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ABSTRACT

The flow of a laminar two-dimensional incompress-
ible jet flowing over a curved surface is analyzed for the
case of small curvature. The zeroth order solution is the
same as for a jet over a flat surface. Therefore, to find
the effects of curvature on the jet, the first order sol-
ution is found. The first order solution is found by the
use of a similarity transformation and a perturbation of
the stream function. The use of a similarity transformation
restricts the type of surface curvature that may be consid-

ered, so that the allowable surface shapes are also found.
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SYMBOLS

- Constant in expression for stream function

C, =~ Constants used in finding similarity requirements
Velocity profile function in similarity transformation
Velocity profile function in similarity transformation
for a flat surface
Perturbation of f to allow for effects of surface
curvature
Value of f, evaluated at p=-ee
Value of f, evaluated at n=eo
Quantity to describe the characteristics of a given
jet, see equation (41)

Characteristic jet width

Momentum flux of jet per unit jet depth
Surface curvature, 1/R

Non-dimensional surface curvature, KL
Characteristic length of jet run

Jet mass flow rate per unit Jjet depth
Pressure

Atmospheric pressure

Non-dimensional pressure, (P-Puws )/p UR

Surface radius of curvature
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Non-dimensional surface radius of curvature, R/L
Reynolds number, UgL/y

Jet velocity in x-direction

Non-dimensional velocity in x-direction, u/Ug
Jet velocity in y-direction

Non-dimensional velocity in y-direction, V/VR

Modified non-dimensional jet velocity in y-direction,
[1+Ry(W)]v

- Characteristic jet velocity in y-direction

Distance parallel to surface
Non-dimensional distance parallel to surface, x/L
Distance normal to the surface

Non-dimensional distance normal to surface

Exponent of x-variation in stream function
Exponent of x-variation in n

Cartesian coordinate used in finding surface shapes
Order of magnitude

Absolute viscosity

Kinematic viscosity,AYP

Fluid density

Shearing stress at the wall

Non-dimensional stream function
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INTRODUCTION

The flow of a laminar two-dimensional incompress-
ible jet into a quiesient atmosphere of the same fluid is
treated by Schlicting (page 16h, reference 1). The prob-
lem of a jet flowing along a straight wall is treated by
Glauert (reference 2). When the wall is curved, as shown
invfigure 1, then no known solution exists in the litera-
ture. A jet on a convex shaped curved surface can remain
attached for relatively long lengths of jet run (reference
3). The tendency of the jet to remain attached to the
curved surface is commonly termed the Coanda Effect.

If the jet is to remain attached to a curved sur-
face, a pressure gradient must exist across the jet to
balance the centrifugal force of the curving jet of fluid.
If the surrounding atmosphere is assumed to be infinitely
large, then the static pressure along the outer edge of
the jet must be a constant. Therefore, the pressure along
the wall is lower than atmospheric pressure (convex sur-
face curvature), with the pressure on the wall increasing
as the jet proceeds along the surface. Therefore, the jet
as a whole, is flowing against an adverse pressure gradient.

The reason that the jet usually remains attached

to the wall rather than immediately separating is the
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Figure l.--Schematic diagram of a jet flowing
over a curved surface.



viscous mixing or shearing action of the jet. If the jet
separates, then the fluid between the jet and the wall will
be acted upon by the jet. That is, the jet will entrain
part of the fluid in the region between the jet and the
surface. This entrained fluld is then replaced by fluid
that must flow in from the atmosphere downstream. In order
for this fluid to flow into the region between the jet and
the wall, this region must have a pressure lower than the
atmosphere. If the entrainment rate of the jet is high
enough, then the pressure on the wall will be low enough
to make the jet turn such that it will become attached to

the surface.

This analysis is an attempt to find surface shapes
that will allow similar shapes of the velocity profiles at
different surface locations, and the resulting velocity
profiles. Since separation of a two-dimensional flow re-
quiresva zero slope of the velocity profile at the wall,
the similar shaped velocity profiles can have a velocity
profile with a zero slope at the wall at some locationonly
if it has a zero slope at all surface locations. Therefore,
a solution with similar velocity profiles that has a ve-
locity profile with a non-zero slope at the wall cannbt'

separate at any downstream location.

