to‘another, and the whole system is assumed
to be in steady state. The turnover rates are assumed to be proportional to
the amounts of material in the compartments. The concept of dividing a biolog-
ical system into a number of fixed compartments in merely an aid in analysis,
since the various states or sites contain finer structure. However, the com-
partmental analysis does prove itself useful in understanding some of the
mechanics of the system.

The mammillary and catenary systems, which are discussed in detail in
the work by Sheppard [7], are particular examples of such compartmentalized
systems and are specified as follows:

1) The catenary system involves (n+l) compartments that may be thought of as

arranged in a chain-like manner where each compartment has non-zero transition
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rates only with the compartments adjacent to it.
2) The mammillary system involves n peripheral compartments that have turn-
over rates with a central compartment but no turnover between the n peripheral
compartments,
From the discussion in the preceding paragraphs, the following set of

differential equations is formed to describe the general (n+l) - compartment

problem:
dE(Yi(x)) n+l
T = - TiiE(Yi(x)) + hil rihE(Yh(x)) (2.1)
h#1

for i = 1,2,..., n + 1, where E(Yi(x)) is the expected amount of labeled
material in the ith compartment at time x, Tih is the fractional amount of
material in the hth compartment flowing to the ith compartment per unit time,

and

h=1
h#i

Berman and Schoenfeld [3] show that the solution of (2.1) is given by

e (2.2)

N ™3
[+]

E(Yi(X)) = .

for i = 1,2,..., n + 1 where the constants ag, are functions of the Tih and

the initial conditions of the experiment. Let 1 be an (n+l) x (n+l) matrix
whose diagonal elements are given by T4 and off diagonal elements are given by
Then A

-1 An are the characteristic roots of t. Throughout this

ih 0* Apreees
paper we assume that the characteristic roots of tv are real and distinct.
From equation (2.2) we note that the number of exponential terms in

each equation is determined by the number of non-zero characteristic roots of
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the matrix 1, which is either n or n+l when these roots are distinct and which
is also equal to the rank of t. By writing down the matrix t for the general
(n+l) - compartment catenary and mammillary systems, we can show that the rank
of t is equal to n, so exactly one’'}, say AO’ is zero., In addition, for the
case when the amount of tracer material in the system is known and fixed, we
can express the system of equations given in equation (2.2) in terms of a new
quantity which represents the proportion of labeled material in the compartments
at a time x. For this case there are only n independent equations in (2.2)
since

n+l
L E(X,(x)

i=1
is fixed for all x. We may now combine the above results into the following
theorem:
Theorem 1: The regression model used to describe the general (n+l) - compart-~
ment catenary and mammillary systems, when a fixed and known amount of tracer
material is present in these systems, is given by the model in equation (1.1).
Thus the model given by equation (1.1) includes models arising in two classes
of compartmental models of interest in .tracer experiments.

During the development of the estimation procedure given in the next
section, the only assumption that we need to make about the random variables
) =0 for all i and j. However, additional assumptions are

€ is that E(e

i3 i3

needed in order to investigate some of the properties of the estimators found

by this procedure and these will be given in Section 4.
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3. PARTTIAL TOTALS ESTIMATION
In this section we present the partial totals estimation technique
for the model in equation (1.1) for two cases.
Case I: The regression model is given by

n -\, X,

L]
Y .= o, e +€,.,
ij k=1 ik ij

(3.1

for i = 1,2,..., nand j = 0,1,..., (ntl) M - 1, where the observable random
variable Yij takes on values denoted by yij' Comparing (1.1) and (3.1) we note
that a, = 0 and N = (n+l)M.

Case II: The regression model is given by

-\, X
Y =aq + I a e k™3 + €

for 1 =1,2,..., n and j = 0,1,..., (n+2) M - 1, where the observable random

variable Yi takes on values denoted by yij' Comparing (1.1) and (3.2) we

3
note that N = (n+2)M.

In the above two cases we are assuming that n and M are positive
integers, the coefficients @y are real numbers, and the exponents Ak are
distinct positive real numbers. We want to take our obgervations at equally
spaced values of the independent variable xj, so we also assume that xj = cj
where ¢ is a positive constant.

