

SYLVANIA ELECTRONIC SYSTEMS - WESTERN OPERATION Post Office Box 205
 Mountain View, California 94040

BIREFRINGENT DEVICES

Final Report
NAS8-20570

8 March 1967

Authors:
E. O. Ammann
J. M. Yarborough

APPROVED BY: Dr. D. E. Caddes, Manager
Quantum Electronic Techniques
Department

Prepared for
National Aeronautics and Space Administration
Huntsville, Alabama

FOREWORD

Thfis is the final report prepared unde: NASA Contract NAS8-20570, "Birefringent Devices". This report describes wcrk performed on a one-year program whose goal was to advance the state of the art of optical blrefringent devices. The work described here was performed in the Quantum Electronic Techniques Department of the Advanced Technology Laboratory of Sylvania Electronic Systems - Western Operation in Mountain View, California, during the period 8 March 1966 through 8 March 1967. The project leader was Dr. E. 0. Ammann; another principal contributor was Mr. J. M. Yarborough. The experimental phases of the program received expert technical assistance from Mr. E 。J. S.eep.

A11 work on this contract was under the direction of the Astronautics Laboratory at George C. Marshall Space Flight Center, Huntsville, Alabama. Dr . J. L. Randall was the technical representative for this program, and Messrs. C. Wyman and C. Q. Lee were alternate technical representatives. Their guidance on this program is gratefully acknowledged.

Abstract

This report summarizes the results of a one-year program whose goal was to advance the state of the art of optical birefringent devices. Both theory and experiments were performed and are reported.

Theoretical work was performed in several areas. A generalization of the original birefringent network synthesis procedure of Harris, Ammann, and Chang [1] is given which allows the synthesis of networks having asymmetric transmittances. This new procedure increases the versatility of birefringent networks considerably at no expense in network complexity. In addition, a double-pass technique is described which can be used in connection with the new synthesis procedure. This technique reduces by a factor of two the number of network components needed to realize most transmittances. Finally, procedures are given for synthesizing optical amplitude modulators having less distortion than conventional modulators.;

Experiments were performed on both single-pass and double-pass naturally birefringent networks. The rasults of these experiments provide the first direct verification of the single- and double-pass birefringent network synthesis procedures. In addition, distortion measurements were made on oneand three-stage ampiitude modulators to verify the calculations mentioned above.

TABLE OF CONTENTS

Section Tit1e Page
I. INTRODUCTION 1
II. THEORY OF BIREFRINGENT NETWORKS 4
A. SYNTHESIS OF LOSSLESS NETWORKS CONTAINING EQUAL-LENGTH CRYSTALS AND COMPENSATORS 4
B. ADDITIONAL TECHNIQUES FOR THE SYNTHESIS OF LOSSLESS DOUBLE-PASS NETWORKS 6
C. SYNTHESIS OF ELECTRO-OPTIC MODULATORS FOR AMPLITUDE MODULATION OF LIGHT 6
D. SELECTION OF C(ω) BY CHOOSING ITS ZEROS 7
E. OTHER TOPICS 11
III. EXPERIMENTAL RESULTS 15
A. NATURALLY-BIREFRINGENT NETWORKS 15

1. Physical Considerations 15
2. Experimental Apparatus 20
3. Data 28
4. Discussion of Results 46
B. ELECTRO-OPTIC NETWORKS: AMPLITUDE MODULATOR 48
5. Physical Considerations 48
6. Experimental Apparatus 53
7. Data 58
8. Discussion of Results 58
IV. CONCLUSIONS AND RECOMMENDATIONS 64
V. SUMMARY OF RESEARCH CONTRIBUTIONS ON BIREFRINGENT DEVICES 66
VI. PUBLICATIONS AND ORAL PRESENTATIONS 68
VII. REFERENCES 70

TABLE OF CONTENTS (Continued)

Section	Title	Page
Appendix A	OPTICAL NETWORK SYNTHESIS USING BIREFRINGENT CRYSTALS. V. SYNTHESIS OF LOSSLESS NETWORKS CONTAINING EQUALLENGTH CRYSTALS AND COMPENSATORS	
Appendix B	OPTICAL NETWORK SYNTHESIS USING BIREFRINGENT CRYSTALS. VI. ADDITIONAL TECHNIQUES FOR THE SYNTHESIS OF LOSSLESS DOUBLE-PASS NETWORKS	B-1
Appendix C	SYNTHESIS OF ELECTRO-OPTIC MODULATORS FOR AMPLITUDE MODULATION OF LIGHT	
Appendix D	A COMPUTER PROGRAM FOR CALCULATING THE FOURIER SERIES COEFFICIENTS - AN ARBITRARY IDEAL FUNCTION	D-1
Appendix E	A COMPUTER PROGRAM FOR SYNTHESIS OF LOSSLESS NETWORKS CONTAINING EQUAL,-LENGTH CRYSTALS AND COMPENSATORS	E-1

IIST OF ILLUUSTRATIONS

Figure	Title	Page
2.1	Typical set of zercs for $C(\omega)$	8
2.2	Zeros of $C(\omega)$ for Lyot filter with $\mathrm{n}=15$	10
2.3	Amplitude-transmittance of Lyot filier with $\mathrm{n}=15$	12
2.4	Electro-optic network with non-identical driving voltages	13
3.1	Calcite crystals used as basic unit of birefringent network	17
3.2a	Experimental setup for aligning calcice crystals	21
3.2b	Typical isogyre pattern for calcite	22
3.3	Oven used in birefringent network experiments	23
3.4	Temperature control unit for oven	24
3.5 a	Holders in which the calcite crystais are mounted	26
3.5 b	End view of calcite crystal holder	27
3.6	Ideal transmittances used for the naturally-birefringent network experiments: (a) triangular wave, (b) rectangular wave, and (c) square wave	29
3.7 a	Experimental setup used for the single-pass birefringent network experiments	31
3.7 b	Schematic of experimental setup used for the single-pass birefringent network experiments	32
3.8	Experimental and calculated results for single-pass birefringent network (triangular wave approximation) with $n=3$. The figure shows transmitted optical power vs. network temperature (which is equivalent to transmitted optical power vs. optical frequency).	33
3.9	Experimental and calculated results for single-pass birefringent network (rectangular wave approximation) with $n=3$. The figure shows transmitted optical power vs. network temperature (which is equivalent to transmitted optical power vs. optical frequency).	35

LIST OF TLLUSTRATIONS (ContInued)

Figure I'tile Page
3.10 Experimental and calculated results for single-pass birefringent network (squire wave approximation) with $\mathfrak{n}=3$. The figure shows transmitted optical power vs. network temperature (which is equivalent to transmitted optical power vs. optical frequency). 36
3.11 Schematic diagram of setup used for double-pass birefringent network experiments 37
3.12
Setup used for double-pass birefringent network experiments 38
3.13
Experimental and calculated results for double-pass birefringent network (triangular wave approximation) with $n=3$. The figure shows transmitted optical power vs. network temperature (which is equivalent to transmitted optical power vs. optical frequency). 40
3.14 Experimental and calculated results for double-pass birefringent network (triangular wave approximation) with $\mathrm{n}=5$. The figure shows transmitted optical power vs. network temperature (which is equivalent to transmitted optical power vs. optical frequency). 41
3.15
Experimental and calculated results for double-passbirefringent network (triangular wave approximation)with $n=7$. The figure shows transmitted opticalpower vs. network temperature (which is equivalentto transmitted optical power vs. optical frequency).42
3.16 Experimental and calculated results for double-pass birefringent network (rectangular wave approximation) with $n=3$. The figure shows transmitted optical power vs. network temperature (which is equivalent to transmitted optical power vs. optical frequency). 43
3.17 Experimental and calculated results for double-passbirefringent network (rectangular wave approximation)with $n=5$. The figure shows transmitted opticalpower vs. network temperature (which is equivalentto transmitted optical power vs. optical frequency).44Experimental and calculated results for double-passbirefringent network (rectangular wave approximation)with $n=7$. The figure shows transmitted opticalpower vs. network temperature (which is equivalentto trancmitted optical power vs. optical frequency).45

LIST OF LLLUSTRATIONS (Continued)

Flgure	Title	Page
3.19	Experimental and calculated results for double-pass birefringent network (square wave approximation) with $\mathfrak{n}=3$. The figure shows transmitted optical power vs. network frequency (which is equivalent to transmitted optical power vs. optical frequency).	47
3.20	KDP crystal used as basic unit of three-stage amplitude modulator.	49
3.21a	Experimental setup for aligning KDP crystals	51
3.21 b	Typical isogyre pattern for KDP	52
3.22a	Holder in which KDP cr:ystals are mounted	54
3.22 b	End view of KDP crystal holder	55
3.23	Three-stage amplitude modulator	56
3.24	Schematic of 1000 Hz amplifier	57
3.25	Experimental setup used to measure the performance of one- and three-st:age amplitude modulators	59
3.26a	Measured and calculated amplitude of fundamental vs. V / V_{0} for the ont:- and three-stage modulators of Table II.	60
3.26b	Measured and calculated amplitude of the second harmonic vs. V / V_{0} for the one- and three-stage modulators of Table II. The calculated amplitude of the second harmonic for a one-stage modulator is zero.	61
3.26c	Measured and calculated amplitude of the third harmonic vs. V / V_{0} for the one- and three-stage modulatoxs of Table II.	62

I. INTRODUCTION

4.87×20522
This report presents the results of a one year applied research program on ".. optical birefringent devices. The object of this program was to perform theametical and experimental studies which would advance the state of the art of birefringent devices.

