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EIECTROMECHANICAL CO-STREAMING AND COUNTER-STREAMING INSTABILITIES

Frederick D. Ketterer

Massachusetts Institute of Technology
Department of Electrical Engineering

Abstract

The dynamics of two highly conducting, finite length streams in
relative motion, coupled by a transverse electric or longitudinal
magnetic field are examined in detail. The systems may be mathemati-
cally described by two second order coupled hyperbolic partial
differential equations. Four classes of flow exist: (1) subcapillary
(2) supercapillary co-streaming (3) supercapillary counter-streaming
and (4) subcapillary-supercapillary flow. The first three are
considered in the present paper. The behavior of the infinitely long
system is examined from the dispersion relation and the Bers-Briggs
stability criterion. The eigenvalue problem is formulated for class
(1) and (3) flows (no eigenvalues exist for class (2) flow) and the
complex eigenfrequencies computed. Electrohydrodynamic experiments on
these systems are described and compared with the theory. Physical

explanations are given for the observed instabilities.
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TI. Introduction

Kelvin-Helmholtz instability arises when adjacent layers of fluid
are in relative motion. A simple explanation of this instability may
be given on the basis of convected momentum (Bermouilli instability)(l),
but this leads to a naive picture of real fluid mechanics, since it
assumes that the layers may slide freely over each other. Chandrasekhar*(z)
offers an introduction to the classical Kelvin-Helwholtz instability. If
a realistic model including viscosity is postulated, the problem becomes
quite complicated, and only recently have numerical solutions been

obtained for specific models.(B)

i Kelvin-Helmholtz instability is not restricted to classical fluids.

Special céses of the hydromagnetic version have been considered by‘Fejer(?)

Michael,(S) Northrop,(6) Alterman,(7) and Sen€8)The only work done

. on the electrohydrodynamic Kelvin-Helmholtz instability is by Lyon,(g)
who derived the dispersion relation for two streaming inviscid dielec-
tric fluids (in contact)stressed by an electric field. Considerable
attention has been given recently to streaming instabilities in plasmas,
both gaseo&%o’llgnd solid stateglggevices employing electron beam
injections into a plasma as a possible scheme for thermonuclear heating
are being studiedglsgome experiments involving counter-streaming electron
beams, complicated by the presence of a background plasma, are as yet

unexplained, and are currently the subject of researchglh’ls)
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The continuum electromechanical situations considered here can
be modeled by a relatively simple theory which provides good agree-
ment with experiment. The electrohydrodynamic model consists of two
highly conducting streams in relative motion and coupled by an electric
field. Electrical coupling eliminates the difficulty encountered in
modeling two real fluids in physical contact. An analogous situstion
exists in magnetohydrodynamics, in which the electric field is replaced
by a magnetic field. Here the coupling is produced by a magnetic field
trapped between two perfectly conducting fluid streams. These situations

compliment each other and both will be considered in the same context.

It should be noted that the implications of the results presented
here are not restricted simply to electromechanical systems. Indeed,
analogous situations exist in two-stream electron beam interactions,
and in solid state plasmas. Waves are considered to be propagating in
the direction of streaming (the longitudinal direction). In general,
the imposition of transverse boundaries produces an infinite set of modes
of propagation. To solve for these modes, with both longitudinal and
transverse boundaries imposed, is an immense problem. The conventional
technique is to assume that wavelengths of interest (in the longitudinal
direction) are short compared to the length of the system so that the
effect of longitudinal boundaries may be ignored. Quite often, and in
all the cases considered here, the long waves are the most significant

and play a more important role in determining the dynamics than higher




order transverse modes. For this reason, the effects of longitudinal
boundaries will be carefully considered, while at the same time
including the effect of only the principle transverse modes. It is
possible then to provide a complete picture of the system dynamics.

The correct model for the longitudinal boundary conditions can be unam-
bigously specified. This is not possible in general, since boundary

conditions consistent with causality may not be clearly defined.

It should be pointed out that coupled mode theory,(l6) used
extensively in complex systems with interacting waves, particularly
in electron beam devices, is not particularly useful for electric field

coupled systems since the uncoupled modes have complex wavenumbers.

ITI Problem Description

The mathematical model consists of two highly conducting fluid
streams in relative motion, stressed by an electric or magnetic field
(Figure 1). The assumed planar geometry simplifies the mathematics con-
siderably and it will be shown that experimental results obtained using

circular jets are in quantitative agreement with this model if the
coupling coefficients in the equations of motion are experimentally
determined. Attention will be restricted to a study of the kink

17,
modes (m = 1) of the jets. Measurements by Crowley( )

on the dynamics
of a single jet stressed by a transverse electrie field support the

validity of the model.



