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INTRODUCTION 

The altitude-exposed rat is uniquely suited for an investiga- 

tion of the pituitary during acclimation, since the endocrine state 

of hypoxia-exposed animals is well known from extensive studies of 

the thyroid, adrenal, and reproductive organs employing a multitude 

of  biophysical and biochemical methods ( 3 4 ,  4 6 ,  54,  79). Investiga- 

tions of the functional state o f  the rat anterior pituitary during 

altitude exposure are rare, however, and there are no available data 

which relate pituitary cytochemical changes to the process of 

acclimation. 

Recent developments in the technique of visible cytophoto- 

metric analysis (62, 80, 81) permit, for the first time, a direct 

investigation of histochemically stained pituitary cell types and 

promise to further clarify the secretory response of individual cells 

during acclimation to environmental change. 

A major aim of the present study is to describe the adaptive 

cytochemical responses of the hormone-producing cells of the rat 

anterior pituitary following exposure of  varying duration to 

simulated high altitude. All data are obtained by application of 

differential cell count and analytical cytophotometric techniques. 

A related and supplemental aim is to cytophotometrically characterize 

the various pituitary cell types on the basis of their absorption 

spectra. 
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GENERAL CONSIDERATIONS 

A .  Statement and Definition of Terms. 

In those animal forms in which aerobic cellular respiration 

constitutes the chief biochemical source of metabolic energy, the 

environmental oxygen tension is the major parameter to which the 

organism must respond, if it is to survive. Homeostatic mechanisms 

have been demonstrated which enable the organism to adjust to 

changes in such environmental factors ( 7 ) ,  and there is general 

agreement that those mechanisms reach their highest expression in 

species which maintain a fairly constant internal environment in 

the presence of great changes in external conditions ( 6 4 ) .  

The French physiologist Bert was among the first to recognize 

the relationship which exists between altitude and the partial pres- 

sure of oxygen and was the pioneer in the systematic study of the 

effects of increased altitude upon the living organism. His 

observations of the external manifestations of altitude exposure 

demonstrated the physiological importance of adequate oxygen tensions 

and suggested the presence of mechanisms by which the individual 

could adjust to limited changes in altitude and the corresponding 

changes in barometric pressure (10). 

In more recent years investigations in altitude physiology 

have made it clear that the response of the organism to hypoxic 

conditions is subdivisible into two parts (87). These may be 

designated as the initial or acute period of exposure which begins 
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immediately and persists for, at most, a few days and the prolonged 

or chronic period which may last for the life span of the individual. 

Each of these periods may be characterized by the physiological state 

of the organism, and each is sufficiently different s o  that Prosser 

( 6 4 )  urges the use of special terminology to distinguish between 

them. Thus acclimation is defined as the "compensatory alterations 

seen in an animal exposed to controlled laboratory conditions," 

while acclimatization means "changes under natural conditions of 

climate, season, or geography." These definitions are retained 

throughout this report, and, in addition, the terms simulated high 

altitude, altitude-exposure, reduced pressure, and hypoxia are 

considered to be synonymous and are used interchangeably ( 5 4 ,  8 3 ) .  

B. Adaptation to Simulated High Altitude. 

1. General mechanisms. The organismic changes which 

characterize full acclimation to conditions of reduced pressure 

are widely recognized and extensively reviewed elsewhere (78, 8 3 ) .  

For summary purposes these may be grouped as: 1. functional 

ad jus tments which increase the exchange of oxygen between the 

environment and the organism such as hyperventilation and an 

increased residual air capacity of the lungs ( 3 9 ) ,  2 .  an hyper- 

plasia and hypertrophy of certain components of the circulatory 

system, demonstrated as a marked polycythemia and an increase in 

the number and size of certain tissue capillaries ( 5 ,  5 6 ) ,  and 

3 .  metabolic and physicochemical reorganization at the tissue and 
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cellular level, which enhances cell survival in the presence of 

anoxemia ( 4 ,  70) and involves an increased dependency upon anaerobic 

sources of metabolic energy with a corresponding decrease in peri- 

pheral tissue oxygen consumption ( 6 ) .  

2 .  Neural mechanisms. The mechanisms which must operate at 

the onset and during the early phase of altitude exposure to bring 

about the acclimated state are not well understood. It is known 

that among the several body tissues the nervous tissue is especially 

sensitive to oxygen want (7, 3 1 ,  71, 8 3 ,  8 6 ,  9 0 ) .  Furthermore, the 

behavioral changes such as appetite loss, general lethargy, hyper- 

ventilation, and impairment of mental activity which accompany 

hypoxia exposure ( 3 4 ,  39 )  are controlled, in part, by neural 

reflexes, although the precise factors responsible for these effects 

are in no case fully elucidated. 

3 .  Endocrine mechanisms. Considerable evidence shows the 

active participation of the endocrine system in the initial acclima- 

tion of the organism to simulated high altitude. The response of 

the adrenal, thyroid, and gonad are especially well studied. Thus, 

Gordon et al. (28) demonstrate an increase in rat adrenal weight 

following both continuous and discontinuous exposure at 250-280 mm 

Hg. 

mixtures with 15 and 10 percent oxygen content ( 4 6 ) .  Weihe (87) 

reports a maximum adrenal weight increase three days after the 

transport of rats to a mountaintop environment (3450 m) which 

corresponds closely with the time at which adrenal cortical 

Similar effects are observed in rats exposed to controlled gas 
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osmophilia is at a maximum (63) .  Several investigations show 

increased levels of adrenocortical steroids in the circulation 

during the first few days of hypoxia exposure (37,  39, 83 ,  8 7 ) .  

Equally profound adjustments occur in thyroid gland function 

under similar conditions (34, 5 4 ,  55, 79) .  In a recent study 

Nelson (54) reports a loss of thyroid gland weight and changes in 

uptake and turnover of 1-131, in the intrathyroidal MIT/DIT ratios, 

in serum PBI levels, and in fecal and urinary clearance of labeled 

thyroxine during the first few days of continuous exposure of rats 

to 380 mm Hg. These data are interpreted as a transient functional 

hypothyroidism (55) which is of paramount importance in restoring 

the balance between available oxygen and oxygen utilization at the 

tissue level. 

The observed responses of the gonad to high altitude condi- 

tions are less clear. Moore and Price (52), in an extensive study 

of acclimatization to altitudes slightly in excess of 14,000 feet, 

are unable to demonstrate any measurable changes in either the ovary 

and testis or in general reproductive function. L o s s  of testicular 

weight following both intermittent and continuous exposure to 25,000 

feet of simulated altitude is reported by Gordon et al. (28) and 

confirmed under similar conditions by Altland (2),  who also 

demonstrates a complete loss of reproductive function in all 

exposed animals. Assessment of the female response in both of the 

above studies leads to the conclusion that the ovary and female 

accessory reproductive structures are less affected than the 
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corresponding s t r u c t u r e s  of the male. Add i t iona l  i n v e s t i g a t i o n s  

show t h a t  the  immature t e s t i s  is  less s u s c e p t i b l e  than the a d u l t  

organ t o  hypoxia ( 3 ) .  Fur the r  understanding of t he  e f f e c t s  upon 

the  t e s t i s  has  been delayed by t h e  observa t ion  t h a t  only the  

germinal ep i the l ium responds t o  a l t i t u d e  exposure wi th  r e l a t i v e l y  

l i t t l e  change noted i n  the  i n t e r s t i t i a l  c e l l s  of Leydig ( 2 8 ,  8 3 ) .  

Adrenal ,  t h y r o i d a l ,  and gonadal responses  t o  s imulated h igh  

a l t i t u d e  a r e  no t  p o s s i b l e  without  r e l a t e d  changes i n  the  func t ion  of  

t h e  a n t e r i o r  p i t u i t a r y ,  s i n c e  a l l  of t hese  endocrine s t r u c t u r e s  a r e  

known t o  engage i n  r e c i p r o c a l  i n t e r a c t i o n s  ( 8 2 ) .  An important  aim 

of t h e  p r e s e n t  s tudy i s  t o  determine the n a t u r e  of t hese  a n t e r i o r  

p i t u i t a r y  adjustments  i n  ra t s  exposed t o  a reduced barometr ic  

p re s su re  of 380 mm Hg. 

C .  The Histophysiology of the An te r io r  P i t u i t a r y .  

P i t u i t a r y  gland s t r u c t u r e  and func t ion  i s  t h e  s u b j e c t  of 

s e v e r a l  r ecen t  reviews (29 ,  36, 65 6 6 ) ,  and i t  i s  c l e a r  t h a t ,  d e s p i t e  

more than a century  of ex tens ive  s tudy ,  our p r e s e n t  concepts  of  t h i s  

major endocrine organ are  f a r  from complete.  The dua l  o r i g i n  dur ing  

embryonic development, the  r e s u l t a n t  heterogeneous c e l l  popula t ion  

p r e s e n t  i n  t h e  a d u l t  s t r u c t u r e ,  and the  m u l t i p l i c i t y  of hormones 

sec re t ed  by t h e  s e v e r a l  p a r t s  of t he  gland make t h i s  s t r u c t u r e  

unusual ly  r e f r a c t o r y  t o  e i t h e r  d e s c r i p t i v e  o r  experimental  a n a l y s i s .  

1. Development and s t r u c t u r e .  The p i t u i t a r y  i s  p r e s e n t  i n  a l l  

v e r t e b r a t e  s p e c i e s .  S t r u c t u r a l  v a r i a t i o n s  between spec ie s  a r e  common, 



but in a typical mammalian form like the rat the gland consists of 

several parts which reflect its embryonic development (65). Thus, 

the ectodermal cells of the embryonic structure known as Rathke's 

pouch become the glandular epithelia of the adult adenohypophysis, 

while neural ectoderm from the floor of the embryonic diencephalon 

contributes to the adult neurohypophysis. In final form the adeno- 

hypophysis includes the pars tuberalis, the pars distalis, and the 

pars intermedia, while the neurohypophysis consists of the pars 

nervosa and the infundibular stalk by which the entire gland 

maintains its attachment with the overlying hypothalamus. The 

cavity of Rathke's pouch commonly persists as the residual lumen 

within the adenohypophysis and permits an easy separation of the 

pars tuberalis and pars distalis from the remaining structures (58). 

These two are known collectively as the anterior lobe of the 

pituitary. In such forms the pars intermedia, pars nervosa, and 

infundibular stalk then form the posterior lobe of the gland. In 

the present investigation only the structure and function of the 

anterior lobe are of interest and further comments are confined 

chiefly to the pars distalis, since no endocrine function is known 

for the pars tuberalis (82).  

2 .  Cell types in the pars distalis. It has been known for 

many years that the pars distalis is composed of more than one type 

of cell (61). While the initial distinction has been between the 

chromophobes, which do not bind appreciable quantities of dye follow- 

ing histological staining, and the chromophils, which stain with 
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r e l a t i v e  e a s e ,  t he  continued a p p l i c a t i o n  of a v a r i e t y  of h i s t o l o g i c a l  

techniques t o  t h e  p i t u i t a r y  has l e d  t o  an i n c r e a s i n g l y  complex separa-  

t i o n  of chromophil c e l l  types w i t h i n  the adenohypophysis (36, 6 6 ) .  

