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ABSTRACT

The problem of a highly conducting fluid stream coupled by means

of a transverse electric or parallel magnetic field to a conducting

elastic medium is examined in detail. ' From the dispersion relation and
the Bers-Briggs criterion the stability of the infinite length system is
described. Eigenfrequencies and eigenfunctions are computed for the
finite length system and good agreement is obtained with experiments
performed with an electrohydrodynamic system. A physical explanation

is given for the overstabilities observed. The close analogy between a
limiting case of the field coupled system and an electron beam coupled to

a traveling wave structure is discussed.
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I Introduction

Stream structure interactions occur in many physical areas and
have great practical significance, The flow of air over panels is
known to cause wing flutter and instabilities in aircraft.(l’g)

Numerous electron beam devices, such as the traveling wave tube,
klystron, backward wave amplifier and oscillator, among others, make
use of the instabilities produced by the coupling of an electron beam
to a passive structure.(j) Haugugas analyzed the problem where magneto
acoustic waves in a moving plasma couple to a passive structure to produce
wave amplification."The present system is the first, to the guthor's
knowledge, which couples a fluid stream to a mechanical structure by
means of an electric or magnetic field., /

Perhaps the first experiment concerning a stream-structure inter-
action was performed by Lord Rayleigh,(B) who impressed the vibrations
of a water jet, produced by capillary instability of the sausage mode,
onto a sounding board and mechanically fed back the vibrations to the
entrance of the flow, producing large oscillations of the jet.

The overstability is of course due to the regenerative feedback
through the external mechanicel linkage and strictly speaking the system
is not of the stream-~-structure type in the context of this paper.

Suppose however, the external feedback link 18 replaced by a structure*
which can couple to the stream at each point along its length. Then if
a wave on the stream traveling downstream can couple to a wave on the

structure in such a way that some of the wave energy can be fed back to

* Structure in the context of this paper implies a mechanical structure
capable of transverse vibrations such as a tuning fork, membrane, or
in the case of the experiment to be described, a weak spring.




the upstream end, the cenditiens for self oscillation may exist
‘witu the system overstable. Under other cemditiens, the stream ana
structure may still couple to produce an amplifying wave, and under
certain circumstances the structure may damp the wave,

The stream-structure system to be studied here is shown in Fig. 1
and consists of a conducting liquid jet and a conducting membrane
coupled by an electric or magnetic field. The jet is considered to be
thin and only the kink mode will be discussed. As the jet or membrane
is displaced in the transverse direction, the field is perpurbed, pro-
ducing a net traction on the element perturbed (self coupling), and
.also producing a net traction on the other deformable element (mutual
coupling). Mechanical tension and end effects are important.

While the behavior of many stream structure interactions is under-
stood qualitatively, it is only recently that effort has been made to
analytically compute the complex eigenfrequencies for a stream-structure
device of finite 1ength.(6) The stability of the infinitely long system
will be examined from the dispersion relation and the'Bers-Briggs(7’8)
criterion, and the eigenfrequencies and eigenfunctions computed for the
finite length system. It will be shown that the necessary ingredients
for self oscillation (overstability) are present for both electric and
magnetic field coupling, and that experiments performed on the electro-
hydrodynamic system exhibit overstability in quantitative agreement with
theory.

II Problem Description

In a previous paper,(9) the author has considered the dynamics of
two highly conducting finite length fluid streams coupled by an electric

or magnetic field. If was shown that there were four basically different




classes of flow; Class I: subcapillary, Class II: supercapillary
co-streaming, Class ITT: supercapillary counter-streaming, and
Class IV: Subeaspillary supercapillary flow. The first three classes
were discussed in that paper; the Class IV flow will be the topic of
the present paper.

The model for the system consists of a planar conducting fluid

stream of density p1 and surface tension T. and a conducting elastic

1
membrane* with density P and tension per unit width T2, coupled by

a transverse electric field Eo or longitudinal magnetic field Ho.