The equations of motion for the streams may be written(ls)
aag
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In the above equations, T is the surface temsion, p is the fluid
density, & the transverse displacement of the streams from equilibrium,
Vo the equilibrium stream velocity, Eo and Ho the equilibrium electric
and magnetic fields respectively. Theequation for magnetic coupling is

obtained from Equation (1) by replacing wi by _hﬁ.(l9)

The following assumptions have been made in the derivation of
Equation (1):

(a) 1linear theory

(b) no viscous or resistive effects

(¢) long wave model (A>>Ib-alor a)

(d) all equilibrium quantities are constents.

(e) planar thin streams, A << a
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Equation (1) with w, = 0 is simply the equation of a vibrating
string with convective velocity V . The third term in Equation (1),
the self-coupling term,represents the net traction of electrical origin
acting on the stream caused by a deflection of that stream. Similarly,
the last term, the mutual coupling term, is the net electrical traction
caused by the deflection of the other stream. The quantities W and
W, both have physical significance. Consider for the moment three
parallel equally spaced conducting plates with the center plate
free to move, and equal electric fields applied above and below the
plate. Then an upward displacement conéentrates the E field lines
above the plate, weakens them below, with the result that the unbalanced
electric stress is destabilizing. The parameter Wg is the growth rate
of instability of the plate. The electric field in effect plays the
role of a distributed negative spring. For the single stream, if the
flow velocity V_ wV, the behavior is an absolute static (mr = 0)

(19)

instability, whereas for V0>Vt, it is a convective instability.

For magnetic field coupling, an upward displacement compresses
the field lines above, expands them below the body; the resultant mag-

netic pressure is stabilizing and Wy is the frequency of oscillation




-6-

in the field. A single subcapillary stream (V°<5Vt) exhibits evane-
scence below a cutoff frequency, while the supercapillary stream

(V°>'Vt) exhibits only propagating waves.

One might expect this antiduality to carry over into two-stream
systems as well. This is only partially true, however, and it will be
seenthat those instabilities which are Kelvin-Helmholtz in character

exist whichever type of field is used.

Since Equation (1) consists of two coupled wave equations, there
are four characteristic velocities of propagatio£603amely, Vb. * Vt .
This means there are four distinct flow configurations possibié? In 12
addition, it is easy to show by means of the method of characteristics
that the longitudinal boundary conditions consistent with causality are
uniquely specified once the characteristic lines are determined. These

are summarized below and Classes I ~ III will be discussed in the following

sections. Work concerning the Class IV system will be reported.

Class Flow Conditions No. Boundary Conditions

Stream 1 Stream 2

I VvV ¢V V <V 1 1 1 1
‘ °l| tl l 02' t2

IT V >V, ,V SV 2 o 2 0
07 ¥ Top" %y

IIT V. SV sV &=V 2 0 0 2

v V1oV lv ' v 2 0 1 1
> <
| °1| t )9S Y,
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The dispersion relation for the system is obtained directly from

J(wt-kx)

Equation (1) by assuming solutions of the form e for’§l

2
22

2 2 2 22 7n 1 2 2
(w-V k)-V k+&w ][(w-v k) - V. k+zw W w =0
[ 0y ty 2 "ey o, t, 2 el & e e,
(2)

and w and k are complex, w = w + jwi and k = k + jk,,

IIT Class I Coupled Elastic Continua

If both streams have subcapillary flow velocity, the behavior is
basically that of two field coupled elastic membranes; the effect of

flow velocity merely changes the details. For convenience, let Vt = V£

1 2
=V, and w, =w, =w,. Thé dispersion relation(Equation (2))is plotted
1 2 w
in Figure 2, where w and k have been scaled to Yo h and —%lE respectively.
2
t

From Equation (2) it is evident that? is replaced by -2 for magnetic
coupling. Figure 2(a) and (b) respectively show electric field coupling
with the mutual coupling between the streams excluded (single stream
interactions) and with the mutual interaction included. The same is

true in Figure 2(c) and (d) for magnetic coupling. In Figure 2(b) it is
seen that first two waves, then all four waves become unstable,

(complex w) as k is reduced, the growth rate increasing as the wave

tends to zero. It is easily shown from the Bers—Briggggl’zggiterion that
these instabilities are absolute and static (mr = 0), as shown in Figure 3.
The method of Bers and Briggs provides a criterion in distinguishing
whether a wave is propagating, evanescent, convectively unstable, or
absolutely unstable. The method consists in plotting the complex k
values of the dispersion relation for fixed w, as wy is increased from

-00 to zero.
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For example, for k's originating below the kr axis, if a k locus remains
below the kr axis when w{—to, it represents & decaying or evanscent wave;
if it lies on the axis, it is a purely propagating wave to the right, and
if it crosses the axis it becomes an amplifying wave or convective
instability. For k's originating above the kr axis, a similar statement
is valid. If, however, two k loci join, one from above, one from below
the kr axis and split to form a saddle point as wi-a-O, this signifies
an absolute instability; the value of wg (saddle point frequency) gives
the frequency and growth rate, the value of ks the spatial dependence.
Finally, Wy, is vatried to obtain the wave properties for all frequencies.
Figure 3 exhibits two saddle points, which is reasonable since each
stream separately exhibits a single saddle point. For magnetic coupling
(PFigure 2(c)), we observe that each stream exhibits evanescence, which
is also exhibited by the coupled system.