The estimation of the exponential parameters will involve the appli-
cation of a partial totals approach similar to that presented by Cornell
[4,5]. First we consider the estimation of the exponential parameters for

the regression model given by Case I. We group the observations from each

equation into (n+l) groups each containing M observationms. Then the following



partial totals are formed:

qM-1 qM-1 n —lkxj qM-1
by ¥y " z L oay, e + z €, .
i=(q-1)M 3=(q=1)M k=1 j=(¢=1)M
gqM-1
=, + z € (3.3)

9 ye(e-py M

for i = 1,2,..., nand q = 1,2,..., n + 1 where

qM-1
z = z E(Y..)).
19 yo(g-pn 1

Now for each value of i and equally spaced values of xj, Cornell {5] shows

for each single regression equation that the following equation is satisfied:

A .. -A L., + A )
n

n -—
117 M1 Bp Y hyp Byt e F DT AR =0 (3.4)

i,n+l

for i =1,2,..., n where the Ar are the elementary symmetric functions of the
exp (-Ach), i.e.,Ar equals the sum of all possible products of the terms

exp (-Ach) taken r at a time, r = 1,2,..., n. In addition, we define

Ao = 1. Therefore, since i = 1,2,..., n, in equation (3.4) we have n equations

in the n unknowns Ar' Hence by substituting
qM~-1

S = b

y
194 yo(g-nyn M

for Eiq we may easily solve for estimators of Ar which are denoted by Lr' From
these estimators of the elementary symmetric functions we may now obtain
estimators of exp (-Ach) for k = 1,2,..., n. Using the same properties of

elementary symmetric functions that Cornell [5] used for the single equation

problem, the estimators of exp (—Ach), k=1,2,..., n, are obtained by finding
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the n roots of the polynomial equation

n n-1 n-2 n
W o~ Ll w + L2 W - ve. + (=1) Ln = 0, (3.5)

Since the ordering of the exponential parameters is arbitrary we take the

ordering to be Al < Az < 4e. < ln. Then the roots of (3.5) are denoted by

> e, 2 W and the estimators of A, are given by Ak = (-1/cM) 1n w

w ar
k

17 K
k=1,2,..., n.
For the Case II model given by equation (3.2), we group the obser-

vations into (n+2) groups each containing M observations, and then form the

lowi . . P _ .
following partial totals Siq Siq Si,q+l for i 1,2,..., n and

q=1,2,.s., n + 1, where the partial totals

qM-1
S, = z Y, .
i .
1 g=(¢-mm " H
For each S] there is a corresponding £ =2, - I , and Cornell [5]

iq iq iq i,q+1

shows that the following equation ic satisfied for each i by the ziq:
0, (3.6)

A L7 A i, t A

n P
I W s ~ e+ (DT A E]

n-2 43 i, -
for 1 = 1,2,..., n. This set of equations is the same as (3.4) except th-c
Ziq's have been substituted for Ziq's. The Ar’ r = 0,1,2,..., n, are the
same as those defined earlier. We now proceed zs in Case I to obtain esti-
mators of the exponential parameterc using the S{q's instead of the Siq's,
i=1,2,..., n and q = 1,2,..., ntl.

At this point we want to estimate the coefficients in the set of

equations (3.1) and (3.2). To obtain these estimators we substitute the

estimators of the Ak’ found by the partial totals procedure described above,
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into our set of n independent equations. After doing this we have a set of n

regression equations which are linear in the unknown coefficients a There~-

ik’
fore, to estimate these coefficients we use the weighted least squares proce-
dure as given by Zellner [10] if it is reasonable to assume that the covari-
ance matrix of the random variables eij is known apart from a constant multi-
plier. Otherwise, we apply a weighted least squares procedure using an esti-
mated covariance matrix as discussed by Beauchamp and Cornell [2] and Telser
[8]. So our estimation procedure involves two main steps: (1) the estimation
of the exponential or nonlinear parameters by a generalized partial totals
approach; and (2) the estimation of the coefficients or linear parameters by

a weighted least squares approach after substituting the estimates of the non-
linear parameters into the regression equations. Sometimes only estimates of

the exponential parameters are required in the analysis of compartmental data,

in which case only the first of these steps would be applied.

