Office of Naval Research

Contract Nonr- 1866 (16)
NR -372-012

National Aeronautics Space Administration

Grant NGR 22-007-068

SEQuential CODing schemes for an additive noise channel with a noisy feedback Link

by
R. L. Kashyap

May 1966 -August 1966

Technical Report No. 508
"Reproduction in whole or in part is permitted by the U. S.
Government. Distribution of this document is unlimited."
Division of Engineering and Applied Physics Harvard University - Cambridge ,Massachusetts
\therefore SEQUENTIAL CODING SCHEMES FOR AN ADDITIVE NOISE CHANNEL WITH A NOISY FEEDBACK LINK 4
by
G. R. L. Kashyap 1

Reproduction in whole σ in part is permitted by the U.S. Government. Distribution of this document is unlimited.

The research reported in this document was supported by the U. S. Army Research Office, the U. S. Air Force Office of Scientific Research, and the U. S. Office of Naval Research under the Joint Services Electronics Program by Contract Nonr-1866 (16), and by NASA under Contract, NGR-22-007-068. $_{25}$

2 Computation Laboratory 3
Division of Engineering and Applied Physics
1 Harvard University
Cambridge, Massachusetts

SEQUENTIAL CODING SCHEMES FOR AN ADDITIVE

 NOISE CHANNEL WITH A NOISY FEEDBACK LINK*R. L. Kashyap

Computation Laboratory
Harvard University
Cambridge, Massachusetts

Abstract

A coding scheme for additive Gaussian channel is developed using a noisy feedback link and D-dimensional elementary signals with no band width constraint. This allows error free transmission at a rate $R<R_{c}$ where R_{c} is slightly less than the channel capacity C. When there is no noise in the Feedback channel, the coding scheme reduces to a D-dimensional generalization of the coding scheme of Schalkwijk and Kailath. In addition, the expression for the probability of error is determined when T, the time of Transmission rate is finite. Our scheme is also compared with the best codes which use only the forward channel.

* This work was supported in part by NASA under Contract NGR-22-007-068, the Joint Services Electronic Program under Contract Nonr-1866(16) and by the Division of Engineering and Applied Physics, Harvard University.

SEQUENTIAL CODING SCHEMES FOR AN ADDITIVE

 NOISE CHANNEL WITH A NOISY FEEDBACK LINK
I. INTRODUCTION

We are interested in the transmission of messages over a noisy channel using a noisy feedback channel which will be used to convey the state of the uncertainty of the receiver to the transmitter. This model is suitable for many of the communication problems. The only constraint on the transmitted signals is their limited average power. The starting point of our paper is the classical result due to Shannon [1] who showed the existence of a coding scheme in which the probability of error can be made arbitrarily small for a nonzero transmission rate. Specifically, suppose that one has to transmit one of M messages during a period of T seconds across a Gaussian channel with double sided spectral density $\frac{N_{o}}{2}$ with $P_{a v}$ being the average power constraint on the transmitted signals. Let $R \triangleq$ transmission rate $=((\ln M) / T)$ nats $/ \mathrm{sec}$ and $P_{e, o p t}\left(M, T, \frac{\left.P_{A V}\right)}{N_{o}}=\right.$

Probability of error using the ortimal coding scheme with a signal-to-noise ratio $P_{A V} / N_{0}$. Then

$$
\operatorname{Lim}_{T \rightarrow \infty} P_{e, \text { opt }}\left(M, T, \frac{P_{A V}}{N_{0}}\right)=\left\{\begin{array}{lll}
0 & R<C \\
1 & \text { if } & R>C
\end{array}\right.
$$

where $C=$ channel capacity $=P_{A V} / N_{o}$. A number of authors [2-6] have investigated the transmission of messages over noisy channels using a noiseless feedback link. Shannon [2] showed that the existence of a noiseless
feedback link will not result in an increase in the channel capacity in the forward direction. The recent striking contribution is due to Schalkwijk and Kailath [6] who developed a coding scheme using noiseless feedback link and one dimensional elementary signals which realizes a transmission rate equal to the channel capacity and demonstrated its superiority over best known conventional codes like the simplex codes [7]. However, if there is noise in the feedback link, their coding scheme implies zero transmission rate if we insist on zero probability of error.

The coding scheme of this paper is obtained by considering the problem of information transmission on one of recursive estimation problem both at the transmitter and the receiver. The main result is that messages using D-dimensional elementary signals can be transmitted over a noisy channel using a noisy feedback chanzel with zero probability of error at any rate less than the critical rate R_{c} which is only slightly less than channel capacity C of the forward channel

$$
R_{c}=\left(\frac{1}{1+\sqrt{\frac{N_{b}}{N_{0}}}+\frac{1}{2} \frac{T_{b}}{T_{0}}}\right) \frac{P_{A V}}{N_{0}}
$$

where $\frac{N_{b}}{2}$ in the two-sided spectral density of the additive Gaussian noise in the feedback link, and other symbols have been defined earlier. In particular, when the noise in the feedback link is absent, the coding scheme becomes a generalization of the coding scheme in reference [6] for D-dimensional signals. In addition, if the time of transmission T is finite, expression will be derived for the probability of
error and this scheme will be compared with the best codes (simplex codes) which use only the forward channel.

II. CODING SCHEME

We will first convert the continuous time Gaussian channel into a discrete time Gaussian channel and describe the coding scheme in terms of the latter.

1. Transformation of a continuous time Gaussian channel into

a discrete time channel.

Suppose one has to transmit one of the M messages belonging to the set

$$
\left\{\mathrm{m}^{(\mathrm{j})}\right\} \triangleq\left\{\mathrm{m}^{(1)}, \mathrm{m}^{(2)}, \ldots, \mathrm{m}^{(\mathrm{M})}\right\}
$$

over a time T seconds. Let us assume a set of orthogonal elementary signals $\varnothing_{1}(t), \ldots . ., \varnothing_{D}(t)$ are available which satisfy the relation

$$
\int \varnothing_{i}(t-k \cdot \Delta) \varnothing_{j}(t-\ell \Delta) d t=\delta_{i j} \delta_{k \ell}, \quad \begin{array}{rl}
i & j \tag{1}
\end{array}=1, \ldots, D
$$

where Δ is the discretization interval. The actual signal transmitted is $s(t)$

$$
s(t)=\sum_{i=1}^{N} u^{T}(i) \varnothing(t-i \Delta)
$$

where

$$
\begin{gathered}
\left.\phi^{\mathrm{T}}(t)=\wp_{1}(t), \emptyset_{2}(t), \ldots, \varnothing_{D}(t)\right) \\
u^{\mathrm{T}}(i)=\left(u_{1}(i), \ldots, \ldots, u_{D}(i)\right) \\
N=\text { Largest integer less than or equal to }(T / \Delta) \text {. The vectors } \\
u(i), i=1, \ldots, N \text { are yet unknown and depend on the particular } \\
\text { message to be transmitted. }
\end{gathered}
$$

Let the received signal be $r_{1}(t)$ and the additive white Gaussian noise with spectral density $\frac{\mathrm{N}_{\mathrm{O}}}{2}$.

$$
\begin{align*}
& r_{1}(t)=s(t)+n_{1}(t) \tag{2}\\
& \left\{\begin{array}{l}
E\left[n_{1}(t)\right]=0 \\
E\left[n_{1}\left(t_{1}\right) n_{1} T\left(t_{2}\right)\right]=\frac{N_{0}}{2} \delta\left(t_{1}-t_{2}\right)
\end{array}\right. \tag{3}
\end{align*}
$$

The receiver computes a signal $s_{2}(t)$ on the basis of its measurements and sends it back to the transmitter. Let the noise in the feedback channel be $n_{2}(t)$ which is white Gaussian and additive with spectral density $\frac{N_{b}}{2}$.

$$
\begin{align*}
& \left.s_{2}(t)=\sum_{i=1}^{N} v^{N}(i) \not h_{t}-i \Delta\right) \tag{4}\\
& r_{2}(t)=s_{2}(t)+n_{2}(t) \tag{5}\\
& E\left[n_{2}(t)\right]=0 \\
& E\left[n_{2}\left(t_{1}\right) n_{2}\left(t_{2}\right)\right]=\frac{N_{b}}{2} \delta\left(t_{1}-t_{2}\right) \tag{6}
\end{align*}
$$

If we define the following vectors of dimension D

$$
\begin{aligned}
& y(i) \triangleq \int r_{1}(t) \varnothing(t-i \Delta) d t \\
& \eta(i) \Delta \int n_{1}(t) \varnothing(t-i \Delta) d t \\
& z(i) \triangleq \int r_{2}(t) \varnothing(t-i \Delta) d t \\
& \xi(i) \triangleq \int n_{2}(t) \varnothing(t-i \Delta) d t
\end{aligned}
$$

then the continuous time model represented by Figure 1 and equations $(2),(3),(5),(6)$ can be replaced by the discrete time model represented in Figure 2 and equations (7)-(9), with discretization interval Δ [7]

FIG. 1 CONTINUOUS TIME FEEDBACK COMMUNICATION MODEL

FIG. 2 DISCRETE TIME FEEDBACK COMMUNICATION MODEL

$$
\begin{align*}
& y(i)=u(i)+\eta(i) \tag{7}\\
& z(i)=v(i)+\xi(i) \tag{8}
\end{align*}
$$