While the Class T regime is not particularly interesting from the
point of view of introducing new phenomena, it provides a means of
calibrating an experiment to test the other flow regimes. Consider the

special case V° = V° = 0. The motion can be seen to be composed of
1 2

two symmetry modes, a symmetric mode, El(x,t) = -Eé(x,t), and an anti-
symmetric mode, §l(x,t) = §2(x,t), or the S and A modes respectively.

The dispersion equation for electric field coupling reduces simply to

2 2 2 2 9+l S
w - Vtk + h)e n_% =0 (A) (3)



Two saddle points exist,

nIl
ag = -dup[— ) ()

k =0
8

)

]
[
>4

If we now consider the system to be of finite length and impose
A A

the boundary conditions 51,2(0) = €1,2(L) = 0 where El,e(x,t) =i’2(x)e3°t,

we obtain the eigenvalue equation
1
2 2 W’k ne2 2 S
Wt e, == () () (5)
nxvt

L
and decreases to zero as the electric field is raised to the critical

From (5) the resonant frequency is simply at zero electric field

value given by

4 =N
Cerit. (6)

We observe that the fundamental mode is the first to go unstable and
that the symmetric mode becomes unstable at a lower critical field than
the antisymmetric mode. Further, the maximum growth rate of instability
is obtained as L +»@and is given by the saddle point above. This is

as expected.sincé it means that the boundaries have a stabilizing influence.

An Experiment

Stable planar fluid streams are quite difficult to produce
experimentally(QB}nstead, cylindrical fluid streams will be used.
However, the analysis for this system is extremely complicated. The

assumption is made here that the experimental behavior can be predicted
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by a planar model if the system parameters are determined experimentally.
A fluid jet of zero velocity can be simulated quite well by a closely
wound weak spring (having approximately the same linear density although
a considerably higher tension than that due to the surface tension of
liquid jets). This experiment will serve both as verification of the

model and as calibration of the apparatus for later experiments.

Two matched springs 1/8" dia and 80 cm length were stretched to
the same tension between parallel rigid supports in the horizontal plane
to eliminate gravitational effects. A rigid rod was placed parallel to
each spring to provide electrical equilibrium. By carefully adjusting
the outer plates, it was possible to establish force equilibrium
using a single DC voltage source. From Equation (5) we observe that a
Plot of frequency squared vs. voltage squared should yield two stré.ight
lines of negative slope. The resonant frequency was measured by super-
imposing a small AC voltage on the previously grounded plate and varying
the frequency for maximum spring deflection. The results in Figure 4
follow the predicted behavior and provide the determination of w o and
N . At high voltage the equilibrium positions of the springs were

displaced, which accounts for the deviation of the curve from a straight

line.

IV  Class IIi Coupled Costreaming Jets

If the two streams have flow velocitiesV0>Vt , then the dynamics are

quite different. In this case, all waves propagate downstream and since



all boundary conditions are imposed at the same point in space, there
are no eigenfrequencies. The abgsolute instabilities for subcapillary
flow and electric field coupling discussed previously now become con-
vective instabilities, as seen in the dispersion curves of Figure 5,
é,nd verified by the Bers-Briggs criterion. “Since there are |

no absolute instabilities, the system may be excited in the sinusoidal
steady state. If the flow velocities are equal, the system possesses
symnetry modes as in the previous case. From the dispersion equation,

the wave-number becomes

wV
k = o i B
o 't
where
741
\[mevi-(ve-ve)u? ——
- gt e 2 & (7)
K= —F7 A
A ot

Thus the system has a cutoff frequency for spatial growth given by

/ M g
Yeutore™ “e ("ﬁ"’ﬁ) — 2 (A)

below which the wvaves are amplifying. The symmetric mode exhibits the
larger spatial growth, and the growth rate becomes maximum es w—+O.

These effects have been qualitatively verified experimentally.

The dispersion curves for magnetic coupling are shown in Figure 6.