The r e s u l t  i s  an eve r  more chao t i c  nomenclature f o r  the s p e c i f i c  c e l l  

types based upon e i t h e r  c e l l  form and f u n c t i o n  taken toge the r  o r  

morphological d e s c r i p t i o n  a lone .  Recent a t t empt s  t o  r e so lve  t h i s  

dilemma and e s t a b l i s h  a u n i v e r s a l l y  accep tab le  system of names f o r  

i n d i v i d u a l  c e l l  types have met w i th  only l i m i t e d  success  ( 8 4 ) ,  al though 

the ma jo r i ty  of i n v e s t i g a t o r s  support  the subd iv i s ion  of chromophils 

i n t o  a c i d o p h i l s  and basoph i l s  (61 ) .  I n  a d d i t i o n ,  cons ide rab le ,  irre- 

f u t a b l e  evidence has  accumulated t o  i n d i c a t e  f u r t h e r  p o s s i b l e  sub- 

d i v i s i o n s  w i t h i n  each of these chromophil c a t e g o r i e s  i n  c e r t a i n  

a p p r o p r i a t e  s p e c i e s  (65, 66). 

3 .  Hormones. Following t h e  now c l a s s i c  experiments of Smith 

(75, 7 6 ) ,  which demonstrate the e f f e c t s  of hypophysectomy i n  t h e  r a t ,  

i t  has become ev iden t  t h a t  the p a r s  d i s t a l i s  s e c r e t e s  s i x  phys io log i -  

c a l l y  and biochemically d i s t i n c t  hormones: somatotropic hormone ( S ? T H ) ,  

l a c t o t r o p i c  hormone (LTH), c o r t i c o t r o p i c  hormone (AGTH), t h y r o t r o p i c  

hormone (TSH), f o l l i c l e  s t i m u l a t i n g  hormone (FSH) , and i n t e r s t i t i a l  

c e l l  s t i m u l a t i n g  hormone (ICSH) ( 8 4 ) .  The f i r s t  t h r e e  of t hese  a r e  

e i t h e r  p r o t e i n s  o r  polypept ides  wh i l e  t he  l a t t e r  t h r e e  a r e  glycopro- 

t e i n  i n  n a t u r e  ( 4 4 ) .  Among the s e v e r a l  endocrine organs of  t h e  m a m m a l ,  

only t h e  a n t e r i o r  lobe of t h e  p i t u i t a r y  i s  known t o  s e c r e t e  such a 

l a r g e  v a r i e t y  of hormones w i t h  such a g r e a t  range of phys io log ica l  

e f f e c t s  (82) .  Furthermore,  although r e c i p r o c a l  i n t e r a c t i o n s  can be 



demonstrated between the anterior pituitary and the adrenal cortex, 

the thyroid, and the gonad, it is increasingly unclear to what 

extent this involves direct action by the cells of the pars distalis, 

since secretion of the several anterior lobe hormones is known to be 

controlled by neural centers in the hypothalamus ( 2 5 ) .  

4 .  The "one hormone--one cell type" theory. In light of the 

complexities both in histological structure and in endocrine function 

displayed by the anterior pituitary, efforts to combine the morpho- 

logical and physiological data into one conceptual framework have 

enjoyed only partial success. Chief among the ideas which have 

gained favor is the notion that each of the anterior lobe hormones 

represents the secretory product of a single morphologically distinct 

cell type ( 3 6 ,  6 5 ,  6 6 ,  6 7 ,  8 4 ) .  Support for such a model comes from 

several sources. 

The use of histochemical techniques, particularly the periodic 

acid-Schiff (P.A.S.) reaction, to demonstrate the distribution of 

glycoproteins within the pars distalis (12) suggests that basophil 

cells are the source of TSH, FSH,and ICSH ( 6 7 ) .  The chemical reac- 

tions by which the staining of glycoprotein occurs are well known 

(8, 41) and it seems safe to assume that the P.A.S.-positive basophil 

granules do represent stored intracellular hormone ( 3 6 ) .  Less well 

understood, but no less valuable, is the aldehyde-fuchsin stain for 

thyrotropic basophils ( 1 7 ,  2 7 ,  3 3 ,  7 4 ) .  These techniques for staining 

basophils, coupled with an appropriate variety of counterstains for 

the demonstration of acidophils, permit the identification of as many 
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as  f i v e  hormone-producing c e l l  types i n  t h e  pars  d i s t a l i s  of f avorab le  

s p e c i e s  such as t h e  r a t ,  monkey, d o g , b a t ,  and c a t  (65 ) .  The proposed 

names f o r  t h e s e  f i v e  c e l l  types a r e :  somatotropic c e l l s ,  l a c t o t r o p i c  

c e l l s ,  t h y r o t r o p i c  c e l l s ,  FSH c e l l s , a n d  ICSH c e l l s .  The l a t t e r  two 

types a r e  combined f r equen t ly  as  gonadotropic c e l l s  ( 8 4 ) .  

Observations wi th  the e l e c t r o n  microscope confirm the  s e c r e t o r y  

n a t u r e  of t h e  c e l l s  of t h e  pars  d i s t a l i s  and amplify the  d a t a  obtained 

wi th  the l i g h t  microscope ( 3 6 ) .  Using a l t e r n a t e  t h i c k - t h i n  s e c t i o n s  

Lever and Peterson ( 4 3 )  d i s t i n g u i s h  between two types of a c i d o p h i l  

c e l l  and between t h y r o t r o p i c  and gonadotropic basoph i l s  on the  b a s i s  

of t h e  f i n e  s t r u c t u r e  and d i s t r i b u t i o n  of s e c r e t o r y  g ranu le s  w i t h i n  

the  c e l l s .  Farquhar and Rinehart  ( 2 3 )  p r e s e n t  similar evidence f o r  

t h e  presence of two types of gonadotrophs i n  the r a t  a n t e r i o r  

p i t u i t a r y ,  and ACTH-producing c e l l  types a r e  proposed by s e v e r a l  

i n v e s t i g a t o r s  ( 2 2 ,  7 2 ,  7 3 ) .  This b r ings  t h e  t o t a l  number of apparent  

hormone producing c e l l  types to s i x  i n  a p p r o p r i a t e  s p e c i e s .  

I n  the  absence of hormone-specific,  his tochemical  techniques 

f o r  e l e c t r o n  microscopy, assay of t he  hormonal c o n t e n t  of s e c r e t o r y  

g ranu le s  from the  s e v e r a l  c e l l  types of t he  pars  d i s t a l i s  i s  based 

upon s t u d i e s  of i s o l a t e d  granules  prepared by c e l l  f r a c t i o n a t i o n ,  

d i f f e r e n t i a l  c e n t r i f u g a t i o n ,  and m i c r o f i l t r a t i o n .  The r e s u l t s  

i n d i c a t e  t h a t  STH and LTH a c t i v i t y  i s  a s s o c i a t e d  wi th  g ranu le s  from 

a c i d o p h i l  c e l l s ,  while  TSH, FSH,and ICSH a r e  found i n  basoph i l  

g ranu le s  ( 4 0 ) .  Fur the r  study of the basoph i l  g ranu le  f r a c t i o n  i n d i -  

c a t e s  t h a t  ACTH i s  found the re  a l s o  ( 6 0 ) .  The p r e c i s e  s i t e  of ACTH 

p roduc t ion ,  t h e r e f o r e ,  remains undetermined. 
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D. Effects of Altitude Exposure on 

Anterior Pituitary Function. 

Studies of the changes in structure and function of the rat 

anterior pituitary gland during acclimation to simulated high altitude 

are rare, and the data are conflicting and fragmentary (83). A de- 

crease in rat pituitary gland weight following continuous exposure 

(48 - 214 hours) to 25,000 feet of simulated altitude is reported by 

Gordon et al. (28), while discontinuous exposure to the same condi- 

tions for four hours per day produces no measurable weight change. 

Exposure to mountain environments at 14,000 feet for 60 days is 

reported to cause no change in rat pituitary weight (52) and similar 

results are obtained for animals exposed to artificial atmospheres 

low in oxygen ( 4 6 ) .  Histological studies of anterior pituitary 

tissue from animals subjected to a variety of hypoxic conditions 

show an increased number of basophil cells with attendant changes 

in stain intensity, degree of cell granulation, and cell size and 

appearance (28, 59, 63), and a reduced number of acidophil cells 

(28, 63). Bioassay determinations of intrapituitary hormone concen- 

trations reveal an increase in adrenocorticotropic hormone (ACTH) 

which is related to the extent of  oxygen deprivation but independent 

of exposure duration ( 4 6 ) .  Intrapituitary thyrotropin levels remain 

unchanged following discontinuous exposure to reduced pressure, but 

appear to fall significantly after 48 hours of continuous exposure, 

while the gonadotropin content of the gland is increased following 

all types of hypoxia exposure (28) .  
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The considerable variation in duration, severity, and nature 

of hypoxia exposure makes comparison of results difficult, if not 

impossible. None of the reported histological studies utilize the 

accepted, histochemically specific stains for pituitary cell types; 

hence cellular identifiction is entirely without functional correla- 

tion. In addition, there is no reported attempt to combine cell 

count data from the pars distalis of normal and altitude-exposed 

rats with a direct quantitative determination of intracellular 

pituitary hormone levels from histochemically stained tissue 

sections t o  ascertain possible relationships between numbers of 

cells of each type present and amounts of stored intracellular 

hormone. 

The present study demonstrates the feasibility of this latter 

approach and employs two rather dissimilar analytical techniques to 

characterize the pars distalis of the normal rat and rats exposed 

for varying periods to a simulated high altitude of 18,000 feet. 

First, histochemically stained sections are analyzed by the classic, 

but still valid, technique of cell counting to determine whether 

altitude exposure induces a change in relative numbers of acidophils, 

thyrotropic cells or gonadotropic cells. Second, cytoplasm from 

individual cells from the same histological sections used for cell 

counting are examined with a microspectrophotometer to obtain 

absorption spectra characteristic for each cell type and to secure 

quantitative estimates of relative intracellular hormone concentra- 

tions. 
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E. Microspectrophotometry. 

Cytophotometric techniques have proved to be of great value in 

the localization, measurement, and analysis of various intracellular 

components. The early work of Caspersson (11) in which cellular 

nucleic acid distributions and concentrations were determined by 

measurement of natural absorption of ultraviolet light at 2570 A has 

been repeated for a large variety of tissues (85). Extension of the 

technique into the visible range of the electromagnetic spectrum has 

permitted study of both naturally occurring pigmented cellular 

entities and additional cellular structures stained by either 

empirical or histochemical procedures (62, 8 0 ,  89). 

0 

The special histophysiological problems which occur in the 

study of the anterior pituitary seem particularly susceptible to 

investigation by microspectrophotometric methods. Van Oordt ( 8 4 )  

points to the desirability of having a few, "well-standardized," 

techniques for staining the pars distalis to overcome some of the 

confusion in cell nomenclature. Cytophotometric studies during 

the staining process would aid such standardization. Preparation 

of absorption spectra characteristic of cell types in stained tissue 

sections facilitates identification of individual cells and permits 

comparison with similarly stained cells from other sources (19, 21, 

6 9 ) .  Spectral analysis of cellular constituents stained after cell 

fractionation and differential centrifugation yields information on 

cellular sites where dye binding occurs and aids in determining the 

effects of dye mixtures on the staining of individual structures ( 9 ) .  
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Comparison of spectra of purified pituitary hormones stained - in 

vitro with the P . A . S .  reaction with the absorption spectra obtained 

from similarly stained intact pituitary cells confirms the chromophil 

source of the hormones (21), and quantification of intracellular 

hormone contents under normal and experimental conditions appears 

possible (81). 

