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The dispersion relations for a finite temperature two-component
plasma subjected to crossed electrostatic and magnetostatic fields have
been derived using the coupled Boltzmann-Vlasov-Maxwell equations under
the one-dimensional, small-signal assumptions. The derived dispersion
relation is given in a form in which various characteristic modes of the
system can be readily identified. Moreover it is given in a form particu-
larly suitable for a study of the coupling between the transverse
circularly polarized wave and the longitudinal wave. Inspection of the
derived dispersion relation reveals that the coupling of the longitudinal
mode to the transverse mode may take place in the presence of a trans-
verse electrostatic field.

The derived dispersion relation is examined in detail for a
Maxwellian plasma in the case of longitudinal propagation. As an illus-
tration, the detailed analysis of the dispersion relation is carried out
for a homogeneous, electrically neutral electron gas in which the thermal
velocity of the electron is taken into account, but the ion motion is
neglected. The variation of refractive index with various system param-
eters, such as X = (mi/mg), and Y = (wz/w), has been studied under the

conditions of low temperature and a weak applied electrostatic field, wb
and ®, are the plasma frequency and cyclotron frequency of the electron

respectively, and w 1s the angular frequency of the transverse electro-
magnetic wave. The plots of n vs. X, and 7 vs. Y, with & and 7 as

parameters, ave presented and discussed. mn = (cz/vi) denctes the square
of the refractive index, where ¢ is the speed of light in vacuum, and v,

is the phase veloclty of the transverse electromagnetic wave under
consideration. & = (m/QK.T)(EO/BO)2 and y = (2KT/mv§) in which m is the

electron mass, K is the Boltzmann constant and T the electron temperature.
Bo is the magnetostatic field present in the system along the direction

of wave propagation and Eo is the applied electrostatic field which is
perpendicular to Bo.

It is shown that the presence of an applied transverse electro-
static field EO in the electron gas has two interesting effects upon
the propagation characteristic of the transverse circularly polarized
electromagnetic wave, which travels along the magnetostatic field BO:

1. The cutoff frequency of the electromagnetic wave, ® s shifts;

e.g., an investigation of the cutoff condition reveals that, for a given
Bo’ an increase in Eo willl cause the cutoff frequency of the left-hand

circularly polarized wave to increase, while it causes that of the right-
hand circularly polarized wave to decrease.

-iii-



2. The longitudinal plasma oscillation may be coupled to the
transverse electromagnetic wave, which is referred to as "electrostatic
coupling"”. The temperature effect in the electrostatic coupling has
been examined and it is observed that the "coupling velocity", 1i.e.,
the velocity at which the electrostatic coupling may take place, depends
upon the electron temperature T; e.g., an increase in T causes the
coupling velocity of the left-hand circularly polarized wave to increase
and the coupling velocity of the right-hand circularly polarized wave to
increase when o, > wp.
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EFFECT OF ELECTROSTATIC FIELDS ON THE PROPAGATION OF ELECTROMAGNETIC

WAVES IN A FINITE TEMPERATURE MAGNETOACTIVE PLASMA

1. INTRODUCTION

A theory of growing electromagnetic waves was advanced some years
ago by Bailey'’Z in his electromagnetoionic (EMI) theory, which is an
extension of the well-known magnetoionic (MI) theory of Appleton and
others. In his treatment the random motion of charged particles is
taken into account by means of Maxwell's law of momentum transfer. From
a detailed study of the case in which both static electric and magnetic
fields are parallel to the direction of wave propagation, Bailey! concludes
that wave amplification is possible in certain frequency ranges, and he
has used the theory to explain the excess noise radiation observed in
sunspots. However, Baliley's theory of amplified circularly polarized
waves in an ionized medium has been criticized by Twiss® and Piddington*.

Twiss points out that the growing wave which Balley interprets as an

this can explain neither the excess radiation observed from sunspots nor
the excess noise observed in discharge tubes.

Piddington has examined Bailey's theory also for the case in which
the ionized gas drift and the wave hormal are both in the direction of
the steady magnetic field. He concludes that Bailey's theory predicts
spurious growing waves which do not correspond to any interchange of
energy between gaé and field. Piddington further points out that the
presence of a steady electric field introduces no new wave forms although

it modifies the existing waves.
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In analyzing the dispersion relations in'a finite temperature magneto-
active plasma this author® recently found that when the externally applied
static electric field is not parallel to the steady magnetic field, which
is directed along the direction of wave propagation, coupling between
the transverse and longitudinal waves in the plasma can take place.

The purpose of the present report is to investigate the effect of
externally applied electrostatic fields upon the propagation characteristics
of electromagnetic waves in a plasma pervaded by a static magnetic field.
From the coupled Boltzmann-Vlasov-Maxwell equation, a small-amplitude,

one-dimensional analysis is considered.

II. BASIC EQUATIONS

Consider a plasma composed of two species (positive ions and
electrons) in which collision effects are negligible. The electron
distribution function f(T,7,}) and the ion distribution function F(T,V,t)

for this plasma are governed by the Boltzmann-Vlasov equation:

%f;+ Pve - (B+vxBvE = 0, (1a)
oF e 7,
§€+?-VF+ﬁ(E+vx§3-VVf = 0 , (1p)

where m and M denote the electron and ion mass respectlvely and e is the
electronic charge which is taken as a positive quantity. The electro-

magnetic fields in the plasma are governed by the Maxwell equations:

-
VxE = - %% , (28)

*st o (2b)




__)
VD = p (2¢)
and

v-E = 0 . (24)

The electric displacement vector D and the magnetlic flux density E)are,
respectively, related to the electric field intensity E and the magnetic

field intensity ﬁ)in the following manner :

D = €& (3a)

and

B = uf , (3b)

where € and Ky denote the dielectric constant and the permeability of
vacus.
—
The convection current density J and the charge density p may be

written in terms of the distribution function as

W

T o= e /P?(F - £)a% (La)

and
p = e }F(F - f)dsv‘ . (L4v)

Consider all quantities of interest to be composed of two parts, a time-
independent part and a time-dependent part which are denoted by the

subscripts O and 1 respectively:




_)
B = B (r) +B(5t) ,
o] 1
- - =
E = E(;S+E(r,t) ,
O 1
- - =
J=J(;3+J(r,t) ’
o] 1
.._)
P = po(;)) + pl(r,‘t) )
£(F,7,t) = £ (T,9) + £ (F,¥)t)
and
.ﬁ
F(r,v,t) = F (T,7) + F (F,7,t) . (5)

In the present paper the following assumptions are made:

1. Small-amplitude conditions are satisfied so that the terms
involving the product of time-dependent quantities are negligible.

2. A one-dimensional analysis is applicable, 1.e., all quantities
vary only with one spatial variable, and 3/dx = 0/dy = O in a rectangular
Cartesian coordinate system.

3. All time-dependent quantities have harmonic dependence of the
form exp[j(wt - kz)], where w and k are the angular frequency and the
propagation constant respectively.