$\eta(i), \xi(i), i=1, \ldots, N$ are white Gaussian random vectors with

Let

$$
\left\{\begin{array}{l}
E(\eta(i))=E(\xi(i))=0 \\
E\left(\eta(i) \eta^{T}(j)\right)=\frac{N_{o}}{2} \delta_{i j} I \tag{9}\\
E\left(\xi(i) \xi^{T}(j)\right)=\frac{N_{b}}{2} \delta_{i j} I \\
E\left(\eta(i) \xi^{T}(j)\right)=0 \\
\sigma_{\eta}^{2} \triangleq \frac{N_{0}}{2} \text { and } \sigma_{\xi}^{2} \triangleq \frac{N_{b}}{2}
\end{array}\right.
$$

The problem is to determine the vectors $u(i), i=1, \ldots, N$ that are to be sent at the transmitter and the vectors $v(i), i=1, \ldots, N$ that are to be sent at the receiver so that error free transmission is possible at a nonzero transmission rate. Of course, the vectors $u(i), v(i), i=1,2, \ldots, N$, will depend on the particular message that has to be sent to the receiver.
2. Description of coding scheme CS-1

Let us assume that the number $M=M_{1}{ }^{D}$ where M_{1} is an integer. Let us represent the messages of set $\left\{m^{(j \lambda}\right\}$ by M equispaced points in a D-dimensional typercube centered about the origin. Figure 3 illustrates this for the case $M=3^{2}$ and $D=2$.

We will associate the $j^{\text {th }}$ message $\mathrm{m}^{(\mathrm{j})}$ with the D -dimensional vector $\mathrm{x}^{(\mathrm{j})}$ joining the origin to the $\mathrm{j}^{\text {th }}$ point on the lattice. The coding scheme CS-1 can be described briefly as follows:
(A) Let $x=x^{(j)}$ if the message $m^{(j)}$ is to be transmitted to the receiver. set $\mathrm{i}=1$.
(B) At the $i^{\text {th }}$ step, the transmitter sends the vector $u(i) \Delta a(x-\bar{x}$ (i)) where a is a scalar constant and $\bar{x}(i)$ will be described later.
(C) The receiver has a meadurement $y(i)$ (D-vector)

$$
\begin{equation*}
y(i)=a(x-\bar{x}(i))+\eta(i) \tag{10}
\end{equation*}
$$

Using this measuremert, the receiver recursively computes the vector $\hat{x}(i+1)$ to be described later. It sends back to the transmitter the vector a $\hat{\mathbf{x}}_{(i+1)}$.
(D) The transmitter receives a measurement z (i+1) (D-vector)

$$
\begin{equation*}
z(i+1)=a \hat{x}(i+1)+\xi(i+1) \tag{11}
\end{equation*}
$$

Using this measurement, the transmitter recursively computes $\bar{x}(i+1)$ and hence $a(x-\bar{x}(i+1))$
(E) Increment i by one and go back to step (B)

$$
\begin{aligned}
& \hat{\mathbf{x}}(\mathrm{i}+1) \quad=\text { Maximum likelihood estimates of the vector } \\
& \text { patemeter } x \text { at the receiver on the } i t h \\
& \text { stage based on all the available measurements } \\
& \text { till that stage i.e., } y(1), y(2), \ldots, y(i) \text {. } \\
& \bar{x}(i+1) \quad=\text { Maximum likelihood estimate (Kalman estima- } \\
& \text { tor) of the random vector } \hat{\mathbf{x}}(\mathrm{i}+1) \text { by the trans }{ }^{-} \\
& \text {mitter based on all the measurements } z(1), \ldots, z(i+1) \\
& \text { and the parameter } x \text {. } \\
& =E[\hat{\mathbf{x}}(\hat{+}+1) / z(1), \ldots, z(i+1) ; \quad \mathbf{x}]
\end{aligned}
$$

The recursive equations for \hat{x} (i) and $\bar{x}(i)$ are given below and a block diagram of the coding scheme is in Figure 4. It should be noted that $\zeta(\mathrm{i}), \theta(\mathrm{i}), \mathrm{p}(\mathrm{i}), \mathrm{q}(\mathrm{i})$, and $\mathrm{r}(\mathrm{i})$ are all scalars

$$
\begin{align*}
& \hat{x} \quad(i+1)=\hat{x}(i)+\zeta(i) y(i) \tag{12}\\
& \zeta(i)=\left(a^{2} p(i)+\sigma_{\eta}^{2}+a^{2} q(i)+2 a^{2} r(i)\right)^{-1} \quad(q(i)+r(i)) a \tag{14}
\end{align*}
$$

FIG. 3 REPRESENTATION OF THE $M=3^{2}$ MESSAGES ON A 2-CUBE. CROSSES DENOTE MESSAGES.

FIG. 4 FEEDBACK CODING SCHEME CS - 1

$$
\begin{align*}
& \bar{x}(i+1)=\bar{x}(i)+\zeta(i) a(x-\bar{x}(i))+\theta(i+1)\{z(i+1)-a \bar{x}(i)-a \zeta(i)(x-\bar{x}(i)\} \tag{13}\\
& \theta(i)=p(i) a / \sigma_{\xi}^{2} \tag{15}\\
& q(i+1)=\{1-a \zeta(i)\}^{2} q(i)+\zeta^{2}(i)\left\{a^{2} p(i)+\sigma_{\eta}^{2}\right\}-2 a \zeta(i) r(i)\{1-a \zeta(i)\} \tag{16}\\
& p(i+1)=\frac{\left(p(i)+\zeta^{2}(i) \sigma_{\eta}^{2}\right) \sigma_{\xi}^{2}}{\sigma_{\xi}^{2}+a^{2}\left\{p(i)+\xi^{2}(i) \sigma_{\eta}^{2}\right\}} \tag{17}\\
& r(i+1)=[(1-a \zeta(i))(1-a \theta(i+1)) r(i)-a \zeta(i) p(i)(1-a \theta(i+1)) \\
& -\sigma_{\eta}^{2} \zeta^{2}(i)(1-a \theta(i+1)] \tag{18}
\end{align*}
$$

It should be noted that (12) is stored at the receiver, (13) at the transmitter and the deterministic difference equations (16)-(18) and the definitions (14)-(15) are stored both at transmitter and the receiver.
III. ANALYSIS OF THE CODING SCHEME

Before we demonstrate the possibility of error free transmission, we will analyse the ML (Maximum Likelihood) estimators at the transmitter and the receiver, more closely. It should be emphasized here that the ML estimator at the receiver and the ML (Kalman) estimator at the transmitter are intimately related to each other, even though they are treated separately here.

1. ML estimator of x at the receiver.

Define $\quad \widetilde{x}(i) \Delta \hat{x}(i)-\bar{x}(i)$
= error in the optimal estimator at the transmitter.

Then the equation for $y(i)$ can be rewritten as:

$$
\begin{equation*}
y(i)=a(x-\hat{x}(i))+\{\alpha \widetilde{x}(i)+\eta(i)\} \tag{19}
\end{equation*}
$$

Let $\hat{\mathbf{x}}(\mathrm{i})=\mathrm{ML}$ estimate of the parameter \mathbf{x} at the receiver based on the measurements $y(1), \ldots, y(i-1)$

Let us try to compute $\hat{\mathbf{x}}$ (i+1) from $\hat{\mathbf{x}}(\mathrm{i})$ and $\mathrm{y}(\mathrm{i})$
Let

$$
\left\{\begin{array}{l}
\operatorname{Cov}[x-\hat{x}(i)] \triangleq q(i) I \tag{20}\\
\operatorname{Cov}[\widetilde{x}(i)] \triangleq p(i) I \\
E\left[(x-\hat{x}(i))(\widetilde{x}(i))^{T}\right] \triangleq r(i) I
\end{array}\right.
$$

But the noise $a \tilde{x}(i)$ occuring in (19) is not white, though Gaussian. Therefore, while computing the $\operatorname{MLE} \hat{x}(i+1)$, the correlation between ($x-\hat{x}(i))$ and $\widetilde{x}(i)$ has to be considered.

By definition, $\hat{x}(i+1)$ is obtained by minimizing Jw.r.t u

$$
\begin{aligned}
J & =\|(u-\hat{x}(i)),(a \widetilde{x}(i)+\eta(i))\|^{2} \\
= & {\left[\begin{array}{cc}
q(i) I & \operatorname{ar}(i) I \\
\operatorname{ar}(i) I & \left(a^{2} p(i)+\sigma_{\eta}^{2}\right) I
\end{array}\right]^{-1} } \\
& {\left[\begin{array}{cc}
q(i) I & \operatorname{ar}(i) I \\
a(i)),(y(i)-a i l+a \hat{x}(i)) \|^{2} & \left(a^{2} p(i)+\sigma_{\eta}^{2}\right) I
\end{array}\right]^{-1} }
\end{aligned}
$$

By the straightforward minimization, we obtain

$$
\begin{equation*}
\hat{x}(i+1)=\hat{x}(i)+\zeta(i) y(i) \tag{21}
\end{equation*}
$$

where the scalar $\zeta(i)$ has beex defined earlier in (14). At the $i^{\text {th }}$ stage, error in the estimator $=\{x-\hat{x}(i)\}$.