This analysis does not consider the details of the
generation of a pressure gradient across the jet at the jet
origin. It assumes that the required pressure gradient

already exists.
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ANALYSIS

Flow Equations

The assumptions for the development of the sim-
plified momentum equations for Jet flows are essentially
the same as for boundary layer flows. That is, the width
of the jet at any location is very small compared with the
length of run of the Jjet to the same location; and that
the Reynolds number, based on a characteristic velocity
and a characteristic length of jet run, is very large.
When the characteristic radius of curvature is the same
order of magnitude as the characteristic length of jet
run, then the terms in the momentum equations containing
the surface curvature are no larger than order (h/L) fatio
of characteristic jet width to characteristic run of the
Jet), where (/1) 1. Therefore, to an approximation that
considers only unit order terms in the momentum equations,
the effects of curvature do not enter. For boundary layer
flows part of the effects of curvature can enter through
the external flow, so that the effects of a curved surface
are considered even though they do not appear in the bound-
ary layer equations. For the jet problems there is no ex-
ternal flow that can contain the effects of curvature, so

that the effects of curvature must be contained in the

-4 o
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boundary layer like equations if the curvature is to be
considered at all. Therefore, the momentum equations for
the jet will have to consider terms of order (h/L) as well
as the unit order terms.
The complete continuity and momentum equations
for steady, incompressible and two-dimensional flow over

a curved surface can be written as (page 112, reference 1);

3 - R a—u .é_vf V- - ’
continuity equation: 7y ox * 5y * R7Y =Jo) (1)

Xx-momentum equation:

2

Gl o B RS - T S ey Ber B
'(:w)z * e 5% (;:«y)ﬁ T +r§+’y = ] (2)
y-momentum equation:

/S-yug;(*\rg;r (/:L+y) = -J_":-_VP v c)“yv"-’: (R+y) 3;{
*Riy r/f:y) R Tyt s 3R KL R | )

The two momentum equations (2 and 3) can be com-
bined into a single equation by cross-differentiating and
eliminating the pressure gradient. When terms of order
(h/L)2 and smaller are neglected, the following is the

resulting non-dimensional equation (Appendix A).

RIL | grdiE (h/)[uaiﬂ?aa—iwzr*"’u]
o0XJYy oy2 oX dX oy

o *% = 2%
[/ +K‘/("/L)_]a73 + ()2 K 552 (k)
The non-dimensional continuity equation can be

written as (Appendix A);




lm

AT*_ .

ox T oy T © (5)

Equations (4) and (5) can be combined into a single
equation by the introduction of a stream function that

identically satisfies the continuity equation. That is;

7= O G — Y
U= 35 and X
Equation (4) written in terms of the stream func-
tion is;
22 2’0 _ I 3@ W PP | o XU
Y oXoy2 X 9y3 "'/‘/)[ OX Jy2 * K5y 359% T
Ik [ S0 Xo il g 3
(y ax] 2y *+(%)ﬁ<>’c>7* 72K 353 ) (6

Boundary Conditions

If the wall is assumed to be impermeable and if
the no slip condition is assumed to apply at the wall, then;

© m—

x=V*=0 at y=0 (7)
The velocity of the jet is zero infinitely far away from
the wall, so that;

=0 at Y =o0 (8)

The solution of equation (4) requires one more boundary
condition. The outer region of the jet is similar to the
outer region of a two dimensional free jet, which has a
velocity profile that goes to zero asymptotically as y
goes to infinity. Therefore, it seems reasonable to

assume that a suitable boundary condition would be; )
.3_12‘=0 a.'t 'y':.oo. (9)
oY
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The boundary conditions (7), (8) and (9) in terms

of the stream function are;

30 _ ap v
—_— = 2= =0 at =0
55 X Y (10)
and - 2>
AW _ ¥ at V= 111)
>y ovF o y=o0 (11)
Similarity Transformation

The solution of equation (6) could be attempted
by a number of different approaches. The approach chosen
in this analysis is to use a similarity transformation.
This type of transformation changes equation (6) to an
ordinary differential equation. However, the type of sol-
ution obtained is rather restricted. That 1s, the veloc-
ity profile at different surface locations is the same as
at any other location except for a scale factor. This
type of transformation therefore precludes the possibility
of predicting the separation point of the jet. That is,
if the velocity profile i1s on the verge of separation at
one surface location, then it is on the verge of separa-
tion at all surface locations because of the similar shape
of the velocity profiles.

