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ON THE USE OF A PRIORI STATISTICS IN PROBLEMS OF PLASMA TURBULENCE

Ronald C, Davidson

Department of Physics, University of California, Berkeley, California

ABSTRACT

The usual procedure in problems of uniform plasma turbulence is to
perform an a posteriori statistical averaging (the random phase approximation)
on perturbation solutions to the Vlasov Equation. A more direct formulation
in which ensemble averaging is done a priori is advocated in this article.
Using the Vliasov equation as the dynamical equation for an individual systenm,
equations are constructed for the time evolution of correlations in a spatially
homogeneous ensemble of such plasmas. This hierarchy, which is identical to
the BBGKY hierarchy without the effects of single particle encounters, auto-

matically embodies the random phase approximation. Upon ordering the system

2

of equations in the weak turbulence parameter Ez/nmvav , the questions of .

closure and time validity are examined.
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I. INTRODUCTION
In recent years considerable research has been devoted to the study

of spatially uniform turbulence in a slightly unstable (in velocity space)

1-9

Pplasma. With few exceptions the dynamical equation used has been the

collisionless Vlasov equation with self consistent electric field,lo i.e.,

e

5% £ (L)+v,e 32— f (1) =~ -il E(x,,t). 5%— £ (1) (1)
a.l ~1 X1 al al ~val M 9.1

where

4, .
12
eal,%(iﬁl,t) = - Zne‘e\[—gf‘:;_ fa2(2)d(2) R
2

¢ala2 is the coulomb potential (ealeaa/lﬁl_f2|)’ nai is the number of i'th
species particles per unit volume, (1),(2),... denote the phase space co-
ordinates (51,31),(52,12),..., and naifai(i) is the (smooth) number density
of the ai’th species at (zi,xi) at time t. The general procedure has been to
Fourier analyse Eq. (1) with respect to the position variable and obtain the

solution in a perturbation expansion
£ (1) fio)(xl,t)+f£l)(l)+f§2)(l)+f§3)(l)+...,
1 1 1 1 1
and correspondingly
£(s%) % 50 (0008 5,008 (g 000 (2)
vhere the expansion parameter is essentially
(0) (0)
& ~ |l fal(xl,vl,O) fa'l (v,,0) /f&l (vy,0)] <1,

It is assumed that f£O)(Xl’O) is such as to give weak instability in a Iandau
1

analysis. Once the solution to Eq. (1) is obtained to & given order, say 63,

appropriate statistical averages (see for example Ref. 8) are then performed



a posteriori over a spatially uniform ensemble in order to obtain kinetic

equations for the energy density in the turbulent electric field spectrum and

for the background distribution fg (vl,t). The averaging technique, usually
l~

referred to as the random phase approximation, consists of averaging over the

w

k
phases of the first order fields E(l)(k,t) (E(k,t) = T'-"-]- E(k,t)) assuming these

phases are random. For example

(E(l)(ﬁ,t)E(l)(lge,t)) = ¢ (ky,t)8(k +k,) (3)
e 0080 05,8080 (1,00 = 2, 5,.808 () (%)

It is usually assumed that T is zero initially (viewed effectively as the
product of three random numbers); that it remains zero in the time scales of
interest must in general be proven. As for the average of four first order
field amplitudes the procedure is to consider products in all possible pairs,

i.e.,
B0, 0)-8%0,,00) = & (80 & (0080045, )5 14,
+ € (150t € (155,51 415, )8 (e +ig,)
+€ () € (800 e 0 0o%) + (5)

The averages 3-5 are clearly compatible with the spatial homogeneity of the
ensemble; however the entire procedure of solving the Vliasov Equation order
by order and then performing a statistical average inherently entails much more
information (and presumably algebra) in the early stages of the analysis than
is required to describe the turbulent ensemble. A more direct approach would

be to carry out the statistical averaging a priori rather than a posteriori




and obtain dynamical equations for ensemble quantities at the outset.
Utilizing Eq. (1) as the dypamical equation for an individual systeﬁ,
in Sec. {l a hierarchy of equations is constructed for the correlations in a

2,11 The formalism auto-

spatially homogeneous ensemble of Vlasov plasmas.
matically embodies the averaging procedure given in Egs. (3)-(5). In addition
it is demonstrated that this Vlasov hierarchy is identical to the BBGKY
hierarchy for a spatially homogeneous ensemble if the effects of single particle
encounters are deleted from the BBGKY formalism. In Sec. II the Vlasov hier-
archy is ordered in the weak turbulence parameter N ~ Eg/nmvgv and the questions

of closure and time validity of the formalism are examined.

