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ABSTRACT 

The problem of a highly conducting f lu id  stream coupled by means 

of a transverse e l ec t r i c  o r  paral le l  magnetic f ie ld  t o  a conducting 

e l a s t i c  medium is examined i n  detail. 

the Bers-Briggs cr i ter ion the s t a b i l i t y  of t he  i n f i n i t e  length system is 

described. Eigenfrequencies and eigenfunctions are computed f o r  the 

f i n i t e  l eng th  system and good agreement is obtained with experiments 

performed w i t h  an electrohydrodynamic system. 

i s  given fo r  t h e  overstabi l i t ies  observed. 

l imiting case of the f i e l d  coupled system and an electron beam coupled t o  

a traveling wave structure is discussed. 

From the dispersion relation and 

A physical explanation 

The close analogy between a 

. 
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I Introduction 

Stream structure interactions occur i n  many physical areas and 

have great prac t ica l  significance. The flow of air  over panels i s  

known t o  cause wing f l u t t e r  and in s t ab i l i t i e s  i n  a i rc raf t .  (1,2) 

Numerous electron beam devices, such as the traveling wave tube, 

klystron, backward wave amplifier and osci l la tor ,  among others, make 

use of the in s t ab i l i t i e s  produced by the cuupling of an electron beam 

t o  a passive structure. 

acoustic waves i n  a moving plasma couglr: t o  a passive structure t o  produce 

wave amplification. 

knowledge, which couples a fluid stream t o  a mechanical structure by 

means of an e l ec t r i c  or magnetic field.  

Ha~&~$as analyzed the problem where magneto 

\ 
The present system is  the first, t o  the author's 

1 

Perhaps the first experiment concerning a stream-structure i n t e r -  

action was performed by Lord Rayleigh,") who impressed the vibrations 

of a water jet, produced by capillary in s t ab i l i t y  of the sausage mode, 

onto a sounding board and mechanically fed back the vibrations t o  the 

entrance of the flow, producing large osci l la t ions of the jet. 

The overstabi l i ty  is  of course due t o  the regenerative feedback 

through the external mechanical linkage and s t r i c t l y  speaking the system 

is not of the stream-structure type i n  the context of t h i s  paper. 

Suppose however, the external feedback l i n k  iS replaced by a structure* 

which can couple t o  the stream a t  each point along i t s  length. 

a wave on the stream traveling downstream can couple t o  a wave on the 

structure i n  such a way that some of the wave energy can be fed back t o  

Then if 

* Structure i n  the context of t h i s  paper implies a mechanical structure 
capable of transverse ifibrations such as a tuning fork, membrane, or 
i n  the case of the experiment t o  be described, a weak spring. 
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the upstream end, the conditions for a e l f  osc i l la t ion  may exicrt 

w i t i l  the system overstable. 

structure may s t i l l  couple t o  produce an amplifying wave, and under 

cer ta in  circumstances the structure may damp the wave. 

Under other co~d i t ione ,  the s t reu  MQ 

The stream-structure system to be studied here i s  shown i n  Fig. 1 

and consists of a conducting l iquid j e t  and a conducting membrane 

coupled by an e l ec t r i c  or  magnetic f ie ld .  

th in  and only the kink mode w i l l  be discussed. As the j e t  or membrane 

i s  displaced i n  the transverse direction, the f i e l d  i s  permbed,  pro- 

ducing a net t ract ion on the element perturbed ( se l f  coupling), and 

a l so  producing a net t ract ion on the other deformable element (mutual 

coupling). 

The j e t  is  considered t o  be 

Mechanical tension and end ef fec ts  are important. 

While the behavior of many stream structurevinteractions i s  under- 

stood qualitatively,  it i s  only recently that e f f o r t  has been made t o  

analytically compute the complex eigenfrequencies f o r  a stream-structure 

device of f i n i t e  length. (6) The s t a b i l i t y  of the in f in i t e ly  long system 

w i l l  be examined from the dispersion re la t ion  and the 'Bers-Briggs ( 7 A  

criterfcm, and the eigenfrequencies and eigenfunctions computed f o r  the 

f i n i t e  length system. It w i l l  be shown that the necessary ingredients 

for  self osci l la t ion (overstabil i ty) are present f o r  both e l ec t r i c  and 

magnetic f i e l d  coupling, and that experiments performed on the electro- 

hydrodynamic system exhibi t  overstabil i ty i n  quantitative agreement w i t h  

theory. 

I1 Problem Description 

I n  a previous paper,") the author has considered the dynamics of 

two highly conducting f i n i t e  length f l u i d  streams coupled by an e l ec t r i c  

or magnetic field.  1% was mhm that there were four basically different  
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classes of flow: Class I: subcapillary, Class 11: supercapillary 

co-streaming, Class 111: supercapillary counter-streaming, and 

Class IV: Su~rrpUlAry  supercapillary flow. The first three classes 

were discussed i n  t h a t  paper; the Class IV flow w i l l  be the topic of 

the present paper. 