It is seen that for flow velocities approximately equal the system behaves
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essentially as if the Jets were mutually uncoupled and exhibits only
rropagating waves. However, if the streams have sufficiently different
flow velocities, then the fast wave on one stream couples to the slow
wave on the other stream to produce an amplifying wave. This situation
also exists in electron beams; in fact, the equation for longitudinal
oscillations in an electron beam can be obtained from the magnetic

coupled equations by letting vt—.o and 7—1.

v Class JII Counterstreaming Jets

The dynamics of two coupled oppositely directed supercapillary
streams is quite different from the cases considered so far. In this
case, waves can propagate only downstream on each jet, but since they
are oppositely directed an internal feedback mechanism is available which
potentially at least could provide instability. Typical dispersion curves
are shown in Figure 7. For electric field coupling, there appears to be
little coupling except at the origin where the curves join. While the
system is evidently unstable, it is not clear what kind of instability
is present. The Bers-Briggs stability plots are shown in Figure 8. From
curve 1 of Figure 8a, the conditions for a saddle point are present, with

wy being purely imaginary indicating a static instability. The spatial

dependence is exponential. In addition there is a mild overstability
in the neighborhood of the loci of curves 3 and L.
The dispersion relation for magnetically coupled counter-streaming

jets is shown in Figure Tc and d. This system also exhibits instability,
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and from curves 1 and 2 of Figure 8b, it is clear that it is an
overstability. The spatial character of the instability is essentially

wave-like, contrasting the electric field coupled case.

If we now consider the important case Vb‘ = 'VB“ = Vgr a considerable
I 2
simplification of the mathematics results. The dispersion relation

simplifies to
0B B B O ) - 2P ) ¢ e Bl B2
' (8)
which is biquadratic in both k and w, a consequence of the two flow speeds
being equal. If we examine (8) for possible saddle points, we seek the
frequencies with negative, imaginary part which will result in double

roots in k. Since it is of the form Akh + Bk2 + C = 0 the possibilities

are: (a) C = O which means k = O and W, = =Juy ZL%&., Comparison with
Figure 8a shows that the saddle point is k = 0 and w, = -jué g%;—
(b) 32 -bAC = 0, which means k = + é% , but the corresponding fre-
quencies are stabie. " :.

This means that as the velocity of the Jjets are made equal in
magnitude, the overstability observed in Figure 8a disappears and the

static instability is not appreciably changed.

For magnetic field coupling, condition (b) above produces the

saddle point, given by
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. - ~Jy (Vi’vi)’l‘“h Vi hEE A
t' o v

s 2v.

o
|

t
7N Vf ot n 1
s St 2oy 1'[1‘ -7 2] r—~ v\ 31 )
2(vo-vt) LA 2V, o

(9)
The effect in Figure Bb of making the velocities of equal magnitude is
to shift the saddle point frequency to the jw axis (static instability)
and to make the wavelength real.

If we now compare the electric field coupled and magnetic field
coupled models, two facts become evident. First, from the saddle point frequencies,
the electric field coupled system is more unstable than the magnetic field
system (by a factor of L4 for%® =2 and Vo/vt = 3). Second, both systems
are statically (absolutely) unstable, even though neither system is
sbsolutely unstable without the mutual coupling. As stated previously,
the electric field self coupling term is destablizing while for magnetic
coupling it is stabilizing.

The conclusion is that the instability is caused by the mutual
interaction of the two counter-streaming supercapillary streams and is
therefore Kelvin-Helmholtz in character, contrasting the previously
considered instabilities which were Rayleigh-Taylor in nature. To
investigate this further, if the stability is re-examined with both

the self coupling terms and the surface tension eliminated, both systems
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are found to be statically unstable with the same growth rate. It is
physically reasonable that this should be so since whether the streams
pull on each other (electric field coupling) or push on each other

(magnetic field coupling) is immaterial.

The Eigenvalue Problem

Since boundary conditions must be imposed at two different points
in space, the system possesses eigenvalues. This system is unusual,
however, in that each stream is free to move at its downstream end.

Furthermore, two counter-streaming jets is an example of a system which

does not possess eigenvalues in the uncoupled state.

To determine the natural modes, each jet will be assumed to enter
thé interaction region unexcited. The boundary conditions are:
° &
£ (-Lt) =—3(-Lt) =0

of (10)
E(Lt) = 3-§(+1. £) =0

vhere I = half length of the jets.

The problem can be considerably simplified by again taking advantage
of the symmetry which exists if the flow velocities are of equal magnitude.
It can be seen that both the equations of motion and the boundary condi-
tions are satisfied if the symmetric and antisymmetric modes are expressed
by El(xlt) = ;ﬁg(-xlt) respectively; i.e., the symmetry is now about

the origin as shown in Figure 9 instead of the longitudinal axis ‘as before.
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From Equation (1) we may assume a solution §(x,t) = (x)ert so
-jk.x
that El(x) g B,e 1" here the k's are determined from the
biquadratic dispersion equation. The solution for jet 2 is then given
by
2
d2 _ ’lwe

(mujmm D

e

This may be written in simpler form as a linear combination of odd and
even functions of x.

