SS-10

SMITHSONIAN INSTITUTION ASTROPHYSICAL OBSERVATORY

Research in Space Science

SPECIAL REPORT

Number 232

PUBLICATION OF ORBITS DERIVED FROM PHOTOREDUCED BAKER-NUNN OBSERVATIONS

E. M. Gaposchkin

December 12, 1966

N 67-19401 (THRU) FACILITY FORM 602 CODE) Ο - 82799 CATEGORY

CAMBRIDGE, MASSACHUSETTS, 02138

SAO Special Report No. 232

PUBLICATION OF ORBITS DERIVED FROM PHOTOREDUCED BAKER-NUNN OBSERVATIONS

E. M. Gaposchkin

Smithsonian Institution Astrophysical Observatory Cambridge, Massachusetts, 02138

TABLE OF CONTENTS

Section		Page
	BIOGRAPHICAL NOTE	iv
	ABSTRACT	v
	REFERENCES	13

LIST OF TABLES

Table		Page
1	Summary of final orbital information published by the Smithsonian Astrophysical Observatory	6
2	Values of the constants GM and J used in orbit calculation	8
3	Zonal harmonics used in orbit calculation	9
4	Tesseral harmonics used in orbit calculation	10
5	Coordinates of the Baker-Nunn stations used in orbit calculation	11

iii

BIOGRAPHICAL NOTE

Mr. Gaposchkin graduated in electrical engineering from Tufts University, Medford, Massachusetts, in 1957. He received a Degree of Numerical Analysis in 1959 from Cambridge University, England, and is now working toward a doctorate in geophysics at Harvard University.

Since joining the staff of the Smithsonian Astrophysical Observatory in 1959, Gaposchkin has held positions as programmer and Division Chief of the Computations Division, and is now a mathematician in the Research and Analysis Department. He has helped to develop the basic computer program used in all analyses of satellite motion.

His main interests include satellite geodesy and geophysics, and applied mathematics.

ABSTRACT

The precise orbital information published by the Smithsonian Astrophysical Observatory has been computed using various numerical values for the geophysical constants. This report details the numerical values of the constants used. The further reports of orbital data will include the same relevant information.

PUBLICATION OF ORBITS DERIVED FROM PHOTOREDUCED BAKER-NUNN OBSERVATIONS

E. M. Gaposchkin

The Smithsonian Astrophysical Observatory has published final orbital information (Staff of SAO, 1962, 1963, 1964a, and 1964b; referred to as E-1, E-2, E-3, E-4, respectively) that has been the by-product of certain investigations at the Observatory. Our purpose here is to detail information that will define these results more precisely (see Tables 1 to 5). In the future, we plan to supply such supporting information with each publication.

The tables were compiled by referring directly to the orbit files. In some cases, the information could not be retrieved (e.g., the station coordinates). Where the information is uncertain, it is appropriately designated. We now confine ourselves to a few remarks about these data.

A. The data published are the direct result of the DOI program. The distinction between mean and smoothed elements is based on the method of running the program. The details of the program, both theoretical and practical, are available elsewhere (Gaposchkin, 1964). We mention, without discussion, only aspects necessary for this summary.

a. Each orbital element as input to the DOI program is represented as a polynomial with trigonometric terms, such as

$$E(t) = E_0 + E_1 t + E_2 t^2 + \cdots$$

+ $\sum_{i=1}^{2} A_i \sin (B_i + C_i t),$

This work was supported in part by grant number NsG 87-60 from the National Aeronautics and Space Administration.

where $t = T - T_0$; i. e., t is the time measured from the epoch of the orbit. In general, the E_j are determined by the DOI program, and the A_i , B_i , and C_i are determined theoretically. In this instance, the A_i , B_i , and C_i represent the long-period perturbation due to the earth's oblateness. Therefore, $B_i + C_i t \cong i \omega(t)$. The amplitudes A_i are evaluated from the theoretical development of Kozai (1964). Where used, they are given with the smoothed elements.

