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A FURTHER STUDY OF ELASTIC FOUNDATION MODELSl)

by

Arnold D, Kerr* and Warren J., Rhines#**

SUMMARY

In the present paper the study of foundation models initiated in Ref,
{17 is continued. At first it is shown that the response expression of
the Pasternak model can be derived from the continuum point of view when
the assumption is made that the in-plane stresses and the in-plane dis-
placements are zero throughout the foundation layer, It is also shown
that, by expanding formally the exact pressure-deflection relationship
for the upper surface of an elastic layer which rests on a rigid base,
the response expressions of a number of models are obtained, the type
depending upon the number of terms retained in the expansion.

INTRODUCTION AND STATEMENT OF PROBLEM

In a recent paper A. D. Kerr (1] discussed a number of foundation
models which have been published in the literature, This study showed
that, in order to construct foundation models, one may proceed either by
introducing simplifying assumptions about some of the expected displacements
and/or stresses in the equations of a continuum {2-47] or by starting with
the Winkler foundation and, in order to bring it closer to reality, as-

suming some kind of interactions between the spring elements [5-8].

1) Part of the material contained in the present paper is taken from the
Ph.D. Dissertation submitted by one of the authors (W.J.R.) to New York
University.

%) Professor, Department of Aeronautics and Astronautics, New York University,
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*%) Member of Technical Staff, Bell Telephone Laboratories, Inc.
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A third approach to construct response expressions is the formal
mathematical procedure.. An example is the approach used by J. Ratzersdorfer
who expanded formally Wieghardt's integral relation for load and deflections
and retained terms of low order [9, 10].. Another expansion technique was
used by Favre {11, 12] who obfained expressions of the Pasternak type.

The approach by W. J. van der Eb and A, D. de Pater [13] which is closely
related to some of the derivations by K. Wieghardt [14] should also be
mentioned.

In the present paper the study of foundation models is continued. At
first it is shown that the response expression of the Pasternak model can
be derived from the continuum point of view, thus establishing a '"continuum"
model for the Pasternak foundation. Then it is shown that by expanding
formally the exact pressure-deflection relationship for the upper surface
of an elastic layer which rests on a rigid base, the response expressions
of a number of models discussed in {[1] are obtained, the type depending

upon the number of terms retained in the expansion.



A "CONTINUUM' MODEL FOR THE PASTERNAK FOUNDATION
We consider a weightless elastic layer of thickness H which rests omn
a rigid base and is subjected to loads on its free surface (z = H) as shown
in Fig., 1.
E. Reissner [4] by assuming that throughout the layer the in-plane
stresses are zero, i.e.,
cx=oy=’rxy=0 (1)
as well as that at the upper and lower surface the in-plane displacements
are zero, i.e,,
u=v=0atz=0and z =H )

obtained the following response equation at the surface z = H

G E HG
(B (B9
where
W= ‘W(X,}’,H)
P =-0,(xy,H) ' (4)

2
= +
VEIRE T o7
and E and G are parameters of the foundation material,
Using the same notation, the response expression of the Pasternak
foundation is
=k W- g VW (5)
P p gP
where kp and gp are foundation parameters,
Derivations of Filonenko-Borodich in connection with his membrane

model [5] suggest that the assumption that throughout the layer

u=v=_~0 (6)



will yield the response expression of the Pasternak foundation.

To show this we substitute the assumptions listed under (6) into

the equilibrium equations (Ref. [157 p. 229) the stress-strain equations

(Ref. [15] p. 7 and p. 9), and the strain-displacement relations (Ref. [15]

p. 6) and obtain

Xz _
az "0 (73.)
Tye
52 =0 (7b)
asz asz acz
=0
3x T dy + oz (7¢)
o)
=.- Y . = . Y . -2
“x E°z° ¢y E Oz ° €z E (8a)
1 1
ny 05 Yez G xz ° sz G Tyz (8b)
- ow
€. 0 ; ey =0 ; €, N2 (9a)
=0 - - ow
ny =05 Yz ~ ox ° sz Jdy (9b)
The first two equations in (8a) and (9a) indicate that VvV has to be
assumed equal to zero.
From (7a) and (7b) it follows that, as in the Reissner foundation,
the shear stresses are independent of z, i.e.,
Txz = sz(x,y) (10)
Tyz = Tyz (x,y) (11)
an unrealistic result particularly for thick foundation layers, However,

since foundation models are introduced to study the response of the foundation
surface to applied loads and not to study the stresses and displacements

within the foundation material, this deficiency, as well as another which
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will be pointed out later, may in general be of no serious consequence.