Based on the above assumptions, and the substitution of Egs. 5 into
Egs. 1 through 4, the following set of equations governing the time-varying

quantities is obtained:




of of
. e 1
- -= + - -
3w kvz)fl m <(on VvPoz = Vz oy) gx * (Eoy + v, Box VxBoz) &y
Bfl
+ (EOZ + VXBOy - vyBox) g—vz>
o ( Bfo afo
= m\ By P VB, - By ) 5 By VB - VB, >,
afo
+(E + - Se
( . va:Ly vyle) Z> , (6a)
. aFl aFl
jlow - k\rZ)Fl + ﬁ<(on + VyBoz - vZBOy) E + (Eoy +v, B, - vXBOZ) yy
oF
+ v -v.B ) = >
+ (Boy X oy y ox gz _
. aFo aFo
= --M-<(Elx+VBlZ-VZB )S‘Z*‘ ( 1y+VBX- XB:LZ)-VY
aFO
+ (Elz + valy - Vyle) FZ_ B (6b)
OB
- k -k 1z
Bx = _wEly > By = wlix » T3z = 0 (6c)
82Elx w?
+ —E = Jau J é6d
322 2 ¥ I, ix (64)
0 1 w®
— =8 = jmJI (6e)

dz2 2 oy



= .
;; Bo = I, o (6£)
T o= e /“G’(F - £ )d% (6g)
1 1 1
and
p = e / (F - f)da% |, (6h)
1 1 1

where ¢ is the speed of light in vacuum .
On the other hand the time-independent quantities are related to

one another in the following manner;

of N
vzafg—-:—l(foﬂvao) cVE, = 0, (72)
aFO e = -
VST T H (EO + vV X BO) vF, = 0, (7o)
BEOX BEO BEOZ po(z)
_&_F‘O’_B;X=O’Bz=eo : (7e)
9B, aBOX aBOZ
2z - “HIx 0 TS, IJ'oJoy v 5z - 9 (7d)
3; = e./ﬁ§9(Fo - fo)dsv (Te)
and
P, = € /h(FO - fo)dsv . (71)

Now consider a transformation of velocity variable coordinates given by
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v, = vcosp , v = v sing and v = v, (8)
and for convenience of discussion define the quantities u_fc and ?by

o — - o =
a_))c = <%Bo> and a (%Eo> . (9)

Then Eq. 6a can be transformed® with the aid of Eq. 6c, into

<J(<D -kv) ta, %) £

of | , of v, Of 1 -jo L
- }:a_'_ \-F‘L- Jﬁ &)—— +(D+V—l-‘ W- Ju)_’_D(fJ’-):l e -a 5T

. £ of
= &£ Jo . & -jo + & c_& o
= - M_(fO)E_e + o M+(f0)E+ e +oE §,—Z- o B, S’ (10)

where E, = 1/2(8 ¢ JEly) )
B, = 1/2(B * jBly) )
®, = ]_/E‘(a)X t jwy) ,
a, = 1/2(&X t jay) ’
Pox = P cy = wy » By T8,

kv afo i afo kv, afo—
M (r) = [(1-K>§q-v 5q>>+ & |

- kv fo afo kv Bfo*
M+(fo) <l-—w—'> 'g“*"i acp>+ ® avd ’ (11)

n
—
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and the differential operator D is defined by

D() = Lvl%—z—l—vz%l‘l . (12)

It should be noted that E_ and E+ appearing in Eq. 10 correspond to
the electric field of the left-hand and right-hand circularly polarized

waves respectively.

III. DISPERSION RELATIONS

Suppose that the positive z-direction is taken in the direction
—)
of the magnetostatic field B , i.e., B =B = 0 so that w_ = 0. From
0 oxX oy t
Eq. 6c, BlZ is independent of z and it is taken to be zero in the present
discussion (which is reasonable for longitudinal propagation).

Now consider that the time-varying electron distribution function

f 1is composed of three parts and may be written as:
1

3 s
fl(Z,t,Vl,VZ,(P) = f_(z’tyvlyvz)e ? f+(z,t,Vl,VZ)e 9P 4 g(zit’vl’vz) s
(13)

where the first, second and third terms of the right-hand side can be
regarded as the distribution of those electrons assoclated with the right-
hand circularly polarized, left-hand circularly polarized and longitudinal
waves respectively. Since Eg. 10 must be valid for an arbitrary value of
P, the substitution of Eq. 13 into Eq. 10 ylelds the following system of

equationssz

of
- 9 _ e
o - kv, + @) -a o a 5\5,— = =M (£)E_ , (lka)

L




of
. + 0 _ e
3w - kv, - ®)f, - a -8, S =M, (£ )E,  (14p)
and
3 2a_ 2a, o Of,
3(w-kvz)g —azg%—Tf+ —Tf_ = El_ EE_'LZ I (1)40)

which clearly suggests that no coupling between the transverse mode and
the longitudinal mode can take place when a, and a_ are zero, which is
the case when the transverse electrostatic field is zero.

In the present investigation it is assumed that a, = 0, i.e.,
EOZ = O, since the effect of the transverse electrostatic field is of
primary concern. This assumption is equivalent to assumiing that the
condition of electrical neutrality is satisfied. For this case, it is

possible to solve the system of Eqs. 14 for f, f+ and g explicitly in

terms of E , E, and E.  as follows:
-7 7+ 1z

f =k E +k E_+k E__ ,
- 11 - 12+ 1312
f = k E +%kx E +k E
+ 21 - 22 + 23 1z’
= k B +k E, +k E 1
g 31 - 32 + ag 1z 7 (15)

where
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. e, D of
-3 oM (f) m - v, \ov
k - m - O k = 0 k = 1 N g
11 b+ o Y- 7 s b(b + wz) ’
e, 2 (%o
- M, (f) m o+ v \ov_
k =0 k = ° kK = L z
21 ? Taz b - 7 Tos b(b - ) ’
e % e 2
"%n v M—(fo) " 2w v M+(fo)
k = = , k = = s
31 b(b + wz) 32 b(b - wz)
of 3 of
-5 & o e o
Jm v ba a, m v v
k = T — , (16)
o9 ke Vi b(® - oP)

in which b 2 (w - kvz) .

Similarly the ion distribution functions may be written as

; s
Fl(z,t,vL,vzw) = F_(z,t,vL,vz)e P4 F+(z,t,vL,vZ)e 9P, G(z,t,v ,v,) ,

(17)

and in view of the fact that Eqs. 62 and 6b have exactly the same form,
the substitution of Eq. 17 into Eq. 6b yields a system of equations
governing F, F+ and G which is similar to the system of Egs. 14. By
- -
defining Q and A as
__)
g4 = -

e — — -e =
i B, and A =g E > (18)

F, F+ and G can be expressed in terms of E , E+ and ElZ as
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F = KE +K E, +XK E__
- 11 - iz t 13 1%
F = K E + E +
+ 21 - K22 + K23Elz ?
G = K E + K E +K E
31 - 32 + 3g 1z’ (19)
where
3 oF
e E-A < d>
J g M (F) M-\
K = ~ o K = O K = L Z
11 (b + 025 ! 7 Tis b(b + &) ?
e ) aFo
Iy ME) M7+ ov \Ov,
X = 0 X = K -
21 7 ez b=a ’ Tog T b(b - Qz) ’
o0& oy (r) EEZM(F)
M vL -0 M v +‘" 0o
0 T TRy 0 e T TRmaTy
JF F
e e O o
IM v jhAA M v \v
Z -+ L 7
K = b - v ’ (20)
83 L b(p2 - 02)

