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The problem of Lyapunov's stable equilibrium is formulated for
orthotropic rectangular plates which are hinged over the contour and are
compressed in two directions by c;nsta;t loads. It is shown, that the
stability criteria given for the problems considered in [1] and [2] follow
from conditions in which the energy integral possesses the properties of
a Lyapunov functional, The condition of positive definiteness of the
energy integral is established by means of estimates related to the com-

pleteness of certain specified systems of functions [3].

l. The equations of small deflections w(x,y,t) of orthotropic plane,
rectangular plates, hinged over the contour and compressed or stretched in
two directions by constant loads,‘can,fafter introduction of dimensionless

variables be brought into the form
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1 0 and a, > 0 are dimensionless rigidities, a, and a, are dimension=-
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less loads, positive for tensions., If one adds on the left hand side of 1.1)

the terms:
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then by the selection of the parameters a3y 3, 8¢ and a, one can also take

into account the effect of a liquid flowing along themiddle surface with



‘constant velocity in the direction of the x or y axis [4] on the plates,
The dimensionless coordinates x and y lie in the square K(0 < x < 1,

0 <y <1) and the time t is in some interval, t, St <ty belonging

to the real axis.

The equations (1.1) and (1.2) allow the solution
w(x,y,t) = 0 (1.4)

corresponding to the eq@ilibrium of the plates. For the investigation of the

stability of this equilibrium choose as metric the perturbed functional
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determined in the "points"

ang,x,tz

z = {w(x,y,t) 3t t = constant

where the function w(x,y,t) belongs to the class W of sufficiently smooth
solutions of the problem (1.1), (1.2).

Let us denote the "static" part of the metric by
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Thé equilibrium (1.4) is considered stable if for all ¢ > 0O, there exists a
§(e) > 0 such that for all solutions w(x,y,t)eW satisfying at the initial time
t, the condition

p(z(to))*< 8 1.7)

for all t :-to the condition

p(z(t)) <€ (1.8)

is satisfied in the region where the solution w(x,y,t) is defined.

In order tb finish the formulation of the problem of stability let
us define more accurately the solutions w(x,y,t) of class W: In the region
where the solutions w(x,y,t) are defined they must be continuous in the
variables x,y and t together with their derivatives which occur in obtaining

from the equations (1.1) and (1.2) the relations
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It is obvious that for any solution w(x,y,t)eW the right hand side of (1.5)
is a continuous function of the time t.

Below it is shown, that if the condition

alm4 + 2 m2n2 + a2n4 + a3m2 + a4n2 >0 (m,n=1,2,...) (1.12)



is fulfilled, the functional H(z) possesses the following property:

(1) For any € > O one can find a number u(e) > 0 such that the condition
H(z) > u for p(z) > ¢ (1.13)

is fulfilled.
Apart from this, it is evident from (1.5), (1.9) - (1.11l) that the

functional H(z) possesses the following properties:

(2) For any solution w(x,y,t)eW the functional H does not increase with

time t,

(3) For each u > O one can find a §(u) > 0 such that the condition
|H(z)| <u for p(z) < &

is satisfied.

Theorems 5.2 [5,6] states accordingly that the properties (1), (2)
and (3) are sufficient for stability in the sense indicated by the inequalities
(1.7) and (1.8). Therefore the stability of the equilibrium (1.4), satisfying
conditions (1,12) is proved if it can be shown that property (1) defines a

positive functional H(z) with respect to the metric p(z).

2. Every orthonormal system of functioms

¢m(x) =/ 2 sin mmx m=1,2,.. (2.1)
‘ 1 n=20
Wm(x) =
Y~ 2 cos mmx m = 1,2,.. (2.2)

is complete in the interval 0 < x < 1,




From [7,8] follows that the following orthonormal system of functions

is complete in the rectangle K:

O (Bo¥) = ¢ (x)¢ (¥). myn = 1,2,,.. (2.3)
Y (X¥) = ¥ (XY (¥) mn = 1,2,,, (2.4)
X (%5 ¥) "fm(x)¢n(y) m=1,2,..; n=0,1,.. (2.5)
Wpn (57) = ¥ (x)4_(y) m=0,1,..; n=1,2,,., | (2.6)