The model for  the system consists of a planar conducting f lu id  

stream of density p 

membrane* with density p2 and tension per uni t  width T2, coupled by 

and surface tension T and a conducting e l a s t i c  
1 1 

a transverse e l ec t r i c  f i e l d  Eo or  longitudinal magnetic f ield Ho. 

The assumed planar geometry simplifies the mathematics and it has been 

shown that such a model is valid fo r  a circular  j e t  i f  the e l ec t r i -  

c a l  coupling coefficients are  experimentally determined. As i n  the 

previous paper the discussion will be res t r ic ted  t o  the kink mode 

( m  = 1) of the je t .  If Vo i s  the stream velocity and # and& the 
1 2 

transverse displacements of the stream and membrane, the dynamical 

equations are given by 
9 

The equations for  magnetic coupling are  obtained from Eq. (1) by 

* The kink mode (m = 1 )  of a stationary f luid stecam can be modeled 
by an e l a s t i c  membrane. 
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2 2 replacing % by - . 
The assumptions used i n  the derivation and explanation of the quant i t ies  

and terms i n  Eq. (1) are given i n  (9) and w i l l  be omitted here. 

traveling wave solution e 

re la t ion  i s  obtained. 

If a 

is assumed, the following dispersion 

[(&E)2 -E2G 

where 

- w  a = -  
( 0 '  

1 e 

+a][;' -E2Gl + $ G 2 ] -  t= G2 0 

Equation (2) is  plotted i n  Fig. 2 fo r  e l ec t r i c  f i e l d  coupling and 

For convenience, the stream and values of the flow velocity V /Vts2. 

structure are  assumed t o  have the same physical constants, so that 
0 

- = Vt and 'ue = u) = w For V o / V t r  2, it i s  evident tha t  e' V t l  - Vt*  1 e2 

there i s  strong stream-structure coupling only near k = 0 and tha t  the 

coupled system behaves essentially l i ke  a stream and structure separately; 

Le . ,  it has the s t a t i c  ins tab i l i ty  of the structure and the convective 

in s t ab i l i t y  of the stream. ( lo)  This i s  verified by the Bers-Briggs plot  

i n  Fig. 3a where both the saddle point and convective in s t ab i l i t y  are 

evident. For a s l igh t ly  supercapillary stream, there i s  a l so  strong 

coupling fo r  a passband of wavelengths, and t h i s  produces an additional 

region of instabi l i ty .  

For the magnetically coupled systems, no i n s t a b i l i t i e s  are  observed 

fo r  Vo/Vt u 2 as can be seen i n  the dispersion curves of Fig. 4. 

the system exhibits the propagating and envanescent behavior of the 

uncoupled system. 

unstable, as i l l u s t r a t ed  by curves 3 and 4 of Fig. 5. 

Again 

For Vo/Vts  2, however, the system beccmes convectively 



I11 The Eigenvalue Problem 

Now consider the dynamics with boundaries aposed. The system i s  

a supercapillary j e t  which enters the interaction region unexcited, 

and a mbi-ane fixed a t  the ends. 

The boundary conditions consistent with c a u a l i t y  are: bo 1 
A 

and 

From Eq. (1) 

The solutions t o  t h i s  system of equations may be writ ten 

A 4 - jkiX 
[(x) = c B e i i= 1 2 

and 
‘jkiX 4 A 

l ( X )  = C QiBie 
1 i= 1 

where 
I 

= - - 2 [G2 + G1 f: - q “2 

Qi G2 

(4) 

( 5 )  

If the boundary conditions a re  evaluated, the following detcrmhantal  

equation is obtained. 
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1 1 1 1 B 

= o  ( 5 )  

-jklL -jk2L -jk3L 

Q1 Q2 &3 Q4 

e e e e 

klQl k2Q2 k3Q3 

Expanding Eq. ( 5 ) ,  we have 
3 
L 

2 
+k K +k k )) 2 -j(k2-kl)L (k -k ) we 

+ V t 2  ‘k3k4 1 4 1 3 e 3 4 [a2 + - 0 2 

2 

‘)TU + -  2 
2 2 -J(kq-kl)L (k2-k3) rC0, 

k4-kl 
+ vt2 (k2k3 +k 1 k 3 +k 1 k 4 )]  = 0 + e  

Equation ( 6 ) ,  combined w i t h  the dispersion relation, gq. (2), forms 

the eigenvalue equation t o  be solved. 