II. THE VIASOV HIERARCHY

Working within the Vlasov framework we rewrite Eq. (1) as

of

a

1 d 1 Z f &8 3
+ v, f == n . (£ (L) (2))a(2).
ot A oox, 8y ma'l . a, 351 axl a, e, 6)

~l

From Eq. (6) the following chain of equations can be simply constructed

advancing fa fa in terms of fa fa fa ,and £ £ f  in terms of f rf £ £ ,

12 1 % 23 8y a5 83 R T
etc.,
o
(f £, )+ {X' (£ ¢ )+(1<—>2)}
3’3 3y 8 1 g’«-‘:1- 81 8 )

1 a1a3 - }
={3: z na3f %, % falfazf a(3)+(1 & 2) (7)
1 a3



d
(f f "'f )‘*‘Z{(f&;{fa ...f)-i-(s (-)l)}
S b, .
1 %541 3 '
=Z {(a:z na's+l ax axl falfazooofas+ld(s+l)> + (S © l)}
T e : (8,)

Equation (6) is to be interpreted as the dynamical equation for an
individual system. We now imagine a collection of such Vlasov systems and

average Egs. (6)-(88) over this ensemble. The ensemble average, (fa eeof, ),
1 n
may be viewed as the arithmetic mean of fa "'fa taken over g large number of
1 n
systems, or as an average over a (probability) distribution of systems. With

the problem of spatially uniform turbulence in mind, it is assumed that the
various averages are ’ - " dinvariant under
translation %2 The analysis for a spatially inhomogeneous ensemble is a simple
extension of the technique described here and the results are quoted in the
concluding section of this article. In the discussion which follows it is
convenient to write fal in terms of its ensemble average plus a fluctuation,

i.eC,

fa, (fal) *of, (6fal) =0. (9)

Averaging Egs. (6)-(8é) and utilizing the macroscopic charge neutrality condi-
tion Z n e = 0, give the following chain of equations for (f ), (8f &f ),
. 88 a, 2, &,

sea L

a 1 2 d
St' =——Z ﬁ(e) %, . 3 (5fa15fa2) s (10)

& (6f°‘16fa2) + {( X &a(-l- (Sfalafa2)> + (1le 2)}

),

op

- {(Ei_ "3-%1- (fal)- Zna3ﬁ(3) —52—?-3- (Sfaesfa3)> + (1 92)}

1 a3



{ Z fi(3) ;1a3 . agl (s, o, 8f53)+(l 92)} ,  (11)

1 %2
&
g (o1, 5f af )+Z_. {1’,1‘ Eé’ (or, 87, of, M+(s'e 1)}
%3 G0 T B % %

i{(f-‘—%(f )e Z ﬁ(u) aa” (zsf 51‘ 5f >>+(s<—>l)}
z { ( Z ﬁ(u) axl 321 [ <6fa16fa25fa3afau)

s'=2

- (afalﬁf%)(tsfaL E»fa )]) + (s'e 1)} N (12)

gca-(sx“ Lo BE, )+Z{< .Ei_l.( ....Gfa )>+(1<.,ss)}

p)

1 9 l s+1
— (f Yo a(s+1 (6f ...af )> 1 }
: =2{<ma v az-' s+1~/‘(s ) —m 8541 Hieet)
1 " a¢ 818541 o)
- ——— s L) s00
sZg <m&1az %, ﬁ(8+l) X, 3, [(6fal’5fa2 Bfas+l)
- s+1
- (sfalafas+l)(afa2...afas>]> +{1l &s' )} (13,)

By virtue of the assumed spatial uniformity of the ensemble

(f ) is independent of x.,
ay ~1

(Bf 8f, ) depends on the difference x

J
a1 a, 1%

.
.

and similarly (afa Bf,_ +..Bf, ) may be taken as a function of the differences
1 T2 s
51'52’51'§3""’51_5s to ensure invariance under translation.