€l(x) = Alael(x) + Aaaol(x) + A38e2(x) + Ahﬁoz(x)

d€ (x)
iu)-z[ 4$w) jﬂn- (ﬁw)
(11)
where
8¢ (x) = cos B, pX cosh & X - J sin g X sinh @ x
1’2 > 2’ y b4
(12)
601 2(x) = CO8 Bl 2x sinh 01 2x - J sin ﬂl 2x cosh al’ex
and.
2 =Bt ¥ o
Applying the symmetry conditions we get
él(x) - Al[sel(x) + rlaol(x)]-:- Aj[ﬁee(x) + ,;802(")}
(v2 v2 Mﬂ
]
where [_1,2 = 2“’Vok1 " (A) (13)

Substituting the boundary conditions into Equation (13) yields the

following eigenvalue equation.
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kl[rlsel(r‘)-sol(l‘)][aez(L)- I;SOQ(L)]—ke[Sel(L)- r].sol(L)][r;sez(l‘)‘ao2(L):| =0
(14)

This equation,combined with the dispersion relation,yields an expression

A (w,vo,vt,we,% ,L) = O which in principle can be solved to obtain the

complex eigenfrequencies as a function of the parameters of the system.

The important parameters of the system are Vo, Wy and L; by suitably

scaling w to R and L to Vo/we the number of parameters may be reduced

and the eigenvalue equation becomes, 4 (w/w,, vt/vo,"z , Lwe/Vo) = 0.

The effects of Vt/Vo andy are small, so that essentially A(w/we, Lwe/Vo)= 0

is the functional dependence desired.

The resulting eigenfrequency versus normalized length curves for
the lowest three symmetric and antisymmetric modes are shown in Figure
10. For small field or short length, all modes represent decay, the
normalized decay rate —s 00 as the length —» 0. The effects of the
boundaries are strongly stabilizing. For a very long system, the modes
vhich are unstable approach two asymptotic values, the more unstable of
which is the saddle point predicted by the Bers-Briggs criterion for the
infinite length system. Thus the asymptotic behavior at large and small

values of Lwe/Vo are physically expected.

However, there are several facts which cannot be predicted from
the dispersion relation alone. The lowest S and A mode eigenfrequencies

are purely imaginary; the A mode remains a decay mode, while the S mode
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Lw

becomes unstable as —VE is increased and finally approaches the saddle
o

point frequency. This is the most unstable mode of the system. All
modes above the fundamental are dynamic (wf. £ 0), until a critical
value of Lwe/ Vo is reached for each mode when the modes become purely
static growth or decay. Thus modes A2, S3, Al4, etc., are particularly
interesting since they represent overstabilities. In an experiment,
however, these modes would be virtually impossible to see because of

the overriding static instability of the fundamental symmetric mode.

At the point of impending instability w = O, and the constraint
on the parameter values may be calculated fromEq.(llt) and the disper-

sion relation. Thus,

2
(Vi Ve )k (V2 V2) + w T
, n+l
Solving for k, k =+ jwe —s

2(vo -f)

From Equation (13) l; and I'—2 become indeterminate at w = O, but in the

limit w0, 7 anda | are of order — and w, respectively so that f;-—o.

1 2 wy i

This simplification yields for the condition of impending instability

“" A iom el fq-l (15)
AR =

tank
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w L
Equation 15 is plotted in Figure 11 as — vs. a/b. (Since A can be
absorbed in a and b, A is taken to be Vi"’i
zero here.) As can be seen the point of instability is not

strongly affected by transverse geometry, except when the external
plates are placed very close to the fluid sf.reams ,» when the required
electric field for instability tends to zero. This is physically rea-
sonable, since a small displacement on the stream will produce a large

change in the electric traction.

The eigenfunctions for the point of impending instability are easgily

calculated. From Equation (14), setting ® = O and applying the boundary condi-
A
tions for the symmetric mode & (-L) = ggx('L =0

A sinh alx cosh Q. x
=& 2
§l(x) o [sinh alL ¥ cosh OQL ]
2 ' (16)
vwhere
w =
_ e 7 +1
“T F= 5
2 \'S -Vt

The open endedness of the jets is clearly evident in Equation (16) and
contrasts the displacement of the fundamental mode of the two-spring

system. The plot is essentially that shown in Figure 12, where the
Tw
eigenfunctions for —VE = 3 for the lowest three symmetric and antisymmetric
o

modes are plotted. The dynamical behavior is evident from the display

of the trajectories at three successive instants of normalized time.
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The stability and symmetry are apparent. Since the eigenfrequency for
the fundamental modes is imaginary, the trajectories exhibit no phase
shift for increasing time. The higher modes, on the other hand, all

exhibit propagating behavior as well as growth or decay in time.

Numerical Computation

The solution of Equation (1l4) to yield the complex eigenfrequencies
as a function of the parameters requires the use of a computer to
arrive at useful solutions. The algorithm is a two dimensional
Newton-Raphson iteration method, in which the complex frequency is
considered as two independent variables. The computation proceeds as
follows: the parameter values and the complex frequency is initially
assumed and the wavenumbers computed. The complex boundary conditions
determinantad:s function (the left hand side of Equation (1k4))is then
evaluated. For eigenfrequencies, this function is identically zero, but
in general it is not. The real and imaginary parts of the frequency are
incremented and the four partial derivatives computed. From these a new
complex frequency is determined and the process repeated until a conver-
gence test is satisfied or a preset number of iterations exceeded and
that particular computation terminated. Once a convergence has been
achieved, a parameter (usually the normalized length) is incremented,
the starting value for the next computation automatically computed using
an extrapolation formula)and the process continued until a branch of an

eigenfrequency curve is completed or a non-e#vergence occurs.