The similarity transformation assumed to exist

for this problem is of the form;
W =A )-(Q'F"Z) where n=Y/3P (12)

where A i1s an arbitrary constant, « and @ are constants to

be determined later, and f(n) denotes a function of n ,
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which will be found from the solution of the differential
equation. For the remainder of the analysis, f(q) will
Just be written as f. Derivatives of f with respect ton
will be denoted by primes on f.
The boundary conditions on f can be found from

equation (12) and the boundary conditions on . They are;

fef'=0 at =0 (13)

f=f"=0 at n=co (14)
When equation (12) is used in equation (6) the resulting

equation 1is;
il "_ o \o 0B 4 _ ' oA N2 Jk _
2RV~ o FF = ()RR F £ - (=B ()] +) X )7 2 =

! v..(,-oL-B.;-,) 1l - —(—c(-H) iy "
ﬁ[x_ P ) RX T w2 ") ] a5

In order for equation (15) to have n as the in-
dependent variable, the following requirements must be

satisfied;

R xf=c, ~ Qe
X* 3R aCy (17)
-e(—{3+al:a ov o= =R+l (18)
Requirements (16) and (17) are not independent,
since 1t is easily shown that Cp= —RC, . Using this
relation and requirement (18) in equation (15) yields;

£ ), A 12 F" A REE ¢ AG-RF F-AG-28)(F)F)
~A(R-DFF" +pf3e-) f'f'=0 19)
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The constant C, in equation (19) can be absorbed
in the définition of the characteristic length L. If the
characteristic length 1s taken to be the length of surface
from the jet origin to the point where x=R=L or. equival-
entaly, the point where K=1/x=1/L, then C=1 as can be seen

from equation (16). The constant A is an arbitrary con-
stant, so that A can be taken as four without any loss of

generality. With A=W, and C=1, equation (19) becomes;
9 b ?

" o a =) FF" + 4(3R=NFF + ([ nE™ + 2€"

+40-R)FE" + 4(3p-1)(F) ] =0 (20)

Growth Rate of the Jet

The constant @ in equation (20) could be found

by specifying a given surface shape (see equation (16)),
if the boundary conditions for equation (20) can be satis-
fied ®r arbitrary values of . The question of what values
of B will satisfy the boundary conditions can be answered
in the following manner. The unit order terms of equation
(20) are the same terms that are obtained for the jet on

a straight wall. For the straight wall problem, reference
2 finds that ﬁ=€Z4:is the only value that will satisfy the
correct boundary conditions. This value of P was found by
specifying that the velocity profile should have f"é49 at
{=co. However, the condition that ﬁ:o at gs o0 is not ex-

plicitly pointed out in reference 2.
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The problem of a jet with a curved wall a priori
should have a value of P near 3/L4 because the effects of

curvature are small. Therefore, let;

B=3%4(1+¢€) (21)
where € is small, of order (h/L). Howeyer, one finds that

€zo0as will be shown shortly. Since the effects of curva-

ture are of order (h/L), the solution of equation (2C) will

be found by a perturbation method. The form of f is chos-

en to be;

f=1, + GO, (22)

where f; 1s the solution given in reference 2 for the

straight wall, and (h/L}f, is the effect of curvature on f.

When equations (21) and (22) are substituted into equation
(20), and terms smaller than order (h/L) are neglected,
the following result is obtained;

£ e £ + 5 Folﬁll F ) [ 'E”//"“Fo ﬁ”/ . ffolll-‘_s( 'F

}

+‘F'f”) + 'Z'FW/ +./// +f‘;ﬂ” ~ S(ﬁ,)z + e/(l)/L)(.ﬁ';ﬁ'
«7£%")] =0 (23)

The function f, satisfies the equations;

{:o o / (ﬁl)z o ('21+a)
a.P!J ‘F:I”J— £, o,,, 5 o/'ﬁ” (g_l;b)

where equation (24b) is (24a) differentiated once with re-
spect ton. Equations (24a) and (24Db)can be used to sim-
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plify equation (23) with the following being the result-

ing expressiong

II” i

+f f”l +FE" +5(f,’ﬁ" +f'f”) s L + 3£
3 &) [318"-3%4"] = (25)

The parameter €/{h/L) is the deviation of the jet growth
rate from the straight wall value of 3/k.

Boundary conditions for f, and f, are as follows;

fo=f =f=f/=0 at p=o (26)
£'= "_10 at p=oo (27)
£=f'=0  atypewe

or £'=4"=0 2t p= oo (28)

The solution to equation (24b) given in refer-
ence 2, yields the following results that will be useful
in finding the solution to equation (25).