Let us next examine the Fourier coefficients of the deflection w(x,y,t) with
respect to.the system (2.3):
i1

f f w(x,y,t) ¢

(x,y) dxdy = a (2.7)
0 0 mn

mn

Then, making use of théiboundary conditions (1.2) and the properties of the

functions (2.1) - (2.6) we obtain:

1 1.,
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dw - 2 2
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11 0 m=0
g é 5—; wmn dx dy ={mTm amn m,n = 1.2....
0 n=90
11 S w
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Under the made assumptions  relative smoothness of the deflection w(x,y,t)
all the functions, for which the Fourier coefficients are given by the formulas
(2.8), are square integrable over K, Therefore from (2.8) and the completeness

conditions of the system (2.3) - (2.6) one finds:
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With (2.9) follows for the functionals f (1.6) and (1.11) the representations

p;(z) - 72 Z azn[wz(m4 + m2n2 + n4) + m2 + nzl + sup WZ (2.10)
) m,n=1 K
v 2 4 4
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m +n m +n



Taking into account the initial conditions (1,2) one obtains also

X Va2
J‘w
w(x,y,t) = I f dx dy.
v rs0 .0 0 Iy

Hence, applying the Buniakovskii-Schwartz inequality one finds

1 1

2
w2 < -;j”— 2 dx dy
0 0 M
1 1., w
Sup w? < f f -;§L02 dx dy = n* } a:mmzn2 (2.12)
K 0 0 y m,n=1

Let for the give~ meaning of the parameters of the problem, ajs a5 2, and a,

the condition (1.12) be fulfilled: then the condition

alm4 + 2m2n2 + azn4 a3m2 + a4n2
f(m,n) = A 7 + 7 7 >0, my,n=1, 2,,, (2.13)
m +n m +n

is also satisfiéd.

The first term of (2.13) exceeds for any n, m = 1, 2,... the positive
number min,(al, az) = y&; therefore it follows from (2.13) that for any considered
pair of numbers (m,ﬁ) lying in a bounded square 1 <m < M; 1 <n <M, where M
is a sufficiently large number the inequality f(m,n) > Yy 0 is satisfied.

Amome the ultimate number of positive numbers f(m,n), m, n =1, 2, ... M,
There is roing to ve 2z smallest number Yy > 0., Therefore denote min(l,yl,yz) =

4y > 0, from (2.13) one has
f(mn) >4y >0 m, n=1,2,,. (2.14)
and from (2,10), (2.11), (2.12), (2.14) one obtains

HS(Z) 2ye (2) 0 <y<1




Hence taking into account the structure of the functional (1.5), the estimate

for (1.10) becomes
H(z) > v p(2) y >0,

from which follows the condition of positive definiteness of (1.13) for
M=y e,

The stability of the equilibrium (1.4) is thus demonstrated for condition
(1.12) being satisfied,

Further 1t shouid be noted that the addition: of the gyroscopic terms
(1.3) to (1.1) does not change the relationships (1.9) - (1.11) and the resulting

sufficient condition for stability (1.12).

3. For fixed values of the parameters a;, a, the stability condition (1.12)
determines in the plane of parameters ay, a, a convex region of stability, A,
formed by the intersections of an infinite number of half planes corresponding

to the various values of the parameters my n = 1, 2Z,... .

4 The figure gives a representation

N of the kind of ®mgion of stability

0 a4 A with its boundary consisting of
\\\\J short pieces of straight line,

R .

(see figure 175 [1]).

It can be verified that for the problem considered (1.1), (1.2)
the equilibrium under violation of condition (1.12) will not be stable.
Actually in that case at least for one pair of numbers m, n the left side
of (1.12) will be either zero or negative and the equations (1.1l) and (1,2)

will allow a solution




w(x,y,t) = amn(t - to) sinm 7™ x sinn 7 y,

p(t-t )
w(x,y,t) = a e sinmw®xsinnny, p>0

respectively which will not satisfy the condition (1.8) for all t 2t
Therefore it is clear, that each point in the ay - a, parameter plane can be
found on the boundary of the region A, or outside this region corresponding
to an unstable condition of the equilibrium (1.4).

In this article the question of the stability properties of the
equilibrium (1.4) for violation of condition (1.12) for the case with the

terms (1.3) present has not been considered.
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