From (2l) we can write the recursive relation for ($x-\hat{x}$ (i))

$$
\begin{align*}
x-\hat{x}(i+1)=\{1-a \zeta(i)\}\{ & x-\stackrel{\leftrightarrow}{x}(i)\} \\
& -\zeta(i)(a \widetilde{x}(i)+\eta(i)) \tag{22}
\end{align*}
$$

From (22) and (20) we can obtain the recursive equation (16) for the scalar q(i).

In the appendix it is shown that asymptotically

$$
q(i)=\frac{\sigma^{2}}{a_{i}^{2}}\left\{1+2 \sqrt{\frac{N_{b}}{N_{o}}}+2 \frac{N_{b}}{N_{o}}\right\} \quad, \frac{N_{b}}{N_{o}}<1 \text { and sufficiently small }
$$

2. Optimal Estimator of $\hat{\mathbf{x}}(\mathrm{i}+1)$ at the Transmitter

Rewriting (21)

$$
\begin{equation*}
\hat{\mathbf{x}}(\mathrm{i}+1)=\hat{\mathrm{x}}(\mathrm{i})+a \zeta(\mathrm{i})(\mathrm{x}-\hat{\mathrm{x}}(\mathrm{i}))+\zeta(\mathrm{i}) \eta(\mathrm{i}) \tag{23}
\end{equation*}
$$

Equation for the measurement $z(i+1)$ is

$$
\begin{equation*}
z(i+1)=a \hat{x}(i+1)+\xi(i+1) \tag{24}
\end{equation*}
$$

We want to evaluate the $M L$ estimator of the random vector $\hat{\mathbf{x}}(i+1)$ given the measurements $z(1), \ldots, z(i+1)$. Rewriting (23)

$$
\begin{equation*}
\hat{\mathrm{x}}(\mathrm{i}+1)=\overline{\mathrm{x}}(\mathrm{i})+a \zeta(\mathrm{i})(\mathrm{x}-\overline{\mathrm{x}}(\mathrm{i}))+\widetilde{\mathrm{x}}(\mathrm{i})+\zeta(\mathrm{i}) \eta(\mathrm{i}) \tag{25}
\end{equation*}
$$

Hence, by definition, given $\hat{\mathbf{x}}$ (i) and $\mathbf{z}(\mathrm{i}+1)$, $\hat{\mathbf{x}}(\mathrm{i}+1$) is obtained by minimizing $J w . r$ vector u

$$
\begin{equation*}
J=\|u-\bar{x}(i)+a \zeta(i)(x-\bar{x}(i))\|^{2}\left(\frac{I}{p(i)+\zeta^{2}(i) \sigma_{\eta}^{2}}\right)+\|z(i+1)-a u\|^{2} \frac{I}{\frac{I}{\sigma_{\xi}^{2}}} \tag{26}
\end{equation*}
$$

Performing the minimization, we get

$$
\begin{equation*}
\bar{x}(i+1)=\bar{x}(i)+a \zeta(i)(x-\bar{x}(i))+\theta(i+1)[z(i+1)-a \bar{x}(i)-a \zeta(i)(x-\bar{x}(i))] \tag{27}
\end{equation*}
$$

where

$$
\theta(i+1)=a p(i+1) / \sigma_{\xi}^{2}
$$

and the recursive equation for $p(i)$ is given earlier.
It should be noted that

$$
\bar{x}(i+1)=E(\hat{x}(i+1) / z(1), \ldots, z(i+1) ; x)
$$

since the ML estimator is identical with the Kalman-Bucy estimator.
Let

$$
\widetilde{x}(i)=\hat{x}(i)-\bar{x}(i)=\text { error in the optimal estimate. }
$$

Subtracting (25) from (27) we get the difference equation for the error \widetilde{x} (i)

$$
\begin{equation*}
\widetilde{x}(i+1)=\widetilde{x}(i)\{1-a \theta(i+1)\}+\zeta(i) \eta(i)(i-a \theta(i+1)\}-\theta(i+1) \xi(i+1) \tag{28}
\end{equation*}
$$

we can derive the recursive relation for $p(i)$ from (28) and the various definitions. Alternatively, we can invoke the Kalman-Bucy theory to get the relation (17). Similarly using (28) and (22), we can get the recursive relation (18) for $\mathrm{r}(\mathrm{i})$

Asymptotically

$$
\begin{array}{ll}
\mathrm{p}(\mathrm{i})=\frac{\sigma^{2}}{\mathrm{a}^{2} \mathrm{i}} \sqrt{\frac{\mathrm{~N}_{\mathrm{b}}}{\mathrm{~N}_{\mathrm{o}}}}\left(1+\frac{3}{2} \sqrt{\frac{N_{\mathrm{b}}}{\mathrm{~N}_{0}}}\right) & , \quad\left(\mathrm{N}_{\mathrm{b}} / \mathrm{N}_{\mathrm{o}}\right)<1 \\
\mathrm{r}(\mathrm{i})=-\frac{\sigma_{\eta}^{2}}{\mathrm{a}_{\mathrm{i}}^{2}} \sqrt{\frac{\mathrm{~N}_{\mathrm{b}}}{\mathrm{~N}_{\mathrm{o}}}}\left(1+\frac{3}{2} \sqrt{\frac{\mathrm{~N}_{\mathrm{b}}}{\mathrm{~N}_{\mathrm{o}}}}\right) & , \quad\left(\mathrm{N}_{\mathrm{b}} / \mathrm{N}_{\mathrm{o}}\right)<1
\end{array}
$$

These relations have been proved in the appendix 1.
From these we obtain (in appendix)

$$
\begin{equation*}
E\left[(x-\bar{x}(i))(x-\bar{x}(i))^{T}\right]=\frac{\sigma^{2} \eta}{a^{2} i}\left\{1+\sqrt{\frac{N_{b}}{N_{0}}}+\frac{1}{2} \frac{N_{b}}{N_{o}}\right\} I \tag{29}
\end{equation*}
$$

3. Determination of the Criticle Transmission Rate R_{C}

THEOREM:

Let $P_{A V}$ be the constraint on the average transmitted power. Let ($N_{o} / 2$) and ($\mathrm{N}_{\mathrm{b}} / 2$) be respectively the two-sided spectral densities of the additive white Gaussian noises in the forward and backward channel respectively. Suppose one of $M \triangleq \exp (R T)$ messages has to be trans-
mitted over a time T seconds (where R is known as the transmission rate). Suppose the coding scheme mentioned in Section II is used and the maximum likelihood decision rule is used to obtain the decision.

Let $P_{e}(M, T)$ be the probability of error. Then there exists a constant \mathbf{R}_{c} such that

$$
\operatorname{Lim}_{T \rightarrow \infty} P_{e}(M=\exp (R T), T)=\left\{\begin{array}{lr}
0 & R<R_{c} \\
1 & \text { if } \\
& >R_{c}
\end{array}\right.
$$

An approximate expression for R_{c} is

$$
R_{c}=\left(\frac{1}{1+\sqrt{\frac{N_{b}}{N_{0}}}+\frac{1}{2} \frac{N_{b}}{N_{o}}}\right) \cdot\left(\frac{\mathrm{P}_{A V}}{\mathrm{~N}_{\mathrm{o}}}\right)
$$

Proof: Suppose that during the time T, N measurements $y(1), \ldots, y(N)$ have been taken at the receiver, the latest measurement being $y(N)$. Since all the M messages are equally probable, the decision rule $d\left({ }^{\circ}\right)$ at the receiver is:

$$
\begin{aligned}
& d(\hat{x}(N+1))=m^{(j)} \quad \text { if }\left|\left(x^{(j)}-\hat{x}(N+1)\right)_{i}\right| \leqslant\left|\left(x^{(k)}-\hat{\mathbf{x}}(N+1)\right)_{i}\right| \\
& \forall i=1, \ldots, D \text { and } \forall k=1, \ldots, M . \\
& \text { i.e., } d(\hat{x}(N+1))=m^{(j)} \text { if }-1 / 2 M_{1}<\left(x^{j}-\hat{x} \quad(N+1)\right)_{i}<1 / 2 M_{1} \\
& \forall i=1, \ldots, D
\end{aligned}
$$

where $\mathrm{M}_{1}=\mathrm{M}^{1 / \mathrm{D}}$ (an integer) ${ }_{2}$
Recall that Cov $(x-\hat{x} \quad(N+1)) \approx \frac{\sigma \eta}{a^{2}} \frac{1}{N}\left(1+k_{q}\right)$, where $k_{q}=2 \sqrt{\frac{N_{b}}{N_{o}}}$
Let the probability of error $\triangleq \mathrm{P}_{\mathrm{e}}(\mathrm{M}, \mathrm{T})$

$$
\begin{aligned}
& P_{c}=1-P_{e}(M, T) \\
& \hat{\mathbf{x}}(\mathrm{N}+1)+\left(1 / 2 \mathrm{M}_{1}\right) \\
& =\left[\int \frac{\sqrt{N a}}{\sqrt{(2 \pi) \sigma_{\eta}^{2}\left(1+k_{q}\right)}} \exp \left\{-\frac{N \sigma^{2}}{2 \sigma^{2}\left(1+k_{q}\right)}\left(u_{j}-\hat{x}_{j}(N+1)\right)^{2}\right\} d u_{j}\right] D \\
& \hat{\mathbf{x}}(\mathrm{~N}+1)-\left(1 / 2 \mathrm{M}_{1}\right) \\
& =\left\{\operatorname{erf}\left(\frac{a}{2 \sqrt{2 \sigma_{\eta}} \sqrt{1+k_{q}}} \frac{\sqrt{N}}{M_{1}}\right)\right\}^{\text {D }}
\end{aligned}
$$