Elec t r ic  Coupling 

The eigenfrequencies fo r  e lec t r ic  f i e l d  coupling are shown i n  

Fig. 6 fo r  the lowest three modes using the experimental values of the 

parameters . ( 9 )  

To interpret  the curves, i t  i s  useful t o  compare the eigenfrequencies 

for  the uncoupled case, namely a single structure f i e ld  coupled t o  r ig id  

platCs. 

eigenvalue equation becomes 

The determinantal equation reduces simply t o  k = E and the L 
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The r e a l  par ts  of the eigenfrequencies shorn i n  Fig. 6 are  essent ia l ly  

those of the structure alone, (Eq. 7) f i e l d  coupled t o  a r ig id  wall. 

I n  addition, the point of ins tab i l i ty  for  the f i rs t  mode i s  nearly that 

predicted by Eq. (7). The principle e f f ec t  of the mutual coupling is  

t o  produce e l ec t r i ca l  damping of the wave below the point of instabi l i ty .  

Aboveth in s t ab i l i t y  point the growth rate a l so  agrees quite w e l l  with 

the uncoupled case and approaches the same asymptotic l i m i t .  The 

decay branch, however, exhibits an increased decay rate.  

The e f fec t  of the coupling on mode 2, however, i s  quite significant. 

Mode 2 exhibits overstabi l i ty  for a wide range of -, I’”e and becomes 

unstable (assuming no mechanical or  e l e c t r i c a l  losses) a s  soon a s  the 
vO 

s l igh tes t  e l ec t r i c  f ie ld  i s  applied. As - i s  increased, the normalized 
vO 

growth ra te  increases t o  quite a large value u n t i l  the r e a l  par t  of the 

eigenfrequency becomes zero and the curve s p l i t s  i n to  two s t a t i c a l l y  

unstable modes (not shown). The deviation from the mutually uncoupled - 

. The overstable I”e eigenfrequency case becomes large with increasing - v- u 
behavior of mode 2 i s  exhibited by higher modes a s  w e l l .  

The eigenfunctions may be computed using Eqs. (2), (4), and ( 6 ) .  

If we assume B 

t o  B 

f 0 fo r  the moment, then the r a t io s  of the coeff ic ients  1 

may be computed from 1 

1 1 1 

Q2 Q3 Q4 1 k2Q2 k3Q3 k4Q4 

-1 

41 

‘Qlkl 
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Since B1 i s  arbi t rary,  it may be se t  equal t o  the determinant of the 

coeff ic ient  matrix of Eq. (8). 

symmetric form and the r e s t r i c t ion  that B f 0 can be removed. 

Manipulating Eq. (8) we get 

T h i s  allows the B's t o  be writ ten i n  a 

1 

B1 = (ks-k4)(k3-k2)(k4-k2) !A + V t 2  2 (k3k4+kP2+k4k2) 1 

+k k +k k )I (k$2 3 1 2 1 (k -k )(k -kl)(k2-kl) (A + V 
9 t2 B4= 3 4 3 
L 

2 .'(0,2 where A = 0) + -. 
From Eq. (4) the spa t i a l  dependence of the eigenfunctions can be calcu- 

2 

la.ted and f i n a l l y  the time dependent eigenfunctions follow frum 

Typical eigenfunctions far 

system fo r  the case LU = w = 
1 e2 e 

the lowest modes of the stream 

"e, 'tl - - 't2 = Qt and Vo/Vt = 

shown i n  Fig. 7. The f'undamental mode f o r  both the growth and 

s t ructure  

2 a re  

decay 

branches exhibi ts  the behavior of the mutually uncoupled j e t  and spring. 

The re la t ive  phasing i s  as expected, since a downward deflection of 

the spring weakens the f i e l d  i n  the midregion and produces an  upward 

t rac t ion  

s l igh t ly  

a l s o  the 

on the je t .  The peak amplitude of the membrane is  very 

shifted downstream. 

same a s  i n  the mutually uncoupled case. For x < $ the t rac t ion  

The membrane eigenfunction of mode 2 is 

T L on the j e t  i s  downward; for 

required fo r  the j e t  t o  reverse i t s  direct ion of motion and cross the 

axis,  

coupling terms are  reinforcing. 

< x < L, upward. But a cer ta in  length i s  

The amplitude grows f a i r l y  rapidly since the se l f  and mutual 
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Magnetic Coupling 

The magnetic f i e ld  coupled system eigenfrequencies f o r  the same 

parmeters  a s  i n  the case ju s t  mentioned are shown i n  Fig. 8 for  the 

lowest three modes. The r e a l  parts of the eigenfrequencies are typical  

of a magnetically coupled membrane, The imaginary par ts  exhibit  the 

same decay of the fundamental mode and growth of higher modes as  fo r  

e l ec t r i c  f i e l d  coupling. It is  interesting that each higher mode 

mh exhibi ts  a peak growth rate ,  the second mode for  - = 2.6 and the 
Iw. vO - 3.9. The m a x i m u m  growth r a t e s  are about equal. t h i rd  mode for  - - 

This implies an optimum length i f  one wished t o  design an osc i l la tor  

n 
vO 

using a par t icular  mode (neglecting the adverse e f fec ts  of other modes). 