I
—
1
2
=
~
[ve]
@)
N
—

where A, = (1/2)(AX‘ + jAy) and Q=

When the time-varying distribution functions are expressed
explicitly in terms of the time-varying electric field, the convection
current density 31 and the space-charge density pl can then be expressed
in terms of the electric field with the aid of Eqs. 6g and 6h respectively.
On the other hand, the electric field is related to the current density

by Eqs. 6d, 6e and 6f so that it can be expressed as




12—

(‘D

J (,QL' o0 25

c [o0]
E - . 2 r . ijq)
* 2(w® - c®k3) Jf Jf ]f F fl) s Traedvydv,
- 0 O

© o 27

. - £
E, = we_ J[ Jf Jf LAN (Fl fl/ dedv dv_ = . (21)
Ladee]

0

When Egs. 13, 15, 17 and 19 are substituted into Eqs. 21, the following

set of equations is obtained:

F = R E +R E + R E s
= 11 - 12 13 1Z
E, = R_E_+R E +R_E ,
+ 21 - 23 1%
E = R E +R _E_+R E , (22)
1z 31 - 32 33 12z
where
R = P (S for = 1, 2 3 = 1, 2
b,q (p,q) P , | ,» 2,3,
= Q(8_ ) for p = 3 ;3 ¢ = 1,2,3 , (e3)

in which the integration operators P(S) and Q(S) are defined by

(%)

P(8) oo - oPrE) J[ JF S(v v, )Vzdv v,

f f S(v v, )v v av av, (24)

-0 Q

Q(s)

i

and the functions Sp,q(VZ’VL) are defined by
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2n
- -J=9 -39
= - + - -
sl! f [(Kll ku) (Kzl kzl)e +(K31 kal)e ldp |,
0
on
= - Jj29 _ Jo
s2p = f [(Klp klp)e + (sz kzp) + (Kap - k3p)e lap
0
on .
= - jq)+ _ -j(P -
83q f [(Klq qu)e (Kaq kzq)e + (qu ksq)]dcp ,
0
(25)
for £t =1, 2, 3; p=1, 2, 3; and q = 1, 2, 3, and where k and K

p,q b,

are given in Egs. 16 and 20 respectively.

Therefore the dispersion relation of the system is given by

(R - 1) R R
11 12 13
D(w,k) = R21 (R22 - 1) R28 = 0
R R (R - 1)
31 32 33

(26)

It should be observed that once the time-independent distribution functions

f and F_are known, the parameters k and K are specified so that
o o D, p,4d

the elements of the determinants, Rp % are determined. Thus the dispersion
J
relation can be analyzed to obtain the information on the propagation

characteristics of the waves in the system.

IV. MAXWELLTAN PLASMA

The time-independent distribution functions fo and F0 must satisfy
N
Egs. Ta and Tb respectively, in which the electrostatic field EO can be

— — - —
written by Eo F—ES + Ea where Ea represents the externally applied
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electrostatic field and ﬁ; represents the space-charge field. For the
present one-dimensional analysis, ﬁ; is directed in the z-direction. By
assumption ﬁ; is perpendicular to E;, which is in the positive z-direction.

Suppose that the positive y-direction is taken in the direction of applied -
uniform electrostatic field; then 1t is not difficult to show that the

function fo(z,vx,vy,vz) has the form (see Appendix A for details),

a{[(v_ - u)? + v2 + v3] - (2e/m)®(z))
£ = ne * o fmetz , (27

where n, is the normalization constant. The electronic drift velocity

u, and the space-charge potential ¢ are given by

W= (B, xB)/[B[® , or u = (B/B) snd (30/d2) = -E

respectively. Since 1t is assumed in the previous section that
ES = Eoz = 0, ¢ must be independent of z. The time-independent

distribution function fo in the case of a homogeneous plasma, therefore,

can be given as

2

ajz - [(v - w)®+vZ+ 2]
f = n <;é> e ° F y i s (28a)

where n 1s the number density of electrons, Q, Z=3‘(111/2K’I'e)with X dencting
the Boltzmann constant, and Te is the electron temperature. In view of
the fact that the electronic drift velocity u depends neither on the
ratio of charge to mass, nor on the initial velocities, it is the same
for electrons and ions regardless of their energy. The time-independent

ion distribution function FO can be written as
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aNasjz - O [(v, - u)® + v2 + v3]
N<;£>/ e - X YR, (28p)

where N is the number density of ioms, @; = (M/QKTi), with T, denoting
the ion temperature.

Since the form of the time-independent distribution functions fo
‘and Fo is specified, qu can be evaluated. After some algebraic
manipulation the following expressions are obtained (see Appendix B.l

for the details):

T Z (—*“W’*Go“%q)) (eo2)

q=1,2
y . (2u + 58 ) J .
R = T 2% (0T () - xyla, + e, W)
(291)
_ 1 \ r.. ., o B N
Be = T@T-m 2 JEEEQ.LJ 2 vVG(T) + \Z "7 %

q

p
.(U-+q) + <72& + pq) Vq(l - Yq)GO('U_q)] > (29¢)

: (2u_+8)
- 1 —9_ 9’

q
(294)

'(_1_?72 <—$+5G(U +GO(U_q)>, (29)



23

31

32

33
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' ' g
Ti—%7ﬁ. E:Sq"fg; [j + (2 + vq)ngo(Ub) + <-§9-+ p;>‘vq(l + Yq)
q

2 qu J"gq [3(1 + vqu) + VqGO(UO) + ququ(l + Yq)Go(U+q)]

q

)

q

s s

qa

G
0

q

0, +( % 1> v, - Yq)GO(U_q)] , (299)

(29g)

3(r - vqu) + quO(UO) - ququ(l - Yq)GO(U_q) ,] ,

(29h)

p) SV [3+(1-20)vVg +2(L+Y)3v G
qu[a ( 2 VG0 (Uog) * Aq( @ V8o (Uy)

q

*a -G (u ) s (291)
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where
w, 2
= j = o =
Sq JVqXq s Vq ( aqu) R Xq (-—5?) 5
2,2
- _ ¢k
8q = o u® > N = < > > P)
w

@M d:
i ]
7N N
Le Zle,
€ ln
NS -
- +C:
Ne
il
7N\
1]
=+
e
5
N
ld
Q0
Il
VRN
e
e ]
15
O
NS

= D
Bq 6q q ’
Hq = (Dq - 1) ’
vy = 1 - Dq(l + Sq)] = - (uq + Bq) ,
A=

8,1 - Q2D (1+26)] ,

[o2]

-9
= q 1 L n
g T ° En’. W+D °q (30)
n=o
and

o0 -av?

. e 4z
GO(Xq) = k/\ -(V—Z——_—Tq-y dVZ (Bl)

-0

for g = 1 and 2, and Xq may in general be complex. The subscript q
takes values of 1 or 2,and the guantities appearing in Egs. 30 with

subscript 1 denote those associated with the electron and those with
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subscript 2 are for the ion. The summation in Eqs. 29 is taken over both
components of the plasma.