Let $M(T) \triangleq \exp (R T)=N^{D(1-\epsilon) / 2}$

$$
P_{c}=\left\{\operatorname{erf}\left(\frac{a}{2 \sqrt{2 \sigma} \sqrt{1+k_{q}}} N^{\epsilon / 2}\right)\right\}^{D}
$$

Hence

$$
\operatorname{Lim}_{T \rightarrow \infty} P_{e}(M, T)=\left.\right|_{1} ^{0} \quad \epsilon>0
$$

Therefore, the optimal signalling rate R_{c} is obtained by setting

$$
\begin{align*}
& M(T)=N^{D / 2} \\
& R_{c} \triangleq \frac{\ln M(T)}{T}=\frac{D \operatorname{laN}}{2 T} \tag{30}
\end{align*}
$$

$P_{A V}=$ the average transmitted power

$$
\begin{aligned}
& =E\left[\frac{1}{T} \int_{0}^{T} s^{2}(t) d t\right] \\
& =\frac{1}{T} E\left[\sum_{i=1}^{N} a^{2}\|x-\bar{x}(i)\|^{2}\right]
\end{aligned}
$$

Let us assume that x_{j} is uniformly distributed in the interval ($-1 / 2,1 / 2$) for every $j=1, \ldots$, , D. Since $\bar{x}(1)=0, E\left(x_{j}^{2}\right)=1 / 12$ for all $j=1, \ldots, D$.
we know from (29) that

$$
E\|x-\bar{x}(i)\|^{2} \approx \frac{D \sigma_{\eta}^{2}}{a^{2} i}\left(1+\sqrt{\frac{N_{b}}{N_{o}}}+\frac{1}{2} \frac{N_{b}}{N_{o}}\right)^{\prime} \quad \triangleq \sigma^{2} /\left(a^{2} i\right)
$$

where

$$
\begin{aligned}
& \sigma^{2} \triangleq \sigma_{\eta}^{2}\left\{1+\sqrt{N_{b} / N_{o}}+\frac{1}{2} \frac{N_{b}}{N_{o}}\right\} \\
& P_{A V}=\frac{a^{2} D}{T}\left[\frac{1}{12}+\frac{\sigma^{2}}{a^{2}}\left(\sum_{i=1}^{N} \frac{1}{i}+A_{1}\right)\right]
\end{aligned}
$$

where A_{1} is the error due to the use of approximation formula.
But $\sum_{i=1}^{N} \frac{1}{i} \approx \ell N+A_{2} \quad, \quad A_{2}=$ Euler-Maschorini constant
Substituting for T from (30) we get

$$
\begin{equation*}
P_{A V}=\frac{2 R_{c}}{\ln \bar{N}}\left\{\sigma^{2} \ln \mathrm{~N}+\frac{a^{2}}{12}+\sigma^{2}\left(\mathrm{~A}_{1}+\mathrm{A}_{2}\right)\right\} \tag{31}
\end{equation*}
$$

Hence

$$
\operatorname{Lim}_{N \rightarrow \infty} P_{A V}=2 R_{c} \sigma^{2}
$$

From the definition of σ^{2}, we obtain

$$
R_{c}=\left(\frac{1}{1+\sqrt{\frac{N_{b}}{N_{o}}}+\frac{1}{2} \frac{N_{b}}{N_{o}}}\right) \cdot\left(\frac{P_{A V}}{N_{o}}\right)
$$

IV. PROPERTIES OF THE CODING SCHEME CS-1

1. Probability of error P_{e} for finite T with an optimal choice for the gain a.
Let

$$
\mathrm{C}=\mathrm{P}_{\mathrm{AV}}
$$

and

$$
c_{2} \triangleq \frac{R_{c}}{C}=\frac{1}{1+\sqrt{\frac{N_{b}}{N_{o}}}+\frac{1}{2} \frac{N_{b}}{N_{o}}}
$$

For given a and large T the probability of error is given by

$$
\begin{equation*}
P_{e}=1-\left\{\operatorname{erf}\left(\frac{a}{2 \sqrt{N_{0}\left(1+k_{q}\right)}} \frac{\sqrt{N}}{M^{1 / D}}\right)\right\} \tag{32}
\end{equation*}
$$

Let $M=e^{R T}$
From (31) we obtain

$$
C=\frac{D}{T}\left[\frac{a^{2}}{12 N_{o}}+\frac{1}{2 C_{2}}\left(\ln N+A_{1}+A_{2}\right)\right]
$$

Rewriting the above equation by neglecting A_{1} and A_{2}, we have

$$
\begin{equation*}
N \approx \exp \left[2 C_{2}\left(\frac{C T}{D}-\frac{a^{2}}{12 N_{o}}\right)\right] \tag{33}
\end{equation*}
$$

Substituting for N from (33) in (32) and minimizing the overall expression for P_{e} with respect to a we get the optimal value of a as

$$
\begin{equation*}
a_{o p t}^{2}=\frac{6 N_{o}}{C_{2}} \tag{34}
\end{equation*}
$$

We can substitute the value of $a_{\text {opt }}$ in (32) and simplify it by noting that in the expression for N given by (33), ($a^{2} / 12 N_{0}$) can be neglected w.r.t (CT/D)

Let

$$
\begin{aligned}
v_{\text {opt }} & \Delta \frac{a_{o p t}}{2 \sqrt{N_{o}\left(1+k_{q}\right)}} \frac{\sqrt{N}}{M^{1 / D}} \\
& =\left\{\frac{3}{2} \quad \frac{1}{C_{2}\left(1+k_{q}\right)}\right\}^{1 / 2} \quad \exp \left\{\frac{\left.R_{c}-R\right) T}{D}\right\} \\
& =\left(\frac{3 C_{3}}{2}\right) \quad \exp \left\{\left(\frac{R_{c}}{R}-1\right) \frac{R T}{D}\right\}
\end{aligned}
$$

where

$$
\begin{aligned}
C_{3} & \triangleq \frac{1}{C_{2}\left(1+k_{q}\right)} \\
& =\frac{1+\sqrt{\frac{N_{b}}{N_{6}}}+\frac{1}{2} \frac{N_{b}}{N_{6}}}{1+2 \sqrt{\frac{N_{b}}{N_{0}}}+2 \frac{N_{b}}{N_{0}}}
\end{aligned}
$$

Then $P_{e}(M=\exp (R T), T)$

$$
\begin{align*}
& \triangleq 1-\left\{\operatorname{erf}\left(\mathrm{v}_{\mathrm{opt}}\right)\right\}^{D} \\
& \quad \approx\left[D \exp \left(-\mathrm{v}_{\mathrm{opt}}^{2}\right)\right] N \sqrt{\pi}{v_{\mathrm{opt}}}^{\equiv} \begin{array}{l}
\mathrm{D} \exp \left[-\frac{3}{2} C_{3} \exp \left\{\left(\frac{R_{c}}{R}-1\right) \frac{2 R T}{D}\right\}\right] \\
\frac{3 \pi C_{3}}{2} \exp \left\{\left(\frac{R_{c}}{R}-1\right) \frac{R T}{D}\right\}
\end{array}
\end{align*}
$$

(35) is the basic expression for the probability of error for finite T. Note that for given T, N can be determined from (33) and hence (T / N), the time per iteration is also determined.

2. Noiseless Feedback Channel

Here $\quad \xi(i)=0$ and hence

$$
\begin{aligned}
& \operatorname{Cov}[\xi(i)] \triangleq \sigma_{\xi}^{2} I=0 \\
& \operatorname{Cov}[\widetilde{x}(i)] \triangleq p(i) I=0 \\
& E\left[\{x-\hat{x}(i)\}\{\tilde{x}(i)\}^{T}\right] \Delta r(i) I=0
\end{aligned}
$$

In this case, the recursive formula (13) becomes

$$
\begin{aligned}
\overline{\mathbf{x}}(i+1) & =z(i+1) \quad \text { Since } \theta(i+1)=1 / a \quad \forall i<\infty \\
& =\hat{\mathbf{x}}(i+1)
\end{aligned}
$$

Correspondingly, the weighting factor $\zeta(i)$ in (12) becomes

$$
\zeta(\mathrm{i})=1 / \mathrm{ai}
$$

In other words, (12) becomes

$$
\begin{equation*}
\hat{x}(i+1)=\hat{x}(i)+\frac{1}{a i} y(i) \tag{36}
\end{equation*}
$$

This coding scheme will be referred to as CS-2
This simplified coding scheme is given in figure (5). Note that in this scheme $R_{C}=C$ and that the expression (34) for probability of error (when time T is finite) can be simplified by noting that $C_{3}=1$.