4, EVALUATION AND MODIFICATIONS
From the presentation of the estimation procedure in the preceding

section, it can easily be seen that the S, and S{q could be replaced by the

iq
means §iq = Siq/M and §;q = S;q/M, respectively, and the estimators of the
exponential parameters would remain the same. By thinking of our estimators
of the exponential parameters as functions of these sample means, we can
demonstrate the consistency of these estimators as M + « under the following
assumptions:

(1) For each value of i = 1,2,..., n, the random variables eij’ for all values

of j, are uncorrelated with E(sij) = Q.
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(2) For each value of i and q the random variables eij associated with the
corresponding observations yij in Siq or S;q as given in Section 3 have

common variance,
(3) For each value of 1 and q the domain of the independent variable is of
constant length J for Siq or S;q where i.= 1,2,,.., n and q = 1,2,..., n+l.
(4) For the linear coefficients G let o be the n X n matrix of these
coefficients, where @ is the element in the ith row and kth column for
i, k=1,2,..., n, and assume that the determinant of a is unequal to zero.
The demonstration of the consistency as M + = of the exponential
parameters of our regression model involves the application of the Tchebycheff
theorem given in Cramér {61, and follows the same line of argument as used by
Cornell [4,5]. Then the estimators of the linear parameters are also consis-
tent if these estimators are continuous functions of the ik's and if the
covariance matrix of the aij's is specified apart from a constant multiplier

or is replaced by a consistent estimator in the weighted least squares cal-
culations.

Under the four assumptions given at the beginning of this section
plus the additional assumpticn that the estimators of the expomential para-

meters possess continuous second order devivatives of every kind with respect

to the Siq or Siq’

multivariate normal distribution, where A represents the vector of estimators

Beauchamp [l1] demonstrates that M (A-1) has a limiting

of the exponential parameters whose true values are given in the vector A, as
M + », The mean vector of this limiting distribution is shown to be equal to
the zero vector and, for Case I, the covariance matrix of this limiting dis-

tribution is shown to be equal to F Q FT where



- - 1
Q=ME(e,, €,), €, = ¥ L€

T

]

E*j = (elj, El,j+M,oo-, el’j+nM, eszoo-’ 62,j+nM""'.’ enj;atcn en,j"‘nM)

the superscript T represents the transpose of a matrix or vector, and R

represents the n x n (n+l) matrix

! .. ! \

; as11 aSn,n+l

g . .

g A -

‘ BAn aln ,

\ 3y 95, o+l /
evaluated at the point Siq = wiq for all i and q where Siq converges in pro-
bability to

n o =X, (g-1)J -2 J
P, = i z Lk e k (1-e k ). A similar result holds for
i I A&

Case 1I.
In the above discussion the estimation procedure was developed

assuming only one observation for different values of x However, each yij

j.
can be replaced by the mean of the observations for each value of x, without

3

changing the estimation equations given earlier. If some of the values of
xj in equations (3.1) and (3.2) are not equally spaced or if some of the num-
ber of values of x, taken for each partial total S

3

think of the Xiq's as approximations to areas under the curve found by

iq are unequal, then we

plotting E(Yi(x)) against x and suggest the following modifications to the
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estimation procedure:
(1) Divide the domain of the independent variable into the desired number
of intervals, each interval being the same length.
(2) Add the observations in each of these new intervals together, weighting
by (x ) /2.

each observation yij J._,_l—xj_1

(3) Divide these new partial totals by the sum of the weights, and substitute

these weighted averages in the place of the S, 's given earlier. In order

iq
for the limiting properties of the estimators to hold, we must continue to
assume that the domain of the independent variable for each partial total
remains constant as the number of observations in each partial total becomes
large. The above modifications are useful for the estimation of the exponen-

tial parameters. The estimation of the linear parameters, given the exponen-

tial estimates, remains unchanged.

5. EXAMPLE

In this section we apply the estimation procedure developed in Section
3 to the set of data given in Table 1. The data given in this table were
manufactured for the regression model given in equation (5.1) by adding random
deviates to calculated expected values. The model given by (5.1) is a special
case of (1.1) which arises by observing -the proportions of radioactive tracer
present in two out of the three compartments of either a catenary or mammil-
lary system. The regression model of interest is given as follows:

-A X, ~-A,X
Y,.=a, e 13 + (1—a1) e 273 + €

1j 13 »

(5.1)

=<
|
[
1
@
(]
e
[}
”~~
—
]
Q
(8]
~
1)
(3=
+
™
[y

2j 2
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TABLE 1---Data to be fitted by generalized partial totals
: estimation procedure

xj(=j) Y15 y£j=1—y2j Partial Totals
0 0.99580 0.98526
1 0.86755 0.90118 S11 = 5,23783
2 0.75378 0.78387
3 0.68462 0.72374 521 = 5.63595
4 0.58998 0.64451
5 0.49806 0.58602
6 0.49066 0.57477
7 0.35738 0.43660
8 0.31896 0.44126
0.32844 0.43487 512 = 1.96023
10 0.24684 0.34459
11 0.29593 0.38054 522 = 2,.80562
12 0.18045 0.28662
13 0.25398 0.33810
14 0.17297 0.29868
15 0.16266 0.28096
16 0.15076 0.24881
17 0.12821 0.22204 313 = 0.95647
18 0.12233 0.24219
19 0.15341 0.29722 323 = 1.82865
20 C.13334 0.24112
21 0.08309 0.17590
22 0.09083 0.19781

