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FOREWORD

This is the final report prepared under NASA Contract NAS8-20570,
"Birefringent Devices". This report describes wcrk performed on a
one-year program whose goal was to advance the state of the art of
optical bilrefringent devices. The work described here was performed
in the Quantum Electronic Techniques Department of the Advanced
Technology Laboratory of Sylvania Electronic Systems - Western
Operation in Mountain View, California, during the period 8 March 1966
through 8 March 1967. The project leader was Dr. E. 0. Ammann; another
principal contributor was Mr. J. M. Yarborough. The experimental phases
of the program received expert technical assistance from Mr. E. J. Sleep.

All work on this contract was under the direction of the Astronautics
Laboratory at George C. Marshall Space Flight Center, Huntsville, Alabama.
Dr. J. L. Randall was the technical representative for this program, and
Messrs. C. Wyman and C. Q. Lee were alternate technical representatives.
Their guidance on this program is gratefully acknowledged.
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ABSTRACT

This report summarizes the results of a one-year program whose goal was to
advance the state of the art of optical birefringent devices. Both theory and

experiments were performed and are reported.

Theoretical work was performed in several areas. A generalization of the
original birefringent network synthesis procedure of Harris, Ammann, and Chang [1]
1s given which allows the synthesis of networks having asymmetric trans-
mittances. This new procedure increases the versatility of birefringent
networks considerably at no expense in network complexity. In addition, a
double-pass technique is described which can be used in connection with the
new synthesis procedure. This technique reduces by a factor of two the
number of network components needed to realize most transmittances. Finally,
procedures are given for synthesizing optical amplitude modulators‘ having

less distortion than conventional modulators. ’

Experiments were performed on both single-pass and double-pass naturally
birefringent networks. The results of these experiments provide the first
direct verification of the single- and double-pass birefringent network
synthesis procedures. In addition, distortion measurements were made on one-
and three-stage ampiitude modulators to verify the calculations mentioned

above.
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L. INTRODUCTION
[.‘\_‘\' \\ .{/ (/ :) (9
This report presents the vresulits of a one-year applied Lesearch program omn
optical birefringent devices. The object of this program was to perform theo-
retlcal and experimental studles which would advance the state of the art of

[N

birefringent devices.

In this report, we use the term "birefringent devices" to denote optical
devices consisting of polarizers and birefringent crystals. The birefringence
of the crystals can be either natural or electrically-induced. Networks con-
taining naturally-birefringent crystals will be called naturally-birefringert
networks, while networks containing electro-optic crystals will be called
electro-optic networks. Much of the previous birefringent network theory,
ir addition to the theory developed on this program, is applicable to both

types of network.

A brief resumé of birefringent networks 1s perhaps appropriate here to
put the contributions of the present program into proper perspective. The
first birefraingent devices used in optical systems were the Lyot and Solc
filters. The Lyot filter was discovered in 1933, while the Solc filter
followed some 20 years later. Both these devices are narrow-band filters
capable of very narrow passbands. In fact, the major attraction of bire-
fringent devices is their capability of producing bandwidths the order of

Angstroms or less.

The Lyot and Solc filters are both particular crystal-polarizer configura-
tions giving particular transmission characteristics. Hence the use of
birefringent devices to produce other types of characteristics awaited the
development of a synthesis procedure. This important develcpment occurred
in 1964 when Harris, Ammann, and Chang found two procedures [1,2] for
synthesizing birefringent networks whose transmittance could be arbitrarily
spwcified. These procedures opened the possibility of using birefringeant

networks to realize a variety of devices for optical and laser systems.
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Shortly thereafter, Ammann [3,4] found a method for reducing (by a factor
of two) the number of network components needed to realize a desired trans-
mittance. The technique involved passage of the light through the birefringent
network twice and hence was called a "double-pass' procedure. This discovery
was followed closely by the realization [5] that the techniques which had been
developed for naturally-birefringent networks could also be applied to electro-
optic networks. This opened the way for synthesis of electro-optic shutters,

modulators, and so on.

It was with this background that the present program was begun. The
object of this program was to further extend the theory of birefringent
devices, and in addition, to carry out an experimental program. There were
at least three broad goals for the theoretical portion of the work. First,
it was desired to find still more general or powerful synthesis techniques
in order to increase the versatility and usefulness of birefringent devices.
The synthesis procedure of Section II-A and Appendix A is an example of a
result which succeeds along these lines. Second, we wished to find modifica-
tions of existing procedures or completely new procedures which would result
in simplification of the form of the resulting birefringent networks. The
goal here, of course, is to obtain the simplest possible practical form for
the devices which are obtained. The work of Section II-B and Appendix B
is an example of work which has accomplished this goal. Finally, the third
goal was to apply the synthesis procedures to particular devices of special
importance. The results of Section II-C and Appendix C on the synthesis of
amplitude-modulators are typical of this goal.

The experimental portion of the work was expected to yield much valuable
information, for although substantial progress had occurred in the past few
years in the theory of birefringent devices, experimentation had not kept
pace. Hence much work remained to be done in verifying the recently
developed theory, and for providing.guidance in establishing problem areas
for future study. In addition to verifying the theory, the experimental

program would also yield some useful devices, of course.

This report is organized in the following manner. Section II gives the

theory performed on the program, while Section IIT reports the experimental



results. The conclusions reached and recomvendations for future work are
given in Section IV. The research coniributions resulting from the work
of this program are summarized in Section V, while Section VI lists the
journal publications and papers presented at conferences. References

are listed in Section VII and several appendices are given at the end of

the report.
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II. THEORY OF BIREFRINGENT NETWORKS

In this section, we discuss the theoretical work which was performed during
the program. This work has resultcd in several significant advances in the
iheu-y of opticial birefringent networks. The first of these is a generalization
of the earlier procedure of Harris, et al. [1] which allows the synthesis of
birefringent networks with asymmetric amplitude-transmittances. This has
resulted in an entire new class of birefringent networks with very versatile
characteristics. The second accomplishment is the discovery of double-pass
procudures which are applicable to this new class of network. These two
topics are discussed in greater detail in Parts A and B of this Section, and
in Appendices A and B. A third accomplishment concerns the synthesis of
electro-optic amplitude modulators. Methods were found for synthesizing
amplicude modulators having less distortion than present conventiocnal
modulators. These are fully described in Part C of this Section and in

Appendix C.

In addition to the above problems which were successfully solved, several
additional topics were studied with only limited success. These are mentioned

in Parts D and E of this section.

A. SYNTHESIS OF LOSSLESS NETWORKS CONTAINING EQUAL-LENGTH CRYSTALS AND
COMPENSATORS

Harris, Ammann, and Chang [1] have given a procedure for synthesizing
birefringent networks whose amplitude transmittance could be specified.
The work described here is a generalization of that procedure which provides
still greater flexibility in the synthesis of birefringent networks. We will
not go into the mechanics of the procedure in this section since they are
given in Appendix A. Instead we will describe here what can be accomplished

with the new procedure.

The procedure of Harris, et al. [1] aliows the realization of a bire-

fringent network whose amplitude transmittance C(w) is of the form,

+ C e-iam + Cze—i2aw + ... + Cne-inaw . (2.1)

C(w) = C0 1



The number of terms employed im C(w) 1is finite but arbitrary. The choice
of the term coefficients (the Ci) is also arbitrary as long as each Ci is

real. The form of the network obtained from this synthesis procedure is
shown in Figure 1 of Appendix A. The network consists of a series of
identical cascaded birefringent crystals between and input and output
polarizer. The network may be thought of as composed of several stages,
with each stage consisting of one birefringent crystal. A network contain-
ing n stages 1s required for a C(w) having n+l terms. Once C(w)

has been chosen, the rotation angles (the ¢i) of the crystals and the

output polarizer can be calculated from the synthesis procedure.

The synthesis procedure of this section allows greater freedom in the
choice of C(w) and results in a network whose basic form 1s shown in
Figure 2 of Appendix A. The desired amplitude transmittance C(w) 1is

still written in the form of Equation (2.1), but the C, may now be complex.

i
An n-stage network is again required to realize a C(w) having n+l terms,

but each stage now consists of an optical compensator and birefringent
crystal. The synthesis procedure determines the rotation angle of each
crystal, the retardation introduced by each compensator, and the rotation

angle of the output polarizer.

The flexibility obtained by dealing with complex Ci instead of real
Ci may be explained as follows. If one i1s limited to real Ci’ one is
limited to amplitude transmittances whose real part has even symmetry and

whose imaginary part has odd symmetry. When complex C, can be used, the

i
real and imaginary portions of the transmittance may have any symmetry

whatsoever. Finally, it should be mentioned that this technique can be
used (as can all the previous techniques) on both naturally-birefringent

and electro-optic networks.

A detailed déscription of the synthesis procedure is given along wic.h
an example in Appendix A.



B._ ADDITIONAL TECHNIQUES FOR THE SYNTHESIS OF LOSSLESS DOUBLE-~EASS NETWORKS

It was mentlioned in the introduction that Ammann has found a procedure

[4]) which, under certain circumstances, reduced by a factor of two the

number of network components necessary to give a certain transmittance.

That procedure was applicable to the type of network described in Reference [1],
i.e., when the Ci of Equation (2.1) are real. A logical question arises then
as to whether a double-pass procedure can be found for use with the more

i of (2.1) are
complex. This Section and Appendix B give the successful solution to that

general synthesis procedure of Section II-A, i.e., when the C

question.

Let us briefly review the essence of the double-~pass procedure of
Reference [4]. TFor a certain class of amplitude transmittances C(w) ,
the birefringent network which results from using the synthesis procedure
of Reference [1] has a particular symmetry. Because of this symmetry, the
last half of the birefringent network can be replaced by a mirror which
reflects the light back through the first half of the network. In
Appendix B, it is shown that networks obtained using the synthesis procedure
of Section II-A can be made to have this symmetry. Having done this, the

techniques of Reference [4] can then be used directly.

The details are given in Appendix B which is a copy of the paper

accepted for publication in the Journal of the Optical Society of America.

C. SYNTHESIS OF ELECTRO-OPTIC MODULATORS FOR AMPLITUDE MODULATION OF LIGHT
A technique has been found for synthesizing electro-ovptic amplitude

modulators having arbitrary modulation characteristics. The technique is

an adaptation of the procedure of Appendix A for synthesizing naturally-
birefringent networks. The desired amplitude-transmission vs. applied
voltage function K(v) of the modulator is written as an exponential

series containing a finite number of terms. The resulting modulator consists
of a series of stages between an input and output polarizer, with each stage
consisting of an electro-optic element and optical compensator. The induced
birefringence of the electro-optic medium is assumed to be directly propor-
tional to the applied modulating voltage v . The question of how K(v)

should be chosen was also investigated. Two cases were considered:



—

(a) an amplitude modulator tc be used with an envelope detector, and (b) an
amplitude modulator to be used with a square-law detector. TFor each case,
the ideal K(v) and several methods of approxirating it were found. It
wvas found that the manner in which K(v) is chosen is of great importance.
i) of K(v)

were chosen o directly optimize the modulator property (or properties)

Best results were obtained when the term coefficients (the C

deemed most important. Modulator designs corresponding to several useful

K(v) were tabulated.

The details of this procedure are given in the paper of Appendix C
which will be submitted for publication.

D. SELECTION OF C(w) BY CHOOSING ITS ZEROS

In this section, a discussion is given of the relationship between

the zeros of C(w) and the behavior of C(w) over one period. This work

was undertaken in the hope that it might prove feasible to determine C(w)
by choosing its zeros. (The transmittance C(w) is usually chosen now by
writing a Fourier series approximation to the ideal funciion and truncating
it.) It appears however that only in certain limited circumstances can an
acceptance C(w) be found from selection of its zeros. Nonetheless it is
felt that this technique is sufficiently illuminating to merit a short

discussion here.

The transmittance C{w) is normally written as in Equation (2.1). We

iaw

can consider C(w) to be a polynomial in e . and therefore rewrite (2.1)

as
o

-iaw =-inagw
cn[(co/cn) + (C,/C e +ee e J

C(w)

-iaw) -iaw)

it

. ~iaw ) X
cn( 2y + e )( z, + e eee ( 2z, + e .
wvhere the 2's are the zeros of the polynomial. These zeros are, in general,

complex and can be plotted on the "complex o lau plane" as shown in Figure 2.1.



N d

UNIT CIRCLE o 1 o

Figure 2.1 Typical set of zeros for C(w)



~law

Figure 2.1 has the lmaginary part of e plotted along the y axis
and the real part of e“iaw plotted along the x axis. Let us now consider
what path is traced out on the e~iam plane when ® 18 changed sufficiently

to cover one period of the characteristic.

The quantity e-iaw always has a magnitude of unity and hence must
always lie on the unilt circle. The phase of emiaw is linearly propor-
tional to w . Thus as w 1ncreases, the quantity e—iaw uniformly

traces out the unit circle. If one of the zeros of C(w) lies on the unit
circle, C(w) will be zero when the value of w 1s reached which causes
e~iaw to equal that root. If several zeros lie on the unit circle, then

C(w) will be zero a corresponding number of times.

Thus the number and spacing of the nulls of C(w) can be controlled
by properly choosing its zeros. The difficulty with this procedure is that
even though the nulls of C(w) can be precisely controlled, C(w) will often
have unacceptable behavior between its nulls. Hence unless the nulls of
C(w) are the major properties of interest (as they might be, for example,
in the design of a band-stop filter), this technique will probably not

prove satisfactory.

As an illustration, let us consider a Lyot filter having n = 15. The

amplitude~-transmittance of such a filter is given by

Clw) = %E (1 + e-iam > e-iZaw + e-iSam + emiéaw + e—iSaw + e-i6am
+ e~i7am + e~i8aw + e-i9aw + ewilOaw + ewillaw + e-ilZaw
+ e-113aw + e«il4aw + e—ilSaw).

The zeros of C(w), written in polar form, are 1/22.5°, 1/45°, 1/67.5°, 1/90°,
1/112.5°, 1/135°, 1/157.5°, 1/180°, 1/202.5°, 1/225°, 1/247.5°, 1/270°, 1/292.5°,
1/315°, and 1/337.5°. These zeros are shown in Figure 2.2. We see that all thu

zerort lie on the unit circle and hence C(w) is forced to zero many times during

P =



/
&
!
X

/ “
3
}M e o712
#
N,

UNIT CIRCLE

S \&\“f"’/e/

Figure 2.2 Zeros of C(w) for Lyot filter with n = 15
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each period. In additlon, we see that the zeros are uniformly spaced around
the unit circle except that one is mlesing at the point 2/0°. This
suggests that the filter passband occurs when ® has a value which makes
et = 1 . This is indeed so as seen from Figure 2.3 which is a plot of

the amplitude-transmittance of the Lyot filter.

E. OTHER TOPICS

During this program, work was performed on two other theoretical problems
for which successful solutions were not found. The first of these was the
problem of obtaining a procedure which could be used for synthesizing single-
sideband modulators. None of the birefringent network synthesis procedures
developed to date are appropriate for designing a single-sideband modulator.

It can be shown that all electro-optic devices designed from existing
procedures will have symmetric output spectra, but a single-~sideband modulator
by its very definition has an asymmetric output spectrum (e.g., the first

upper sideband should be absent). Heunce it is necessary to develop a basically

different procedure in order to synthesize single-sideband modulators.

An attempt was made to find a procedure which would produce a network
of the form shown in Figure 2.4. This network is different from previous
network forms in that driving voltages to the various crystals are not
identical. The phases of the driving voltages were allowed to be different
and were to be calculated from the synthesis procedure. In addition, the
rotation angles of the various stages were to be calculated. The network
of Figure 2.4 is capable of producing an asymmetric spectrum as required.
However, the very thing which distinguishes the network of Figure 2.4 from
previous networks also eliminates the possibility of obtaining a synthesis
procedure by generalizing or modifying previous results. For the key
requirement of existing procedures has been identical birefringent crystals
and thik is violated by the network of Figure 2.4. The result is that a

general synthesis procedure is substantially more difficult to formulate
when nun-identical birefringent stages compose the network. The complexity
of the problem has thwarted attempts thus far to find a gynthesis procedure

for the general case.

11
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It 1s proposed that one possible alternate approach to obtaining a
single-sideband modulator synthesis procedure might be to begin with a
more modest problem. For example, instead of allowing the driving voltage
of each stage to have a different phase, the phases might be restricted
to be either 0° or 90°. Perhaps a synthesis procedure could then be
found for this simpler network. This aolution to the simplified problem
might then give insight into how the general problem should be approached.
It appears in any case that the task of devising a synthesis procedure

for single~sideband modulators is a very difficult one.

Another general problem area which was studied during the program
was that of synthesizing lossless birefringent networks composed of
unequal-length crystals. This important problem was approached through
the synthesis procedure of Harris, et al. [1] in the following way. The
general form of the network resulting from that procedure is shown in
Figure 1 of Appendix A. Suppose now that two consecutive crystals are
rotated to the same angle. This would be equivalent to a single crystal
which is twice as long. Hence the problem under consideration may be
restated as, "What must be true about C(w) in order to cause two or more

consecutive crystals to be rotated to the same angle?"

Again this quest has resulted in little success. Studies were made
to detect possible relationships between the Ci which would cause several
crystals to be rotated to the same angle. Some relations were found among
the Ci’ but they were sufficiently complex so as to be of little or no
practical value. In addition, relations were sought among the zeros of C(w),
but again unsuccessfully. Thus no set of restrictions has been found which
is simple enough to be practical. This problem is an important one, however;
its solution would contribute considerably to the practicality of birefringent

networks.

14



IITI. EXPERIMENTAL RESULTS

In this section, the results of the experimental program are given. The
experiments may be conveniently divided into two parts: (a) those performed
on naturally-birefringent networks and (b) those performed on electro-optic
networks. The experimental program had several goals among which were verifi-
cation of the varilous theories, illumination of practical problem areas, and

the realization of actual devices.

A. NATURALLY--BIREFRINGENT NETWORKS

A major goal of these experiments was to verify the synthesis procedures
of References [1] and [4]. The optical network involved consists of a series
of naturally-birefringent crystals between input and output polarizers (see
Figure 1 of Appendix A). Such a network was built and tested in order to
compare actual and predicted performance. The details of the construction

of the network are discussed below.

1., Physical Considerations

a. Crystal material and sizes

Many materials are suitable for use as the "basic building blocks" of a
naturally-birefringent network. One must consider the frequency range of
interest and the desired basic periodicity of the network in order to choose 2n
appropriate material. The material must be transparent to the optical frequoncy
band of interest and should be of good optical quality. Having determined the
material to be used, the lengths of the crystals can then be chosen to give
the periodicity desired for the network's transmittance. A useful graph for
determining the periodicity is given in Figure 7 of Reference [1].

For the present experiments, we elected to use an optical wavelength of
6328 ! (from a He-Ne gas laser), and to use calcite crystals with a length of
2 cm. This gives a periodicity of about 100 GHz. Calcite was chosen
primarily because of its availability, large birefringence, and good optical
quality. The cross section of the crystals was chosen to be 1 cm by 1 cm.

Calcite is a negative crystal, and hence the optic axis is the slow axis.

15



The crystals were cut with the optic axis in the planes of the end faces, as

shown in Figure 3.1.

b. Crystal tolerances and compensators

The synthesis of optical birefringent networks requires the use of
"identical" crystals. This means that each crystal must have exactly the
same retardation. The following calculation points out the difficulty in
making identical crystals.

We shall calculate the number of “retardation waves'" in a calcite
crystal 2 cm long. By retardation waves, we mean the number of optical
wavelengths the slow (S) component of an incident impulse of light is
retarded compared to the fast (F) component. The indices of refraction
of calcite at 6328 & are approximately N, = 1.654 and n, = 1.485. Then
the number of optical waves along the F axis is L/>\e or Lne/AV » while
the number of optical waves along the S axis is L/A0 or Lno/)\v , Where
Av = 6328 8. The difference is then

Lne Lno In - Ln

. _ _ e o _ L(An)
Retardation = x X = X ==
v v v v
(
= ‘2)('16?% = 5300 waves.
(6328 x 10 )

The problems involved in making crystals with exactly the same number of
retardation waves are obvious. Even 1f all crystals were perfectly homo-

geneous, the lengths would have to be the same to within, say, 1/360 of a
2 -
(360) x (5300) ~

retardation wave. This requires a length tolerance of

.01 micron.

The crystals can be made to all have an integral number of waves
retardation (although not necessarily the same integer in each case) by
adding thin "trimmer" plates (compensators) with just enough birefringence
to make the combination of crystal and compensator have an integral number
of waves retardation. Thus, for example, one might have crystal-
compensator combinations with delays of 5280, 5325, and 5336 waves. The

percentage difference in these is small enough that the actual transmittance

16



jb\ F (FAST AX1S - EXTRA-ORDINARY RAY)

[w]

=

\
\

f——
\
)
/

}2

Figure 3.1 Calcite crystals used as basic unit of birefringent network
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of the network will not differ significantly from the ideal transmittance
over the wavelength range of interest. 1In our experiments, quartz crystals

were used for the compensator crystals.

Due to the large number of retardation waves in the calcite crystals,
the retardation varies rapidly as a ray moves off-axis. A change of only
a few degrees in ray direction is sufficient to significantly deteriorate
performance. In order to insure that the light travels down the propagation
axis, there must be no refraction at the surfaces, which means that the end

faces must be very parallel.

Another problem in preparing the crystals is in properly orienting them.
If the optic axis does not lie exactly in the plane of the face, the index
of the extraordinary ray is changed. Again, only slight change is necessary

to deteriorate performance substantially.

The final problem in preparing the crystals is flatness of the faces.
If there is much varilation, again the retardation will change significantly.

All of the above considerations apply also to the quartz compensators,
although the requirements are not quite so stringent in this case. The
only critical item concerning the compensators is parallelism. Again the
faces must be very parallel in order to avoid refraction. Other factors
are not as critical since the compensators have many fewer retardation

waves delay.

For quartz, Ny = 1.542 , Ne = 1.551, Thus, for a 2 mm quartz crystal,

L(An) _ _(.2)(.009) _ 5 vaves.
A 6328 x 100

Retardation =

c. Temperature effects

All of the above discussion assumes a constant temperature, for bire-
fringence in general varies with temperature. 1In calcite crystals as long
as the ones being used, the retardation thus varies substantially with
temperature. Accordingly, all compensators must be matched to ;heir crystal

at a particular temperature.

18



Actually, the retardation of the rompensators also varies with tempera-
ture. However, since the compensators are thin (2 r-1) compared to the
crystals and made of a much less birefringent material (quartz), they do not
vary nearly as rapidly and hence are satisfactory over several waves change
in the calcite. The temperature dependence of the networks is discussed in

more detail later.

In the present experiments, advantage was taken of the temperature-
dependent birefringence to sweep the transmittance of the networks rhrough
several cycles. This method proved to be quite successful, and at the same
time provided valuable data on the temperature behavior of optical networks.
To our knowledge, this technique has not been used previously to measure the

transmittance of birefringent devices.

d. Selection of a reference crystal and matching of crystals and
compensators

From the above discussion, it is clear that all crystal-compensator
combinations must have an integral number of waves delay at some fixed
temperature. This temperature is arbitrary, but certain practical consid-
erations set limits on the range into which it must fall. In order to
make the temperature-control system as simple as possible, it is desirable
to keep the oven above room temperature so that no cooling system is needed.
Room temperature i1s normally 20 to 25°C, so that one would like to pick a
reference temperature at least 10°C above this. The most convenient
choice is to put a calcite crystal into the oven and note the temperature
at which it is an integral number of waves long. Then if all compensators
ref) , the
reference crystal will not need a compensator. Using one crystal (which we
ref Va8 determined to be 36.264°C.

One could, of course, use a righer temperature for the reference temperature

are matched to crystals at this reference temperature (T

shall call crystal #l) as a reference, T

since the crystal's transmittance is periodic, but this temperature was
deemed adequate for the present experiments. Having established this
temperature, compensators were then matched to the remaining crystals
(#2, 3, and 4). A one-cm calcite crystal was also cut and matched with a
compensator for use in the double-pass experiments. This crystal will be
called #5 henceforth.

19



e, Alienment

A very convenient way to aligning the calcite crystals is to use the
characteristic isogyre pattern, which may be observed by placing the crystal
in diverging or converging light between crossed polarizers. When light
propagates at right angles to the optic axis of a uni-axial crystal, as is
the case here, the isogyre pattern is a family of hyperbolae as indicated
in the sketch of Figure 3.2a. A photograph of the observed pattern of one
cf the crystals is shown in Figure 3.2b. Each crystal was carefully aligned
so that the laser beam hit exactly in the middle of tbe pattern. After the
crystals were thus aligned, they were placed in the oven and compensators

were matched to them.

2. Experimental Apparatus

a. Oven

Of central importance to the experiments with naturally birefringent
networks are the oven and temperature control unit (to be discussed below).
It has already been pointed out that an oven is necessary to select a
reference temperature and to match compensators to crystals. Preliminary
calculations suggested that a change in temperature of .01°C would change
the retardation of a crystal by 1°. After investigating commercially
available units, it was decided to build an oven. A photograph of the oven
constructed is shown in Figure 3.3. It was made of aluminum with glass end
wvindows to allow passage of the laser beam. A "V'" block (shown in
Figure 3.5a) was bolted to the bottom to hold the crystal holders (to be
described later). The oven was made long enough to hold five crystals, and
was made watertight so it could be filled with an index matching oil to
reduce reflection losses. The oven was wrapped with a heating coil and
insulated on all sides by 2" of styrofoam. The oven was equipped with

adjustable feet which could be mounted on an optical bench.

b. Temperature control unit

As mentioned above, it was decided to build a temperature controller
rather than buying one. A schematic of the unit built, as well as the
oven, is shown in Figure 3.4. The circuit consists basically of a bridge

20
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Figure 3.2b Typical isogyre pattern for calcite
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circuit and a differential amplifier. The power device is a power transistor.
The unit runs from an un-regulated power supply. This unit turned out to do
an extremely good job of controlling temperature in the oven. It has been
verified by direct measurement that the unit maintains the oven temperature

constant to within .005°C over 24-hour periods.

c. Crystal holdexrs

The crystal holders were constructed as shown in Figures 3.5a and 3.5b.
The calcite crystals were mounted in rectangular aluminum holders which,
in turn, were spring mounted in steel cylinders to allow adjustment of the
crystals. The compensators were placed in brass plugs which were inserted
in the back of the aluminum crystal holders. The circumference of the steel
cylinder was graduated in 1° increments in order to allow precise rotation
of the crystals. The steel cylinders were placed in the cylindrical block
on the bottom of the oven. With this arrangement, it was thus possible to
use the same crystals to synthesize different networks simply by rotating

them to new angles.

d. Thermometer

In order to work within the tight temperature tolerances mentioned above,
it is obviously desirable to be able to measure temperatures very accurately.
To do this, a Hewlett-Packard Model 2801A quartz thermometer was used. This
instrument has two temperature sensors and is capable of reading temperatures
to within .0001°C. The digital temperature output was converted to an analog
signal by a digital-to-analcg converter and used to drive the x axis of an

x~-y recorder.

e, Detector

The detector used in these experiments was an ordinary silicon solar
cell. Since this device is a square-law detector, the square of the
amplitude~transmission characteristic will be detected. The detected signal

was applied to the y axis of the x-y recorder.

f. Experimental setup
The components mentioned above were used to record the transmission

curves of the various networks. For each experiment, the crystals were
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rotated to the prescribed angles, and the oven was heated to about 50°C.
The power to the oven was turned off and the oven allowed to slowly cool.
The oven cooled at a rate of about 0.001°C/sec. Plots of the optical
network's transmittance were obtained by the thermometer driving the x-axis
and the silicon solar cell driving the y-axis of an x~y recorder. These
traces were taken in the temperature range from about 39°C to 33°C, so

that the reference temperature fell about in the middle of the graphs.
3. Data

a. Single-pass experiments

We now give the experimental results obtained for the single-pass
birefringent networks. All single-pass experiments were performed on
three-stage networks (n = 3) consisting of three appropriately rotated
calcite crystals and an input and output polarizer. In each case, a four-
term C(w) was found (using Fourier techniques) which approximated the ideal
characteristic in question. The synthesis procedure of Reference [1] was
then used to calculate the rotation angles (the ei) for the network
stages. The 61 used for the various characteristics are summarized in
Table I. Three different ideal transmittances were used in these experi-
ments. They were the triangular wave of Figure 3.6a, the rectangular wave

of Figure 3.6b, and the square wave of Figure 3.6c.