Integrating (7c) with respect to z, noting (11), we obtain

awxz T .
oz = - z( Sx + —gi— + f(x,y) (12)

From the boundary condition

o, (x,y,H) = -~ p(x,y) (13)
it follows that
asz oT ,
f(x,y) = H( Sx +—y—ay - p(x,y) (14)
and thus
asz aT z
o, = - p(x,y) + (H-z) Sx +_Lay (15)

From the third equation in (8a) and (9a) it follows that
(16)

Substituting (15) into (16), and then integrating the resulting equation

with respect to z, we obtain

Ew = - zp(x,y) + z(Hfg)(igiz + é%%%)+ g(x,y) 17)
From the boundary condition
w(x,y,0) 0 (18)
it follows that
g(x,y) =0 (19)

Noting the second and third equatioms in (8b) and (9b), Eq. (17)
assumes the form
Ew(x,y,2) = - zp(x,y) + Gz (8-3) w (20)

At z = H Eo. (20) becomes, setting w(x,y,H) = - W(x,y,),

p =(%>w -(G—Iz{)vew (1)



This expression is identical to the response eguation of the Pasternak

foundation given in (5) if we set

- E
kp e
_ g 22)
gp 2
It should be noted that boundary condition (18) implies that . at z = 0
oW _ ow _ . . .
3% - 0 and S; = 0, which, in view of Eqs. (7a), (7b), (8b) and (9b) leads

to a contradiction,

DERIVATION OF THE RESPONSE OF VARIOUS FOUNDATION
MODELS FROM A FORMAL EXPANSION OF AN EXACT RESPONSE
EXPRESSION FOR AN ELASTIC LAYER RESTING ON A RIGID BASE

The mechanical foundation models which were introduced in [2-8] were
all arrived gt by making various, sometimes arbitrary, simplifying assumptions
concerning the mechanical behavior of the supporting foundation, In this
section an attempt is made to provide a systematic basis for the generation
of foundation models from an analytical point of view,

For this purpose, let us consider a foundation layer of depth H
subjected to a normal pressure at the top surface which rests on a rigid
frictionless base as a plane strain problem (Fig, 2). The derivation of
the relationship between the contact pressure and vertical deflection at
the upper surface is similar to the one given by Bosson [16]for the case
of generalized plane stress, and hence only the major steps will be repeated
here.

From plane elasticity it is known that when a function % (x,y)

satisfies the biharmonic equation

#3 =0 (23)



and the proper boundary conditions then the stresses in the body may be

determined from

=§E-§" lo} =§?—§-- T =_az_§
O% ~ 322 ° z ¥ ° Xz 9xdz

(24)

Further if we define a displacement function, V¥ (xX,y), which satisfies

2
vy = 0 and %;%; = 923

then it can be verified that the displacements are given by

_ ay _ 9%
Eu = (1-V® )az (1+\))BX
- v _ ek}
Ew = (1-v2) 3% (1+\))az

Following Bosson, who employed the procedure devised by W, M,

(17], we assume the stress function for the foundation layer in the
;0
8 (x,2) =zxn(x>;
n=0

Substituting (28) into (23) we obtain, after some reductions, the

symbolic form

$(x,2) = [cos(zD) + %zDsin(zD)]Xo + [-Z%Sin(zD) - %zcos@D)]Xl +

Z . \:singzD) _z ]
+ ——2D31n(zD)X2 + % ® F cos (zD) X3
where

The corresponding displacement function, {, according to Bosson is

p(x,2) = sin(zD)XO - I—l)cos (zD)Xl + %é'Sin(zD)X2 - ;TCOS (zD)X3

After satisfying the boundary conditions at z = -H

(25)

(26)

(27)

Shepherd

form

(28)

(29)

(30)

(31)



o

sz(x,-H) =0

(32)
v(x,-H) = 0
and one boundary condition at the interface z = 0
sz(x,O) =0 33)
we obtain, denoting
o, (x,0) = -p(x)
(34)
w(x,0) = -W()
the following relationship between the pressure and deflection at the
interface z = 0
{2sin?(HD)}p - .E-—{[lsin(HD)cos(HD) + H]DP}W (35)
J IV LLD J

Bosson, points out that by expanding the operators in his equation,
which is equivalent to (35) in ascending powers of (BD), assuming H to
be small, and then retaining only the leading terms in the expansions,
one obtains the Winkler response. This argument and some of the relevant
derivations are also reproduced in Ref. [18].
At this point it is of interest to investigate what response equations
are obtained from (35) when higher order terms are retained in the expansions,
To study this problem we expand the operators in (35) as indicated

above, noting that

6 8
- S - R ot n g
sin®Q, Q 3 + 45 315 + ...
(36)
5 7
. s S o . <
sincosy 04 3 + 15 315 + ...