T h a t  such a peak should occur i s  reasonable i f  one reca l l s  from Fig. 3 

tha t  no absolute i n s t a b i l i t i e s  exis t  i n  the inf ini te  system, 
Iuh 
vO 

The eigenfunctions fo r  - = 1.75 are  shown for  the three lowest 

modes i n  Fig. 9. The same membrane-like behavior is  observed as  In  the 

e lec t r i c  f i e l d  case, but the j e t  behavior is  more wavelike. Since the 

magnetic self  coupling term hsls a s tabi l iz ing effect ,  the f i e l d  coupled 

j e t  by i t s e l f  exhibits purely propagating waves. By contrast the 

e l ec t r i c  f i e l d  coupled j e t  exhibited convective in s t ab i l i t y  i n  the 

absence of mutual coupling. 

It i s  evident from the previous discussion of e l ec t r i c  and magnetic 

f i e l d  stream-structure interactions tha t  the e l ec t r i c  and magnetic sys- 

tems have many common features. The same cnnclusion was reached i n  (9) 

i n  the discussion of counter-streaming je t s ,  where it was found that  

the mutual coupling and convective terms were of primary importance, 

with the surface tension unimportant, and the se l f  coulpling term e i ther  

enhanced (e lec t r ic  f i e ld )  or depressed (magnetic f i e l d )  i n s t ab i l i t i e s .  
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It is worthwhile t o  speculate if the dynamicel. terms in th6 equations of 

motion play the same role in the present case. 

*he Degenerate Bystem 

L e t  us postulate here that the jet  i e  without surface tension and 

that the  se l f  ooupling f i e l d  terms are unimportant. 

t i n g  G and r) t o  zero). As a result the e l ec t r i c  and mametic systems 

yield the same eigenfrequency curves (replacing ut by -% leaves 

Eq. (2)  unchanged). 

however, the eigenfunctions are  different.  

(This iwolves set- 

2 

Since the right hand eides of Eq. (3) change sign 

This can be expected physically 

since an upward displacement of the structure,  say, w i l l  exert a downward 

t rac t ion  on the stream f o r  e l ec t r i c  f ie ld  coupling and an upward t rac t ion  

in the  magnetic case . 
t o  be a hybrid of the e l ec t r i c  and -tic f ie ld  caaes (c0mpal.e Fig. 10 

with Figs. 6 and 8. S t r i c t l y  speaking, the comparison is not %lid, but 

The result ing eigenfrequency curves (Fig. 10) appear 

the results are qual i ta t ively insensitive t o  changes in parameters). 

The degenerate system exhibits damping of the fundamental mode and 

overs tab i l i ty  i n  the Lieher . *  modes characteristic of beth types of field 

coupling. It a lso  exhibits gltatic i n a t a b i l i t i e s  character le i t ic  of e l e c t r i c  

f ie ld  coupling. 

From the above discussion, several f ac t s  become c lear  concerning field 

coupled stream - structure systems: 

1. The real part of the eigenfrequenciee can be predicted quite accurately 

assuming the strean t o  be a rigla wall, f o r  a l l  - from Eq. (7). 
vO 
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The imaginary par t  of the eigenfrequency can also be approximately 

predicted from the structure alone i n  the limit 

The fundamental mode is  damped by the stream (below a c r i t i c a l  

value of 2 for  the e lec t r ic  case) and a l l  higher modes exhibit  

overstabil i ty for  both types of coupling. 

We may conclude, a s  a l so  pointed out i n  (9) f o r  counter-streaming 

h + . 
QO 

Iw 

QO 

j e t s ,  t ha t  the mutual coupling term i s  of fundamental importance. 

i n s t ab i l i t y  i s  produced by the supercapillary stream, since the magnetic 

system exhibits no instabilities if the stream velocity is  zero or even 

subcapillary. 

This 

The role  of the self  coupling terns  is  now apparent. For e l ec t r i c  

f i e l d  coupling, self  coupling is destabil izing; the most important e f fec t  

i s  t o  enhance the growth rate of exis t ing in s t ab i l i t i e s .  

magnetic case the magnetic f i e ld  is stabi l iz ing and is  suff ic ient  t o  

suppress the s t a t i c  i n s t ab i l i t y  of the fundamental mode and reduce, 

although not suppress the gmwth r a t e  of the overstabi l i t ies .  

IV. 

For the 

Physical Explanation of Stream-Structure Overstability 

It i s  possible t o  describe the overstabi l i ty  simply i n  terms of 

motions of elements of f luid interacting wi th  the structure. Two 

ingredients are essent ia l :  

fram stream t o  the structure; 

pawer, the mechanism must be present for  the structure t o  feed back 

some of the downstream absorbed power t o  the upstream section of the 

stream t o  sustain the oscil lations.  

as an  amplifier and not a n  oscil lator.  

surface tension on the stream w i l l  be ignored and the only force 

acting on the f lu id  elements t o  be studied i s  due t o  mutual coupling. 