In this report, we use the term "birefringent devices" to denote optical devices consisting of polarizer and birefringent crystals. The birefringence of the crystals can be either natural or electrically-induced. Networks containing naturally-birefringent crystals will be called naturally-birefringert networks, while networks containing electro-optic crystals will be called electro-optic networks. Much of the previous birefringent network theory, in addition to the theory developed on this program, is applicable to both types of network.

A brief resume of birefringent networks is perhaps appropriate here to put the contributions of the present program into proper perspective. The first birefringent devices used in optical systems were the Lyot and Sole filters. The Lyot filter was discovered in 1933, while the Sole filter followed some 20 years later. Both these devices are narrow-band filters capable of very narrow passbands. In fact, the major attraction of mirefringent devices is their capability of producing bandwidths the order of Angstroms or less.

The Lyot and Sole filters are both particular crystal-polarizer configuretions giving particular transmission characteristics. Hence the use of birefringent devices to produce other types of characteristics awaited the development of a synthesis procedure. This important development occurred in 1964 when Harris, Ammann, and Chang found two procedures [1,2] for synthesizing birefringent networks whose transmittance could be arbitrarily specified. These procedures opened the possibility of using birefringent networks to realize a variety of devices for optical and laser systems.

Shortly thereafter, Ammann [3,4] found a method for reducing (by a factor of two) the number of network components needed to realize a desired transmittance. The technique involved passage of the light through the birefringent network twice and hence was called a "double-pass" procedure. This discovery was followed closely by the realization [5] that the techniques which had been developed for naturally-birefringent networks could also be applied to electrooptic networks. This opened the way for synthesis of electro-optic shutters, modulators, and so on.

It was with this background that the present program was begun. The object of this program was to further extend the theory of birefringent devices, and in adilition, to carry out an experimental program. There were at least three broad goals for the theoretical portion of the work. First, it was desired to find still more general or powerful synthesis techniques in order to increase the versatility and usefulness of birefringent devices. The synthesis procedure of Section II-A and Appendix A is an example of a result which succeeds along these lines. Second, we wished to find modifications of existing procedures or completely new procedures which would result in simplification of the form of the resulting birefringent networks. The goal here, of course, is to obtain the simplest possible practical form for the devices which are obtained. The work of Section II-B and Appendix B is an example of work which has accomplished this goal. Finally, the third goal was to apply the synthesis procedures to particular devices of special. importance. The results of Section II-C and Appendix C on the synthesis of amplitude-modulators are typical of this goal.

The experimental portion of the work was expected to yield much valuable information, for although substantial progress had occurred in the past few years in the theory of birefringent devices, experimentation had not kept pace. Hence much work remained to be done in verifying the recently developed theory, and for providing guidance in establishing problem areas for future study. In addition to verifying the theory, the experimental program would also yield some useful devices, of course.

This report is organized in the following manner. Section II gives the theory performed on the program, while Section III reports the experimental
results. The conclusions reached and recomondations for future work are given in Section IV. The research conirfbutions resulting from the work of this program are sumnarized in Section V, while Section VI lists the journal publications and papers presented at conferences. References are lisced in Section VII and several appendices are given at the end of the report.

II. THEORY OF BIREFRINGENT NETWORKS

In this section, we discuss the theoretical work which was performed during the program. This work has resultod in several significant advances in the thery of opticill birefringent networks. The first of these is a generalization of the earlier procedure of Harris, et al. [1] which allows the synthesis of birefringent networks with asymmetric amplitude-transmittances. This has resulted in an entire new class of birefringent networks with very versatile characteristics. The second accomplishment is the discovery of double-pass procedures which are applicable to this new class of network. These two topics are discussed in greater detail in Parts A and B of this Section, and in Appendices A and B. A third accomplishment concerns the synthesis of electro-optic amplitude modulators. Methods were found for synthesizing amplicude modulators having less distortion than present conventional modulators. These are fully described in Part C of this Section and in Appendix C.

In addition to the above problems which were successfully solved, several additional topics were studied with only limited success. These are mentioned in Parts D and E of this section.
A. SYNTHESTS OF LOSSLESS NETWORKS CONTAINING EQUAL-LENGTH CRYSTALS AND COMPENSATORS

Harris, Ammann, and Chang [1] have given a procedure for synthesizing birefringent networks whose amplitude transmittance could be specified. The work described here is a generalization of that procedure which provides still greater flexibility in the synthesis of birefringent networks. We will not go into the mechanics of the procedure in this section since they are given in Appendix A. Instead we will describe here what can be accomplished with the new procedure.

The procedure of Harris, et al. [1] aliuws the real.ization of a birefringent network whose amplitude transmittance $C(\omega)$ is of the form,

$$
\begin{equation*}
C(\omega)=C_{0}+C_{1} e^{-i a \omega}+C_{2} e^{-i 2 a \omega}+\ldots+C_{n} e^{-i n a \omega} \tag{2.1}
\end{equation*}
$$

The number of terms employed $\ln C(\omega)$ is fintte but arbitrary. The choice of the term coefficients (the C_{1}) is also arbitrary as long as each C_{i} is real. The form of the network obtained from this synthesis procedure is shown in Figure 1 of Appendix A. The network consists of a series of identical cascaded birefringent crystals between and input and output polartzer. The network may be thought of as composed of several stages, with each stage consisting of one birefringent crystal. A network containing n stages is required for a $C(\omega)$ having $n+1$ terms. Once $C(\omega)$ has been chosen, the rotation angles (the ϕ_{1}) of the crystals and the output polarizer can be calculated from the synthesis procedure.

The synthesis procedure of this section allows greater freedom in the choice of $C(\omega)$ and results in a network whose basic form is shown in Figure 2 of Appendix A. The desired amplitude transmittance $C(\omega)$ is still written in the form of Equation (2.1), but the C_{i} may now be complex. An n-stage network is again required to realize a $C(\omega)$ having $n+1$ terms, but each stage now consists of an optical compensator and birefringent crystal. The synthesis procedure determines the rotation angle of each crystal, the retardation introduced by each compensator, and the rotation. angle of the output polarizer.

The flexibility obtained by dealing with complex C_{i} instead of real C_{i} may be explained as follows. If one is limited to real C_{i}, one is limited to amplitude transmittances whose real part has even symmetry and whose imaginary part has odd symmetry. When complex C_{i} can be used, the real and imaginary portions of the transmittance may have any symmetry whatsoever. Finally; it should be mentioned that this technique can be used (as can all the previous techniques) on both naturally-birefringent and electio-optic networks.

A detailed description of the synthesis procedure is given along wich an example in Appendix A.

It was mentioned in the introduction that Ammann has found a procedure [4] which, under certain circumstances, reduced by a factor of two the number of network components necessary to give a certain transmittance. That procedure was applicable to the type of network described in Reference [1], i.e., when the C_{i} of Equation (2.1) are real. A logical question arises then as to whether a double-pass procedure can be found for use with the more general synthesis procedure of Section II-A, i.e., when the C_{i} of (2.1) are complex. This Section and Appendix B give the successful solution to that question.

Let us briefly review the essence of the double-pass procedure of Reference [4]. For a certain class of amplitude transmittances $C(\omega)$, the birefringent network which results from using the synthesis procedure of Reference [1] has a particular symmetry. Because of this symmetry, the last half of the birefringent network can be replaced by a mirror which reflects the light back through the first half of the network. In Appendix B, it is shown that networks obtained using the synthesis procedure of Section II-A can be made to have this symmetry. Having done this, the techniques of Reference [4] can then be used directly.

The details are given in Appendix B which is a copy of the paper accepted for publication in the Journal of the Optical Society of America.
C. SYNTHESIS OF ELECTRO-OPTIC MODULATORS FOR AMPLITUDE MODULATION OF LIGHT

A technique has been found for synthesizing electro-optic amplitude modulators having arbitrary modulation characteristics. The technique is an adaptation of the procedure of Appendix A for synthesizing naturallybirefringent networks. The desired amplitude-transmission vs. applied voltage function $K(v)$ of the modulator is written as an exponential series containing a finite number of terms. The resulting modulator consists of a series of stages between an input and output polarizer, with each stage consisting of an electro-optic element and optical compensator. The induced birefringence of the electro-optic medium is assumed to be directly proportional to the applied modulating voltage v. The question of how $K(v)$ should be chosen was also investigated. Two cases were considered:
(a) an amplitude modulator to be used with an envelope detector, and (b) an amplitude modulator to be used with a squasemar detector. for each case, the ideal $K(v)$ and several methods of approximating it were found It was found that the manner fin which $K(v)$ is chosen is of great importance. Best results were obtained when the term coefficients (the C_{f}) of $K(v)$ were chosen to directly optinize the modulator property (or properties) deemed most important. Modulator designs corresponding to several useful $K(v)$ were tabulated.

The details of this procedure are given in the paper of Appendix C which will be submitted for publication.

D. SELECTION OF C(ω) BY CHOOSING ITS ZEROS

In this section, a discussion is given of the relationship between the zeros of $C(\omega)$ and the behavior of $C(\omega)$ over one period. This work was undertaken in the hope that it might prove feasible to determine $C(\omega)$ by choosing its zeros. (The transmittance $C(\omega)$ is usually chosen now by writing a Fourier series approximation to the ideal funciion and truncating it.) It appears however that only in certain linited circumstances can an acceptance $C(\omega)$ be found from selection of its zeros. Nonetheless it is felt that this technique is sufficiently illuminating to merit a short discussion here.