A photograph and schematic of the experimental setup used for the single-
pass experiments are shown in Figures 3.7a and 3.7b. On each of the following
graphs, the reccrder trace shows the measured value of |C(w)|2 while the

circles show the calculated values of |C(w)|2.

(1) Triangular wave (n = 3)

The first characteristic was a three-crystal approximation to a triangular
wave. Crystals #1, #2, and #3 were used. The ideal function in this case is
the triangular wave sketched in Figure 3.6a. With three crystals we can
achieve a four-term Fourier series approximation to the ideal function. The
trace from the x-y recorder is shown in Figure 3.8, with the theoretical points

denoted by circles. Agreement with theory is very good. Note that the
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Figure 3.6 Ideal transmittances used for the naturally-birefringent network

experiments: (a) triangular wave, (b) rectangular wave,
(¢) square wave.
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Ideal
Characteristic

Triangular Wave
Rectangular Wave

Square Wave

Ideal
Characteristic

SINGLE-~PASS NETWORKS

=]

! )
- 4°35" ~37°45"'
-17°10' -33°31'
-27°27" 49°23"'

DOUBLE-PASS NETWORKS

Triangular Wave
Rectangular Wave
Square Wave
Triangular Wave
Rectangular Wave
Triangular Wave

Rectangular Wave

=]

NN W W W

R
- 4°35" 37°45"
-17°10' 33°31'
-27°27" ~49°23"

1°28° - 4°56'

3°50' -14°04"
0°43" - 1°48"
3°09° 2°44"
Table I

%

-37°45"
-33°31'
49°23"

34°34"
23°04"
5°00'
-14°57"

Rotation Angles Used in Single-Pass and Double-Pass

Birefringent Network Exzperiments
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detected curve 1ig the square of the approximation curve, since a square-law
detector was used. The trace was taken by cooling the oven slowly from
approximately 39°C to 33°C (which took about five hours). The small
irregularities in the trace, as well as succeeding traces, are due to

laser power fluctuations.

(2) Rectangular wave (n = 3)

The second characteristic synthesized was a rectangular wave, whose
ideal characteristic is shown in Figure 3.6b. The actual experimental
trace 1s shown in Figure 3.9, with the theoretical points again super-
imposed as circles. Again three crystals were used, and agreement with

theory found to be very good.

(3) Square wave (n = 3)

The final characteristic chosen to be syn.. zed is sketched in
Figure 3.6c. The experimental curve is shown in Figure 3.10. Again

agreement with theory is very good.

b. Double-pass experiments

We next give the results of experiments performed on double-pass
birefringent networks. Recall that with the double-pass technique [4],
the optical signal passes through the birefringent network twice. As a
result, a given C(w) can be obtained using only half the number of stages
required by the synthesis procedure of Reference [1]. Thus a C(w) with
n = 3 can be realized by a 1 1/2-stage birefringent network (one full-
length calcite crystal and one half-length calcite crystal) while n = 5

can be realized by a 2 1/2-stage network, and so forth.

Double-pass experiments were performed for m = 3, 5, and 7. The
experimental arrangement is shown in the sketch of Figure 3.11 and in the
photograph of Figure 3.12. As seen in those figures, a mirror reflects
the light back through the birefringent network for the second pass, and

a prism deflects the returning beam to the detector.

For these experiments, four-term (n = 3), six-term (n = 5), and eight-

term (n = 7) C(w)'s were found using Fourier techniques which approximated
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the various ideal functions of Figure 3.6. The synthesis procedure of
Reference [1] was then used to calculate the rotation angles (the 61)

for the stages of the corresponding single-pass networks. These single-
pass networks were each symmetric about theilr midpoint. Hence they could
be converted to double-pass networks by replacing the last half of the
network by a mirror, and by replacing the input polarizer by a polarizing
beam splitter. The rotation angles used for the double-pass network

stages are summarized in Table I. The following graphs agaln show measured
and calculated values of |C(w)|2.

(1) Triangular wave (n = 3, 5, and 7)

The double-pass experimental results for the triangular wave character-
istic of Figure 3.6a are shown in Figures 3.13, 3.14, and 3.15. These
figures show the cases of n = 3, n =5, and n = 7, respectively. It can be
seen that the agreement between theory and experimental results is very
good for all cases. It was apparent, however, that greater care must be
taken in aligning the crystals as one goes to larger values of n . Even
so, no particular difficulty was encountered in obtaining any of the three
traces of Figures 3.13, 3.14, and 3.15.

(2) Rectangular wave (n = 3, 5, and 7)

Double-pass experimental results for the rectangular wave character-
istic of Figure 3.6b are shown in Figures 3.16, 3.17, and 3.18 for the cases
of n =3, 5, and 7, respectively. The agreemei:t between experiment and theory
is again seen to be very good for each of the values of n . It is worth
noting that adjacent passbands of these characteristics are separated by
approximately 1 Angstrom. Thus these birefringent networks are actually
band-pass filters having bandwidths of about 1/3 R and a periodicity of about
1 8. One might wonder perhaps why the width of the passband does not decrease
greatly in going fromn = 3 ton =5 ton =7. This happens because we are
approximating the same ideal function of Figure 3.6b in each of these cases.
If we had wished, we could have anproximated successively narrower
"rectangular functions' as we went to larger values of n , and then the

bandwidth could have indeed been reduced. However, our object here was
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simply to compare experimentsl results with theory, rather than to obtain the

narrowest possible pags-band from a given birefringent network.

(3) Square wave (n = 3)

The experimental results for the square-wave characteristic of Figure 3.7c
are given in Figure 3.19 for n = 3. TFor the n = 3 case, theory and experi-
mental results have failed thus far to show good agreement with theory. This
is believed to be due to one of two possible causes: (a) Perhaps this
particular characteristic is particularly susceptible to crystal misalignment,
or (b) the possibility exists that a mistake is present in our calculations
of the angles for the stages of the network. We are presently checking both
possibilities but, due to time limitations, have not yet succeeded in pinpoint-
ing the problem.

4, Discussion of Results

a. Single-pass experiments

As has been pointed out earlier, quantitative agreement of the n = 3
single~pass experiments with theory is virtually exact. Thus the theory
of Reference [1] has been demcnstrated to be sufficient for synthesizing
arbitrary amr-itude-transmission characteristics. Three dissimilar character-
istics wr e synthesized with equally good results. While it is true that none
of these characteristics required the more complicated synthesis procedure of
Appendix A, nevertheless the two types ~f network are essentially the same
in practical form, and hence there is no reason to believe that new diffi-
culties would arise. In addition, the results from the amplitude modulator
experiments to be presented later substantiate the generalized synthesis
procedure of Appendix A since this procedure was used to calculate the rota-

tion angles and retardations.

b. Double-~pass experiments

The data presented in the previous section substantiates the theory of
double-pass networks of Reference [4]. Again agreement with theory is very
good. We belleve the development of this new technique and its demonstration
to be a significant technical advance, and that double-pass techniques
sh +1d be used whenever possibie. The use of more than two passees becomes an
atiractive possiblity which we believe should be investigated further, for
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the advantages of such a system are obvious. The double-pass experiments
for n = 3, 5, and 7 have also demonstrated that greater care in crystal

alignment must be used for increasing values of n , as might be expected.

B. ELECTRO-OPTIC KETWORKS: AMPLITUDE MODULATOR

We now discuss the results of experiments which were performed on
electro-optic networks. The set of experiments carried out had an
object of verifying the amplitude-modulator theory of Appendix C. A
three-stage amplitude modulator was designed (using that theory) and
tested, and the measured distortion compared with the predicted distor-
tion. In addition, a conventional ‘one-stage) modulator was tested and
Its measured and calculated distortion compared. The factors which

influenced the desicn of our amplitude modulator will now be discussed.

1. Physical Considerations

a. Crystal material and size

As in the naturally tirefringert case, many materials are suitable
for use as the basic "building blocis'" of these networks. One must
consider the optical frequency of interest, the optical quality of the

material, the electro-optic coefficients and many others.

In the present experiments, it was decided to use KDP as the electro~
optic material. In order to avoid the problem of natural birefringence of
KDP, the crystals were oriented so that the light propagated along the
optic axis. (An oven would have been required to stabilize the temperature
if the light propagated at right angles to the optic axis, for KDP is
birefringent in that orientation.) Again the crystals were chosen to be
1 cm by 1 cm in cross section, while the length was chosen to be 4 cm.

A sketch of the crystal size and orientation is given in Figure 3.20.

b. Crystal tolerances and compensators

The crystal tolerances ara less severe in this case than for calcite
since the lengths do not have to be kept exactly the same. This is because
the half-wave retardation voltage of KDP is independent of length in the
orientation being used. The parallelism requirement of the end faces is

also less stringent.
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Again it was declded to use quartz compens-“~rs. In thls case, each
compensator was ground and polished to the precise retardation required

by the theory.

c. Temperature effects

Since light propagates along the optic axis of the KDP crystals, the
only effect of a change in temperature is to change the retardation of
the compensators. It has been pointed out previcusly that the retardation
of the quartz compensators changes by about 1° per °C. Thus fluctuations

of a few degrees Centigrade are not harmful.

d. Alignment

The isogyre pattern was again used to align the crystals. In this
case, one sees the characteristic "bull's eye" pattern obtained by shining
diverging or converging light through a crystal between crossed polarizers.
The alignment procedure is indicated schematically in Figure 3.2la, and a
photograph of the observed pattern is gilven in Figure 3.21b. Each crystal
was carefully aligned so the laser beam hit in exactly the middle of the

pattern.

e, Method of applying modulating vol:age to KDP

Large electric fields are required to modulate KDP when the orientation
of Figure 3.20 is used. These large fields may be achieved in either of
two ways. The first is to use a resonant cavity of high Q in which the KDP
is placed, while the second possibility is to apply a large voltage to a
nonresonant circuit. The first method has the advantage of requiring a
lower applied voltage, but suffers from at least one serious disadvantage.
It would be necessary for each resonant circuit of the modulator to be
tuned precisely to the same frequency. If the resonant circuits were not
tuned precisely to the same frequency, the voltage applied to the various
stages would differ in amplitude and phase thereby causing error in the
results. To avoid this problem, we chose to use nonresonant circuits
driven by an amplifier capable of producing a large voltage swing. With
this arrangement, a voltage of about 7500 volts (zero to peak) was necessary

in order to obtain 1007 amplitude modulation.
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2. Experimental Apparatus

a. Crystal holders

The KDP crystal holders were comstructed as in Figures 3.22a and 3.22b.
The KDP crystals were mounted in Rexolite rectangular blocks which were in
turn supported in aluminum cylinders by nylon screws. Copper electrodes
with holes drilled to allow passage of the laser beam were mounted at each
end of the crystal, with one electrode grouned to the cylinder and the
other connected to the high voltage. The compensators were placed in brass

holders which were slipped in behind the rear electrode.

Early experiments showed that the KDP was strained, causing slight
natural birefringence. To cancel this natural birefringence, additional
compensators were used with each stage. These compensators were mounted
in the same brass holders which contain the compensators required by

theory.

b. Plexiglass box

A plexiglass box with an aluminum "V" block at the bottom was
constructed to hold the crystals. This apparatus is shown in Figure 3.23.
A high-voltage bus runs the length of the box, and the crystal elactrodes

are connected to it.

c, High-voltage amplifier

It was found that a high-voltage amplifier with a peak-~to-peak voltage
swing of 15,000 volts was needed to obtain 100% modulation. Such a device
was constructed using a high-voltage beam tetrode tube, with feedback to
reduce distortion. A schematic of the amplifier is shown in Figure 3.24.
The experiments were all run at a modulating frequency of 1000 Hz. The

amplifier was driven by a signal generator.

d. Detector

An RCA 931A phototube was used as a detector.
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e. Experimental setup

The components described above were set up as shown in Figure 3.25.
The crystals were rotated to the angles prescribed by the synthesis
procedure of Appendix C, and a wave analyzer was used to measure the
amplitude of fundamental and harmonics as a function of the drive

voltage.

3. Data

The data obtained from the experiment is shown in Figures 3.26a,
3.26b, and 3.26c, where fundamental, second harmonic, and third harmonic
amplitudes are plotted as a function of normalized modulating voltage.
Solid curves represent theoretical values, with the experimental points
plotted as circies for n = 1 and as squares for n = 3. It will be noted
that the fundamental and third harmonic curves fit rather well for both
n=1and n = 3, while the second harmonic curve is somewhat more
irregular. Particularly conspicuous is the notch in the second harmonic
curve for the three-crystal case. It was found that this notch could
be moved by slightly rotating one of the crystals. Later tests revealed
that one of the crystals was modulating to or’y 85% the depth of the
other two, and it is fcit chat making all crystals modulate equally will

remove the notch.

Also of note is that the n = 1 modulator, while theoretically pro-
ducing no second harmonic modulation, actually had more than the thrce-
crystal modulator. The reason for this has not been determined, but its

presence makes the three-crystal modulator even more valuable,

4. Discussinn of Results

The experimental data presented in the preceding section agree quite
well with the theory of Appendix C. As pointed out earlier, one of the
three crystals used in the modulator differed from the other two by 15%
in electro-optic effect. We are presently modifying the crystal holders
in an attempt to equalize the modulation of the three crystals. It will
not be possible, however, tc give these results in this report. However,
the fact that reasonably good results were obtained in spite of this
problem is very encouraging, for it appears that such modulators are not
overly sensitive to crystal differences.
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Figure 3.26b Measured and calculated amplitude of the second harmonic vs. V/V
for the one- and three-stage modulators of Table II. The calculated
amplitude of the second harmonic for a one-stage modulator is zero.
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We feel that thils experimental data verifies the theory reasonably well.
Thus it indeed appears possible to synthesize improved amplitude modulators
using the techniques of Appendix C.
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IV. CONCLUSIONS AND RECOMMENDATIONS

The goal of this program was to advance the state of the art of optical
birefringent devices. Progress in both theory and experimentation was made
and has been reported. Tre advances in theory have resulted in (1) the
availability of more general and versatile synthesis techniques; (2) a
simplification in the practical form of many birefringent devices; and
(3) some detailed analyses of certain particularly important birefringent

devices.

Experiments were performed which verify much of the theory and, in
addition, demonstrate the practicality of the type of devices under
study. These experiments included tests on three-stage single-pass
birefringent networks and tests on three-, five-, and seven-stage double-
pass networks. The results of these experiments agree very well with

predicted results.

Under the conditions of this program, three devices are to be delivered
to NASA. These devices will be a single-pass birefringent network having
n = 3, a double-pass network (derived from the single-pass network) having

n =7, and a three-stage electro-optic amplitude modulator.

Both the theory and experiments indicate that the birefringent networks
have become sufficiently well understood to consider the design and
realization of particular devices. The device which would probably be of

greatest interest at presen* is a very narrow-band band-pass filter.

Several unsolved theoretical problems remain which are quite important.
First, any techniques which could be found for increasing (or even analyzing)
the angular aperture of birefringent networks would be most welcome. Second,
double~-pass techniques developed on this and previous programs have
substantially simplified the practical form of birefringent networks. Any
techniques which allow still more passes through the network would give
still further simplification. Third, the synthesis of networks composed of

(]



unequal-length crystals is of extreme importance since that would yield
networks composed of fewer, but longer crystals. Still other topilcs come

to mind, but these are probably the most significant.
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V. SUMMARY OF RESEARCH CONTRIBUTIONS ON BIREFRINGENT DEVICES

The maior research achievements of this program on optical birefringent

devices are summarized below:

(1) A generalization of the original birefringent network synthesis
procedure of Harris, et al. [1l] was found which permits the synthesis of
networks having asymmetric transmittances. This new procedure substantially
increases the versatility of birefringent networke at no expense in network
complexity. The new procedure is applicable both to naturally~birefringent
networks and electro-opitic networks, but will probably te most important in

connection with the latter.

{2) A doutle-pass technique was developed which could be used with the
new synthesis procedure mentioned above. The double-pass technique reduces
by a factor of two the number of network components needed to realize a given
asymmetric transmittance. A double-pass network is approximately one-half

the size of the corresponding single-pass network.

(3) Techniques were developed for synthesizing multi-stage amplitude
modulators having less distortiow than conventionzl (single-stage) modulators.
Two cases were considered: (a) the synthesis of modulators to be used with
a linear detector, and (b) the synthesis of modulators to be used with a
square~law detector. Designs for 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8-, 9-, and

10-stage modulators were tabulated.

(4) Single-pass and double-pass experiments were performed on
naturally-birefringent networks using calcite as the birefringent material.
The results of these experiments provide the first experimental confirma-
tion of the synthesls techniques involved. Single-~pass experiments were
performed on networks with n = 3, while double-pass experimznts were

performed on networks with n = 3, 5, and 7.
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{5) Experiluments were performed to verify the calculations on the
synthesis of amplitude modulators. Distortion measurements made on one-
and three-stage amplitude modulators agreed reasonably well with pre-

dicted results.
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Part I of this series reported a procedure for synthesizing birefringent networks having a prescribed
amplitude transmittance, The desired transmittance C(w) waswrittenas C (w) = Co-+ Cre—i00+4-Coe™i204 -+ -+ -
Caemina®, where the C; could be arbitrarily chosen as long as each was real. The synthesis procedure of this
paper is a generalization of the procedure of Part I and allows for the realization of C(w) having complex C;.
The resulting network consists of » stages between an input and output polariz :r, with each stage containing
a birefringent crystal and (achromatic) optical compensator. The form of this network is essentially the same
as the practical form of the network obtained from Part I, and hence the additional versatility is obtained at

no extra cost in network complexity.

InpEx HEADINGS: Polarizaticn; Crystals; Filters; Birefringence,

I. INTRODUCTION

ART I of this series' described a procedure for
synthesizing birefringent networks whose ampli-
tude transmittance cov.id be specified. The purpose of
this paper is to describe a generalization of that pro-
cedure which provides still greater flexibility in the
synthesis of birefringent networks.
The procedure of Part I allows the realization of a
birefringent network whose amplitude transmittance
C(w) is of the form,

C(w) —_ CO_I_Cle—t'am_}_Cze-i?aw_}_ e +C1;3_i"a”. (1)

The number of terms employed in C(w) is finite but
arbitrary. The choice of the coefficients (tke C;) is also
arhitrary as long as each C;is real. The form of the net-
work obtained from the synthesis procedure of Part 1
is shown in TFig. 1. The network consists of a series of
identical cascaded birefringent crystals between an

F1c. 1. Basic configuration of birefringent network (4 stages)
obtained from the synthesis procedure of Part I. IF and S denote
the “fast” and “slow” axes of the birefringent crystals.

* Work supported by the National Acronautics and Space
Administration under Contract NAS8-20570.

18, F. Hars, E. 0. Ammann, and I. C. Chang, J. Opt. Soc.
Am. 54, 1267 (1964).

input and output polarizer. The network may be thought
of a~ .omposed of several stages, with each stage con-
sisting of one birefringent crystal. A network containiuy,
n stages is required for a C(w) having r-+1 terms. Once
C(w) has been chosen, the rotation angles (the ¢;) of the
crystals and the output polarizer can be calculated from
the synthesis procedure.

The synthesis procedure of this paper allows greater
freedom in the choice of C(w) and results in a network
whose basic form is shown in Fig. 2. The desired ampli-
tude transmittance C(w) is still written in the form of
Eq. (1), but the C; may now be complex. An n-stage
network is again required to realize a C(w) having 41
terms, but each stage now consists of an optical
compensator? and a birefringent crystal. The synthesis
procedure determines the rotation angle of each crystal,
the retardation introduced by each compensator, and
the rotation angle of the output polarizer.

The networks of Part I have been termed lossless bi-
refringent networks since there are no energy-dissipating
components between the input and cutput polarizers.
The networks of this paper are lossless in the same sense,
since no internal polarizers are required.

The following sections contain a description of the
synthesis procedure and give an example of its applica-
tion.

II, SYNTHESIS PROCEDURE

A, General

The object of the synthesis procedure is to find the »
birefringent-crystal angles, the retardations of the -1
optical compensators, and the output-polarizer angle
which result in the desired amplitude transmittance
C(w). For a given C(w), 2122 network parameters are
to be determined. This matches the number of quantities
in C(w) which we are free to choose, for we may specify
the real and imaginary parts of the #+-1 coeflicients C;.
The length L of the crystals (all crystals have the same
length) is determined by the periodicity of the desired
amplitude transmittance. :

2 H. G. Jerrard, J. Opt. Soc, Am, 38, 35 (1948).
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The notation, conventions, and approaches used here
follow closely those used in Part I. Hence for brevity it
is assumed that the reader is familiar with that refer-
ence, and much of the information contained therein is
not repeated here. Because of this, an understanding of
Part T is important to the understanding of this paper.

In this paper, optical compensators play an important
role. A compensator is used with each crystal of the
network and with the output polarizer. 5ince compen-
sators were not required (in theory) in Part T and hence
were not discussed, we briefly describe their ope~wtion
and analysis. Optical compensators behave essentially
the same as very short birefringent crystals. A com-
pensator introduces a phase difference of & radians
(where 0<b<2m) between slow-axis (S) and fast-axis
(F) components. It is assumed that this phase difference
is independent of w, an assumption which is approxi-
nmiately valid for most cases of interest. If this assump-
tion is valid, light passing through the compensator
polarized in the & direction is operated upon by e,
while light polarized in the F dircction is operated upon
by unity.

We assume in this paper (as in Part T) that the bire-
fringent crystals and optical compensators of the net-
work are lossless. This means that energy must be con-
served at all points within the network between the
input and output polarizers. Energy conservation
places certain important restrictions on the F; and S;,
and on the C; and D;. These restrictions are derived and
listed in Appendix B.

As in Part I, it is convenient to deal with relative
angles (0,) of the stages instcad of absolute angles (¢.).
By relative angle, we mean the additional angle of rota-
tion measured from the preceding stage. The rclative
angles arc given in terms of the ¢, of Fig. 2 by

01=¢l)
02=¢2_¢11

n= ¢n _'(bn—l,
O0p=dp—dn.

B. Procedure

As mentioned in Part I, a useful approach to the
synthesis problem is to consider the impulse respons?
of the network. Since the inverse Fourier transform of
the amplitude transmittance of a network yields its
impulse response, we obtain, by taking the inverse
Fourier transform of Eq. (1), the impulse response of
the network of Fig. 2:

C () =Cod(t)+Crd(1—a)+Cab(t—2a)+-+ - -
+C.b(t—na). (2)

Thus the impulse response of our network consists of
a series of equally spaced impulses whose areas are given
by the C;. Since the C; are complex, the impulse response
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F16. 2. Basic configuration of birefringent network (4 stages)
obtained from the synthesis procedure of ths paper.

is also complex. The explanation of this apparent pura-
dox and its significance is given in Sec. TIT.

In the synthesis, we begin with the desired Clw) as
given by Eq. (1). This is equivalent to prescribing the
impulse reponse C(f) of the network. We next proceed
from the last component of the network (the output
polarizer) back to the first (the input polarizer), calcu-
lating the impulse trains which exist at all intermediate
points. The areas of the individual impulses of thesc
trains are denoted by the I, and S/ of I'ig. 3, where
the ;7 impulses are polarized along the fast axis of the
preceding (jth) crystal and the 5,7 impulses along the
slow axis. In the course of calculating these impulse
trains, the crystal angles, compensator delays, and
output polarizer angle are determined.

Assume that C(w) and therefore the desired C; of
Egs. (1) and (2) have been chosen. We must next find
the signal D(w) which is polarized perpendicular to
C(w) and therefore is stopped by the output poiarizer.
Since the network is lossless (between the input and
output polarizers), the signal energy entering the first
crystal must equal the sum of the energies in the C(w)
and D(w) outputs. In equation form, this gives?

C@C* (@) +D(w)D*(w)= (1) (3a)

where I is the arca of the impulse which is incident
upon the first crystal. Rewriting this, we have

D(w)D*(w) = (1)~ C(w)C*(w). (3h)
WeUT 1o 2nd 34 ath oureur
POLAR'ZER STAGE  STAGE  STAGE SIAGE POLARIZER
1 2 a-l n ¢
. f ¢ e G A "
"
o 1 2 3 7 n ” )
S S S S Sy
o+l
SCMPENSATOR

216, 3. n-stage network. Iach stage contains a direfringent
crystal and optical compensator.

3 Asterisks are used in this paper to denote the complex conju-
gate of a_quantity,
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FINAL ;
COMPENSATOR (OUTPUT POLARIZER
F { TRANSMISSION AX1S)
N /N
N / 0
AN / p
N/ » S
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// \\\
// AN
/ (OUTPUT POLARIZER
{A) REJECTION AXIS)
nth STAGE
F
F
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\ d
\\ A
\ s Al
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(8) ‘ ith STAGE
i~! th STAGE
S
1
I/v\
I/ 01
P | \  INPUT POLARIZER
== TRANSMISSION AXIS
I —~
// 1st STAGE
ll
C)

1. 4. Angle conventions used in the synthesis procedure:
() final compensator (and output polarizer); (b) ith stage; (c)
input polarizer.

We are now ready to choose a value for I, The left
side of (3b) must be nonnegative for all frequencies;
thus (Zy")® must be chosen greater than, or equal o, the
maximum value of C(w)C*(w). Having chosen Iy, we
can calculate D(w) from D(w)D*(w) using the method
given in Appendix A.

Doing this, we obtain D(w) in the form

D(w)=Dy4-Dy'e s Dyfe=2ao . . 4D, fginan,

where the D, are in general complex. 1t is important
to note, however, that if D(w) is a solution of Eq. (3b),
then e™D(w) is also a solution. Hence w more general
solution for D(w) is

l) (w) = C‘"[Do"‘i“])1'(3—"""’“}“1)2%—‘.2““'*‘ ter
+D"’e-inaw]

. Do+ Dle-faw.*_])w—t'?aw_*_ cea +D"e—s‘naw. (4)

J. M. YARBOROUGH Vol. 56
Although the method of Appendix A gives us the values
of the D/, it does not determine a value for . The quan-
tity 4 must be determined from other considerations
and, as is described shortly, has a value which is fixed
by the manner in which the synthesis is formulated.
Let us now relate the inputs (the /" and 5,*) and
outputs (the C, and D,) of the final compensator, 1t
should be remembered that the F# and S,” are com-
ponents along the fast and slow axes of the preceding
(nth) stage while the C, and D, are components along
the slow and fast axes of the compensator. With the aid

of Fig. 4(a), we find
[Fi":, [cxp(ib,,)-sin&,, —cos®,r C :I )
= 5
S exp(iby) - costyp sino,,:l[c""l)i' ’
where 0, is the relative angle of the final compensator
(and hence also of the output polarizer), and b, is the
compensator delay.