The assumed planar geometry simplifies the mathematics and it has been
.shown (9) that such a model is valld for & circular jet if the electri-
cal coupling coefficients are experimentally determined. As in the
previous paper the discussion will be restricted to the kink mode

(m = 1) of the jet. If V, is the stream velocity and f; a.nd£2 the

transverse displacements of the stream and membrane, the dynamical

equations are given by
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The equations for magnetic coupling are obtained from Eq. (1) by

#* The kink mode (m = 1) of a stationary fluid stream can be modeled
by an elastic membrane.




replacing wbz by - wh2 .
The assumptions used in the derivation and explanation of the quantities
and terms in Eq. (1) are given in (9) and will be omitted here. If a

J(owt-kx)

traveling wave solution e is assumed, the following dispersion

relation is obtained.

G
= =2 =2 n][-g =2 1 ] 2
[(d)ﬁ) -kG+2 w -kGl+2G2 - T-O (2)
where
2 2 2
\'i \'s w
kv t t e
D = 2 = 2 = (=X = (=2 2
“)=w )ﬁ—w :G-(V) ’Gl-(v) ,G2=(7D-—-)
el el 0 (@]

Equation (2) is plotted in Fig. 2 for electric field coupling and
values of the flow velocity VO/VtZ2. For convenience, the stream and
structure are assumed to have the same physical constants, so that

vtl = Vt2 =V, and mel = me2 = w,. For vo/vt> 2, it is evident that

there is strong stream-structure coupling only near k = O and that the
coupled system behaves essentially like a stream and structure separately;
i.e., it has the static instability of the structure and the convective

(20) This is verified by the Bers-~Briggs plot

instability of the stream.
in Fig. 3a where both the saddle point and convective instability are
evident. For a slightly supercapillary stream, there is also strong
coupling for a passband of wavelengths, and this produces an additional
region of instability.

For the magnetically coupled systems, no instabilities are observed
for Vo/Vt-c 2 as can be seen in the dispersion curves of Fig., 4. Again
the system exhibits the propagating and envanescent behavior of the

uncoupled system. For VO/V£=-2, however, the system beccames convectively

unstable, as illustrated by curves 3 and 4 of Fig. 5.




IIT The Eigenvalue Problem

Now consider the dynamics with boundaries imposed. The system is
a supercapillary jet which enters the interaction region unexcited,

and a membrane fixed at the ends,

| The boundary conditions consistent with causality are:o‘o)
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The solutions to this system of equations may be written
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If the boundary conditions are evaluated, the following determinantal

equation is obtained.
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Equation (6), combined with the dispersion relation, Eq. (2), forms
the eigenvalue equation to be solved.,

Electric Coupling

The eigenfrequencies for electric field coupling are shown in

Fig. 6 for the lowest three modes using the experimental values of the

(9)

parameters.
To interpret the curves, it is useful to compare the eigenfrequencies
for the uncoupled case, namely a single structure field coupled to rigid

platés. The determinantal equation reduces simply to k = %F and the

eigenvalue equation becomes
2

v
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The real parts of the eigenfrequencies shown in Fig. 6 are essentially
those of the structure alone, (Eq. 7) field coupled to a rigid wall.

In addition, the point of instability for the first mode is nearly that
predicted by Eq. (7). The principle effect of the mutual coupling is

to produce electrical damping of the wave below the point of instability.
Above the instability point the growth rate also agrees quite well with
the uncoupled case and approaches the same asymptotic limit. The

decay branch, however, exhibits an increased decay rate.

The effect of the coupling on mode 2, however, is quite significant.

Lw
Mode 2 exhibits overstability for a wide range of 3733 and becomes
o]
unstable (assuming no mechanical or electrical losses) as soon as the
Lw
slightest electric field is applied. As Tfs'is increased, the normalized
o]

growth rate increases to quite a large value until the real part of the
eigenfrequency becomes zero and the curve splits into two statically
unstable modes (not shown). The deviation from the mutually uncoupled
eigenfrequency case becomes large with increasing ;;? . The overstable
behavior of mode 2 is exhibited by higher modes as well.

The eigenfunctions may be computed using Egs. (2), (&), and (6).

If we assume Bl # O for the moment, then the ratios of the coefficients

to B1 may be computed from
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Since Bl is arbitrary, it may be set equal to the determinant of the
coefficient matrix of Eq. (8). This allows the B's to be written in a
symmetric form and the restriction that B, # O can be removed.