’ ! 3
f'= %2 (£°-£7°) (29)
. /o;[ I+1 I ]+ Vz Fan [1/3_151 (30)
/- €72 2+ 1
and °('Z zos) T =fo, =/ (31)

When solving the differential equation for f ,
terms that contain § and 'ZZ multiplying derivatives of f¢> ’
will have to be evaluated at g==e. For very large Y, f,

is very close to unity, so that the dominant term in

Y
equation (30) is log (/-£>). This term yields that
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‘f;=-(l-Céq} for very large 7. All derivatives of f, then
go to zero as éQ for very large 7, so that terms such as
Qéqzand zze-Q go to zero as 4 goes toe@.

Equation (25) can be integrated from y to oo to

yield;
" " " . "
AR R ARV AP,
rse/pn)[38F-3¢,€"]=0 (32)

where the conditions f'-/.:o and 1‘,'”_-,0 atp=es were both used,
because as mentioned earlier, one implies the other. 1If
equation (32) is multiplied by f, and integrated from o
to n then;

FE 4 ff -8 w8 v 268 ~o Rt -1ETz

n IZ. n n
*2f(€)dn 8+ 3 [F [y #3500 [
. n .2
7 [£(E)dp - 3676 =0
2 (33)
The integrals in equation (33) can be evaluated

by using equations (29) and (31).
n 12 3/z 3
S Jdy = [2£72 - £3]
[ % [{e fonn= oL 2871
n ’ .
{ﬁ(ﬁl)zd,'z - 2{3 [%lsf;S/z_l/4 ﬂt]

Using these expressions for the integrals in equation (33)
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yields;

f‘.{.‘”_'_ /" / " :
R L LT 288 vt -
TR s B -%A] =0 (34)

If equation (34) is evaluated at p=zeo, the follow-

ing result is obtained;

3Sby) [ E-%1=0
or

J 27 é/(é/L) =

Therefore, the only value of €/(h/L) that will satisfy the
boundary conditions is G/Wh/p) = 0. This means that the
jet has just one value of the growth rate, B=3/4., for
all small curvatures. This also means that there is one
shape of surface that varies in the magnitude of the cur-
vature.

Equation (34) can be integrated twice to yield
the following solution for f, (Appendix B).

fi= -6z -6 ++f‘~+€++f/%g/‘”+ +f

"2_

*fo(nf +%) (35)

The value of f, is an arbitrary constant. That
is, equation (34) can be satisfied for any value of f
(AU
The dimensional quantities such as U, -( /QY)-yso and

the pressure are independent of the choice of {590 . The
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independence ofwon f,__will be shown in Appendix C after
the expressions for the momentum flux and mass flow are

derived.

Dimensional Quantities

The expressions for the velocities, pressure and
other physical quantities have been treated as non-dimen-
sional quantities, whose characteristic or reference quan-
tities were not explicitly given. Once a given surface is
specified, then the characteristic length L is specified.
The characteristic velocity(%a, or the characteristic
length h must be specified to describe particular jet
characteristics° Only'bkgr h needs to be specified be-

cause the two are related by the relatlon;
= Uxl -
Re-—-__{x)_=(L/9

where L is given by the prescribed surface curvature.

The most convenient quantity to specify for a
given jet is neitherlJerr h, but a quantity that con—
tains the jet mass flow and momentum flux, which will in
turn yield a given value Ug or n.

The dimensional U velocity can be found from equa-
tion (2)and the definition of the non-dimensional quan-
tities.

U= 4y, LEF/ X" (36)

The mass flow rate of the jet per unit dépth can be
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written as;
iz pfudy =4pUgh X o/
[o]
The momentum flux per unit dépth can be written asj:
g Ya- 2 !
= 24y, =/ 2 ‘ Vg
J jyrt(c/y €L U HL _Z?F}d%/(k
The product of the mass flow and the momentum flux is inde-
pendent of the distance x and has a clearer meaning than
either bkor h, therefore, a term containing the product of

the mass flow and momentum flux was chosen as the quantity

to describe a given jet. The product of the mass flow and

momentum flux can be written as;
. 2,8 ,2 oo
Tm= 64"t K £ [(F)dy
The reference velocity'Ukcan be eliminated by the defini-
tion of the Reynolds number and the relation /ﬂf=ﬁ9%fi or

2.
Ug = YL ()
When this is substituted into the expression for JTh, the

result becomes;

4 00

. 2,.,3

= Z /)&

Tm= 6LV (CH) L, [(F)dy (37)
Using the perturbation form of f, and neglecting the term

of order (h/L)2 compared to the ﬁnit order term, the term

[V
£;JQ?7i%2 in equation (37) can be rewritten as;
o

‘f;’,[(a;,)zc/z = ﬁoo Q/Ef:‘/)i/? -/-(é/z_)[ﬁoo[;oﬁ’)i/? L2 ﬁooo/’%a’f;% 7

ok T, [(¢0= 24 +t0)[24 f0 + 2/5F0 ] (38)
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Equation (37) can be written in the following form using

equation (38);