We must next determine the quantities g, 8, and b,.
To do this, we derive and solve three simultancous
equations. The {izst of these equations is obiained by
noting that the first impulse to leave the sih stage must
have a real area. This is equivalent to stating that Fy"
must be real. This condition arises from our convention
of Sec. ITA which states that light passing through a
compensator polarized in the § dircction is operated
upon by ¢~ while light polarized in the F direction is
operated upon by unity. Since the first impulse to leave
the nth stage must have been poluarized along the F
axis of each preceding stage, this impulse will have been
operated upon by unily in each compensator and will
thercfore be real. From Eq. (5) we obtain for Fy»

For=exp(ib,)- (sind,) - Co—e'- (cos0,) - Dy'.

Equating the imaginary parts of the left- and right-hand
sides of this equation, we obtain the first of our three
desired equations,

0=sin0,[ Tm(Co) cosb,+ Re(Cy) sind, ]

—cos@p{ Im(Dy) cosu+Re(Dy') sing], (6a)

where Im and Re denote the imaginary and real parts
of the quantity in question. The remaining two equa-
tions result because the first and last impulses leaving
the nth stage must have been polarized along its fast
and slow axes, respectively. This means that

Fpr=5¢= 0,
which, with (5), gives

exp[i(b,—u)]-tang,=D,'/C, (6b)

exp[—i(bp—u)]: tanb,=Co/Dy'. (6¢)

Taking the complex conjugate of hoth sides of Eq. (6¢),
we obtain

expli(bp—p)]- tanb,= — (Co*/Dy'™*).

and
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Combining this equation with Eq. (6b), we obtain
Co*Cu+-Dy*D,' =0, (7a)

the relation which must be true if Egs. (6b) and (6¢)
are to be satisfied simultaneously. Noting that
D/ =e¢D;, we can rewrite (7a) as

Co*Cn+-Do*Dy=0. (7b)

But Eq. (7b) is automatically satisfied from conserva-
tion of energy since it is identical to Eq. (B9) of Ap-
pendix B.

Since the C; and D; are complex, we can rewrite
(6b) in the form

exp[(bp—u)]-tand,= | D,'/C.|exp(iay),  (8)

where in (8) we have expressed (D,’/C,) as a magnitude
and phase angle. It is apparent from (8) that the rota-
tion angle 6, of the polarizer and compensator should be

and
p==bp—ap. (11)

Having determined ay, b, and u, we can substitute
these values into (5) to obtain #,;" and S,*, the outputs
along the fast and slow axes of the nth stage. We must
next find the rotation angles and compensator delays
of the n stages of the network.

To do this, we write expressions relating the input
and output of each stage. With the help of Figs. 4(b)
and 4(c), we obtain

First Stage

[Fol] [ —sindy :l[:[ 0:] (12 )
= y a
Sy exp(—1by) - cosby ’

Second Stage

chosen to be e cosfz 0
. tandp= | D,'/Ca]. O |FE_ 0 ~—sind, Iy, (12b)
. . S;z exp(—ibz) . Sinoz 0 S3!
By fufther manipulations of Eqs. (62), (6b), and (6¢c), | g2 0 exp(— iby) - cost
we obtain
tanb,= —Im/Cop)/Re(Co) (10) Third Stage
F¢ cosfy 0 0 0
F$# 0 cosf; —sinf; 0 Iy
F3| 0 0 0 —sinf; Fy (120)
S| = | exp(—ibs)-sind, 0 0 0 WK ¢
S 0 exp(—1bs)-sinf; exp(—1ibs)- cosbs 0 Sa
Saa 0 0 exp(- lb3) . COSBa
and in general,
jth Stage
(FdY [ €058y 0 0 0 0 0 ) .
Fy 0 cosfy 0 0 0 0 Iyt
Fi 0 0 costy 0 0 0 Iyt
1o ¥ i it E Fyi™
Fyy 0 0 0 —sinfy 0 0 i
Fprdf 0 0 0 0 —sing; 0 Fygi™
Fyd _ 0 0 0 0 0 —sing; Fj 4™ (12q)
Sy | = | exp(—ib;)-sing; 0 0 0 0 0 Sy |- U
Si 0 exr#—iby) -sing 0 s 0 0 0 Syt
Saf 0 0 exp(—1b;) -sing; .- - 0 0 0 Syt
Sicd 0 0 0 v+ exp(=ily) -cost; 0 0 §y.4f™
S,'._li 0 0 [ e 0 CXP(""‘ibj) ~cosly 0 LS,’..H'_l‘
L Sif L 0 9 0 0 exp(—iby) -cosdy)

Putting j=# in (12d), we have the input and output
relations for the nth stage. We know the output (the
F and S;") and wish to find 6,, bs, and the input. As
discussed in detail in Part J, an input exists which
produces our given output provided that

(‘xp('ibn) . tanen = "'Fn-l"/Sn" = I Fu—l”/sunl

Xeipitas) (13a)
and
For*F o ("85S, =C. (13b)

Note that e, includes the effect of the minus sign
which precedes Fpy"/Sn"

We can satisfy Eq. (13a) by properly choosing ba
and 8., while (13b) is automatically satisfied by con-
servation of energy. Knowing b, and 6,, we can then
calculate the input to the nth stage from (12d). This,
of course, is also the output from the - -1 stage; hence
we can repeat the procedure just described to determine
bay and On-1. In this fashion, we can work our way
back through the entire network until all rotation angles

——
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and compensator delays have been determined. The
general equations for the jth stage are

exp(iby) - tanb= — F;.¥/Sj’= | Fy_19/ S|
Xexp(ia;), (14a)

and

Fy*Fy.4-81*8 =0, (14b)
which gives
bjﬂ 23} (153.)
and
tang;= le_lj/Sjj; . (15b)

As seen from Appendix B, Eq. (14b) is always auto-
matically satisfied by conservation of energy.

Note that if «,=0, a compensator is not required (in
theory) for that particular stage. Furthermore it is
possible to eliminate the compensator from a stage
which has ej=. This is because when aj=, an alter-
nale solution to Eq. (14a) is

bj= 0, (15c)
and
tanf;= — | F;_,9/S,/|. (15d)

Hence whenever aj=1r, Egs. (15¢) and (15d), rather than
(15a) and (15b), should be used to determine b; and 6;.

We now have sufficient information to synthesize a
birefringent network. The procedure to be followed is
summarized below.

C. Sumimary of Synthesis Procedure

(1) Chooee the desired amplitude transmittance
C(w) ang write it in the form of Eq. (1). The C; may be
complex.

(2) The required length L for all crystals is given
by L=ac/Ay, where ¢ is the velocity of light iu a vac-
uum and Ay is the diff2rence between the extraordinary
and ordinary indices of refraction of the crystal. The
quantity @ is determined by comparing C(w) as written
in step (1) to C(w) as given by Eq. (1).

(3) Choose a (real) value for I®. The choice is
arbitrary as long as (/¢")? is greater than or equal to the
maximum magnitude of C(w)C*(w).

(4) Calculate D(w)D*(w) from Eq. (3b). Use ihe
method of Appendix A tosolve for D(w) from D (w)* (w).
This gives the Dy’ of Eq. (4), but does not determine g.
Several different D(w) result, and each of these, when
used with C(w) results in an acceptable network. The
D of these D (w) are, in general, complex. ‘Che remaining
steps should be carried out for each D(w).

(8) Calculate the rotation angle 6, of the output
polarizer and final compensator from Eq. (9), the phase
delay b, of the final compensator from Eq. (10), and
from Eq. (11).

(6) Calculate the F;» and 8;* from Eq. (5).

(7) Using Eq. (15b), calculate the rotation angle 0,
of the last stage. The compensator delay &, for that
stage should be computed from (15a), Using Eqgs. (C1)
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and (C2), ~alculate the input to the last stage (which
is the output from the preceding stage).

(8) Repeat the procedure of step (7) on each suc-
ceeding stage until the rotation angle and compensator
delay of each stage have been determined. If aj= for a
particular stage, Egs. (15c) and (15d) rather than (15a)
and (15b) should be used to calculate 4; and 9;.

1II. DISCUSSION

We now consider the implications of being able to
choose C; which are complex. In Part I, we were limited
to amplitude transmittances having all C; real. This
meant that we weve limited to C(w)’s whose real parts
were even and whnse imaginary parts were odd. These
restrictions have now been removed; the real and
imaginary portions of C(w) can now be asymmetrical.

An objection might be raised that since the C; are
complex, our network has an impulse response, given
by Eq. (2), which is complex; but it is well known that
the impulse response of a physical retwork must be real.
This dilemma arises because our theory requires the
use of achromatic optical compensators in the network.
The theory assumes that these compensators introduce
a delay which is independent of w. Such a delay is not
realizable in practice. Compensators can approximate
this behavior over a limited frequency range however.
Hence the response of the synthesized network closely
approximates C(w) over the frequency range for which
the compensators may be considered achromatic.
Outside of this frequency range, the transmittance
departs from C(w). Since birefringent networks are
ordinarily designed for use over a limited frequency
range, this is an acceptable situation.

Thus we see that C(w) accurately describes the net-
wovk’s transmittance over only a limited spectral
range. But when we take the inverse Fourier transform
of (1) to obtain the impulse response given by (2), we
are (incorrectly) assuming that Eq. (1) is valid for all
possible values of w. Hence it is not surprising that the
result is a complex impulse response for the network.
Even though (2) does not accurately give the network
impulse response, the time-domain approach is very
useful for visualizing and understanding the synthesis
procedure.

Part II of this series* described a second synthesis
procedure which achicved the same goal as the pro-
cedure of Part I, but via a different form of birefringent
network. Moreover, the yprocedure of Part II can bhe
used when complex C; ave present in C(w). The network
which results, however, contains internal polarizers and
hence is not a “lossless” network. For that reason, the
network of this paper is preferable to that of Part II for
most applications.

‘The network resulting from the synthesis p- - adure
of this paper contains an optical compensator . to

‘K. O. Ammann and I. C. Chang, J. Opt. Soc. Am. 55, 835
(1965).




December 1966 NETWORKS CONTAINING

the output polarizer, In practice, it is often possible to
remove this optical compensator. Suppose for example
that we have synthesized a retwork which has a desired
C (w). If we now remove the final compensater from that
network, the new transmittance is exp (ib,) - C(w). Thus
tie new transmittance differs from the desired transmit-
tance by only a constant phase factor. Often the intro-
duction of this phase factor is of no consequence, and
hence the final compensator can he removed. Further-
more, we note from Eq. (10) that if Co is chosen to be
real, b,=0 and the need for the final compensator is
automatically eliminated.

Finally, we note that (as seen in Figs. 1 and 2) the
network of this paper contains a greater number of
components than the network of Part I. It should be
emphasized, however, that Figs. 1 and 2 show the net-
works predicted by theory. In practice, the network of
Part I requires the use of an opticai compensator with
each crystal of the network to compensate for slightly
incorrect crystal lengths. Thus the practical forms of
the networks of this paper and of Part I are identical;
the additional flexibility is obtained at no expense in
actual network complexity. In this paper, each optical
compensator serves the dual functions of (a) introducing
the delay required by theory, and (b) compensating
for incorrect crystal length.

IV. EXAMPLE

A sample calculation is performed to illustzais the
synthesis prozedvre of 3zc. II. Suppose we wish to
approximate the real transfer function G(w) shown in
Fig. 5. Since G(w) is neither even nor odd, complex
coefficients are required in the approximating exponen-
tial serics. For this example we use a seven-term complex
Fourier series.

EQUAL-LENGTI" CRYSTAILS 1751
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Frc. 5. Ideal and approximating amplitude transmittances of
example. Ideal transmittance is shown by dotted fine and ap-
proximating transmittance by solid line.

The Fourier-series approximation to the ideal transfer
G(w) is given by
K(w)=(1/7%[(4/9—142/9)¢!%09— gi2ax
+ (4+2.2)t2"“"’+7l'"'/4+ (4__1:2)9——1'0“,__.8-—1'2«(»
+(4/9+i2/9)e=i¢],  (16)
which 3 plotted in Fig. 5. Following the method of
Part I, we convert this noncausal approximating furc-
tion to a causal function by wultiplying by e,
which gives
Clw)=e"0K (w)= (1/x%)[(4/9~i2/9) ¢ Tov
+ (d+12)e= 2004 (72/4) e i%0w | (4= 12)e 40w
g itaof (4/9-412/9)¢—%0as ], (17)
Multiplication by e~%% s equivaient to introducing a
pure time delay in the time domain, and thus the im-
pulse response and transfer function are essentially
unchanged. Since the series -ontains seven terms, the
synthesized network contains six stages.
We now calculate D(w). From Eq. (3b) we have

| D(w) 2= D) D*(w) = ()2 C () 5* (w) = (I £)*— 044257~ (0.11139+-40.14695 )¢t~ (0.11139— 0.14695)¢ (o
— (0.09990--40.12775)¢ 09— (0.09990-~40.12775)e~29~ (—0.05961— i0.05232)¢ e
— (—0.039614-0.05232)¢~00— 0,05580¢ 99— 0,05 58994 (~0.00913-10.00456) 5
— (=0.00913~ §0.00456)¢—{550— (0,001 52~ 0.00203)¢!%~ (0.00152-+30.00203)¢~ 00+, (18)

The area I of the input impulse must now be chosen in order to obtain | {w)|* It may have any real value as
long as (Z¢)? is larger than the maximum value of C(w)C*(w). The maximum of C(w)C*(w) has been calculated

to be 1.035. Thus let us choose 7= 1.050, which gives
the substitution x= =,

(I¢")%=1.1025. Equation (18) then hecomes, after making

| D(w) 2=~ (0.00152-10.00203)2°— (—0.00913—0.00456)45— 0.05589x4-~ (— 0.05961-}-10.05232)*

— (0.09990—10.12775)a%- (0.11139~40.

14695)x-+0.65993~ (0.11139--10.14695)x

~ (0.09990--70.12773)a2-~ (— 0.05961~10.05232) x5 0.05589x~¢

——

which is in the form of Eq. (A2). Following the proced
2= 0.06608—10.27538,

xp== —0.09690~10.27436.
¢y —0.67656—10.06373,

(~0.00913+10.00456)>~5— (0.00152~10.00203)x5,  (i9)
ure of Appendix A, we find the roots of (19) to he

(1/21)*=0.82394—13.43353,
(1/x2)*= — 1.14455—3.24064,
(1/3)*= — 1.46526—10.13704,

e

%4=0.17633-+10.17387,
x5==0.57518410.17898,
wa=0.5938711.30936,

(1/x4)*=2.87546-12.83537,
(1/x5)*=1.58510+-10.49323,
(1/46)*=0.28729--10.63342.
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There are 128 (27+1) possible sets of D; which can be obtained from these root« However, sixty-four of these sets
are simply negatives of the other sixty-four. We consider only the set that is formed by constructing the polynomial

(x— 1) (x— x2) (8 x3) (x— 1) (2~ 25) (2~ x6).
Performing the indicated multiplication, we obtain

2%4-(—0.63801—11.04187)x%4- (0.02599— 70.29300) s+ (0.06553+10.44610)x?
+ (—0.23903—10.05436) x>+ (0.04871—70.00793)x-+ (—0.00721+140.00961).  (20)

As stated in Eqs. (A9), a set of Dy is proportional to the coefficients of this polynomial. Evaluating |¢| using
(A10), we £nd that

|g] =0.45943,
and so

Dy'=—10.00331+10.00441, D;'=0.03011-:0.20496. D¢'=—0.29312—10.48203,
D\'=0.02238—10.00364, Dy=0.01194—:0.13461, Dg'=0.45943.
Dy'=—0.10982—1i0.02493,

I'rom Egs. (9), (10), and (11) we may now calculate 6,, b,, and u. The results are
0,=83°45, b,=0.46365 rad, u=—35.35589 rad.
Using Egs. (A9), we find that

Dy=e*Dy' = —0.00552410, D;=e*D3’'=—0.14590+-10.14706, Dg=e*Dy'=0.20976—10.52372,
Dy=¢#Dy'=0.01634-4470.01572,  Dy=e*Dy'=0.11485—10.07122, Dg=¢#Dg'=0.275664-i0.36755,
D= eirDy' = —0.04593—10.10282, '

and hence D(w) is completely known. Equation (5) is now used to calculate the F;® and S, giving

Feb 0.05065+-70.00000 S8 0.00637--10.01069
Fid - 0.09187—1’0.04675] Sqt —0.01604—10.06272
Ff| | 0.27526-4-40.37154 S3%| _ | —0.12067+40.15836
F#1 7| 0.23817410.09512}° S8t | 0.16353—140.07079 1"
F 0.43791+-10.00776 A 0.19863—10.52554
It —0.11293+1:0.01201 S8 0.277314-10.36975

As a check, we should note that Fo® must be real and summarized results of the synthesis are
that 7¢® and So® must be zero. As a further check, we

cap -rify that Eq. (14b) is satisfied. (6,) [6°15] (&) (2.10838)
V. . now able to calculate 65 and b, the relative G2 |13°48' ba|  [2.96994
angle of the last stage and the optical compensator 85| |36°45 bs| 0.74123 .
delay. Using (15b), we find 0s|=[43°00"|, |bs|=]0.74123} radians.
9 36° 45 bs 2.96994
0g=13° 48’ 0s 13°48' be 5.24997
and from (15a), 0, 183°45) |&p) [0.46365)

bs=15.24997 rad.
° 7ra The Jones calculus® can be used to verify that these

‘The input impulses to the sixth stage are now calcu- 20gles and compensator delays give the desired transfer

lated from Eqs. (C3) and (C4). Equations (15b) and function of Eq. (17).
(15a) are then applied again, yielding .
ACKNOWLEDGMENTS
65=36° 45’ The authors are grateful to S. Barnard for assistance
in performing the calculations of Sec. IV, and to
by=0.11153 rad. Professor S. E. Harris for a careful reading of the
manuscript. :

and

By alternately applying Egs. (C3) and (C4) and Eqs. —__~
(15a) and (15b), we obtain the remaining 6, and b;. The 5R. C. Jones, J. Opt. Soc. Am, 31, 488 (1941).
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APPENDIX A

We describe in this appendix a method for calculating
D(w) from | D(w) |2 The method is similar to that given
in Appendix A of Part I, but differs in its details. The
differences are necessary because (a) we now begin
with a C(w) containing complex C;, and (b) complex
values of D; can now be tolerated in D(w).

We begin with the positive semidefinite polynomial

| D(w)|*=D(w)D*(w)= (Is")*— C(w)C*(w),
=A”einaw+‘4 n__161'(n—1) aw+ e +A lefaw+A 0
+A l*e—i'aw_l,_ . +A ,l_l*e—i(n—l)aw

+ A ¥einaw, (A1)

Letting x=¢""% and reversing the order of the terms,
Eq. (A1) becomes

| D(x) I2=An*9-‘"+/1 LS TRRRE B Phra o9 B
+A lx_l'i" e +A n—lx_("_n'i'A 2" (A2)
Assume that #; is a root of Eq. (A2). Then
Ao+ A g*o 4 At Aot A -
+A n-—lxl_(n_l)'l"A 2% P=0. (AS)

If we now take the complex conjugate of Eq. (A3), we
obtain

A4, ('1'1*) A, (xl*) s oK
+AwFA* A (@*)

F At (@)D A4,*(@F) =0 (Ad)
Equation (A4) can be rewritten as
An(/2*) A pa (/)04
+A4:(1/2*) A+ A (1 2%) -
+ A F (/014 4,4 (1/2%)"=0.  (AS5)

But we now see that (A3) and (AS) have identical
coefficients, with x; being the variable in Eq. (A3) and
(1/x:*) the variable in (AS). Thus if #, is a root of (A2),
then (1/x,*) is also a root. One of these two roots is
associated with D(x) and the other with D*(x). Hence
we associate half of the roots of Eq. (A2) with D(x)
and half with D*(x). D(x) [and hence D(w)] can then
be constructed (to within a multiplicative phase factor)
from a knowledge of its roots.

To summariz=, begin with |D(w)|? written in the
form of Eq. (A1). The 4, are in general complex. Form
the equation

ApFarA,_*av 14+ A ¥+ A4 Wl
+ A V4 A m=0.  (A6)
Solve for the 2u roots of this equation. These roots
always exist in pairs of the form
%1 1/ xl*:
%, 1/20%
X3y 1/ fc&*v

wny 1/22".

(A7)
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Construct all possible equations using one root from
each row of (A7). One possibie grouping, for example, is

(=) (5—29) (x—1/25%) -+ - (@=-1/4")

= x"_{"dn-—lx”_l‘*“ s +(l2x”'+d1x+dg. (AS)

Each different grouping of roots results in a different
D(w).

The D; are proportional to the d;, where g, the con-
stant of proportionality, is in general complex. Writing
¢ in the form g=g|e*, we obtain

Do=|q|e*dy=eDy,
D,=|q|edy=e*Dy,
D.=|gleida=c*Dy'= [g|e™, (A9)
where

D{=|qld..

The necessity of allowing g to be complex car: be seen
by noting that if D(w) is a solution of Eq. (3b), then
e*sD(w) is also a solution,

The quantity |g| is calculated from

| q | 2[dodo*+d1d1*+ cee dvx—ldn—1*+ 1] =A,.

In order to calculate the phase angle u, however, ~ddi-
tional infcrmation must be provided. The necessary
information is obtained from the restriction that Fo"
must be real, a condition which results from our
formulation of the synthesis procedure. With this re-
striction, x is uniquely determined (see Sec. IIb) and
D(w) can be obtained.

Thus the method of this appendix allows us to find
D(w) to within a multiplicative phase factor e**. We
obtain values for the D/, where

D(w)=e"*[Dy+Dy/e-i%+Dyle—20 4. ..
+D,_y gt Dawt D fg-inaaT],
= Do Dy~ Doe—1200 4=« « «
-Dyge—inDavf P, e=inau,

(A10)

(A11)

APPENDIX B

In this appendix, the restrictions placed upon the
F;and S; (and upon the C;and D,) because of conserva-
tion of energy are derived. Consider the ith stage of
the network of Fig. 2. Since the network is lossless, the
energy in the fast-axis output plus the energy in the
slow-axis output of the 7th stage must equal the energy
incident upon the first stage. Stated mathematically,
this gives

Fi@)F™ ()45 (@)S™ (@) = ()

If we write out Eq. (B1) and equate the coefficients of
corresponding tetms, we obtain the equations

Fo*Foi+Fy*Fyt o o o+ F o™ F e+ S1™8¢
+82™ 82 - - -+ 88 = (I¢)?,

(B1)

(B2)
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Fo*F 4 Fy#Fyi -« < - - Fg™F i '+ 5175y

+852%S5* -+ - +85:18#=0, (B3)

Fo#*Foi-Fi#*Fyit o o+ Fo g™ Fi 151753
S - +SiiS3=0, (B4)
Fo*F. 'S 1"'*5 #=0. (BS)

C(w) and D(w) must also satisfy conservation of
energy, giving the following restrictions on the C;and D;.

C'o*(:o'i—Cl*Cl_}' et +Cn*Cn+DO*DO+D1*D1+ e

+Da*Da= (1" (B6)

Co*C A-Cr*Cot-+ - - +Crt*Cot-Do*Dy+-Di*Dyt- - -
+D11—1*Dn = 0) (B7)

Co*Cot+Cr*Cat-+ -+ +Cr2*Cat-Do*Dod-Di* Dyt - - -
+Dn—2*Dn=03 (BS)
Co*Ct-Dy*D,=0. (B9)

APPENDIX C

This appendix gives a systematic and rapid method
of calculating the inpnt to a stage, once the output is
known. This is simply a formalized procedure of solving
for the Fi~! and 57! of (12d) once the F/ and 57 are

E. 0. AMMANN AND J.
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known. The expressions are similar to those of Appendix
C of Part I but differ somewhat due to the complex
quantities involved.

We begin by d<fining F;_,’ and .S/ in polar form:

Fy = IF,;.;J'Iexp(if,-_lf) (C1)
Sii=| S| exp(is;’). (C2)

Using these definitions, we find the expressions for
the F~! and S in matrix form

[ Fo/=1 1 ( Fo? S
Fy— exp(—1s;%) Fo oSy S;
I S71 : [--F,-_lf]'
LRy LF; S (C3)
(S ( Fo St
Syt exp(ib;)-exp(is;) | Fyy  So|rF-
RIS [ S ]
LS, 1) oy S (C4)

As before, the calculated values F; 7! and So!
should always be zero.
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I. INTRODUCTION

In Part IV of this seriesl, it was shown that a certa.n class of amplitude
transmittances can be realized by birefringent networks containing only half as
many crystals as normally required. The technique involved was called a
double-pass synthesis procedure since the light makes two passes tnrougn the
network. The purpose of this paper is to give additional double-pass procedurcs
which are applicable, when the number of network stages is odd, to a still

broader class of amplitude transmittances.

We will make use of results obtained in several previous papers of this series.
Although some of this material is reviewed, familiarity with these papers is desirable.
It is particularly important that the reader be acquainted with the techniques and
results of Part IVl, and to a lesser degree, with the contents of Parts I2 and V3.

The double-pass procedures described in Part IV are applicable to the type
of birefringent network described in Part I. The first part of this paper gives addi-
tional circumstances in which a double-pass procedure can be used with that type of
network. The second part of this paper deals with double-pass procedures for the more
general type of birefringent network of Part V.

Let us briefly review the essence of tne double-pass procedures of Part IV,
For a certain class of amplitude transmittances C(w), the birefringent network which
results from using the synthesis procedure of Part I has a particular symmetry.

Because of this symmetry, the last half of the birefringent network can be replaced
by a mirror which reflects the light back through the first half of the network. In this
paper, we show how networks obtained for still other classes of C(w) can be made to
have this symmetry. Having done this, the techniques of Part IV can then be used

directly.



The forms of the networks obtained using the procedures of Part I and Part V
are shown in Figs. 1 and 2 respectively. In Fig. 1, each stage of the network consists
of a birefringent crystal, while in Fig, 2 each stage consists of a birefringent crystal
and optical compensator (wave-plate). The network of Fig. 1 can be considered to be
a special case of the network of Fig. 2 in which all optical compensators introduce
zero retardation. The (bi shown in Figs. 1 and 2 are the absolute rotation angles of
the stages. The ti)i denote the angle between the slow axis of each cvystal and the
transmission axis of the input polarizer. It will also be useful to deal with relative
angles (ei) of the stages, defined as the angle between the slow axis of a stage and

the slow axis of the preceding stage. The ei are related to the d)i by

81 = ¢y

By = d9- 91>

O3 = o5 0y

o = ¢y~ Ppa1e

6 = - . 1
p = ¢y by (1)

We now derive a property of these networks which will be used throughout this
paper. Suppose that we alter a birefringent network by (a) for the jth stage, changing
6 to -6 and adding 7 radians of optical compensation, and (b) for the preceding stage,
adding « radians of optical compensation. The output of the new network will be iden~
tical to that of the original network.