Manipulating Eq. (8) we get

o
1]

2
1 (kB-kh)(kB-ke)(kh'ke) fa+v, (k5kh+k3k2+khk2)}

2
B, = (ku-kj)(kh-kl)(kj-kl) fa + vte2 (k3kh+klk3+klku)] (9)
By = (kyiy ) (kymky ) (y-ky ) fA + Vt22 (ke ke ey ey )
B, = (k3-ku)(k3-k1)(k2-kl) {A + vt22 (k3k2+k3kl+k2kl)}
where A = w2 + n:eg .

From Eq. (4) the spatial dependence of the eigenfunctions can be calcu-

lated and finally the time dependent eigenfunctions follow from

§(x,t) = reré(x)e?®

Typical eigenfunctions far the lowest modes of the stream structure
system for the case w . = meg = o, th = Vt2 =V, and Vo/vt = 2 are
shown in Fig. 7. The fundamental mode for both the growth and decay
branches exhibits the behavior of the mutually uncoupled jet and spring.
The relative phasing is as expected, since a downward deflection of
the spring weakens the field in the midregion and produces an upward
traction on the jet. The peak amplitude of the membrane is very
slightly shifted downstream. The membrane eigenfunction of mode 2 is
also the same as in the mutually uncoupled case. For x < L the traction

2

on the jet is downward; for %-< X < L, upward. But a certain length is
required for the jet to reverse its direction of motion and cross the
axis, The amplitude grows fairly rapidly since the self and mutual

coupling terms are reinforcing.
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Magnetic Coupling

The magnetic field coupled system eigenfrequencies for the same
parameters as in the case just mentioned are shown in Fig. 8 for the
lowest three modes. The real parts of the eigenfrequencies are typical
of a magnetically coupled membranegll) The imaginary parts exhibit the
same decay of the fundamental mode and growth of higher modes as for

electric field coupling. It is interesting that each higher mode

I
exhibits a peak growth rate, the second mode for ?72'= 2.6 and the
o
third mode for T~ 3.9. The maximum growth rates are about equal.

o]
This implies an optimum length if one wished to design an oscillator

using a particular mode (neglecting the adverse effects of other modes).
That such a peak should occur is reasonable if one recalls from Fig. 3
that no absolute instabilities exist in the infinite system.

The eigenfunctions for v 1.75 are shown for the three lowest
o]

modes in Fig. 9. The same membrane-like behavior is observed as in the
electric field case, but the jet behavior is more wavelike. Since the
magnetic self coupling term has a stabilizing effect, the field coupled
Jet by itself exhibits purely propagating waves. By contrast the
electric field coupled jet exhibited convective instability in the
absence of mutual coupling.

It is evident from the previous discussion of electric and magnetic
field stream-structure interactions that the electric and magnetic sys-
tems have many common features. The same conclusion was reached in (9)
in the discussion of counter-streaming Jets, where it was found that
the mutual coupling and convective terms were of primary importance,
with the surface tension unimportant, and the self coupling term either

enhanced (electric field) or depressed (magnetic field) instabilities.



re

It 1s worthwhile to speculate if the dynamical terms in the equations of
motion play the same role in the present case.

The Degenerate 8ystem

Let us postulate here that the jet is without surface tension and
that the self coupling field terms are unimportant. (This involves set-
ting G and n to zero). As & result the electric and magnetic systems
yield the same eigenfrequency curves (replacing wee by -w§ leaves
Eq. (2) unchanged). Since the right hand sides of Eq. (3) change sign
however, the eigenfunctions are differeﬁt. This can be expected physically
since an upward displacement of the structure, say, will exert a downward
traction on the stream for electric field coupling and an upward traction
in the magnetic case . The resulting eigenfrequency curves (Fig. 10) appear
to be a hybrid of the electric and magnetic field cases (compare Fig. 10
with Figs. 6 and 8, Strictly spesking, the comparison is not walid, but
the results are qualitatively insensitive to changes in parameters).

The degenerate system exhibits damping of the fundamental mode and
overstability in the higher medes characteristic of beth types of field
coupling. It also exhibits static instabilities characterisitic of electric
field coupling.

