TECHNICAL NOTE R-39

DETERMINATION OF TRAJECTORY PARAMETeRS RELATIVE TO VARIOUS ARD GROUND STATHOES

Prepared By
H. M. Minshew
A. R. Phillips
H. C. Crews, Jr.

June, 1963

ENCANEERANG COMPANY INC.
hUNTSVILLE, ALABAMA

DETERMINATION OF TRAJECTORY PARAMETERS RELATIVE TO VARIOUS AROD GROUND STATIONS

June, 1963

INSTRUMENTATION BRANCH ASTRIONICS DIVISION
 GEORGE C. MARSHALL SPACE FLIGHT CENTER

By

SCIENTIFIC RESEARCH LABORATORIES BROWN ENGINEERING COMPANY, INC.

Contract No. NAS8-2495

Prepared By

H. M. Minshew
A. R. Phillips
H. C. Crews, Jr.

The slant range, rate of change of slant range, the maximum slant range acceleration, \ddot{R}, elevation angle, maximum rate of change of elevation angle, azimuth angle, maximum r ate of change of azimuth angle, aspect or look angle, and maximum rate of change of aspect angle as measured from six selected AROD ground stations are computed and given as a function of vehicle ground range and time from launch from Cape Canaveral for a 105 NM circular orbit trajectory on an initial bearing angle of 105 degrees.

For purposes of analyzing vehicle antenna pattern requirements, the missile azimuth and missile elevation angles are computed and peresente for each station as a function of time and vehicle ground range from launch.

Approved:

Raymond C. Watson, Jr.
Director of Scientific Research
Page
INTRODUCTION 1
ANALYSIS 3
PRESENTATION OF RESULTS 13

1 Vehicle Position and Velocity Relative to an Earth-Fixed System
2 Range from a Point on the Earth's Surface to the Vehicle 6
3 Elevation Angle (ξ) 7
4 Azimuth Angle (ψ)5 Definition of Vehicle Azimuth Angle μ and VehicleElevation Angle γ10
6 Slant Range as Seen from Cape Canaveral 105 NM Orbit Launch Phase, Initial Bearing 105 Degrees 14
7 Slant Range as Seen from Site Jupiter 105 NM Orbit Launch Phase, Initial Bearing 105 Degrees 15
8 Slant Range as Seen from San Salvador 105 NM Orbit Launch Phase, Initial Bearing 105 Degrees 16
9 Slant Range as Seen from Grand Turk 105 NM Orbit Launch Phase, Initial Bearing 105 Degrees 17
10 Slant Range as Seen from Bermuda 105 NM Orbit Launch Phase, Initial Bearing 105 Degrees 18
11 Slant Range as Seen from Antigua 105 NM Orbit Launch Phase, Initial Bearing 105 Degrees 19
12 Range Rate as Seen from Cape Canaveral 105 NM Orbit Launch Phase, Initial Bearing 105 Degrees 20
13 Range Rate as Seen from Site Jupiter 105 NM Orbit Launch Phase, Initial Bearing 105 Degrees 21
14 Range Rate as Seen from San Salvador 105 NM Orbit
Launch Phase, Initial Bearing 105 Degrees 22
15 Range Rate as Seen from Grand Turk 105 NM Orbit Launch Phase, Initial Bearing 105 Degrees 23
16 Range Rate as Seen from Bermuda 105 NM Orbit Launch Phase, Initial Bearing 105 Degrees 24

17 Range Rate as Seen from Antigua 105 NM Orbit Launch
Phase, Initial Bearing 105 Degrees 25

18 Absolute Value of Elevation Angle as Seen from Cape
Canaveral 105 NM Orbit Launch Phase, Initial Bearing
105 Degrees 26

19 Absolute Value of Elevation Angle as Seen from Site Jupiter 105 NM Orbit Launch Phase, Initial Bearing 105 Degrees27

20 Absolute Value of Elevation Angle as Seen from San Salvador 105 NM Orbit Launch Phase, Initial Bearing 105 Degrees

21 Absolute Value of Elevation Angle as Seen from Grand Turk 105 NM Orbit Launch Phase, Initial Bearing 105 Degrees

22 Absolute Value of Elevation Angle as Seen from Bermuda 105 NM Orbit Launch Phase, Initial Bearing 105 Degrees

23 Absolute Value of Elevation Angle as Seen from Antigua 105 NM Orbit Launch Phase, Initial Bearing 105 Degrees

24 Absolute Value of Azimuth Angle ψ as Seen from Site Jupiter 105 NM Orbit Launch Phase, Initial Bearing 105 Degrees

25 Absolute Value of Azimuth Angle ψ as Seen from San
25 Absolute Value of Azimuth Angle ψ as Seen from San
Salvador 105 NM Orbit Launch Phase, Initial Bearing 105 Degrees