To prove this statement, we will use the Jones calculus4. Figure 3 shows the

jth stage of the network of Fig. 2. The u and v directions are those of the S and I
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axes of the preceding (j~1) stage while u' and v' denote the S and I directions of the

jth stage. The complex amplitudes of the E field of the incoming and outgoing light

are related by
E' = MS(~9J.) E,

which, when written out, is

—ibj -ia
Eu, e e 0 cos Oj sin Gj Eu
EV 0 1 -sin ej cos ej EV
--ibj ~-iaw -ibj ~iaw
) e e cos 6]. e e sin 0 j Eu
-sin . cos . E 2
si eJ QJ v (2)

The quantity bj is the retardation of the compensator while aw is the retardation of

the crystal. For convenience, let us denote the 2x2 matrix of (2) by

)

Suppose that we now change GJ. to -ej, and bj to bj +m, This causes

~ib, ~ib,
e J tohbecome -e ! , and sin ej to become -sin ej. The new matrix for the jth

stage is thus

(4)



¢ aand13
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In add iion, for the preceding stage let us change bj—l to bj-l +a . This

means that the matrix for the (j-1)th stage is

The matrix for the (j-1)th and jth stages together is found by multiplying (4)

and (5).
-A. B, -A, -B. AA. . +B.C. AB. . +B.D. .
i j j-1 j-1 i’i-1 i i1 i1 i ©
-C. ) C. D, A, . +D.C. C.B. ., +D.D,
Cj DJ -1 j-1 CJ -1 7ji-1 ! i1

But this is identical to the matrix which would be obtained for the original (j-1)th and
jth stages. Therefore in making the changes Bj—>--9j, bJ.-»bJ. +q, and bj—l_"bj—l + 1,
we have not altered the network's behavior; the desired result has thus been proved.

We make one further observation. Suppose that we make the changes
el—a.- —91 and b1—>- b1 + 7 on the first stage of a birefringent network. Since there
is no preceding stage, the question arises as to how the network's performance is
affected. If can be shown that such a change causes the amplitude-transmittance C(w)
of the network to become -C(w). As noted in Part III5 , this sign change is of no

practical importance.

II. TECHNIQUES WHICH ARE APPLICABLE WHEN THE Ci ARE REAL

Two basic types of lossless birefringent network are shown in Figs. 1 and 2.

For both types, the amplitude transmittance C(w) is given by

Clw) = CO 4+ Cle-1a.w + Cze~12aw doeee Cne-maw ) (7)



When the Ci of (7) are real, the synthesis procedure of Part I can be used and the
type of network shown in Fig. 1 results. When the Ci are complex, the procedure
of Part V must be used and the type of network shown in Fig. 2 results. Part IV
gave two double-pass procedures (methods A and B) and the circumstances under
which they could be applied when C(w) contained real Ci' In this section we show
that for real Ci’ additional circumstances exist under which double-pass procedures
can be used.

In Part IV it was seen that Methods A and B are applicable to networks
exhibiting the symmetry shown in Fig. 4a. In Fig. 4a, symmetry requirements are
_ given both in terms of the ® and ei. Although optical compensators are not present
in Fig. 4a, equivalent symmetry requirements can be stated for a network which con-
tains them. These requirements are shown in Fig. 4b, where the bi are the retar-
dations introduced by the respective optical compensators. For both Figs. 4a and 4b,
the symmetry requirements may be summarized as follows. The birefringent net-
work (a) musi have its input and output polarizers crossed, and (b) must have stages
which are symmetric (both with respect to rotation angle and compensator delay)
about the midpoint of the network. Satisfaction of these criteria allows methods A
and B of Part IV to be applied.

Theorem 5b of Part III states that if the Ci of the desired transmittance are

chosen sothat C, = —Cn,C = -C C, = -C C, = -C ... etc.,

0 1 n-1° 72 n-2° 73 n-3’
then each of the resulting lossless birefringent networks will have 81 = -ep + 90°,
8 = =8 8 = -6 s 8 = -8 5, -+ etc. As pointed out in Part (V, these angle
restrictions are precisely those required for using methods A and B and hence double-
pass procedures can be applied.

Suppose, however, that the Ci satisfy C0 = Cn’ C1 = Cn-l’ 02 = Cn—2’
Cs = C, g0 " ete. Theorem 4b of Part III states that the resulting birefringent

B-9
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networks have 91 = ep ¥ 90°, 92 = en, 93 = en_l, «++ etc., This symmetry is not
appropriate for double~pass techniques, but we now show how it can be made so when
n is odd.

We illustrate by considering the case of n = 9., I C(w) is chosen so that
C0 = Cg, C1 = 08’ C2 = C7, C3 = 06’ and C4 = C5, the networks obtained
using the synthesis procedure of Part I will have the symmetry tabulated in Table I.
Let us now make use of the result discussed in Section I of this paper. If we change
99 to —62, b9 tc 7, and b8 to m, the transmittance of the network is unchanged.
Similarly we can change 97 to -94, b7 to 7, b6 to m, 65 to —95, b5 to m,
b4 to m; 83 to -93, b3 to m, b2 to 7; and el to -91, b1 to 7 without affecting
the transmittance of the network. The network now has the symmetry shown in
Table II which is the symmetry required. Hence methods A and B are directly
applicable. Similar techniques apply for other odd values of n. If n is even, the
use of the above procedure does not result in a symmetrical network and hence these
techniques do not succeed. To date, comparakle ones have not been found which
apply when n is even. ‘

In methods A and B, the symmetric network is halved by cutting it through the
middle stage. For this example, the 5th stage is the middle stage and consists of a
crystal of length L and compensator whose retardation is 7 radians. When this
stage is halved, the components are a crystal of length L/2 and a compensator

whose retardation is 7/2 radians.

III. TECHNIQUES WHICH ARE APPLICABLE WHEN THE Ci ARE COMPLEX

Part V described a procedure for synthesizing birefringent networks whose
transmittances contain complex Ci' The form of the resulting network is shown in

Fig. 2. This section describes how a double-pass procedure can be obtained for use

with this class of network.
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ROTATION COMPENSATOR

STAGE ANGLE RETARDATION
(radians)
1 Bl = 91 bl =0
2 92 = 62 b2 =0
3 93 = 93 b3 =0
4 64 = 64 b 4= 0
5 65 = 95 b5 =0
6 96 = 95 b6 =0
7 97 = 94 b7 =0
8 98 = 63 b8 =0
9 69 = 62 b9 = 0
output 6 = 6. +£90° b =0
polarizer p 1 p
Table 1
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ROTATION COMPENSATOR

STAGE ANGLE RETARDATION
(radians)
1 91—- -81 b1—> Ul
2 0, = ez bz-*- T
3 63—— -63 bs—*- m
4 0 = 0 4 b Mimal
5 65 — -65 b5-’- m
6 96 = 95 b6—-- m
7 97 ~» -0 4 b7—> m
8 98 = 63 b8-> T
9 99*-*- —92 bg—-*' m
b " 0
Table II

B-14



Our goal will again be to obtain a network having the symmetry shown in Fig.

4b. We begin by stating a theorem. Asterisks denote complex conjugates.

Theorem
If the Ci of the desired transmittance are chosen so that CO = C:,
C1 = C::_l, C2 = C:;_z’ C3 = C:_3, .+ etc, then the resulting lossless bire-~
fringent networks have 91 = -ep+90°, 92 = en, 93 = en_l, 64 = en__z, <o ete,
and b1 = bn—w, b2 = bn-l’ b3 = bn-Z’ b4 = bn~3’ .+ ete.

The proof of this theorem is similar to the proofs of Theorrms 4b and 5b in
Part III and hence will not be given here.

We will again use a network with n = 9 for illustration; the technique is
applicable only when n is odd. If the Ci satisfy the requirements listed above, the
resulting networks will have the symmetry shown in Table III. We next apply the
result of Section I by noting that C(w) for the network remains unaltered if we change

9, to -63, b8 to b2+7r, b

8 tob3+'rr;6 to

6 0 9%
64 to -04, b4 to b4+'rr, b3 to b3+'rr; and 92 to -62, 102 to b2+ﬂ, b1 to b1 + 1.

In addition, bp is changed to 0. This new network, whose ei and bi are listed in

7 ,b6tob4+'rr, b5 t0b5+'n';

Table IV, has the symmetry necessary for applicaiion of methods A and B, and hence
the desired result has been obtained. For other odd values of n, the same technique
can be applied.

Several items should be briefly mentioned at this point. The first is to note
that when the Ci are complex, one begins manipulating the (n-1)th stage while when
the Ci are real, one starts with the nth stage. The second point concerns our
setting bp to zero. This step is necessary if the input and output polarizers are to
be the "mirror-images' of each other. The result of setting bp to zero is that the

transmittance of the double-pass network will be (exp ibp) . C{w) instead of the
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ROTATION COMPENSATOR

STAGE ANGLE RETARDATION
(radians)
1 91 = 91 b1 = b1
2 92 = 92 b2 = bz
3 93 = 63 b3 = b3
4 64 = 0 b4 = b4
5 95 = 95 b5 = b5
6 66 = 65 b6 = b4
7 67 = 94 b,7 = b3
8 68 = 93 b8 = b2
9 99 = 02 b9 = b1 +@
output 8 =-0, +90° b =05>
polarizer p 1 p p
Table III
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ROTATION

STAGE ANGLE
1 61 = 61
2 ez—a- -92
3 8, = N
4 ¢} ™ -8 7
) 65 = 05
6 66--'- -95
7 67 = 94
8 98—-*- -63
9 99 = 82
output 0 = -6, +90°
polarizer p 1
Table IV

B-17

COMPENSATOR
RETARDATION

(radians)
b1—~>- b1 +
b2~>— b2 + o
b3—>:: b3 o
b4—»- b4 +

.]_
b5-—a- b5 T

b6-—a~b4+ T

8 2
b9=b1+w
b =0

p



desired C(u). The difference is only a constant phase factor, which in most instances

is unimportant. Furthermore, if C, is originally chosen to be real, bp = 0 and the

0
need for the final polarizer is automatically eliminated.
* * *
Iinally, if the Ci satisfy CO = -Cn, C1 = -Cn__l, C2 = ~Cn-2’
e
C3 = ~Cn_3 *++ ete., the technique of this scection is also applicable. This can be

seen by noting that if we multiply such a C(w) by the factor i, the new C(w) satisfies

the constraints of the theorem giver in this section.

1vV. DISCUSSION

We have seen in Sections II and III that if certain restrictions are satisfied by
the Ci’ double-pass synthesis procedures can be emjy..; ¢d. An important question,
then, is how severely these restrictions limit one in choosing a C(w). In discussing

this, it will be convenient to deal with K(w) as well as C(w). K(w) is formed by mul-

i(n/2)aw

tiplying C(w) by e and therefore has the form

i(n/2)aw ifm/2) - 1aw ...

K@) = C.e

0 + Cle

.*.C

le-ig(n/?,) ~1law , o o i/2)aw ()
n- n

The usefulness of K(w) stems from the fact that it is often real, whereas C(w) is
complex. In choosing a desired transmittance, it is often written first in the form of
Eq. (8) and then converted to C(w).

In terms of K{w), the restrictions upon the Ci have the following effects:

(@) The restrictions C, = »«Cn, ¢, = —Cn-l’ Coy n-2° C3 = _Cn—3’
+++ ete, which were necessary in Part IV of this series are equivalent to requiring

= -C

that K(w) be purely imaginary and have odd symmetry.
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(b) The restrictione CO = (’n’ C1 = Cn--l’ Cz = Cn—Z’ (33 = Cpingy o
etc. which were necessary in Section II of this paper are equivalent to requiring that
K(w) be real and have even symmetry.

(¢) The restrictions C() = Cp C1 =C, 1 Cy = C o Cq = Cpgr o
etc. which were necessary in Section III of this paper are equivalent to requiring
that K(w) be real. The symmetry of K(w) is nct restricted in any way. Thus these
restrictions (particularly those of Section III) impose relatively little constraint
upon the choice of desired amplitude transmittance.

Finally we note that the procedure of Section II can be considered to be a

special case of the more general procedure of Section III.
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Table I

Table II

Table III

Table IV

CAPTIONS FOR FIGURES AND TABLES

Basic configuration of birefringent network (4 stages) obtained from the
synthesis procedure of Part I. F and S denote the "fast' and '"siow"
axes of the hircfringent crystals.

Basic configuration of birefringent network (4 stages) obtained from the
synthesis proccdure of Part V.

Single stage of the network of Fig. 2. Components are a birefringent
crystal and optical compensator.

Network symmetry which is required in order for methods A and B

(of Part IV of this series) to be applicable. (a) Lossless network
without compensators, and (b) lossless network with compensators.
Network symmetry which results for n =9 when the (real) Ci are
chosen to satisfy CO = Cg, C1 =CS’ C2 = C7, C3 = CG’ and C4 = CS‘
Network which is equivalent to that listed in Table I.

Network symmetry which results for n = 9 when the (complex) Ci are
chosen to satisfy CO = C;, C1 = C;, 02 = C?;, C3 = CZ, and

K
C4—C5.

Network which is equivalent to that listed in Table III.
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I. INTRODUCTION

Amplitude modulation of light using an electro-optic medium has been the subject of
msiderable investigation the past few years. Most of this work has centered on (1) studying
;omising electro-optic materials [1] - [8] and (2) finding suitable means for applying
lectric fields to these materials. The latter work can be conveniently divided into investi-
ations of cavity-type modulators [9] - [11] and traveling-wave modulators [12] - [17].
his work has resulted in several useful electro-optic materials and a variety of ingenious
yrms of amplitude modulators.

It is perhaps surprising, then, that all of these devices produce amplitude modulation in
ssentially the same fashion as the simplified modulator of Fig. 1. That is, regardless of
1e material used and the manner in which the modulating field is applied, the model of
ig. 1 can be used to describe the essential modulation characteristics of virtually all
xisting electro-optic amplitude modulators. (We have assumed, for simplicity, that
ynchronism conditions are perfectly satisfied, that the medium is not naturally birefringent
1 the direction of light propagation, etc.)

The modulator model of Fig. 1 consists of an input polarizer, an slectro-optic medium,
quarter-wave plate, and an output polarizer. The birefringence cf the electro-optic
1edium is assumed to be directly proportional to the modulating signal, a condition which
3 satisfied exactly by Pockels-effect materials and approximately by Kerr-effect materials
iased with a dc voltage. The modulator of Fig. 1 has an amplitude-transmission vs.
pplied voltage characteristic

IV -4
Kv) = aH o Yo b IS “Yo = o8 (l
2l 2 2V2

‘here VO is the half-wave retardation voltage.

of

- 45°> , 1)
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It is well known [18] - [19] that this K(v) is not the optimum characteristic for an
amplitude modulator. The device of Fig. 1, and the:efore existing amplitude modulators,
have performance characteristics which depart from ideal. The result is that harmonics,
intermodulation products, and other undesirable components are present in the modulator
output. These distortion components are small when small depths of modulation are used,
hut their effects become more pronounced at greater modulation depths.

One of the purposes of this paper is to describe a synthesis procedure which allows the
realization of amplitude modulators having an arbitrarily specifiable voltage transfer
function. With this synthesis procedure it is possible to design modulators whose prop-
erties are tailored to the particular application at hand. The synthesized modulator
(shown in Fig. 3) consists of a series of cascaded stages between an input and output
polarizer. Each stage contains electro-optic material and an optical compensator [20]
(wave-plate). The number of stages required depends upon the complexity of the desired
voltage transfer function K(v). . It should be emphasized that there is nothing new about any
of the components which make up the synthesized modulator; rather, it is the arrangement
of these standard components which results in a device whose (haracteristics can be arbi-
trarily prescribed.

This paper also discusses the transfer function of an ideal amplitude modulator and
methods of approximating it. !The ideal transfer function depends upon the type of detector
employed to demodulate the signal. Two cases are considered: the use of (a) envelope
detection, and (b) square-law detection. While it is possible in theory to synthesize a
modulator having an ideal transfer function, it would contain an infinite number of stages.
Hence in practice it is necessary to find suitable approximations to the ideal function which
can be rcalized by modulators containing a finite number of stages. Several approximation
technigues are described and compared on the basis of distortion present in the demodulated

signal. Finally, modulator designs which correspond to these approximations are tabulated.



II., THE SYNTHESIS PROCEDURE

A. General

The procedure to be described for syathesizing amplitude modulators draws heavily
upon the results given in a series of papers [21] - [26] dealing with birefringent network
synthesis. Since several papers of this series are especially applicable, we will begin by
mentioning their results and how they apply to the problem at hand.

Part I [21] of the series reported a procedure for synthesizing birefringent networks
having a prescribed frequency transfer function C(w). The desired transfer function is
written as

iQw

C(w)=co+0e“ + C

-i2Qw
1 e + ..

. . ~inQw
9 .+ (,ne s (2)

where the number of terms employed is finite but arbitrary. C(w) might typically be the
complex Fourier series representation of a given function truncated after a certain number
of terms. Any method, however, may be used to choose C(w) as long as each Ci is real.
Figure 2 shows the form of the network resulting from the synthesis procedure of Part I.
The network consists of a series of identical naturally-birefringent crystals between an
input and output polarizer. The "fast'" and "slow' axes of the crystal are denoted by I and S,
respectively. A network containing n crystals is necessary to realize a C(w) havingn-+1
terms. For a given C(w), the synthesis procedure is used to calculate the rotation angles
(;di) of the crystals and the output polarizer.

Because the procedure of Part I requires that the Ci be real, it can be used only when
C(w) is Hermetian (i.e., the real part of C(w) is even and the imaginary part is odd).
Part V [26] describes a generalization of the synthesis procedure of Part I which allows the
realization of C(w) having complex Ci' An n - stage birefringent network is again required
to produce a C(w) having n+1 terms, but each stage now consists of a birefringent crystal

and optical compensator. Such a network is shown in Fig. 3. The synthesis procedure of
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Part V determines the rotation angle of each crystal, the retardation introduced by each
compensator, and the rotation angle of the output polarizer.

Recently it has been noted [25] that the techniques which were developed in Parts I~V
(217 - [24], [26] for synthesizing optical networks composed of naturally-birefringent
crystals can also be used, with very little modification, in the syniiiesis of networks composed
of electro-optic crystals (or liquids). The two situations are, in fact, analogous. If a
Pockels-effect material is used, the voltage applied tc the electro-optic medium plays the
same role that frequency does in naturally-birefringent materials. If a Kerr-effect inaterial
is used, frequency is replaced by the square cf the voltage. This means that the same tech-
niques which were developed to synthesize birefringent networks having arbitrary frequency
transfer functions can be used to synihesize electro-optic networks having arbitrary trans-
mission vs. applied voltage characteristics. In Ref. [25] it was shown that a procedure
analogous to the synthesis procedure of Part I could be used to design electro-optic shutters
with improved characteristics. In this paper we will see that a procedure analogous to the
more general procedure of Part V can be used to synthesize amplitude modulators having
specified modulation characteristics.

Since the modulator synthesis procedure is a direct analogy of the procedure described
in Part V, only a brief discussion will he glven. It is assumed in what follows that the
reader is familiar with the material covercd in Part V [26] and in Ref. [25].

The frequency-voltage analogy between a birefringent network and an electro-optic
network can be understood in the following way. The basic building block of the birefringent.
networks of Parts I-V is the naturally birefringent crystal shown in Fig. 4. Light which
enters the crystal with its electrie field polarized in the F direction is operated upon by

the frequency transfer function e i2w/2

siaw /2

, while light polarized along S is operated upon
by . The quantity e is proportional to the crystal's birefring:nce and is given by

a= LAn/c,



¢ =2an81g




where I. ig the length of the crystal, A7 is the difference hetween the crystal's extraordi-
rnary and ordinary indices of refraction, and c¢ is the velneity of light in a vacuum.

Now suppose that the building block of I'ig. 4 is an electro-optic cell, and that its bire-
fringence is linearly proportional to the applied electric field. The I' and S frequency

. Y10 12 .
transfer functions are again e *%/ o taAW/2,

and In this case, however, Q is due to
the applied electric field while in the previous case, £ was due to the natural birefringence

of the medium Hence we can rewrite the T and S tronefer functions of tt - 2lectro-optic

i

ol

A Y
Vo Vo
cell in the form e and e , where v is the voltage applied to the medium and

. ﬁ
173

VO is the voltage required to produce one-half wave (7 radians) of retardation. In

writing the ¥ and S transfer functicns of the electro-optic cell in this way,

several simplifying assumptions L. ve been made. Most importaunt of these is that perfect
synchronism exists between the modulating voltage and the transmitted light, anc hence that

transit-time effects are not a problem.

The transfer functions for the electro-optic cell are seen to depend upon v in exactly

the same fashion as the transfer functions for the birefringent crystal depend upon frequencyl.

Thus the transfexr function of a cell or series of cells varies with v in precisely the same
fashion that the transfer function of a birefringent crystal or series of ervetals varies with
w. Since we are able from Part V to synthesize a birefringent network with an arbitravy
transmission ve. frequency characteristic, we are also able to synthesize an eleetro-optic
modulator which has an arbitrary transmission vs. applied-voltage characteristic.

Using the analogy just discussed, the desired voltage transfer function for the modulator

is written as



7

INCOMING
LIGHT

Figure 4
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(AT =2 Ty -y my
2 Vv, Yo 2 Vo
Kwy) = COe + Cle + Cze
4 w-4) 7V 4 n-2) 7 v 4hTy
2 Vo 2 Vo 2V,
Fovead G g€ + C _q€ + Ce 3)

The synthesized modulator has the general form shown in Fig. 3, with each stage composed
of an electro-optic cell of half-wave voltage VO and an optical compensator. All cells must
exhibit the same birefringence; hence (1) all cells must be identical, and (2) all cells must
have the same signal applied to them. Note that the manner of applying the modulating field
to the medium has not in any way bee.. restricted. Hence it is immaterial whether the
modulating field is transverse or longitudinal, is applied by resonant structure or traveling-

wave structure, as long as the induced birefringent axes are oriented as in Fig. 4.

B. Outline of Synthesis Precedure
The steps to be followed in synthesizing an amplitude modulator are summarized below:
(1) Choose the desired transmission vs. voltage characteristic K(v) for the amplitude

modulator and write it in the form of Eq. (3). The Ci may be complex.

ATy
"2 Vo
(2) Multiply K(v) by e , Which gives
ATV -imTyv -i2 7 v
2 Vo Vo VO
C(v) = e K(v) = C0 + Cle + 02e + ...
-in 7 v
Vo
+ C e . “)

n
(3) Follow steps (3) through (8) of Section II-C of Ref, [26]. This detcrmines the
rotation angle of each electro-optic cell, the delay introduced by each optical

compensator, and the rotation angle of the output polarizer.
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I, AMPLITUDE MODULATORS FOR USE WITH ENVELOPE DETECTORS

As mentioned earlier, the choice of an ideal characteristic for an amplitude modulator
depends upon the properties of the detector used to demodulate the signal. In this section we
discuss the ideal rharacteristic (and approximations to it) for an amplitude modulator which
is used with an envelope detector. Although envelope detectors at optical frequencies are
not presently available, this case is still of interest since optical heterodyne detection can
be employed to shift the amplitude-modulated signal down in frequency to a range in which

envelope detectors are available.

A. Ideal Modulator Characteristic

From conventional modulation theory, it is well known [27] that a linear modulator
characteristic gives distortionless results when eave:cpe detection is employed. Hence one
possible2 ideal voltage transfer function for an amplitude modulator is that shown in Fig. 5.
Since an electro-optic amplitude modulator does not add energy to the carrier, the magnitude
of the characteristic can not exceed unity. Note that v/ VO (voltage applied to each cell/
the half-wave retardation voltage of each cell) is plotted along the abscissa. This normalized
form of voltage is quite convenient and will be used throughout this paper.