From the above discussion, several facts become clear concerning field
coupled stream - structure systems:

1. The real part of the eigenfrequencies can be predicted quite accurately

h
v ’_ from Eq. (7).
o

assuming the streew to be a rigid wall, for all




2. The imaginary part of the eigenfrequency can also be approximately

Lw
predicted from the structure alone in the limit L1 N .

v
o
3. The fundamental mode is damped by the stream (below a critical
w
value of RFE for the electric case) and all higher modes exhibit
o

overstability for both types of coupling.

We may conclude, as alép pointed out in (9) for counter-streaming
jets, that the mutual coupling term is of fundamental importance. This
instability is produced by the supercapillary stream, since the magnetic
system exhibits no instabilities if the stream velocity is zero or even
subcapillary.

The role of the self coupling terms is now apparent. For electric
field coupling, self coupling is destabilizing; the most important effect
is to enhance the growth rate of existing instabilitigs. For the
magnetic case the magnetic field is stabilizing and is sufficiemt to
suppress the static instability of the fundamental mode and reduce,
although not suppress the growth rate of the overstabilities.

IV. Physical Explanation of Stream-Structure Overstability

It is possible to describe the overstability simply in terms of
motions of elements of fluid interacting with the structure. Two
ingredients are essential: (1) there must be time average power flow
fram stream to the structure; (2) even if the stream supplies net
power, the mechanism must be present for the structure to feed back
some of the downstream absorbed power to the upstream section of the
stream to sustain the oscillations. Otherwise the system behaves
as an amplifier and not an oscillator. To simplify the discussion,
surface tension on the stream will be ignored and the only force

acting on the fluid elements to be studied is due to mutamal coupling.
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It will be assumed for the convenience of the argument that the
stream velocity is twice the wave velocity on the structure, or alter-
nately, the transit time of the jet is half the period of oscillation.
Consider an element of fluid A which enters the interaction region
unexcited at t = O with the spring at half amplitude and rising (Fig. 11).
As ot advances to n/Lk, the structure exerts a strong downward traction
on A as it travels the half-length of the system, but has supplied only
a modest amount of power because of the small transverse stream velocity.
During the second quarter period element A exerts an upward traction on
the structure, and further, this upward force occurs at a time when
ﬁhe structure is at near maximum upward velocity, so that the kinetic
energy transfer from the fluid to the structure is large, much larger
than that delivered to element A during the first quarter cycle. Thus
A at least satisfies both requirements for overstability. It is neces-
sary, however, to show that other fluid elements do not degrade the
overstable effect of element A. Following other particles at different
entrance times, one concludes that elements like A in fact characterize
the system. The argument may be extended to the third or higher modes
without conceptual difficulty, although the details become involved.

In all of the modes higher than the first, the mechanism for
instability depends on the structure exciting the jet upstream and the
jet in turn transferring net power back to the structure. The funda-
mental mode is peculiar, however, since each point on the spring has
the same phase, and no feedback mechanism is available. Hence the funda-

mental mode is not overstable.
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V. An Electrohydrodynamic Experiment

To investigate some of the ideas presented in the foregoing sectionms,
an electrohydrodynamic experiment was constructed consisting of a
circular water jet and a weak metal spring 6f the same dimensions,
supported in the horizontal plane. Two external plates provided the
same equilibrium electric stress on each side of the jet and spring.

The apparatus was as shown schematically in Fig. 1. For convenience

the jet was grounded. Only one voltage source was required siﬁce the
outer plates were carefully adjusted so that the spring and jet did

not deflect -when the field was turned on. Since the theoretical model
.assumes a planar geometry, it was necessary that the system parameters

be measured. This was done by replacing the jet by a second matched
spring and measuring resonant frequency vs. voltage for the fundamental
symmetric and antisymmetric modes. {The procedure and results are
descrived in (9) and (10)). So that the elements be coplanar, the plates
were bent and the spring supported by fine insulating strings to match
the curvature of the jet. The strings, however, introduced an additional
restoring force on the spring, acting like a distributed set of pendulums,
and this effeet is included in the analysis.

To detect the existance of abswlute instabilities, the d.c. voltage
was increased from zero until either an instability or electrical
breakdown occurred. At low voltages, the spring and jet were effec-
tively uncoupled, disturbances on the spring appeared as standing wave
oscillations which decayed slowly in time, while jet disturbances
appeared as pulses traveling downstream at about the jet velocity. As
the voltage was increased, the spring and jet began to interact.