(1) there must be time average power f l o w  

(2) even if the stream supplies net 

Otherwise the system behaves 

To simplify the discussion, 
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It w i l l  be assumed for  the convenience of the argument tha t  the 

stream velocity i s  twice the wave velocity on the structure, o r  a l t e r -  

nately, the t r ans i t  time of the j e t  i s  half the period of oscil lation. 

Consider an element of f l u id  A which enters the interaction region 

unexcited a t  t = 0 with the spring a t  half amplitude and r i s ing  (Fig. 11). 

A s  & advances t o  n/4, the structure exer ts  a strong downward t ract ion 

on A a s  it t ravels  the half-length of the system, but has supplied only 

a modest amount of power because of the small transverse stream velocity. 

During the second quarter period element A exerts  an upward t ract ion on 

the structure, and further, th is  upward force occurs a t  a time when 

the structure i s  a t  near maximum upward velocity, so that the k i n e t i c  

energy t ransfer  from the f lu id  to the structure i s  large, much larger  

than tha t  delivered t o  element A during the first quarter cycle. 

A a t  l eas t  s a t i s f i e s  both requirements fo r  overstabil i ty.  

sary, however, t o  show tha t  other f lu id  elements do not degrade the 

overstable effect  of element A. Following other par t ic les  a t  different  

entrance times, one concludes that elements l i k e  A i n  f a c t  characterize 

the system. The argument may be extended t o  the th i rd  or higher modes 

without conceptual d i f f icu l ty ,  although the de t a i l s  become involved. 

Thus 

It i s  neces- 

I n  a l l  of the modes higher than the first, the mechanism fo r  

i n s t ab i l i t y  depends on the structure excit ing the je t  upstream and the 

j e t  i n  turn transferring net power back t o  the structure. 

mental mode is  peculiar, however, since each point on the spring has 

The funda- 

the same phase, and no feedback mechan&sm is available. Hence the funda- 

n e n t a l m d e  is  not overstable. 
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V. An Electrohydrodyndc Experiment 

To investigate some of the ideas presented i n  t..e foregoing sections, 

a n  electrohydrodynamic experiment was constructed consisting of a 

c i rcu lar  water je t  and a weak metal spring of the same dimensions, 

supported i n  the horizontal plane. Two external plates  provided the 

same equilibrium e l ec t r i c  s t ress  on each side of the j e t  and spring. 

The apparatus was as shown schematically i n  Fig. 1. For convenience 

the j e t  was grounded. Only one voltage source was required since the 

outer plates  were carefully adjusted so that the spring and j e t  did 

not deflectawhen the f i e ld  was turned on. Since the theoret ical  model 

assumes a planar geometry, it was necessary tha t  the system parameters 

be measured. 

spring and measuring resonant frequency vs. voltage f o r  the fundamental 

symmetric and antisyrmnetric modes. @he procedure and r e su l t s  a re  

described i n  ( 9 )  and (10)). So that tbs elements be coplqxmr, the plates 

were bent and the spring supported by f ine  in su la t ing  s t r ings t o  match 

the curvature of the je t .  The strings, however, introduced an additional 

restoring force on the spring, acting l i k e  a dis t r ibuted se t  of pendulums, 

and t h i s  effe'cb i s  included i n  the analysis. 

This  was done by replacing the j e t  by a second matched 

To detect the existance of abswlute in s t ab i l i t i e s ,  the doc. voltage 

was increased from zero u n t i l  e i ther  an ins tab i l i ty  or  e l e c t r i c a l  

breakdown occurred. A t  low voltages, the spring and je t  were effec- 

t ive ly  uncoupled, disturbances on the  spring appeared a s  standing wave 

osci l la t ions which decayed sfowly i n  time, while j e t  disturbances 

appeared as  pulses traveling downstream a t  about the j e t  velocity. 

the voltage was increased, the spring and je t  began t o  interact. 

The osci l la t ion frequencies of the spring were not affected appreciably 

As 
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by the presence of the e l ec t r i c  f ie ld ;  the damping, however, was 

s ignif icant ly  altered. 

higher modes decayed more slowly. 

spa t ia l  growth for  long waves (characterist ic of 

coupled t o  r igid plates).  

The fundamental mode decayed more rapidly while 

Disturbances on the j e t  exhibited 

a single j e t  f i e l d  

As the voltage was increased further,  a c r i t i c a l  e l ec t r i c  f i e l d  was 

reacbed when the 

and the amplitudes increased slowly with time, building up t o  such an 

amplitude t h a t  the spring and j e t  collided, terminating the experiment. 