- b. The smoothed elements are simply the values E_j , A_i , derived from orbital arcs of 1 to 2 weeks. The mean elements are the values of E(t) at the epoch (t = 0), given in the form of a table. They differ from the constant part of the polynomial only by the contribution of the long-period trigonometric terms. These mean elements are derived from shorter arcs (typically, 4 days), computed for epochs at 2-day intervals. Therefore, consecutive arcs are determined from overlapping intervals.
- c. These elements, as contrasted with osculating elements, are "mean" elements in the sense that they are averages. In other words, they are the elements with the short-period perturbations subtracted.
- d. The times of the epoch are given in Modified Julian Days (MJD), defined in terms of Julian Days (JD):

MJD = JD - 2400000.5

- e. The units of the orbital elements are degrees for angular quantities, megameters for linear quantities, and revolutions for the mean anomaly.
- f. The values of the SAO elements are given for the argument of perigee ω , the right ascension of the ascending node Ω , and inclination I, the eccentricity e, and the mean anomaly M and its derivatives n, $\dot{n}/2$. They are given as functions of t

measured in days. The number at the right of each constant represents the standard error for that element and refers to the last digits given.

- g. The tabulation of "mean" elements gives the mean (anomalistic) motion n, the orbital acceleration $\dot{n}/2$, and the semimajor axis a or the geocentric distance of perigee q. In the last three columns, the one headed N indicates the number of observations used for the computation of a set of elements; the one headed D, the number of days used; and the one headed σ , the standard error relative to their assumed accuracy.
- h. The semimajor axis a of the orbit is computed from the mean motion n by means of the following formula:

$$a = \left[\frac{GM}{n^2}\right]^{1/3} \left[1 - \frac{J_2 a_e^2}{2 p^2} (1 - e^2)^{1/2} (1 - \frac{3}{2} \sin^2 I)\right]$$

(see Kozai, 1959, equation (14)), where we put $A_2 = (3/2)J_2a_e^2$. The value of J given in Table 2 is this A_2 expressed in M_m^2 ; n is the mean motion defined as the time derivative of the polynomial part of the mean anomaly; I is the inclination; and e is the eccentricity. The units for GM given in Table 2 are M_m^3 rev² days⁻². In reports E-1 to E-4 the mean motion was the total time derivative of the mean anomaly, and therefore included unwanted long-period effects.

 In the DOI, the inclination and the argument of perigee are referred to the true equator of date, and the right ascension of the ascending node is measured from the mean equinox of 1950.0. To refer the orbit to the mean equinox of date, we should set the node equal to:

$$\Omega^{\circ}_{date} = \Omega^{\circ}_{DOI} + 3.^{\circ} 508 \times 10^{-5} (MJD - 33281)$$

j. Two time systems are implicit in the DOI calculations. The first is the time used for computing the ephemeris; it should be a uniform system. The second, an empirically determined quantity, is used for computing the position of the earth (i. e., the station position). It should be UT1 because of the way we have defined the sidereal angle. The time given on a photoreduced observation card is atomic time (A1) as published by the U. S. Naval Observatory; it is assumed to be a uniform time system. In reports E-1 to E-4 the DOI computed UT1 time from

UT1 = A1 + (-12. 154×10^{-6}) + (-0. 015379×10^{-6}) × τ days, where τ = T - 37000. This time was used in both the siderealtime and the ephemeris calculations. Therefore, the orbits are referred to the UT1 time system as defined above. In E-5 and all subsequent reports the atomic time (as taken from the observation) is used in the ephemeris calculation, and the empirical UT1, given as the difference A1-UT1 on the observation card, is used in calculating the sidereal time. Therefore, these orbits are referred to the A1 time system.

- B. The following comments apply to the tables.
 - a. In Table 1, under the columns headed "determination of $\dot{\omega}$ and $\dot{\Omega}$," a v indicates that the linear term in question was determined empirically by the DOI, and a c means that the term was held constant and determined by some other means. In the latter case, the linear terms were usually obtained by a separate least-squares program, which used the values of the element in question at successive epochs.
 - b. The constants referred to in Table 1 are given in Tables 2 to 5. The number given in Table 1 refers to the set of coefficients designated in the subsequent tables. Under time reference, 1 designates UT1 as defined above, and 2 designates A1.

c. In reports E-1 to E-4 only the short-period oblateness perturbations were included, while E-5 contains lunar perturbations and tesseral-harmonics perturbations. We detail the presence or absence of the perturbations and the values of the constants used. Unfortunately, a preliminary set of tesseral harmonics was used in E-5. The values are given here for reference, but the reader must be cautioned that they are not the set distributed by SAO. Table 1. Summary of final orbital information published by the Smithsonian Astrophysical Observatory.