Despite the value of microspectrophotometric analysis in 

furthering our understanding of the structure and function of the 

anterior pituitary gland, studies employing this method are rare. 

A major aim of the present investigation is to utilize cytophotometry 

to characterize the chromophil cells of the pars distalis of normal 

and altitude-exposed rats and to obtain relative quantitative 

ments of intracellular hormone content under normal and experimental 

conditions. 

measure- 

F. Restatement of the Problem. 

The present study seeks to determine the histophysiological 

changes in the anterior lobe of the rat pituitary gland during 

initial exposure and acclimation to a simulated high altitude of 

18,000 feet. All data are obtained from either fixed whole pituitary 

glands or tissue sections histochemically stained with alcian blue, 

periodic acid-Schiff, and picric acid. A statement of specific aims 

f 01 lows : 

1. To establish whether altitude hypoxia induces any 

alterations in the relative proportions of chromophobe and chromo- 

phil cell types within the pars distalis. 
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2. To determine the effects of acute and chronic hypoxia 

on the cytochemistry of functional pituitary cells as reflected in 

alterations of their spectral characteristics. 

3. To assess the effects of simulated high altitude upon the 

secretory activity of individual hormone-producing cells of rat 

anterior pituitary by quantitative cytophotometric analysis. 
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MATERIALS AND METHODS 

A .  Experimental Animals, the Decompression 

Chamber, and Histological Technique. 

All pituitary tissue came from 90 Sprague Dawley male rats 

(Sprague Dawley Co., Madison, Wisconsin) used in an investigation 

dealing with thyroidal, adrenal, and blood chemical aspects of 

altitude acclimation. A portion of this work was conducted in 

cooperation with the U. S. Army Medical Research Unit, Fort Knox, 

Kentucky. Data on these rats in separate studies conducted by other 

graduate students included: radiochromatographic analyses of thyroid 

gland hydrolysates (54), fluorescence chromatography of adrenal gland 

corticosterone ( 3 7 ) ,  flame photometry of serum and urinary electro- 

lytes (15), myeloid (38) and lymphoid (24) responses, and electro- 

phoretic analyses of serum proteins (56). The availability of 

pituitary material from rats whose metabolic, hemal, thyroidal, axd 

adrenal responses were well characterized was a fortunate circum- 

stance which greatly facilitated the present investigation. 

The decompression chamber employed is that used by Anthony 

and his co-workers (Strickland, Harclerode, Ziegler, Nelson, Frehn, 

Ferguson, Mallette, De Angelo, Strother, Ackerman,and Hunt) from 

1959 to 1966 in the altitude physiology research laboratores at The 

Pennsylvania State University (4), Plate I. It is constructed of 

concrete and is equipped with a viewing window and interior lighting. 

The total interior volume is 286 cubic feet, and when operating at 
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one-half atmospheric pressure the rate of air turnover is eight cubic 

feet per minute. Access to the chamber during operation is possible 

through a decompressible lock which enables the care and maintenance 

of experimental animals under continuous exposure to simulated high 

altitude for extended periods of time. The chamber temperature was 

26 1 C, while that of the room housing control animals was 25 f 1 C .  

The rats were divided into five groups. Group I, consisting 

of 15 animals, served as controls and was kept at an ambient pressure 

of 735 mm Hg, which is ground level (1200 feet) at University Park, 

Pennsylvania. Groups 11-V were exposed to a simulated altitude of 

18,000 feet ( 3 8 0  mm Hg) for varying periods of time: 19 rats exposed 

for one day (Group II), 17 rats exposed for two days (Group 111), 

14 rats for seven days (Group IV), and the remaining 25 rats had 30 

days of exposure (Group V). Altitude exposure constituted the only 

experimental stressor. Each group of experimental animals was 

placed in the decompression chamber on a specified date so that 

all animals would be killed by exsanguination and have pituitary 

glands removed on the same day (see Table 2, page 37). 

of the five groups of pituitary glands s o  obtained, five individual 

glands were selected for differential cell counting and cytophoto- 

metric analysis of the cells of the pars distalis. 

From each 

Dissected pituitary glands were fixed in 4% formalin (10% 

stock formaldehyde). After fixation was complete, but before further 

treatment, each gland was weighed on a Roller Smith torsion balance 

(sensitivity = 0.2 mg). A l l  glands were then embedded in paraffin 
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with the aid of the Auto-technicon using routine procedure. Selected 

paraffin sections of anterior pituitary were cut at six microns and 

utilized in a preliminary study which attempted to find that particu- 

lar staining technique best suited to the further pursuit of the major 

problem. Several specific staining procedures for rat anterior 

pituitary cytodifferentiation were employed in these preliminary 

histological studies: 1. The Wilson and Ezrin stain (88) which 

used periodic acid-Schiff (P.A.S.), methyl blue, and orange G, 

2. Gomori's aldehyde fuchsin stain (27) for anterior pituitary 

thyrotropic cells, counterstained with orange G, 3 .  Elftman's 

combination of aldehyde fuchsin and P.A.S. (18) for differentiating 

anterior pituitary basophil cells, 4. The aldehyde thionine-P.A.S. 

stain of Paget and Eccleston (57), and 5. Mowry's stain (45) employ- 

ing alcian blue, P.A.S., and picric acid. 

The rat pituitary glands from control animals, one day, exposed 

two day, seven day, and 30 day exposed animals (five glands from each 

group-total of 25) which had been selected for differential cell 

counts and cytophotometric analysis were sectioned serially at four 

microns. All glands were oriented so that sections were cut in the 

coronal plane beginning on the dorsal side. Selected sections from 

each of these 25 series were deparaffinized, hydrated, and stained 

with alcian blue-periodic acid-Schiff, plus picric acid for contrast 1 

~ ~~ 

Alcian blue, C. I. No. 74240, Matheson, Coleman and Bell, 
NO. B804. Basic fuchsin, C. I. N o .  42510, Harleco (batch LF-22), 
Arthur H. Thomas Co.  

1 
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and c o u n t e r s t a i n i n g  ( 4 5 ) .  The s p e c i f i c  s t a i n i n g  procedure has  been 

included i n  Appendix A .  Stained s l i d e s  were dehydrated,  c l e a r e d ,  and 

mounted i n  Permount. 

B.  C e l l  Counting Procedure. 

The count ing technique employed i n  ana lyz ing  the c e l l u l a r  

composition of t he  f i v e  c o n t r o l  and 20 experimental  r a t  p i t u i t a r i e s  

w a s  a mod i f i ca t ion  of t he  method f i r s t  suggested by Rasmussen and 

H e r r i c k  (68) .  

s e c t i o n s  f i v e  s e c t i o n s  were s e l e c t e d  f o r  count ing:  one s e c t i o n  from 

nea r  t h e  d o r s a l  gland s u r f a c e ,  a second s e c t i o n  from one f o u r t h  the  

d i s t a n c e  from d o r s a l  t o  v e n t r a l  s i d e s ,  a t h i r d  s e c t i o n  r e p r e s e n t i n g  

t h e  midpoint of t h e  d o r s a l - v e n t r a l  d i s t a n c e ,  a f o u r t h  s e c t i o n  

l o c a t e d  t h r e e - f o u r t h s  of t he  d i s t a n c e  from t h e  d o r s a l  s u r f a c e ,  and 

a f i f t h  from c l o s e  t o  t h e  v e n t r a l  s i d e  of t he  gland.  Each of t h e s e  

f i v e  s e c t i o n s  was surveyed by making t h r e e  scans with t h e  microscope 

( F i g .  1). Scan A began a t  the approximate c e n t e r  of t h e  s e c t i o n  and 

proceeded t o  e i t h e r  the r i g h t  o r  l e f t  l a t e r a l  extreme of t he  s e c t i o n .  

The d i r e c t i o n  was s e l e c t e d  t o  inc lude  the  g r e a t e s t  p o s s i b l e  number of 

counted f i e l d s .  Every o t h e r  microscope f i e l d  w a s  counted. Scan B 

began a t  t h e  a n t e r i o r  edge of the s e c t i o n ,  about one t h i r d  of t h e  

d i s t a n c e  from the  l a t e r a l  extreme, determined by Scan A ,  t o  t h e  

c e n t e r ,  and proceeded t o  the p o s t e r i o r  edge of t he  s e c t i o n  wi th  every 

o t h e r  microscope f i e l d  being counted. Scan C w a s  i d e n t i c a l  t o  B ,  bu t  

began about  two t h i r d s  of t h e  d i s t a n c e  from t h e  same l a t e r a l  extreme 

From each of the 25 s e r i e s  of p i t u i t a r y  gland s e r i a l  
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FIG1 PLACEMENT AND DIRECTION OF CELL COUNT SCANS 
SHOWN ON A MID-CORONAL RAT PITUITARY SECTION. 
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to the center of the section. In this manner cell count data were 

obtained from 15-20 fields per section and a total of 75-100 micro- 

scope fields per whole pituitary gland. 

Individual microscope fields were counted using a cross-hair 

inserted in the ocular, and totals were obtained for all identifiable 

cells present. Portions of cells were included in the count if their 

identity was clear. All count data were obtained with a Bausch and 

Lomb, Dynazoom, binocular microscope using a 97 x /1.30 oil-immersion, 

achromatic objective, 10 x wide-field oculars, and "zoom control'' set 

at 1.5 for a total magnification of 1455~. 

C . Microspectrophotometric Analysis. 

Microspectrophotometric data were obtained with a Leitz cyto- 

photometer (E. Leitz, Inc., New York, N. Y.). This instrument, 

Plate 11, consisted of the following major components: 1 .  a Leitz 

lamp housing with prefocused six volt, tungsten filament lamp and 

regulating, constant-voltage transformer, 2. a Leitz (Model IKAMS) 

dual prism, linear mirror monochromator, 3. a Leitz Ortholux micro- 

scope equipped with fluorite oil-immersion objective (FL oil, 95 x 

/1.32) and an achromatic objective (42 x / 0 . 4 0 )  mounted as the 

substage condenser, 4 .  a Leitz optical train and mirror reflex 

housing, including a series of fixed photocell apertures of different 

diameters which could be positioned over selected areas of the speci- 

men image to block off all light except that coming from the area of 

the specimen being analyzed, and 5. a Photovolt photomultiplier and 
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power unit (model 520 m). The relative relationships of these units 

to each other is illustrated in Figure 2 .  

After careful centering of the light source and adjustment of 

the optical train, an initial evaluation of instrument performance 

was carried out by obtaining a transmission spectrum for a Corning 

CS1-60 didymium glass filter and comparing the results with the 

spectral data provided by the manufacturer. The effect of mono- 

chromator exit slit width on spectral resolution was determined by 

comparison of absorption spectra for the same filter (CS1-60) 

obtained with exit slit widths of 0.8 mm, 1.6 mm, and 0 . 3  mm. 

Additional checks of instrument response involved a determination 

of the linearity of photocell response fo r  the several available 

photocell apertures at a standard wavelength of 550 rrq.~ using the 

lOOx scale of the voltmeter. 

From each of the 25 pituitary glands absorption spectra were 

obtained for all chromophil cell types demonstrated by the staining 

technique. Acidophil cells, thyrotropic basophils, and gonadotropic 

basophil cells (three of each type) were picked at random from the 

pars distalis of each gland and examined with the microspectrophoto- 

meter. Individual cells of each type always were selected from 

different histological sections. Cells were positioned prior to 

cytophotometric analysis with respect to the appropriate photocell 

aperture using the viewing ocular of the microspectrophotometer. 