This coding scheme is nothing but an extension of the coding scheme in [6] to D-dimensional signals.
V. ALTERNATE CODING SCHEME FOR NOISY CHANNEL

This coding scheme is very similar to the one considered all along except that the recursive formulae for $\hat{X}(i)$ and $\bar{x}(i)$ are simpler. This coding scheme will be referred to as CS-3.

$$
\begin{align*}
& \hat{x}(i+1)=\hat{x}(i)+\frac{1}{a i} y(i) \tag{37}\\
& \bar{x}(i+1)=\bar{x}(i)+\frac{x-\bar{x}(i)}{i}+\frac{p(i+1) a}{2}\left[z(i+1)-a \bar{x}(i)-\frac{x-\bar{x}(i)}{\sigma_{\tilde{\xi}}}\right] \tag{38}
\end{align*}
$$

where

$$
\begin{equation*}
\mathrm{p}(\mathrm{i}+1)=\frac{\left\{\mathrm{p}(\mathrm{i})+\left(\sigma_{\eta}^{2} / \mathrm{a}_{\mathrm{i}}^{2.2}\right)\right\} \sigma_{\xi}^{2}}{\sigma_{\xi}^{2}+\mathrm{a}^{2} \mathrm{p}(\mathrm{i})+\frac{\sigma_{\eta}^{2}}{\mathrm{i}^{2}}} \tag{39}
\end{equation*}
$$

In this case the critical rate R_{c} is given by the same formula as before. The error covariance $\operatorname{Cov}\left[x-\frac{\hat{x}}{}(i)\right]$ which determines the error probability is given by the relation

FIG. 5 FEEDEACK CODING SCHEME CS-2 WITH NOISELESS FEEDBACK CHANNEL.
$\operatorname{Cov}[x-\hat{x}(i)]=\frac{\sigma_{\eta}^{2}}{\mathrm{a}^{2} i}\left[1+2 \sqrt{\frac{N_{b}}{N_{o}}}+\frac{N_{b}}{N_{o}}\right] I$

The other relevant covariance matrices are given below:

$$
\begin{align*}
& \operatorname{Cov}[\widetilde{x}(\mathrm{i})]=\frac{\sigma_{\eta}^{2}}{\mathrm{a}^{2} \mathrm{i}}\left[\sqrt{\frac{\mathrm{~N}_{\mathrm{b}}}{N_{0}}}+\frac{1}{2} \frac{N_{b}}{N_{o}}\right] I \tag{41}\\
& E\left[(x-\hat{x}(i))(\widetilde{x}(i))^{T}\right]=-\frac{\sigma^{2}}{a^{2}}\left[\sqrt{\frac{N_{b}}{N_{o}}}+\frac{1}{2} \frac{N_{b}}{N_{o}}\right] I \tag{42}\\
& \operatorname{Cov}[x-\hat{x}(i)]=\frac{\sigma_{\eta}^{2}}{a^{2} \cdot i}\left[1+\sqrt{\frac{N_{b}^{-}}{N_{0}}}+\frac{1}{2} \frac{N_{b}}{N_{o}}\right] I \tag{43}
\end{align*}
$$

The derivations of these formulae can be found in Appendix 2. As before, an expression can be found for the probability of error when time T is finite and we can choose the gain a to minimize this probability of error. The expression for the optimal value of the gain, $a_{o p t}$, is given below

$$
a_{o p t}^{2}=6 N_{o} / C_{2}
$$

The probability of error is given by the formula:
where

$$
\begin{align*}
& \mathrm{P}\left(M=\mathrm{e}^{R T}, \mathrm{~T}\right)=\frac{\operatorname{Dexp}\left[-\frac{3}{2} C_{3} \exp \left\{\left(\frac{\mathrm{R}_{\mathrm{c}}}{\mathrm{R}}-1\right) \frac{2 \mathrm{RT}}{\mathrm{D}}\right]\right.}{\sqrt{\frac{3 \pi C_{3}}{2}} \exp \left\{\left(\frac{R_{c}}{\mathrm{R}}-1\right) \frac{\mathrm{RT}}{\mathrm{D}}\right\}} \tag{44}\\
& \mathrm{C}_{3}=\frac{1+\sqrt{\frac{N_{b}}{N_{o}}}+\frac{1}{2} \frac{N_{b}}{N_{o}}}{1+2 \sqrt{\frac{N_{b}}{N_{o}}}+2 \frac{N_{b}}{N_{o}}} \tag{45}
\end{align*}
$$

The details are omitted since they are very similar to the ones used earlier.

The most intriguing feature of this coding scheme is that the probability of error is less thar that for CS-l for Same T and other parameters. This is due to the fact that $\operatorname{Cov}[x-\hat{x}(i)]$ for CS-3 is slightly smaller than the corresponding quantity in CS-1. Even though this is intriguing, it can be easily explained by noting that the maximum likelihood estimate $\hat{\mathbf{x}}$ (i) in CS-1 is computed from a set of dependent measurements $y(1), \ldots, y(i-1)$ and in this case the MLE estimate is not a minimum variance estimate. It is interesting to note that the estimate \hat{x} (i) of x in CS-3 is obtained by minimizing J with respect to u.

$$
J=E\left[\sum_{j=1}^{i-1}\|y(i)-a(u-\hat{x}(j))\|^{2} / y(1), \ldots, y(i-1)\right]
$$

Hence the estimate $\hat{\mathbf{x}}$ (i) in CS-3 can be looked upon as the minimum variance estimate and hence ite variance must be less than that of $\hat{\mathbf{x}}$ (i) in CS-1 which is a MLE.

VI. COMPARISON

The best codes which use only the forward channel are the simplex codes which beháve like the orthogonal codes for large M. For these codes, the probability of error is bounded by (46) [7].

$$
\log _{10} P_{e} \leqslant \log _{10}{ }^{2}-E^{\prime}(R)\left(\frac{R T}{\log _{e} 10}\right)
$$

where

$$
E^{\prime}(R)= \begin{cases}\left(\frac{1}{2} \frac{C}{R}-1\right) & \text { if } 0<R / C \leqslant 1 / 4 \\ \sqrt{\left.\frac{C}{R}-1\right)^{2}} & \text { if } 1 / 4 \leqslant R / C<1\end{cases}
$$

and $R T \triangleq \ln M=$ amount of information to be conveyed over a period of T seconds.

In the coding scheme CS-1

$$
\begin{align*}
\log _{10} P_{e} & \left.=\log _{10} \sqrt{\frac{2}{3 \pi C_{3}}} D\right)-\left(\log _{10} e\right) \frac{3}{2} C_{3} \exp \left\{\left(\frac{R_{c}}{R}-1\right) \frac{2 R T}{D}\right\} \tag{47}\\
& -\left(\log _{10} e\right)\left(\frac{R_{c}}{R}-1\right) \frac{R T}{D}
\end{align*}
$$

where

$$
C_{3}=\frac{-\left(\log _{10} e\right)\left(\frac{R_{c}}{R}-1\right) \frac{R T}{D}}{1+\sqrt{\frac{N_{b}}{N_{o}}}+\frac{1}{2} \frac{N_{b}}{N_{o}}} ⿻ \sqrt{1+2 \sqrt{\frac{N_{b}}{N_{o}}}+2 \frac{N_{b}}{N_{o}}}
$$

In the coding scheme CS-3

$$
\begin{align*}
\log _{10} P_{e} & \left.=\log _{10} \sqrt{\frac{2}{3 \pi C_{3}}} D\right)-\left(\log _{10} e\right)\left(\frac{R_{c}}{R}-1\right) \frac{R T}{D} \\
& -\left(\log _{10} e\right) \frac{3}{2} C_{3} \exp \left\{\left(\frac{R_{c}}{R}-1\right) \frac{2 R T}{D}\right\} \tag{49}
\end{align*}
$$

where

$$
\begin{equation*}
C_{3}=\frac{1+\sqrt{\frac{N_{b}}{N_{o}}}+\frac{1}{2} \frac{N_{b}}{N_{o}}}{1+2 \sqrt{\frac{N_{b}}{N_{o}}}+\frac{N_{b}}{N_{o}}} \tag{50}
\end{equation*}
$$

and

$$
R_{c}=\frac{C}{1+\frac{1}{2} \frac{N_{b}}{N_{o}}+\sqrt{\frac{N_{b}}{N_{o}}}} \quad ; \quad C \triangleq P_{A V} / N_{o}
$$

Inspection of expressions (46)-(50) establishes unambiguously the superiority of the coding schemes CS-1 and CS-3 over the orthogonal codes. In Figure 6, for a fixed R/C and D, the probability of error is plotted on a logarithmic scale versus (RT) in nats for various values of $\left(N_{b} / N_{o}\right)$, the ratio of feedback noise power to forward noise power.

Another way of comparison is to compare the time delay T required to acheive the same probability of error for the different coding schemes.

Let

$$
P_{e}=1 \times 10^{-7}, R / C=0.6, C=1 \mathrm{nat} / \mathrm{sec}, D=1
$$

Let $N_{o}=10$ joules. We can obtzin the corresponding value of $R T$ in nats from the formulae given earlier and hence compute the time delay T for the same probability of errar for the different coding schemes.

$$
\text { Simplex codes: } R T=183.5 \text { nats } ; \quad T=306 \text { seconds }
$$

Coding Schemes CS-1 and CS-3

N_{b}	R_{c}	Scheme $\mathrm{CS}-1$			Scheme $\mathrm{CS}-3$	
$\mathrm{~N}_{0}$	C	RT	$\mathrm{T} \operatorname{secs}$	RT	$\mathrm{T} \operatorname{secs}$	
0.1	0.732	5.825	9.7	5.65	9.42	
0.02	0.87	2.7	4.5	2.64	4.4	
0.0	1.0	1.68	2.79	1.68	2.79	

We will also make a few remarks on the advantages and disadvantages of having a large D, the cimensions of the elementary signals in the feedback coding scheme. it is evident from (47) that for same RT, larger D implies smallex P_{e}. In order to offset this fact, consider the number of iterations N which occur in time T.

$$
\mathrm{N}=\exp \left\{\frac{2 \mathrm{R}_{\mathrm{c}}}{\mathrm{R}} \quad \frac{\mathrm{RT}}{\mathrm{D}}\right\}
$$

For fixed RT, larger D implies smaller N. In other words, the ratio of T / N, the time per iteration or the "pulse width" will increase with D. This clearly is an advantage since this reduces the "cost" of the system in some sense.