The t ra jectory of the spring was the th i rd  mode. 

exhibited a traveling wave behavior with an exponential envelope which 

grew i n  time a t  the same rate as the spping. The c r i t i c a l  voltage was 

reproducible. 

system became overstable, but the spa t i a l  character of the deflections 

was unchanged. 

modes becoming unstable, f i rs t  the fourth mode, then others. 

system spontmeamly broke into osci l la t ion 

The j e t ,  however, - 

If th i s  voltage were exceeded by a modest amount, the 

Further increase of the voltage resulted i n  other 

I n  order t o  examine the eigenfrequencies quantitatively, each of 

the lowest four modes was excited and the resul t ing complex eigenfrequency 

recorded a s  a function of voltage. 

the plate  adjacent t o  the spring and applying a small AC voltage a t  the 

resonant frequency. 

the wavelength of the disturbance on the spring. The excitation was 

then removed and the decay (or growbh) of the mode recorded. 

way both the r e a l  and ima,ginary par t s  of the eigenfrequency were 

me a sure d. 

The modes were excited by segmenting 

T h i s  driving voltage was spa t ia l ly  periodic w i t h  

I n  this 

The theoret ical  values of the r e a l  par t  of the resonant frequencies 

a t  zero voltage should be exact multiples of the fundamental i f  we ignore 
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the e f f ec t  of the support strings on the spring. 

observed, as seen i n  Fig. I2 (resonant frequency mesclurcments are accurate 

This, however, was not 

t o  + ,01 cps, so that the deviation from a straight line in Fig. 12 is - 
sdgnif icant  ) . 

Consider that the spring axpericncee a continuum gravi tat iond restoring 

The restoring force on force through the suppoEt strings holding the spring. 

a eection of spring of un i t  length is simply given by - - pF ( p  is the 
l! c 

l i n e a l  density of the spring.) 

k 3: 

zero e l ec t r i c  f i e l d  becomes 

Since the ends of the spring are fixed, 

and the functional dependence of the frequency on mode number f o r  

d = a n 2 + b  (10) 
The parameters a and b were ciblculated from the data and Eq. (10) dram 

as the so l id  curve of Fig. 12. 

The appliation of the voltage had the e f f ec t  of reducing the real 

part of the Ruzdamehtal eigenfrequency s l igh t ly  while h-6 v i r t u b  

no ef fec t  on higher modes, a8 predicted bytheory. 

was on the decay or  growth rate. In Fig. 13 a-d the experimental and theoret ical  

The important e f f ec t  

r e su l t s  are shown. The solid unmarked curves are the theoret ical  curves 

shif ted down by an amount equal to tbe damping a t  zero e l e c t r i c  f ie ld .  

s h i f t  represents mechanical loss in the syetem, primarily due t o  a i r  dmg. 

This 

The fundamental mode does indeed decay and the next three modes show. over- 

stable behavior within the l imits  of the e x p e r m t .  

the system overstable (Mode 3). Because Mode 3 became unstable a t  Ukv, 

it was not possible t o  take measurements on any of the other modes beyond 

One point was taken with 

t h i s  point. 
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Inspection of the zero f ie ld  damping correction shows the damping 

increaseswith frequency. Simple calculations of a i r  drag fo r  a n  osci l -  

l a t i ng  spring and j e t  indicate the same dependence on frequency and 

approximate l y  the cor re  c t magnitude . (10) 
I n  order t o  photograph the overstabi l i ty  a second apparatus was 

constructed with the elements mounted i n  a ve r t i ca l  plane. The t r a n s -  

verse spacing was increased and the longitudinal dimension shortened. 

It was found necessary t o  perform the experiment i n  an atmosphere of 

Freon t o  prevent corona discharge and breakdown. A s  the voltage was 

raised t o  the c r i t i c a l  point, the system became unstable a s  before, but 

now the f i rs t  unstable mode was the second mode. Figure 14 was photo- 

graphed with a shutter speed adjusted t o  the period of osc i l la t ion  t o  

show the amplitude envelope. 
* 

High speed motion pictures were taken t o  observe the phase 

relationships of the spring and j e t  during an osc i l la t ion  and t o  

observe the osci l la t ion buildup. A sequence of four frames one s ix th  

of a cycle apar t  i n  time are shown i n  Fig. 15. The second natural  

mode of the spring and the spatiallygrovlng character of the j e t  ( a t  

the same frequency a s  the spring) are  apparent. The relationship of the 

j e t  deformation t o  tha t  of the spring lends support t o  the physical 

arguments of the previous section concerning the mechanism fo r  over- 

s tab i l i ty .  