26 Absolute Value of Azimuth Angle ψ as Seen from Grand Turk 105 NM Orbit Launch Phase, Initial Bearing 105 Degrees

27 Absolute Value of Azimuth Angle ψ as Seen from Bermuda 105 NM Orbit Launch Phase Initial Bearing 105 Degrees

28 Absolute Value of Azimuth Angle ψ as Seen from Antigua 105 NM Orbit Launch Phase, Initial Bearing 105 Degrees

29 Absolute Value of Aspect Angle η as Seen from Cape Canaveral 105 NM Orbit Launch Phase, Initial Bearing 105 Degrees

30 Absolute Value of Aspect Angle η as Seen from Site Jupiter 105 NM Orbit Launch Phase, Initial Bearing 105 Degrees38

31 Absolute Value of Aspect Angle η as Seen from San Salvador 105 NM Orbit Launch Phase, Initial Bearing 105 Degrees

32 Absolute Value of Aspect Angle η as Seen from Grand Turk 105 NM Orbit Launch Phase, Initial Bearing 105 Degrees

33 Absolute Value of Aspect Angle η as Seen from Bermuda 105 NM Orbit Launch Phase, Initial Bearing 105 Degrees41

34 Absolute Value of Aspect Angle η as Seen from Antigua 105 NM Orbit Launch Phase, Initial Bearing 105 Degrees

35 Absolute Value of Vehicle Azimuth Angle as Seen from Cape Canaveral 105 NM Orbit Launch Phase, Initial Bearing 105 Degrees43

36 Absolute Value of Vehicle Azimuth Angle as Seen from Site Jupiter 105 NM Orbit Launch Phase, Initial Bearing 105 Degrees43

37 Absolute Value of Vehicle Azimuth Angle as Seen from San Salvador 105 NM Orbit Launch Phase, Initial Bearing 105 Degrees

38 Absolute Angle Vehicle Azimuth Angle as Seen from Grand Turk 105 NM Orbit Launch Phase, Initial Bearing 105 Degrees45

39 Absolute Value of Vehicle Azimuth Angle as Seen from Bermuda 105 NM Orbit Launch Phase, Initial Bearing 105 Degrees46

40 Absolute Value of Vehicle Azimuth Angle as Seen from Antigua, 105 NM Orbit Launch Phase, Initial Bearing 105 Degrees

41 Absolute Value of Vehicle Elevation Angle as Seen from Cape Canaveral, 105 NM Orbit Launch Phase, Initial Bearing 105 Degrees

LIST OF FIGURES (Cont'd)

Figure
Page
$\begin{array}{ll}42 \text { Absolute Value of Vehicle Elevation Angle as Seen from } \\ \\ \text { Site Jupiter, } 105 \text { NM Orbit Launch Phase, Initial Bearing } & \\ 105 \text { Degrees } & 47\end{array}$
43 Absolute Value of Vehicle Elevation Angle, γ as Seen from San Salvador, 105 NM Orbit Launch Phase, Initial Bearing 105 Degrees

44 Absolute Value of Vehicle Elevation Angle, γ as Seen from
Grand Turk, 105 NM Orbit Launch Phase, Initial Bearing
105 Degrees
45 Absolute Value of Vehicle Elevation Angle, γ as Seen from Bermuda, 105 NM Orbit Launch Phase, Initial Bearing 105 Degrees 49
46 Absolute Value of Vehicle Elevation Angle, γ as Seen from Antigua, 105 NM Orbit Launch Phase, Initial Bearing 105 Degrees 49
47 Ground Range from Launch as a Function of Time 105 NM Orbit Launch Phase 50