Before proceeding further, let us establish performance criteria so that we inay make
quantitative comparisons of the modulators synthesized. There are a number of different
criteria which could be employed, and hence our choice must be somewhat arbitrary. We
will assume that 2 single-tone signal of the form

v = V cos Wyt (5)

is the modulating signal. Ideally then, the demodulated signal should b7 directly proportional
to (5). That is, the amplitude of the fundamental (wm component) should be linearly pro-
portional to V; furthermore there should be no harmonics present at 2 W 3 W etc.
Hence as a measure of performance we will examine the detector cutput for (1) the deviation

from linearity of the fundamental's amplitude, and (2) the amplitudes of the second and third

harmonics.
Cc-12
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Using these criteria, let us establish thut the characteristic of Fig. 5 is indeed an
ideal characteristic. The analytic expression for the characteristic of Fig. 5 is
v

K(v) = —% i (6)

Assume that the incoming optical signal is of frequency w, has an electric field of unity

amplitude, and hence is given by

in ' (7

Assuming that v = V cos wmt, we obtain

I P S ' iwt
Dout = (2 + VO cos wmt> e , (8)

the signal which impinges on the detector. The detector's output Iout is proportional to the
envelope of Eout’ which is just the term in parentheses (provided it remains non-negative).
Thus the output is

- 1,V
—k(2+V0 cos wmt)l, )

Iout

where k is a constant of proportionality. We see that the detector output of Eq. (9) contains
a fundamental whose amplitude is linearly proportional to V, and no higher harmonics. This
satisfies our criteria for perfect modulator performance.
B. TFormulas for Amplitudes of Fundamental anud Harmonics

The modulators synthesized using the procedure of Section II will have voltage transfer
functions of the form shown in Eq. (3). We derive here general expressions for the ampli-
tudes of the fundamental and harmonics present in the detector output. The resulting
expressions are functions of V/VO, and contain the Ci as parameters. For this calculation

and others later, it will be convenient to separately consider the cases of n- odd and n even.
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1. n odd

For n odd, expressions are derived for 1, 3, 5, 7, and 9 stage networks. From

Eq. (3), the voltage transfer functions for these networks are seen to be

K(v)

K(w)

K(w)

K(v)

K(v)

RS U
2 VO 2 VO
COe + Cle , (10a)
STV 7V 4T v 8T v
2V, 2V, 2V, 2V,
COe + Cle + Cze + C3e ) (10b)
21 v {371 ¥ 'S LI 3T v
2 VO 2 VO 2 VO 2 V0 2 V0
Coe + Cle + Cze + Cse + C4e
{27 v
Cge , (10c)
jIm v 2T v i3 v s 4T v
p V0 2 VO 2 Vo 2 Vo 2 Vo
COe + Cle + Cze +C3e + C4e
3T v 8T v 41T v
2 VO 2 VO 2 VO
C5e + Cﬁe + C7e ) (10d)
rgﬂ'll iZJl_X_ iél!.!; iéll.z. iy
2 V0 2 V0 2 Vo 2 Vs 2 Vs
COe + Cle + Cze + C3e + C4e
IERLE'A 43T v AT v 41Ty WL
2 VO 2 VO 2 VO 2 V0 2 V0
C5e + CGe + C7e + Cse + Cge
(10e)
We will go through the details of the computation for n = 9 only. Resultsfor n = 1, 3, 5,

and 7 are obtained from the n

renumbering the remaining C

I

9 results by setting appropriate Ci equal to zero and
i‘
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At this point we will impose the requirement that our approximating K(v) be real. K
a complex K(v) is used, the phase as well as the amplitude of the demodulated fundamental
will depend upon V. Hence for the envelope detector case, a real K(v) should be employed

)
in order to avoid phase distortion. This means that in Eq. (10e), Co =C C, = C

9’ "1 8’

* *
c, = C. Cg = Cg, and C; = C (Asterisks denote complex conjugate.) Using this

2 7 73 6 5°
fact, and letting

Ci = Ai + 1Bi, (11)
Eq. (10e) can be rewritten as
_ om v v 517 v 37 v
K{v) = 2 [Aocos 5 vV + Alcos 5V + Azcos 5 Vv + A,cos 5V
0 0 0 0
mv . 9T v i ATV . M Vv
+ A4cos 5V Bosm 5V Blbm 5 Vv stm 5 vV
0 0 0 0
. 3TV .MV
- B3sm 5 V. VO - B4sm 5 VO] . (12)

If we assume that light incident upon the modulator is given by et t, the light
iwt

(Eout) leaving the modulator is given by Eq. (12) multiplied by e Substifuting
v = Vcos w mt, we obtain
_ o7 V i
Eout = [Aocos ( 5 VO cos wmt) + A cos ( 5 v 0 coS wmt)
5 V 3n
+ Azcos (2 VO cos wmt) + A cos (2 0 coswmt)
+ A, cos i Vcosa.’ t - B sin 9" cosw t
4 2 VO 2 V. 0
. v 57 V
- Blsm ( 2vocosw t - B sin (2 Vocoswmt)
. 3n V 7V iwt
- Bgsin (2 Vocosw t) - B sin (2 VOcosm t)] e . (13)



Using the stande-d expansions for cos (kcos 8) and sin (kcos 8), Eg. (13) becomes

g = 91V _\ (LA 5mV_.
Eout = { 2 [AoJo (2 Vo-) AT, (i‘vo )* Agdy (z A )

_ orv ny 5mV
4[BoJl<zv )+B1J1(2V )+32J1 (zv )
0 0 0
3nV ) TV ___
+ B3J1 (2 v ) + B4J1 (2 v )] cos w_t
0 0
_ CLAS (A 5MYy
4[Aon(zv)“L"‘l‘rz(.zv >+A2J2(2v )
0 0 0
3V mv |
+ A3J2 (2 V-) + A4J2 (2 7 )] cos 2w_t
0 0
o9V i 5TV
+ 4 BJ( -)+BJ (—;———)+BJ ( )
0°3 \ 2 Vb 173 \ 4 Vb 23 \ 2 Vb
3tV mv
+ Bgdg (2 Vo ) + B4J3 <2 Vo )] cos 3w_ t

+ v }eiwt, (14)

where J 0 is a Bessel function of first kind and order n. As long as the bracketed term
multiplying ei wt in (14) remains non-negative, the detector output I out will be directly

proportional to it, Hence we obtain the desired result,

onv 7nv 5V
Lut/k = [ < ) + Ay 2v0 ) + Agdy (‘2 A )

3nvV nV
+ Agdy (z "o) * Agdy (2v0 )]
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9n Vv {1V 5mV
- 4 |B.J. ( ')4-.81] K—--—»-—-—-)+BJ (———-——)
lOl 2V, 11 27V, 2°1 \2 ¥,
srv (fnv )
+ B,J ( e 1 o R J — |l cos W .t
391 \'2 "o} 4°1 \2 v, m
a1V ). nV 2TV
"4[A0J2 (2v ) Ay (zv >+A2Jz<2v >
0. 0 0
LY X TV
+ A3J2 (2 v ) + A4‘_J2 (2 v )] cos Zwmt
0 0
YA
+ 4 ‘:BOJS (2 v0>

‘ v SV
F ByJ3 (z Vo) * Byds (2 v, )

* Bgls (%”) * Bydy (g go
+ higher order harmonics. (15)
Equation (15) gives the dc, fundamental, second harmonic, and third harmonic components
present in the envelope-detector output for n = 9. Note that the even harmonic amplitudes
are determined by the Bi while the odd harmonic amplitudes depend upon the Ai‘
2. n even
For n even, we will consider 2, 4, 6, 8, and 10 stage networks. The voltage transfer

functions for these networks are given by

. TV TV
1"{"‘"" '-IT
A = 0 ] 0 (16a)
) K(v) = Coe + Cl 4 Cze
{27V ; IV 4TV _{2mv
Vo Vo Vo Vo
2 b K({v) = Coe -+ Cle + 02 + 039 + C4e (16Db)
'Y, A v, 'Y,
= 6 K{v) = Coe + Cle + Cge + Cq (‘.49
L 3V
Vo VO
+ Cse + Cﬁe (16c)
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v LY 1y v
0 0 0 0
n=98 K(v) = Cje + Cie + Cpe + Cqe FCy
A 2Ty _q 3y qdnv.
\Y v Vv \%
0 0 0 0 (16d)
+ C5e + Cﬁe F C7e + Cse
. 9TV 4av . 3TV 2nv LAS
i VO i VO i ——~—VO 15 i VO
n =10 Ky = Coe + Cle + Cze i 039 + C4e
LA L Amy . 31V Amv
VO A% VO Vo
+ 05 + CGe 4 C7e 4 08e + :lge
2Ty
Vo
-+ ClOe . (16e)

It will be sufficient to carry out the calculation only for n = 10; results for n = 2,
4, 6, and 8 can be chtained from the n = 10 results by setting appropriate Ci egual to
zero and renumbering the remaining Ci'

The calculation procecds similarly as for n odd. We first stipulate that K(v) be

* _ *
1 = Cg» Cy = Cg
" .
G° and that C5 be real. Again the substitution v = Vcos wmt is

%
real. This requires that the Ci of (1Ge) satisfy C0 = C10 , C;, = C C

C, =C Cc, =C

*
7 T4

made, and standard cxpansions for cos(kcos €) and sinfkcos 8) employed. The final result

3

for n = 10 is
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51V 4nv 37V 21V

-4 [BOJJ. <V0>+ BTy (V )+ Bydh ( v )+ 3391 (V )
+ B, (T* cosw_t
471 \V, m

[ v’ anv 3V 21y
-4 LAOJZ (——VO)+ A, (——VO )+ A, ( £ ) + Agd, <_v )

+ higher order harmonics. an

C. TIFourier Approximation to Ideal Characteristic

We are now ready to find approximations to the ideal characteristic of Fig. 5 which can
be written in the form of Eq. (3). One obvious choice is to use the Fourier approximation to
determine the Ci of Eq. (3). Since the K(v) given by (10) and (16) are periodic, the ideal
characteristic must also be periodic.

The symmetry of the ideal characteristic must be different for the cases of n odd
and n even. For n odd, we will choose the ideal characteristic over one period to be
that shown in Fig. 6a. This characteristic is, of course, only one of an infinite number of
possibilities, and no claim is made that it is in any way optimum. It was chosen because it
does not have any discontinuities and one might therefore hope that its Fourier series
converges rapidly. For n even, the ideal characteristic of Fig. 6b will be used. It is

identiical vo the characteristic of Fig. 6a over the region «=0.5 <v/V0< 1.5, but differs

over the remainder of its period.
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1. n odd

The complex Fourier series was calculated for the ideal characteristic of Fig. 6a.
The expression for K(v) for each value of n was found by truncating the series after an
appropriate number of terms. Each fruncated series was then normalized to have a

maximum magnitude of unity. The resulting K(v) are

Iy R 4
2V, 2V,
n=1 K(v) = 0.353553(1-i)e + 0.353553(1+H) e , (182)
(31 v ' LA
2V, 2V, 2V,
n = 3 K(v) = -0.0353553(1+)e + 0.318198(1-i)e +0.318198(1+H) e
—iﬂ v
2V,
-0.0353553(1-i) e , (18b)
{21 v {37 Vv LV
2V, 2V, 2V,
n=5 K(v) = -0.0122856(1-i)e - 0.0341268(L+)e + 0.307141(1-i) e
_iﬂ. v -i 3T v
2V, 2V,
+0. 307141 (1 +H) e - 0.0341268(1-i) e
jom v
2V,
-0.0122856(1-+) e , (18c)
1_7_". v 1_5_1 v
2V, 2 Y,
n=T. K = 0.0061589(1+)e - 0.0120716(1-i)e
;37 Vv TV v
173 v, 15 v, 179 v,
~0.0335323(1+) e + 0.301791(1-i)e + 0.301791(L+H) e
_ii"_’ v _iﬂ v _iM v
2V, 2V, 2V,

©-0.0335323(1-i)e - 0.0120716(1+)e + 0.0061589(1-i) e

(18d)
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=9 K(v) = 0.003687(L-i)e + 0.006094(1+i)e

1M v 21 v
2V
- 0.011945(1-i)e

SV
-

3

2

)
Sl

i

- 0.033182(1+i)e + 0.298643(1-i)e + 0.298643(1+)e

3

3

-i
- 0.033182(1-i)e

|

<
)

|

<«

Do

<!

0

- 0.011945(1+)e +0.006094(1-i)e

. 9
-i

+0.003687(L+) e : (18e)

3

|
<

These K(v) are shown plotted in Fig. 7 over the portion of the characteristic which is
of most interest, -0.5 (v/V0 { +0.5. Solid curves are used for n = 1, 3, and 5, and
dotted curves for n = 7 and 9. The ideal characteristic is shown dashed. These
conventions will be used throughout. The curve n = 1 corresponds to the conventional
amplitude modulator of Fig. 1.

As expected, the approximation to the ideal K(v) improves with increasing n. In
general, for all n the approximation is better for -0.5 < V/Vo < 0 than for 0 ¢ V/VO { +0.5.
This might have been expected since there is a discontinuity in the slope of K(v) at
v/V0 = +0.5, while there is none at V/VO = -@.5.

Of primary interest, however, is not how well the K(v) of Eqs. (18) approximate the
ideal K(v), but rather how well the criteria established in Section IIIA are satisfied. To
determine this for n = 9, we substitute the Ai and Bi of (18e) into Eq. (15). Tor the
other values of n, the Ai and Bi are substituted into the appropriate equations derived
from Eq. (15). This gives the information desired on the fundamental and harmonic
amplitudes present in the demodulated signal.

The results are plotted in Fig. 8 where (a) the dc component, (b) the fundamental
amplitude, (c) the second-harmonic magnitude, (d) the third harmonic magnitude, and (e)

the deviation from linearity of the fundamental are shown as a function of V/ Vo
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Graphs (a), (b), (¢), and (d) are found from the appropriate terms of £q. (15). The deviation
from linearity of the fundamental is calculated in the following way. The slope of each curve
of Tig. 8b is calculated at the origin. A straight line is then constructed for each curve by
extrapolating this small-signal slope. The difference between each amplitude curve and its
extrapolated straight line is termed the deviation from linearity. In Fig. 8e we plot the
magnitude of this deviation.

The following results are seen froﬁ Fig. 8. The fundamental amplitude is approxi-
mately linear with V/ VO for all values of n. Hence from Fig. 8b alone, it is difficult to
compare modulator performance on the basis of linearity of fundamental. The deviation
from linearity curves of I'ig. 8e, however, give a ciear comparison for various n. From
Fig. 8e we see that in all cases, deviation from linearity increases with increasing depth of
modulation, although not necessarily in a monotonic fashion. Furthermore, we see that
while the deviation from linearity for n = 5 and 9 is less than for n = 1, it is greater
for n = 3 and 7. Hence we conclude that with respect to deviation from linearity of the
fundamental, systematic improvement is not obtained as one uses more stages.

The second harmonic magnitudes are shown in Fig. 8c. Here a fairly uniform
improvement with increasing n is obtained. For example the second harmonic amplitude
for n = 7 is less than that for n = 1 by an order of magnitude for all values of V/VO.

The third harmonic magnitudes are plotted in Fig. 8d. The curves for the third
harmonic magnitude are very similar in form to those of Fig. 8e which show deviation from
linearity of the fundamenté,l. The magnitude of the third harmonic is reduced for n = 5
and 9, but is greater for n = 3 and 7.

From the above results, we conclude that the technique of determining K(v) by
finding the complex Fourier series of the ideal characteristic of Fig. 6a did not prove to be
satisfactory. While improvement was noted over conventional modulator performance for
some vaiues of n, poorer performance was obtained for others. One difficulty with this

approach lies in the following. The Ci were chosen o approximate a certain voltage
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transfer function. Our ultimate concern, however, is not with how well this transfer function
is approximated, but rather with modulator performance as measured by the amplitudes of
the fundamental and harmonics present in the demodulated signal. Thus it is more desirable
to choose the Ci by some technique which directly optimizes the modulator properties of
interest. In the following section, this approach is employed to determine the Ci of the
inodulator transfer fun<ztion.

2. n even

Since the Fourier approximation technique did not prove satisfactory for n odd, the
equivalent calculation for n even was not performed.

D. Maximally-linear Approximation to Ideal Characteristic
1. n odd

Equation (15) gives the dc, fundamental, second harmonic, and third harmonic compo-
nents present in the demodulated output for n = 9. This is a general expression which is

valid for any choice of Ci‘ Consider now the portion of Eq. (15) which gives the amplitude

of the fundamental.

amplitude of  _ R 7V 57V \ 3mv
fundamental -~ ~ % | Body 2v,/ " B,y 2v, ) " Bydy 2v, )" Bgdy 27,
TV
+ B4J1 (—2 VO) ] 19)
If we write each Bessel function of (19) in series form, we obtain
3 3
amplitude of mV _mn [V
fundamental -~ ~ % |1 v, (By + 3Bg + 5By + 7By + 9By) - 53 v,
5 5
3 3 3 3 m i
7 7
5 5 5 5. . m v
(By + 3'Bg + 5By + T'B) +9°By) " 35565506 <v0>
9 9
7 7 7 7 m v
(By + 3By + 5By + 7By +9°By) + 75977 790 (V())
9 9 9 9
(B4+3B3+5B2+7B1+9B0)—....} 20)
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Since ideally the amplitude of the fundamental is directly proportional to V/VO, the V/ V0

'm of (20) is the desired portion of the output while the (V/VO)B, (v/ V0)5, v/ V0)7, etc.
.erms represent distortion. Hence we will choose the Bi so as to eliminate as many of
these distortion terms as possible.

In order to make the coefficient of the (V/VO)3 term be zero, the Bi must satisfy

3 3 3 3.
B, + 3°By + 5°B, + T°B; + 9°By = 0. 21a)

Similarly, if the Bi satisfy

5 5 5 5 _
B4+3B3+532+7B1+9B0—0, (21b)

the coefficient of the (V/ VO)5 term will be zero. And finally if the coefficients of the

(V/VO)7 and (V/VO)9 terms are to be zero, the B; must satisfy

7 7 7 7 _
B4+3B3+5B2+7B1+9B0—0, (21c)
and
B, + 39B + 59B + 79B + 99B =0 (21d)
4 3 2 1 0 )

Since we are free to choose five Bi (BO, Bl’ B2' B3, and B 4), we are able to make four
coefficients of (20) become zero. The first remaining nonzero distortion term is v/ Vo)ll,
and hence we call this method of determining the Bi a maximally-linear approximation.

In Eqs. (212), (21b), (21c), and (21d) we have four simultaneous linear equations.

Solving them, we obtain

B, = -2/27 By,
B, = 2/175 By,
B, = -1/686 B,
B, = 1/10,206 B,. n =9 22)
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The results we have just derived are for the case n = 9. For the case n = 7, K(v)
is given by (10d) and an expression similar to Eq. (20) can be derived for the amplitude of
the fundamental. Since one less B coefficient is available, we are able to force one less
distortion term to zero. For n = 7, the equations obtained by requiring that the

coefficients of the (V/VO)3, (V/V0)5, and (V/VO)7 terms be zero are

3 3 3 _

By + 3"B, + 5°B; + T'B, = 0, (23a)
5 5 5.

B3+3B2+5B1+7BO—0, (23b)
7 7 7 _

B3+3B2+5B1+7B0—0. (23c)

The solutions for the Bi are

B2 = -1/15 B3,
B, = 1/125 B.,
J
B0 = --1/1715 B3. n==1 (24)

Correspondingly, for n = 5 we are able to make (V/V0)3 and (V/V0)5 terms be
zero, while for n = 3 we can make only the (V/VO)3 term be zero. The solutions for

the Bi for these last two cases are

If

B -1/18 B

1 2’
B, = 1/250 By, n=>5 (25)
and
B, = -1/27 B,. n =3 (26)

We have thus determined relative values for the Bi for n = 3, 5, 7, and 9 by
eliminating as many higher-order terms as nossible from the seriec expansion of the
amplitude of the fundamental. Since the Ai are not present in the expression for the

fundamental, they remain to be determined. The Ai are present in expressions for the dec,
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gecond harmonic, fourtk harmounic, etc. cowmponents of the output (see Eq. (15)), and
hence can be chosen to optimize one of these. Our choice will be to pick the Ai to
minimize the ainplitude of the secend harmonic.

We again return to the expression of Eq. (15) for n = 9. From (15), the amplitude

of the second harmonic is seen to be

second harmonic ~ _ _ 4[A p (917V>+ ALg (747V)Jr AT <5wv)

amplitude 072 ZVO
i TV
>+ A4J2(2V0 )] . 27)

If we rewrite each Bessel fuaction in series form, (27) becomes

. 2 2
second harmonic ~ _ _ , [’tr_(_\[_) (A 4 32A3 N SZA 4 72A1 N 92A0)

{3nv
+ Agdy \ 2V,

amplitude 4 2

4 4
m \ 4 4 4 4
—_—<X—/'_> (A +3A3+5A2+7A +9A0)

8 8 A
- n___ (L 8 8 8 8
7,185,920 \V a, + Ay + 5%, 7P+ oA

+ ] (28)

We can make the (V/VO)Z, (V/V0)4, v/ VO)G, and (V/VO)8 terms go to zero by

requiring that

Ay o+ 32A3 + 52%A, + TPA, 92A0 =0, 292)
A, + 3ty +sta, v TtAp + 9ta) =0, (29b)
A, + Ay + 5%, + A+ ofa) =0, (29¢)
by + By + 5%, v 7P+ %A = 0. (29d)

c-35



Solving these four simultaneous linear equations, we obtain

Ay = - 2/9 A
Ay = 2/35 A,
Ay = - 1/98 A,
A, = 1/1132A,.

n =9

Proceeding as before, we find for n = 3, 5, and 7 that

A2 = - 1/5 A3,
A1 2 1/25 A3,
A0 = —=1/245 A3.
A = - 1/6 Ay,
A.0 = 1/50 AZ'
Ay = - 1/9 A,

n =19
n =25
n =3

(30)

(31)

(32)

(33)

Two additional constraints must now be applied in order to obtain absolute values for

the Ai and Bi' Consider the n =

terms of B 40 and values for the Ai in terms of A 4° So far, however, the size of B

relative to A 4 has not been determined. In order to make this choice, we observe the

9 case again., We have obtained values for the Bi in

4

following. All calculations performed thus far have assumed that the depth of modulation

never exceeds 100%. That is, we have assumed that a value of v is never reached for

which K(v) is negative. ' ‘his means, for example, that for the ideal characteristic of

Fig. 5, v/VO is never ‘ess than - 1/2.  Thus we would hope that the K(v)

which we obtain for the maximally-linear case would be roughly comparable

to the characteristic of Fig. 5.

We would like for K(v=0) to be
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approximately 0.5, and we would further hope that K(v) would be unity and zero
for approximately equal positive and negative values of v. By setting th -aAu , we

attempt to force this behavior. For from (10e) we recall that B 4 and A, are the

4
PR i v
2 Vo 2 Vo
amplitudes of the e and e terms in K(v), and hence the above choice gives
.MV .MV
2 v 2V
0 * 0 _ T v _n
C4e + C4e = 2A4 COs <’2—'V—O° 2> .

Thus the first Fourier component of K(v) is a cosine curve which is maximum at v/ VO = 1/2
and zero at v/ Vo = - 1/2. To summarize then, by making B 4= -A 4 We attempt to make
the general shape of K(v) comparable to that of the ideal K(v) of Fig. 6a. The detailed
shape will be determined by the other Ai and B; given in Eqs. (22) and (30).

We now have for the n = 9 case,

i 2TV Ty
. 2V . i =
- 1 i 0 (1 _ _1i_ \4
K(v) = 44 (1134 10,206) e (98 686) e
A ; 3TV
L2 2\, Yo _ (2 _z 2V
35 ~ 175 9 " 27
i1y TV 3mv
2V 2V 2V
0 0 2 2i 0
+ (l-i)e + (1+i)e -(—§—+2—7) e
_j2mv _j1mv
(2, 2y, Mo (1, i), "
35 * 175 98 " 686
_{9mv
2v
1 i 0
* (1134 * 10,206) € ' (34)
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Our final task is to choose A

we obtain

n=9 K(v) = (0.
+ (0.
+ (0
- ©
- (O

The final K(v) for n =
ne 7 K(v) = - (0
- (0

+ (0

+ (0

.311616 - i0.311616)e

. 069248 + 0. 023082) e

.003179 +1i0.000454) e

.001294 - i0.000184)e

.063414 - i0.021138)e

.317074 +i0.317074) e

.012683 + 10, 002536) e

4

Omv
000274 - i0.000030) e

017806 - i0.003561)e

+

4

4+

(0.003179 - 0.

(0.069248 - i0.

(0.311616 + i0.

(0. 017806 + i0.

(0. 000274 + i0.

1, 3, 5, and 7 are similarly found to be

L 1MV

1——
ZVO

A
2V,

Cc-38

+

+

(0.012683 - i0.

(0.317074 - 0.

(0.063414 + i0.

(0.001294 + i0.

so that the maximum magnitude of (34) is unity. Doing this

j LIV
2VO

000454) e
. 3TV
1 2V,

023082) e
_ mv
ZVb

311616)e
i Snv
2V0

003561) e
A
ZVO

000030) e .
(352)

i5'nv
ZVO

002536) e
.MV
1 2V,

317074) e
_isﬂv
ZVO

0211.38)e
IV
2V0

000184)e

(35Db)



i5'frv i 3mv
2V0 ZVO

na=b5 K(v) = (0.006489 - i0.001297)e - (0.054077 - 10,018025) e
i1V 4TV
2V0 2V0
+ (0.324465 - i0.324465) e + (0.324465 +10. 324465) e
. 3TV . 5TV
-i = -i
2V0 ZVO
- (0.054077 +i0.018025) e + (0.006489 + i0.001297)e .
(35¢)
i 3TV .V
2v, ! 2V,
naj K(v) = - (0.037258 - i0.012419)e + (0.335330 - i0.335330)e
IV A
2V0 ZVO
+ (0.335330 + i0.335330)e - (0.037258 +10.012419)¢ .
(3584
i.’n’_‘_r -i __.’N v
2V0 2V0
n=l K(v) = (0. 353553 - 10, 363553) e + (0.353553 +i0.353553) e .
(35€)

We can now substitute the Ai and Bi of Egs. (35) into Eq. (15) [or, in the cases of
n = 1, 3, 5, and 7, into the approoriate expressions derived from (15)] to assess the
modulator performance obtained using the maximally-linear approximation. The results
are shown in Fig. 9 where (a) the dc component, (b) the first harmonic amplitude, (c) the
second harmaoaic magnitude, (d) the 3rd harmonic magnitude, and (e) the deviation from
linearity of the fundamental are plotted as a function of V/V 0" The case n = 1 again
corresponds to a conventional amplitude modulator. Results for n even are also shown
on Fig., 9, but for the present we will limit our remarks to the case of n odd.

Figures 9¢, 9, and 9e show that a substantial, uniform reduction in distortion occurs
for increasing values of n. These results must be interpreted with care, however, for
Iig. 9b shows that there is also a reduction in the amplitude of the fundamental. Hence as

n increases, uie reduction in distortion is accompanied by a reduction in the desired output.
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A clearer picture of these results is given in Fig. 10 where (a) the deviation from linearity
of the fundamental, and (b) the magnitude of the second harmonic are plotted vs. n for
certain fixed values of the anplitude of the fundamental. Curves are given for fundamental
amplitudes of 0.475 (which corresponds to a degree of modulation of roughly 90%), 0.4
(approximately 70%), 0.3 (approximately 50%), 0.2 (approximately 30%), and 0.1 (approxi-
mately 15%). Points representing odd values of n are connected by solid lines while
points for even values of n are connected by dotted lines. Since the behavior of the third
harmonic's magnitude was very similar to Fig. 10a, a separate graph was not plotted for it,

Figure 10a shows how distortion in the fundamental varies with n. It is seen that in
going from a‘conventional modulator to a three stage modulator, the fundamental distortion
does not improve, and in fact, becomes slightly worse. For n = 5, some improvement is
noted while for n = 7 and 9, significant improvement is obtained. Similar results are
obtained for the second harmonic magnitude.

We therefore conclude that for n odd, the maximally-linear approximation technique
is only partially successful. For small values ¢f n (n <5), relatively little improvement
is obtained while for larger values of n (n > 7), substantial improvement occurs. Thus
the improvement increases with increasing values of n.

It is of some interest to know what a plot of K(v) looks like for the maximally-linear
case. Figure 11 shows the K(v) of Eqs. (35) plotted as a function of v/VO. We see that
the K(v) are closely approaching a straight line with increasing n. Note that the slopes of
the curves of Fig. 11 decrease somewhat with increasing n; this causes the slight decrease
in the amplitude of the fundamental which was mentioned in the previous paragraph. It should
also be noted that the.value of v/VO at which K(v) becomes zero is slightly different for
different values of n. The maximum voltage, therefore, which can be applied becomes
somewhat greater as n is increased. In Fig. 9, the curves are plotted up to this maximum

permissible voltage.
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The modulator designs which correspond to the K(v) derived by using the maximally-
linear technique are tabulated in Table I. These designs were found by applying the synthesis
procedure of Section II to the K(v) of Egs. (35). The quantities listed in Table I are the
rotation angle (9 i) of each electro-optic cell, the retardation (bi) introduced by each
optical compensator, and the rotation angle (ep) of the output polarizer.

2. n even

An equivalent calculation can be carried out for modulators having an even number of
stages. Although this calculation is similar in many respects to that just described for n
odd, it is different in at least one important aspect —namely, modulators can be designed
which produce no even harmonics in the demodulated output.

Let us restrict our attention to the n = 10 case. Equation (17) gives the demodulated

output leaving the envelope detector for n = 10. The amplitude of the fundamental is given by

amplitude of _ <5 1rV) <4‘UV> (3 mv
fundamental ~ ~ % | Body v, /T Py B )
2nV TV
+ Byd. (—i;——)4-jB4Jl (37——)] . (36)
0 0
Writing each Bessel function in series form, we obtain
amplitude of _ nv -
fundamental - " % 27, (By * 2By * 9By + 4By + 5By
3 3
[V 3 3 3. 3
"iﬁ'(ﬁﬁ;) (B, + 2°B, + 3°B, + 4°B, + 5°B)
-+in/—ll)5(3 + 2°B, + 3°B, + 4°B, + 5°B)
384 \Vo 4 3 2 1 0
_n —EL)7(B + 2B, + 3B, + 4B, + 5'B)
18,432 (VO 4 3 2 1 0
9 9
m Vv 9 9 9 L g9
+1’488’060(V0) (B4+2B3+3B2+4B1-5B0)-...]