.

	Satellite						Perturbatio	S N S	Π		Const	tante			
	o me N	Derind of orbit	Mean or emothed	Time	Detern	nination of D	Ap 1.0ne-ner	oplication of Lunisol.	Tener	GM. J.	Zonal	Tesser.	Sta. coor.	Reference	
OSPAR code	Name	Ferlod of orbit	emootaed	le l	3	:	Long-per.	TOBIENT		2°.,mb					-
5800402	1958 Delta 2 (Sputnik 3)	December 7-14, 1959	W	-	U	υ	Y	z	z	-	-	z	-		
1010065	1959 Alpha 1 (Vanguard 2)	February 21- December 30, 1959	X	-	>	>	Y	z	z	1	-	z	-		
5900102	1959 Alpha 2 (Carrier rocket, Vanguard 2)	March 19-May 28, 1959	X	7	>	>	Y	z	z	-	-	z			
5900701	1959 Eta 1 (Vanguard 3)	September 23- December 30, 1959	X	-	>	>	Y	z	z	1	-	z	-	Staff of Smithsonian	
6 00 09 02	1960 Iota 2 (Carrier rocket, Echo 1)	September II, 1960- March I2, 1961	S	-			*	z	z	-		z		Astrophysical Observatory, 1962	
6000902	1960 lota 2 (Carrier rocket, Echo 1)	September 11, 1960- March 12, 1961	M	-				z	z	-		z	-		
6001501	1960 Omicron 1 (Discoverer 17)	November 13-15, 1960	s	1			z	z	z	-		z	-		
6001801	1960 Sigma 1 (Discoverer 18)	December 8-10, 1960	S	-	~	v	z	z	z	1	z	z	-		
5900101	1959 Alpha 1 (Vanguard 2)	January I, 1960- December 31, 1961	M	-	>	>	Y	z	z	1	T	z	2		
5900102	1959 Alpha 2 (Rocket, Vanguard2)	April 6-August 26, 1960	M	-	>	>	¥	z	z	-	-	z	2	Staff of	
5900701	1959 Eta l (Vanguard 3)	January 1, 1960- December 31, 1961	W	7	CBV	C&V	¥	z	z	-	1	z	N	Astrophysical Observatory,	
6000902	1960 Iota 2 (Rocket, Echo 1)	March 14- December 31, 1961	M	-	υ	>	¥	z	z	-	-	z	2	6 6 6 1	
6100401	1961 Delta 1 (Explorer 19)	February 18- December 31, 1961	M	-	>	>	Y	z	z	-	·	z	2		
5900101	1959 Alpha I (Vanguard 2)	January 1-June 30, 1962	W	-	>	>	Y	z	z	-	-	z	~		
5900701	1959 Eta 1) (Vanguard 3)	January 1-June 30, 1962	M	1	>	>	*	z	z	~	-	z	N		
6000201	<pre>1960 Beta 1 (Rocket body, Tiros 1)</pre>	April 12-May 26, 1960	×	-	υ	υ	¥	z	z	-	-	z	2		
6 0002 02	1960 Beta 2 (Tiros 1)	April 12-September 15, 1960	X	-	υ	υ	Y	z	z	-	-	z	~	Staff of Smithsonian	
6000901	1960 Iota l (Echo 1)	August 14-30, 1960	Z	1	>	>	z	z	z	-	z	z	2	Observatory,	
6000902	1960 Iota 2 (Rocket body, Echo 1)	January 1-June 30, 1962	X	7	>	>	*	z	z	-	-	z	2	2	
6100401	1961 Delta l (Explorer 9)	January l-June 30, 1962	X	-	>	>	Y	z	z	-	-	z	2		
6101501	1961 Omicron 1 (Transit 4A)	August 11, 1961- June 25, 1962	¥	-	U	υ	*	z	z		-	z	2		
6101502	1961 Omicron 2 (Injun 3)	August 11, 1961- June 29, 1962	x	-	υ	υ	¥	z	z	-	-	z	2		

Table 1 (Cont.)