It should be noted that the integral (31) has been discussed
in detail by Stix® and his results can be applied to the present
discussion. The function GO(Xq) has an interesting asymptotic expansion

property®. Using this property, if the condition
[Nax [* > 1 (32)

is satisfied, then GO(Xq) may be approximated by

_3 1
¢ (X)) =—4L—1+————> (33)
° 4 Na X 2(Nax )?-
q q q g
so that
. = _.J_ —
Go(Uo) B <l * 2V2 4

Go(Upg) = til-; Yqj (1 * 2‘1’3 (1 tlyq)2> : (34)

On the other hand, if the condition

5(21 «< 1 (35)

is satisfied, then

% 5
7\q =} 5 <l —§8q> . (36)
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Through use of the above approximations,Egs. 34 and 36, Egs

11

12

13

21

23

31

32

33

where

]

X
II + A
Ez l1-1 ( 11 7q 11) ’
q
E: 5 X
I + A
(l_n (le 7q12) >
q
ST N3 7qu
A
. Zl‘nj 13 ’
q
}: o} Xq
I+ A
(1-1 ( 21 7q 21) ’
q
D
I 49
- (X -17 ( 22 7q 22) ’
d
N ¥y X
z Jqq ,
{1 -1 23 7
q
Sﬁ~J6 y X A s
ya 94494 331
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It should be observed that as d — 0, qu — 0 for p # q so that the
off-diagonal terms of the determinant in Eq. 26 vanish, which indicates
that the coupling between the modes disappears as expected from the

discussion in Section III. Equation 26 then becomes
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R_-VE_-DE_ -1 =0, (39)

which implies that

X
= = g
en s ) e, ) (ho=)

X
aq
= R = +
1 22 Ej (1 - ﬂ5 (sz 7Azz) (k0b)
and

L - R =qu, (40c)

in which Egs. 40a and 40b are those given by Montgomery and Tidman®. It
is of interest to note that as y -0, i.e., the plasma temperature
approaches zero, Egs. 40 are reduced to the following familiar expressions

in the cold-plasma magnetoionic theory:

Sﬂ Xy , w?q
ﬂ=1-;1—:§—=1-2m‘f‘5—y’ (i1e)
q i

q q
X ;ﬂ w2
n = l'i_g_l—Yqzl':_TP—LTww-wzq (41b)
q q

and

w® = }i w2, (41c)

where 1 is the square of the refractive index of the wave; i1.e., N =

(c®k®/w®). Equations 4la and 41b are simply the dispersion equations
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for the left-hand and right-hand circularly polarized waves respectively,
and Eq. blc is that of the longitudinal plasma oscillation. On the other
hand, in the case where 8 # O, but y =0, R , R, R and R are all

13° 23° 31 32
zero, which suggests that the plasma temperature undoubtedly has an effect
on the electrostatic coupling. The term "electrostatic coupling" is
introduced here to describe the phenomenon of coupling between the
longitudinal wave and the transverse wave 1n the presence of a transverse

electrostatic field. The temperature effect in the electrostatic coupling

for an electron gas is considered in detail in the following section.

V. A HOMOGENEQUS NEUTRAL ELECTRON GAS

The analysis of the dispersion relation is carried out in detail
here for a homogeneous neutral electron gas in which the thermal velocity
of the electrons is taken into account; however the ion motion is
neglected. Suppose that the applied electrostatic field is sufficiently

weak so that the condition

5 < 1 (42)

is satisfied. Then, using the fact that y2 << 1 is assumed, which is
condition (32), Eq. 26 can be expanded into the following form (see

Appendix B.4 for details):

XB XZ

X2 X _
= I R R I
(43)
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where ¢ = @o + 7®l 5
Y = YO + 7Yl s
I = HO + 7Hl s
A= Ao + 7Al B
in which
= 1 22
= = +
° ; (1 +5%Y=) ,
- 1 2 2,6
¢ = =— (1+ Y% -8%°) ,
ES
vo= o
- 1 2 2,6
¥ = — (1+7Y°+ 5% |,
1 £3
]"[ = -g
o &
T o= (1 - 287 + 572 + 2672 - 52Y5 - 5Y®) ,
1 §3
_ 2
AO =t
A o= (L + 3Y2 - 5Y8) |, (4d)
1 gs

with ¢ = (1 - Y®).
Since Eq. 43 is a quadratic in 7, it can be solved for 1 as
follows, provided that (X - ¥) # O:

n o= 1- 2X(0X - ¥) . ()

(X - A) £~ (X - A)2 - 4(eX - V(X - 1)

It should be noted that when 3 = O from Egs. LU, it is easily seen that

® =¥ and I = A so that Eq. 43 becomes
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X2 X _
(X—l)(@(l_n)z-n(l_n)+1>_o, (46)

and Eq. 45 accordingly becomes

B ) 20X
L I+ Hz-l@’ 1)

in which

¢ = ¥ = -1—<1+—7——(1+Y2)> ,
3 g2 .

I = A = 2(2+2-(1+7?3)) . (48)
€ < £2 )

On the other hand,in the case where & = 0, Egs. 40 yield

_ X 1 v/2 o
= (1 -7 <l ¥y 7 (1 + Y)%> ’ (k92)
- X 1 v/2
SR A <1-Y+(1_Y)s> (hov)
and
1 = X . (49¢)

It is not difficult to show that upon substituting ¢ and I given by
Eqs. 48 into Eq. 46, the left-hand side of Eq. 46 can be written as the
product of three factors which leads to Eqs. 49 as is expected.

Based on Eq. 43 or equivalently on Eq. 45, with 7 and & as
parameters, 1 vs. X and n vs. Y are shown in Figs. 1 and 2 respectively.
Y vs. X for the case of n = 0, which corresponds to the cutoff condition,

is shown in Fig. 3.
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FIG. 3 THE PLOT OF Y VS. X FOR & = 0, y = O AND n = O.
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It should be observed that the dispersion equations for the
uncoupled nodes are given in Egs. 49 which are, respectively, for the
left-hand circularly polarized wave, the right-hand circularly polarized
wave and ~he longitudinal plasma oscillation. The plot of 1 vs. X based
on Egs. 49, is shown in Figs. 4.

The plots of n__ vs. X and Nos VS- X are shown in Fig. 4a for
the case of Y < 1 and in Fig. 4b for the case of Y > 1 respectively,
where no— denotes the value of 1 obtained from Eg. 49a, and no+ denotes
that obtained from Eq. 49b. The intersection point between the plot of
Ny VS« X and the line X = 1 in the n-X plane represents the "coupling
point" between the left-hand circularly polarized wave and the plasma
oscillation provided that n > 0. Similarly the intersection point of the
plot of n_, vs. X with the line X = 1 represents the "coupling point"
between the right-hand circularly polarized wave and the longitudinal
plasma oscillation. The velocity of the electromagnetic wave at which
coupling between the transverse electromagnetic wave and the longitudinal
plasma oscillation takes place, i.e., the "coupling velocity", can be
determined from the coupling point. On the other hand, from Egs. 49 or
Figs. 4 it is not difficult to see that the coupling point depends upon
the parameter 7, which in turn depends on the plasma temperature T. For
example, for a given value of Y < 1, an increase in 7 causes no_ to decrease,
which in turn causes an increase in the coupling velocity.

For Y> 1 (e.g., see Fig. Ub) an increase of 7 causes n,_ to decrease
so that the coupling velocity increases, while it causes no+ to increase

so that tﬁe coupling velocity decreases. In view of the fact that
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y= (1/V8) = (2KT/mv§), where v_ is the phase velocity of the electro-

magnetic wave, Eqs. 49a and 49c give

2 - (1-—1)2 < N S (508)
1+y o- m
o]

and Eqs. 49b and 49c give

2 1 o KT 1
e = (l - ____>\, - (SOb)
1 - + m ?
Yo /0 ° a-y)°

denote the coupling phase velocity

where y = (wzﬁwp), and v__and v_,

of the left-hand and right-hand circularly polarized waves respectively.