Altitude as a Function of Time from Launch 105 NM Orbit
Launch Phase

E East
$\overline{\mathrm{i}}, \overline{\mathrm{j}}, \overline{\mathrm{k}} \quad$ Unit vectors along the $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ axes respectively
N North
$\bar{N}_{1} \quad$ Vector normal to the plane containing \bar{r}_{1} and $\overline{\mathrm{V}}$
$\bar{N}_{2} \quad$ Vector normal to the plane containing $\overline{\mathrm{R}}$ and $\overline{\mathrm{V}}$
O Origin of the $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ axes
$O_{r} \quad$ Origin of a coordinate system located at the radar site
$\overline{\mathrm{R}} \quad$ Position vector from O to the vehicle
R Range-rate-rate (slant range acceleration)
$\overline{\mathrm{R}} \quad$ Radius of the earth in vector form
$R_{e} \quad$ Magnitude of \bar{R}_{e}
$\bar{r} \quad$ Position vector from O to the vehicle
r Magnitude of \bar{r}
$\bar{r}_{1} \quad$ Position vector from O_{r} to the vehicle
$\mathbf{r}_{1} \quad$ Magnitude of $\widetilde{\mathbf{r}}_{1}$
$\dot{\bar{r}}_{1} \quad$ Time rate of change of \bar{r}_{1}
rr_{1} Range-rate (component of the velocity vector in the direction of r_{1})
$\overline{\mathrm{V}} \quad$ Velocity vector in $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ system
V Magnitude of $\overline{\mathrm{V}}$
V_{x}, V_{y}, V_{z} Components of \bar{V} in the vehicle coordinate system

LIST OF SYMBOLS (Cont'd)

$$
\begin{aligned}
\mathrm{X}, \mathrm{Y}, \mathrm{Z} & \text { Earth centered coordinate system } \\
\dot{X}, \dot{Y}, \dot{Z} & \text { First time derivatives of } \mathrm{X}, \mathrm{Y}, \mathrm{Z} \\
\mathrm{X}_{\mathrm{r}}, \mathrm{Y}_{\mathrm{r}}, \mathrm{Z}_{\mathrm{r}} & \text { Radar coordinate system } \\
\mathrm{X}, \mathrm{y}, \mathrm{Z} & \text { Vehicle local coor dinate system }
\end{aligned}
$$

Greek Symbols

β	Vehicle bearing angle measured positive clockwise from earth
γ	Vehicle elevation angle (see page 10)
δ	Vehicle path angle measured from local vertical
η	Angle between the radar line-of-sight and the velocity vector
θ	Longitude of the vehicle
${ }^{\theta} \mathrm{N}$	Angle between the plane containing \bar{r}_{1} and \bar{V} and a second plane containing \bar{R} and $\overline{\mathrm{V}}$ (see page 11)
$\Delta^{\theta} \mathrm{N}$	Angle representing the roll of the vehicle about its longitudinal axis
${ }^{\theta_{S}}$	Longitude of the station
μ	Vehicle azimuth angle (see page 10)
ξ	Elevation angle (see page 7)
ϕ	Latitude of the vehicle
ϕ_{s}	Latitude of the station
ψ	Azimuth angle (see page 8)
Ω	Earth's rotation rate

INTRODUCTION

Six ground stations were previously selected as potential AROD* transponder locations based on minimum geometric dilution of precision and continuous coverage for the launch phase of a 105 NM circular orbit trajectory launched from Cape Canaveral on an initial bearing angle of 105° from true north. (1)

In order to provide input data for design of the first space launched prototype of the AROD system, the ranges of values to be experienced on such a trajectory for slant range, range rate, maximum doppler rate (range acceleration), elevation angle, maximum elevation angular rate, azimuth angle, maximum azimuth angular rate, aspect angle and maximum rate of change of aspect angle with respect to each ground station were required. In addition, the elevation angle with respect to missile coordinates (the angle between the missile long axis and the projection of the position vector from each station in the vertical plane containing the axis) and the missile azimuth angle (the angle between the vertical plane through the missile axis and the position vector from each station) were required to analyze antenna pattern limitations. Methods for calculation of these parameters are derived and specific results are plotted for each of the six stations considered.

Reports to follow will give the details of the computer programs used. The basic program now has the capability of accepting any
*Airborne Range and Orbital Determination
definitive trajectory data, choosing those ground stations visible above a pre-determined minimum elevation angle or horizon, calculating all the above trajectory parameters and taking all visible stations three at a time in the calculation of GDOP spherical error volume.