FIG. 6: PROBABILITY OF ERROR P_{e} AS A FUNCTION OF THE AMOUNT OF INFORMATION (RT) IN NATS FOR VARIOUS VALUES OF $\left(N_{b} / N_{o}\right)$ USING THE CODING SCHEMES CS-I AND CS-3.

VII, CONCLUSIONS

Feedback coding schemes using a noisy feedback channel and D-dimensional elementary signals have been developed in which to achieve a zero error transmission rate R_{c} nearly equal to the channel capacity C. We have also analyzed their performance when the transmission time T is finite and showed their superiority over traditional methods.

The only drawbacks of the coding schemes are the requirements of infinite bandwidth for the signal and infinite power at the receiver if time T is infinite. But for finite time T both these objections are not applicable. Moreover, in many space communication problems there is no limit on the available power or the receiver. Hence, the only important drawback is the requirement of infinite bandwidth for the signal. Methods of overcoming these disadvantages are presently under consideration.

REFERENCES

[1] C. E. Shannon, "Probability of error for optimal codes in a Gaussian Channel, "Bell Sys. Tech. J. 38 3, 1959, pp. 611-656.
[2] C. E. Shannon, "The Zero Error Capacity of a Noisy Channel," IRE Trans. on Inf. Theory IT-2 3, Sept. 1956, pp. 8-19.
[3] P. E. Green, "Feedback Communication Systems, "Lectures on Communication System Theory Baghdady (ed.) McGraw-Hill, 1961.
[4] A. J. Viterbi "The Effect of Sequential Decision Feedback on Communication Over the Gaussian Channel, " Info. and Control 8, 1 Feb. 1965.
[5] G. L. Turin, "Signal design for sequential detection systems," Int. Tech Memo-M-69, University of Calffornia, Berkeley, May 1964.
[6] J.P. M. Schalkwijk and T. Kailath, "A Coding Scheme for Additive Noise Channels with Feedback." Part I: "No bandwidth constraint," Proc. IEEE Sym. on Inf. Theory, Los Angeles, Jan 31-Feb. 2, 1966. Also: Report No. 10 S . E. L. by the first author with same title. (1965).
[7] J. M. Wozencroft and I. M. Jacobs, "Principles of Communication Engineering ${ }^{n}$ Wiley, 1965.
[8] R. E. Kalman and R. S. Bucy, "New Results in Linear Filtering and Prediction Theory." J"Basic Eng., ASME, 83D (1961), 95-108.

APPENDIX I

The asymptotic expression for the solution of the difference equations (16)-(18) will be given here.

It is not too hard to show that the homogeneous difference equations (16)-(18) have zero as the equilibrium state. Hence, phi), $q(i)$ and $r(i)$ will be expanded in power series in terms of $\frac{1}{i}$

Let

$$
\left\{\begin{array}{l}
q(i)=\frac{\sigma_{\eta}^{2}}{a^{2}} \frac{1}{i}\left(1+k_{q}\right)+0\left(\frac{1}{i}\right) \\
p(i)=\frac{\sigma_{\eta}^{2}}{a^{2}} \frac{1}{i} k_{p}+0\left(\frac{1}{i}\right) \\
r(i)=\frac{\sigma_{\eta}^{2}}{a^{2}} \frac{1}{i} k_{r}+0\left(\frac{1}{i}\right)
\end{array}\right.
$$

\dagger

Let $\sigma_{\xi}^{2} / \sigma_{\eta}^{2} \triangleq N_{b} / N_{o} \triangleq K_{b o}$
From (A-1), one can easily show that

$$
\left\{\begin{array}{l}
a \zeta(i)=\left(1+k_{q}+k_{r}\right) \frac{1}{i}+0\left(\frac{1}{i}\right) \tag{A-2}\\
\theta(i) a=\frac{k_{p}}{\bar{K}_{b o}} \frac{1}{i}+0\left(\frac{1}{i}\right)
\end{array}\right.
$$

Moreover, we will use the following expansion throughout the Appendix.

$$
\frac{1}{i+1}=\frac{1}{i}-\frac{1}{i^{2}}+0\left(\frac{1}{i^{2}}\right)
$$

† By definition, $a_{i} \triangleq 0\left(b_{i}\right)$ if $\operatorname{Lim}_{i \rightarrow \infty} \frac{a_{i}}{b_{i}}=0$

From (16), using (A-1) and (A-2), we get

$$
\begin{aligned}
& \left(1+k_{q}\right)\left(\frac{1}{i}-\frac{1}{i^{2}}\right)=\left[\frac{1}{i}\left(1+k_{q}\right)+\frac{1}{i^{2}}\left\{\left(1+k_{q}+k_{r}\right)^{2}-2\left(1+k_{q}+k_{r}\right)\left(1+k_{q}\right)\right.\right. \\
& \left.\left.-2\left(1+k_{q}+k_{r}\right)\left(1+k_{q}\right)-2 k_{r}\left(1+k_{q}+k r\right)\right\}+0\left(\frac{1}{i} 2\right)\right]
\end{aligned}
$$

Equating the coefficients of $\frac{1}{\mathrm{i}^{2}}$ on either side of the above equation, we get

$$
\begin{equation*}
\left(k_{q}+k_{r}\right)^{2}+\left(k_{q}+2 k r\right)=0 \tag{A-3}
\end{equation*}
$$

Let us consider equation (17).

$$
\begin{gathered}
k_{p}\left(\frac{1}{i}-\frac{1}{i^{2}}\right)=\frac{K_{b o}\left\{\frac{1}{i} k_{p}+\frac{1}{i^{2}}\left(1+k_{q}+k_{r}\right)^{2}\right\}}{\left\{K_{b o}+\frac{1}{i} k_{p}+\frac{1}{i^{2}}\left(1+k_{q}+k_{r}\right)^{2}\right\}}+0\left(\frac{1}{i}\right) \\
=\frac{1}{i} k_{p}+\frac{1}{i^{2}}\left\{\left(1+k_{q}+k_{r}\right)^{2}-\frac{1}{K_{b o}} k_{p}^{2}\right\}+0\left(\frac{1}{i^{2}}\right)
\end{gathered}
$$

Equating the coefficients of $\frac{1}{i^{2}}$ on both sides of the above equation, we get

$$
\begin{equation*}
k_{p}^{2}-K_{b o} k_{p}-\left(1+k_{q}+k_{r}\right)^{2} K_{b o}=0 \tag{A-4}
\end{equation*}
$$

Let us simplify (18)

$$
\begin{aligned}
& k_{r}\left(\frac{1}{i}-\frac{1}{i^{2}}\right)=\left[-\frac{1}{i} k_{r}-\frac{1}{i^{2}}\left\{\left(1+k_{q}+k_{r}\right) k_{r}+\frac{k_{p} k_{r}}{K_{b o}}+\left(1+k_{q}+k_{r}\right) k_{p}+\left(1+k_{q}+k_{r}\right)^{2}\right\}\right. \\
& \left.+0\left(\frac{1}{i}\right)\right]
\end{aligned}
$$

Equating the coefficients of $\left(\frac{1}{i}\right)$ on both sides of the above equation, we get

$$
\begin{equation*}
\left[1+k_{p}+\frac{k_{p} k_{r}}{K_{b o}}+2\left(k_{q}+k_{r}\right)+\left(k_{q}+k_{r}\right)\left(k_{q}+2 k_{r}+k_{p}\right)=0\right] \tag{A-5}
\end{equation*}
$$

We have to solve $(A-3)-(A-5)$ simultaneously for k_{p}, k_{q} and k_{r}. The simplest way is to assume power series solutions for all of them in terms of $\sqrt{\mathrm{K}_{\mathrm{bo}}}$.