It should be noted that an increase in T causes v__ to increase
for Yo > 0, and Yot to decrease for the case Yo > 1. Thus the plasma
temperature appears to have an interesting effect on the coupling velocity
of electromagnetic waves under the electrostatic coupling. The term
"electrostatic coupling” is introduced here to describe the phenomenon
of coupling between the longitudinal wave and the transverse wave in the
presence of a transverse static electric field.

On the other hand, since the cutoff of an electromagnetic wave
occurs when its propagation constant k becomes zero, the "cutoff condition"
for the transverse mode can be obtained by setting both n and 7 equal to
zero in the derived dispersion relation; Eq. 26, with the aid of Egs. 37,

38 and condition(4#2). This condition can be expressed in the following

form:

40 =Y§-(x-%> s (51)
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where x = (woﬁwp) is the normalized cutoff frequency, and y_ = (wzﬁgp)

is the normalized cyclotron frequency, with Wy being the cutoff frequency.
Once the values of Y and © are specified, Eq. 51 can be solved for x,
and thus o can be determined. However, the variation of @ with

respect to d can be easily observed with the aid of a graphical method
illustrated below.

Let Fl(x) be the left-hand side and Fg(x) be the right-hand side
of Eq. 51. If Fl vs. X and F2 vs. X are plotted in the same plane, as
illustrated in Fig. 5, then the intersection of the two plots provides
the real root of Eq. 51. Once Yo is given, the curve of Fz(x) is
determined, and if ® is also specified, then Fl(x) is also determined.
Thus the intersection point of two plots is readily determined. It should
be noted that when & = 0, the Fl-curve coincides with the x-axis, and if

its intersections with the Fz-curve are denoted by X, and X s they are

given by
vyt B vy + Vo2 4k |
x, = 5 and x_ = 5 . (52)
X

7 determines N the cutoff frequency of the left-hand circularly
polarized wave, and X, determines o the cutoff frequency of the right-
hand circularly polarized wave. It is easily seen from Fig. 5 that an |
increase of the parameter d leads to an increase of W p2 but to a

slight decrease of W

ra

VI, CONCLUDING REMARKS

In the present report the dispersion relation for a finite temperature

two~-component plasma subjected to crossed electrostatic and magnetostatic
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fields has been derived using the coupled Boltzmann-Vlasov-Maxwell
equations assuming a one-dimensional, small-signal model. The derived
dispersion relation is given in a form in which various characteristic
modes of the system can be readily identified and the coupling between
these characteristic modes can be studied. The investigation of the
dispersion relation in Section III clearly shows the possibility of
coupling the longitudinal mode to the transverse modes in the presence of
transverse applied electrostatic fields.

In order to make a detailed analysis of the derived dispersion
relation a knowledge of the time-independent part of the distribution
functions for electrons and ions is required. A Maxwellian distribution
is considered in detail for the present investigation in Section IV. As
an illustration, a detailed analysis of the dispersion relation is
carried out in Section V for a homogenecus, electrically neutral electron
gas in which the thermal velocity of the electron is taken into account
but the ion motion is neglected. In the interests of simplicity, the
conditions ® << 1 and 7® << 1 are imposed in deriving the dispersion
relation Eq. 43. The desired information with regard to the propagation
characteristics of the transverse electromagnetic wave is provided by
Eq. 43 or equivalently by Eq. L5, Upon setting n = O in Eq. 43, the
cutoff condition is obtained. The plots of n vs. X and n vs. Y, in general,
represent a family of curves in the 7n-X plane and in the n-Y plane as
shown in Figs. 1, 2 and 3. However, when & = 0, Egq. 45 is reduced to
Eq. 47 which represents a family of straight lines for the plot of 1 vs. X

in the n-X plane. It is shown that the presence of an applied transverse
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electrostatic field in the electron gas has two interesting effects upon
the propagation characteristic of transverse circularly polarized electro-
magnetic waves:

1. It causes the cutoff frequency to shift, e.g., an increase in
the parameter ® causes<nol to increase.

2. It causes the longitudinal plasma oscillation to be coupled to
the transverse electromagnetic wave, e.g., an increase in the electron
temperature T causes the coupling velocity of the circularly polarized
wave to shift (see Section V).

It must be pointed out that the present investigation merely
demonstrates the possibility of electrostatic coupling. In order to
gain a better understanding of the mechanism of electrostatic coupling
it is necessary to investigate in detail the following aspects: (1) energy
conversion between the modes, and (2) effectiveness of coupling of the
modes. It is intended to carry out this investigation and consider the
application of the theory to ionospheric phenomena in a future report.
However, 1t is of interest to note that if the type of coupling mechanism
under consideration can be shown to be sufficiently effective, then it
will provide a reasonable way of explaining phenomena such as cutoff,
amplification and Landau damping of whistler propagation in the

ionospheric plasma.



APPENDIX A. VERIFICATION THAT fo GIVEN BY EQ. 27

IS A SOLUTION OF EQ. Ta.

2e

2 2 2
- - + + - =
f = ne a[{<vx R Vy- VZ} o v (27)
o e]
and
o e (E +vxB)VrF
- = + . =
Ve dz m o T T E 5 V& o 0 (7a)
- - - - -
where Eo = Es + Ea’ with ES and Ea being the space-charge field and the

externally applied electrostatic field respectively. For a one-dimensional

- - —
analysis, Es = kES. Suppose that Ea is taken in the positive y-direction

%
and Bo is in the positive z-direction, 1.e.,

— — - —
B = kB and E = kR

a "’ e} o s s 7 (A°l)

where Ii j)and K are the unit vectors along the x-, y- and z-coordinate

axes. Since

—, - afO 2e o0
= - 2 ' i = —
VL ot |+ (2aufo) o, 5= —as; T
- - - = - .
(v x BO)-V%fO = (2aufo)[1e(v X BO)J = (2aufo)(vyBo) ,
- — — - =
EVf = (JE +KE):(-2xf v +20uf i) = -20f v.E_ - 2of vyE ,
o VO a s o} o oy a ¢} S
(A.2)

Egq. Ta becones

_38.
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of
o e
v - = (- - +
2 Se ( 2av £ B 2afovyEa 2afovyuBo)

= v '_g—a‘if (gg+E>1+-2g§-vf(E - uB)
z| m “o\oa s/ | m yoa o

since (3¢/dz) = - E_ and E_ = uB_.
s a o



APPENDIX B. DERIVATION OF VARIOUS EQUATIONS

B.1 Derivation of Egs. 29: (Determination of R_ )

Suppose that the time-independent distribution functions FO = fo
1

and f = ¢ are given as
o) 02

a 32 o [(vx-u)2 + v§ + vi]
fOq = nq <,Ega> e ¢ , forq = 1, 2 ,
(B.1)
where @ = (m /2KT ) in whichm =M, T =T, m =mand T = T with
! q a 1 1 1 2 2 e

subscripts 1 and 2 denoting the quantities associated with the lon and

the electron respectively. nq is the number density of the particle.