Transient Behavior

While a complete knowledge of the eigenmodes is sufficient to

determine the dynamical behavior of the system, it does not leave one
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with a very clear physical picture of the transient behavior to some
arbitrary initial disturbance. To provide this picture the original
equations can be programmed using the method of characteristicé?4)The
boundary conditions are that each jet enter the interaction region
unexcited. Jet 1 (traveling to the right) is given an initial disturbance;
jet 2 is initially unexcited. The resulting transient is shown in

Fig. 13 for two values of the electric field very close to but on either
side of the point of impending instability, marked points A and B in

Fig. 1l.

The initial disturbance grows while it propagates downstream,
illustrating the convectively unstable character of the jets. As it
propagates it exerts a traction on jet 2 pulling it away from equilibrium
(T = 5). At T = 10, the initial disturbance has been swept out of the
interaction region and the shape of the fundamental symmetric mode begins
to appear. As time progresses, this mode grows and the higher modes
disappear. Since point A is clese te ths peint ef impending instability,
the growth rate of the instability is quite slow.

In Fig. 13(b) the same conditions are used except the electric
field is reduced to just below the instability point. Now, however,
the amplitude growth of jet 1 cannot produce sufficient traction on the
returning jet to sustain the disturbance, and the amplitudes decay
slowly in time.

If sufficient electric field is applied to the system so that the
A2 mode is also unstable and the same conditions applied, it is found that
after a short transient in which the initial transient is swept down-
stream, the system settles down to a combination of the two unstable
modes, but since the S1 mode is more unstable, this mode ultimately

dominates.
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Magnetic Field Coupling

As previously mentioned, the magnetic field and electric field
coupled systems are closely analogous, the principle difference being
that the self coupling term is stabilizing for magnetic field systems,
while being destabilizing for electric field systems. One might expect
therefore that the magnetic field coupled counter-streaming jetis to be
less unstable, which is verified in Fig. 1k.

As in the case of electric field coupling: (1) for small magnetic
field, all modes are decay modes with o, = @ as Imh/VO %+ 0, (?) for hnh/vo4 o«
the unstable modes approach the saddle point frequency and (3) the lowest
S and A modes are static modes. In contrast, however, all modes exhibit
instability and the instability is in all cases static. As in electric
field coupling the fundamental modes dominate the dynamics although now
both the symmetric and antisymmetric modes must be considered.

At the point of impending instability w = O and an analysis similar

to the derivation of Equation (15) yields

th

w L
tan{ _ﬂ_+_}_ h } tan{ -T—]:-l-

m-1 a
5 vovEL - o () (17)

== |
2 2
vV T

As seen in Fig. 15 the transverse boundaries have an important

N

ot PO

o]

effect in determining whether the S or A mode will be the first to go
unstable, Also the effect of the transverse plate spacing is opposite
to the electric field case. Since the magnetic field is inherently
stabilizing, bringing the plates close to the jets will impede the

destabilizing effect of the flow.
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The eigenfunctions at the point of impending instability are given

by:

g . ([ sinB.x cosfx |

1x) = & { s i s

> o{ sinf; cosB,

(18)
N .
cosB.x sinB.x )

€1(x) - & { Lo 2 A

5 o cosBlL - s1nﬁ?L }

~

where Bl i/ég%;? H;l

2 ot
The trajectories are nearly those shown in Fig. 16 for Iwh/vo = L, where
the lowest three modes are plotted for two instants of time, showing the
dynamical behavior. The magnetic field eigenfunctions are much more
wavelike that those for the electric case.

The transient behavior of the magnetic field coupled system, for
conditions similar to thoseé described above for the electric field case,
is carried out in reference (18) for points C and D in Fig. 15. The
results are in agreement with Egs. (17) and (18).

An Electrohydrodynamic Experiment

In order to verify at least some of the results of the previous
sections, an experiment consisting of two counterstreaming water jets
stressed by a transverse electric field was constructed. The length
between nozzles and the transverse spacings were carefully kept the
same as in the two spring calibration experiment. The jet and spring

diameters were also the same.
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Because the plates and jets were non-planar, the relative polarity
of the electric field in the field regions wg$ important. This was
becamse a jet is influenced by the non-adjacent plate. 1In the experiments
described, the voltage of the elements was of alternate polarity. This
minimized the effect of the non-adjacent plate and secondly allowed the
use of a single power supply.