Let

$$
\sqrt{K_{b o}}=d
$$

Let

$$
\left\{\begin{array}{l}
k_{p}=g_{1} d+g_{2} d^{2}+0\left(d^{2}\right) \tag{A-6}\\
k_{r}=g_{3} d+g_{1} d^{2}+0\left(d^{2}\right) \\
k_{q}=g_{5} d+g_{6} d^{2}+0\left(d^{2}\right)
\end{array}\right.
$$

Parameters g_{1} through g_{6} have to be determined. Substitute ($A-6$) in $(A-3)$ and equate the coefficients of the two most significant powers of d on either side of equation

$$
\left(\begin{array}{l}
g_{5}+2 g_{3}=0 \tag{A-7}\\
g_{6}+2 g_{4}+\left(g_{5}+g_{3}\right)^{2}=0
\end{array}\right.
$$

Repeating the same process with $(A-4)$ and (A-6) we get

$$
\left(\begin{array}{l}
g_{1}^{2}-1=0 \tag{A-8}\\
2 g_{1} g_{2}-g_{1}-2\left(g_{3}+g_{5}\right)=0
\end{array}\right.
$$

Repeating the same process with $(A-5)$ and $(A-6)$, we get

$$
\left(\begin{array}{l}
g_{1} g_{3}=-1 \tag{A-9}\\
g_{2} g_{3}+g_{1} g_{4}+g_{1}+2\left(g_{3}+g_{5}\right)=0
\end{array}\right.
$$

Solving the equations $(A-7)-(A-9)$ for g_{1}, \ldots, g_{6} we get

$$
\begin{array}{lll}
g_{1}=1 & g_{3}=-1 & g_{5}=2 \\
g_{2}=3 / 2 & g_{4}=-3 / 2 & g_{6}=2
\end{array}
$$

Hence

$$
E\left[\{x-\hat{x}(i)\}\{\widetilde{x}(i)\}^{T}\right]=\frac{\sigma^{2} \eta}{a^{2}} k_{r} I
$$

$$
=-\frac{\sigma_{\eta}^{2}}{a^{2}}\left(\sqrt{\mathrm{~K}_{\mathrm{bo}}}+\frac{3}{2} \mathrm{~K}_{\mathrm{bo}_{0}}\right) \mathrm{I}
$$

Finally

$$
\begin{aligned}
\operatorname{Cov}[\mathrm{x}-\overline{\mathrm{x}}(\mathrm{i})] & \triangleq \operatorname{Cov}[\mathrm{x}-\hat{\mathrm{x}}(\mathrm{i})+\widetilde{\mathrm{x}}(\mathrm{i})] \\
& =\frac{\sigma_{\eta}^{2}}{a^{2}}\left(1+k_{q}+k_{p}+2 k_{r}\right) I \\
& =\frac{\sigma_{\eta}^{2}}{a^{2}}\left(1+\sqrt{\mathrm{K}_{b o}}+\frac{1}{2} K_{b o}\right) I
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Cov}[\tilde{x}(i)] \approx \frac{\sigma_{n}^{2}}{a^{2}} k_{p}=\frac{\sigma_{\eta}^{2}}{a^{2} i}\left(\sqrt{K_{b o}}+\frac{3}{2} K_{b o}\right) I \\
& \operatorname{Cov}[x-\hat{x}(i)] \approx \frac{\sigma_{\eta}^{2}}{a^{2}}\left(1+k_{q}\right) I \\
& =\frac{\sigma^{2} \eta}{a_{i}^{2}}\left(1+2 \sqrt{\mathrm{~K}_{\mathrm{bo}}}+2 \mathrm{~K}_{\mathrm{bo}}\right) I
\end{aligned}
$$

APPENDIX 2

We will establish the covariance formula (40-43) for coding scheme CS-3 by following the methods similar to those in Appendix 1. We will use the expansions (A-1) in Appendix 1.

We know that

$$
\zeta(\mathrm{i})=1 / \mathrm{ai}
$$

We can easily show that

$$
\theta(i) a=\frac{1}{i} \frac{k_{p}}{K_{b o}}+0\left(\frac{1}{i}\right)
$$

From (16) , using (A-1), we get
$\left(1+k_{q}\right)\left(\frac{1}{i}-\frac{1}{i^{2}}\right)=\left[\frac{1}{i}\left(1+k_{q}\right)+\frac{1}{i^{2}}\left\{1-2\left(1+k_{q}\right)-2 k_{r}\right\}+0\left(\frac{1}{i^{2}}\right)\right]$
Equating the coefficients of $\frac{1}{\mathrm{i}^{2}}$ on either side we get

$$
\begin{equation*}
k_{q}+2 k_{r}=0 \tag{A-10}
\end{equation*}
$$

Let us simplify (17) using (A-1)

$$
\begin{aligned}
k_{p}\left(\frac{1}{i}-\frac{1}{i^{2}}\right) & =\frac{K_{b o}\left\{\frac{1}{i} k_{p}+\frac{1}{i^{2}}\right\}}{K_{b o}+\frac{1}{i} k_{p}+\frac{1}{i^{2}}}+\left(\frac{1}{i^{2}}\right) \\
& \approx \frac{1}{i} k_{p}+\frac{1}{i^{2}}\left\{1-\frac{k_{p}^{2}}{K_{b o}}\right\}+0\left(\frac{1}{i^{2}}\right)
\end{aligned}
$$

Equating the coefficients of $\frac{1}{i^{2}}$ on either side, we get

$$
\begin{equation*}
\left\{\mathrm{k}_{\mathrm{p}}^{2}-\mathrm{K}_{\mathrm{bo}} \mathrm{k}_{\mathrm{p}}-\mathrm{K}_{\mathrm{bo}}\right\}=0 \tag{A-11}
\end{equation*}
$$

Let us simplify (18) using (A-1)

$$
k_{r}\left(\frac{1}{i}-\frac{1}{i^{2}}\right)=\left[\frac{1}{i} k_{r}-\frac{1}{i^{2}}\left\{k_{r}+\frac{k_{p} k_{r}}{K_{b o}}+k_{p}+1\right\}+0\left(\frac{1}{i^{2}}\right)\right]
$$

Equating the coefficients of $\left(\frac{1}{i^{2}}\right)$ on both sides of the above equation, we get

$$
\begin{equation*}
\left\{1+\mathrm{k}_{\mathrm{p}}+\frac{\mathrm{k}_{\mathrm{p}} \mathrm{k}_{\mathrm{r}}}{\mathrm{~K}_{\mathrm{bo}}}\right\}=0 \tag{A-12}
\end{equation*}
$$

Comparing ($\mathrm{A}-11$) and (A-12), we get

$$
\begin{equation*}
k_{r}=-k_{p} \tag{A-13}
\end{equation*}
$$

Solving for k_{p} from (A-11) and retaining terms $\sqrt{K_{b o}}$ and $K_{b o}$, we get

$$
\begin{aligned}
& k_{p}=\sqrt{K_{b o}}+\frac{1}{2} K_{b o} \\
& k_{r}=-\sqrt{K_{b o}}-\frac{1}{2} K_{b o} \\
& k_{q}=2 \sqrt{K_{b o}}+K_{b o}
\end{aligned}
$$

These relations in conjunction with (A-1) give the expressions (40)-(42).
In order to prove (43) note that

$$
\begin{aligned}
& \operatorname{Cov}[x-\bar{x}(i)] \triangleq \operatorname{Cov}[x-\hat{x}(i)+\widetilde{x}(i)] \\
& =\{q(i)+p(i)+2 r(i)\} I \\
& =\frac{\sigma^{2} \eta}{a^{2}}\left\{1+k_{q}+k_{p}+2 k_{r}\right\} I \\
& =\frac{\sigma^{2} \eta}{a^{2}}\left\{1+\sqrt{\mathrm{K}_{\mathrm{i}}}{ }^{2}+\frac{1}{2} \mathrm{~K}_{\mathrm{bo}}\right\} \mathrm{I}
\end{aligned}
$$