Figure l and the accompanying equations give the coordinate scheme used in relating the vehicle position and velocity to the earthfixed system of coordinates. The relation of the vehicle position to the ground station location is given by the equations and notations of Figure 2, while Figure 3 indicates the method used to solve for the elevation angle ξ. Figure 4 shows the notation used to calculate the azimuth angle ψ and the aspect angle η. Figure 5 gives the notation used for the vehicle azimuth and elevation angles.

It should be noted that a spherical earth is assumed and trajectory positions and velocities may be furnished for either a fixed or rotating earth without affecting the calculation method.

The position velocity information used in these calculations was given at twenty second intervals which made the determination of higher time derivatives of range rate, elevation angle, azimuth angle, aspect angle, missile elevation angles and missile azimuth angles difficult. To obtain these derivatives, the parameter plots were smoothed and the slope of the curves were graphically determined.

Figure 1
Vehicle Position and Velocity Relative to an Earth-fixed System
$\mathrm{X}, \mathrm{Y}, \mathrm{Z} \quad$ Earth-fixed co-ordinate system
X and Y are in the plane of the Equator
Z is along the polar axis
$\overline{\mathrm{i}}, \overline{\mathrm{j}}, \overline{\mathrm{k}}$
Unit vectors along X, Y, Z respectively
$\mathrm{x}, \mathrm{y}, \mathrm{z}$
Local reference frame of vehicle
z is along \bar{r}.
x and y are perpendicular to \bar{r}; y is positive due North $\bar{r}=X \bar{i}+Y \bar{j}+Z \bar{k}$
θ is the geocentric longitude of the vehicle ϕ is the geocentric latitude of the vehicle β is the bearing angle measured positive clockwise from North δ is the path angle measured from the local vertical

The components of V in the local reference frame of the vehicle (x, y, z) are given by:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{x}}=\mathrm{V} \sin \delta \sin \beta \\
& \mathrm{~V}_{\mathrm{y}}=\mathrm{V} \sin \delta \cos \beta \\
& \mathrm{~V}_{\mathrm{z}}=\mathrm{V} \cos \delta
\end{aligned}
$$

\dot{X}, \dot{Y}, and \dot{Z} in terms of V_{X}, V_{y}, and V_{z} are given by:

$$
\begin{aligned}
& \dot{\mathrm{X}}=-\mathrm{V}_{\mathrm{x}} \cos \theta-\mathrm{V}_{\mathrm{y}} \sin \phi \sin \theta+\mathrm{V}_{\mathrm{z}} \cos \phi \sin \theta \\
& \dot{\mathrm{Y}}=\mathrm{V}_{\mathrm{x}} \sin \theta-\mathrm{V}_{\mathrm{y}} \sin \phi \cos \theta+\mathrm{V}_{\mathrm{z}} \cos \phi \cos \theta \\
& \dot{\mathrm{Z}}=\mathrm{V}_{\mathrm{y}} \cos \phi+\mathrm{V}_{\mathrm{z}} \sin \phi
\end{aligned}
$$

where ϕ and θ are the latitude and longitude of the vehicle.

Figure 2
Range from a Point on the Earth's Surface to the Vehicle
$\mathrm{X}_{\mathrm{r}}, \mathrm{Y}_{\mathrm{r}}, \mathrm{Z}_{\mathrm{r}}$
$\mathrm{X}_{1}, \mathrm{Y}_{1}, \mathrm{Z}_{1}$
$\frac{\mathrm{r}_{1}}{\mathrm{R}_{\mathrm{e}}}$
Co-ordinate system fixed at the station Co-ordinates of the station in the $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ system Range from the station to the vehicle Radius of the earth
X_{1}, Y_{1}, and Z_{1} are given in terms of ϕ_{s} and θ_{s} by:

$$
\begin{aligned}
& \mathrm{X}_{1}=\mathrm{R}_{\mathrm{e}} \cos \phi_{\mathrm{s}} \sin \theta_{\mathrm{s}} \\
& \mathrm{Y}_{1}=\mathrm{R}_{\mathrm{e}} \cos \phi_{\mathrm{s}} \cos \theta_{\mathrm{s}} \\
& \mathrm{Z}_{1}=\mathrm{R}_{\mathrm{e}} \sin \phi_{\mathrm{s}}
\end{aligned}
$$