To the best of the author's knowledge, t h i s  i s  the f i rs t  stream- 

structure device which couples a convectingfluid exhibit ing amplifying 

* 
These motion pictures were taken by Educational aervioea, Inc., 

Jatertown, Mass., f o r  u80 in a film by 3. H. Melcher, sponeored by the 
lcational Soieroe Foundation under the supervieion of the National 
Committee on Electr ical  Engineering F i h .  
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waves i n  the uncoupled s t a t e  t o  a passive propagating structure t o  

produce overstabi l i t ies .  The time dependent eigenfunctions, computed 

fo r  the experimental conditions and for  the time sequence shown i n  

Fig. 15a, provide an excellent picture of the dynamics, a s  can be seen 

by a comparison of Fig. 16 with the photographs. 

V I  Conclusions 

The problem of describing the dynamics of a f lu fd  stream coupled 

t o  a f lexible  structure with the system bounded i n  both the transverse 

and longitudinal direct ions is formidable without simplifying assumptions. 

The e f f ec t  of surface tension or e l a s t i c  tension i s  t o  s tab i l ize  short 

waves, while a t  the same time the f i e l d  coupling of the stream and 

s t ructure  t o  each other and to  the transverse plates  i s  strongest a t  

the longest wavelengths. Thus the dynamics of the coupled system i s  

determined by the behavior of long waves, and the longitudinal 

boundaries have been carefully considered in  the present paper. 

Because the coupled equations are hyperbolic, r e a l  character is t ics  

e x i s t  and causal boundary conditions can be unambiguously specified 

( fo r  the present problem two upstream conditions on the j e t  and one 

upstream and one downstream on the  structure).  

The dispersion re la t ion  and Bers-Br9ggs s tabi l fgy c r i te r ion  give 

considerable insight  as t o  system s t a b i l i t y  when the ends are  far 

apart, but it i s  not too surprising tha t  these r e su l t s  are unreliable 

a s  the ends become closer together, and it becomes unecessary t o  

carry out the detai led calculations of the eigenfreqpencies. 

more, the Bers-Briggs c r i te r ion  offers no information concerning the 

de t a i l s  of any par t icular  mode. 

Further- 



For example the Bers-Briggs criterion predicts static instability 

for the electric field system, no absolute (stat1c)instabilities for 

the magnetic system, and convective instabilities for both types of 

coupling. The static instability I s  obsenred also in the finite 

length electric field system, but now both systems exhibit overstability. 

One might ask the question as to whether a convective instability has 

meaning in a system which is trulybounded. The downstream baunduyin 

effect fixes the wavenumbers and converts the convective instability 

into an overstability. 

Finally, as pointed out in (g), there'is a close analogy between the magnetic 

field coupled systems and electron beam devices. 

device is analogous to an extended region klystron, where the conducting 

jet is replaced by an electron beam and the membrane by a cavity. 

The present stream-structure 

A 

few calculations have indicated that this finite length system exhibits 

overstabilities similar to those shown in Fig. 8. 
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F i w e  Captions 

Figure 1. 
velocity Vo is field coupled to a highly conducting elastic structure. 

A highly conducting fluid stream moving to the right with 

Figure 2. Dispersion curves, assuming solutions of the form exp j(lut-hc) 
for the long wave model (A>> a) of the system in Figure l(a), electric field 
coupling. 
the mutual coupling ignored, have been included for canparison purposes. 

Complex 0) has been plotted for real k. Curves (a) and (c), with 

Figure 1. 
of Figure 2(b) and (a). 
from -a to 0.  

indicating a static-type absolute instability. 

Stability curves for electric field coupling for the conditions 
Complex k is plotted for fixed ur as mi is increased 

Saddle points are apparant in both figures for the 1 curves, 

Figure 4. 
coupling. 
the mutual coupling ignored, have been included for canparison purposes. 
No instabilities are observed for Vol/Vt4 2 

Dispersion curves similar to Figure 2 for magnetic field 
Complex CD has been plotted for real k. Curves (a) and (c), with 

Figure 5. 
the dispersion curve of Figure 4 ( d ) .  
by curves 3 and 4.  

Stability curves for magnetic field coupling, corresponding to 
A convective instability is exhibited 

Figure 6 .  
conditions showing the lowest three modes. 
frequency is synrmetric about the abscissa. 
for L 
modes exhibit overstability for a wide range of L CD~/V~. 

Cwrplex eigenfrequency VS. normalized length for experimental 
The real part of the eigen- 
The f'undamental mode is damped 

3.4 and exhibits etatic instability for larger L ue/V0. Higher 
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Figure Captions Continued 

Figure 1. 
field coupling. 
sinusoidal and the jet deflection sinusoidalwith an exponential envelope 
characteristic of the two elements acting independently. 

Typical eigenfunctions for the two lowest modes, electric 
The elastic structure (spring) deflection is predominantly 

Figure 8. 
field coupled stream-structure system for the lowest three modes. 
f’undamental mode exhibits decay while higher modes are overstable for a 
wide range of h e / V o .  

Complex eigenfrequency VS. normalized length for a magnetic 
The 

The conditions are the same is in Figure 4(d). 