Let
v, = vlcos@ and vy = vls1n® ; (B.2)
Then
A cos®
f = wVle B.3)
oq q'q P (B.3)
where

=Lo-
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[0 -au2
n "‘q"alze e
g\ = ’

- a (v + v3)
qQ' + Z
e ’

(Qaquvl) , forgq = 1, 2 ,

(-2 )= =

2aq(vL - ucosff)foq ,

quinq)foq = - (anuvL)Slnquoq ,

2a v _f ,
q z oq

’ kvz F jo
2ea v £ + 2a uf <l-——-—e B
qQ + oq a oq w

l&a(?vz(v‘L - ucoscp)foq . (B.k4)
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B.2 Evaluation of S from Egs. 25

-j2¢
E: JF <Kq, + Kq +

g=1l,2 O

-Jo
d
Ksl e ‘> do ,

2n .
Jjeoo Jo '
S = JF <k e K_+K_e > do , :
2p 1p 2p a3p g
g=1,2 O :
4
21 .
}: Je -Jo >
ssr - \/m (Klr e TK,e * K3p de (3.5)
g=1,2 O
for £t =1, 2, 3; p=1, 2, 5; and.r = 1, 2, 3, where
g D afo
Jn M_(f_a) - v <5V )
k@ - S494-"0 R SN 3 = L z
11 (o + wij 7 e 7 g b(b + m:o) ’
of
S 0q
n M (f_) ‘ + v \dv
q q +* 0oq q L Z
Koo = 0 K, ®-w ) ° B(b - ®_) ’
zq 2 zq
ad 2
an, *M CH) ang ToM(5,)
K2 = i K i
= P _ J
31 b(b + (qu) 32 b(b U)ZE)
afo foq
ing ~S halal g v \3v |
S i , (B.6)
83 VJ. b(b2 - w® )
zq
in which n_=e/m , ® = eB /m_, and a¥ = (l/2)'(aq jady,
qQ Q’ Tzq oz’ "q’ & y
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Summation of é in Egs B.5> is taken over both specles of the constant.

Substituting Egs. A.4 into Egs. A.6 gives

Jo A_cos®

kK3 = (c?+0%e )ed , k¥ = o ,
11 1 1 21
J® AN_coso
kK2 = (¢ +p%e )e ¢ , k3 = o |
31 2 2 12
-j® A _cosQ -Jo A _cosgp
kK¢ = (c®+p%e e , kK3 = (% +p¥e e d s
2e 3 3 32 4 4
aq q q Jo q -Jo KqCOS@
K = (G*+H e +H'e )e s
13 1 1 1
Jo -J® A _coso
k2 = 6% +8%e +m'e Ye ¢ ,
23 2 2 2
Jo -J¢ A _cosQ
k¢ = cr+al+1%e +H%e Ye ¢ s (B.7)
33 o 3 3 3
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where
q
2 a+c
n o ‘0 D My v
quz_‘mgLy pd = o Saa o 2% 8
= , = = T ro )
1 b + o N (o + quS o b(b + ©,q
23
on —D
nq v g jn C Jn.D
= trrey 0 % T TGray 0 % T Goay
2 ®2q ° T Teq S zq
54 g%
on — C oy — D
e v g T v "q 0 a%
Cq- = 1 Dq = + s G’q = s
= - P = v® -0 ) +
4 b(b aquS 4 b(b ©,q 1 b(b + ®
q q a.
1 a“‘H a G a-H
Hq _ . lq _ , Gq = T‘q 4+ a Hq = T] + ,
1 b(b + wzqi 2 b(b - wzq} 2 blb - wzq
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- jeanwv vy
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in which ¢ = - 20V W D = 2 0 uw 1 - —
q AR q qwq < w> ’
¢ = v vw¥, , H = -205 uw¥
q qz1q4 q a2z q4q

Substituting Egs. A.7 into Egs. A.5 yields
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2n

Jo Jjeo i3Q Acoso
f [02e +(C1+D2)e +De Je do |,

1
0
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(Egs. B.9 cont.)

21 . .
ot JO -J®
8 = Jf [(H +H +G_ +G )+ (G +H)e + (G +H)e
33 1 2 o 3 1 3 2 3
O .

j2o -j2p Acos®
+He + Hze le dop . (B.9)
1

In the above the summation, sigma is introduced to indicate the
fact that the summation is over both species (electrons and ions). The
subscript q associated with the coefficients C, D, G and H is omitted
here for convenience; however their dependence on the type of particles
is understood.

Integration with respect to @ can be carried out with the aid of

the following relation’:

Acos® = Jno
e = Z In(x)e s (B.10)

where In(x) is the nth order modified Bessel function of the first kind.

Furthermore using the following identities” :
I_n()‘-) = In(k) ’

2n
Tzn(x) = In_l(x) - In+1()‘) , (B.11)

the functions Spq(vz,v ), a,p = 1, 2, 3, can be expressed as
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) (e +D)I () + (c, +D)T M1

11
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M},

i

13 EKE {[(Gl ¥ Gz * 2H3) ) %Ha] IO(X)

+ [(2}{1 +H_+G+C) -% (G, +H) + <l + %) HZJ Il(")} ’

21 2’(2 {<(Cl * De) _%D1> IO(X) ¥ [Cz -% (Cl ¥ De) +<l+—i; 1]

oo ai [(c3 + D4)Io(x) + (C4 + Da)Il(k)] ’

~23 2::2 {’:(Gl + G2 + QHS) - % Hl] Io(x)

+ ’:(Hl +BH_+ G+ G) --i— (Gl *EH)+ <l + i—2> Hl] Il(K)} ’

o = 212 [(cz +D I\ + <(CJL *+D) - % D1> Il(k):! ’
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(Eqs. B.12 cont.)

wn
I

s gﬁz [(04 + DS)IO(%.) + <(c3 + D4) - %DQ Il(x)] ,

[€2]
I

2::?[((; +G +2H + 2H)I (N)
33 L o 3 1 2" 0

+ <(G1 +G + 2H3) - % (Hl + H2)> Il(x):l . (B.12)

The determination of qu involves the evaluation of the following

integration:
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which in turn involves the integration:

[o 0]

—o:vi
f I (\Mvie Tav
D T r

0

-
1}

bq

£ (0 = f nge-avzdvz . (B.14)

To facilitate the calculation,coefficients C, D, G and H can be

written in the following more convenient form;
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Jd (ZOVZYZ)YI‘ )

(B.15)
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where
2
. -qv® _ —ovy,
Yy = e 'z , Y = e s
z r
Z,(v ) = z (v) = ¢
g (b £ ®, > Tot'z b
with
b = (o - kv o = 20 n.Ww
( ) AR
and the following facts are used:
o F1
b(b - w o (2, - Zo> ’
z z
g - L@ vz, -2) ,
b(bz—wi) 20?