(87
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We can make the coefficients of the (V/Vo)s, (V/V0)5, (V/V0)7, and (V/VO)9 terms be

zero by setting

3 3 3
]34+2B3+3B2+4;B1 0

. 5 5 5 5 _
B4+2B3+3B2+4B1+5B0—0,

+ 27B + 37B + 47B

B 3 2 1 0

4

9 9 9 9
B+2B3+3B2+4B1 0

4

Solving these four equations, we obtain

obtain

and

jwe]
i

-2/17 B4,

e’
il

1/14 34,

v
1

1 -1/84 B4,

w
il

1/1050 B4. n = 10

(38a)

(38h)

(38¢)

(38d)

(39)

Similar calculations can be carried out for n = 2, 4, 6, and 8. For these cases, we

By, = - 1/4 B,
Bl = 1/21 B3,
BO = - 1/224 B3. n =28
B1 = - 1/5 B2,
BO = 1/45 B2. n ==6
BO = - 1/8 Bl‘ n =4
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It is interesting to note that as far as the Bi are concerned, the n = 10 case is very
similar to the n = 9 case. In both cases, we make the (V/VO)S, v/ VO)S, (v/ V0)7, and
v/ VO)9 terms be zerc by appropriately choosing BO’ Bl’ and B2' As we are about to sec,
however, the two cases are quite different as far as the Ai are concerned.

For n = 10, we will set all Ai except A5 equal to zero. As seen from Eq. (17)
this will automatically make the amplitude of the second harmonic (and all other even
harmonics) zero. It is important to note that we are able to do this and still have K(v)
assume the general form of the ideal function of Fig. 6b. The ideal function of Fig. 6b may
be thought of as consisting of a constant term of 0.5 plus a triangular wave of odd symmetry.
Hence, the Ai are not required (except for A5) and the ideal K(v) can be approximated by a
K(v) consisting of a constant term plus sine terms.This was not possible in the case of the
ideal function of Fig. 6a since both cosine and sine terms are needed to approximate it.

To conclude our determination of the K(v) for n even, it is necessary only fo set

the constant term Cn /2 equal to 0.5 and to normalize the Bi so that K(v) has a maximum

value of +1. Doing this, we obtain

. DAV A . 3TV
i i—— i—
V0 V0 V0
n =10 K(v) = - 10.0002159 e + 10.0026996 e - i0.0161975 e
i 2nv A
VO V0
+10.0647900 e - 10.2267650 e + 0.5
_jJv _i.z mv - 3TV
Vo Vo Vo
+10.2267650 e - i0.0647900 ¢ + i10,0161975 ¢
s dnv i omv
Vo Vo
-10.0026996 e + 10,0002159 e R (43a)
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; 4nv § 3V i 27V
Vo Vo Vo
n=8 K(v) = i0.0010318 e - i0.0110064 e + 10.0577835 e
v 4TV
Vo Vo
- i0.2311339 ¢ + 0.5 + 10.2311339 ¢
s 2ny 437V _jAmv
Yo Vo Vo
- i0.0577835 e + 10.0110064 e - i0.0010318 ¢ ,
(43Db)
i 3nv i 27V i mv
Vo Vo Vo
n==6 K(v) = - 10.0052498 e + 10.0472481 ¢ - i0.2362406 e
uiﬂX R
Vo Vo
+ 0.5 + i0.2362406 e - i0.0472481 ¢
3nv
Vo
+ i0.0052498 e , (43c)
2nv Tv
———— 1-——.
n= K(v) = i0.0303643 e - 10.2429150 e F 0.5
AR _j2mv
Vo Yo
+ 10.2429150 e - i0.0303643 ¢ , (43d)
. TV . TV
i -i—
vV vV
_ . 0 , 0
n=2 K(v) = - i0.2500000 e + 0.5 + i0.2500000 e . (43e)

Figure 12 shows these K(v) plotted as a function of V/VO. Solid lines are used for
n = 2, 4, and 6, dotted lines for n = 8 and 10, and a dashed line for the ideal character-
istic. The performance of the medulators corresponding to these K(v) is evaluated by
substituting the Ai and Bi of (43a) into (17), and the Ai and Bi of (43b) - (43e) into the
corresponding equations derived from (17). The results are shown in Fig. 9a through 9e.
Since all Ai except An /2 were chosen to be zero, the dc component of the output
is constant with a value of 0.5. For the same reason, the magnitude of the second harmonic

is zero for all n even. The deviation from linearity of the fundamental and the magnitude of
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the third harmonic, seen in Figs. 9d and %, again behave in very similar fashion to each
other. These figures show that the maximally-linear approximation is, in general, less
successful for n even than for n odd. For example, there is more fundamental and third
harmonic distortion present for n = 10 than for n = 9 for all values of V/VO. In some
cases, the n even networks produce less distortion than the n odd networks for small
values of v/ VO’ but for larger values of v/‘i/0 the n even networks are consistantly
inferior in performance.

In order to obtain the entire picture, however, the variation of the fundamental
amplitude with n must also be considered. This is shown in Fig. 9a, where it is seen
that the fundameatal amplitude does not fall off nearly as much with increasing n when
n is even as when n is odd. However, as can be seen from Fig. 10a where fundamental
distortion is plotted vs. n for constant values of the fundamentali amplitude, the modulators
having n even are still inferior to those with n odd.

To summarize then, the maximally-linear approximation technigue is perhaps less
successful for n even chan for n odd. For n even, an advantage is obtained in that the
eannnd, fourth, sixth, etc. harmonics are zero. If the elimination of even harmonics is of
prime importance, the n even case may well be the solution. The distortion present in

the odd harmonics of the output, however, is worse for n even than for n odd.

IV. AMPLITUDE MODULATORS FOR USE WITH SQUARE-LAW DETECTORS

In this section we consider the ideal characteristic and methods for its approximation
for an amplitude modulator fo be used with a square-law detector. This case is probably of
greater general interest than the envelope-detector case since various square-law detectors

are available and widely used.
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A. Ideal Modulator Characteristic

In Section III it was seen that for the envelope-detector case, one possible ideal

characteristic is

w0 - (b )

It is not difficult to see, then, that for the square-law case the corresponding ideal

characteristic is
, 1 \'4
K\V) = <—2- + V‘) . (44)

To verify that the K(v) of (44) is indeed an ideal modulator transfer function, assume that

an optical signal et wt enters a modulator having such a K(v). The signal Eout leaving
the modulator is given by
1/2 iwt
- (L, ¥ ) 5
B = (3 ° 7 e - (45)

0
If we assume that the modulating signal v has the form v = V cos wmt, Eq. (45) becomes
1 L 1/2 1wt

- (L. X
Eout = (2 + VO coswmt) e ) 46)

*
is given by kE __ E

the signal which is incident upon the detector. The detector output I, outEout ’

ut
which using (46) gives

(L1, vV
Iyt = K (2 + 7 cos wmt> . (47)

As noted kefore, this satisfies perfectly the 2rite~ia which we have selected for modulator
performance, namely that the detector outpm. contain a fundamental whose amplitude is
linearly proportional to V, and no higher harmonics. The ideal characteristic of Eq. (44)
is plotted in Fig. 13. Finally, it should be noted that just as there were an infinite number
of possible ideal characteristics (of various slopes) for the envelope-detector case, there

are likewise an infinite number of possibilities for the square-law case.
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For the square-law case, we will consider only n odd. The previous section showed
it to be more useful than n even in almost all respects. The sole exception was in elimi-
nation of even harmonics, where by proper choice of the Ai’ a modulator with n even
could be designed to produce no even harmonics. dowever as we will see, even this
potential advantage is not present in the square-law case, since the even harmonic amplitudes
are now functions of the Ai and Bi rather than the Ai alone.

B. Formulas for Amplitudes of Fundamental and Harmonics

We now derive general expressions for the amplitudes of the fundamental and harmonics
present in the detector outpi.... The voltage transfer functions for 1, 3, 5, 7, and 9 stage
networks are again given by Eqs. (10). The details of the computation will be given for
n = 9 only, since results for n = 1, 3, 5, and 7 are derivable from the n = 9 case.

We again impose the requirement that K(v) be real. This condition was necessary
in the envelope-detector case to ensure that the phase of the demodulated fundamental did
not depend upon V; it is not necessary, however, in the square-law case. Hence the
decision to restrict K(v) to being real is admittedly an arbitrary one, made primarily for
convenience. An additional incentive is provided, however, by the work of Ammann and
Yarborough [28]. They have shown that if K(v) is real, a modification of the synthesis
procedure of Part V can be used which results in a modulator containing only half as many
stages as normally required.

With this restriction, K(v) for n = 9 becomes

ignv i7'l'rv i51rv iSwv R
2V0 ZVO 2V0 ZVO 2V0
Kv) = COe + Cle + Cze + CBe + C4e
41V {3y oMy A L omy
* 2V0 * 2V0 * 2V0 % 2V0 " 2V0
+ C4e + 03e + Cze + Cle + COe 48)
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The square-law detector output is given by

* *
Iout = k K(v)K (v) EinEin’

which for the Ein of Eq. (7) gives

Iout = k K() K*(v).

Substituting (48) into (49) gives
%
C1

* ES
I,/ = KWK (v) = 2 liCOCO + 0y

v
Vo "
+ e [2(0001
i21rv
Vo [
+ e 2(C002
L 2TV
-i
Vo [ %
+ e 2(COC2
L
LAY
Vo T
+ e 2(COC
4 3mv
V0 *
+ e 2(COC
i41rv
Vo
+ e [Z(COC4

C-60

+ CZC

*
2

* *
+ C,Cqy + CoCy) + C,C

+ C,C, + 0304)

I

*
2%y 3Cy)

+ CZC4) + C303

* %k * ok
+ C2C4) + 0303

+ CzC3) :l

* sk
+ C303 + C4C4

|

*
+ C,Cq + C4C,) + 0404}

-

-

A

]

(49)



Yo 5 C*C * K * %
te (CCy * C1Cy + CyCy)
5TV
Vo
+ e [2(0004 + C,Cy) + CZCZ:I
S5nv

VO * % * ok * % |
v e 2(CoC, + C,Cy) + CZCZJ

i6'trv _iﬁﬂv
V0 \4 B X ok
2(C,Co + C,C) | +e O |acicy + cichy
e 0”3 1°2 0"3 172
. TV Tnv
1 N -1 ——
Vo 20 VO 9 * ok * ok
+ e 0C2 + Clcl + e C002 + Clcl
. 8TV . 8mv
+ e [ Cocl] + e [ Cocl}
i9'17'v L 9mv
V() VO C* k3
+ e [COCO + e [ OCO . (560)

Letting Ci = Ai + iBi’ we obtain

B 2 2. .2 .2 2 2 92 2 9 3
Iout/k—z[AO+A1+A2+A3+A4+B0+B1+B2+B3+B4]

+ 2c0s T [A2 _ B2 4 a(A A + BB, +AA, + BB, +AA, + BB, + ALA + BB,

v, %7 P ofip T BoBy T Agfg + BBy + AjAg + ByBy + AgA, + BBy
..omv [

- 2sin A 2(-AgBy + A;By - AjB, + AyB) - A,By + AB, - AB, + AB, + AB 4)J
2mv [ )

+ 20087y 2(A 40, kBOBz+A1A3+B1B3+A2A4+B2B4+A3A4—B3B4)]

- 2sin 2™ [2(-A B, + A_B, - A,B, + A,B, - A,B, + A,B, + A.B, + A B,)
v, oBa * AgBy - ABg + AgB; - A By + AB, + AgB, + A, B,
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-+

9 3nv

,COS ~
0

2sin 3J v
0

2¢0s %—‘;T—Y
0

9i 4 \;rv
0

2c0s 5—-‘}72
0

-

2sin o\‘;T v
0

2cos 6‘;7 v
0

2sin 9—%’-‘—’
0

Zcoszvﬂx
0

2cos %%‘—r
0

2cos —9—”1
Vo

A

2 2
3—B

(.

0

+2(AA + B

Vo

B +AA + B

0
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B, + A A

4 174 2

2( A B + A BO- A1B4 + A4B1 + A2B4 4
Z(A A + B0B4 + A A - B1B4 + AZAB - B2B3)]
L2( A0B4 + A4BO + A1B4 + BlA4 + A B, + ASBZ)]

-AZ—B2'+2(AA-BB + AA, - BB,
I 2 2 074 074 173 173

L2(AB +A4BO+A1B +AB14 A Bz)]
[Z(A - ByBy + AjA, - BB))
[Z(A B, + AgB, + AjBy + A Blﬂ
MV

[A - B + Z(A BOBZ)] - 2sin—<— VO

e 8mv |
LZ(AO . - By 1)] - Zsiny L2(A0B1 + AlBO)]
-A2 - B2 | - 2sin2TY |2 BT
] 0 0 V0 0-0

_ v, M 2mv
I ut/k = 2 do + 2 ﬂlcosvo 2 lsmvo + Zﬁzcos VO
- 2 gzsinzx;rv+ 2 430053""- 2@ in + 2 allcos4

4"

\Y%

2

By Bzﬁ]

+AB2+AB3)]

0

[Z(AOB2 + A,B, + A Bl):l

(51)

For convenience we will designate the bracketed terms in (51) by C? , C{ 1° ,@1,
- ~ -~ -
a ’ @23 a ’ —{:‘33’ a ’ :@;P u59 éé\ H a’ @6, 0 ’ »@7,

O , and Q 9 respectively. Equation (51) then becomes

&,



- Zg mil—‘"—‘1 + 2 dscos5 - 26) m-e—?—‘-’— + 2Q6cos 6‘;”/
0 0 0 0
6TV 7TV A 8nTv
- 26 m————— + 2a7cos VO - 2€7sm—v(—)— + stcos VO
- 28 S"V + Zﬂcos v ngmgﬂ (52)
Vo Vo ¥V

If we now let v = Vcosw t and expand the cos(cos ) and sin(cos 8) terms which

result, the desired expression is obtained for n 9.

2 [a + Uy, (V") + (gv_> + Qg3 (i‘%\_’.

I _./k

out

4nv
) + Ay, (VO

)

)+ Gyt

om
V()

oMV 6mv A

v, )+ aGJO(VO )+ a7J0(V0
s[@r (5D) + Bl
(mrov

4 [alJz (%Y

0

d.s, (

47V
0

>+ OSJO(SwV
) + QJ (3WV) +QJ

Vo
A (5

8"V> + GJ(

O

)-8
)] cosw_t

anv (”mV
v, ) + Ad, o

0

+

591

)+ @, (T ~ B (3

0

21V

)+ Qo3

3TV

)+ a7, (% ) + Q3

0 \'

)] cos Zwmt

V) - By (T) - A (N

0 0

SWV) . i
) +EQJ3( ]cos 3wt

Vo

6V
Vo

TV
Vo

SR

Vo

v
Vo

as"z( ) * ang(

) * a7J2( ) ¥ ast(
v
Vo

om

-+

[ I (ﬂ) +ﬁ2J3(2\}"V

0

B3 (971:)2) + My (7\? V)

0

) + £3J3(

8TV
Vo

ﬁst (

+

+ higher order harmonics. (53)

From (53) we see that the amplitudes of the fundamental and harmonics are functions
of both the Ai and Bi' This is in contrast to the envelope-detector case where even-harmonic
amplitudes are functions of the Ai only, while odd harmonic amplitudes are functions of the Bi'
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C. TFourier Approximation to Ideal Characteristic

One might again consider using the Fourier approximation to determine the Ci' This
calculation was carried out for the ideal characteristic of Fig. 14 and the resulting Ai and
B, substituted into Eq. (53) (or, for the cases of n = 1, 3, 5, and 7, into equivalent
expressions) to assess the modulators' performance. This approximation method again
proved unsuccessful in yielding modulators with improved performance characteristics,
and hence the results will be briefly summarized instead of presented in detail. The de-
viation from linearity of the fundamental was found to be greater for n = 5 and 9 than for
n = 1, while for n = 3 and 7 the deviation from linearity was only slightly less than for
n = 1, In addition since for n = 1 there is no second harmonic, the conventional
modulator's performance is superior in this respect also. Therefore the conclusion is
again reached that the FFourier method is not successful in designing improved amplitude
modulators.

As mentioned earlier, the problem is probably at least partially due to the abrupt
changes of slope of K(v) which occur at V/VO = -0.5 and +0.5. In an attempt to verify
this, another approach was tried. Instead of approximating the ideal K(v) of Fig. 12, a
new K(v) was chosen which closely follows the K(v) of Fig. 12 for -0.45 < v/VO < 0.45,
but which deviates from it in such a fashion that abrupt slope changes are avoided in the
vicinity of V/VO = +0.5. Using graphical techniques, the Fourier coefficients for this
new K(v) were found and substituted into Eq. (53).

This technique resulted in a systematic, but fairly small, reduction in the deviation
from linearity of the fundamental for n = 1, 3, 5, and 7. For n = 9, however, the
deviation returned to essentially its n = 1 value. The second harmonic magnitudes
decreased only slightly with increasing n. Thus although this technique was more successful
than the regular Iourier approximation of the K(v) of Fig. 12, it still leaves much to be
desired. The improvements which it produces are not substantial enough, or sufficiently

uniform with increasing n, to merit its use.
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D. Maximally-linear Approximation to Ideal Characteristic

The approximation technique which proved most useful for the envelope-detector case
is one in which the C ; were chosen to directly optimize the fundamental and second harmonic
amplitudes. The goal was to minimize the second harmonic amplitude and to make the
fundamental amplitude directly proportional to V, the amplitude of the modulating signal.
We will now apply this same technique to the square-law detector case.

Equation (53) gives a general 2xpression for the demedulated signal from a square-law

detector. The amplitude of the fundamental is given by

amplitude of  _ ( nv (2 mv '3V 4V
fundamentat = -~ ¢ |65 vyt 6y V, + B3, v, )" €, v,
] B (5nV 67VY . &1 [1TVY, B, [87V
! 5T\ v, ) ¢ 8, v, ) il ) " By,
+ By ("J V) , (54)
0
while the aiﬁplitude of the second harmonic is given by
second harmonic  _ v 2V
amplitude [QJ ( 0) * 02 2( VO ) OSJZ( 0 ) * 04 "( Vo )

It should be kept in mind that the ai and ,5’i are functions of the Ai and Bi'

Writing each Bessel function of (54) and (55) in series form, we obtain

fundamental 5 6

amplitnde of _ _ , |7V B . L -8 ) N
= 4[2\70( 1l282|3 3|4;84!~58 168

3 3
+ 787 + 88y + 9 @) (.\.}’ ) (@, - 236’2 + 358

0 3
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and

second harmonic
amplitude

(Y 0@ . 9@ . OB .
‘1,474560(\/) (B + 2°8, + FE + B, + 58

3 3 3 3 3 3
-4ﬁ4+5155+6£6+7ﬂ7+8$8+9ﬁ9)

- 3563 + 4554 + 5985

‘53‘:1
[N
A
S|«
S
o
®
—
-
o
3]
mgh
pu N

D
S
B
+
-3
[S2}
B
-3
+
o
(o1}
0
4

7 7
Y S LA T
g ¥ Y Py - 15,433 (VO) (B, + 2B,

7 ; '
3 33 + 4@, + 5B, 6B 7737 + 870, + 9By

)

% 2
= -4 |2 (Vi) @, + 220, + A, + £ q, + 5°a; + ’a

o }]

4 4
7 .
+ 7207 + 8208 + 9209) '”gé"({/"(;) (dl 1 2442 + 3403

4 4 4 4 4 4
+4G4+5C]5+6C16+7O7+8C18+909)

6 6
m V 6 6 6 6
+ §67—2" (—VT;) (a]_ -+ 2 az -+ 3 as -+ 4: 04: + 5 05

g 8
+ 9 + 79 + g8 + b T (VY
L@y - TAy + 8y - Q) - 151 5 (Vo) @,

8 8 8 8 8 8 8
+202+3as+4a4+5(25 "'606 +7C77 -1-808
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10 10
8 o v 10 10
+ 9°Qy) + 8,847,360(V0) (@ + 27U, + 30Uy

+ 41004 + 5IOG5 + 61006 + 71007 + 81008 + 91009)

- ] . (57)

There are ten different Ai and Bi to be determined: AO, Al’ A2, AS’ A4, BO’ 1’
BZ’ B.g, and B 4 One of these ‘s used up in normalizing K(v) to have a maximum magni-
tude of unity. Another will be fixed when we set B 4 = - A 4 in an attempt to make the

general form of K(v) similar to that of the ideal function of Fig. 14. The remaining eight
Ai and Bi can be chosen to make eight term coefficients in (56) and (57) be zero. The
choice of wiiich eight are made zero is arbitrary. Our choice will be the (V/ VO)S,

v/ VO)S, v/ V0)7, and (V/VO)9 terms in the fundamental amplitude and the (V/ V0)2,
(V/VO)LL, v/vy°, and (v/vo)8 terms in the second harmonic amplitude.

The corresponding equations are

@l + 23B2+ 3363 + 4364 + 5385 + 6366 + 73@7 + 8368 + 9369 =0,

B, + 25ﬁ2 + 35@3 + 4564 + 5565 + 6536 + 7567 + 8568 + 9569 =0,

o+ 2762 .‘ir’ 63 + 4764 + 5765 + 6766 + 77@7 + 87“8 + 97439 = 0,

7.3 2962 +3°@, 4964 + 5955 + 69@6 4 7957 4 3908 + 99_,9 =0,

Q. + 22(]2 +32Q, +42q, + 5205 " 62(26 + 7207 ¥ 8208 +9°Q =0,

a, 2402 +sta + 44q, - 5405 + 6406 @, - 8408 . 9409 =0,
Q,-faq, + fq, + £a, +5%a, + fa, + °a, + °ay + °q, = o,

a, +28q, ~ *a, + 4q, + 5*q, + °Q, + 1°q, + 8%, +9°Q, = 0. @9)
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If we rewrite the above equations expressing the Gi and Bi in terms of the Ai and

Bi’ and if we let B4 = —A4, we obtain

2 .
A4 + 9A4B3 + 35A4£B2 + 91A4:B1 - 7A4A3 + 27A3B3 + GuAan + 133A3131

4

- 19A A, + 63A B3 + 125A

489 2 B2 + 21713,.2B1 - 37A A1 + 117A

-
4 1B3 + 215A.B

2 172

+ 343A1B1 + 189A4B + 243A3B + 351A.,B, + 513A. B, - 61A A + 189A B.;

0 0 270 170 40 0

+ 335A B, r 5L1AB, + T29A B = 0, (59a)

2
- 9 -
A4 + 33A4B3 + "'75A4B2 + 1267A4B1 31A4A3 + 243A3B3 + 1025A3B2

+ 3157A,B

3By - 211A4A2 + 1023A

2B3 + 3125A2B + TTT7A,B

9 0By - 781A4A1

+ T775A.B

3 189 B

+ 3093A1B + 16, 807A + 4149A B, + 8019A.B, + 16,839A2B0

171 470 370

+ 32,769A1B0 - 2101A4A0 + 7533A0B3 + 16,775A0B2 + 32,76'7A0B1

+ 59,049A B, = 0, (59b)
2
- Aj + 129A,B, + 2315A,B, + 18,5714,8; - 12TA/A; + 2187A,B, + 16,385A,B,

- o
+ 78,253A3B1 2059A4A2 + 16, 383A2B3 + 78,125A2B2 + 2"19,.37A2B1

- 14, 197A4A1 + 77,997A B3 + 279,935A.B, + 823,543A.B. + 94,509A B0

1 172 171 4

+ 282,123A,B

3 + 823,671A

2B

- 2,097,153A. B, - G1,741A A, + 277,749A B,

0 0 170 410

+ 823,415A B, + 2,007,151A B, + 4,782,969A(B) = 0, (59¢)



Az + 513A B3 + 20,195A,B

4 4 9 B

+ 281,827A B, - 511A4A3 + 19, 683A

471 373

262,145A3B + 1,953,637A3B1 - 19,171A4A2 + 2.62,].43A2B3 + ].,953,125!.2]32

2
10,077,697A,B, - 242,461A,A  + 1,952,613A B, + 10,077.695A,B,
40,353,607A, B, + 2,215,269A B + 10,097,379A,B, + 40,354, 119A,B,
134,217, 729A, By - 1,690,981A,A  + 10,058,C13A B, + 40,353, 095A B,
134,217, 727A B, + 387,420,489A B, = 0, (59d)

N 2 on2
10A,A, + 6A B, + 26AA, + 10A;B, + 50A,A + i28,R. + 9A7 - 9B}
2 2
34A,A, - 30B,B, + 58A A - 42B,B, + 25A; - 25B, + T4A,A, - TOB,B,
2 2
49A7 - 49B] + 824,A) + 18A By + 90A;A) - 54B.By + 106A,A; - 90B,B

130AA . - 126B1B

2 2
170 0

o + 8lAg - 81Bj = 0, (59%)

} 2
34A A, + 30A By + 194A A, + 130A B, + 674A A, + 350A,B. + BLA
81B% + 514A.A. - 510B.B. + 1282A.A. - 1218B.B. + 625A% - A2512

3 32 372 31 3°1 2 2989

2 2 0
2504A,A, - 2590B,B  + 2401A7 - 2401B] + 17624,A, + 738A,B,

2754A3A - 2430B,B, + 4834A2A

0 3Bg - 4770B,B, + 8194A_A . ~ 8190B.3

0 270 170 170

6561A(2) - 6561B

(=3 \V]

=0, (591)
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130A A3 + 126A

4 4B3 + 1586A4A2 + 1330A,B, + 9650A A1 + 6734A,B

472 4 4771

2 2

+ 729A3 - 729B3 + 8194A3A - 8190B,B, + 31,378A3A1 - 31, 122B3B

2 372 1

2 2 2
5 - -
+ 15, 625A2 15, 625B2_ + 93, 314A2A1 93, 310B2B]_ + 117, 649A1

B, 117,649Bi + 39,442A,A. + 23,058A,B

440 %N - 91,854B,B

+ 94,770A3A 3By

0

+ 235,426A_ A, - 235,170B,B, + 5.‘2.4,.?.90A1A0 - 524,286B (?)

280 280 B

+ 531,441A

170

- 531,441B] = 0, (59g)

514A4A3 + 510A4B3 + 13,634A4A2 + 12,610A4B2 + 144,194A4A1

+ 117,950A,B, + 6561A§ - 6561B°

4 3 + 131,074A3A2 - 131,070B3B

2

+ 781,762A,A, - 780,738B3B + 390, 625A + 3,359,234A

3

2 2
1 2

! 5 - 390,625B By

- 3,359,230B,B, + 5,764,801Ai‘ - 5,764, 801Bi + 912,322A4,A) + 650,178A,B

0 470

B

+ 3,372, 354A5A 8:N

- 3,346,110B,B, + 11,530,114A A

3B oA - 11,529,090B

0

+ 43,046, 72140 - 43,046, 721B> = 0.