All spectra in this study were recorded from a 4 . 0  micron diameter 

area of cell cytoplasm. The mechanical entrance and exit slits of 
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the monochromator were set at 0.8 mm regardless of the wavelength 

used to illuminate the specimen. For this setting the spectral 

half-width is 8 q~ at a wavelength setting of 400 nyl and 48 r q ~  at 

a setting of 700 I+. 

Absorption measurements of stained pituitary cells were made 

at- 20 f i c ~  intervals in the visible range of the spectrum between 

400 w and 700 q ~ .  At each wavelength transmission through the 

specimen (I ) was recorded. The microscope slide was moved then to 

an immediately adjacent "blank" area of the slide, and transmission 

through the slide, mounting medium, and cover glass (Io) was 

determined. The ratio of these readings (Is/Io) times 100 gave 

the percentage transmission (% Trans.) for the specimen at that 

wavelength. This calculation was repeated for each wavelength used. 

The procedure used to obtain a complete spectrum involved taking a 

series of readings with the specimen in position under the photocell 

after which the corresponding "blank" values were obtained. 

percentage transmission (% Trans.) values were converted to percentage 

absorption (% Abs.) by subtraction from 100 (100 - % Trans. = % Abs.). 

The absorption spectra were plotted using percentage absorption as 

the ordinate and wavelength (20 w intervals) as the abscissa. 

s 

All 

Mean optical density values (O.D. = loglo I /I ) were 

determined for the maximum absorption wavelengths (400 I+ for acido- 

phil cells and 560 q~ for both basophil cell types) of each chromophil 

cell type in control and altitude-exposed rats. Quantitative compari- 

sons of intracellular hormone concentrations following hypoxia exposure 
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c 

were based upon these  values  r a t h e r  than the  mean percentage 

a b s o r p t i o n  d a t a .  

D .  S t a t i s t i c a l  Analysis  of Data.  

For t h e  c e l l  count da ta  s tandard d e v i a t i o n s  (6) and s tandard 

e r r o r s  (SE) a r e  c a l c u l a t e d  f o r  the means of each c e l l  type i n  t h e  

p a r s  d i s t a l i s  of c o n t r o l  and every group of a l t i t ude -exposed  r a t s .  

A l l  r epo r t ed  r e s u l t s  are expressed as t h e  mean k SE un le s s  otherwise 

i n d i c a t e d .  S i g n i f i c a n c e  of d i f f e r e n c e s  i n  t h e  mean va lues  i s  

determined using the  n u l l  hypothesis  w i th  S t u d e n t ' s  t - t e s t  employed 

t o  c a l c u l a t e  p r o b a b i l i t y  (P) l e v e l s  ( 7 7 ) .  

The microspectrophotometric d a t a  are  t r e a t e d  i n  a s imi la r  

manner. Mean pe rcen t  abso rp t ion  o r  o p t i c a l  d e n s i t y  va lues  and t o t a l  

range are determined f o r  each c e l l  t y p e  a t  a l l  wavelengths i n  every 

group of animals .  Standard dev ia t ions  and s t anda rd  e r r o r s  of t h e  

rnean a t  s e l e c t e d  wavelengths ( 4 0 0 ,  480 ,  560, 660 q.~) are c a l c u l a t e d  

f o r  c o n t r o l  animals and each group of a l t i t ude -exposed  r a t s .  
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RESULTS 

The results of this investigation are presented under four 

subheadings: A .  Identification of anterior pituitary cells in 

tissue sections, B. Changes in rat pituitary weight in response 

to altitude exposure, C. Effect of altitude upon relative abundance 

of chromophobes, acidophils and basophils and D. Altitude-induced 

changes in anterior pituitary histophysiology demonstrated by cyto- 

photometry. Although the first of these four does not constitute a 

definitive study, the data are instrumental in the pursuit and 

interpretation of the latter three subinvestigations, which together 

form the major thrust of the work. 

Graphic and tabular summations are employed in the presentation 

of results, while the specific data from which these are prepared are 

included in Appendix B. 

A. Identification of Anterior Pituitary 

Cells in Tissue Sections. 

The application of five well-known staining procedures to 

formalin-fixed rat anterior pituitary tissue produced the results 

given in Table 1. Each procedure was selected originally for its 

reported ability to simultaneously differentiate several distinct 

pituitary cell types. Comparison of actual staining results with 

those results reported in the literature provided a basis for 

assessment of the utility of each stain for elucidation of pituitary 

structure and function during altitude acclimation. 
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None of t h e  s t a i n  procedures y ie lded  r e s u l t s  i d e n t i c a l  t o  

those  r epor t ed  when app l i ed  t o  t h e  p i t u i t a r y  t i s s u e  used i n  t h i s  

i n v e s t i g a t i o n .  A t  t he  same time, p a r t i a l  s t a i n i n g  was p re sen t  

i n  every c a s e .  D i f f e r e n t i a t i o n  of chromophobe, a c i d o p h i l ,  and 

basophi l  c e l l s  was accomplished wi th  r e l a t i v e  e a s e .  These were 

b e s t  demonstrated by t h e  Mowry technique and only s l i g h t l y  l e s s  wel l  

by t h e  Wilson and Ezr in ,  and Elftman s t a i n s .  Chromophobes were r e -  

por ted  as unstained wi th  a l l  f i v e  procedures s i n c e  they a lways  

d i sp l ayed  minimal amounts of  non-spec i f ic  s t a i n i n g .  Acidophi l  

c e l l s  s t a i n e d  equa l ly  wel l  with orange G o r  p i c r i c  a c i d ,  but  the  

yel low a c i d o p h i l s  fol lowing Mowry's s t a i n  con t r a s t ed  more sha rp ly  

wi th  o t h e r  chromophil c e l l  types than when s t a i n e d  wi th  orange G .  

Basophil  c e l l s  s t a i n e d  c l e a r l y  wi th  t h e  pe r iod ic  ac id-Schi f f  r e a c t i o n ,  

whereas aldehyde fuchs in  was of no va lue  i n  the  d i f f e r e n t i a t i o n  of 

basoph i l s  i n  the  p i t u i t a r y  t i s s u e  used i n  t h i s  i n v e s t i g a t i o n .  

Of t h e  s t a i n i n g  techniques examined i n  t h i s  pre l iminary  

p o r t i o n  of t he  s tudy ,  Mowry's P.A.S., a l c i a n  b lue ,  p i c r i c  a c i d  

combination produced the  b e s t  s epa ra t ion  of c e l l  t ypes .  Four d i s -  

t i n c t  types were noted and were des igna ted  as chromophobes, a c i d o p h i l s ,  

basophi l  c e l l s - t y p e  A,and basophi l  c e l l s - t y p e  B .  Fu r the r  s tudy  of t he  

d i s t r i b u t i o n  w i t h i n  the  a n t e r i o r  lobe and ind iv idua l  c e l l u l a r  s t r u c t u r e  

permi t ted  i d e n t i f i c a t i o n  of type A basophi l s  as gonadotropic  c e l l s  and 

t y p e  B basoph i l s  as thy ro t rop ic  c e l l s .  Gonadotropic basoph i l s  were 

co lored  wi th  both t h e  P.A.S. and a l c i a n  blue components of the  s t a i n  

and appeared pu rp le ,  whi le  t hy ro t rop ic  basophi l s  bound only t h e  
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products  of t he  P.A.S. r e a c t i o n  and were r e d .  Acidophi l  c e l l s  were 

yel low and chromophobes d isp layed  e i t h e r  very  l i t t l e  s t a i n i n g  o r  were 

green  i n  appearance.  I n  a l l  cases  the  s t a i n e d  cytoplasmic granules  

were employed t o  determine the  category t o  which ind iv idua l  c e l l s  

belonged. 

On the  b a s i s  of t h e  c l a r i t y  of s e p a r a t i o n  of c e l l u l a r  types 

fo l lowing  repea ted  a p p l i c a t i o n s  of t h e  P . A . S . ,  a l c i a n  b lue ,  p i c r i c  

a c i d  s t a i n  t o  the  ra t  a n t e r i o r  p i t u i t a r y ,  no f u r t h e r  s tudy of s t a i n i n g  

procedures  w a s  deemed necessary ,  and t h i s  became the  s t a i n  of choice  

f o r  t i s s u e  s e c t i o n s  employed i n  t he  f u r t h e r  p u r s u i t  of t he  major 

problem. A noteworthy r e s u l t  of t h i s  p o r t i o n  of t h e  i n v e s t i g a t i o n  

w a s  t h a t  i d e n t i c a l  s t a i n i n g  r eac t ions  were v i s i b l e  i n  a l l  ra t  a n t e r i o r  

p i t u i t a r y  t i s s u e  r ega rd le s s  of  t he  occurrence o r  d u r a t i o n  of hypoxia.  

Thus, i s o l a t e d  microscopic f i e l d s  d i sp l ayed  the  same gene ra l  appearance 

i n  both c o n t r o l  and a l t i tude-exposed  p i t u i t a r y  s e c t i o n s .  

B .  Changes i n  R a t  P i t u i t a r y  Weight i n  

Response t o  A l t i t u d e  Exposure. 

The e f f e c t s  of  a l t i t u d e  exposure upon t h e  weight of t he  i n t a c t  

p i t u i t a r y  ( a n t e r i o r  and p o s t e r i o r  lobes)  a r e  summarized i n  F igure  3 

and Table 2 .  No changes i n  the weight of f i xed  glands occur dur ing  

the  f i r s t  two days of decompression; however, seven days of cont inuous 

exposure t o  s imulated a l t i t u d e  r e s u l t s  i n  a s i g n i f i c a n t  ( P  = . O l )  l o s s  

i n  p i t u i t a r y  weight  from a mean va lue  of about  1 7  mg t o  about 15 mg. 

This  loss  p e r s i s t s ,  s i n c e  t h e  weight of t h e  p i t u i t a r y  fo l lowing  30 

days of  exposure i s  no d i f f e r e n t  from t h a t  of ra t s  exposed f o r  seven 

days .  
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The observa t ion  t h a t  there  i s  a l o s s  of body weight fol lowing 

a l t i t u d e  exposure (Table 2)  makes i t  d e s i r a b l e  t o  compute p i t u i t a r y  

weight  changes on a r e l a t i v e  weight b a s i s .  The r e s u l t s  of t hese  

c a l c u l a t i o n s ,  i n  mil l igrams p i t u i t a r y  weight p e r  100 grams body 

weight ,  are included i n  F igure  3 (hatched b a r s ) ,  and show t h a t  the  

r e l a t i v e  gland weight increases  s i g n i f i c a n t l y  ( P  = . O l )  from t h e  

c o n t r o l  va lue  of about 4.8 mg / 100 g t o  5 .5  mg / 100 g wi th in  one 

day of the  onse t  of decompression. A l e s s  marked i n c r e a s e  i s  p r e s e n t  

f o r  two day-exposed and seven day exposed an imals ,  a l though both mean 

va lues  remain h igher  than c o n t r o l s ,  whi le  prolonged exposure f o r  30 

days shows a r e t u r n  of t he  r e l a t i v e  p i t u i t a r y  weight t o  the  c o n t r o l  

l e v e l .  

C .  E f f e c t  of A l t i t u d e  upon Re la t ive  Abundance 

of Chromophobes, Acidophils,  and Basophi l s .  