The transmittance $C(\omega)$ is normally written as in Equation (2.1). We can consider $C(\omega)$ to be a polynomial in $e^{-i a \omega}$, and therefore rewrite (2.1) as

$$
\begin{aligned}
c(\omega) & =c_{n}\left[\left(c_{0} / c_{n}\right)+\left(c_{1} / c_{n}\right) e^{-1 a \omega}+\ldots+e^{-i n a \omega}\right] \\
& =c_{n}\left(-z_{1}+e^{-1 a \omega}\right)\left(-z_{2}+e^{-1 a \omega}\right) \ldots\left(-z_{n}+e^{-1 a \omega}\right),
\end{aligned}
$$

where the 2^{\prime} s are the zeros of the polynomial. These zeros are, in general, complex and can be plotted on the "complex $e^{-1 a \omega}$ plane" as shown in figure 2.1.

Figure 2.1 Typical set of zeros for C(ω)

Figure 2.1 has the finaginary part of $e^{\text {ctaw }}$ plotted along the y axis and the real part of $e^{-\mathrm{fa} \mathrm{\omega}}$ plotted along the x axds. Let us now constder what path is traced out on the $e^{- \text {fa } \omega}$ plane when ω is changed sufficiently to cover one pertod of the characterfstic.

The quantity $e^{-i a \omega}$ always has a magnitude of unity and hence must always lie on the unit circle. The phase of $e^{-i a \omega}$ is linearly proportional to ω. Thus as ω incraases, the quantity $e^{-i a \omega}$ uniformly traces out the unit sircle. If one of the zeros of $C(\omega)$ lies on the unit circle, $C(\omega)$ will be zero when the value of ω is reached which causes $\mathrm{e}^{-\mathrm{ia} \mathrm{\omega}}$ to equal that root. If several zeros 1 ie on the unit circle, then $C(\omega)$ will be zero a corresponding number of times.

Thus the number and spacing of the nulls of $C(\omega)$ can be controlled by properly choosing its zeros. The difficulty with this procedure is that even though the nulls of $C(\omega)$ can be precisely controlled, $C(\omega)$ will often have unacceptable behavior between its nulls. Hence unless the nulls of $C(\omega)$ are the major properties of interest (as they might be, for example, in the design of a band-stop filter), this technique will probabiy not prove satisfactory.

As an illustration, let us consider a Lyot filter having $\mathfrak{n}=15$. The amplitude-transmittance of such a filter is given by

$$
\begin{aligned}
c(\omega)= & \frac{1}{16}\left(1+e^{-1 a \omega}+e^{-12 a \omega}+e^{-13 a \omega}+e^{-14 a \omega}+e^{-15 a \omega}+e^{-i 6 a \omega}\right. \\
& +e^{-17 a \omega}+e^{-18 a \omega}+e^{-19 a \omega}+e^{-110 a \omega}+e^{-i 11 a \omega}+e^{-112 a \omega} \\
& \left.+e^{-113 a \omega}+e^{-114 a \omega}+e^{-i 15 a \omega}\right)
\end{aligned}
$$

The zeros of $C(\omega)$, written in polar form, are $1 / 22.5^{\circ}, 1 / 45^{\circ}, 1 / 67.5^{\circ}, 1 / 90^{\circ}$, $1 \angle 112.5^{\circ}, 1 / 135^{\circ}, 1 / 157.5^{\circ}, 1 / 180^{\circ}, 1 / 202.5^{\circ}, 1 / 225^{\circ}, 1 / 247.5^{\circ}, 1 / 270^{\circ}, 1 / 292.5^{\circ}$, $1 / 315^{\circ}$, and $1 / 337.5^{\circ}$. These zeros are shown in Figure 2.2. We see that all the zeror lie on the unit circle and hence $C(\omega)$ is forced to zero many times during

Figure 2.2 Zeros of $C(\omega)$ for Lyot filter with $\mathrm{n}=15$
each period. In addition, we see that the zeros are unlformly spaced around the unit circle except that one fis missing at the point 2.10°. This suggests that the filter passband occurs when ω has a value which makes $\mathrm{e}^{-\mathrm{i} a \omega}=1$. This is indeed so as seen from Figure 2,3 which is a plot of the amplitude-transmittance of the Lyot filter.

E. OTHER TOPICS

During this program, work was performed on two other theoretical problems for which successful solutions were not found. The first of these was the problem of obtainting a procedure which could be used for synthesizing singlesideband modulators. None of the birefringent network synthesis procedures developed to date are appropriate for designing a single-sideband modulator. It can be shown that all electro-optic devices designed from existing procedures will have symmetric output spectra, but a single-sideband modulator by its very definition has an asymmetric output spectrum (e.g., the first upper sideband should be absent). Hence it is necessary to develop a basically different procedure in order to synthesize single-sideband modulators.

An attempt was made to find a procedure which would produce a network of the form shown in Figure 2.4. This network is different from previous network forms in that driving voltages to the various crystals are not identical. The phases of the driving voltages were allowed to be different and were to be calculated from the synthesis procedure. In dddition, the rotation angles of the various stages were to be calculated. The network of Figure 2.4 is capable of producing an asymmetric spectrum as required. However, the very thing which distinguishes the network of Figure 2.4 from previous networks also eliminates the possibility of obtaining a synthesis procedure by generalizing or modifying previous results. For the key requirement of existing procedures has been identical birefringent crystals and this is violated by the network of Figure 2.4. The result is that a general synthesis procedure is substantially more difficult to formulate when nun-identical birefringent stages compose the network. The complexity of the problem has thwarted attempts thus far to find a synthesis procedure for the general sase.

It is proposed that one possible alternate approach to obtaining a single-sideband modulator synthesis procedure might be to begin with a nore modest problem. For example, instead of allowing the driving voltage of each stage to have a different phase, the phases might be restricted to be either 0° or 90°. Perhaps a synthesis procedure could then be found for this simpler network. This solution to the simplified problem might then give insight into how the general problem should be approached. It appears in any case that the task of devising a synthesis procedure for single-sideband modulators is a very difficult one.

Another general problem area which was studied during the program was that of synthesizing lossless birefringent networks composed of unequal-1ength crystals. This important problem was approached through the synthesis procedure of Harris, et al. [1] in the following way. The general form of the network resulting from that procedure is shown in Figure 1 of Appendix A. Suppose now that two consecutive crystals are rotated to the same angle. This would be equivalent to a single crystal which is twice as long. Hence the problem under consideration may be restated as, "What must be true about $C(\omega)$ in order to cause two or more consecutive crystals to be rotated to the same angle?"

Again this quest has resulted in little succes,s. Studies were made to detect possible relationships between the C_{i} which would cause several crystals to be rotated to the same angle. Some relations were found among the C_{i}, but they were sufficiently complex so as to be of little or no practical value. In addition, relations were sought among the zeros of $\mathrm{C}(\omega)$, but again unsuccessfully. Thus no set of restrictions has been found which is simple enough to be practical. This problem is an important one, however; its solution would contribute considerably to the practicality of birefringent networks.

In this section, the results of the experimental program are given. The experiments may be conveniently divided into two parts: (a) those performed on naturally-birefringent networks and (b) those performed on electro-optic networks. The experimental program had several goals among which were verification of the various theories, illumination of practical problem areas, and the realization of actual devices.

A. NATURALLY \rightarrow BIREFRINGENT' NETWORKS

A major goal of these experiments was to verify the synthesis procedures of References [1] and [4]. The optical network involved consists of a series of naturally-birefringent crystals between input and output polarizers (see Figure 1. of Appendix A). Such a network was built and tested in order to compare actual and predicted performance. The details of the construction of the network are discussed below.

1. Physica1 Considerations

a. Crystal material and sizes

Many materials are suitable for use as the "basic building blocks" of a naturally-birefringent network. One must consider the frequency range of interest and the desired basic periodicity of the network in order to choose an appropriate material. The material must be transparent to the optical frequency band of interest and should be of good optical quality. Having determined the material to be used, the lengths of the crystals can then be chosen to give the periodicity desired for the network's transmittance. A useful graph for determining the periodicity is given in Figure 7 of Reference [1].

For the present experiments, we elected to use an optical wavelength of 6328 A (from a He-Ne gas laser), and to use calcite crystals with a length of 2 cm . This gives a periodicity of about 100 GHz . Calcite was chosen primarily because of its availability, large birefringence, and good optical quality. The cross section of the crystals was chosen to be 1 cm by 1 cm . Calcite is a negative crystal, and hence the optic axis is the slow axis.

The crystals were cut with the optic axis in the planes of the end faces, as shown in Figure 3.1.

b. Crystal tolerances and compensators

The synthesis of optical birefringent networks requires the use of "identical" crystals. This means that each crystal must have exactly the same retardation. The following calculation points out the difficulty in making identical crystals.