The system of equations, (10)- (13 ), will ve practical to use only if the
ensemble averages,(afal...ﬁfa ),in some sense become small as s increases
(as is expected in problems o; weak plasma turbulence), and closure can be
obtained at some level. This is examined at a later point. An alternate |

hierarchy can be constructed frem Egs. (lO)-(l3s). We define the s-irreducible

correlation function, &

al'..as, by subtracting from (sfa 8f, vesdf, ) all

irreducible correlations of lower order. Keeping in mind <5fa-> = 0, it is

i
evident that
2gala2 = (£, of, ), (14)
1 2
g = (3£, &f_ &f ), (15)
3 ala2a3 al a2 a3
= (or, of, of of, ) g
4& ala2a3 8, 8, 3 a), €s 18 2%a, 3
- g g8 . -8 g ) (16)
2 alae 2 a3au 2 ala3 2 aaah
|
g = (8f Bf ...5f )
558180008 a) &, ag
s !
M |
\"
"24 s'gal...as, s-s’gas,+l...as ‘ (l7s)
S =2 {1,2,...8}

The sum (1,2 2 s} is over permutations of {1,2,...,s}, and Sy ' = (s-1)/2 if
’.'.,
s is odd, and s/2 if s is even. Utilizing definitions (14)-(17,) in Egs.

(10)-(138), we have
¥, )

}: ﬁ(e) 5 ai,l fan, (18)



} m_l__ -&T— . Zna ﬁ(3) Ti o8, 3+(1 4-)2)}
1l a3

3, o

+ (s o 1)} , (20)

and

a:sa...a Z{@ “"-a)”(s""”}

s?=D

P, o
Z {<~ T z s+1~/;1(s+l) _&;S-ﬂ: Sga'26"'3"'3's+1> + (sto l)}
s+l

s’~2

9
d(s+l !
Z {< z s+lf (s+2) E.f,—¢ 8%+ N1 s"':Lg"'la‘e“'a‘sﬂ

s’—2

S

+ S"ga onoas" s+l-8s ga- n ...8. a ]> + (S 91)} (213)

s722 (1,2,0.0,8) * s s+l



Equations (18)-(213) form an interconnected chain in whichg'fa }is driven by
1
two-correlations, ag; o8 in turn is driven by three-correlations, 3g, etc.

The differential-integral operator acting on the s-correlation - a in
l... s

Eq. (218) is clearly a time derivative plus s Landau operators acting on
particles 1,2,...,5, respectively. Since the original dynamical (Vlasov)
equation is void of the effects of single particle encounters, the only many-
body interactions described by the hierarchy(lB)-(els) are collective and may
be roughly classified as wave-particle, multiwave-particle and multiwave. As
such, a valid description via Egs. (18)-(215) can be expected only for times
less than the relaxationtime due to. single particle encounters.

We reiterate that utilizing the Vlasov hierarchy (Eags. (18)~(218))
in probléms of plasma turbulence represents a more direct approach than the
usual procedure (see for example Ref. 8) since the statistical averaging is
done & priori rather than a posteriori. This formalism automatically embodies
the averaging process described in Egs. (3)-(5), since relations (14)-(16),

the spatial homogeneity of the ensemble, and

hyrn e
6E(kl,t) _Z' 'TTKT_ 5fa1(51,v t)dvl ,
%1
imply
(8E(k, ,£)0E(l,,t)) = V(K ,t)8(k k) » (22)
(BE(k; ,£)BE(ky,t)3E(K5,t)) = V() ky>t )0 (ke tytks) (23)

(BE(k, ,t )5E(k,,t JoE(k, 8 )0 (), ,8))

= hw(gl,ge,%,t)a(kfk +k3+}a+)



10

+ (kg t) W(Ea,t)6(~l+§2)6(k g, )
+ ¥l 1), ¥ (k568 (k; +g, )6 (155 +,)

+ QW(gl,t)QW(ge,t)a(k +& )a(k Hy) (24)

where

W(kl ,\2)‘" Jk 1)t)

Y <'T.If_)< ) j:lxl...dxss @)

Byyeee,B

Equations (22)-(24) are identical in form to Egs. (3)-(5) if the irreducible
correlations, 8 8 z 4, are amitted, Conditions for neglecting higher corre-
lations in this manner must be examined in the context of Egs. (18)—(213).
This and related problems of closure are examined at a later point where an
explicit ordering of the Vlasov hierarchy is performed.