In order to produce a suitable jet of sufficient length it was
necessary to damp out all sources of noise which would excite the .
natural sausage (m = O) mode of instability. Bassett(QS) and Melcher(l9)
have shown that a transverse electric field increases the spatial growth
rate of this mode and effectively shortens the useful length of the jet.
As a result considerable care was necessary to produce a jet 80 cm long
before breakup with the electric field at approximately the breakdown

value for air. To help achieve this glycerine was added to increase

- the viscosity to a sufficient level to damp out the sausage mode without

affecting the principle (m = 1) mode. This was practical since the
principle mode wavelengths were long, while the sausage mode wavelengths
were on the order of about 1 cm.

The experiment consisted in measuring the decay rate vs. voltage
for the lowest mode of the system. A small DC voltage was impressed on
the normally grounded plate to deflect the jets, with a large DC voltage
on. With the jets deflected, the plate was grounded and the decay
transient recorded. The results are shown in Fig. 17 and the theoretical
results are seen to be in agreement with the experiment.

For a low applied voltage, the decay transient is quite rapid and
a bit difficult to interpret. In order to measure the fundamental mode

unambiguously it is assumed that all higher modes have damped before the
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usable portion of the decay curve has been reached. This was near the
end of the transient but before the transient became noise limited. As
the voltage was increased, the decay curves were more nearly exponential,
but near the point of instability the jets became quite noisy. Because
of the jet break up at the highest voltages, the equipotential model

was no longer valid and the experimental data was not in agreement with
the theoretical value.

It should be noted that the jet velocity was approximately 30 times
the capillary velocity, so that the effect. of surface tension on these
measurements was completely negligible.

VI Conclusions

The basic electrodydrodynamic and magnetohydrodynamic surface waves
for an incompressible fluid have been classified and investigated by
Melcher.1 In studies of single streams, the free charge, electric field
coupled and free current, magnetic field coupled models have been
extended to include the effect of convection, Until now there has been
no work reported in the literature concerning the two-stream systems.
Since long waves are the most important the procedure adopted is to
consider only the principal transverse modeS and to investigate the longi-
tudinal modes in detail. The resulting equations of motion for the
systems considered here (kink modes of the streams), consist of two
coupled hyperbolic partial differential equations. This is fortunate,
since then the method of characterisitics may be used to provide the
answer as to how to specify boundary conditions which do not violate
causality. TFor example, it is unphysical to specify a downstream
boquary condition on a supercapillary jet, whether field coupled to

another jet or not. This concept is often overlooked in the literature.
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For the more general problem when the principal mode results in the
equations of motion not being of the pure hyperhblic type (for example
the long wave sausage mode of a single jet) the question of specifying
boundary conditions consistent with causality must be reexamined. To
the author's knowledge, this problem has not been investigated.

For the problem of two field coupled streams considered in this
paper, it is shown that there are four flow configurations which are
basically different,

For the classes of flow in which boundary conditions exist at
more then one point in space (Classes I, ITI, and IV), an infinite
set of eigenmodes exist and the eigenfrequencies (complex in general)
and time dependant eigenfuctions can be computed to given the detailed
structure of the system dynamics. When causal boundary conditions
exist at only one point in space, as in Class II flow, no eigenmodes
exist and hence no absolute instabilities are possible,

The dynamics of two finite length field coupled streams has been
discussed and compared (1) to the infinite length system (2) one flow
regime with another (3) with respect to the type of field coupling
(4) to their single stream counter parts. While some of the properties
of the finite length system can be inferred from the infinite length
system (dispersion relation and Bers-Briggs criterion), yet important
effects exist which require the boundaries for explanation, suche& the
overstabilities for the counter streaming electric field coupled system.

There exists a close analogy between magnetic field coupled conduc-
ting streams and electrostatic oscillations of electron beams.

The equation of motion for two interpenetrating electron beams is
that given by equation (1) for the magnetic field coupled case if the

surface tension term is suppressed and T = 1.
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Since electron beams contain no effective "surface tension," Class I
flow does not exist and costreaming beams exhibit only the convectively
unstable regime. The Class III flow, counterstreaming beams, exhibits
eigenfrequency plots similar to those shown in Fig. 15, i.e., all modes,
both symmetric and antisymmetric, exhibit purely static instability.

This model is currently being extended to explain the overstabilities
observed by Kofoid in his experiments with counterstreaming electron

beams in the presence of a background plasma.
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Figure Captions

Figure 1. Two highly conducting fluid streams in relative motion are cou-

Pled by means of an applied electric or magnetic field.

Figure 2. Dispersion curves, assuming solutions of the form exp j(®t - Ikx)
for the long wave model (A>>a) of the system of Figure 1. Complex ® has been
Plotted for real k. Both streams have subcapillary fluid velocity (class I

flow), with (a) and (b) electric field coupled and (c) and (d) magnetic field
coupled. Curves (a) and (c), with the mutual coupling ignored, have been in-

cluded for comparison.