D i f f e r e n t i a l  c e l l  counts performed upon t h e  pars  d i s t a l i s  of 

r a t s  exposed t o  s imulated a l t i t u d e  f o r  one,  two, seven,  and 30 days 

show t h a t  hypoxia exposure r e s u l t s  i n  an  a l t e r a t i o n  of t h e  propor- 

t i o n a l  number of t h e  threechromophil  types r e l a t i v e  t o  t h a t  of t h e  

chromophobes. The s p e c i f i c  r e s u l t s ,  expressed as percentage changes 

of  each c e l l  type i n  a u n i t  a r ea  of a n t e r i o r  p i t u i t a r y  t i s s u e ,  are  

summarized i n  F igures  4 and 5 and Tables 3 and 4 of  Appendix B .  

Comparison of t h e  c e l l  count da t a  from c o n t r o l  ra t s  and a l l  groups 

of a l t i t ude -exposed  r a t s  taken toge ther  shows t h a t  hypoxia r e s u l t s  i n  

a s i g n i f i c a n t  ( P  = .02) i nc rease  i n  t h e  number of a l l  types  of chromo- 

p h i l  c e l l s  i n  the  p a r s  d i s t a l i s .  The d e t a i l e d  f i n d i n g s  a r e  summarized 

below. 
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1. Acidophil  c e l l s .  The f i r s t  day of hypoxia exposure i s  

marked by a sharp i n c r e a s e  i n  percentage of a c i d o p h i l s  (P = .OS> 

from a c o n t r o l  va lue  of 2 8  percent  t o  37 percen t  (Figure 4 ) .  By 

day two 52 pe rcen t  of a l l  c e l l s  a r e  a c i d o p h i l s .  A f t e r  seven and 

30 days of exposure the  r e l a t i v e  abundance of a c i d o p h i l  c e l l s  remains 

h i g h e r  than i n  ambient p re s su re  c o n t r o l  glands.  

These r e s u l t s  i n d i c a t e  t h a t  compensatory p i t u i t a r y  adjustments  

t o  simulated high a l t i t u d e  occur du r ing  the  f i r s t  few days of exposure,  

s i n c e  the  g r e a t e s t  d e p a r t u r e  from c o n t r o l  value appears  on t h e  second 

day.  Furthermore,  t he  inc rease  i n  a c i d o p h i l s  i s  n o t  a t r a n s i e n t  

response s i n c e  i t  p e r s i s t s  throughout t he  30 day exposure i n t e r v a l .  

2 .  Gonadotropic and thy ro t rop ic  b a s o p h i l s .  Hypoxia exposure 

r e s u l t s  i n  an i n c r e a s e  i n  the r e l a t i v e  abundance of a l l  basophi l  c e l l  

types ( P  = .02). This  r ep resen t s  a s i g n i f i c a n t  i n c r e a s e  on t h e  f i r s t  

day of exposure.  The percentage of t o t a l  basoph i l s  remains s l i g h t l y  

h ighe r  i n  two and seven day exposed r a t s  bu t  i s  n o t  d i f f e r e n t  from 

c o n t r o l s  a f t e r  30 days of exposure (Table 3 ,  Figure 4 ) .  

The r e s u l t s  of d i f f e r e n t i a l  c e l l  counts  f o r  gonadotropic 

( type  A) c e l l s  and t h y r o t r o p i c  ( type  B) c e l l s  a r e  a l s o  included i n  

F igu re  4 and Table 4 .  Desp i t e  t h e  high v a r i a b i l i t y  these  d a t a  

i n d i c a t e  t h a t  hypoxia exposure r e s u l t s  i n  a t r a n s i e n t  i n c r e a s e  i n  

the r e l a t i v e  number of t hy ro t rophs .  For example, t h e  combined d a t a  

from one o r  two day exposed r a t s  show a s i g n i f i c a n t  i n c r e a s e  i n  

type B basoph i l s  r e l a t i v e  t o  t h a t  of t h e  c o n t r o l s  of t he  seven and 

30 day exposed r a t s .  The r e l a t i v e  number of gonadotropic ( type  A) 
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basoph i l s  from hypoxic r a t s  does n o t  d i f f e r  from t h a t  of ambient 

p r e s s u r e  c o n t r o l s .  It should be noted however, t h a t  t h e r e  i s  a 

markedly g r e a t e r  i nd iv idua l  v a r i a b i l i t y  i n  the  numbers of type A 

basoph i l s  i n  hypoxic r a t  p i t u i t a r i e s  than i n  c o n t r o l s .  Thus, it i s  

ev iden t  t h a t  an  a l t e r a t i o n  i n  the percentage of both basophi l  types  

c o n t r i b u t e s  t o  the  observed t o t a l  basophi l  response p a t t e r n  i n  hypoxic 

r a t s .  

3 .  Chromophobes. Figure 5 i l l u s t r a t e s  t he  e f f e c t  of  a l t i t u d e  

exposure upon the  r e l a t i v e  number of chromophobes. The d a t a  i n d i c a t e  

t h e r e  i s  a s i g n i f i c a n t  (E' = .Ol) r educ t ion  i n  chromophobe ce l l s  i n  a l l  

a l t i t ude -exposed  groups (Table 3 ) .  It can be seen t h a t  the  p a t t e r n  

of  chromophobe changes i s  exac t ly  oppos i t e  t o  t h a t  of a c i d o p h i l s .  

Also  t h e  d i r e c t i o n  of changes i s  oppos i te  t h a t  of basoph i l s .  

4 .  Addi t iona l  observa t ions .  N o  evidence of m i t o t i c  a c t i v i t y  

i s  observed i n  any of t h e  p i t u i t a r y  gland s e c t i o n s .  Although t h e  

materials are n o t  s t a i n e d  t o  show nuc lea r  d e t a i l s ,  t he  c e l l  nucleus 

i s  c l e a r l y  v i s i b l e ,  and s t r u c t u r a l  changes a s s o c i a t e d  wi th  c e l l  

d i v i s i o n  would be e v i d e n t .  T h i s  observa t ion  i n d i c a t e s  t h a t  the  

changes i n  r e l a t i v e  abundance of t he  s e v e r a l  c e l l  types  of t h e  r a t  

p a r s  d i s t a l i s  i n  response t o  a l t i t u d e  exposure does n o t  r e s u l t  from 

a t r u e  h y p e r p l a s i a .  

The presence of hya l ine  vacuoles  i n  the  cytoplasm of both types  

of  basophi l  c e l l  i s  observed t o  some e x t e n t  i n  a l l  groups of  r a t s .  

Such v a c u o l i z a t i o n  i s  e s p e c i a l l y  p reva len t  i n  p i t u i t a r y  basophi l s  of 

r a t s  exposed t o  a l t i t u d e  f o r  one, two, and seven days .  Cont ro l  
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animals and rats exposed for 30 days have fewer vacuolated basophils. 

When vacuoles are present, the gonadotropic (type A) basophil closely 

resemblesthe classic castration cell, while thyrotropic (type B) 

basophils bear a striking resemblance to cells which appear following 

thyroidectomy. 

D. Altitude-Induced Changes in Anterior Pituitary 

Histophysiology Demonstrated by Cytophotometry. 

1. Confirmation of instrument sensitivity and response. 

Figure 6 shows the absorption spectrum of a Corning CS1-60 didymium 

glass filter obtained with the Leitz microspectrophotometer (Table 5) .  

These results illustrate both the sensitivity of the instrument at 

various monochromator exit slit widths and the accuracy of response 

as judged by comparison of the resultant spectrum with one provided 

by the manufacturer. 

slit widths of 0.8 mm, 0.6 mm, and 0.3 nun, and agreement with the 

No significant differences are visible with exit 

manufacturer's curve is good. 

2 .  Spectral characterization of stains and pituitary cell 

types. To aid in the eventual spectral characterization of stained 

pituitary cells, it is desirable to relate spectral data of stained 

sections to the absorption spectra 

process. Figure 7 shows an absorption spectrum obtained with a 

Beckman DB spectrophotometer from dilute solutions of each of the 

three dyes employed. These dyes are alcian blue (C.I. No. 74240, 

Ingrain Blue l), the colored form of fuchsin-sulfurous acid from 

Schiff's reagent, and saturated aqueous picric acid. 

of the dyes used in the staining 

Examination 
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of t h e s e  curves shows t h a t  each dye has  an abso rp t ion  maximum a t  a 

d i f f e r e n t  wavelength. 

The c h a r a c t e r i s t i c  abso rp t ion  s p e c t r a  obtained from t h e  cy to -  

plasm of r e p r e s e n t a t i v e  chromophil c e l l s  of t h e  p a r s  d i s t a l i s  a r e  

d i sp l ayed  i n  F igu res  8 ,  9 ,  and 10. Each of t h e  curves r e s u l t s  from 

a cytophotometric a n a l y s i s  of about 75 c e l l s  ( t h r e e  s e l e c t e d  a t  

random from each p i t u i t a r y )  judged t o  be of t h e  same type.  N o  

d i s t i n c t i o n  i s  made between c e l l s  from c o n t r o l  ra t s  and c e l l s  from 

a l t i t ude -exposed  rats i n  the  p repa ra t ion  of t h e s e  cu rves .  

shape of the  abso rp t ion  spectrum f o r  each c e l l  type i s  i n d i c a t e d  by 

the  hatched a r e a ,  which i s  determined, i n  t u r n ,  by the mean pe rcen t  

a b s o r p t i o n  a t  each 20 rr(l i n t e r v a l  i n  t h e  v i s i b l e  p o r t i o n  of t h e  

spectrum. The width of the hatched curve r e p r e s e n t s  the s t anda rd  

e r r o r  of t h e  mean, which is  computed only a t  wavelengths of 400,  480,  

560, and 660 nl.~ where maximum and minimum abso rp t ions  occur .  The 

range of pe rcen t  abso rp t ion  va lues  a l s o  i s  i n d i c a t e d  a t  each 

s p e c t r a l  i n t e r v a l .  Comparison of t h e s e  abso rp t ion  curves i s  

f a c i l i t a t e d  by r e fe rence  t o  such parameters as the r eg ions  of 

primary and secondary abso rp t ion ,  t he  abso rp t ion  maximum, and t h e  

h a l f  i n t e n s i t y  band wid th ,  which i s  de f ined  as t h a t  s p e c t r a l  region 

which f a l l s  between the  two p o i n t s  i n  the curve a t  which a b s o r p t i o n  

equa l s  one h a l f  t he  maximum primary a b s o r p t i o n .  

The gene ra l  

Examination of ac idoph i l  c e l l s  wi th  the  cytophotometer r e s u l t s  

i n  the  c h a r a c t e r i s t i c  abso rp t ion  curve shown i n  F igu re  8 .  Since t h e  

c e l l s  are co lo red  with the p i c r i c  a c i d  component of t he  s t a i n ,  t h e  
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primary absorption region is at a wavelength of 400-420 nyl. 

secondary absorption appears at 540-600q.~.  The absorption maximum 

is at 400 n p .  Table 6 presents the results of spectral characteriza- 

tion of acidophil cells in control rats and each group of altitude- 

exposed rats in addition to the mean percent absorption values 

and range for all examined acidophil cells. It is clear that the 

primary and secondary absorption regions, absorption maxima, and 

half intensity band widths are similar in all groups and do not 

change in response to altitude exposure. Thus, the observation that 

qualitatively similar acidophil staining occurs in all pituitary 

sections used in this investigation is confirmed. 