It is evident that the hierarchy (18)-(213) is identical to the
BBGKY hierarchyl3 for a spatially homogeneous ensemble of plasmas if all terms
associgted with the discreteness of maa.tterl)+ are deleted. These discreteness
terms, which are displayed in Egs. (A-1) and (A-2), may formally be removed
from the BBGKY formalism by subdividing the charged particles into smaller and

smaller units such that

Y n e = constant
Ca 0 oo ’
m -0, nm = constant .

a ¢ e
1/q1-+o )

In this limit collective effects are retained as the plasma frequency, w_, and
constant; P

the Debye length, AD’ remain . however, the plasma parameter of smallness,
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ep ~ (l/nAD3), tends to zero thus removing the effects of single particle
encounters. The Vlasov hierarchy (18)-(218) is then identical to the ep -0
limit of the BBGKY hierarchy. This identity should in fact be the case

if Egs. (18)-(21s) are to represent an acceptable plasma description excluding
the effects of single particle encounters. One arrives at the same conclusion
in the ep-» 0 version of the Klimontovich forma.lism15 (since the BBGKY hierardy
may be obtained from the Klimontovich framework). Alternatively the similarity
may be demonstrated directly by taking advantage of the similar form of the

dynamical equation describing the phase function

Nal
1
ea (v ot) = Ty ) Sy (Oe(yey, ()
a N a a
1 i 1 1
s |

and Eq. (6). This is shown in Appendix B.

1II. WEAK TURBULENCE ORDERING
As mentioned earlier the hierarchy (18)-(218) (or the % - 0 version
of the BBGKY formalism) will be a practical description to use only if the
correlations 8 become small as s increases and closure can be obtained at
some level. For purposes of estimating the relative magnitudes of terms in
Egs. (18)-(218) we introduce
(@) ~ characteristic strength of potentialn:ez/ro, where

r. ~ effective range of potential,

o
Vv ™~ charagcteristic particle speed,
T ~ typical time scale of interest.
For simplicity, a single species of interacting electrons in a fixed background
of neutralizing ions is assumed. Taking T,

of
to be of order,the Debye length, i.e.,
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2 2 2
ry o~ (mvav [bxne®) ,

(:.i@l.:) (nro3) ~l.

nv 2
av

then

In addition

3
f~ (l/Vav ),
from the normalization condition [fdy = 1. On the short time scale

To ™ (ro/vav) ~ (1/wp), the terms in Egs. (18)-(21s) then stand in the ratio

f:egvav3 , (26)
g1 ,81, 8.8V O (271)
2°°2°°2%°3% v’
8181818V, 31,88V, 3 (28)
3®°3°°3°°4B qvy *252%"av
. . . 3- 3. 3.
gBi B8 8Y, T 1B 1BV, T8 BV, heee (29,)

respectively.

The basic parameter of smallness in weak plasma turbulence is the
ratio of the energy density in the fluctuating electric fields to the kinetie
energy density of the plasms particles, i.e.,

(8E(x, )-8E(%; )}
nnv 2
av
It is also implicitly assumed in utilizing Egs. (18)-(218), that

~ <1 . (30)
&N,
ep< (31)

That is to say the energy density in the turbulent, fluctuating fields is

assumed large compared to the energy density in the fluctuating fields that
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would exist in thermel equilibrium since

€~ (8E-5E)