2 3 0
Tr= —'Zc,ngZ (L/h)L[!+('“/z.)(ﬁw+ ?[ﬁ’ﬁ‘clq] (39)

A convenient choice of f_, is to choose foosuch that,

Fco = —?Q/ﬁ/f,JQ
Appendix C shows that the dimensional velocity U is inde-
pendent of f __ . Then, solving equation (39) for L/n yields;

Y
9 TIm 7 ,u Yo U .v
(&/h) = Lizg p2v5. LT o=y (40)
where
_ 9Tm L1y
= 285 V° (41)

The quantity H will be used as the paraﬁeter to describe a
given jet flow. The expression for the dimensional U ve-
locity (equation (36))can be written in terms of the quan-
tity H as follows;

u= L(%)ZFVXV" .t [F +HL) f] (42)

ag3 '/z
The shear stress along the wall for laminar flow
is defined asj
ﬂ@yyo

which can be written as;

Z'"M;(;;H [E v >7‘] (43)

The non-dimensional pressure can be found from

equation (8A).

p-7,= - (M) k [ %ty
Y
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2 o0
0, PR =) KPRL [T,

Using the quantity H and the perturbation form of f in the

expression for the pressure yields;

2,34 ,eo
ee X [* A (£)eln (44)
Only the unit order term of (f‘)2 was retained because the
pressure difference (P-P, ) is of order (h/L). The pres-

sure along the wall can be written as,

~ 32,V “
N (45)

o0
~
Curves of the quantities f,, ﬁ!,_%i(ﬁ?JQ,f, and f' are

P

wAaLL

plotted agalnst n in figures 2 and 3.

Surface Shapes

The equation for the non-dimensional surface cur-
vature was presented as equation (16) where f= 3/4 and
C;= 1. The form of the dimensional surface curvature can
be written asj

-
K= % aer

where L is parameter. The type of surface that this equa-
tion describes is found in Appendix D, and several such
shapes are shown in figure 4. All of the surface shapes
are the same general shape (spirals) where the parameter

L Just determines the size of the spiral.
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CONCLUDING REMARKS AND SUMMARY OF RESULTS

The solutions found in this analysis have been
obtained by a perturbation of the results for a jet over
a flat plate. The values of H and L that can be consid-
ered valid for this analysis are values such that the per-
turbation scheme remains within acceptable limits of
accuracy. That is, :f‘,"/(HL)'!"L must remain small compared
with f,. This is necessary not only to assure good accuracy
of the perturbation forms, but also to keep the ordering
procedure of the flow equations valid. 1If erHLfa is not
small compared with f,, then the assumption that the ef-
fects of curvature are small is no longer a valid assump-
tion. If the effects of curvature are relatively large,
then the flow equations would have to be considered for
the case of the characteristic radius of curvature being
the same order of magnitude as the characteristic jet
width, not the characteristic length of Jet run.

The effect on the velocity profile of the pertur-
bation due to surface curvature is to decrease the jet
velocity near the wall, and increase the jet velocity away
from the wall, The jet profile for a curved surface then
has the appearance of being wider than the profile for the
straight surface. The curved surface velocity profile also

-21 -
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has a reduced skin friction when compared with a comparable
jet on a straight surface.

the results of the pressure distribution yield that
the pressure is lowest at the surface, and highest at the
jet outer edge. This agrees with what seems physically
reasonable because the curving Jet requires a low pressure
near the wall to balance the centrifugal farce of the curv-
ing jet.

The solutions for this jet problem have a singular-
ity at the jet origin. However, this is not too disturbing
because the ordered flow equations are not really valid
near the jet origin anyway. The region near the jet origin
would require a different type of analysis because of the
non-zero width of an actual physical jet at the origin, and
the different initial velocity profile of the actual jet.
Therefore, a separate analysis would have to be performed
for the region near the jet origin, and then the solution
near the origin and the solution found in this analysis

could be matched at some downstream location,
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APPENDIX A

NON-DIMENSIONALIZATION AND ORDER
OF MAGNITUDE ANALYSIS

As a convenience, the local surface radius of
curvature R, will be replaced by the local surface cur-
vature K, which is equal to the inverse of the radius of
curvature. The non-dimensional quantities used in the
order of magnitude analysis are as follows;

u = u/Ug 3 v

v/Vg 3 x = x/L ;
(P-B.)/PUR

All of the non-dimensional quantities except the non-dimen-

y =y/h 3 K = KL ; P

n

sional pressure, are assumed to be of unit order of magni-
tude. The order of magnitude of the non-dimensional pres-
sure will be determined from the y-momentum equation.