$\overline{\mathbf{r}}_{1}$ is determined by the following relation:

$$
\begin{aligned}
& \bar{r}_{1}=\bar{r}-\bar{R}_{e} \\
& \bar{r}_{1}=\left(X-X_{1}\right) \bar{i}+\left(Y-Y_{1}\right) \bar{j}+\left(Z-Z_{1}\right) \bar{k}
\end{aligned}
$$

Figure 3
Elevation Angle (ξ)

The elevation angle is found by the law of cosines.

$$
\begin{gathered}
r^{2}=R_{e}^{2}+r_{1}^{2}-2 R_{e} r_{1} \cos (\pi / 2+\xi) \\
\text { or } \\
r^{2}=R_{e}^{2}+r_{1}^{2}+2 R_{e} r_{1} \sin \xi \\
\xi=\sin ^{-1}\left[\frac{r^{2}-R_{e}^{2}-r_{1}^{2}}{2 R_{e} r_{1}}\right]
\end{gathered}
$$

$\frac{w}{r} \underline{w}^{r} r, r_{1}$, and R_{e} are the magnitudes of the previously defined vectors, $\overline{\mathrm{r}}, \overline{\mathrm{r}}_{1}$, and $\overline{\mathrm{R}}_{\mathrm{e}}$.

Figure 4
Azimuth Angle (ψ)

The azimuth angle, ψ, is computed from the following vector equations. $\overline{\mathrm{k}} \times \overline{\mathrm{R}}_{\mathrm{e}}$ gives a vector normal to the plane containing $\overline{\mathrm{k}}$ and $\overline{\mathrm{R}}_{\mathrm{e}}$ $\bar{R}_{e} \times \bar{r}_{1}$ gives a vector normal to the plane containing \bar{R}_{e} and \bar{r}_{1}

The angle between the planes is equal to the angle between the two normals and is given by the dot product of ($\overline{\mathrm{k}} \times \mathrm{R}_{\mathrm{e}}$) and ($\overline{\mathrm{R}}_{\mathrm{e}} \times \overline{\mathrm{r}}_{1}$).

$$
\psi=\cos ^{-1}\left[\frac{\left(\overline{\mathrm{R}}_{\mathrm{e}} \times \overline{\mathrm{r}}\right) \cdot\left(\overline{\mathrm{k}} \times \overline{\mathrm{R}}_{\mathrm{e}}\right)}{\left|\overline{\mathrm{R}}_{\mathrm{e}} \times \overline{\mathrm{r}}_{1}\right|\left|\overline{\mathrm{k}} \times \overline{\mathrm{R}}_{\mathrm{e}}\right|}\right]
$$

$$
\begin{aligned}
& \text { Aspect Angle }(\eta) \text { and Range Rate }\left(\mathrm{rr}_{1}\right) \\
& \overline{\mathrm{V}}=\dot{\mathrm{X}} \overline{\mathrm{i}}+\dot{\mathrm{Y}} \overline{\mathfrak{j}}+\dot{\mathrm{Z}} \overline{\mathrm{k}}
\end{aligned}
$$

The aspect angle is given by the dot product of \bar{r}_{1} and $\overline{\mathrm{V}}$.

$$
\eta=\cos ^{-1}\left[\frac{\bar{r}_{1} \cdot \bar{v}}{\left|\bar{r}_{1}\right||\bar{v}|}\right]
$$

The range rate, rr_{1}, is the component of $\frac{\mathrm{d} \bar{r}_{1}}{\mathrm{dt}}$ along \bar{r}_{1} and is given by:

$$
r r_{1}=\left|\dot{\bar{r}}_{1}\right| \cos \eta
$$

\left.\left. where ${\overline{\mathrm{r}_{1}}}^{\prime}=\dot{(\mathrm{X}}+\mathrm{Y}_{1} \Omega\right) \overline{\mathrm{i}}+\dot{(\mathrm{Y}}-\mathrm{X}_{1} \Omega\right) \overline{\mathrm{j}}+\dot{\mathrm{Z}} \overline{\mathrm{i}}$

The terms $Y_{1} \Omega$ and $X_{1} \Omega$ account for the fact that the stations are rotating with the earth at an angular speed of Ω radians per second.