- 33,554,430B, B 0

+ 33,554,434A A 1Bo

0
(59h)

It is now necessary to solve these eight simultaneous equations for AO, Al’ A2, 3

B,, B and B

0’ 1’ BZ,

equations were linear; in the square-law case, they are nonlinear and hence considerably

3 in texms of A 4° In the linear detector case, the simultaneous

more difficult to solve. Furthermore it is not known a priori whether real solutions for

the Ai and Bi even exist.

c-71



The Eqe. (59) were solved by computer, and the Ai and Bi were found to have real

solutions. These solutions are

>
1t

- 0.0864814 A4,

5
A, = 0.0010356 A,
A; = 0.0025003 A,
A, = —0.000384‘8 Ay,
B, = 0.2232322 A,
B, = -0.0579300 A,
B, = 0.0099872 A,
B, = - 0.0008140 A,. n =9 (60)

We now know the coefficients of K(v) in terms of A 4 By normalizing K(v) to have a
maximum magnitude of unity, absolute values are obtained.

Similar calculations can be carried out for n = 7, 5, and 3. When n = 7, for
example, three terms in the expression for the amplitude of the fundamental and three terms
in the expression for the second harmonic amplitude can be set to zero. This requires the
solution of six simultaneous nonlinear equations.

The final results for K(v) using the maximally-linear approximation technique are

i 9y i TV
2v, 2V,
n=9 K(v) = - (0.000132 + i0.000280)e + (0.000859 + i0.003433)e
i 57V i 31mv
2v, 2v,
+ (0.000356 - i0.019911)e - (0.029724 - i0.076727)e
;v Ty
2V, 2V,

+ (0.343708 - i0.343708)e + (0.343708 -+ i0.343708)e
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n=7
n=5
n=3

X(v)

K(v)

K(v) =

©.

©.

©.

©.

(0.

©.

©.

©.

©.

.

©.

029724

000859

000250

027340

"18012

000720

000705

351045

023582

016675

352987

i0.

10.

i0.

i0.

i0.

i0.

i0.

i0.

i0.

i0.

i0.

_i3ﬂV
2V0
076727)e

. TTv
_1_,_

2V,
003433) e

. TTv

1oV

001207)e  ©

065522)
348012) e
012645)e

. 51V

1§VO
005565) e

351045) e

050766) e

030586) e

352987) e
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©.

©.

©.

.

- (0.

(.

©.

.

©.

©.

009356

000132

.000720

348012

027340

000250

023582

351045

000705

352987

016675

i0.

i0.

i0.

i0.

i0.

i0.

i0.

i0.

i0.

i0.

i0.

_iSWv
2\70
019911)e
_i9wv
ZVO
000280)e
(61a)
ilinv
2\10
012645) c
i MV
2 0
348012)e
_iSWV
ZVO
065522)e
_d’Yﬂv
2V0
001207) e "
(61b)
. 3TV
1 ——
2V0
050766) e
- TV
ZVb
351045) e
.bmv
_1 —‘_u
ZVO
005565) e ,
(61c)
.MV
lzvb
352987) e
_i3ﬂV
2V0
030586) e ,
(61d)

’



6T @and1g

9°0-

.IQ.Ol

2"

(OLVINAOW 3ANLITWY TYNOIINIANOD)
1°0- 20- £0- v0-
1 1 i | |

O 4 i T T

J11S143LIVEVHD
vaal

C-~74



LTV . TV
13 -vv -1 2 \,0

n=1 K(v) = (0.353553 - i0.353553)e O 4 (0.353553 + 10.353553)e
(61c)

The K(v) of (63) are plotted in Fig. 15 together with the ideal characteristic of Eq. (44).
The performance of the modulators corresponding to these K(v) is evaluated by substituting
the Ai and Bi of Eqs. (61) into Eq. (53) (or, for n # 9, into comparable expressions).
The results are shown in Fig. 16.

From Fig. 16e, the deviation from linearity of the fundamental is seen to decrease
substantially with increasing n. Similar behavior is shown in Fig. 16d for the magnitude of
the third harmonic. Figure 16c shows the results obtain~ " for the second harmonic magni-
tude. Here it should be recalled that for n = 1, no gecond harmonic is present and hence
the synthesized modulators are inferior to a conventional modulator in this respect. Finally
the amplitude of the fundamental is shown plotted in Fig. 16b. It is seen that the decrease
in fundamental amplitude is even more pronounced in the square-law detector case than in
the znvelope-detector case. Thus it is important that constant fundamental-amplitude
curves similar to those of Fig. 10 be plotted to show more accurately the improvement
obtained.

Such curves are shown in Iig. 17 where (a) the deviation from linearity of the funda-
mental and (b) the magnitude of the second harmonic are plotted as a function of n for
various fixed values of fundamental amplitude. From IFig. 17a it is seen that substantial
uniform improvement in fundamental linearity is obtained for increasing values of n in
spite of the fall-off in fundamental amplitude. The greatest improvement is obtained in
going from 1 to 3 stages, with slightly less improvement from 3 to 5, and so forth. That is,
the improvement obtained from additional stages is greatest for small n and decreases

with increasing n,
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TFor the square-law case, the maximally-linear apnroximation fechnique would have to
be considered a qualified success. Fundamental distortion ir uniformly reduced by increasing
the number of stages, but second harmonic is present for n = 3, 5, 7, 9, ... which is not
present for n = 1. The modulator designs which correspond to the K(v) of Egs. (61) are

listed in Table II for convenience.

V. SUMMARY AND CONCLUSIONS

A technique has been described which allows the synthesis of electro-optic amplitude
modulators having arbitrary modulation characteristics. The technique is a direct analogy
of the procedure of Ammann and Yarborough [26] for synthesizing naturally-birefringsnt
networks. With the procedure of this paper, a voltage transfer function K(v) of the form
given in Eqg. (3) can be realized by an electro-optic network of the form shown in Fig. 3.
The synthesis procedure arranges standard components in a particular fashion to form a
modulator having the required voltage transfer fimction.

The manner in which K(v) is chosen is very important. If sufficient care is not
taken in this choice, the performance of the synthesized modulator can easily be inferior
to that obtained from the simple, conventional amplitude modulator of Fig. 1. Several
techniques for choosing K(v) were tried with varying degrees of success. The most satis-

factory results were obtained when the Ci of K(v) were chosen to directly optimize the

modulator property (or properties) of greatest interest. This was done for

two cases of interest: the design of a modulator for use with (a) an envelope

detector, and (b) a square-law detector.

The modulator properties which were chosen (arbitrarily) for optimization in this
paper were the following. The modulating signal v was assumed to be of the form,
v = Vcos wmt. The demodulated signal from the detector will in general contain a dc

term, a fundamental, and harmonics. It was deemed desirable for the fundamental to he
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linearly proportional to V, and for the harmonics to be minimized. Hence modulator
performance was meastved by calculating the deviation from linearity of the fundameuial
and the amplitudes of the harmonics.

Best results were obtained for both the envelope and square-law detector cases by
writing the fundamental and harmoniec amplitudes as power series in V. The Ci were
then chosen to eliminate as many nonlinear terms from the fundamental expression and
as many low-order terms from the second harmonic expression as possibie. The K(v)
so0 derived do indeed give improved modulator performmance (see Figs. 9, 10, 15, and 16);
the modulator designs corresponding to these K(v) are tabulated in Tables I and II. ilow-
ever the improvement is, in some respects, less than might be hoped for. It is likely that

still other approximation techniques will eventually be found which yield further improvement.
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FOOTNOTES
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To put it still more accurately, mv/ VO plays the same role for the electro-optic cell

that Qw does for the birefringent crystal.

The linear characteristic may have any slcpe whatsoever, and hence there are an
infinite number of possible ideal characteristics. We have chosen a characteristic

with a slope of unity.
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CAPTIONS FOR FIGURES AND TABLES

TFig. 1 Model for conventional electro-optic amplitude modulators.

Fig. 2 Basic configuration for the birefringent network (4 stages) obtained from the synthesis
procedure of Part I {21]. F and S denote the "fast' and "slow'" axes of the
birefringent crystals.

Fig. 3 Basic configuration of the birefringent network (4 st‘a,ges) obtained from the synthesis
procedure of Part V [26]; each stage contains a birefringent crystal and optical
compensator. This also represents the basic configuration of the modulators
obtained by the techniques of this paper; in this case each stage consists of an
electro-optic cell and optical compensator.

Fig. 4 Naturally-birefringent crystal used as the basic "building block' of a birefringent
network. This also represents an electro-optic cell used as the building block of aa

electro-optic network.

=
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Ideal voltage transfer function K(v) for an amplitude modulator which is followed

by an envelope detector.

Fig. 6 Periodic ideal voltage transfer functions for an amplitude modulator having (a)

n odd, and (b) n even.

Irig. 7 Fourier approximations to the ideal K(v) of Fig. 6a.

Fig. 8 Envelope detector output vs. V/ VO when modulators having the K(v) of Fig. 7 are
employed: (a) dec component of output; (b) amplitude of fundamental; (c) magnitude
of second harmonic; (d) magnitude of third harmonic; and (e) deviation from
linearity of fundamental.

Fig. 9 Envelope detector output vs. V/ VO when modulators synthesized using the maximally-

linear approximation are employed: (a) dc component of output; (b) amplitude of

fundamental; (¢) magnitude of second harmonic; (d) magnitude of third harmonic; and

(e) deviation from linearity of fundamental. The magnitude of the second harmonic is

zerofor n = 2, 4, 6, 8, and 10.
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Fig. 10

Fig, 11

Fig. 13

Fig. 14

Fig. 16

Fig. 17

Envelope detector output vs. n when modulators synthesized using the maximally-
linear approximation are employed. Each curve represents a constant amplitude

of the fundamental. Dotted lines connect points for which n is even while solid

lines connect points for which n is odd. Shown are (a) deviation from linearity

of fundamental, and (b) magnitude of second harmonic.

K(v) obtained using the maximally-linear approximation (n odd, envelope detector)
K(v) obtained using the maximally-linear approximation (n even, envelcpe detector)
Ideal voltage transfer function K(v) for an amplitude modulator which is followed
by a square-law detector.

Periodic ideal voltage {ransfer function for an amplitude modulator having n odd.
K(v) obtained using the maximally-linear approximation (n odd, square-law detector)
Square-law detector output vs. V/ VO when modulators having the K{v) of Fig. 15
are employed: (a) dc component of output; (b) amplitude of fundamental; (c)
magnitude of second harmonic; (d) magnitude of third harmonic; and (e) deviation
from linearity of fundamental. The magnitude of the second harmonic is zero for

n = 1,

Square-law detector output vs. n when modulators synthesized using the maximally-
linear approximation are employed. Each curve represents a constant amplitude of
the fundamental. Shown are (a) deviation from linearity of fundamental, and (b)
magnitude of second harmonic. Dotted lines connect points for which n is even
while solid lines connect points for which n is odd. For n = 1, the magnitude

of the second harmonic is zero.
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Appendix D

A COMPUTER PROGRAM FOR CALCULATING THE FOURIER SERIES COEFFICIENTS

AN ARBITRARY IDEAL FUNCTION

A common method of choosing the C, of Equation (2.1) is to make them the

Fourier series coefficients of the ideil function. Since this calculation
was repeated many times during the course of this work, a program was written
so the coefficients could be calculated by computer. The computer language
used in writing the program is FORTRAN (for a Control Data Corporation 3200

computer) .

The program accomplishes the following things. For a given ideal
function, the Ci are calculated for the cases n=1, 2, 3, ... 20. In
each case, the Ci are normalized so that the maximum value of |C(m)|2 is
unity. In addition, for each case the computer plots the magnitude of C(w)
over one perlod. It should be ment.oned that the program can handle
asymmetric as well as symmetric ideal functions; these result in complex
values for the Ci' The only restriction is that the ideal function must be

real.

The program is given below.
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PROGRAM FOURTFR
FXTERNAL FUNCT

COMMON F(121)

COMMNAN 1ARD Y TFUNCT

DIMENSION G(121)4A(15)eB(15)sGRAND(IP1)eX(121)sSUM(121)

A AND R ARF FOURIFR COFFFICIFNTS o
FIX)=AN+SUMA (K)¥COS(KXI+R(KI¥STIN(KX) ) e K=14KF FOR KF=z14N

100 FORMAT(THN 4 PHC (0 124 2H)=aF 12 4542XeF 126501 0X0F12,5)
102 EADMAT(IHT )
107 FORMAT(1H +5(FBe5:2PXsF12e544X))
1tNa V-‘i‘ﬁDMl\T(‘lH"\)
1058 EARMAT(E14,47)
N=1nNn
PDi=1,1415027
REAN 1N=, FDQ
1ADNA=N '
IFUNCT =1
NN 1 K=14121
X(K)=(K=61)%P1 /6N,
1 E(KY=FUNCT(X(K))
PRINT 109y (X(JYeF(J)eJd=145)
NA 2 1=1,423
f Sz %5
2 PRINT 103 X(I64+1)eF(1G54+1 ) eX(154+2)eF(IS54+2)eX(15+3)eF(154+3) X (1544
IR (IB+4) o X (1545) 4F (15+5)
PRINT 103, X(121)4F(121)
CALL PLOT(0)
ANS=SIMPSON(FUNCT s =P 14 PT14FPS)
AN=ANS/ (D #P 1)
PRINT 192
K=
PRINT 100, 14 AD
CALCULATE A(K)Ye R{KYye K=1 N
NN 2 kK= N
1NRN=K
TEUNCT=Y
ANS =G IMPSON(EUNCT =P 1 4Pl 4FPS)
Ak Y=ANS /DT
IFUNCT=2
ANS =S IMPSON(IFUNCT +=P1 4P 1 +FPS)
N R(K)=ANR /DY
POINT Al R (K)
NO 40 K=y N
Cl=A(Y/D,
COzuR(K ) /D,
AN PRINT 10N, KeClaCP
FARM ARGUMENTS AND INITIALIZF SUMS
NA BN k=1 4120 )
S0 SUMIK)I=AO+A (1 )¥COSIXIK)I+R (1 I *¥SINIX(K))
NN AN K=y N
PRINT 102
IF(KeFNel )BT ¢S
S1 NO B0 U=1e1218
A0 SUMIUIZSUMIJ)+A (KIRCOS (KEX (J) I+B (K ) *STIIOKEX () )
A1 SUMMAX=SUM( 1)

D=2



N AP J=241219
A2 SUMMAX=AMAX 1 (SUM(J) ¢ SUIMMAX )
N A g=14121
AR F(JY=SIIM( ) /RULIMMAY
PRINT 103¢ (X(JYeF(JYed=1e5)
NN 70 1=1 427
TS EL
70 PRINT 103 X(IS+1)eF(ISH1 ) e X(I54P)eF{IB+2)aX(154+3)14F (1543 e X (1544
YeaF (1544 ) o X TB4B ) o F (1545
PRINT 1Ny X(121)4F(121)
DD INT 174
MO 74 1= 4%
Tzt 41
12=1=1
C1=A(T11)/(P ¢ %#SUIMMAYX Y
CP=wR(11)/(2«%*SUMMAX)
74 PRINT 100¢ 124C1 402
r1=A0/SUMMAX
PRINT 100, Ke1
NA 76 1= 4k
Cl=A(1Y/(24%SUMMAYX Y
CP= R(TY/ (D XAUIMMAY Y
TV =41
7E DBRINT 100, 11401462
CALL DI AT
RN COANT INUF
STOD

—
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20
an

a0
50

60
76

AN
an
an

o

%]
aa

FUNCTION FUNCT (X)

COMMON G121

COMMON Ny TFUNCT
P1=1,1418927

TR1=2 4 /P
YF(X[LIQL”DI))lOOQI

IE(Xel . Tal=1eg®¥D1 /04131027
FnGNRT (2 54 TPRI¥X)

nnoTN Oy

[F (Xl . Tel(=P1/40) 130440
e QDT (e g S THTHX Y

nnTHO 91
[F(Xel. TeP 174415040
E=SORT (o S4+TPT#X)

anoTNn 91
YF(X-LT.(30*PI/40))70080
F=GART (] 45~-TPT %*X)
~OTH 91

1E (Xl Fa27190,4,100
FoaQORT (-1 o5+ TPT X))
TF(TﬁUNrT.W0.1)Q?.Q?
EUNCT=F%CAS (N£X )
DE T ION
IFE(IFUNCT qFNe 2104 4O
FUINCT=F XS TMNIN¥X)
RETUDRN

PRINT 06 IFUNCT
FORMAT(ITHO ¢ 7HIFUNCT=¢13)
CALL ARNNDMAL.

PRINT 101, X
EORMATITHN ¢ PHX=eF 1847
CALLL ARNNRMAY

4 N1a

D=kt



FUNCTION SIMPSON(F ALl +BeE)
EXTERNAL F
DIMENSION DX(30)4EPSP(30)eX2(30)1eX3(30)eF2(30)eF3(30)eF G230
DIMENSION FMP(SU)cFBP(3Q)vaF2(‘U)9E5T3(30)0PVAI(3093)
DIMENSION RTRN(30)
INTEGER RTRN
A=A
EPS=E
lLvi.=0
ML VL.=C
ABSAR=040
EST=0e0
DA=B-A
FA=F (A)
FM= 440%F((A+B)/7240)
FB=F(B)
10 LVL=LVL+]
MLVL =L VL
DX(LVL)I=DA/340
SX=DX(LVL)/6e0
Fl=440XF (A+DX(LVL)/240)

X2 (LVL ) =A+DX (LVL )
F2 (LVL)=F (X2 (LVL))

X3 (LVL )=X2 (LVIL)+DX (LLVL)

F3(LVL)=F (X3(LVL))

EPSP (VL) =EPS

Fa (LVLL) =6 e0*F (X3 (LVL)+DX(LVL Y /240)
EMP (LVL )=FM
EST1=(FA+F1+F2 (LVI.) ) *SX

FBR (LVL)=FB
EST2(LVL)=(F2 (LVL)+F3 (LVL ) +FM)%5X
EST3(LVL)=(F3(LVL)I+F4 (LVL )+FB)*SX
SUM=ESTI+EST2(LVL)I+EST3(LVL)
ABSAR=ABSAR~ABS (EST)+ABS (EST1 ) +ABS (EST2(LVL) ) +ABS (EST3(LVL))
IF(ABS(EST-SUM) eLEe EPSP(LVL)*¥ABSAR)20¢15

15 IF(LVL «LTe 30)30.21
e — .. RO IF(MLVILel.Te4)15s21

21 Lvistvi-1
- [=RTRN(LVL)
PVALL (LVL » 1 )=SUM
GO TO (40450¢60)s1
30 RTRN(LVL }=1
DA=DX (L Vi.)
FM=F1
FB=r2 (V)
EPS=EPRSP(ILVL)I/1e7
EST=ESTH
GO TO 10
40 RTRNILVL)=Z
DA= DX(LVL)
T FA=F2 (LVL)
FM=FMP (LLVL.)
FB=F3(LVL)
ERS=EPSP(LVL}}/17
EST=EST2(LVL)
A=X2(LVL)
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GO TO 10

50 RTRN(LVL)=3
DA=DX(LVL)
FA=zF3 (L.VL)
FM=F&4 (LVL)
FB=FBP (VL)
EPS=FEPSP(LVL)/1e7
EST=EST3(LVL)
A=X3 (VL)
GO TO 10

60 SUM=PVAL (LVL 1 )+PVALILVL :2)+PVAL (LVL+3)

IF_ VL 2GTe 1020470
70 SIMPSON=5SUM

RETURN

END
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SUIRMITINE DI AT (N
NMAAR F(12%)
NIMENSTON  LINE (121)
COANGT=1 N0
TRLNF =6NA06NA0R
TAST=54ANANANA
[ 1=2MANANAOR
INASH=4060GANANN
1D US=20ANANAMA
WRITF (Ale1N) N
1N FARMAT (7H] DI NT L 12)
AR DA 1=14121
LINE (T )= TR{_Ni
2N (‘nMTvl\ﬁ.lr—’ )
LINF(A/1Y=11
LINE(ERYy=NIANANRNRA
LINE (50)=2160A0ANR
, LINF(60)=01606060R
51 NA 27 1=14121
L IF(F(‘Y’Q'GToiol]’??Q?‘?
20 E(1)==00,0
27 CONTINUFE
28 NA 40 1=14121
TF(F (1) eRT o ONSTI2A 4N
PA LINF(TI=TAST
F(1Y)Y==Q0,0
AN CART IRUIE
WRITF(61450) (LINF(1)eI=10121)
S0 FORMAT(1H «5Xe121A1) )
CANGT=CONGT=40
1F (CONSTeLFe=0e01)1514A0
S IF(CONSTeLTe=e02)90 452
K2 NN &7 1=1,4121
LINE(T)=1NASH
= CANT INUS
NO G4 T=14121,1FR
L INE(TY=1P 1
sS4 CANTINLE
~n TO PS5
60 DO A1 1=1,121
LINF(1)=TRLNK
61 CONTINUF
LINF(Al)Y=11
IF (CONSTelTee995 6 ANDcCONSTeGTeeI85)98499
OAa |I_INF (5R)Y=N1ENAOANA
LYNF'(GQ)z‘?"-!F)ﬂF\OFaOR
LINF (AN =N0KNK0K0R
N TA SR
09 1E(CONST LT e eBOReANDCONSToOT 0o 885162467
62 LINF(R0)Y=2360/060R
LINF(ANY=116NANANA
N TH 28
63 1E(CONST oL T 06 795 e AND e CONS T aGT e e 785164 ¢65
A4 | INF(59)=23606060R
o LINF(60)Y=10606060R
~N TN P25
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GR IF(CONST oL T 0 6 AFOR g ANN qCONS T ¢ CT 6 ¢ SBS VBB ¢ HT7
AA | [M!‘«"(GQ):'Q"}&(\F,GF,HR

LINF (A0 ) =N760606NR

6 oTA 285
67 TF(CONST el T ee59%5 ¢ ANDeCONST ¢ GT o e 585 )68 469
68 LINE (50)=33606060R

| INE (RO )Y=NBKNA06NA

~n TN 25
69 TE(CONSTeLT 00495 e ANDeCONST eGT e s485)704 71
70 | INF (59)=33606060R

LINF(AD)=0R6NA0ANR

ey TN o5
71 IF(CONST LT 00305 ¢ ANN ¢ ONST (T ¢ ¢ 385172473
7D L INF(50)=13KNA0ANRA

LINF (AN =NARNAKNENR

N TR 2R
T3 IF(CONSTelLT 00”950 ANNeCONSToeGT e 285)74,475
74 LINF(59)=33606060R

LINF (60)=N360K0A0R

G TH 285
7% IF(CONSTelLTee195eANDeCONSToGToelB5) 76477
76 LINF(59)=3260606NR

LINF(AN)=NP60606NRA

AN TA oR
77 IF (CONSTel.T e o005 e ANNeCONST ¢ AT ¢ o 0851784 2%
TR L_INF(RO)Y=1IANANANR

LINF(AN)=N16NE06NR

QN FOANT IALIE
WRITF (A1.10N)

100 FORMAT(IH ¢3Xe4H~18B0011Xe4H=135411Xe3H-90+12Xe3H~45¢14Xs1H0

X11Xo?Ha%o13X02H90013X01H13%01?X03H18“)
WRITF(A1+4101)
101 FORMAT (111 )
WRITF (61.+1N0)
NO 120 1=14121
IF(F(1)el. Ta=1e11131104120
11N £ (1)=-00,0
120 CONTINUE
NO 130 T=1,4121
LINF(1)Y=1NAGH
1230 CNANT AR
HO 140 T=14121418
LINF(1)=1D_US
140 CONTINUF
WRITF (61¢50) (LIN“(?).Y=1.12!)
NH 180 I1=1417)
LINF (1) =1RILNK
180 CONT INUF
LINF(AY Y=T1
18R NA 1RO T=1,4121
IF(T(TYeiT o CONST YL 704 1R0
170 LINF(TY=1AST
F{1)=~0Q,0
180 TONT INUF
WRITE(61450) (LINF(I)el=1e121)



| U

CONST=ZCONGT < o0
NO 100 1214121
LINE ¢y =10 N

190 CANT IALIE

LINF(AL =117

POO TF(CONSTeLTe~e105¢ANNaCONST ¢GTa=e115)2104211
210 LINFIAN)YI=N] ANACANA

211

L INE (RO ) =13KNADANR
LINF(ERI=TNHAQH

N TA 155

IF(CONST LT e=0205,ANN 6 ONST ¢GTe=e215)2124¢2173

P12 LINF(A0)=026060601

LINF (59)=33606060R
LINF(SR)= 1NAGH
fOTA 155

P13 IF(CONSTelTe=eI05 AND ¢ CONST ¢ GTe=e315)12144215
214 LINF(ARDNYI=ZNZHKNANACR

LINF(59)=3360ANACH
LINE (RR)=1NASK
AN EATE Rele

215 IF(CONSTeLTo~e405,ARNDeCONSTeGCT c=e815)12164¢217

216 LINF(ANYN46N606NR

LINF(R9Y=AIA0ANK0OR
CLINE(SARY= INAGH
~fA TA 188

717 _,FfCQNSTQL,To-.‘T\ORQAN_h.CONSTQGT_o‘QSIE)’218_'?!9 )

PIR LINF(ARD)I=D50606NR

L JLINF(S9)=33606060R

LINF(SR)=TNAGH
AN TN 188

F— - — -

219 IF(CONSTel Te~e6054ANDeCONSToGT e=e615122007721

. P20 LINF(60)1=06606060R

221
P22 LINF(60)=076060A0R

LINF (59)=1336060A0R
LINF(SR)=TDASH

o TH 165

IF (CONSToLTe=e 7056 AND e CONST  GTo=e715)227 4223

LINF(50)=336"ANANR
LINF(S8)=IDASH
N TH 18R

223 IF(CONSTeLTo~0805eANN¢CONST ¢GCTo=eB15)1224 4226
2P0 LLINF(AN)=1NANADANR

ILINF(50)=21R0ANANA
LINF(RR)=INASH
AT 168

225 IF(CONSToLT 6= e9056ANNeCONST ¢GT 6~e915)2264¢227
P26 LINF(AN)Y=11606060R ’

LINF (59)=33606060R
LINF(SR)= IDASH
an TN 18R

227 TF(CONSTelLTe~1e005,ANDeCONSTeGTe~14015)228¢229
PR LINF(AD)YI=006ANKNANOR

LINE(S9)=3360606NRA
LINF(S8)=01606060R
LIS (B7Y=TNACH

G TN 185



229 IF(CONSTelLTe~1e1056ANNCONST 4GTe=1e115)2304231

230 LLINF(A0)=N16060608
LINF (59)=336N6060R
LINF(®R)=016NA0ANA
LINE(R7)=1NAGH
a0 TO 155

Pl TF(CANST o LFe=1613)1132,15%

1729 DETUON

N
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Appendix E

A COMPUTER PROGRAM FOR THE SYNTHESIS OF LOSSLESS NETWORKS CONTAINING

EQUAL-LENGTH CRYSTALS AND COMPENSATORS

This Appendix gives a computer program written for performing the
synthesis procedure of Appendix A. The computer language used is FORTRAN
(for a Contrel Data Corporation 3200 computer). The desired Ci are the
inputs to the program. The computer calculates the rotation angle ei and

compensator delay b, for each stage of the network. Having calculated

i
the ei and bi , the computer then calculates the C(w) which is obtained

from them as a check.