The oscillation frequencies of the spring were not affected appreciably
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by the presence of the electric field; the damping, however, was
significantly altered. The fundamental mode decayed more rapidly while
higher modes decayed more slowly, Disturbances on the jet exhibited
spatial growth for long waves (characteristic of a single Jet field
coupled to rigid plates).

As the voltage was increased further, a critical electric field was
reached when the system spontepmeaisly broke into oscillation
and the amplitudes increased slowly with time, building up to such an
amplitude that the spring and jet collided, terminating the experiment.
The trajectory of the spring was the third mode. The jet, however,
éxhibited a tfaveling wave behavior with aﬂ exponential envelope which
grev in time at the same rate as the spring. The critical voltage was
reproducible. If this voltage were exceeded by a modest amount, the
system became overstable, but the spatial character of the deflections
was unchanged., Further increase of the voltage resulted in other
modes becoming unstable, first the fourth mode, then others.

In order to examine the eigenfrequencies quantitatively, each of
the lowest four modes was excited and the resulting complex eigenfrequency
recorded as a function of voltage. The modes were excited by segmenting
the plate adjacent to the spring and applying a small AC voltage at the
resonant frequency. This driving voltage was spatially periodic with
the wavelength of the disturbance on the spring. The excitation was
then removed and the decay (or growkbh) of the mode recorded. In this
way both the real and imaginary parts of the eigenfrequency were
measured,

The theoretical values of the real part of the resonsnt frequencies

at zero voltage should be exact multiples of the fundamental if we ignore
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the effect of the support strings on the spring. This, however, was not
observed, as seen in Fig. 12 (resonant frequency measurements are accursate
to + .0l cps, so that the deviation from a straight line in Fig. 12 is
stgnificant),

Consider that the spring experiences a continuum gravitatienal restering
force through the support strings holding the spring. The restoring force on
a section of spring of unit length is simply given by - E‘-:E (p(is the
lineal demsity of the spring.) Since the ends of the spring are fixed,
k= nj‘l and the functional dependence of the frequency on mode number for
zero electric field becomes

2 aan® +b (19)
The parameters a and b were calculated from the data and Eq. (10) drawn
as the solid curve of Fig. 12.

The appliation of the voltage had the effect of reducing the real
part of the fundamental eigenfrequency slightly while having virtually
no effect on higher modes, as predicted by theory. The important effect
was on the decay or growth rate., In Fig. 13 a-d the experimental and theoretical
results are shown. The solid unmarked curves are the theoretical curves
shifted down by an amount equal to the damping at zero electric field. This
shift represents mechanical loss in the system, primarily due to air deag.
The fundamental mode does indeed decay and the next three modes show- over-
stable behavior within the limits of the experiment. One point was taken with
the system overstable (Mode 3). Because Mode 3 became unstable at 12kv,

it was not possible to take measurements on any of the other modes beyond

this point.
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Inspection of the zero field damping correction shows the damping
increaseswith frequency. Simple calculations of air drag for an oscil-
lating spring and jet indicate the same dependence on frequency and
approximately the correct magnitude.(lo)

In order to photograph the overstability a second apparatus was
constructed with the elements mounted in a vertical plane. The trans-
verse spacing was increased and the longitudinal dimension shortened.

It was found necessary to perform the experiment in an atmosphere of
Freon to prevent corona discharge and breakdown. As the voltage was
raised to the critical point, the system became unstable as before, but
now the first unstable mode was the second mode. Figure 14 was photo-
graphed with a shutter speéd adjusted to the period of oscillation to
show the amplitude envelope.

High speed motion pictures* were taken to observe the phase
relationships of the spring and jet during an oscillation and to
observe the oscillation buildup. A sequence of four frames one sixth
of a cycle apart in time are shown in Fig. 15. The second natural
mode of the spring and the spatially growing character of the jet (at
the same frequency as the spring) are apparent. The relationship of the
Jjet deformation to that of the spring lends support to the physical
arguments of the previous section concerniné the mechanism for over-
stability.