Figure 5 - Definition of Vehicle Azimuth Angle μ and Vehicle Elevation Angle γ

$$
\begin{array}{ll}
\text { Plane I: } \quad \text { A plane containing the radius vector } \bar{R} \text {, the vehicle } \\
& \text { velocity vector } \bar{V} \text {, and the origin } O \text { of an earth- } \\
\text { centered coordinate system }
\end{array}
$$

Plane II: A plane which is perpendicular to Plane I and also contains the velocity vector

Plane III: A plane containing the radar range vector, \bar{r}_{1}, hence the origin of a co-ordinate system located at the station site, and perpendicular to Plane II.

$$
\begin{aligned}
Y= & \text { angle between Plane II and } \bar{r}_{1} \text { in Plane III or } \\
& \text { the angle between } \bar{r}_{1} \text { and its projection in } \\
& \text { Plane II }
\end{aligned}
$$

$\mu=$ angle between the projection of \bar{r}_{1} in Plane II and the velocity vector

The vehicle azimuth angle (μ) is calculated from the following equation:

$$
\mu=\tan ^{-1}\left[\tan \eta \cos \left(\theta_{N} \bullet \Delta \theta_{N}\right)\right]
$$

where
η is the aspect angle defined above
and

$$
\begin{aligned}
& \theta_{\mathrm{N}} \text { is the angle between a plane containing } \overline{\mathrm{r}_{1}} \text { and } \overline{\mathrm{V}} \text { and a second } \\
& \text { plane containing } \overline{\mathrm{R}} \text { and } \overline{\mathrm{V}} \text {. }
\end{aligned}
$$

$\Delta \theta_{\mathrm{N}}$ represents a roll of the vehicle about its longitudinal axis.

A normal to the plane containing $\overline{r_{1}}$ and \bar{V} is given by

$$
\overline{r_{1}} \times \overline{\mathrm{V}}=\overline{\mathrm{N}_{1}}
$$

and a normal to the plane containing \bar{R} and \bar{V} is

$$
\overline{\mathrm{R}} \times \overline{\mathrm{V}}=\overline{\mathrm{N}_{2}} .
$$

Since the angle between the normals is equal to the angle between the planes, θ_{N} is given by:

$$
\theta_{\mathrm{N}}=\cos ^{-1} \frac{\mathrm{~N}_{1} \cdot \mathrm{~N}_{2}}{\left|\overline{\mathrm{~N}_{1}}\right|\left|\overline{\mathrm{N}_{2}}\right|}
$$

The vehicle elevation angle (γ) is given by:

$$
y=\sin ^{-1}\left[\sin \eta \sin \left(\theta_{\mathrm{N}} \pm \Delta \theta_{\mathrm{N}}\right)\right]
$$

where
$\eta, \theta_{\mathrm{N}}$ and $\Delta \theta_{\mathrm{N}}$ are as defined above.

Figures 35 through 46 give γ and μ for vehicle roll angles of -5°, 0° and 5°.

PRESENTATION OF RESULTS

The slant range is given for each of the six stations as a function of time from launch in Figures 6 through 11. The rate of change of slant range is given for each station in Figures 12 through 17. The elevation angle for each station as a function of time from launch is given in Figures 18 through 23. Azimuth angles for each station are plotted in Figures 24 through 28 and aspect angles are given by Figures 29 through 34. Figures 35 through 40 give the vehicle azimuth angles for 0 and ± 5 degree roll. Figures 41 through 46 present the vehicle elevation angles as a function of time and roll limits. Ground range as a function of time from launch is given in Figure 47. Altitude as a function of time is given in Figure 48.

Table I presents the maximum values of the slopes of several of the parameters and the time or times of their occurrence.

Figure 6
Slant Range As Seen From Cape Canaveral
105 NM Orbit Launch Phase, Initial Bearing 105 Degrees

Figure 7
Slant Range As Seen From Site Jupiter
105 NM Orbit Launch Phase,
Initial Bearing 105 Degrees

Figure 8
Slant Range As Seen From San Salvador 105 NM Orbit Launch Phase, Initial Bearing 105 Degrees

Figure 9

Slant Range As Seen From Grand Turk 105 NM Orbit Launch Phase, Initial Bearing 105 Dégrees

Figure 10
Slant Range As Seen From Bermuda
105 NM Orbit Launch Phase,
Initial Bearing 105 Degrees