Some 

Figure 9 shows the characteristic absorption spectrum obtained 

from gonadotropic (type A) basophil cells with the cytophotometer. 

The primary absorption region is between 540-580 q ~ ,  with some 

secondary absorption appearing at 400 q ~ .  

maximum is at 560 q, and the half intensity band width is from 

480 q~ to 660 n p .  Examination of the absorption data (Table 7) 

obtained from pituitary gonadotropic cells of both control and 

altitude-exposed rats indicates that the binding of alcian blue and 

the colored products of the P . A . S .  reaction occurs in a qualitatively 

similar manner in all cells of this type regardless of the occurrence 

or duration of hypoxia. 

The primary absorption 

An absorption spectrum similar to that for gonadotropic baso- 

phils is obtained from thyrotropic (type B) basophil cells and is 

shown in Figure 10. The primary absorption region is again at 
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540-580 +, with some secondary absorption at 400 mp. Maximum 

absorption occurs at 560 m p ,  and the half intensity band width is 

480 nl.r to 640 IW. Comparison of absorption data (Table 8) from 

control and altitude-exposed rat pituitary cells indicates that the 

qualitative staining of thyrotropic basophil cells is also unaffected 

by altitude exposure. 

The high variability (range) of the absorption data for all 

cell types at all wavelengths is due to the fact that no two chromo- 

phil cells are in exactly the same stage of secretory activity at 

the time when the tissue specimen is secured. Thus, the results of 

cytophotometric characterization of cells from the pars distalis 

give some indication of the dynamic nature of secretion. 

3 .  Relative concentration of intracellular hormones during 

acclimation to hypoxia. The relative quantity of intracellular 

hormone present in individual chromophil cells of each type in the 

pars distalis may be estimated by quantitative cytophotometric 

analysis. Hypoxia-induced changes are detected by comparison of 

mean optical density (O.D.) values obtained from control rat 

pituitary chromophil cells of each type and similar cells in every 

group of experimental animals. Measurements are carried out at the 

primary maximum absorption wavelength for each chromophil cell type. 

Concurrent cell staining, uniform section thickness, and identical 

area of spectral measurement assure the equivalence of intracellular 

hormone concentration and optical density values. Thus, the height 

in O.D. units of the primary absorption peak recorded from any cell 
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i s  an i n d i c a t i o n  of t he  i n t r a c e l l u l a r  hormone concen t r a t ion .  

Mean o p t i c a l  dens i ty  va lues ,  c a l c u l a t e d  from s p e c t r a l  d a t a  

obta ined  a t  400 nyl from ac idoph i l  c e l l s  i n  c o n t r o l  and a l t i t u d e -  

exposed r a t  p i t u i t a r i e s ,  a r e  displayed i n  F igure  11 and Table 9 .  

The r e s u l t s  i n d i c a t e  t h a t  i n t r a c e l l u l a r  hormone concen t r a t ion  rises 

sha rp ly  i n  response t o  t h e  onse t  of hypoxia and remains s i g n i f i c a n t l y  

above c o n t r o l  va lues  i n  a l l  experimental  groups.  Two and seven day 

exposed r a t s  show somewhat smaller  O . D .  va lues  f o r  ac idoph i l  c e l l s  

than animals exposed f o r  only one day,  whi le  t h e  g r e a t e s t  change i s  

observed a f t e r  30 days of continuous hypoxia when ind iv idua l  c e l l s  

d i s p l a y  more than a t e n f o l d  mean i n c r e a s e  i n  i n t r a c e l l u l a r  hormone 

concen t r a t ion .  The s ign i f i cance  of t hese  changes i n  r e l a t i o n  t o  

exposure d u r a t i o n  i s  not  apparent ,  a l though i t  i s  c l e a r  t h a t  ac ido-  

p h i l s  of  t he  p a r s  d i s t a l i s  respond r a p i d l y  t o  hypoxic c o n d i t i o n s .  

F igures  12 and 13  and Table 9 i l l u s t r a t e  r e l a t e d  r e s u l t s  

ob ta ined  r e s p e c t i v e l y  from gonadotropic and thy ro t rop ic  basophi l  

c e l l s  of t he  pa r s  d i s t a l i s  i n  c o n t r o l  and a l t i t ude -exposed  r a t s .  

Mean o p t i c a l  d e n s i t y  va lues  a re  determined a t  560 f o r  both c e l l  

types .  I n t r a c e l l u l a r  hormone concen t r a t ions  inc rease  s i g n i f i c a n t l y  

i n  t h e  gonadotropic basoph i l s  of a l l  experimental  animals .  The most 

s t r i k i n g  changes occur w i t h i n  the  f i r s t  two days fol lowing the  onse t  

of hypoxia,  whi le  prolonged exposure produces f u r t h e r  i nc reases  t o  a 

maximum va lue  a f t e r  30 days .  I n  c o n t r a s t ,  t hy ro t rop ic  basophi l  c e l l s  

show increased  i n t r a c e l l u l a r  hormone concen t r a t ions  r e s u l t i n g  from 

a l t i t u d e  exposure,  but  the  amplitude of change i s  n o t  as g r e a t  and 
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t h e  e f f e c t s  of exposure du ra t ion  a r e  l e s s  c l e a r .  One and 30 day  

exposed r a t s  show the  g r e a t e s t  i n c r e a s e s ,  while  t he  two and seven 

day experimental  groups e x h i b i t  i n t e rmed ia t e  l e v e l s  of i n t r a -  

c e l l u l a r  t h y r o t r o p i n .  
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DISCUSS ION 

It  i s  ev iden t  t h a t  t he  a n t e r i o r  p i t u i t a r y  p a r t i c i p a t e s  i n  the  

acc l ima t ion  of t h e  male r a t  t o  a simulated high a l t i t u d e  of 18,000 

f e e t .  Changes i n  the  r e l a t i v e  number of p i t u i t a r y  chromophil c e l l s ,  

i n  whole gland weight ,  and i n  the r e l a t i v e  q u a n t i t y  of i n t r a c e l l u l a r  

hormone a r e  demonstrable wi th in  48 hours o r  l e s s  of t h e  onset  of 

a l t i t u d e  exposure.  Taken t o g e t h e r ,  a l l  of t h e  d a t a  i n d i c a t e  t h a t  

a n t e r i o r  p i t u i t a r y  hormones accumulate w i t h i n  t h e  t i s s u e s  of t h e  

p a r s  d i s t a l i s  fol lowing hypoxia exposure,  a l though i t  i s  n o t  c l e a r  

whether t h i s  r e s u l t s  from increased hormone s y n t h e s i s ,  decreased 

hormone s e c r e t i o n ,  o r  a combination of bo th .  

Since the  study of p i t u i t a r y  h i s t o p h y s i o l o g i c a l  changes i s  

g r e a t l y  f a c i l i t a t e d  by d i f f e r e n t i a l  s t a i n i n g  of t i s s u e  s e c t i o n s ,  

i n i t i a l  d i s c u s s i o n  c e n t e r s  on the  problems which surround the 

demonstrat ion and i d e n t i f i c a t i o n  of c e l l  types i n  the  r a t  pars  

d i s t a l i s .  

Seve ra l  s t a i n s  appear to  be of va lue  i n  the  d i f f e r e n t i a t i o n  

of a n t e r i o r  p i t u i t a r y  c e l l s .  Of t h e s e ,  t he  P . A . S .  technique appears  

t o  be t h e  most r e l i a b l e  and has the added advantage of being h i s t o -  

chemical ly  s p e c i f i c  f o r  t he  aldehydes which a r e  produced from t i s s u e  

polysaccharides  by p e r i o d i c  acid ox ida t ion  of 1, 2 g l y c o l  groups ( 4 7 ) .  

The r e s u l t s  of the p re sen t  study emphasize the v a l u e  of t h i s  s t a i n  

f o r  t h e  demonstration of p i t u i t a r y  basoph i l  c e l l s .  Observed morpho- 

l o g i c a l  f e a t u r e s  and d i s t r i b u t i o n a l  p a t t e r n s  of P . A . S  . - p o s i t i v e  c e l l s  
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i n  p i t u i t a r i e s  of both normal and a l t i tude-exposed  r a t s  a r e  s imi l a r  

and i n  c l o s e  agreement wi th  those r epor t ed  by Purves and Griesbach 

(67 ) .  Thus, t hy ro t rop ic  basophi l s  ( type  B) a r e  found only i n  t h e  

c e n t r a l  a r e a s  of t he  g land ,  occur i n  groups,  a r e  i r r e g u l a r  i n  shape,  

and a r e  r a r e l y  ad jacen t  t o  blood v e s s e l s ,  whi le  gonadotropic  basoph i l s  

( type A) are  d i s t r i b u t e d  both i n  t h e  c e n t r a l  and p e r i p h e r a l  a r e a s ,  

are  round o r  oval  i n  o u t l i n e ,  and f r equen t ly  make c o n t a c t  wi th  

elements of t he  c i r c u l a t o r y  s y s t e m .  

Aldehyde fuchs in  i s  repor ted  by some workers as a good s e l e c -  

t i v e  s t a i n  f o r  t hy ro t rop ic  basophi l s  (17,  32) .  Resu l t s  of t he  

p re sen t  s tudy show t h a t  aldehyde fuchs in  f a i l s  t o  d i f f e r e n t i a t e  

t he  two types  of basoph i l s .  This i s  i n  keeping wi th  the  e r r a t i c  

performance of  t h i s  dye reported by o t h e r s  (1, 1 7 ,  33,  57)  and may 

be due,  i n  p a r t ,  t o  t h e  use of formal in  a s  a f i x a t i v e .  Elftman 

recommends the  use of chrome-alum as a f i x a t i v e  f o r  b e s t  r e s u l t s  

w i th  aldehyde fuchs in  s t a i n i n g  (16, 1 7 ) .  

Alc ian  b lue  i s  a l s o  of va lue  f o r  a n t e r i o r  p i t u i t a r y  cy to-  

d i f f e r e n t i a t i o n  (1 ,  35,  48 ,  51) .  Mowry (53) r e p o r t s  t h a t  a c i d i c  

t i s s u e  polysacchar ides  are  s t a ined  wi th  dye s o l u t i o n s  of low pH, 

a l though the  mechanism of s t a i n i n g  remains unknown, and t h e r e  i s  

need f o r  dye s t a n d a r d i z a t i o n  (13).  The r e s u l t s  of  t h e  p r e s e n t  

i n v e s t i g a t i o n  i n  which d i f f e r e n t i a t i o n  of gonadotropic basophi l  

c e l l s  i s  enhanced by t h e i r  tendency t o  bind a l c i a n  b lue  a r e  i n  sharp  

c o n t r a s t  t o  those r epor t ed  f o r  mouse (48)  and human (1) t i s s u e  where 

thy ro t rop ic  c e l l s  a r e  s t a i n e d .  This  may r e f l e c t  i n t e r s p e c i f i c  
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v a r i a b i l i t y  o r  may simply r e s u l t  from t h e  p r e s e n t  s t a i n  procedure 

which does no t  inc lude  t i s s u e  oxida t ion  by performic a c i d  p r i o r  t o  

a l c i a n  b lue  s t a i n i n g .  It  i s  noteworthy t h a t  a l t i t u d e  exposure has  

no apparent  e f f e c t  upon the  t i n c t o r i a l  a f f i n i t y  of p i t u i t a r y  c e l l s  

f o r  a l c i a n  b lue .  