and obtain, after dividing the resulting equation by 2HE/ (1-\?) and

setting E/(1-V®) = E’,



5 6 7 8
H d&° B d*p , 20 d 2 H d
e - - + . =
E’ d?c; 3E7 di& + 4L5E dx 315E’ dx§ o
S of d6w_ 21 d8w+ (37)
T dx T 3 dx* T 15 dxP T 315 dx8 © ¢

It can be seen that by retaining only the leading term on each side of

Eq. (35), it reduces to

&£ E &£w
@& T o (38)

Integration of (38) yields p = (E'/H) Wrax+b. Since for W= 0 it is
expected that p= 0, it follows that a = b = 0. Thus Eq. (38) is of éhe
same form as the response of the Winkler foundation
p = kW (39)
which consists of a layer of closely spaced independent linear springs as
shown in Fig, 3.
Retaining terms whose coefficients contain powers of H up to and

including P yields

2 ’ 1oy g4
Rrd-BH “0)
which, by a similar argument as above, reduces to the same form as the
response of the Pasternak foundation
pekW- g ;%Y! 41)
which consists of a spring layer with shear interactions as shown in
Fig. 4, or expression (21) derived in the present paper.
Retaining terms up to and including ¥ yields
%E__id_*g=_}'«idzw_E'Hﬂ %2)
d 3 d* B &f ~ 3 dit

which is of the same form as the response of the foundation model discussed

recently in [19]

k g & _ _ Fw
a + C)p - e A kW B2 43)



which consists of an upper and lower spring layer interconnected by a
shear layer as shown in Fig. 5, or expression (3) of the Reissner foundation
model.

Retaining terms up to and including 1 yields

6
& i 4t Ef Fw_ EHW  E'W® dw
F 3 R TE A 3 aAE T Is o (44)

which is of the same form as the response of the foundation model shown in

Fig. 6.
8. 42 8 4
L £p _ k Ew L.d*W
@ +5p - E}B‘kw'gu“*c*gu)d \C;dx 5)
Retaining terms up to and including HO yields
Ep H dp 21 & _E &Ww_EH&V_ E'H Py %6)
d?{s 3 dx* 45 dx® H dF © 3 dxt 15 dxd

which is of the same form as the response of the mechanical model shown in

Fig. 7
4D d"‘g &Ew aw
a+ )p - c dx gd;? + ds3 (47)

where D is the flexural rigidity of the bending layer.
It may be of interest to point out that the model shown in Fig. 8

yields the response expression

k

1 4+ =

a L k +.E) _ EL + &, ¥ (. c)gu &£ + .8y d*g
c s P c s ds® cs dx

d? g gu d4

=kw-[g +(1+) (48)

c  d
which, apart from the constant coefficients is identical to (47). Thus,

the model which corresponds to a higher order response expression is not

unique.
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It is of interest to find out what models will correspond to even
higher order approximations and in particular, assuming that the expansions
in Eq. (35) converge, to determine what mechanical model will yield a re-
sponse expression like the continuous elastic layer. 1In Fig. 9 foundation
models which consist of spring, shear, and bending layers, and which cor-
respond to retained terms up to and including H10 are tabulated, and they
indicate an answer to this question. The non-uniqueness of the presentation
of higher order models should be noted.

REMARKS AND CONCLUSIONS

At this point it is of interest to note that the foundation model
suggested by Hetényi [7] consists of an upper and lower spring layer inter-
connected by a bending layer (like the model in Fig. 7 but without the

shear layer) and its response equation is

k D ¢ dtw
L+ p+_ & =kW+D7 (49)

Comparing (49) with (47) it appears that, from the point of view of
the formal expansion discussed above, the Hetényi model retains terms of
higher order than those it omits,

The derivations of the response expression of the Pasternak model by
generalizing the Winkler model, or by retaining terms in the expansion for
a continuous layer as performed in the present paper, show that the physi-
cal significance of the second term is,at least,the effect of shear inter-
actions, Therefore, the association of this term with only an in-plane
force field, which is sometimes encountered in the literature, may be mis-
leading from the point of view of the real mechanical behavior of the

foundation,

11



The method of formal expansion shows that the first order approximation
represents the compressibility of the foundation layer in the Winkler sense.
The next order term represents the effect of shear interactions in the
Pasternak sense, etc. Although the procedure is formal in that the
convergence of the final series has not been proven, the agreement be-
tween the obtained response expressions and those of .a npumber of mechanical
models is noteworthy. It appears that the models and their order of
presentation as .shown in Fig. 9 could be used, if necessary, as a
guide for the construction of foundation models of higher order.
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