		Reference				Staff of	Astrophysical Observatory,								Staff of Smitheonian	Astrophysical Observatory,	0061			
		Sta. coor.	3	m	e	£	m .	e	m	m	m	• •••	4	4	4	4	4	4	4	4
tante		Tesser.	z	z	z	z	z	z	z	z	z	. –		-	-	-	-	-	-	-
Con		Zonal	-	-	-	-	-	-	-	-	1	2	2	2	2	2	2	2	2	2
		GM, J ₂	-	I	1	1	I	-	-	-	1	2	8	2	73	2	2	2	2	2
		Tesser	z	z	z	z	z	z	z	z	N	Y	¥	Y	Y	¥	Y	Y	¥	Y
	plication	or Lunisol.	z	z	z	z	z	z	z	z	z	Y	Y	¥	Y	Y	¥	Y	¥	Y
Partnrhatic	IV	Long-per.	Y	Y	¥	¥	¥	¥	¥	Y	Y	Y	Y	Y	Y	Х	¥	z	Х	¥
	nination	.G	>	>	>	>	>	>		>	v	^	>	>	>	>	>	>	>	υ
	Detern	.3	>	>	>	>	υ	υ		υ	v	v	>	>	>	υ	υ	υ	>	υ
	i	Time ref.	-	1	-	-	1	-	-	1	1	2	2	2	2	2	2	2	2	2
	:	Mean or smoothed	м	W	W	X	X	W	S	X	W	W	X	X	x	W	X	W	X	W
		Period of orbit	July 1-December 31, 1962	July 1-December 31, 1962	July 1-December 31, 1962	July 1-December 31, 1962	July 19-December 31, 1962	July 19-December 31, 1962	March 13- December 31, 1962	March 13- December 31, 1962	July 17-December 31, 1962	April 1-June 30, 1963	April 1-June 30, 1963	April 1-June 30, 1963	April 1-June 30, 1963	April 1-June 30, 1963	April 1-June 30, 1963	April 1-June 30, 1963	April 1-June 30, 1963	April 1-June 30, 1963
	atellite	Name	1959 Alpha 1 (Vanguard 2)	1959 Eta 1 (Vanguard 3)	1960 Iota 2 (Rocket, Echo 1)	1961 Delta 1 (Explorer 9)	1961 Omicron 1 (Transit 4A)	1961 Omicron 2 (Injun 3)	1961 Alpha Delta 1 (Midas 4)	1961 Alpha Delta I (Midas 4)	1962 Alpha Epsilon (Telstar 1)	1959 Alpha 1 (Vanguard 2)	1959 Eta 1 (Vanguard 3)	1960 Iota 2 (Rocket, Echo 1)	1961 Delta 1 (Explorer 9)	1961 Omicron 1 (Transit 4A)	1961 Omicron 2 (Injun 3)	1961 Alpha Delta l (Midas 4)	1962 Alpha Epsilon l (Telstar l)	1962 Beta Upsilon l (A15 Relay)
	ń	COSPAR code	5900101	5900701	6000902	6100401	6101501	6101502	6102801	6102801	6202901	5900101	5900701	6000902	6100401	6101501	6101502	6102801	6202901	6206801

√GM	J	Set	Reference
274. 54269	0.0660705456	1	Gaposchkin, 1964;
274. 53910	0.0660546000	2	Kozai, 1962

Table 2.	Values	of	the	constants	GM	and	J	used	in	orbit	calculation.
----------	--------	----	-----	-----------	----	-----	---	------	----	-------	--------------

- -

.

.

.

- - ----

Harmonic	Value (× 10 ⁻⁶)	Set	Reference
J2	1082. 480		
J ₃	-2. 566		
J ₄	-1.830		
J ₅	-0.063	1	Ka-ai 1042
J ₆	0. 390	1	KOZAI, 1902
J ₇	-0.469		
J ₈	-0.020		
J ₉	0.114		
J ₂	1082.645		
J ₃	-2. 546		
J ₄	-1.649		
J ₅	-0.210		
J ₆	0.646		
J ₇	-0. 333		
J ₈	-0.270	2	Kozai, 1964
J ₉	-0.053		
J ₁₀	-0.054		
J ₁₁	0. 302		
J ₁₂	-0.357		
J ₁₃	-0.114		
J ₁₄	0.179		

Table 3. Zonal harmonics used in orbit calculation.