To the best of the author's knowledge, this is the first stream-

structure device which couples a convecting fluid exhibiting amplifying

These motiom pictures were taken by Educational “ervices, Inc.,
Jatertown, Mass., for use in a film by J. R. Melcher, spensored by the
iiational Sciemae Foundatiom under the supervisien of the National
Committee om Electrical Engineering Films.
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waves in the uncoupled state to a passive propagating structure to
produce overstabilities. The time dependent eigenfunctions, computed
for the experimental conditions and for the time sequence shown in
Fig. 15a, provide an excellent picture of the dynamics, as can be seen
by a comparison of Fig. 16 with the photographs.

VI Conclusions

The problem of describing the dynamics of a fluid stream coupled
to a flexible structure with the system bounded in both the transverse
and longitudinal directions is formidable without simplifying assumptions{
The effect of surface tension or elastic tension is to stabilize short
waves, while at the séme time the field coupling of the stream and
structure to each other and to the transverse plates is strongest at
the longest wavelengths. Thus the dynamics of the coupled system is
determined by the behavior of long waves, and the longitudinal
boundaries have been carefully considered in the present paper.
Because the coupled equations are hyperbolic, real characteristics
exist and causal boundary conditions éan be unambiguously specified
(for the present problem two upstream conditions on the jet and one
upstream and one downstream on the structure).

The dispersion relation and Bers-Briggs stabilipy criterion give
considerable insight as to system stability when the ends are far
apart, but it is not too surprising that these results are unreliable
as the ends become closer together, and it becomes unecessary to
carry out the detailed calculations of the eigenfrequencies, Further-
more, the Bers-Briggs criterion offers no information concerning the

details of any particular mode.
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For example the Bers-Briggs criterion predicts static instability
for the electric field system, no absolute (static)instabilities for
the magnetic system, and convective instabilities for both types of
coupling. The static instability is observed also in the finite
length electric field system, but now both systems exhibit overstability.

One might ask the question as ty whether a convective instability has
meaning in a system which is truly bounded. The downstream boundaryin
effect fixes the wavenumbers and converts the convective instability
into an overstability.

Finally, as pointed out in (9), there 1s a close analogy between the magnetic
field coupled systems and electron beam devices. The present stream-structure
device is analogous to an extended region klystron, where the conducting
jet is replaced by an electron beam and the membrane by a cavity. A
few calculations have indicated that this finite length system exhibits

overstabilities similar to those shown in Fig. 8.
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Figure Captions

Figure 1. A highly conducting fluld stream moving to the right with
velocity Vo is field coupled to a highly conducting elastic structure.

Figure 2. Dispersion curves, assuming solutions of the form exp ;)(u)t-bc)
for the long wave model (A >> a) of the system in Figure 1(a), electric field
coupling. Complex w hac been plotted for real k. Curves (a) and (c), with
the mutual coupling ignored, have been included for comparison purposes.

Figure 3. Stability curves for electric field coupling for the conditions
of Figure 2(b) and (d). Complex k is plotted for fixed ®, a5 o
from -» to O. Saddle points are apparant in both figures for the 1 curves,
indicating a static-type absolute instability.

is increased

Figure k. Dispersion curves similar to Figure 2 for magnetic field
coupling. Complex ® has been plotted for real k. Curves (a) and (c), with
the mutual coupling ignored, have been included for camparison purposes.

No instabilities are observed for vol/vt<2.

Figure 5. Stability curves for magnetic field coupling, corresponding to
the dispersion curve of Figure 4(d). A convective instability is exhibited
by curves 3 and k4.

Figure 6. Complex eigenfrequency vs. normalized length for experimental
conditions showing the lowest three modes. The real part of the eigen-
frequency is symmetric about the abscissa. The fundamental mode is damped
for L a)e/V°<a3.1+ and exhibits static instability for larger L a)e/vo. Higher
modes exhibit overstability for & wide range of L me/vo. :

\
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Figure Captions Continued

Figure 7. Typical eigenfunctions for the two lowest modes, electric
field coupling. The elastic structure (spring) deflection is predominantly
sinusoidal and the jet deflection sinusoidal with an exponential envelope
characteristic of the two elements acting independently.

Figure 8. Complex eigenfrequency vs. normalized length for a magnetic
field coupled stream-structure system for the lowest three modes. The
fundamental mode exhibits decay while higher modes are overstable for &
wide range of Ime/Vo. The conditions are the same is in Figure 4(d).