We shall calculate the number of "retardation waves" in a calcite crystal 2 cm long. By retardation waves, we mean the number of optical wavelengths the slow (S) component of an incident impulse of light is retarded compared to the fast (F) component. The indices of refraction of calcite at 6328 A are approximately $\eta_{0}=1.654$ and $\eta_{e}=1.485$. Then the number of optical waves along the F axis is L / λ_{e} or $L \eta_{e} / \lambda_{v}$, while the number of optical waves along the S axis is L / λ_{o} or $L \eta_{o} / \lambda_{v}$, where $\lambda_{v}=6328 \AA$. The difference is then

$$
\begin{aligned}
\text { Retardation } & =\frac{L \eta_{e}}{\lambda_{v}}-\frac{L \eta_{o}}{\lambda_{v}}=\frac{L \eta_{e}-L \eta_{o}}{\lambda_{v}}=\frac{L(\Delta \eta)}{\lambda_{v}} \\
& =\frac{(2)(.169)}{\left(6328 \times 10^{-8}\right)}=5300 \text { waves. }
\end{aligned}
$$

The problems involved in making crystals with exactly the same number of retardation waves are obvious. Even if all crystals were perfectly homogeneous, the lengths would have to be the same to within, say, $1 / 360$ of a retardation wave. This requires a length tolerance of $\frac{2}{(360) \times(5300)}=$. 01 micron.

The crystals can be made to all have an integral number of waves retardation (although not necessarily the same integer in each case) by adding thin "trinmer" plates (compensators) with just enough birefringence to make the combination of crystal and compensator have an integral number of waves retardation. Thus, for example, one might have crystalcompensator combinations with delays of 5280 , 5325 , and 5336 waves. The percentage difference in these is small enough that the actual transmittance

Figure 3.1 Calcite crystals used as basic unit of birefringent network
of the network will not differ significantly from the ideal transmittance over the wavelength range of interest. In our experiments, quartz crystals were used for the compensator crystals.

Due to the large number of retardation waves in the calcite crystals, the retardation varies rapidly as a ray moves off-axis. A change of only a few degrees in ray direction is sufficient co significantly deteriorate performance. In order to insure that the light travels down the propagation axis, there must be no refraction at the surfaces, which means that the end faces must be very parallel.

Another problem in preparing the crystals is in properly orienting them. If the optic axis does not lie exactly in the plane of the face, the index of the extraordinary ray is changed. Again, only slight change is necessary to deteriorate performance substantially.

The final problem in preparing the crystals is flatness of the faces. If there is much variation, again the retardation will change significantly.

All of the above considerations apply also to the quartz compensators, although the requirements are not quite so stringent in this case. The only critical item concerning the compensators is parallelism. Again the faces must be very parallel in order to avoid refraction. Other factors are not as critical since the compensators have many fewer retardation waves delay.

> For quartz, $\eta_{0}=1.542, \eta_{e}=1.551$. Thus, for a 2 mm quartz crystal, Retardation $=\frac{L(\Delta \eta)}{\lambda}=\frac{(.2)(.009)}{6328 \times 10^{-8}}=28$ waves

c. Temperature effects

Al1 of the above discussion assumes a constant temperature, for birefringence in general varies with temperature. In calcite crystals as long as the ones being used, the retardation thus varies substantially with temperature. Accordingly, all compensators must be matched to their crystal at a particular temperature.

Actually, the retardation of the compensators also varxes with temperature. However, since the compensators are thin (2 rr) compared to the crystals and made of a much less birefringent material (quartz), they do not vary nearly as rapidly and hence are satisfactory over several waves change in the calcite. The temperature dependence of the networks is discussed in more detail later.

In the present experiments, advantage was taken of the temperaturedependent birefringence to sweep the transmittance of the networks through several cycles. This method proved to be quite successful, and at the same time provided valuable data on the temperature behavior of optical networks. To our knowledge, this technique has not been used previously to measure the transmittance of birefringent devices.

d. Selection of a reference crystal and matching of crystals and compensators

From the above discussion, it is clear that all crystal-compensator combinations must have an integral number of waves delay at some fixed temperature. This temperature is arbitrary, but certain practical considerations set limits on the range into which it must fall. In order to make the temperature-control system as simple as possible, it is desirable to keep the oven above room temperature so that no cooling system is needed. Room temperature is norma11y 20 to $25^{\circ} \mathrm{C}$, so that one would 1ike to pick a reference temperature at least $10^{\circ} \mathrm{C}$ above this. The most convenient choice is to put a calcite crystal into the oven and note the temperature at which it is an integral number of waves long. Then if all compensators are matched to crystals at this reference temperature ($\mathrm{T}_{\text {ref }}$), the reference crystal will not need a compensator. Using one crystal (which we shall call crystal $\#_{1} 1$) as a reference, $T_{\text {ref }}$ was determined to be $36.264^{\circ} \mathrm{C}$. One could, of course, use a tigher temperature for the reference temperature since the crystal's transmittance is periodic, but this temperature was deemed adequate for the present experiments. Having established this temperature, compensators were then matched to the remaining crystals (\#2, 3, and 4). A one-cm calcite crystal was also cut and matched with a compensator for use in the double-pass experiments. This crystal will be called 非 henceforth.
e. Alipnnent

A very convenient way to allgning the calcite crystals fis to use the characteristic isogyre pattern, which may be observed by placing the crystal in diverging or converging light between crossed polarizers. When light propagates at right angles to the optic axis of a uni-axial crystal, as is the case here, the isogyre pattern is a family of hyperbolae as indicated in the sketch of Figure 3.2a. A photograph of the observed pattern of one of the crystals is shown in Figure 3.2b. Each crystal was carefully aligned so that the laser beam hit exactly in the middle of the pattern. After the crystals were thus aligned, they were placed in the oven and compensators were matched to them.

2. Experimental Apparatus

a. Oven

Of central importance to the experiments with naturally birefringent networks are the oven and temperature control unit (to be discussed below). It has already been pointed out that an oven is necessary to select a reference temperature and to match compensators to crystals. Preliminary calculations suggested that a change in temperature of $.01^{\circ} \mathrm{C}$ would change the retardation of a crystal by 1°. After investigating commercially available units, it was decided to build an oven. A photograph of the oven constructed is shown in Figure 3.3. It was made of aluminum with glass end windows to allow passage of the laser beam. A "V" block (shown in Figure 3.5a) was bolted to the bottom to hold the crystal holders (to be described later). The oven was made long enough to hold five crystals, and was made watertight so it could be filled with an index matching oil to reduce reflection losses. The oven was wrapped with a heating coil and insulated on all sides by $2^{\prime \prime}$ of styrofoam. The oven was equipped with adjustable feet which could be mounted on an optical bench.
b. Temperature control unit

As mentioned above, it was decided to build a temperature controller rathe: than buying one. A schematic of the unit built, as well as the oven, is shown in Figure 3.4. The circuit consists basically of a bridge
OBSERVATION SCREEN

REFERENCE SPOT
(LASER BEAM HITS
HERE IN ABSENCE OF
OTHER ELEMENTS)

Figure 3.2 a Experimental setup for aligning calcite crystals

["

Figure 3.4 Temperature contiol unit for oven
circuit and a differential amplifier. The power device is a power transistor. The unit runs from an un-regulated power supply. This unit turned out to do an extremely good job of controlling temperature in the oven. It has been verified by direct measurement that the unit maincains the oven temperature constant to within $.005^{\circ} \mathrm{C}$ over 24 -hour periods.

c. Crystal holders

The crystal holders were constructed as shown in Figures 3.5a and 3.5b. The calcite crystals were mounted in rectangular aluminum holders which, in turn, were spring mounted in steel cylinders to allow adjustment of the crystals. The compensators were placed in brass plugs which were inserted in the back of the aluminum crystal holders. The circumference of the steel cylinder was graduated in 1° increments in order to allow precise rotation of the crystals. The steel cylinders were placed in the cylindrical block on the bottom of the oven. With this arrangement, it was thus possible to use the same crystals to synthesize different networks simply by rotating them to new angles.

d. Thermometer

In order to work within the tight temperature colerances mentioned above, it is obviously desirable to be able to measure temperatures very accurately. To do this, a Hewlett-Packard Model 2801A quartz thermometer was used. This instrument has two temperature sensors and is capable of reading temperatures to within $.0001^{\circ} \mathrm{C}$. The digital temperature output was converted to an analog signal by a digital-to-analcg converter and used to drive the x axis of an $x-y$ recorder.

e. Detector

The detector used in these experiments was an ordinary silicon solar cell. Since this device is a square-law detector, the square of the amplitude-transmission characteristic will be detected. The detected signal was applied to the y axis of the $x-y$ recorder.

f. Experimental setup

The components mentioned above were used to record the transmission curves of the various networks. For each experiment, the crystals were

Holders in which the calcite crystals are mounted
1
1

2
-

rotated to the prescribed angles, and the oven was heated to about $50^{\circ} \mathrm{C}$. The power to the oven was turned off and the oven allowed to slowly cool. The oven cooled at a rate of about $0.001^{\circ} \mathrm{C} / \mathrm{sec}$. Plots of the optical network's transmittance were obtained by the thermometer driving the x-axis and the silicon solar cell driving the y-axis of an $x-y$ recorder. These traces were taken in the temperature range from about $39^{\circ} \mathrm{C}$ to $33^{\circ} \mathrm{C}$, so that the reference temperature fell about in the middle of the graphs.
3. Data

a. Single-pass experiments

We now give the experimental results obtained for the single-pass birefringent networks. All single-pass experiments were performed on three-stage networks ($n=3$) consisting of three appropriately rotated calcite crystals and an input and output polarizer. In each case, a fourterm C(ω) was found (using Fourier techniques) which approximated the ideal characteristic in question. The synthesis procedure of Reference [1] was then used to calculate the rotation angles (the θ_{i}) for the network stages. The θ_{i} used for the various characteristics are summarized in Table I. Three different ideal transmittances were used in these experiments. They were the triangular wave of Figure 3.6a, the rectangular wave of Figure 3.6 b , and the square wave of Figure 3.6c.