Figure 4. 
field coupled system of Figure 8. The eigenfunctions are similar to those 
of Figure 7, except for a 180 phase inversion of the elastic structure in 
the two systems. 
field coupling. 

Eigenf’unctions for the three lowest modes for the magnetic 

0 

This illustrates the antiduality of magnetic and electric 

Figure 10. 
field coupled stream-structure system. Fluid surface tension and the field 
self coupling term have been neglected to illustrate the importance of the 
mutual  coupling in producing overstability. 

Complex eigenfrequency vs. normalized length for the degenerate 

F i w e  ll. Illustration of the feedback mechanism producing overstability. 

Figure 12. 
voltage. 
support strings on the elastic structure (spring) 

Experimental eigenfrequency VS. mode number for zero applied 
The deviation from a straight line is caused by the effect of the 
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Figure Captions Continued 

Figure 13. 
the larest four modes, The lower solid curve is the theoretical curve 
corrected for the mechanical damping at zero voltage. 
the third mode is apparent in ( c ) .  

Imaginary part of eigenfrequency vs. applied voltage for 

The instability of 

Figure 14. 
up of electric field coupled streaming overstability. 
jet (right) are resonating at the second eigenfrequency. 

Time exposure for one period of oscillation during build- 
Spring (left) and 

F i w e  15. 
Figure 14. 
The frequency of oscillation is about 7 cps. 

High speed photographs of the streaming werstability in 
The time interval between exposures is about 60° in phase. 

Figure 16. 
of Figure 15. 

Theoretical eigenfunctions for the experimental conditions 
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( b )  MAGNETIC FIELD COUPLED 

P i m e  1. 
velocity Vo is field coupled t o  a highly conducting claetic structure* 

A hi@xly conductiag fluid stream moving to the right with 



( C )  ( d )  

Figure 2. Dispersion curves, assuming solutions of the form exp j(ut-hc) 
for the long wave model (X 7)  a) of the system in Figure l(a), electric field 
coupXng. 
the mutual coupling ignored, have been included for comparison purposes. 

Cmplex o has been plotted for real k. Curves (a) and (c), with 
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Figure 3. 
of Figure 2(b) and (a). 
from -a to 0. 
indicating a static-type absolute instability. 

Stability curves for electric field coupling for the conditions 

Saddle points are apparant in both figures for the 1 curves, 
Complex k is plotted for fixed w as w is increased r i 
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F i m e  4. 
coupling. 
the mutual coupling ignored, have been included for comparison purposes. 
No instabilit ies are observed for Vol/VtL 2 . 

Dispersion curves similar t o  Figure 2 for magnetic f ie ld  
Complex LU has been plotted for real k. Curves (a) and (c), with 



v,, /v, = 3 
v02/vt = 0 

r ]  =-2 

F i m e  2. 
the dispersion curve of Figure 4(d). A convective instability is exhibited 
by curves 3 and 4, 

Stability curves for magnetic field coupling, corresponding to 
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Figure 6. 
conditions showing the lowest three modes. 
frequency is  symmetric about the abscissa. 
for L ae/V0 6 .3 .4  and exhibits static instability for larger L oe/Vo. Higher 
modes e f i i b i t  wersta3ility fer e viae range of L u) /v-* 

Complex eigenfrequency VS. normalized length for experimental 
The real part of the eigen- 
The fundamental mode is damped 

e o  
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Figure 1. 
field coupling. 
sinusoidal and the jet deflection sinusoidalwith an exponential envelope 
characteristic of the two elements acting independently. 

Typical eigen-ctions for the two lowest modes, electric 
The elastic structure (spring) deflection is predominantly 
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F i m e  8. Complex eigenfrequency vs. normalized length for a magnetic 
f i e l d  coupled stream-structure system for the lowest three modes. 
ftmdamentalmode exhibits decay while higher modes are overstable for a 
wide range of Iru /V 

The 

The conditions are the same is in Figure 4(d).  e o  
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NORMALIZED DISTANCE (Lw,, /V,= 1,751 

F i w e  4. 
field cuupled system of Figure 8. The eigenfunctions are similar to those 
of Figure 7, except for a 180° phase inversion of the elastic structure in 
the two systems. 
field coupling. 

Eigenflmctions for the three lowest modes for the magnetic 

This illustrates the antiduality of magnetic and electric 
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F i m e  ll. Illustration of the feedback mechanism producing avarstability. 
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F i m e  12. 
voltage. 
support strings on the elastic structure (spring). 

Experimental eigenfrequency VS. mode number for zero applied 
The deviation from a straight line is caused by the effect of the 
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corrected for the mechanical dampiw at zero voltage. 
the third mode is  apparent in (c). 

The lower solid curve i s  the theoretical curve 
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up of electric field coupled streaming overstability. 
jet   rig^) are resonating at the second eigenfreqllencyl 

Time exposure for one period of oscillation during build- 

Spring (left) and 
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