Substituting the non-dimensiomal quantities into
the continuity equation (equation (1)) yields;

I VR\ =

[+Ry (kL) 5% UR L/‘)) +'<v?"0(uf<\ ©
L

'5;)2' UR /h {[+/<Y(h/LjV'} o

If a new velocity V' is defined such that;

v =Lk (L) ¥

then the non-dimensional continuity equation becomes;

(1A)
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- (& é“'—) 3—:\;; = (24)

- - VR V/L
Since 9“@; and Aﬂ%§ are both of unit order, then { gf (ﬁ)

P
J

must also be of unit order. Without any loss of generality,
let

The continuity then becomes;

DE , ATH_
X TSy =o (La)

The x-momentum equation (equation @)) can be written in the

following non-dimensional form;

! 7 2 . [VR\L)o 2% , (VR\ £AF 2B (1%L
¥Ry () ¥ oX *'(URE)H"B‘ r (Galiees 7y = T +(L/6)Re{

-—

2 257 -2 2
ﬂ+227("/a>72(h/‘) S5t sk (%)j( )55 "%—WJZ&UZ
[/iKY(/’/L)? ( )/ L) [/+/<y(‘7/L? [V M y_)_(g g_‘i_(iﬂ ]}

If the characteristics of the jet are assumed to be such
that the width of the jet is small compared with the length
of run of the jet, then h/L<KK L. If the largest inertia
terms are assumed to be the same order of magnitude as the
largest viscous terms in the x-momentum equation, then

2
(L/h) /Re = ©(1). Without any loss of generality, let

(L/n)f /Re = 1 (5A)
Using the fact that h/L <<|, equation (3A) and equation

(5A) to determine the size of the terms in the x-momentum

equation and retaining only unit order and order (h/L)
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terms, the following result is obtailned;

/
[FRy(ol) 45

When v is replaced by v*, the x-momentum equation becomes;

U2+ T2 + ()R AT =3 -23 ok 7“' £+ () RS

~<lLt‘|

(68)

WF 4R () RATH - ~2F 1 [ir Ry i + Wk on

The equation similar to equation (6A) presented in Murphy
(reference 4) for boundary layers on curved surfaces gives
the first term in his equation as just 'ug..i‘ notl;_!‘-(#ugi‘ .
While the contribution of Ky is small compared to 1, it is
still the same order of magnitude as the other order (h/L)
terms appearing in equation (6A). Therefore, it appears
that Murphy over-looked the contribution of this term, or
else he had a reason for discarding it that is not apparent
from the order of magnitude analysis.

The y-momentum equation (equation (3)) can be writ-

ten in the following non-dimensional form.

- —_a- -
H‘K?(‘?/ ) (b/L) Z/VR) —% +(VK/UK)T —( L)I+l‘y(’1/L) %y

HEAF o SN o) BE - Bt 83
) 5

S h
+[/f/2—/b/L;j (VR/U&)(.»L) 3y +z7+,< G)] 2 (R UL) S3=

N T L ) ]

[’/+F (ni)

Retaining only terms of order unity and order (h/L) as in
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the x-momentum equation, and using equations (3A) and (4A)

yields the following result,

P o (W R &2
35 - DIR% (88)

The magnitude of the non-dimensional pressure can be esti-
mated from equation (8A). Since Kﬁz and y are of unit
order, then B4y is of order (h/L), and P is of order (b/L).
The pressure can be eliminated from equations (7A)
and (8A) by cross-differentiating and adding. The result-

ant equation isj

oy % %3y T ay 2y 3y% av 2V
2R U QA 2 oK ] - cf_g_?.
*  + % ax] 1+K5 ()] 35s T ayz (94)

By using the continuity equation (equation (4K)) equation
(9&) can be simplified to the following form;

a P TrXoR | ik QK
a ay— +W592 +U’/L)D<V- 5_7—+ Kué% + —xa-]

Su ce U o U
%_'4 +(W )[Ry aa? +2K %35 (10A)
Equations (4A) and (10A) are the final equations to be

solved for v* and u as a function of X and y.