Figure 9. Eigenfunctions for the three lowest modes for the magnetic
field coupled system of Figure 8. The eigenfunctions are similar to those
of Figure 7, except for a 180° phase inversion of the elastic structure in
the two systems. This illustrates the antiduality of magnetic and electric
field coupling.

Figure 10. Complex eigenfrequency vs. normalized length for the degenersate
field coupled stream—structure system. Fluid surface tension and the field
self coupling terms have been neglected to illustrate the importance of the
mutual coupling in producing overstability.

Figure 11. I1lustration of the feedback mechanism producing overstability.
Figure 12. Experimental eigenfrequency vs. mode number for zero applied

voltage. The deviation from a straight line is caused by the effect of the
support strings on the elastic structure (spring).




Figure Captions Continued

Figure 13. Imaginary part of eigenfrequency vs. applied voltage for
the lowest four modes. The lower solid curve is the theoretical curve
corrected for the mechanical damping at zero voltage. The instability of
the third mode is apparent in (c).

Figure 1k. Time exposure for one period of oscillation during build-
up of electric field coupled streaming overstability. Spring (left) and

jet (right) are resonating at the second eigenfrequency.

Figure 15. High speed photographs of the streaming overstability in
Figure 14. The time interval between exposures is about 60° in phase.
The frequency of oscillation is about 7 cps.

Figure 16. Theoretical eigenfunctions for the experimental conditions
of Figure 15. '
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Figure 1. A highly conducting fluid stream moving to the right with
velocity Vo is field coupled to a highly conducting elastic structure.
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Figure 2. Dispersion curves, assuming solutions of the form exp j(wt-kx)

for the long wave model (A >>a) of the system in Figure 1(a), electric field
coupl.ing. Complex w has been plotted for real k. Curves (a.) and (c), with
the mutual coupling ignored, have been included for comparison purposes.
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Figure 3. Stability curves for electric field coupling for the conditions

of Figure 2(b) and (d). Complex k is plotted for fixedmr as o

N is increased
fl‘om =00 tO 0.

Saddle points are apparant in both figures for the 1 curves,
indicating a static-type absolute instability.
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Figure 1_+.. Dispersion curves similar to Figure 2 for magnetic field

coupling. Complex w has been plotted for real k. Curves (a) and (c), with

the mutual coupling ignored, have been included for comparison purposes.
No instabilities are observed for vol/vt< 2.
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Figure 5. Stability curves for magnetic field coupling, corresponding to

the dispersion curve of Figure 4(d). A convective instability is exhibited

by curves 3 and k4.
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Figure 6. Complex eigenfrequency vs. normalized length for experimental
conditions showing the lowest three modes. The real part of the eigen-
frequency is symmetric about the abscissa. The fundamental mode is damped
for L “’e/"o «-3.4 and exhibits static instability for larger L me/vo. Higher
modes exhibit overstability for s wide range of L me/vo.
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Figure 7. Typical eigenfunctions for the two lowest modes, electric

field coupling. The elastic structure (spring) deflection is predominantly
sinusoidal and the jet deflection sinusoidal with an exponential envelope
characteristic of the two elements acting independently.
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Figure 8. Camplex eigenfrequency vs. normalized length for a magnetic

field coupled stream-structure system for the lowest three modes. The
fundamental mode exhibits decay while higher modes are overstable for a
wide range of nne/vo. The conditions are the same is in Figure 4(d).
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Figure 9. Eigenfunctions for the three lowest modes for the magnetic
field coupled system of Figure 8. The eigenfunctions are similar to those
of Figure 7, except for a 180° phase inversion of the elastic structure in

the two systems. This illustrates the antiduality of magnetic and electric
field coupling.
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Figure 11. Illustration of the feedback mechanism producing overstability.




Figure 12. Experimental eigenfrequency vs. mode number for zero applied
voltage. The deviation from a straight line is caused by the effect of the
support strings on the elastic structure (spring).
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Figure 13. Imaginary part of eigenfrequency vs. applied voltage for

the lowest four modes. The lower solid curve is the theoretical curve
corrected for the mechanical damping at zero voltage. The instability of
the third mode is apparent in (c).
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