Т	a	b 1	e
_	-	~ -	~

4. Tesseral harmonics used in orbit calculation.

l	m	$C_{\ell m} (\times 10^{-6})$	s _{ℓ m} (× 10 ⁻⁶)	Set	Reference
2	2	2.46	-1.30		
3	1	1.91	0.24		
3	2	0.77	-0.59		
3	3	0.39	1.54		
4	1	-0.54	-0.43		
4	2	0.37	0.65		
4	3	0.84	-0.20		
4	4	-0.04	0.33		
5	1	-0.10	-0.10		
5	2	0.61	-0.25		
5	3	-0.55	-0.09		
5	4	-0.22	0.06		
5	5	0.09	-0.57		
6	1	-0.04	-0.06		
6	2	0.09	-0.33	1	Gaposchkin and
6	3	-0.03	0.02		Izsak, 1965
6	4	-0.01	-0.46		
6	5	-0.28	-0.45		
8	1	0.00	0.10		
8	2	0.10	0.06		
8	4	-0.15	0.04		
9	1	0.11	0.05		
10	1	0.07	-0.12		
11	1	-0.09	0.02		
12	1	-0.10	-0.01		
13	12	0.01	-0.01		
13	13	-0.05	0.08		
15	12	-0.03	0.03		
15	13	-0.06	-0.06		
15	14	0.01	-0.02		

Coordinates of the Baker-Nunn camera stations used in orbit calculation. Table 5.

.

.

í

					<u> </u>												_								
	Reference							Veis, 1901											Rolff, 1962.	Internally distributed memorandum.					
	Set							 →		<u></u>					•					7					
ordinates ians)	٨	4. 4234972	0.4930124	2. 3872948	6.1748852	2.4353495	1.3867868	5.0353748	0. 9166290	5. 0817264	4.8849429	5.1467990	3. 5559712	4. 4234971	0.4930124	2. 3872937	6.1748803	2.4353495	1. 3867328	5.0353751	0. 9166288	5, 0817256	4.8849430	5.1468781	3.5559710
Elliptical co (in rad	÷	0.5659070	-0.4530812	-0. 5428299	0.6364140	0. 6226152	0.5124117	-0.2873626	0.5172749	0.2110292	0.4716103	-0.5575188	0. 3614582	0.5659074	-0.4530812	-0.5428274	0.6364040	0. 6226594	0.5124180	-0.2873622	0. 5172751	0.2110325	0.4716108	-0.5575189	0.3614585
ates	z	3.401154	-2.775723	-3.275700	3. 769798	3, 698891	3.109564	-1.796795	3, 136326	1. 327264	2.880356	-3.355480	2.242482	3.401154	-2.775723	-3.275687	3. 769746	3.698895	3.109595	-1.796792	3.136326	1. 327282	2. 880357	-3.355481	2.242483
ngular coordina n megameters)	Y	-5. 167226	2.716562	3.743360	-0.555125	3.366587	5.471276	-5,804282	4.404061	-5.817129	-5. 601610	-4.914876	-2.404268	-5,167225	2.716562	3. 743372	-0. 555155	3. 366587	5.471246	-5.804281	4.404061	-5.817127	-5.601609	-4. 9ì 46 95	-2.404267
Recta (i)	x	-1.535732	5.056291	-3.983755	5.105755	-3.946681	1.018286	1. 942731	3. 377040	2.251817	0. 976289	2.280352	-5.466148	-1. 535732	5.056291	-3.983757	5.105791	-3.946681	1.018303	1. 942732	3. 377040	2.251811	0. 976289	2.280741	-5.466148
uo	Name	New Mexico	South Africa	Australia	Spain	Japan	India	Peru	Iran	Curaçao	Florida	Argentina	Hawaii	New Mexico	South Africa	Australia	Spain	Japan	India	Peru	Iran	Curaçao	Florida	Argentina	Hawaii
Stati	COSPAR code	9001	9002	9003	9004	9005	9006	2006	9008	6006	9010	9011	9012	9001	9002	9003	9004	9005	9006	9007	9008	6006	9010	9011	9012