23 0.09450 0.20356
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Instead of recording the observations y2j on the second regression equation

of (5.1), we record yéj =1 - so that

Y23

-A X, -A, X
-y = 173 _ 273
E(YZj) =a,e + (1 az) e

=3,

is of the same functional form as E(Ylj). In this example, xj
i=031,..., 23, and we have a Case I model with n = 2 since we have two
exponential parameters. Therefore, M = 8 from (3.3), and we divide each set
of observations into three groups each containing eight observations. Then we
form the partial totals

8q-1

S, = I ¥Y.., (5.2)
i
q j=8(q—l) 1]

for i = 1,2 and q = 1,2,3. The values of these partial totals are given in the
last column of Table 1. Using equation (3.4) we are now able to use the set of
equations given below to obtain estimates of the elementary symmetric functions

of exp (-811) and exp (—8A9), denoted by Ll and L2:

11 72 12 71 - 713
Sy0 Ly = Spp Ly = = Syg (5.3)
or
5.23783L2 - 1.96023Ll = - 0.95647
= - 1,82865 . (5.4)

5.63595L2 - 2.80562Ll

Solving the set of equations given in (5.4), we find L1 = 1,14810 and

L2 = 0,24706. Estimates of exp (—8%1) and exp (-SAZ) are found by obtaining
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the roots of the quadratic equation

wz - 1.14810w + 0.24706 = 0. (5.5)

1 0.86123 andw2 = 0,28687. Therefore, as

our estimates of Al and A, we take xl = [~1n(0.86123)}/8 = 0.01868 and

The roots of (5.5) are given by w
Ay = [-1n(0.28687)]/8 = 0.15609, respectively.

The next step in our estimation procedure is to estimate the linear
parameters, @y and Gy The observations in Table 1 were generated by adding

random normal variables to calculated expected values and taking

2 —3 t—3 L] 2 — —
elj) =04y < 0.001; E(ezj 22 eleZj) = 012 = 0.0009 for

all j. Therefore in this particular example we may assume that the covariance

E( ) =0 = 0,001; and E(

matrix 2 of the random variables e,, is known. We may rewrite our regression

ij
model in equation (5.1) as
~-A,X =-A X, =A,X
273 _ 173 2°]
Ylj e = al(e e )y + Elj’
-\ X -\, x =-A,X
2%y 15 2%
1- Y2j - e = a,(e e ) + €9y (5.6)
If A, and XA, were known, then the usual weighted least squares estimators of

1 2
oy and @, would be given by

. -1 -1 ,7T -1 A AT
G = 0L 271 D)TH 0] 97y, = (apuap T, (5.7)

z 0
Dz - (0 z)’

T
-A, -2 -23%, -23) ‘
1 "M 1 2 ) _/0.001 0.0009
Z= <0,e e “,...,e -e ) » = 0, @I, 0y, “<0.0009 0.001 /,
. -Azn . -23X20 - -

Var =\ Y1070 Y& evcd Yp037C s TVa03

T
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I is a 12 x 12 identity matrix, and(%} represents the Kronecker or direct

product of two matrices. We now substitute the estimators Al and AZ into

equation (5.7) giving us the estimates of the parameters o, and a,, denoted

1 2°
by &1 = 0.12880 and a, = 0.25528, respectively.

In case we do not know the true values of 9112 9920 and Oyps WE

substitute Al and Az into the regression equations and obtain the single

equation least squares estimates of oy and a,. These are given by

@ = 0.10900 and a, = 0.27569. Using these estimates and the same procedure

as given by Beauchamp and Cornell [2] or Telser [8], we find o,. = 0.00064,

11
= 0.00058. Substituting these estimates into the matrix

~

Oyg = 0.00074 and 9y

2
Q in (5.7), our new estimates of ay and a, are given by 0.14735 and 0.27007,
respectively. The results of these calculations are summarized in Table 2,

Graphs of the original data (x) and the fitted regression equations of our

model are given in Figures 1 through 4.
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TABLE 2--Estimates of parameters in equation (5.1)

Parameter Generalized Partial Totals
2 Known 2 Unknown
oy 0.12880 0,14735
@, 0.25528 0.27007
Al 0.01868 0.01868
0.15609 0.15609
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