Figure 3. Stability curves for electric field coupling for the conditions
of Figure 2. Complex k is plotted for fixed wr as wi is increased from - »
to o. Two saddle points are apparent for the "2" curves, indicating static-

type (CDi = 0) absolute instabilities.

Figure E. Frequency dependance on applied electric field for the funda-
mental symmetric and antisymmetric modes for two springs stresses by a trans-

verse electric field. The dashed curve is based on Eq. (5).

Figure 5. Dispersion curves for co-streaming, supercapillary jets (class
II), electric field coupling, are shown for two flow conditions. Complex ®
is plotted for real k. The system exhibits convective instability for both

flow conditions. The mutual coupling is suppressed in (a) and (c).
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Figure Captions Continued

Figure 6. Dispersion curves for class II flow, magnetic field coupling,
for conditions similar to Figure 5. For |vol -V 02‘ <@V, &s in (), omly
propagating waves are present, whereas, the system is convectively unstable

ir |v0:L - v°e|>2vt (Figure 6 (d).)

Figure 7. Dispersion curves for supercapillary, counter-streaming flow
(Class III). Electric field coupling is shown in (a) and (b), magnetic
field coupling in (c) and (d). Complex ® is plotted for real k and the

mutual coupling is suppressed in (a) and (c).

Figure 8. Class III stability curves: (a) electric field coupling pro-
duces a strong static instability (curves 1) and a weak overstability
(curves 3 and 4). (b) magnetic field coupling produces an overstability

(curves 1 and 2).

Figure 9. Sketch of symmetry modes for similar counter-streaming jets.
Figure 10. Complex eigenfrequencies vs. normalized length for similar

electric field coupled counter-streaming jets. The fundamental symmetric
mode (S1) exhibits static instability nme/vo > 1.1. Higher modes (A2, S3,
Al, etc.) exhibit overstability and then static instability as nwé/vo is in-

creased. u; is symmetric about the abscissa and only one branch is shown.




Figured Captions Continued

Figure 11. Effect of transverse geometry on the normalized length for the

system of Figure 10 at the point of impending instability.

Figure 12. Time dependent eigenfunctions for the three lowest symmetric

and antisymmetric modes for the conditions of Figure 10. nm;/vo =3

Figure 13. Transient behavior of two similar counter-streaming electric
field coupled jets. The lower jet, traveling to the right, is given an
initial displacement. Stable components of this excitation propagate away,
leaving only the fundamental symmetric mode which slowly becomes unstable in

(a) and slowly decays away in (b). Points A and B are shown in Figure 11.

Figure ;&. Complex eigenfrequencies vs. normalized length for similar
magnetic field coupled counter-streaming jets. All modes exhibit static
instability, the growth rate approaching the saddle point as Ilnl1 0~ @

The real part of the eigenfrequency is symmetric about the abscissa and only

one branch is shown.

Figure 15. Effect of transverse geometry on the normalized length at the
roint of impending instability for the fundamental symmetric and antisym-

metric modes. The conditions are the same as in Figure 1h.

Figure ;é. Time dependent eigenfunctions for the three lowest symmetric

and antisymmetric modes corresponding to the eigenfrequencies of Figure 1h.
m)h/vo =

Figure 17. Fundamental symmetric mode decay rate vs. applied voltage for

electric field coupled counter streaming jets.
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Figure 2. Dispersion curves, assuming solutions of the form exp j(®t - kx)
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Figure 5. Dispersion curves for co-streaming, supercapillary jets (class

II), electric field coupling, are shown for two flow conditions.

is plotted for real k.

flow conditions.

The system exhibits convective instability for both

The mutual coupling is suppressed in (a) and (c).
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ir v, - v02|>evt (Figure 6 (d).)




b w 7 w
4T a
2-"_ V°|/Vt=3 2 / Vol/v'=3
-+ { Voz/V, j‘22 /4 Voz / V' =2
' 4"’ kt 77: ; {’ ™y 77.= 27
-2 N7 AN 2 K - AN AN 2 k
/‘ ~[r
2T -2+ ‘
Re(w) Re (w)
-4t Im (@) -4+ Im (@)
(q) (b)
7 w
4
2 Vo, /Vy= 3
Voz/V,=-2
I mM=-2
-2 -1 2 k
_4 4
(c)
Figgre 1.

Dispersion curves for supercapillary, counter-streaming flow

(Class III). Electric field coupling is shown in (a) and (b), magnetic

field coupling in (c) and (d). Complex ® is plotted for real k and the

mutual coupling is suppressed in (a) and (c).
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Figure 10. Complex eigenfrequencies vs. normalized length for similar

electric field coupled counter-streaming jets. The fundamental symmetric
mode (S1) exhibits static instability me/vo > 1.1. Higher modes (A2, S3,
AW, etc.) exhibit overstability and then static instability as 1ﬂg/vo is in-

creased. w} is symmetric about the abscissa and only one branch is shown.
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The conditions are the same as in Figure 1k.
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