APPENDIX B
SOLUTION OF THE DIFFERENTIAL EQUATION FOR f,

The equation to be solved for f,; is equation (34)
with € /(h/L) = 0. First, multiply equation (34) by £ 72
Q
which yields;

/e s fE e T 1 /82 et S e e amy

The terms in equation (1B) can be regrouped to yield;

f_f;'r;' _f'5 _lf%_ 3ﬁ(€,’)?'+f7o £

£r 2£% F’" Zﬁ’2+ 4 £ T
2 '
+3+‘fo L3RR 3R g | nE) rz(w“s)/ f
2= " 2 f""z g% g zfRT L (2B)

where %'ﬁfﬁ)/ﬁ,/z and ﬁﬁ/ﬁ ? were added and subtracted
from the left hand side of equation (1B).

The terms on the left hand side form the following
differentials;

a6 = 6
ARV VIR 7 b (sE /8

)

E% /g &£ £)

R LR e g e )

[/} ] | f 2 /
The term f, can be replaced by; -f; = 1(F, )/f; - f;fo
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which was obtained from the expression for fo/.,

) e

Equation (2B) can then be written as;

a1 ({/f%) WL /E)+ L {ff )“'?fj/f’ﬁ. rzF)/{ + -f/_f/z

(3BY
This expression can be integrated from n to oo to yield;
y 1,3 % Yo _pg!s 2 ,pl
LY/ R AN VIS S A R A R A N T A A (4B)

Equation (4B) can be integrated once more if it is first
divided by (1- f/‘a) When f,,, 1is replaced by 1, and equa-
tion (4B) is divided by (.l-fj/z), the resultant expression

becomes;

AN T T X SlOULL S S ST
g% 2eRe -9 £R0-19 (F59 (-9 (5®)

Equation (5B) can be integrated from o to n to yield;

£ [ ’/zp'/)
= dp +4~
£=0-%) b%‘*( S’Z)L o & H_LV - f“"’)[_% (68)

n
The term 1‘; dn  can be integrated in the following way;
° '_{_;/2 fﬂ _F'Iz J 3 fo df
__9_37 n = /Z _._._L_Z.
° ,-foz (.} (I‘ﬁ%)
The expressionf Aﬁﬁ%)z can be integrated to give;

( -
db_ _2f, 2 [ 15" 1“/ 3%
+ 36 | fog (1 £t Far )
(1-£%7 = 3(-¢%) * 7 °9 I3 fei (
Using the expression for 7 given by equation (30) yields;

f(l f‘3/z) __—‘V +2/3 /°3 (_//_,‘7_01%72_;_) - /3

The integral _A:z_, can be integrated to give;

2 (I-

(7B)
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AP L )+5’3£m' Eﬁ_)

av fb{ f#? ( f39 - f’1

Again making use of equation (30) yields;

T dn - fo.l’i-— 2
Substituting equations (7B) and (8B) into equation (6B)
yields,

I:z(, fz) [ '/n( _ '3)] = -/./3’72"'4?4'%3'6‘,9'2 +’ 4-_";_,/2

_@f) g s ([EEEER
J-£% : s e (T (9B)

The expression [é&(“4fk7z;o is the indeterminate form C/0,
however, one application of L' Hosiptal's rule gives the

form 0/(1/3). Therefore, equation (9B) can be rearranged
to yield;

/ 3 P |/
ﬁ_;'z72ﬁ'-{71€+4ﬁ/z$7-£ /e;( 3% */ £ (1f+)

(10B)
! Yz 3/2

where the expression ﬁ=;§ﬁ (ﬁvﬂ ) was used in simpli-

fying some of the terms. Equation (10B) then is the final

form of the equation for f, .



APPENDIX C
EFFECT OF ARBITRARY f, ON u

If the value of fi,is to be an arbitrary value,
then the values of the dimensional velocity u at a given x
and y location must not be affected by changes in f .
A direct expression for the velocity u does not explicitly
yield that the velocity u is unchanged by changes in f,, »
Therefore, an alternative approach is used. If the deriv-
ative of the velocity u with respect to f, , is zero, then
this ylelds the result that u is not dependent on f _ .