A photograph and schematic of the experimental setup used for the singlepass experiments are shown in Figures 3.7a and 3.7b. On each of the following graphs, the reccrder trace shows the measured value of $|C(\omega)|^{2}$ while the circles show the calculated values of $|C(\omega)|^{2}$.

(1) Triangular wave $(n=3)$

The first characteristic was a three-crystal approximation to a triangular
 the triangular wave sketched in Figure 3.6a. With three crystals we can achieve a four-term Fourier series approximation to the ideal function. The trace from the $x-y$ recorder is shown in Figure 3.8, with the theoretical points denoted by circles. Agreement with theory is very good. Note that the

SINGLE-PASS NETWOZKS

Ideal					
Characteristic	n	θ_{1}	θ_{2}	θ_{3}	θ_{0}
Triangular Wave	3	$-4^{\circ} 35^{\prime}$	$-37^{\circ} 45^{\prime}$	$-37^{\circ} 45^{\prime}$	$85^{\circ} 25^{\prime}$
Rectangular Wave	3	$-17^{\circ} 10^{\prime}$	$-33^{\circ} 31^{\prime}$	$-33^{\circ} 31^{\prime}$	$72^{\circ} 50^{\prime}$
Square Wave	3	$-27^{\circ} 27^{\prime}$	$49^{\circ} 23^{\prime}$	$49^{\circ} 23^{\prime}$	$62^{\circ} 33^{\prime}$

DOUBLE-PASS NETWORKS

\quad Ideal					
Characteristic	\underline{n}	θ_{1}	θ_{2}	θ^{\prime}	θ_{4}
Triangular Wave	3	$-4^{\circ} 35^{\prime}$	$37^{\circ} 45^{\prime}$	-	-
Rectangular Wave	3	$-17^{\circ} 10^{\prime}$	$33^{\circ} 31^{\prime}$	-	-
Square Wave	3	$-27^{\circ} 27^{\prime}$	$-49^{\circ} 23^{\prime}$	-	-
Triangular Wave	5	$1^{\circ} 28^{\prime}$	$-4^{\circ} 56^{\prime}$	$34^{\circ} 34^{\prime}$	-
Rectangular Wave	5	$3^{\circ} 50^{\prime}$	$-14^{\circ} 04^{\prime}$	$23^{\circ} 04^{\prime}$	-
Triangular Wave	7	$0^{\circ} 43^{\prime}$	$-1^{\circ} 48^{\prime}$	$5^{\circ} 00^{\prime}$	$-33^{\circ} 28^{\prime}$
Rectangular Wave	7	$3^{\circ} 09^{\prime}$	$2^{\circ} 44^{\prime}$	$-14^{\circ} 57^{\prime}$	$26^{\circ} 26^{\prime}$

Table I

Figure $3.7 a$ Experimental setup used for the single-pass birefringent network

detected curve is the square of the approximation curve, since a square-1aw detector was used. The trace was taken by cooling the oven slowly from approximatcly $39^{\circ} \mathrm{C}$ to $33^{\circ} \mathrm{C}$ (which took about five hours). The small Irregularities in the trace, as well as succeeding traces, are due to laser power fluctuations.

(2) Rectangular wave $(n=3)$

The second characteristic synthesized was a rectangular wave, whose ideal characteristic is shown in Figure 3.6b. The actual experimental trace is shown fin Figure 3.9, with the theoretical points again superimposed as circles. Again three crystals were used, and agreement with theory found to be very good.

(3) Square wave $(n=3)$

The final characteristic chosen to be syuc. zed is sketched in Figure 3.6c. The experimental curve is shown in Figure 3.10. Again agreement with theory is very good.

b. Double-pass experiments

We next give the results of experiments performed on double-pass birefringent networks. Recall that with the double-pass technique [4], the optical signal passes through the birefringent network twice. As a result, a given $C(\omega)$ can be obtained using only half the number of stages required by the synthesis procedure of Reference [1]. Thus a C(ω) with $n=3$ can be realized by a $1 / 2-$ stage birefringent network (one fulllength calcite crystal and one half-length calcite crystal) while $n=5$ can be realized by a $21 / 2-s t a g e$ network, and so forth.

Double-pass experiments were performed for $n=3,5$, and 7. The experimental arrangement is shown in the sketch of Figure 3.11 and in the photograph of Figure 3.12. As seen in those figures, a mirror reflects the light back through the birefringent network for the second pass, and a prism deflects the returning beam to the detector.

For these experiments, four-term $(n=3)$, six-term ($n=5$), and eightterm ($n=7$) $C(\omega)$'s were found using Fourier techniques which approximated

Figure 3.9 Experimental and calculated results for single-pass birefringent network

Figure 3.11 Schematic diagram of setup used for double-pass birefringent network experiments.

Figure 3.12 Setup used for double-pass birefringent network experiments
the various ideal functions of Figure 3.6. The synchesis procedure of Reference [1] was then used to calculate the rotation angles (the θ_{i}) for the stages of the corresponding single-pass networks. These singlepass networks were each symmetric about their midpoint. Hence they could be converted to double-pass networks by replacing the last half of the network by a mirror, and by replacing the input polarizer by a polarizing beam splitter. The rotation angles used for the double-pass network stages are summarized in Table I. The following graphs again show measured and calculated values of $|C(\omega)|^{2}$.

(1) Triangular wave $(n=3,5$, and 7)

The double-pass experimental results for the triangular wave characteristic of Figure 3.6a are shown in Figures 3.13, 3.14, and 3.15. These figures show the cases of $n=3, n=5$, and $n=7$, respectively. It can be seen that the agreement between theory and experimental results is very good for all cases. It was apparent, however, that greater care must be taken in aligning the crystals as one goes to larger values of n. Even so, no particular difficulty was encountered in obtaining any of the three traces of Figures 3.13, 3.14, and 3.15.

(2) Rectangular wave ($\mathrm{n}=3,5$, and 7)

Double-pass experimental results for the rectangular wave characteristic of Figure 3.6b are shown in Figures 3.16, 3.17, and 3.18 for the cases of $n=3,5$, and 7, respectively. The agreemeit between experiment and theory is again seen to be very good for each of the values of n. It is worth noting that adjacent passbands of these characteristics are separated by approximately I Angstrom. Thus these birefringent networks are actually band-pass filters having bandwidths of about $1 / 3 \AA$ and a periodicity of about $1 \AA$. One might wonder perhaps why the width of the passband does not decrease greatly in going from $n=3$ to $n=5$ to $n=7$. This happens because we are approximating the same ideal function of Figure 3.6 b in each of these cases. If we had wished, we could have approximated successively narrower "rectangular functions" as we went to larger values of n, and then the bandwidth could have indeed been reduced. However, our object here was

simply to compare experimentai results with theory, rather than to obtain the narrowest possible pass-band from a given blrefringent network.

(3) Square wave ($n=3$)

The experimental results for the square-wave characteristic of Figure 3.7c are given in Figure 3.19 for $n=3$. For the $n=3$ case, theory and experimental results have failed thus far to show good agreement with theory. This is believed to be due to one of two possible causes: (a) Perhaps this particular characteristic is particularly susceptible to crystal misalignment, or (b) the possibility exists that a mistake is present in our calculations of the angles for the stages of the network. We are presently checking both possibilities but, due to time limitations, have not yet succeeded in pinpointing the problem.

4. Discussion of Results

a. Sing1e-pass experiments

As has been pointed out earlier, quantitative agreement of the $n=3$ single-pass experiments with theory is virtually exact. Thus the theory of Reference [1] has been demonstrated to be sufficient for synthesizing arbitrary ampitude-transmission characteristics. Three dissimilar characteristics we synthesized with equally good results. While it is true that none of these characteristics required the more complicated synthesis procedure of Appendix A, nevertheless the two types of network are essentially the same in practical form, and hence there is no reason to believe that new difficulties would arise. In addition, the results from the amplitude modulator experiments to be presented later substantiate the generalized synthesis procedure of Appendix A since this procedure was used to calculate the rotation angles and retardations.
b. Double-pass experiments

The data presented in the previous section substantiates the theory of doublempass networks of Reference [4]. Again agreement with theory is very good. We belleve the development of this new technique and its demonstration to be a significant technical advance, and that double-pass techniques sh Id be used whenever possibie. The use of more than two passes becomes an atcractive possiblity which we believe should be investigated further, for

the advantages of such a system are obvious. The double-pass experiments for $\mathrm{n}=3$, 5, and 7 have also demonstrated that greater care in crystal alignment must he used for increasing values of n, as might be expected.

B. ELECTRO-OP'TIC ISETWORKS: AMPLITUDE MODULATOR

We now discuss the results of experiments which were performed on electro-optic networks. The set of experiments carried out had an object of verifying the amplitude-modulator theory of Appendix C. A three-stage amplitude modulator was designed (using that theory) and tested, and the measured distortion compared with the predicted distortion. In addition, a conventional 'one-stage) modulator was tested and \therefore ts measured and calculated distortion compared. The factors which influenced the desicn of our amplitude modulator will now be discussed.