Although no his tochemical  s p e c i f i c i t y  can be a sc r ibed  t o  t h e  

p i c r i c  a c i d  component of the  s t a i n  employed i n  t h i s  i n v e s t i g a t i o n ,  

o t h e r  a c i d  dyes used t o  demonstrate ac idoph i l  c e l l s ,  such a s  orange G 

(88), l uxo l  f a s t  b lue  (57), and l i g h t  green SF (32), are no t  supe r io r  

i n  t h i s  r e s p e c t .  

p i c r i c  a c i d  by ac idoph i l  c e l l s  remains una l t e red  by a l t i t u d e  

exposure.  

A s  wi th  a l l  o the r  s t a i n  components, t he  binding of  

Despi te  the  success  of these  s e v e r a l  co lo r ing  agents  f o r  

d i f f e r e n t i a t i n g  t h e  c e l l u l a r  composition of a n t e r i o r  p i t u i t a r y  

t i s s u e ,  t he  incons i s t enc ie s  i n  s t a i n i n g  i n t e n s i t y ,  d i s t r i b u t i o n ,  

and performance i n  t h e  hands of d i f f e r e n t  i n v e s t i g a t o r s  emphasize 

t h e  need f o r  procedural  s t anda rd iza t ion  ( 8 4 ) .  A major ,  though 

supplemental ,  c o n t r i b u t i o n  of  the p r e s e n t  s tudy i s  t h e  demonstrat ion 

t h a t  t he  c e l l  types of  t h e  r a t  a n t e r i o r  p i t u i t a r y ,  once s t a i n e d ,  can 

be cha rac t e r i zed  success fu l ly  on the  b a s i s  of t h e i r  r e s p e c t i v e  

abso rp t ion  s p e c t r a .  Thus, comparative s t u d i e s  of s t a i n i n g  i n t e n s i t y ,  

dye - t i s sue  complexing, mu l t ip l e  dye b inding ,  and dye d i s t r i b u t i o n  

become f e a s i b l e .  C y t o d i f f e r e n t i a t i o n  i n  heterogeneous t i s s u e s  such 

as the  a n t e r i o r  p i t u i t a r y  i s  g r e a t l y  f a c i l i t a t e d  and need no longer  

be done on a wholly s u b j e c t i v e  b a s i s ,  s i n c e  t h e  "appearance" of t h e  
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i n d i v i d u a l  c e l l  a l s o  may include o b j e c t i v e  cytophotometric i d e n t i -  

f i c a  t i o n .  

An a c c u r a t e  assessment of t he  e f f e c t s  of s imulated high 

a l t i t u d e  upon t h e  r a t  a n t e r i o r  p i t u i t a r y  n e c e s s i t a t e s  d i r e c t  v i s u a l  

obse rva t ion  of p i t u i t a r y  c e l l s  t o  co r robora t e  t h e  weal th  of i n d i r e c t  

d a t a  which i n d i c a t e  the presence of acc l ima t ing  p i t u i t a r y  mechanisms. 

For example, t he  endocrine ep i the l ium of t h e  pars  d i s t a l i s  i s  known 

t o  be engaged i n  the s y n t h e s i s  and r e l e a s e  of hormones, and a l t e r a -  

t i o n s  i n  one o r  both of t hese  func t ions  c o n s t i t u t e  t he  only mechanisms 

by which the  p i t u i t a r y  can c o n t r i b u t e  t o  acc l ima t ion  p rocesses .  

D i r e c t  obse rva t ion  of p i t u i t a r y  c e l l s  should demonstrate one o r  more 

o f  the fol lowing:  1. a change i n  the  number of s p e c i f i c  hormone- 

producing c e l l s  of each type ,  2 .  a l t e r a t i o n s  i n  the  s y n t h e s i s  o r  

s t o r a g e  of s p e c i f i c  hormones as  r e f l e c t e d  i n  t h e  i n t e n s i t y  of 

cytoplasmic g ranu la t ion , and  3 .  an  i n c r e a s e  o r  decrease i n  hormone 

s e c r e t i o n  a s  r e f l e c t e d  i n  d e p l e t i o n  of g r a n u l a t i o n  and cytoplasmic 

v a c u o l i z a t i o n .  The n e t  e f f e c t s  of t he  l a t t e r  two cytoplasmic 

changes would be i n d i c a t e d  by the r e l a t i v e  amount of s t a i n e d  i n t r a -  

c e l l u l a r  hormone p r e s e n t  i n  i n d i v i d u a l  c e l l s  of a p a r t i c u l a r  type 

du r ing  a c u t e  and ch ron ic  hypoxia exposure.  

D i f f e r e n t i a l  c e l l  counts ob ta ined  from h i s tochemica l ly  

s t a i n e d  p i t u i t a r y  s e c t i o n s  support  the conc lus ion  t h a t  observable  

changes do occur i n  the  number of each type of chromophil c e l l  

p r e s e n t .  More s p e c i f i c a l l y ,  a l t i t u d e  exposure r e s u l t s  i n  an i n c r e a s e  

i n  the frequency wi th  which the t h r e e  types of chromophil c e l l s  appea r .  
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This  e f f e c t  i s  most ev iden t  i n  the a c i d o p h i l  c e l l  popu la t ion  and t o  

a l e s s e r  degree i n  the  gonadotropic and t h y r o t r o p i c  basoph i l s .  

Furthermore,  t h e  number of chromophil c e l l s  of each type p r e s e n t  

i n  c o n t r o l  r a t s ,  expressed as a mean pe rcen t  of t o t a l  c e l l s ,  i s  

i n  good agreement wi th  r epor t ed  r e s u l t s  from o t h e r  s t u d i e s  n o t  

r e l a t e d  t o  a l t i t u d e  accl imat ion (42 ,  4 9 ) .  

Because the  d i s t r i b u t i o n  of chromophil c e l l  types wi th in  the 

r a t  p i t u i t a r y  conforms t o  a d e f i n i t e  p a t t e r n  (67) ,  d i f f e r e n t i a l  

count ing of random microscopic f i e l d s  does no t  y i e l d  a t r u e  p i c t u r e  

of changes i n  c e l l  frequency. F a i l u r e  t o  observe t h i s  f e a t u r e  of 

p i t u i t a r y  gland o r g a n i z a t i o n  may e x p l a i n  the l i m i t e d  success  of 

e a r l y  a t t empt s  t o  c o r r e l a t e  count d a t a  wi th  f u n c t i o n a l  changes 

(28 ,  6 3 ) .  The count procedure h e r e i n  desc r ibed  i s  designed t o  

minimize e r r o r s  due t o  non-random c e l l  d i s t r i b u t i o n .  

Attempts t o  demonstrate m i t o t i c  a c t i v i t y  i n  t h e  pa r s  d i s t a l i s  

of the male r a t  show t h a t  t h i s  i s  a very r a r e  event  (14,  50), and no 

m i t o t i c  f i g u r e s  a r e  observed i n  the p i t u i t a r y  s e c t i o n s  employed i n  

t h e  p r e s e n t  s tudy .  Thus, t h e  apparent  i n c r e a s e  i n  chromophil c e l l s  

of a l l  types fol lowing hypoxia exposure does n o t  r e p r e s e n t  a t r u e  

h y p e r p l a s i a .  The c l e a r e s t  support  f o r  t h i s  conclusion comes from 

t h e  c e l l  count d a t a  f o r  chromophobes which show a dec rease  i n  

number p a r a l l e l i n g  the  inc reases  i n  the chromophil s e r i e s .  

I n  s h o r t ,  a l l  of t he  c e l l  count d a t a  i n d i c a t e  t h a t  i n t r a c e l l u l a r  

hormone concen t r a t ions  inc rease  w i t h i n  i n d i v i d u a l  a n t e r i o r  p i t u i t a r y  

c e l l s  fol lowing hypoxia exposure. Reduction i n  t h e  r a t e  of c e l l u l a r  
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hormone secretion is the most probable mechanism accounting for the 

observed changes. Increased synthesis of pituitary hormones cannot 

be ruled out, especially for ACTH ( 4 6 ) ,  but seems unlikely, since 

lowered oxygen availability is known to inhibit protein synthesis in 

certain rat tissues (70). Finally, it is clear that in control male 

rats at least some pituitary chromophobes are hormone-secreting cells 

whose cytoplasm is depleted of secretion granules. This appears to 

be particularly true for the acidophil series which shows the greatest 

change in numbers of any chromophil cell type in the present study and 

is known to show great lability under experimental conditions other 

than altitude exposure ( 3 0 ,  42,  4 9 ) .  

The reported effects of simulated high altitude upon pituitary 

weight are conflicting. Although Moore and Price (52) and Marks 

-- et al. (46)  assert that no significant weight changes occur, the 

present investigation shows a loss of gland weight during hypoxia 

exposure and supports the results of Gordon et al. (28). It seems 

clear that pituitary weight changes are associated with the general 

loss of body weight which results from interruption of normal 

patterns of food and water consumption during the acute stages of 

acclimation ( 5 4 ,  78, 8 3 ) .  Calculation of changes in relative 

pituitary weight show that this loss occurs more slowly in the 

tissues of this gland than in the body as a whole. This could reflect 

the increased blood flow reported for the pituitary under conditions 

of stress (26)  or might be due to transient accumulation of intra- 

glandular secretory products, since histological observation reveals 



65 

no unusual accumulation of blood within the vascular spaces of the 

pars distalis. 

m e  results of cytophotometric analyses lend a new degree of 

sophistication to the direct investigation of histological pituitary 

sections. This phase of the study involves the objective spectral 

characterization of respective cell types in heterogeneous tissues 

from different sources, and an assessment of hypoxia-induced changes 

in relative quantities of intracellular materials. 

Application of cytophotometry to anterior pituitary tissues 

from control and altitude-exposed rats supports the following 

conclusions: 1. altitude exposure has no effect upon the spectral 

characteristics of individual chromophil cells when these are stained 

with alcian blue, P . A . S .  , and picric acid, 2 .  individual pituitary 

acidophil cells show an increase in dye-binding capacity as a result 

of altitude exposure, and 3 .  individual basophil cells of both the 

gonadotropic and thyrotropic series demonstrate an increased dye- 

binding capacity following exposure to simulated high altitude. 

The spectral characteristics of dyes such as those employed 

in this study may be visualized by reference to the shape of the 

absorption curves obtained from dye solutions and from tissue 

components to which the dye is bound following staining (13). 

Cytochemical changes occurring in tissues as the result of an 

mental stressor such as hypoxia exposure may alter the dye-tissue 

complex and produce changes in the position and shape of dye 

absorption peaks. With the exception of alcian blue staining of 
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gonadotropic basophils, such changes are not observed in the present 

study, and absorption curves from respective chromophil cell types 

are similar to those which one would predict from observations of 

dye solution spectra. Furthermore, since absorption curves from 

any given chromophil cell type have the same general configuration 

for both control and all experimental animals, it is evident that no 

qualitative cytochemical alterations occur in the secretory products 

of respective hormone-producing cells as a result of altitude exposure 

Cytophotometric characterization of stained gonadotropic baso- 

phil cells raises some important questions concerning the extent to 

which these cells bind alcian blue, since only one major absorption 

peak, corresponding closely with that of the P . A . S .  component of 

the stain, appears in spectra obtained from these cells. Either 

the major absorption of alcian blue in solution shifts to a shorter 

wavelength region of the spectrum when the dye is complexed with 

tissue polysaccharides, or the apparent color differences between 

thyrotropic and gonadotropic basophils depend entirely upon dif- 

ferences in P . A . S .  stain intensity. Further study is needed to 

resolve this problem. 