The expression for the dimenslonal velocity u can

be written as (equation (36))3

wu= 4" UR L.I/z F,/xl/z

2
or s ‘*—r%’)x‘,’z[ﬁ’+(m)ﬁ'}

The expression for L/h when f, , is arbitrary can be obtain-

(1C)

ed from equation (39). Equation (39) yilelds;

4 -
EH) [ 1+ )£ +9 [Tpag)] = HL

To solve equation (2C) for L/h, expand equation (2C) in a

(2c)

series to yield;
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)= 0a0) o) 9ff54] = puuf-

'/4_("4_)(-{;“”-& ‘7ff‘?ﬁ'&7) + terms order (h/L) and smalleﬂ (30)

Neglectin;)the terms marked as order GVLfin equation (3C)

gives the following result for (L/h) from equation (3C);
L = (HLY* = o *7{%'6 Jn

ol
The term fﬁ'{-‘Uz can be expressed in terms of f|, by
4 o
integrating equation (34) from 9= O to p=o0. This inte-

gration gives;
Iy
J Lfdr= 1w -7/2
The expression for (L/h) then becomes;

2 -
(/) = [(ney*s 2i/r6] ~Fion oy
I
where (HL)A* is of order (L/h) and f,,, is of order (1).
The quantity f, can be split into two components,

g, and f,(nk+§),

That is,
T=9+f, (1t'+£)

ihere g = P - o +#£%- 4t vt oy [VIFE ]

/- £
The expression for the velocity u (equation (1C))

can then be written as;
4y ' /
wn S [CHE 43, v () (ng"s28)] sy

If equation (5C) is differentiated with respect to f,_ ,
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rin N
then terms such as QQ/a.ﬁj.oand o( /h//aﬁ,,, will be required.
The term B(L//?)/a{-;o can be obtained from equation (4C).

L
2(Thof o= ! (6CY
The expression for n 1s defined as (equation (12));
L= 5/ = L) Y /i

Then, for given values of y, L, and xj
Y
(Saé,) (% 3,49 a( h), (;,/L)yz%(%:z = =()n (7¢)

Equation (5C) differentiated with respect to f,_

then becomes;

St P [ - -5 - 0 L (uE )

U 428) - 0 Fp 1E r2E))]

The three terms multiplied by (L/h) cancel, so the result-

ant expression for c“f/cJF,,,° becomes;

j;:c XVz[ 3 'ﬁw ('?ﬁ”‘rz 72')"7ﬁec('l'f;”*'2 ﬁ!)] (8¢)
when equation (8C) is compared with the expression for u
given by equation (5C), it can be seen that GW-Q'F,“ is of
order (h/Lf small than u. 8Since terms of order (h/Lf
have been consistently neglected in this analysis, it must
be concluded that changes in f,,, do not affect the veloci-

ty u to an order of accuracy consistent with this analysis.




APPENDIX D
SURFACE SHAPES

The equation for the shape of the permissible

surfaces found in this analysis is given by
= Vg ¥4
K= L"*x * (46)
Yo 4
OI', = A
R=L7"X (1D)
To find the shape of a surface given by equation (1D), use

the cartesian coordinates '2* and f"*,

From the definition of the radius of curvature,

[+ z%f*)z]s/z

od*7%/
I' Z/Jf*z., (2D)
A length of surface dx can be expressed as;

Ix = J?*U/f- (J'Z*/J?*)Z (3D)

Differentiating equation (3D) with respect to ?*' and
solving for 427%’?*2 yields;:
2
- (P (8D _ eyl e)
Jf* (dg*/c/ ?*) ‘}/ (J );g?*) - I (4D)
Combining equations (2D) and (4D) yields;

r= (6% | (Jx/‘/(f*)z_%;z X /J?*z)
- @Y AV (5D)

oy,

c/?*

— 3 -
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This expression can be integrated once to yield;

dX !
s = Scos (17, 71") (6D)
where the boundary condition that (dx/d¢¥)= 1 at x= O was

used. Integrating equation (6D) again yields;

L 3
?*: é—;[éf- oL " sén o +3o cos ol =6 cosel - £ S'ﬂto(] (7D)

where x =4 X/Z_’/o‘ (8D)

The boundary condition was &%= 0 at x = O,

The expression for '2* can be found by using the

relation; J'Z%?*': (JQ’Z/X)(/X/J?*)
w () g e su (4K
or J;'Z_ o) [1=(37gF =~ sin (4X /%)

This expression can be integrated to yield;

2*—64‘ °(3CoS°( —39(254"?0( +6sinot - € ot caSo(j
(9D)
wheree{is given by equation (8D). The boundary condition
was taken to be #¥= 0 at x = 0.
Equations (7D) and (9D) then give the surface ca-
ordinates in terms of the parameter L and the surface length

X. The length x could be eliminated from equations (7D)
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and (9D), giving #* as a function of €% with the parameter
L remaining. However, this would be very difficult because
of the complicated expressions for Q* and ?*, so that the

intermediate variable x will not be eliminated.