1. Physical Considerations

a. Crystal material and size

As in the naturally birefringert case, many materials are suitable for use as the basic "building bloc\%s" of these networks. One must consider the optical frequency of interest, the optical quality of the material, the electro-optic coefficients and many others.

In the present experiments, it was decided to use KDP as the electrooptic material. In order to avoid the problem of natural birefringence of KDP, the crystals were oriented so that the light propagated along the optic axis. (An oven would have been required to stabilize the temperature if the light propagated at right angles to the optic axis, for KDP is birefringent in that orientation.) Again the crystals were chosen to be 1 cm by 1 cm in cross section, while the length was chosen to be 4 cm . A sketch of the crystal size and orientation is given in Figure 3.20.

b. Crystal tolerances and compensators

The crystal tolerances are less severe in this case than for calcite since the lengths do not have to be kept exactly the same. This is because the half-wave retardation voltage of KDP is independent of length in the orientation being used. The parallelism requirement of the end faces is also less stringent.

Figure 3.20 KDP crystal used as basic unit of three-stage amplitude modulator.

Again it was decided to use quartz compens ${ }^{\wedge n}$ nrs. In this case, each compensator was ground and polished to the precise retardation required by the theory.

c. Temperature effects

Since light propagates along the optic axis of the KDP crystals, the only effect of a change in temperature is to change the retardation of the compensators. It has been pointed out previcusly that the retardation of the quartz compensators changes by about 1° per ${ }^{\circ} \mathrm{C}$. Thus fluctuations of a few degrees Centigrade are not harmful.

d. Alignment

The isogyre pattern was again used to align the crystals. In this case, one sees the characteristic "bull's eye" pattern obtained by shining diverging or converging light through a crystal between crossed polarizers. The alignment procedure is indicated schenatically in Figure 3.21a, and a photograph of the observed pattern is glven in Figure 3.21b. Each crystal was carefully aligned so the laser beam hit in exactly the middle of the pattern.

e. Method of applying modulating vol: age to KDP

Large electric fields are required to modulate KDP when the orientation of Figure 3.20 is used. These large fields may be achieved in either of two ways. The first is to use a resonant cavity of high Q in which the KDP is placed, while the second possibility is to apply a large voltage to a nonresonant circuit. The first method has the advantage of requiring a lower applied voltage, but suffers from at least one serious disadvantage. It would be necessary for each resonant circuit of the modulator to be tuned precisely to the same frequency. If the resonant circuits were not tuned precisely to the same frequency, the voltage applied to the various stages would differ in amplitude and phase thereby causing error in the results. To avoid this problem, we chose to use nonresonant circuits driven by an amplifier capable of producing a large voltage swing. With this arrangement, a voltage of about 7500 volts (zero to peak) was necessary in order to obtain 100% amplitude modulation.

Figure 3.2la Experimental setup for aligning KDP crystals

Figure 3.21b Typical isogyre pattern for KDP

2. Experimental Apparatus

a. Crystal holders

The KDP crystal holders were constructed as in Figures 3.22a and 3.22b. The KDP crystals were mounted in Rexolite rectangular blocks which were in turn supported in aluminum cylinders by nylon screws. Copper electrodes with holes drilled to allow passage of the laser beam were mounted at each end of the crystal, with one electrode grouned to the cylinder and the other connected to the high voltage. The compensators were placed in brass holders which were slipped in behind the rear electrode.

Early experiments showed that the KDP was strained, causing slight natural birefringence. To cancel this natural birefringence, additional compensators were used with each stage. These compensators were mounted in the same brass holders which contain the compensators required by theory.

b. Plexiglass box

A plexiglass box with an aluminum " V " block at the bottom was constructed to hold the crystals. This apparatus is shown in Figure 3.23. A high-voltage bus runs the length of the box, and the crystal elactrodes are connected to it.

c. High-voltage amplifier

It was found that a high-voltage amplifier with a peak-to-peak voltage swing of 15,000 volts was needed to obtain 100% modulation. Such a device was constructed using a high-voltage beam tetrode tube, with feedback to reduce distortion. A schematic of the amplifier is shown in Figure 3.24. The experiments were all run at a modulating frequency of 1000 Hz . The amplifier was driven by a signal generator.

d. Detector

An RCA 931A phototube was used as a detector.
(3)

$\xrightarrow[4]{\pi}$

The components described above were set up as shown in Figure 3.25. The crystals were rotated to the angles prescribed by the syathesis procedure of Appendix C, and a wave analyzer was used to measure the amplitude of fundamental and harmonics as a function of the drive voltage.

3. Data

The data obtained from the experiment is shown in Figures 3.26a, $3.26 b$, and $3.26 c$, where fundamental, second harmonic, and third harmonic amplitudes are plotted as a function of normalized modulating voltage. Solid curves represent theoretical values, with the experimental points plotted as circies for $n=1$ and as squares for $n=3$. It will be noted that the fundamental and third harmonic curves fit rather well for both $\mathrm{n}=1$ and $\mathrm{n}=3$, while the second harmonic curve is somewhat more irregular. Particularly conspicuous is the notch in the second harmonic curve for the three-crystal case. It was found that tinis notch could be moved by slightly rotating one of the crystals. Later tests revealed that one of the crystals was modulating to or ${ }^{\top}$ y 85% the depth of the other two, and $f t$ is felt inar making all crystals modulate equally will remove the notch.

Also of note is that the $n=1$ modulator, while theoretically producing no second harmonic modulation, actually had more than the thraecrystal modulator. The reason for this has not been determined, but its presence makes the three-crystal modulator even more valuable.

4. Discussjon of Results

The experimental data presented in the preceding section agree quite well with the theory of Appendix C. As pointed out earlier, one of the three crystals used in the modulator differed from the other two by 15% in electro-optic effect. We are presently modifying the crystal holders In an attempt to equalize the modulation of the three crystals. It will not be possible, however, to give these results in this report. However, the fact that reasonably good results were obtained in spite of this problem is very encouraging, for it appears that such modulators are not overly sensitive to crystal differences.

م范

$$
\begin{array}{ccc}
\infty & \text { Nे } \\
\text { oे } \\
\text { oे }
\end{array}
$$

N

$$
\begin{array}{lll}
o^{N} & 1 & \begin{array}{c}
N \\
0 \\
\text { Oj }
\end{array} \\
\hline
\end{array}
$$

$$
\begin{array}{ccc}
& 0 & 0 \\
\text { on } & 0 & 0 \\
\text { in } & 0 \\
& \text { it }
\end{array}
$$

$$
\Rightarrow \quad \rightarrow \quad m
$$

Figure 3.25 Experimental setup used to measure Line performance of one- and

Figure 3.26a Measured and calculated amplitude of fundamental vs. $\mathrm{V} / \mathrm{V}_{0}$ for the one-

Figure 3.26b Measured and calcalated amplitude of the second harmonic vs. V/v for the one- and three-stage modulators of Table II. The calculated amplitude of the second harmonic for a one-stage modalator is zero.

Figure 3.26c Measured and calculated amplitude of the third harmonic vs. $\mathrm{V} / \mathrm{V}_{0}$ for the one- and three-stage modulators of Table II.

We feel that this experimental data verifies the theory reasonably well. Thus it indeed appears possible to synthesize improved amplitude modulators using the techniques of Appendix C.

IV. CONCLUSTONS AND RECOMMENDATIONS

The goal of this program was to advance the state of the art of optical birefringent devices. Progress in both theory and experimentation was made and has been reported. Tne advances in theory have resulted in (1) the availability of more general and versatile synthesis techniques; (2) a simplification in the practical form of many birefringent devices; and (3) some detailed analyses of certain particularly important birefringent devices.

Experiments were performed which verify much of the theory and, in addition, demonstrate the practicality of the type of devices under study. These experiments included tests on three-stage single-pass birefringent networks and tests on three-, five-, and seven-stage doublepass networks. The results of these experiments agree very well with predicted results.

Under the conditions of this program, three devices are to be delivered to NASA. These devices will be a single-pass birefringent network having $\mathrm{n}=3$, a double-pass network (derived from the single-pass network) having $n=7$, and a three-stage electro-optic amplitude modulator.

Both the theory and experiments indicate that the birefringent networks have become sufficiently well understood to consider the design and realization of particular devices. The device which would probably be of greatest interest at presen+ is a very narrow-band band-pass filter.