— 2 THERM. EQ.
av

For a single species of interacting electrons, (SE-BE) may be written
~ N

2 1 4 [ 4
(sE(x,)-8E(x,)) = %5 agii : aﬁ;z (s2(2')o£(3'))a (2" )a(3')
e ~ Y

2 a¢ t 5¢ t
% a:lc.i ‘ a)]C-3 28((2'),(3'))(1(2')(1(3’) . (32)

e ~l

Making order of magnitude estimates as before, Relation 30 becomes
N~ gv &1, (33)
2% av
With o8 ~ N and noting that 3g has 2g3g driving terms, we assume
38 ~ A to leading order . (34)
Similarly 18 has 2g3g driving terms giving
8 ~ A3 to leading order , (35)

and in general

s~-1

g~ A (36,)

s
The level of sophistication with which we describe the evolution of
® (Eq. (18)) and the energy density of the electric field (Eq. (32)) depends
vitally on the accuracy of description of o8+ With this in mind, the following
remarks can be made regarding closure of the hierarchy (18)-(215) in the con-
text of the estimates (26)-(298) and (33)-(368). In order to calculate ,g to
order A2 and describe the leading order o8 for times t ~ TO/X, L& and higher
correlations may be neglected. This follows upon noting that 3g is needed only

to an accuracy Xg. Similarly, to calculate o8 to order A" and describe the



1k

leading order o8 for times t ~ TO/Kn-l

! pao8 and higher correlations may be
omitted, It must be emphasized that inherent in the estimates and associated
comments of this section is the assumption that the instability (initially)
driving the fluctuating fields is sufficiently weak that the ordering

~ )‘S'l

s&

is not worsened (to &~ hs-z, say) during the course of time,

In the case of a real plasma, the plasma parameter ep although small,
is not zero as is implicitly assumed in utilizing the hierarchy (18)-(215).
Consequently Egs. (18)-(218) will not hold indefinitely as the effects of
single particle encounters will ultimately play a role in the time evolution
of the plasma. In order to obtain some estimate of the regime of validity of
the Vlasov hierarchy, the additional terms relating to single particle encounters
are explicitly displayed within the BBGKY framework in Appendix A. There it
is shown that the dominant contribution in the equation for 28 is of order
epff, and of order Epfs-lg in the equation for $8° These effects are negligible
in leading order in the context of the estimate B~ ks'l, and the inequality

they
A >>ep; however.,do become important in times t where

A
. ‘b~~€—'l’o- (37)

P
Depending on the smallness of ep relative to A,the ensemble may evolve for an
appreciable length of time through the collective effects of wave-particle,
multiwave and multiwave-particle interactions as described by the hierarchy
(18)—(213). However, for times longer than the estimate given in Eg. (37) the
effects of single particle encounters, A-1 and A-2 must be included in Egs.

(18)-(218). The maximal ordering including single particle encounters but

consistent with ep<< N is clearly € ™ KE.



CONCLUDING REMARIKS
In problems of weak plasma turbulence the motivation is strong to
use the Vlasov or BBGKY hierarchies where appropriate, with closure at a
certain level., The usual "random phase approximation" is automatically
embedded in these formalisms and no a posteriori averages need be performed.
In conclusion we state without proof that if the assumption of
spatial uniformity of the ensemble is removed in the analysis of Sec. I the

net result is to add to the left hand side of Eq. (18)

% e

and to the left side of Eq. (21 ) (s = 2,3,...)

S
1 9 Z f d -
- -~ g . n a(s+l) 5 ) (f )>
SZ::e{ < n gxl s a.lo . oas / a.s+l X1 ala.s+l as+l

a
1 s+l

+ (sle l)} .
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APPEIDIX A

Single Particle Encounters

In the BBGKY formalism the inclusion of single particle encounters

associeted with discreteness of matter add to the right hand side of Eq. (19)

the terms
3
a.a
12 1l ) 1l .
~) a 2
1
Similarly, the addition to the right side of Eq. (21 ) for g is
s $°8,8,0008
5,8 ¢
8.8
1 iy, 9 \ +
m &{. av a S"l eee8 .00 Sg...&.....a ces
h a. ~1 J i J
i,j=1
i#3 sy'

+Z Z 18 s_s.g> . (a-2)
s*'=2 {1,.s.5}

Meking order of magnitude estimates of (A-1) and (A-2) with

% 'ﬁ ~"D~<nia-‘é)l/2 ’