The program is given below.
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YYD

Il
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101

107
103
104
105
106
107

108

DRACDAM SYNTHES

PROGRAM FINDS THE RELATIVE CRYSTAL ANGLFS AND RFTARDATIONS
FOR AN OPTICAL FILTFR WITH N CRYSTALS FACH FOLLOWFD RY
AN OPTICAL COMPFNRATOR

TYPE COMPILEX (4) CMPI.X4CNONJ
TYBF COMDLFX (4) CeFeAsReNIRR«RT

TYDE COMD| EX (4) FTMP

INTFGEFR ARRTN

COMMON NoeC(17)0I0sF(17)0A(33)sR(32)eN(17)
NDIMFNSION RR(16)RI(16)

C 15 ARRAY OF GIVEN COMPLFX COFFFICIFNTS
10 1S MAXTIMUM VALUF OF FUNCTION
A 1S ARRAV OF X POLYNOMIAL COFSFIAIFNTS

" FAPMAT QTATEMENTS

FORMAT (THOG1OHC(1)e T=0ael7)
ENPMAT (1HN e IHTN= 4F1447)

FORMAT (1HOG10OHA(TYe 1=10413)
EARMAT (1 HO ¢ OHRNNTS ARE)

FORMATC(IHND ¢ 10HN(T)e T1=Nss13)
FORMAT (1HO ¢ 14HNO INVFRSF FORsI3+8H TH ROOT)
FORMAT ( 1HO 4 22HCONJUGATF INVFRSFS ARF)

FORMAT (1 HN ¢ 2 1HNORMAL IZFD ND(1)e I1=Nge13)

FDG=] NFaN?

GFT COFFFICIFNTS OF FI1.TFR TRANSFER FUNCTION
CALL RFANC

IF(NFNeNYAEY ¢

INR IR ] NEW |

PRINT £ ADRAY

PRINT 1014 N
CALL PRNTEC(N] oCe?P)
PRINT 1024 D

COMDUTF F (1)

NA 1N T=1 4N
Fl1)=CMPLX(Nes0e)

11=1=1

NJ=NY =T

NO & J=14NJ

JIET140

FU1Y=F (1)Y4C(J)¥CONJIC(JTY)
CONT INUIF

COMBUTE A1)

M= D RN
MY =My

E=2



NO 20 T=1 N
I1=N1=141
AC1)Y=—CONJIF(T1))
NT=NT 41

PO A(NTY==F(141)
A(NIYI=T10%¥10~F (1)
AN=CREAL (A(NY))

-
"""" ¢ PRINT A ADRAY
-
T PRINT 103, My
CALl DRNTE (M1 4AeR)
.
(o FIND RANTS
-G _
CALL POLYROOT (MsAs140E=054R¢ABRTN)
T  IF(ARRTN.FN.N130440 '
c FORM AND FIND CONJUGATF INVERSFS
iy e AL CTNVER:
. PN 35 1=1¢M
T TMPEONORM(R (T ) ) kRD o .

TF(TMDFNgN, )25, 2

3 RR(JI=R(T)
RI(J)I=1e/CONJIR(TY)
T1=1+41
NA 13 K=l M
CRFEJ=CREAL (RT(J))
. CREK=CRFAL(R(K))Y I
CIMJ=CIMAG(RT(J)Y)
CIMK=CTMAG (R(K))
IF(CRFJeFAeNaN)3243223
P23 IF(ABS((CREJ=CREK)/CREJ) «LE¢FEPSeOReARS (CRF J=CRFK) ¢ LEsEPS) 32433
22 IF(CIMULENGNyN) 34,3475 '
2425 IF(ABS((CIMJU=CIMK)/CIMU) eLEeFPSeORARS(CIMIU-CIMK) LE«EPS) 34433
27 CNANTINUE o T

PRINT 106G, J

NO 6NN 1= M

P=CRFAL(R(T)Y)

N=CIMAGI(R(T1))

CTMP=1 o ZOANJ IR (T ))

X=CRFAL (CTMP)

Y=CIMAG(CTMP)
500 BRINT 5016 PeQeXeY
501 FORMAT(IHO WP (F1467402XeF144745X))
T T TeA TTA AN

74 R(KI=CMPL X(NgeNe )

Y mm e m e e =

RITY=CMD_X(NgoeNe)
RGN .
QAR CANT INLIF

e TTPRINT ROOTS

T PRINT 104
CALL PRNTC(N«RRe 1)
PRINT 107
CALL PRNTC(NeRIe1)

Ee3



R

RER TR

N

A

L7 N =nIxe

40

41

CALLL COFFE (NMaPR¢ M)
POINT N ABDAY

PRIIT_10%, N
CALL PRNTCUINT 4N ?P)

NABMAL 17F COFFET1CIENTS

Q'IM:H.» )

RO A T=1 4N
SHIM=QUIMECONORM (D (T ) Y %%D
N=CART (AN /GLIM)

nNA 27 1=1 4N

PRINT NORMALIZFN N ARRAY

PRINT 108, N
CALLL PRNTC(N] 4Ny P )

TCOMPUTF ANGLFS AND PHASF SHIFTS USING FIRST N ROOTS
CALL ANAGLES )
CONT INUFE
TN
CONT INUIF
arAD o T
FNID

E=h



SURROUT INF RFANC

TYPF COMPLFEX (41 CMPLXsCONY

TYPFE COMPLFEX (4) CoeFeAgReN

COMMON NeC(17)910sF(17)0A(33)4R(32)4N(17)
PFAL 10

NDIMENSION 1(40)

NIMENSTION P(2417)

-
' "READ COFFFICIENTS SYMROLICALLY ANN PRINT
T RFAD 14 M
1 FORMAT((RT11N))
T e T M o18 NUMRFR NF wnRNe
IE(MgENgNY 7410
10 REAPD 24 (1(J)e J=1eM)
2 FARMAT (2084
o PRINT 7
— 3 FORMAT (1H1416HCOFFFICIFNTS ARE)
’ PRINT 46 (1(J)e J=1 M)
4 FORMAT (1MN432A4)
- ,
c NEEINF COEFFEICIENTS
e
REAN 14 N
T
5 ¢ N 1S NUMRFR OF CRYSTALS
r
v O RFAD COFFFICIFNTS .
N =NG
READ Se (P{1eJ)YsP(PaJ)e J=10N_1_.)
TR O FARMAT((AF2NG10))

N A J=1 M1
A CLJYI=CMDE X(P(YeJYeP(PeJ))
RFAD 5,6 IN
RETLION
7 N=0O
RFTUIDN
FAIR



101

2
102

SUBROUTINE PRNTC(NsRP M)
DIMENSION P(24+33)

GO TO (142)e M
PRINT 101s (P(1e]1)aP(241)s 1=14N)
FORMAT (1HO 42 (E1366:2X4E136¢645X) )
RE TURN

PRINT T102s (P(1o174P(2e1)s 1=14N)
FORMAT(IMO W4 (EL136642X0E13e644X)7)
RETURN

END
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EIINICTION CORJIC)Y

TYDRE COMPLEYX (4 CMDL X4CONYJ
TVYDOE A BX (ay
CONY=CMO| X (CREAL (C)=CIMAG(CH )
DTN

=NIR

E-T



SURROUTINF POLYROOT (MeCeFPS¢R¢ARRTN)

9QOGQAM F!ND% ROOTS OF POLYNOM!AL WITH COMPLFYX COFFFICIFNTS C(1)
AND WITH NEGREE & | Fn 32

M 1S DEGRFE AF POLYNOME AL

Cl1Y 12 LIST OF COFEETCIFENTS

€ MUST RF DFCLARFD COMPLFX

C(1) 18 COFFFICIENT OF HIGH=ORNDFR TFRM

FPS 1S NFSIRFD RFLATIVE FRROR IN ROOTS

R 1S LIST OF REAL AND COMPLFX ROOTSs MUST BF DFCLAQFD COMBLF X
ARRTN 1S ARNORMAL RFTURN FLAGs =1 FOR NO CONVFQCFNCF

TYDF COMPLEX (4) ROOT«RCaF sGURESS, CONY

INTEAED AQRTN

NIMENSTION C(33)eD(3P)

J=1

Ni=M

ATt =N+ 1

5 CALL FINDROOT (NsCeFPS«ROOT ¢ ABRTN)
IF(ARRTNGFN4N)10,410N
10 TEST=zCIMAGIRNOT)
IF(TFST 4FNeNe 120450
r DEAL ROANT a
2N N=Na?
INE R
PJYy=panT

— e ———o— . - -

INERTY
NN IN 122 4N
20 C(IY=C(1I4+ROOT*C (1=1)
IF(NGFNGNYITINN, 40
T a0 TR (NGFQe1)80 S
C COMDY_ FY RANT
T &0 CALL EVAL (NeFosROOTF)
F1=CNORM (F )
R(JY=PAOT
NENEY
N=Nw1
AT =N 1
NA X1 1=224N1
1 FTY=C(TI+ROOTHC (1=1)
GUFSS=CONJ (ROOT)
FALL FVAL (N4 o QUESS F)
E2=CNORM (&)
TE(F2 L FeF1 182,40
52 ROANT=GUESS
~An TA 20
- LAST LINFAR FACTOR
A0 R(J)==C(2)/C(1)
100 CONT INUF
DETURN
NN

TN YY D YD
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SURROUTINE F INDROOT (NsC s EPS ¢ROOT s ABRTN )
c S/R FINDS ROOT OF POLYNOMIAL USING TECHNIQUE BASED ON
- N=ALFMAERT~S FMMA
_ TYPF COMPLEX (4) GUESS:POINTsFsROOT+CMPLX«DFLRIDELTC
INTEGED ARRTN
NIMENSTON POINT(4)4FN(S)eC(373)

r INTTYAL T 7
e APQTN 0 ) o i ) o L ~
AUFGS=CMDL X (o10el)
______ s GUESS 1S CENTFR POINT OF SQUARF WITH VFRTICFS POINT (1)
- FVALUATF POLYNOMIAL AT GUFSS -

CALL FVAL (NeCaGUFSS 7y

FN(1)=CNORM(F )
NFLR=CMPL X (45404 )

NELT=CMPL X (Nese5)

_____ I L - o
12=0
C ) 11 INCREMENTS WHEN'FFNTFR POINT 1S MOVFD., STFP SIZE REMAINS CONSTANT
C 12 INCREMENTS WHEN STEPR SIZE !S DFCREASED. CFNTFR pO]NT REFMAINS SAME
-
C HAVF THERF RFFN F!VF ATTFMPTS WITH DQPQFNT STFD SIZF
~

TN IF{11,LTe5R320430

c NNy KFFP TRYING
oA 11=1141

1F (114 Te50)50,131

¢
¢ YESs HAS STEP S1ZE FVER BEEN DECREASED-IF YESs KEEP ON TRYING
TR0 IR (12.6TL 020,40 0 0 T T T TTm T rmmmmn e m e S
-
T 6T T NOe INCREMENT STEP S1ZF AND START AGAIN 777
o 40 11=y L ) e
NELD=A ¢ £NFL P
NE) 1=R4ENFY
T NEY 1=0 ¢ ¥ L el
C (‘ﬁMDl!T: PAINTS o ~ B
—-C t
50 POINT (1)=GUFSS+DFLR
— PAINT (2 )=GUESS=NFY B
POINT () =GUFSSHDELT
o POINT (4)=GUFSS-NFL_1
-
~ SVALUATFE POLYNOMTAL AT POINT(1) i
-
""""""" RN AN 1=2,F )
CALL FVAL (NsCoPOINT(1-1)4F)
T A0 RNETY=CNARM(EY o T
IF(1”7eGTe101101 470
e 1101 e — )
c ARF VALUFS OF POLYNOMIAL ALL SMALL
e
70 DN RO 1=14K
T T U TR (RN T Y elFe 104180481 °
RO CANTINUF
TR O vES ) - T

eo TOHO 101

E=9 : e



¢ NOo ARF VALUFS OF POLYNOMIAL Al L CLOSF

-~
’

B1 NN 100 T=14%

N0 90 J=1,45

IF (ABS(FN(T)=FN(J))elLEeleF=03)90,101
o0 CONTINUF

100 CONTINUFE

~
C YFSe HAS STFP SIZF FVFER RBFEN DFCQFASFD
"""" T TTTIE TNOT, INCBEMENT STEP St
IF(IRP{GTeNYINT 44N
TR ATHEDWTGE, WEED AN AN TNG
c NOs 1S GUFSS A RONT
~
101 IF(FN(1)elLFaleF-1N)102,4103
- vES
102 RPANT=GUIFSS
TTTRETUION o " T oo
~
TR NO+ TS ANY POINT A ROOT

10 NH 110 1=2,5

' TF(FN(T ) el FeleF-10)1114110
' 11N CONT INUF

T TTen A 112

ol veg
"""""""" 111 POOT=POINT(1=1) )
PFTUIRN
_______ s DR RENL e
e NOs COMPARF CENTFR POINT WITH VFRTICFS

112 NO 116 1=22,5
IF(FN(!).LT.FN(I))11%.121

115 CONTINUF

¢ T ROOT LIES WITHIN PRESENT SQUARE. FECREASE STEP §{7F

NELR=NFILR/?,
N T P IE2I ’ T
r 1S QTFP Q17¢ TOO QMALI_
A=CRFEAL (GIFSQ)
IF(AeFReNeI1 164117
116 IF(CREAL(NELR)eLF«FPS)I11B121
117 1F (ABS (CRFAL (DELR)/A)eLF+EPS) 1184121
118 A= IMAR(GIFST )Y
IF(AeFNeNa)1 194120
119 1F(CREALINELR) «LEFPSY 1024121
120 IF(ARS(CRFALINDFLR)I/A)eLFeFPS)IN2,4121

s NOes HAVF THFRF BFFN TOO MANY TTFRATIONS
121 IF(1P4GTe5NY 114127 L o
r (\Ia]
122 12=1241
T T UUTTTTEATFA &N -
~
e ROOT LIES QUTSINE PREASFNT SQUARE. FIND MINITMUM POINT
r EOR CENTEFR OF NEW SOUARE
TS TR T=EN(R) T
J=1

E=-10



NG 130 [=3,5
JF(TFST ol FeFN(TI)I13N4174

T 1P4 TERT=FN(1)
- Jd=t-r . o

17A FANTINUF
AUIFQR=BATINT ()

ENCTY=FPN(J41)
6N TN 10

- vEe, SFT ARNNRMAL RETUIRN
131 ARRTN=1

PRINT 173 o
132 FORMAT (1HO414HNO CONVFRGENCF)
T T peaTzaluRFes '
RETUION
"""" e T i
e e e ol o
N e — e S —— —_— e - - —— — - -
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SURROUT INFE FVAL (NG C e GUFSS 4 F)
TYDPE COMPILEX(4) CIFQSGF o
NIMENSTAN ¢ (27)
NEY =N |

TFzC () #GUFSS4C(P)
Hno 1N 7=70_N1

- 10 EzFRGUFSS4LCIT)
. RFETURN ) L L
=4 N}

. E=12



SUBROUTINE COFFF (KeYeMeAl 4R1)
c Xe Y ARE REAL AND IMAGINARY PARTS OF THE ROOTS
c M 1S NDFGRFF OF POLYNOMIAL
c " Aly B1 ARF RESULTING COFFFICIENTSs RFEAL AND IMAGINARY PARTS,
o BREGINNING WITH HIGH-ORNER TFRIM
DIMENSION A1(25)¢R1(PS)eAP(P5)4R2(PF)eX (P4 )4 Y (P4)
M1 =M1

B1(mM1y=0,

oot A1 (1)=X(1)¥X(2)=V(1)*¥Y(?) L
Bl i1)=X(1)Y%Y(2)+X(2)%Y (1)
A1 (2)==(X(1)4X(2))
Rl (2)==(Y(1)4+Y(2))
e . IF(2=M)S 0844

S N0 3 1=3+ M
A2(1)==X{1)*A1(1)+Y(T)*RT (1)

B2{1)==X(1)*¥R1 (1))=Y (I )*A1 (1)
y L=1-1 L - i _
no 1 J=2. L
S A2(JI=AL (U=1)=XTT1)I*A) (YI+Y (1)*RT1 () .
1 B2(J)I=RI(J=1)=Y(TII¥AL (U)=X(T)¥R] (J)
e A2(1)=A1(1=1)=X(1]) _ )
R2(1)=R1(1=1)=Y (1)
Do 2?2 k=141 ) )

Al (KY=AZ (K )
o 2 R1LUO=A2(Ky - .
3 CONTINUE
Hmm e < 4.D0 6 K=1eM1 e

AP (KY=AL (K
6 R2(KY=R1 (K)

o 7 k=temy T
IR LA . Sevt S - R
AL (eYy=AP ()
7 RI(KYI=R2(J)
T U RFTURN B T o T
e ENOL - — -
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SURROUT INE ANGLFS
COMMON NoC(17)e104F(17)sAC33)aR(32)eN(17)
TYDF COMDIEX (4) CMPLYXCONJY
TYPE COMDLEX (4) CoeFeAsReNICP
TYPFE COMPLEX (4) Fl1eSTeAARRICr4CTMP ¢F B eFSeFF oFM
PFAL 10
REAL ML)
DIMENSION ITH(17)sFMINCI7)eSTI(17)aFT1(17)4THI17)eCP(17)
PDIMENSTION AA(1742)¢BR(242)eCCI1742)eR(17)
P1=3,1415927
DATOD 1RO, /P
100 FORMAT(IHOQIBXoQHF(I)o?lXcaHQ(I))
101 FOQMAT(IHO.P(F]& 79?XOF14.703X)’
102 FORMAT (1H1+43Xe20HTHETA(T)s B(I)s 1=14413412H THETAP. RAP)
103 FORMAT(1HN4BXe1445H DEG sF7¢345H MIN o5XeE14,7)
104 FORMAT (1HO 4 IHMU= 4F14,47) ; o
106 FORMAT (1HN+2BHN (1) MULTIPLIEN AY EXP (1%¥MU))
106 FORMAT(!HO.I3X.4HC(I)0?6X3]5HCALCULATFD,C(Y))
T T T M =Ny o _w' N )
M1 =N1
CTMP=N (M1 )/ (M])
THR=ATAN(CNORM(CTMP Y )
TH(M] y=THP ’
R(Ml)“ATAN?Pl( CIMAG(C(I))oCQFAL(C(l)))
COSR= COQ(R(M]))
SINR=SIN(R (M) )
FR=CMPLX (COSR S INR)
A= ATAN?PI(CIMAG(CTMP)-PQFAL(CTMP)1
T U U TMu=R (MY YA T T '
FM=CMPLX(COS(MU) ¢ SIN (MU
PRINT 104, M
NO 8 1=14M1
S NEIY=NCTI%FM
PRINT 1 0
CALL PRNTC(M] 4Ne2)
T1=THP¥RATON
ITH(MY Y=T1
FMIN(MII=ARS((T!«1TH(M] ))*AD,)
SINP=CIN(THD) '
COSP=COS (THP)
NO 1N =1 M1
FI(I)=C(IY*¥SINP¥FR=D(] )XCOSD
10 SI(I)=C(1)*¥COSPHFR+N( T I*SINP
PRINT 10N
PA PH 1=1 ¢M1
P=CRFAL(FTI(T)Y)
N=CIMAGIFT(T))
X=CRFAL(ST(T1))
Y=CIMAGIST(TYY
PO PRINT 1014 PeNeXeY
TP MMy ’
IF (M1 FOgN) TN P2
PO CTMD=F ] (M) /ST (M1 41
THP=ATAN(CNORM (CTMP Y )
T B(MIY=ATAN?P I («CIMAG(CTMP) 4 =CRFAL (CTMRP ) )
IF(ABS(R(M] )1=P] ) |_.Tel eF=05)123:24

Felh



27 A(M] =0,
THR==THP
T P4 TH(MY Yy =THP
FR=CMPLX(COS(RIML ) ) SIN(R{MI)))
T TV =THRPXRATOHN
TTH(MY ) =T
TEMIN(MI Y =ARG((T1~-1TH(M] ) )%¥60,)
e TF (M1 aF0e 1121475 L o
T8 TE=CNORM(ET (M1))
TS=CNORM (ST (M1+1))
TMP=SART (TF*TF+TS*TS)
DO 20 1=1eM]
AATTS1Y=FT1 (1)
30 AA(142)=ST(T41)
T OBR(1,1)Y=81(M141)
RR(2¢1)==-F1(M1)
RR(142)=CMPLX(Ng¢Ngy
. RR(242)I=RRA()+2) o L o )
) CALL MATMP (AA M1 42 ¢BRe2¢1+CC)
FS=CMPLX(CRFAL (ST(M141))/TSe~CIMAG(ST (M141))/T<)
DO 40 1=14M}
40 F1(1)=FS*CC(141)/TMP
T CTMP=CONJ(BR(1+1))
BR(141)=CONJ(-BR(241))
BR(2e¢1)=CTMP
FE=FRXCONJ (FS)
CALL MATMP(AAIM] 424BBe2s1 +CC)
DO SN 1=14N1
S0 SI(IY=FF#CC(1s1)/TMP
. PRINT 1ON S e
PO 6N 1=1 M1
P=CRFAL (FT (1))
O=CIMAG(FI (1))
X=CRFAL (ST (1))
Y=CIMAGISTI(T))
IF(1eFQe1eANDeM1 oEQe2)51 460
51 pP=p
60 PQINT lnlo PeQeXaY
60 To 2
70 PRINT 102, N
T 7 PO BO I=1¢Nt
80 PRINT 103¢ITH(I)+FMIN(T)eR (1)
T pEpp T
lF(poGTQOOOANDoTH(l)OGTQOQ)BIOBZ

[ J—

GO TO BRa

£2 TF(PelLTeOeeANNeTH(1)eLTeNe)BIBE
; 3171 1N==t0 L .

"84 CALL CINVERS(NeIO«THeBCP)
PRINT 106

p-rnFAL«C(!)»
I a=CIMAGIC(TY Y
X=CRFAL(CP (1))
Y=CIMAG(EO(1Y)
90 PRINT 101e PeQeXaeY

' . E=15



RFTURN
FND
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T SURROUTINF MATMP (AsNRAJNCA ¢ ¢ NREB ¢NCR 4 )
- TYPE COMPLEX (4) AsReCoCMPLX

DIMENSTION A(1702)4R(2e2)0C(1702)
e ... DN P 12V WNRA

NN 2 k=1 NCR

. C(Tek)=CMPLX(Oe0Ne)
NO 1 JU=1«NCA

e oL CUlaRI=CUTaIHFALT W I ¥B(JKY

2 CONTINUF
RFETUIN

P e e e —— e —— e e =

o e e re s e e —————— e e - - ———— -

12 .- O U QI Y -
e T e e e - - - e mm - oo

Mo te e e e e e e e e PR .
S - - e e = - -
Bl e o m e et st et e e e mmi e e — o m mamm S = s S em e e e e e s
8 ——— e - —— .- - —_—

B e c e mm e e mme m S o e R— ce e o e
st m mm . o me e w- - —— - . e e e

7 JOP S, - - - e

el

£ TIPSO U O OO OO e - - mmmeman
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SUBROUTINF CINVERS(Ne IO «eTHeBCH
DFAL 10
TYPE COMPLEX (4) FMyAAIBRCeNeFR+CMPLX
NDIMENSION FM(32630)aTH(17)eB(17)sAA(3441)eBB(3441)+C(17)sN{17)
100 FORMAT (1H1 ¢ 1 THCHFCK PROGRAM )
101 _FORMAT (1HD 41 0HD(K) s K=00913)
102 FORMAT (1HDs60X e 13X s4HF (1) 031X saHS (1))
103 FORMAT (1HO 460X e2 (F14eTe2XeF 14T +5X) )

PRINT 1NO

¢ FIRST CRYSTAL
1=1
T Tymy=n T T
SINT=SIN(TH(1))
COST=COS(TH(T))
FB2CMPLX(COS(R(1))s=SIN(R(T)))
RR(141)==SINT*10
RA(241 3 =FAXCAHSTHN
PRINT 102 -
P=CRFEAL (RR(141))
T T A=CIMAG(RE(141))
X=CRFAL (BR(2¢1))
Y=CIMAG(RBB(2¢1))

PRINT 1030 p'Q’XQY

[ SFCOND CRYSTAL
e o I=141 . L
IF(1eLFeN)S01 470
501 IM1=1-1

TEINTERTINCTHTY )
COST=COS(THITY)
TFRzZCMPLX(COSIR(TI))o=SIN(R(TIYY)
NN 1 g=144
T ) "'Hn"yﬁ K=Y 42 ’ U » i
10 EM(JeRI=ZOCMPLX(Og 4 (g
"""""""""""" FM(1e1)=CMPLX(COSTeN,) T T
EM(D¢2)2CMPLX(=STINT 40, )
FM(36¢1)=FR%¥SINT
EM(442)=FAR¥CAST
CALL MATMP1 (FMe4¢2+8Re2¢1 0AA)
nn 20 J=t.a
20 BRREJaTI=AACI L)Y
BRINT 102
NO 21 =142

PzCRFAL(RR(Je i ))
”“r'MAC(PN(JoT)$
X=CRFAL(RR(JT o113
V=CIMAG(RR (J141))
T 21 PRINT 102, PeQeXeY S ) ' ) T o
T=1+41
TFTTaLF«NYIO 70
C ITH COVYETAL
BalaliR =1 N 8 BEN
IMt=2tet
T TTRINT=QRIN(THIOTY Y h
COAST2ANQLTHITY )

E-18



FR=CMPLX(COS(R(1))e=SIN(R(T)))
[P=041

13A=12=7

N an Jg=1412

N AN KkK=1 4 [“1
FM(Jok)=OMPL X (0o oMo

A &80 J=1 e 1M
EM(JeJ)=OMPL X (COST ¢ )

It =4t

JP=IMI+y

EMEJL o J2Y=OMPLX (=S INT 04 )

J=140

EM(JY ¢ JI=FRAQINT

Ji=1P1+J

JP=1M1+J

EM(JT ¢ JP Y =FR¥CNST

CALL MATMP 1 (FMeaI12P¢134RBe13s14AA)
no AN w1 12

RR (Ko | Y=AA(K 1)

PRINT 102

nO AT J=1at

Jr = )47

D= OEAL (R 1y 1))
A=FIMAG(RR( Je 1))

X=CRFAL (RA(JT141))
V=CIMAC (RR( )14 1))

PRINT 1N, PeNsXaeV

T=141

TE(1el.LFeN)ING7N

POLAB Y 7FD

SINT=SIN(THIN)Y)
COAST=COS(THINT))
FR=CMPLX(COS(RINT))e=SIN(RINI)))
ND=D%N4 1

Ny 80 kK=t N

MK =N =i

RR(NIK4+P ¢ J2RR(NK ¢ 1)

RR(N] ¢« 1 )=CMPEX(0q0Ng )
BARINGP ¢ 1 1=CMOL X (NgaNe)

N G0 K=1 ¢N1

NS =N\ ] 4.+
CI(K)=FR*SINT*BR (K1 )+FB*COST*RA (NK 1)
NIK)=~COST*BR(K 1 I+SINT*BRINK 1)
PRINT 1Nt e N

CALL PRNTC (N1 «Ne?)

RFTLION

FND
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