Several unsolved theoretical problems remain which are quite important. First, any techniques which could be found for increasirg (or even analyzing) the angular aperture of birefringent networks would be most welcome. Second, double-pass techniques developed on this and previous programs have substantially simplified the practical form of birefringent networks. Any techniques which allow still more passes through the network would give still further simplification. Third, the synthesis of networks composed of
unequal-length crystals is of extreme importance since that would yield networks composed of fewer, but longer crystals. Still other topics come to mind, but these are probady the most significant.
V. SUMMARY OF RESEARCH CONTRIBUTIONS ON BIREFRINGENTI DEVICES

The mator research achievements of this program on optical birefringent devices are sumnarized below:
(1) A generalization of the original birefringent network synthesis procedure of Harris, et a1. [1] was found which permits the synthesis of networks having asymmetric transmittances. This new procedure substantially increases the versatility of birefringent networke at no expense in network complexity. The new procedure is applicable both to naturally-birefringent networks and electro-opific networks, but will probably ke most important in connection with the latter.
(2) A doukile-pass technique was developed which could be used with the new synthesis procedure mentioned above. The double-pass technique reduces by a factor of two the number of necwork components needed to realize a given asymmetric transmittance. A double-pass network is approximately one-half the size of the corresponding single-pass network.
(3) Techniques were developed for synthesizing multi-stage amplitude modulators having less distortiow than conventional (single-stage) modulators, Two cases were considered: (a) the synthesis of modulators to be used with a linear detector, and (b) the synthesis of modulators to be used with a square-1aw detector. Designs for 1-, 2-, 3-, 4-, 5-, 6-, 7-, $8-\cdots, 9-$, and 10 -stage modulators were tabulated.
(4) Single-pass and double-pass experiments were performed on naturally-blrefringent networks using calcite as the bireiringent material. The results of these experiments provide the first experimental confirmation of the synthesis techniques involved. Single-pass experiments were performed on networks with $n=3$, while double-pass experiments were performed on networks with $n=3,5$, and 7 .
(5) Experiments were performed to verify the calculations on the synthesis uf amplitude modulators. Distortion measurements made on one* and three-stage amplitude modulators agreed reasonably well with predicced results.

VI. PUBLICATIONS AND ORAL PRESENTATIONS

Full support from this contract was acknowledged in each of the following publications and oral presentations.

Journal Publications

1. E. O. Amnann and J. M. Yarborough, "Optical Network Synthesis Using Birefringent Crystals. V. Synthesis of Lossless Networks Containing Equal-Length Crystals and Compensators," J. Opt. Soc. Am., vol. 56, pp. 1746-1754, December 1966.
2. E. O. Ammann and J. M. Yarborough, "Optical Network Synthesis Using Birefringent Crystals. VI. Additional Techniques for the Synthesis of Lossless Double-Pass Networks," (accepted for publication), J. Opt. Soc. Am.
3. E. 0. Ammann and J. M. Yarborough, "Synthesis of Electro-Optic Modulators for Amplitude Modulation of Light," (submitted for publication).
4. J. M. Yarborough and E. O. Ammann, "Experiments on Single-Pass and Double-Pass Lossless Birefringent Networks," (to be submitted for publication).
5. J. M. Yarborough and E. O. Ammann, "Experiments on One- and Three-Stage Electro-Optic Light Modulators," (to be submitted for publication).

Oral Presentations

1. E. O. Ammann and J. M. Yarborough, "Ortical Network Synthesis Using Birefringent Crystals. V. Synthesis of Lossless Networks Containing Equal-Length Crystals and Compensators," presented at the 1966 Fall Meeting of the Optical Society of America.
2. E. O. Ammann and J. M. Yarborough, "Synthesis of Electro-Optic Modulators for Amplitude Modulation of Light," (to be submitted for presentation).
3. E. C. Ammann and J. M. Yarborough, "Experiments un Single-Pass and Double-Pass Lossless Birefringent Networks," (to be submitted for presentation at the 1967 Fall Meeting of the Optical Society of America).

VII. REFERENCES

1. S. E. Harris, E. O. Ammann, and I. C. Chang, "Optical Network Synthesis Using Birefringent Crystals. I. Synthesis of Lossless Networks of EqualLength Crystals," J. Opt. Soc. Am., vol. 54, pp. 1267-1279, October 1964.
2. E. O. Ammann and I. C. Chang, "Optical Network Synthesis Using Birefringent Crystals. II. Synthesis of Networks Containing One Crystal, Optical Compensator, and Polarizer per Stage," J. Opt. Soc. Am., vol. 55, pp. 835-841, Ju1y 1965.
3. E. O. Ammann, "Optical Network Synthesis Using Birefringent Crystals. III. Some General Properties of Lossless Birefringent Networks," J. Opt. Soc. Am., vol. 56, pp. 943-951, July 1966.
4. E. O. Ammann, "Optical Network Synthesis Using Birefringent Crystals. IV. Synthesis of Lossless Double-Pass Networks," J. Opt. Soc. Am., vol. 56, pp. 952-955, July 1966.
5. E. 0. Ammann, "Synthesis of Electro-Optic Shutters having a Prescribed Transmission vs. Voltage Characteristic," J. Opt. Soc. Am., vol. 56 pp. 1081-1088, August 1966.

Appendix A

OPTICAL NETWORK SYNTHESIS USING BIREFRINGENT CRYSTALS.
V. SYNTHESIS OF LOSSLESS NETWORKS CONTAINING EQUAL-LENGTH CRYSTALS

AND COMPENSATORS

E. O. Ammann and J. M. Yarborough
Electronic Defense Laboratories
Sylvania Electronic Systems - Western Operation Mountain View, California

published in
Journal of the Optical Society of America
vol. '广், pages 1746-1754
December 1966

Optical Network Synthesis Using Rirefringent Crystals. V. Syathesis of Lossless Networks Containing Equal-Length Crystals and Compensators*

E. O. Ammann and J. M. Yarborough
Electronic Defense Laboratories, Sylvania Electronic Systems, Mountain Vicw, California 94040

(Received 23 June 1966)

Abstract

Part I of this series reported a procedure for synthesizing birefringent networks having a prescribed amplitude transmittance. The desired transmittance $C(\omega)$ was writtenas $C(\omega)=C_{0}+C_{1} e^{-i a \omega}+C_{2} e^{-i 2 a u}+\cdots+$ $C_{n} e^{-i n a \omega}$, where the C_{i} could be arbitrarily chosen as long as each was real. The synthesis procedure of this paper is a generalization of the procedure of Part I and allows for the realization of $C(\omega)$ having complex C_{i}. The resulting network consists of n stages between an input and output polariz r, with each stage containing a birefringent crystal and (achromatic) optical compensator. The form of this network is essentially the same as the practical form of the network obtained from Part I, and hence the additional versatility is obtained at no extra cost in network complexity. Index Headings: Polarizaticn; Crystals; Filters; Birefringence.

I. INTRODUCTION

PART I of this series ${ }^{1}$ described a procedure for synthesizing birefringent networks whose amplitude transmittance colld be specified. The purpose of this paper is to describe a generalization of that procedure which provides still greater flexibility in the synthesis of birefringent networks.

The procedure of Part I allows the realization of a birefringent network whose amplitude transmittance $C^{\prime}(\omega)$ is of the form,

$$
\begin{equation*}
C(\omega)=C_{0}+C_{1} e^{-i a \omega}+C_{2} e^{-i 2 a \omega}+\cdots+C_{n} e^{-i n a \omega} \tag{1}
\end{equation*}
$$

The number of terms employed in $C(\omega)$ is finite but arbitrary. The choice of the coefficients (the C_{i}) is also arbitrary as long as each C_{i} is real. The form of the network obtained from the synthesis procedure of Part l is shown in Fig. 1. The network consists of a series of identical cascaded birefringent crystals between an

líg. 1. Basic configuration of birefringent network (4 stages) obtained from the synthesis procedure of Part I. F and S denote the "fast" and "slow" axes of the birefringent crystals.

[^0]input and output polarizer. The network may be thought of a- cumposed of several stages, with each stage consisting of one birefringent crystal. A network containiin. n stages is required for a $C(\omega)$ having $n+1$ terms. Once $C(\omega)$ has been chosen, the rotation angles (the ϕ_{i}) of the crystals and the output polarizer can be calculated from the synthesis procedure.

The synthesis procedure of this paper allows greater freedom in the choice of $C(\omega)$ and results in a network whose basic form is shown in Fig. 2. The desired amplitude transmittance $C(\omega)$ is still written in the form of Eq. (1), but the C_{i} may now be complex. An n-stage network is again required to realize a. $C(\omega)$ having $n+1$ terms, but each stage now consists of an optical compensator ${ }^{2}$ and a birefringent crystal. The synthesis procedure determines the rotation angle of each crystal, the retardation introduced by each compensator, and the rotation angle of the output polarizer.

The networks of Part I have been termed lossless birefringent networks since there are no energy-dissipating components between the input and cutput polarizers. The networks of this paper are lossless in the same sense, since no internal polarizers are required.

The following sections contain a description of the synthesis procedure and give an example of its application.

II. SYNTHESIS PROCEDURE

A. General

The object of the synthesis procedure is to find the n birefringent-crystal angles, the retardations of the $n+1$ optical compensators, and the output-polarizer angle which result in the desired amplitude transmittance $C(\omega)$. For a given $C(\omega), 2 s t+2$ network parameters are to be determined. This matches the number of quantities in $C(\omega)$ which we are free to choose, for we may specify the real and imaginary parts of the $n+1$ coefficients C_{i}. The length L of the crystals (all crystals have the same length) is determined by the periodicity of the desired amplitude transmittance.

[^1]The notation, conventions, and approaches used here follow closely those used in Part I. Hence for brevity it is assumed that the reader is familiar with that reference, and much of the information contained therein is not repeated here. Because of this, an understanding of Part I is important to the understanding of this perper.

In this paper, optical compensators play an important role. A compensator is used with each crystal of the network and with the output polarizer. Since compensators were not required (in theory) in Part I and hence were not discussed, we briefly describe thrir ope- tion and analysis. Optical compensators behave essentially the same as very short birefringent crystals. A compensator introduces a phase difference of b radians (where $0<b<2 \pi$) between slow-axis (S) and fasi-axis (F) components. It is assumed that this phase difference is independent of ω, an assumpion which is approximately valid for most cases of interest. If this assumption is valid, light passing through the compensator polarized in the S direction is operated upon by $e^{-i b}$, while light polarized in the F dircetion is operated upon by unity.