TN
8|+9
N
it
[
ole
TN
ellm
N
i
]

[
ol e
o
il

<%> . (B.16)

since in the present study it is considered that EOX = 0 and Eoy =E .
: a

By substituting Eqs. B.15 into Egs. B.12 and then carrying out the

integration (A.13), T g Can be obtained as

= d - 2 -
T JEm:Ej < ulego(Zo) + (Yu®r, . Too ¥ 2u112)§O(Z+)

<
uee

o 1(Z,,)> ,  (B.178)

iz
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= ] - - 2,2 J(Yuw 2
I‘12 = Jen Z {uT12§0(20> [(Yu * Ot> TOl * 1-o:«x <oz * o2 Tlo
u
1 x [ %% L 3
- _— Z + - -——-——l— - - _—l_ } .
<2u + au) le:l £ (2) a)< < ur = > e z)p »  (8.1Tv)

T = Jjén EE:-{ {- (1 + aluz)uT - &t + <;2 + ;-> T
13 L o1 03 04 10

+ hoy®r £ () + <Otu3T + oPut
12 i © 01 o3

2
2 u 1 2
* {(l T o )uTol * auTos B (2 + Ol> T1o - (1 + 2007) T1:2:' él(z')} ’

(B.17c)
_ ] 2_2), . 2 Yu)
r o= jen Z { u 12§0(Z0) + [(Yu - > TOl Tos + <a2u -5 /Tlo
L k(2 2
¥ <2u ¥ Qu > 112 :, E'O(Z'*‘) * o (a To1 ~ u1-12 i} a2 Tlo> : (Z+)} ’
(B.174)
- s 2
r,, = jen }; <;uT12§o(Zo) - (Yu Tt Tom ~ 2u712)§O(Z_)

-(%urlzgl(z_)> , (B.17e)
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s 2 - L 2 1©
. = JEKE{ {j[- (eam® + 1)u'cOl 2out o+ (a + u > T, + hau 112} él(Zo)

2
2 + __.P'__+..]:. - 2+
+ {(am + Lut  + omT <2 q) To - (2™ + D 1E (2)

2

u o
-5 T, - 2m T12> El(Z_) }' , (B.17f)

03

: ' 1
Jjon E {— uTOlEl(ZO) + [iEu’rOl + <Yu2 - 5> T o~ le:’ &l(Z_I_)

+ <§u37 + ouT
o1

H
1l

ot

w

gl=

. .
<u'rol -3 "o §2(Z+)} s (B.17g)

a1
]

. 2y + | 241
. 32"2 JL_uTOlgl(zo) + LguTOl - { Yu< + %) Yo " le §l(Z_)

. i—(mm - T%) EZ(Z_)} ,  (B.1Th)

(]
1

JETIE{ <(1L0m2 - 1)chl - (2om® + l)u'rlo - 20m12> gz(zo)

33

+

_ 2 2, 1
[ cau®t |+ <&u 2) Vo tout 52(Z+>

+ [_ zauzrol + (au2 + %> at, * ozu"rlg:} gz(z_)} . (B.171)

It should be noted that §q(Z+) can be written as

£ (z

q i> = ‘jyqu(Ui) , a = 0,1, 2 ,

and

£, () = G (u,) (B.18)
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where

+
— o =9
" » Ugp % k

+4
Gq(X) = J‘f v dvZ , (B.19)

in which X may be complex in general. The integral (B.19) has been

discussed in detail by Stix®. It is not difficult to show that

¢ () = (-j_o-l + XGO(X)>

G (X)) = <41X—+ X2G (x)> . (B.20)
2 J‘a (o]
Furthermore, by defining the parameters Y and UO as

Y = <c—:-z—> and y_ = (%) , (B.21)

one has

KU KU
<1'T> = Y and <1'T> = -Y . (B.22)

Using Eqs. B.18, B.20 and B.22, L2 can be expressed in terms of GOCJO)

and Goﬂjt) as

= - X - + | vuse
r. ony j{:‘{ uT12 urlgGOOJO) {Yu Tor = Tos

+ (1 - Y)u'rlz] GO(U+)} , (B.23a)
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Z { Jk 2T01 2T10 2
= - On - - ut -ut G (U) +|-{1+—

(045}

Yurt
Yult -7 +<1+-—2—> 1O+<]_+Y+———l>u'r :,G(U)} ,
o1 03 2 0/ 2 12 o' -

aua 045}

(B.23b)

T

- 2ny -——J—T + -(]_+2au2)u"r —20:u'r_+(l+OtL1‘2)—-l-Cl
o/ 1 a 01 o5

12 o

+

1 o3

2
2 + 3 + - _l_l__ - 2 .
hom T12> UOGO(UO) <o:u T out 5 T,, - 2w T U+GO(U+)

+

T 2 b
2 10 au _ -3 3
[(1 + ou )uTOl taur - (LY > (1 + 20u )leJ U_GO(U_)J s

(B.23c)

2Tlo

i 27(702 {_j%;<§ for P uT12> ) uleGo(Uo) * [<l * —2—>

au

Yut o 1 '
Yudr -1 - —22 (1 + =) +({1-Y+—=)ur G(v)} s
o1 o3 o . o 12| ot

(B.234)

k U Y 2 ; 1+Y
w 12 12 O( O) < ol (e15] ( )

]
b

.uT12> G (U_)} , (B.23e)

[¢]
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. T
= - 2n . +{ - + 2 - _1c 2
T o 702 { = 712 < (1 + 2om )u'rOl eroa = (1 + au®)
_ . o
+ hou®Pt >UG(U)+[(1+Q’u2)uT + omt - 1°<1+°‘u>
12/ 0 0' 0 o1 03 a 2
- (1L + 20v®) 7 UG (U,) +({au®1 . + aur --‘ﬁr - 2au®T
12 t o+ o1 03 2 10 12
. U_GO(U_)} R (B.23f)
E . ( YTlo
= - - - —— 2 -
. eny o [—J—J_& \ Yu'rol L 3 (1 + au )> uTo:LUOGO(UO)
Y'rlo
A — 2 -
+ <(1 - Y)uTOl +— (1 + ou®) T12> U+GO(U+):! , (B.23g)
Yt
= - 3 - .10 2y _
raz 2“702 J‘& Yu'r01 112 o (l +au ) ULTo:.UoGo(Uo)
Y'rlo
- — 2 7
+ ((1 + Y)uTOl -t 3 (1 +au )> U_GO(U_) , (B.23h)
. a u‘rlo
— _ - ,J . - - _ 2
Tas EJWOZ { o To1Uo = Toy UaCo (U, <2au T T3 (1 2%
- 2 + - - ~hr s
0‘“12> [v3e (v,) + v%6_(u) 2U§GO(UO) ]} . (B.2%1)
By using the fact that
I(bt) = J (4bt) and I (bt) = =J (§bt) ,
o o 1 J 2
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the integrals 7T and T can be written as
oq 1q

~t2
Tog = f 7 (pt)e t%9¢ , q = 1, 3 ,
0
1 . -ot?
q =3 f Jl(jbt)e tdat , q = 1, 2 , (B.24)
0

where b = (20m) and t = V.. These integrals can be evaluated by the

following formula given by Watson”:

o0

-1
Jr Jv(at)exp(- p2t3)t  dt

0
v
1 1 1l a
F(E“E“Xe p>
= F 1

<;-v + l-u v+1,- Ef—> (B.25)
2 J 2 °
2p“T(v + 1) 1 1\2 2 hpZ

where the confluent hypergeometric function F (a:p:Z) is defined by
11

i (@ n
F (a:p:2 = Z
1 1( p:2) . n!(pjn
n=o0
with
(oz)o 8 1 , (oz)n = afa+ L)(a+2)...(a+n-1) ,
= -l— 2 = = u 2 =
Tor = 23 exp(law®) = 1 , L = exp(au®) ut |,
u
= 3 1:2:0u®) =
Tio 5 1F1( au®) oculer
- 2l T (21am?) = 2 (B.26)
o3 a2 11 T (04 ’
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where
[20]
= - R = -5 1 1 n
Dl(a) = e 1F1(1.2.6) = e Enl 7%
n=o
(e
- +
D_(8) = F (2:1:8) = SZ ntl)g (B.27)
n=o0
with & = (aw®) and T = T, - It should be noted that D, can also
be expressed as
D = 1+58 (B.28)
2

which can be verified as follows:

0 OOL
o} 1 .n _ l .n_ 1 .n+1
De (1+8)z—n!6 = Z <n!5 +=7 0 >

i

n=o n=o
0 .
1 1 n+i1
B l+Z<_ﬁ'_ Zn+151>5

n=

[}

o0
n+ 2 (L + 12 !
l*Z Zn+15'ES z w0

n=o0 1=0
which is nothing but Eqgs.B.27. In view of the fact that qu can be

expressed in terms of rpq as’
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Ol
R = r s p = l) 2 2 q- = l; 2} 3
Pq 2(0? - cZk3) pa
- de p =3 ,q=1,253 (B.29)
(lﬁo pq J b b4 J b .

upon substituting Egs. B.26 into Egs. B.23, qu can be obtained from

Egs.B.29 as follows:

29}
|
+

3
11 Z -1 [lo llGo(Uo) * lgGo(U+)} ’

7o)
|
+

12 - E (lgi T\) [13 thO(UO) * szO(U-)] ?

=)
1

g |
18 }: Ty U+ 28U + 16 () + b (V)]

o)
i
+

16 (U) - ISGO(U+)] ,

Tt
21 l—T] 3

>u]
1

B U CX U LACATR

_ S
Ros = z - He

+

£7GO(UO) + méGo(U;) + méGO(U_)] s

R31 - Z 2S[no * ano(Uo) * nzGO(U"‘)] ’
ng = Z 28[n3 + ano(Uo) + DSGO(U_)] s
R33 = z es[ne + n7Go(UO) + ngGO(U+) + nsGO(U_)] P) (B.BO)
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where
zosj@),zlss,zzsl,
2, = J<-2-L‘—$——§> , 1= -Y(u+p)
= NG L = Jov(2 +v) , L EJEV(1+Y¢<%-1> ,

™o
i

NBvil - Y) <%+ u> s

B
i

m_ EJEV(1+Y)<%+H> Nav(1 - v) %- > ,

n o= gNB(1+ ) n = Nav n_ = Jv(1 + Y)w

O

n = NGB - vyY) n_ = NVl - vy
= jv n = V31 - 2an
n_ v o, n ( )
n = VE(L + Y)3&\ n = v3(1 - Y)3\ (B.31)
in which
W \2 2, 2
s;gvx,vEJaU,XE<_e>,nE<_c__k_>,
o} o 2
(43}
58 = aw® , B = 8&D ,u=(Dl—l),v'='[l-D(l+8)],
1 1
_ 1
A = 5(1-§D(1+2a)> (B.32)
1

where D 1s given in Egs.B.27.
1
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B.3 Derivation of Egs. 37

From Eqs. 34
- =d L
GO(UO) - Vq <l + 2 7q> b
(u,) -3 (18— > (B.53)
G (U = 1+ B.33
o' % Vqlqu\ 2 (1+7)2 ’

where 7q = (l/Vi), and from Egs. 36 under condition & << 1

2

o)
= a _ -4 = -4
2”.q+8 = < > < - > 2“ +B - 2 J
By H \ °q
(Ren) = -5, oy = (-3 - G

Using the above approximation, Egs. 29 become

_ 1N 1 7q 1
Rll B G A %4 [(1+Yq T3 <6 * 3>J ’ (B.558)

(1 + Yq)

d
n

(1

12 ?T%TYZ quq{[ (1'Y ]+gﬂ<l+%&—€g~}—)§>}
q

(B.35b)

>y
1]

15 Tl_-'ﬁTz lJ_quvqu {<2 ) Zﬂ) +<_Z_q. i >-(—1—+—1;;)_;}

(B.35¢)
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=T1—%_?1726qxq[< m—‘Yqu+%9~<1-_9. (Ti:);]

(B.354)

= YT%_nYZ X, {_(T%Tqu;l(Sq +—(Tl?—)g>] , (B.35e)
q

why) #eeed[ D (R )]
q

(B.35f)
(1 -3 )Y |
= z J_qxqvqu <1 - s )2> , (B.35g)
5. (1 -8)Y
= 9
= zJ_quVq7q< 5 'E';—_f;g—z-q) , (B.35h)

- z X, [1 + 8 (1 --gaq><l %Yz - >J : (B.351)
d

Derivation of Eq. 43

For a neutral homogeneous electron gas in which ion motion is

negligible, Eq. 26 can be expanded into the following form:
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x°

X2 ,
— (0 70+ 7% ) - ——— (¥ + ¥y + 2
(1 - n)® (0 * 78, ¥ 772 ( o W7 Y;>

(1 -n)®

X2 X
Ty W ) ey o T A K- = o,

(B.36)
where
<I>o = Lo\yo ?
¢ = Y o+ -
1 LO 1 6(A31Do Aszco) ’
¢ = LY +38(A D -A C) ,
2 0 2 3. 1 32 1
Ho = Lvo ’
I = LA -8 A -A A ) |,
1 01 13 31 23 32
with
¥ = I I -3%M I ,
o 11 22 12 21
¥ = [(I A +T A )-8%(T A +1I A )] ,
1 22 11 11 22 12 21 21 12
¥ = (A A -33A A ) ,
2 11 22 12 21
A = I + II
o ( 11 22) ?
A= (a+A ),
1 11 22
c = (I A -38I A ) |,
o 11 23 21 13
cC = (A A -3rA A ) ,
1 11 23 21 13
D = (81 A -1 A ) ,
o 12 23 22 13
D = (BA A -A A ) ,
1 12 23 22 13
L, = (1+ 5Aq) ,
A = [1- (3/2)8]¥3/(1 - Y®) . (B.37)
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For the case in which & << 1, Egs, 38 become

e
[
/—\

'_.l
]
o
%
—
H
+ |
]

g
N
NG
o™
\V]

|
N\
’—J
+
oo
<
~~
'—l
] el
<

S’

N
.

L = 1 . (B.38)

Substituting Egs. B.38 into Egqs. B.37 yields:
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1 2~,2
= = (1 + 8% .
o, = (145773
o = - (1+7¥% -8yt -8
1 gs .
0] = _.l_(l_gY'2+Y4_58Y6+63Y8) ,
2 )'LES ‘
2
HO = E— s
I = };-(1 - 28Y + 3Y2 + 28Y3 + 285Y* - 8%Y° - BY®)
1 éS
- 41 21,2
YO - g(l+6Y) ’
v o= (14 Y2+ eyt 8%
1 gB
¥ = ._l__(l+66Y2_63Y4)
2 3 2’
Le
2 -
Ay = F
A= ;;-(1 + 3Y2 + 35Y% - 8Y®) . (B.39)
1
3

In view of the fact that in the present discussion 72 << 1 is assumed

[i.e., condition (32)], it can be easily shown that
+ 72 ~ a Y o+ ¥ = ¥ A
o+ @2 o nd ¥ +7 . 5 (B.40)

and using the fact that (267¥%/t®) << (1/t), since y® << 1 and & << 1, the

terms involving 8Y% in the expressions ¢ , ¥ , T and A can be neglected
it 1 1 1

so that Egs. B.39 become Egs., 4k,
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