Figure 11

Slant Range As Seen From Antigua
 105 NM Orbit Launch Phase,
 Initial Bearing 105 Degrees

Figure 12
Range Rate As Seen From Cape Canaveral 105 NM Orbit Launch Phase, Initial Bearing 105 Degrees

Figure 16
Range Rate As Seen From Bermuda 105 NM Orbit Launch Phase, Initial Bearing 105 Degrees

Figure 17
Range Rate As Seen From Antigua 105 NM Orbit Launch Phase, Initial Bearing 105 Degrees

Figure 18

> Absolute Value of Elevation Angle As Seen From Cape Canaveral
> 105 NM Orbit Launch Phase, Initial Bearing 105 Degrees

促

Absolute Value of Elevation Angle
As Seen From Antigua
105 NM Orbit Launch Phase,
Initial Bearing 105 Degrees

Figure 26
Absolute Value of Azimuth Angle ψ As Seen From Grand Turk 105 NM Orbit Launch Phase, Initial Bearing 105 Degrees

$$
\begin{gathered}
\text { Absolute Value of Azimuth Angle } \psi \\
\text { As Seen From Bermuda } \\
105 \text { NM Orbit Launch Phase } \\
\text { Initial Bearing } 105 \text { Degrees }
\end{gathered}
$$

Figure 28

Absolute Value of Azimuth Angle ψ
As Seen From Antigua
105 NM Orbit Launch Phase,
Initial Bearing 105 Degrees

Figure 32

Absolute Value of Aspect Angle η As Seen From Grand Turk 105 NM Orbit Launch Phase, Initial Bearing 105 Degrees

Figure 34
Absolute Value of Aspect Angle η
As Seen From Antigua
105 NM Orbit Launch Phase,
Initial Bearing 105 Degrees

Figure 35

Figure 43 - Absolute Value of Vehicle Elevation Angle, γ As Seen From San Salvador, 105 NM Orbit Launch Phase, Initial Bearing 105 Degrees

Figure 44 - Absolute Value of Vehicle Elevation Angle, γ As Seen From Grand Turk, 105 NM Orbit Launch Phase, Initial Bearing 105 Degrees

Figure 45 - Absolute Value of Vehicle Elevation Angle, γ As Seen From Bermuda, 105 NM Orbit Launch Phase, Initial Bearing 105 Degrees

Figure 46 - Absolute Value of Vehicle Elevation Angle, γ As Seen From Antigua, 105 NM Orbit Launch Phase, Initial Bearing 105 Degrees

$$
\begin{array}{cl}
\mid C l & C
\end{array}
$$

00

$-\longrightarrow$

呈吅吅
\＃\＃ \＃\＃\＃

H
\＃\＃

TABLE I Maximum Values of Rate of Change of Range Rate, \ddot{R}, Azimuth Angle Rate, ψ, Elevation Angle Rate, ξ and Aspect Angle Rate, η

Station Name	$\begin{aligned} & \text { Time* } \\ & \text { (secs) } \\ & \hline \end{aligned}$	$\begin{gathered} \ddot{\mathrm{R}} \\ \left(\mathrm{~m} / \mathrm{sec}^{2}\right) \end{gathered}$	Time (secs)	$\begin{gathered} \dot{\psi} \\ (\mathrm{deg} / \mathrm{sec}) \\ \hline \end{gathered}$	$\begin{aligned} & \text { Time } \\ & \text { (secs) } \end{aligned}$	$\begin{gathered} \dot{\xi} \\ (\mathrm{deg} / \mathrm{sec}) \\ \hline \end{gathered}$	$\begin{aligned} & \text { Time } \\ & \text { (secs) } \end{aligned}$	$\begin{gathered} \dot{\eta} \\ (\mathrm{deg} / \mathrm{sec}) \\ \hline \end{gathered}$
Cape Canaveral	475	16.0			170	0.30	160	0.17
Jupiter	200	20.8	205	0.83	177	0.32	180	0.80
San Salvador	465	39.3	435	0.83	$\begin{aligned} & 330 \\ & 515 \end{aligned}$	0.20	425	1. 25
Grand Turk	560	57.7	515	0.55	620	0.16	525	1.00
Bermuda	615	54.0	585	0.33	620	0.05		0.33
Antigua	623	50.0	624	0.52	618	0.12	625	1. 00

*Approximate Time of Occurrence After Launch Time