 Mopert Diotrituthon Lid			
prpartment or pertmer	arch Plene Ofteo	erpartuent of themavy	
		Chief of Naval I eonarien Departenant of the Navy	Mrater Laberiatory of Flastrmate
	Commanding Ganeral		Cambiticee, Mat. 011
Casce of Depuly Director	ron, d.c. 20113		
$\begin{aligned} & \text { Dopertmast of Defonie } \\ & \text { The Fenkgen } \\ & \text { Wahlngen, D, C., } 20301 \end{aligned}$	Commanding Oenerat Commumicatione Command Waphington, D.C. 203 Is	chiaf, Baresu of wospens Pammetan, D.c. 20360	Antorich Coortumbr
Whatiment on D.C. 20301	Watorrown Me Machutate 02172	Now York, Now York 09810°	Columbia Roctation Laberatery Columbra Univaraity Wew Yerk, New York lotal
Dopertmont of Dofonace Wabhingten, D.C. 20301		Commandin Offleor hiq Buun Doirborn utrat Chices g^{a}, tlitnot! 60604	Director Coerdantod feinace Laboritery Uraverally of Illinade Urbins, IMnets brev
 	Commandart .8. Army A1	Gemmandin Oificer Ofice of Navel thentar Tice	Hantord Blectronics Liboraterioe ctandord Uedyertity canjers, Callerna
Offonas Documentition Conter Atta: TIIIA Cameran Abstion, Elde. Alomandela, Virgaia 21314	Commandan Conaral	Commandian Officer 207 Weat 34th street 10011	Drector Ereatronica Ratearal Lebortiegy Cortalay t, Celifornde
Difater National Becurity A gency Ath: Librarian C-J32, Marylam 207s		 	Dirastor tivetronic tetencen Labaratery Univeralty of Southern Califorpila Loa Anitoles, CAlfornite peept
Wes pont Syetome Evaluation Oroup Dan: Col Tintic C. Johncon wasbingtan, D.C. cosos	 U.8. Army Mantions Commana Atth: Technical thformation Brasch	Directer, Naval Researet Laberatory Fechaical information Oincer Wanhington. D.C. Attn: Code 2000	Proforeor A. A. Dougnal, Director Austiot Towas 7812
Natenal Becarity Apency Alth: R4-Jamet Tippel Fozt George G. Meade, Maryland 20755	Pleatinney Araeral Dover, New Jereey 07en: Commanding Officer Harry Diamond Laboratorion	(3)	Harvard Univeraty Cambitict Matachatolle 02131
Costral Ind lligerse Aleaty Watulagin, $B . C$. 다ARTMENT OI TKI ARTOACE	Wanoligten, D.C. 2043 s Commanding OAficos	Commande Novit Air Bovalprand and Johervil Coatar Johnaville, Pennaylvaila 1 In74	 Let Ancoies, Chitrerat 9004 Ant: Lutrity Acqutationt oroup
Araty Hiom iD-64, The Pantice Wamanglen, D.c. 20330°	Commanang Olticer	U.A. Naval Ileft peade Lisbratery En Diogo. Callterate ,9148 Commanding Oficer and Dimeior	Trolonsor Nichoias Goerce. Pascenas, Gallforala
		U.A. Nayal Underwater Bound Labor Jort Trumbul New London, Conneticat obeso	Aaronauden Library GaHfornil Inptitute of Tachnolegy
	Commanding oflicar	Lubrerian U. 3. Navy Port Graduate Behool y, Callfornte	
 Lot Anctiat Air rorco sution Atm:	Aberdeen Proving Ground, Mary Director U.3. Army Inginear Geodeay, Intolligance and Mapping	Canandader U.S. Naval Air Mincila Tept Comet Point Magu, Calliprife	Ahrificary Thi AlND Corporition
ABy AFUPO Let Angeles, Gallfornic 50045	Tort 3avork, Virgima 22060	W.a. Naven Obacrvetery	The Jeans Hoppane Undwernty Ipplicd Canyilca Laberatery fil Georgh Avease
Dat +6, OAP (LOOAR) Ar Force tint Pait Offic Len Angeles, Califorma 90045	Atm: Secertury		Alty
Ey*tum Engintering Group (RTD) Techrical information Refertace Branch Ath: SEPin Directorpin Technieal Ipforginationg Btanderde Wechnical Information Wright-Pattereon ATB, Onio $4 \$ 433$	Trot Lavenomorth, Katact b6z70 	Director, AB.S. Naval Gecurtty Group Atta: G43 Wathington, D.Avenuse Commanding Offlear Naval Ordinane Leboratery White Oak, Meryland (2)	arnegia Inditute of Tachnolay Pithonley Payk 15213 Dr. Lee Yount Hato milo Park, Callornia
 aral (avt) Wright-Patioroon arb, Onio 6343	Commanding Oficer (itico (Durham) All: CRD-AAIPIP (Rithard O. Uleh) Sor ham, North Croiline 27706	Commanding Offleay Coronh, Callornia Commanding Officer	
	Suparintendint Weat Potat, New York Acadomy	Cuins Leke Cultorns	Undver
Office of Restarch Analyaen Atta: Techncti Earary brapch Holloman AfB, New Moxico Ba33	Tha Watter Rood inetrues of Rocorich raba dacticenter	Commanaing Oricer Naval Avionic: Facility Indiena polit Indians Indinne polit, Indiant	Yat-Benolt, Litero Aondrum
	Commanding Cificer U.s. Army Elactronica Tort Huachaca, Arta ona 35163	Commanding Ofitear Orlends Flos Devies Center	5 chool of Faginearity Elionc we Tanmpe, Artatons
RADC (TMLAL-i) Griflea AFB, Now York 13442 Ath: Desumenta Library		Dinisron, virmmat	Univarity of Callornite at Lot Anpoleo Doi Angelen, Comitiornis
	Commanding onicer Whita sand. Mitelle Rango	Patuxtent River, Mistyland Attn: LAbrary Atti: LAbsafy OTHFR GOVEANMENT AGENCIEA	
	Now Moxico Me002	Mr. Charlee F. Yoat Pecial Ausiatent to the Birector	
	suth, Now Jerey ompes	rucen	Carnegla inetitete of Technology Sjectricat Enplatering Dept.
ATITA Tachntcal Library Patrick ATB. Florian 32923	Mractor Insifitid for Exploratazy Restareh U.S. Army Fliectranica Command	Dr. H. Hargison, Code RET Natons Acrophytic! Branch National Aeronantice and tpece Abmindetratien Waehington, D. C. 20546	Phtcoburph, Pa. Univaroity as Misengan Electrical In pinaterima Dop.
	Atta: Mr. Robert O. Parther, Executive Sectetary, ISTAC (AMSEL-XL-D) Fort Monmouth, Now Jereey Orfos	Goddard Space Flime Center Adnd adetrithen and space	Ann Arbof, Michighin New York Uaiveraity College of Englnaering
AFCRL (CRMEXLR) AFCRL Reasareh Library, Stop 29 L. G. Hantecom Field L. G. Hariecom Field Bedford, Mate, 01734	Commanding Gandral U.S. Army Electronice Command Fort wamouth. New Jeremy of703 Attr: Amael-SC		New Yoxh, New York Dyracuse Unveratity Yracuse, New Yort
			Kale Univeralty Engineering Dupartmpnt
AEDC (ARO, Inc. H Arnold AFS. Tenn 37309			Now Hiaven, Cennecticut Aifhorne Inetrumente Laberatery Oerpmet, Now York
European Orfice of Aerobpace Aemanch Shell Building 47Rue Canteratern - 1 1月, Belgium	(ex	U.S. Atomic Eneray Commiention Divieion of Technical information Extenaion P. O. Box 62	Bendix Pactific Diviaion North Hollywood, Caplerna
		Los Alamon Setentific Laboratory Attr: Repork Libraty P. O. Box 1663 Loe Alamon, Nuw Mexico s7544	
departuent of the army	NL-R	NASA Scienticic t Technicel Intormetion	
Arhingon, vitrinise 22204		Aten: Acquisitions Branch (S/AK/DL) P.O. Box ${ }^{33}$, Maryland 20740 College Park. Mar	Adytheon Co. Atin; Libristien Director Microwave Laboratory Stanford Univeraity Stancerd, Califerniz 94305

DOCUMENT CONTROL DATA-R\&D
(Security clasetfication of tille, body of abstract and infoxing annotetion muet be entered when the overall report ia claealifed)
Computation Laboratory Unclassified Division of Engineering and Applied Physics
3. REPORT TITLE

Sequential Coding Schemes for an Additive Noise Channel with a Noisy Feedback Link
4. DESCRIPTIVE NOTES (Type of roport end incluaive datee)

Interim Technical Report
5. AUTHOR(S) (Laet nente, ffret name, timitil)

Kashyap, R. L.

$\begin{aligned} & \text { 6. REPORT DATE } \\ & \quad \text { May, } 1966 \text {-August, } 1966 \\ & \hline \end{aligned}$	$\begin{gathered} \text { 7a. TOTAL NO. OF PAGEB } \\ 32 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { 7b. NO. OFREFS } \\ 8 \\ \hline \end{gathered}$
9. contract orgrant no. Nonr 1866(16) b. project no.	9. ORIGINATOR'S REPORT NUMBER(S)Technical Report No. 508	
d.		

Reproduction in whole or in part is permitted by the U. S. Government. Distribution of this document is unlimited.
11. SUPPLEMENTARY NOTES

Research supported in part by Div. of Eng. and Appl. Phys. Harvard U. 12 SPONSORING MILITARY ACTIVITY
Joint Services Electronic Program Cambridge, Mass.

13. Abstract

A coding scheme for additive Gaussian channel is developed using a noisy feedback link and D-dimensional elementary signals with no bandwidth constraint. This allows error free transmission at a rate $R<R_{c}$ where R_{c} is slightly less than the channel capacity C. When there is no noise in the Feedback channel, the coding scheme reduces to a D-dimensional generalization of the coding scheme of Schalkwijk and Kailath. In addition, the expression for the probability of error is determined when T, the time of Transmission rate is finite. Our scheme is also compared with the best codes which use only the forward channel.

14.	KEY WORDS	LINKA		LINK 8		LINKC	
		MOLE	WT	HOLE	W T	notis	w T
	Gaussian Channel Coding Scheme Feedback Channel Capacity of Channel Information Theory Simplex Codes						

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of De fense activity or other organization (corporate author) issuing the report.
2a. REPORT SECURTY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulationa.
2b. GROUP: Automatic downgrading is specified in DOD Directive 5200. 10 and Armed Forces Indutrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as a uthorized.
2. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified Lf a meaningful title cannot be aelected without classifica. tion, show title classification in all capitais in parenthesis immediately following the title.
3. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e. g., interim, progress, summary, annual, or finat. Give the inclusive dates when a specific reporting period is covered.
4. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal ainthor is an absolute minimum requirement.
5. REPORT DATE Enter the date of the report as day, month, year; or month, year. If more than one date appears on the report, use date of publication.
7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i. e., enter the number of pages containing information
7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.
8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the applicable number
$8 b, 8 c, 88$. PROJECT NUMEER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.
9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.
9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or $b y$ the sponsor), also enter this number(s).
6. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those
imposed by security classification, using standard statement such as:
(1) "Qualified requesters may obtain copies of this report from DDC."
(2) "Foreign announcement and dissemination of this report by DDC is not authorized"
(3) "U. S. Government agencies may obtain copies of this report drectly from DDC. Other qualified DDC users shall request through
4) UU. S. military agencies may obtain coples of this report directly from DDC. Other qualified usere shall request through
(5) "All distribution of this report is controlled Qualified DDC usery shall request through

If the renort has been furnded to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known
11. SUPPLEMENTARY NOTES: Use for additional explana tory notes.
12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.
13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as ($T S$), (S). (C), or (U)

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.
14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rales, and weights is optional.