-	
ht	., 11 .
č	Ś
ſ	5
٩	2
Ę	5

	Refe rence						and Izsak,	distributed											Gaposchkin and Izeak	1965					
	Set					-	~	<u>ר</u>											4	4					
ordinates ans)	X	4.4234969	0.4930260	2. 3872938	6.1748626	2.4354529	1. 386 3398	5.0353814	0.9167524	5.0817491	4.8849901	5.1467738	3. 5559335	4.4234969	0.4930260	2. 3872938	6.1748626	2.4354529	1. 386 3398	5.0353814	0.9167524	5.0817491	4.8849901	5.1467738	3. 5559335
Elliptical co (in radi	÷	0. 5658951	-0.4530770	-0.5428274	0. 6363365	0. 6225545	0.5124156	-0.2874218	0.5173940	0.2111383	0.4716243	-0.5573820	0.3614650	0. 56 58 95 1	-0.4530770	-0.5428274	0. 6363365	0. 6225545	0.5124156	-0.2874218	0.5173940	0. 2111383	0.4716243	-0.5573820	0.3614650
ites	z	3.401108	-2.775799	-3.275656	3. 769670	3. 698855	3.109519	-1.796838	3.136250	1. 327236	2. 880311	-3.355441	2.242437	3.401057	-2. 775825	-3.275607	3. 769685	3.698854	3.109619	-1.796967	3.136257	1. 327165	2.880244	-3.355468	2.242179
ngular coordina 1 megameters)	Y	-5.167026	2.716523	3.743226	-0.555194	3. 366453	5.471207	-5, 804082	4.404022	-5.816928	-5.601410	-4.914512	-2.404068	-5.167003	2.716486	3. 743116	-0,555230	3. 366295	5.471105	-5.804088	4.403996	-5.816922	-5.601394	-4.914580	-2.404279
Recta (ir	х	-1.535702	5.056123	-3.983602	5,105623	-3.946522	1.018135	1.942762	3. 376872	2.251841	0.976319	2.280645	-5.466118	-1.535757	5. 0561 34	-3.983753	5.105603	- 3. 946699	1.018201	1. 942769	3. 376887	2.251825	0. 976290	2.280568	-5.466064
uo	Name	New Mexico	South Africa	Australia	Spain	Japan	India	Peru	Iran	Curaçao	Florida	Argentina	Hawaii	New Mexico	South Africa	Australia	Spain	Japan	India	Peru	Iran	Curaçao	Florida	Argentina	Hawaii
Stati	COSPAR code	9001	9002	9003	9004	9005	9006	2006	9008	6006	9010	1106	9012	9001	9002	9003	9004	9005	9006	2006	9008	6006	9010	9011	9012

REFERENCES

GAPOSCHKIN, E. M.

- 1964. Differential orbit improvement (DOI-3). Smithsonian Astrophys. Obs. Spec. Rep. No. 161, p. 47.
- GAPOSCHKIN, E. M., AND IZSAK, I. G.
 - 1965. K set of tesseral harmonics and C-4 set of station coordinates (preliminary results which are distributed internally).

KOZAI, Y.

- 1959. The motion of a close earth satellite. Astron. Journ., vol. 64, pp. 367-377.
- 1962. Numerical results from orbits. Smithsonian Astrophys. Obs. Spec. Rep. No. 101, p. 5.
- 1964. New determination of zonal harmonics coefficients of the earth's gravitational potential. Smithsonian Astrophys. Obs. Spec.
 Rep. No. 165, pp. 11-12.
- STAFF OF THE SMITHSONIAN ASTROPHYSICAL OBSERVATORY
 - 1962. Satellite orbital data no. E-1. Smithsonian Astrophys. Obs. Spec. Rep. No. 92, 32 pp.
 - 1963. Satellite orbital data no. E-2. Smithsonian Astrophys. Obs. Spec. Rep. No. 119, 40 pp.
 - 1964a. Satellite orbital data no. E-3. Smithsonian Astrophys. Obs. Spec. Rep. No. 141, 27 pp.
 - 1964b. Satellite orbital data no. E-4. Smithsonian Astrophys. Obs. Spec. Rep. No. 158, 31 pp.
 - 1966. Satellite orbital data no. E-5. Smithsonian Astrophys. Obs. Spec. Rep. No. 222 (in press).

VEIS, G.

1961. The positions of the Baker-Nunn camera stations. Smithsonian Astrophys. Obs. Spec. Rep. No. 59, pp. 3-4.