Lxne
and
o 1
B:; B Va.v ’
we have
(voo/To)
__;?.!__13)_ (££1,8) , (a-3)
nr
0
and
(v /7o)
—Tn;—g'g (£5.181:8308, o838, aB3eet) (A-k)
0

respectively. Scaling with respect to the short time scale To ™ ro/vav ~ l/w R

estimates (A-3) and (A-4) may be rewritten as
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ep (szag) 2 (A"5)
€ (fs_lg:sgzegs_ag:3gs_3g:...) s (a-6)
where
N
P 3
nkb

is the usual plasma parameter of smellness. Assuming as in the text that to
leading order

&~ as-1 s (A-7)
it is clear from the above estimates that the dominant effect of single partide

encounters in the equation for 8 is of order

As-2 . _
€ (A-8)

For the hierarchy (18)-(218) to represent a valid description in leading

orders on the short time scale Ty We thus require that

A >)(-:p . (a-9)
This is just the condition that the energy density in the turbulent fluctua-
ting fields be large campared to the energy density that would exist in the
fluctuating fields in thermal equilibrium,
The estimates (A-3) and (A-4) indicate that the system of equations
(18)-(218) holds only for times t such that

t S Eé To
P

For times longer than this the effects of single particle encounters, (A-1)

(a-10)

and (A-2), must be included. The time estimate, (A-10), may be lengthened by
strengthening the inequality (A-9) through an increase of the plasma mean

kinetic energy. This decreases ep and stretches out the relaxationtime due to
single particle encounters, thus allowing the plasma to evolve for a consider-
able length of time through collective interactions as described by Egs. (18)-

(21).
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APPEIDIX B
The Klimontovich Formalism
The phase function
oo, Gyt = Z ok, x, (8))6(xy-y, () (5-1)
~l%~ 6 7 ) ;! ~L i ay 1 1al
l
. s . 15
satisfies the equation
p N
a a a.a
1 d 1 2 1%2 1ye O
= + 1’-1’ '5;‘(‘]': Qal = ma, Z 7 f Eﬁ&l (‘il X |) E pal(?sl’xl’t)
la
2
1
X x',v!,t)- 5(x,-x*)8(v,~v! }dx’dv’ B-2
{pa2(~,~,>ﬁ;;7;,<~l~)<~l~> x'ay (5-2)

by virtue of the classical equations of motion

2
E% x,(t) =y, (t) 3 dt ¥y (t) "'EL EETi .
3

~i

J#

With the exception of the &-function term appearing in the integral, Eq. (B-2)
is identical in form to Eg. (6). Using the explicit form of p given in(B-1),

the definition of the s-particle reduced distribution

F (1,2,000,58) _st

a...a

a(s+l)eee (8-3)
1 .

l 82

where f is the Liouville distribution, and the normalization condition

alNae. o0
1 \/}N N, A1),

&y 2
(N> ®, Voo, N/V-n, a constant),
it is straightforward to show in the N-V liJnit,Aby averaging over I

Nqae. LN )

(denote by superbar) that

r, (1) =5, (5-4)

1 &
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Balaz
R, o (1,2) = o, (1)(p, (2)- —22 8z, )5(y;-1,)) (5-5)
172 1l 2 a2
( 68‘1“'2
F 1,25000,8) = p_ (1)(o, (2)- 8(x,-%,)8(v,~¥,))
Ga'la's aas-las
Koo .X(pas (S )"" 3 6(?&1_'}55 )8 (xl-xs )-’ se ™ na 8(4}55- ]_-?5.5 )6 (zs-le ))
S S (B‘6)

In the limit in which discreteness effects are deleted, we have that

F (1,25000,8) S p, (D)o, (2)eeep, ()
a.l...a.s al 9.2 as

and that the equation for Py, (l)"'pa (s) is identical in form to the equation
1 ]
(s)) obtained Eg averaging Eq. (95)’ The equations for F, (1)
S s al-ooas} l
and for the irreducible correlationsg:are then trivially the same as Egs. (18)

for (fal(l)...fa

and (215) for (fal(l)) and Sg&l"'as.
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