Although quantitative cytophotometric analysis is well 

established as a technique for measuring intranuclear DNA in 

Feulgen stained tissue sections (50, 6 2 ,  8 0 ) ,  application of this 

method to stained cytoplasmic structures in ordinary histological 

preparations is still in its infancy. Effective application of 

this method depends upon elimination of sources of error such as 
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nonhomogeneous dye distribution, irregularities in section thickness, 

and improper instrument alignment and response. Of these three, the 

first is reported to be of only occasional importance (20), while the 

second is minimized in the present study by analysis of many cells 

always selected from different tissue sections. The third source of 

error is obviated by repeated daily checks of instrument alignment 

and of photocell response linearity. 

The data obtained from quantitative cytophotometric analyses 

of pituitaries support the major conclusions concerning pituitary 

histophysiological changes during altitude acclimation based on cell 

count and weight change data. Specifically, cytophotometric examina- 

tion of chromophil cells of each type in control and all groups of 

altitude-exposed rats shows that the relative quantity of intra- 

cellular hormone, as measured by an increase in P.A.S. staining 

intensity (21), rises within a short time in gonadotropic and 

thyrotropic basophil cells. Acidophil cells, which stain with 

picric acid, also show an increase in stain intensity and intra- 

cellular hormone content. 

In summary, it is clear, from the combined results of cell 

counts, weight changes, and cytophotometric analyses of individual 

cells, that under conditions of simulated high altitude the rat 

anterior pituitary gland shows a net accumulation of hormone 

materials in all known hormone-producing cell types. This func- 

tional change manifests itself both as an increase in the 

proportionate number of a given type of pituitary chromophil 
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c e l l  and as an increased cytoplasmic a f f i n i t y  f o r  one o r  more dyes 

a f t e r  d i f f e r e n t i a l  s t a i n i n g .  Thus, a c i d o p h i l  c e l l s  show a marked 

i n c r e a s e  i n  number fol lowing hypoxia exposure and a l s o  d i s p l a y  

measurable changes i n  cytoplasmic hormone c o n c e n t r a t i o n ,  while  

gonadotropic and t h y r o t r o p i c  basophi ls  appear i n  only s l i g h t l y  

g r e a t e r  numbers and show s u b s t a n t i a l  i n c r e a s e s  i n  r e l a t i v e  amounts 

of i n t r a c e l l u l a r  hormone. 

P i t u i t a r y  adjustments  r e s u l t i n g  from exposure of male r a t s  

t o  simulated high a l t i t u d e  c o n s t i t u t e  a major f a c t o r  i n  the  

a t t a inmen t  of the accl imated s t a t e .  The f i n d i n g s  of t h i s  i n v e s t i -  

g a t i o n  are i n  agreement wi th  the hypothesis  of Nelson (54)  and 

o t h e r s  (34 ,  7 9 ) ,  t h a t  p i t u i t a r y  TSH s e c r e t i o n  may be slowed a t  the  

o n s e t  of hypoxia exposure thus c o n t r i b u t i n g  t o  the observed hypo- 

thy ro id  c o n d i t i o n  of experimental  animals .  

r e t e n t i o n  of a n t e r i o r  p i t u i t a r y  gonadotropins might c o n t r i b u t e  t o  

t h e  gonadal dysfunct ion which o f t e n  accompanies exposure t o  a l t i t u d e  

( 8 3 ) .  

i nc reased  number of a c i d o p h i l  c e l l s  and g r e a t e r  concen t r a t ion  of 

i n t r a c e l l u l a r  hormone, could account f o r  t h e  r epor t ed  r educ t ion  i n  

growth r a t e  i n  hypoxia-exposed r a t s  ( 2 ) ,  and may a l s o  produce 

e f f e c t s  upon t h e  thyroid through s y n e r g i s t i c  a c t i o n  wi th  TSH (82) 

and o t h e r  unknown i n t e r a c t i o n s  which l i n k  changes i n  t h e  a c i d o p h i l  

c e l l  w i th  the  thy ro id  (30 ,  4 2 ,  4 9 ) .  

In  a s i m i l a r  manner, 

I n t r a c e l l u l a r  s t o r a g e  of growth hormone, as evidenced by an 

It i s  of f u r t h e r  i n t e r e s t  t o  s p e c u l a t e  whether t he  f a u l t y  

l a c t a t i o n  r epor t ed  f o r  female r a t s  exposed t o  a l t i t u d e  (52 ,  83) may 
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result from the tendency of the anterior pituitary acidophil cells 

to retain greater than normal quantities of lactotropic hormone. 

The present study suggests the existence of such a mechanism. 

This investigation does not resolve the mechanisms of 

pituitary-adrenal interaction which result from the stress of 

altitude exposure. The general retention of hormone products 

exhibited by pituitaries of hypoxia-exposed rats helps to explain 

the increased intrapituitary ACTH content reported by Marks et al. 

( 4 6 ) ,  but it does not provide an adequate explanation for the 

observed rise in circulating ACTH levels or increase in adreno- 

cortical function (37)  during the period of acclimation. 

In conclusion, it is the author's conviction that the 

application of cytophotometric techniques for hormone microanalysis 

in physiologically active, morphologically heterogeneous, tissues 

such as the rat anterior pituitary contributes to a better under- 

standing of endocrine responses during acclimation to a simulated 

high altitude environment. 
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SUMMARY 

The response of the anterior pituitary gland during initial 

exposure and acclimation to a simulated high altitude of 18,000 

feet was determined. Evidence of significant histophysiological 

changes was secured from either fixed whole pituitary glands or 

serial sections of the anterior pituitary. All tissues were 

obtained from male Sprague Dawley rats maintained either as controls 

at ambient pressure or as experimental groups continuously exposed 

to simulated altitude for one, two, seven, or 30 days. Tissue 

sections, chosen for definitive study, were stained differentially 

with alcian blue, P . A . S .  , and picric acid in accordance with the 

results of a preliminary study in which five differential anterior 

pituitary stains were compared. 

Data obtained from differential cell counts of stained 

tissue sections showed that all chromophil cell types increased 

in relative number within 48 hours or less of the onset of altitude 

exposure. This was especially true of the acidophil cell series, 

while gonadotropic and thyrotropic basophil cells showed lesser 

increases. Chromophobe cells decreased in relative number in a 

manner corresponding to the increased chromophil population, Since 

no mitotic figures were observed, it was concluded that altitude- 

induced changes in relative anterior pituitary chromophil cell 

numbers did not represent true hyperplasia. Observed changes were 

judged to have resulted from accumulation of dye-binding hormone 
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materials within the cells of the pars distalis. Measurement of 

actual and relative pituitary weight changes during altitude 

acclimation provided further support for this conclusion. 

Cytophotometric characterization of anterior pituitary 

chromophil cells of each type was shown to be possible using a 

Leitz microspectrophotometer. The similarities in absorption 

spectra obtained from the stained cytoplasm of individual cells of 

each type in both control and altitude-exposed rats demonstrated 

that hypoxia did not cause cytochemical alterations of any kind in 

the hormone products stored by respective chromophils. 

Quantitative evaluation of the cytophotometric data indicated 

that the relative intensity of cytoplasmic staining increased in 

acidophil cells during altitude acclimation. Gonadotropic and 

thyrotropic basophils also displayed measurable increases in 

relative cytoplasmic staining intensity in all altitude-exposed 

animals. It was concluded that such increases in dye-binding 

capacity resulted from increased intracellular hormone storage. 

Thus, all hormone-producing cell types within the male rat 

pars distalis display increased amounts of intracellular hormone 

material as a result of hypoxia exposure. Knowledge of this 

pituitary response furthers our understanding of the endocrine 

mechanisms by which the rat acclimates to conditions of simulated 

high altitude. 
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I .  P repa ra t ion  of Reagents. 

A .  S c h i f f ' s  r eagen t  ( l eucofuchs in ) .  

1. D i s t i l l e d  H20 480 m l  
H C 1 ,  concentrated 20 m l  

Basic fuchsin (C . I .  No. 42510) 5 . 0  g 
Sodium m e t a b i s u l f i t e  9 .5  g 

2 .  Add the above, i n  o r d e r ,  t o  a f l a s k ;  s toppe r  
t i g h t l y  and shake a t  2 minute i n t e r v a l s  f o r  
a pe r iod  of 2 hour s .  

3 .  Add 1 g of a c t i v a t e d  cha rcoa l  and shake 
cont inuously f o r  2 minutes.  

4 .  F i l t e r  to  remove the  cha rcoa l .  The f i l t r a t e  
should be c l e a r  and c o l o r l e s s .  

5 .  S t o r e  a t  5 C u n t i l  used.  

B .  Alcian b l u e .  

1. Alc i an  blue ( C . I .  No. 74240) 0 . 1  g 
Ace t i c  a c i d ,  3% 100 m l  

2 .  F i l t e r  and add a c r y s t a l  of thymol t o  p r e s e r v e .  
The pH should be 2.5 t o  3 . 0 .  Solu t ion  remains 
s t a b l e  f o r  2 t o  4 weeks. 

3 .  R e f i l t e r  i f  necessary be fo re  use .  

C .  S a t u r a t e d  p i c r i c  a c i d .  

1. P i c r i c  ac id  
D i s t i l l e d  H20 

D .  Pe r iod ic  a c i d .  

1. Pe r iod ic  ac id  
D i s t i l l e d  -H20 

E .  Bleaching s o l u t i o n  

1. H C 1 ,  1 N 
Sodium m e t a b i s u l f i t e ,  10% 
D i s t i l l e d  H20 

1 .18  g 
100 m l  

1 . 0  g 
100 m l  

60 ml 
60 m l  

1090 m l  

2 .  Mix f r e s h  be fo re  use .  
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11. S t a i n i n g  Procedure.  

A .  A lc i an  b l u e ,  P.A.S., p i c r i c  a c i d  s t a i n  f o r  a n t e r i o r  
p i t u i t a r y .  

1. Depara f f in i ze  s e c t i o n s  i n  xylene and hydra t e  
through a l c o h o l s  t o  water .  

2 .  S t a i n  i n  a l c i a n  b lue  f o r  30 minutes .  

3. Wash i n  running t a p  water f o r  2 minutes .  

4 .  Rinse i n  d i s t i l l e d  wa te r .  

5 .  Oxidize i n  p e r i o d i c  a c i d  f o r  5 minutes .  

6 .  Rinse thoroughly i n  d i s t i l l e d  wa te r .  

7 .  Place i n  S c h i f f ' s  r eagen t  f o r  20 minutes .  

8 .  Rinse i n  3 changes of b leaching  s o l u t i o n  f o r  
2 minutes each .  

9 .  Wash i n  running t a p  water f o r  10 minutes .  

10. S t a i n  i n  s a t u r a t e d  p i c r i c  a c i d  f o r  1 minute.  

11. Dip once i n  t a p  water .  

1 2 .  Dip once i n  95% a l c o h o l .  

13. Dehydrate qu ick ly  wi th  3 d i p s  each i n  2 changes 
of abso lu t e  a l c o h o l .  

14.  Clear i n  xylene f o r  2 minutes and mount i n  
Permount. 
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