We assume in this paper (as in Part I) that the birefringent crystals and optical compensators of the network are lossless. This means that energy must be conserved al all points within the network between the input and output polarizers. Energy conservation places certain important restrictions on the F_{i} and S_{i}, and on the C_{i} and D_{i}. These restrictions are derived and listed in Appendix 13.

As in Part I, it is convenient to deal with relative angles (θ_{i}) of the stages instcut of absolute angles (ϕ_{i}). By relative angle, we mean the additional angle of rotation measured from the preceding stage. The rclative angles are given in terms of the ϕ_{1} of Fig. 2 by

B. Procedure

As mentioned in Part I, a useful approach to the synthesis problem is to consider the impulse respons: of the network. Since the inverse Fourier transform of the amplitude transmittance of a network yields its impulse response, we obtain, by taking the inverse Fourier transform of Eq. (1), the impulse response of the network of Fig. 2:

$$
\begin{align*}
C(t)=C_{0} \delta(t)+C_{1} \delta(t-a)+C_{2} \delta(t-2 a) & +\cdots \\
& +C_{n} \delta(t-n a) . \tag{2}
\end{align*}
$$

Thus the impulse response of our network consists of a series o" equally spaced impulses whose areas are given by the C_{i}. Since the C_{i} are complex, the impulse response

Fig. 2. Basic configuration of birefringent network (4 stages) obtained from the synthesis procedure of th.s paper.
is also complex. The explanation of this apparent paradox and its significance is given in Scc. III.

In the synthesis, we begin with the iesired $C(\omega)$ as given by Eq. (1). This is equivalent to prescribing the impulse reponse $C(t)$ of the network. We next proceed from the last component of the network (the output polarizer) back to the first (the input polarizer), calculating the impulse trains which exist at all intermediate points. The areas of the individual impulses of these trains are denoted by the $l_{i}{ }^{\prime}$ and $S_{i}{ }^{j}$ of lig. 3, where the $F_{i}{ }^{j}$ impulses are polarized along the fast axis of the preceding (j th) crystal and the $S_{\imath}{ }^{j}$ impulses along the slow axis. In the course of calculating these impulse trains, the crystal angles, compensator delays, and output polarizer angle are determined.
Assume that $C(\omega)$ and therefore the desired C_{i} of Eqs. (1) and (2) have been chosen. We must next find the sighal $D(\omega)$ which is polarized perpendicular to $C(\omega)$ and therefore is stopped by the output polarizer. Since the network is lossless (between the input and output polarizers), the signal energy entering the first crystal must equal the sum of the energies in the $C(\omega)$ and $D(\omega)$ outputs. In equation form, this gives ${ }^{3}$

$$
\begin{equation*}
C(\omega) C^{*}(\omega)+D(\omega) D^{*}(\omega)=\left(I_{0}{ }^{0}\right)^{2} \tag{3a}
\end{equation*}
$$

where $I_{0}{ }^{0}$ is the area of the impulse which is incident upon the first crystal. Rewriting this, we have

$$
\begin{equation*}
D(\omega) D^{*}(\omega)=\left(I_{0}{ }^{0}\right)^{2}-C(\omega) C^{*}(\omega) \tag{3b}
\end{equation*}
$$

:ıı. 3. n-stage network. Each stage contains a bircfringent crystal and optical compensator.

[^2]
lits. 4. Angle conventions used in the synthesis procedure: (a) linal compensator (and output polarizer); (b) i th stage; (c) input polatizer.

We are now ready to choose a value for $I_{0}{ }^{0}$. The left side of (3b) must be nomegative for all frequencies; thus $\left(I_{0}{ }^{\prime \prime}\right)^{2}$ must be chosen greater than, or equal to, the maximum value of $C(\omega) C^{*}(\omega)$. Having chosen $I_{0}{ }^{0}$, we can calculate $D(\omega)$ from $D(\omega) D^{*}(\omega)$ using the method given in Appendix Λ.
loing this, we obtain $D(\omega)$ in the form

$$
D(\omega)=D_{0}{ }^{\prime}+D_{1}{ }^{\prime} e^{-i a \omega}+D_{2}^{\prime} e^{-i 2 a \omega}+\cdots+D_{n}{ }^{\prime} e^{-i n a \omega}
$$

where the D_{t}^{\prime} are in general comples. It is important to note, however, that if $D(\omega)$ is a solution of Eq. (3b), then $e^{i \mu} D(\omega)$ is also a solution. Hence at more general solution for $D(\omega)$ is

$$
\begin{align*}
& D(\omega)= e^{i \mu}\left[D_{0}{ }^{\prime}+D_{1}^{\prime} e^{-i a \omega}+D_{2}^{\prime} e^{-i 2 a \omega}+\cdots\right. \\
&=\left.+D_{n}{ }^{\prime} e^{-i n a \omega}\right] \\
&=D_{0}+D_{1} e^{-i a \omega}+D_{2} e^{-i 2 a \omega}+\cdots+D_{n} e^{-i n a \omega} \tag{4}
\end{align*}
$$

Although the method of Appendix A gives us the values of the $D_{i}{ }^{\prime}$, it does not determine a value for μ. The quantity μ must be determined from other considerations and, as is described shortly, has a value which is fixed by the manner in which the synthesis is formulated.
Let us now relate the inputs (the $F_{t}{ }^{n}$ and $S_{2}{ }^{\prime \prime}$) and outputs (the C_{2} and D_{1}) of the final compensator. It should be remembered that the ${H_{i}}^{u}$ and $S_{i}{ }^{n}$ are components along the fast and slow axes of the preceding ($n \mathrm{i} \mathrm{h}$) stage while the C_{1} and D, are components along the slow and fast axes of the compensator. With the aid of Fig. 4(a), we find

$$
\left[\begin{array}{c}
F_{i^{n}} \tag{5}\\
S_{\imath^{n}}
\end{array}\right]=\left[\begin{array}{cc}
\exp \left(i b_{p}\right) \cdot \sin \theta_{p} & -\cos \theta_{p} \\
\operatorname{cxp}\left(i b_{p}\right) \cdot \cos \theta_{p} & \sin \theta_{p}
\end{array}\right]\left[\begin{array}{c}
C_{i} \\
c^{i \mu} D_{i}^{\prime}
\end{array}\right],
$$

where θ_{p} is the relative angle of the final compensator (and hence also of the output polarizer), and b_{p} is the compensator delay.
We must next determine the quantities μ, θ_{p}, and b_{p}. To do this, we derive and solve three simultancous equations. The frist of these equations is n!jained by noting that the first impulse to leave the m h stage must have a real area. This is equivalent to stating that $F_{0}{ }^{n}$ must be real. This condition arises from our convention of Sec. IIA which states that light passing through a compensator polarized in the S direction is operated upon by $e^{-i b}$ while light polarized in the F direction is operated upon by unity. Since the first impulse to leave the nth stage must have been polarized along the F axis of each preceding stage, this impulse will have been operated upon by unity in each compensator and will thercfore be real. From Eq. (5) we obtain for $I_{0}{ }^{n}$

$$
F_{0}{ }^{n}=\exp \left(i b_{p}\right) \cdot\left(\sin \theta_{p}\right) \cdot C_{0}^{\prime}-e^{i \mu} \cdot\left(\cos \theta_{p}\right) \cdot D_{0}^{\prime}
$$

Equating the imaginary parts of the left- and right-hand sides of this equation, we obtain the first of our three desired equations,

$$
\begin{align*}
0=\sin \theta_{p} & {\left[\operatorname{Im}\left(C_{0}\right) \cos b_{p}+\operatorname{Re}\left(C_{0}^{\prime}\right) \sin b_{p}\right] } \\
& -\cos \theta_{p}\left[\operatorname{Im}\left(D_{0}^{\prime}\right) \cos \mu+\operatorname{Re}\left(D_{0}^{\prime}\right) \sin \mu\right] \tag{6a}
\end{align*}
$$

where Im and Re denote the imaginary and real parts of the quantity in question. The remaining two equations result because the firsi and last impulses leaving the nth stage must have been polarized along its fasi and slow axes, respectively. This means that

$$
F_{n}^{n}=S_{0}^{n}=0,
$$

which, with (5), gives

$$
\begin{equation*}
\exp \left[i\left(b_{p}-\mu\right)\right] \cdot \tan \theta_{p}=D_{n}^{\prime} / C_{n} \tag{6b}
\end{equation*}
$$

and

$$
\begin{equation*}
\exp \left[-i\left(b_{p}-\mu\right)\right] \cdot \tan \theta_{p}=C_{0} / D_{0}^{\prime} \tag{6c}
\end{equation*}
$$

Taking the complex conjugate of both sides of Eq. (6c), we obtain

$$
\exp \left[i\left(b_{p}-\mu\right)\right] \cdot \tan \theta_{p}=-\left(C_{0}^{*} / D_{0}^{*}\right)
$$

Combining this equation with Eq. (6b), we obtain

$$
\begin{equation*}
C_{0}^{*} C_{n}+D_{0}{ }^{*} D_{n}^{\prime}=0 \tag{7a}
\end{equation*}
$$

the relation which must be true if Eqs. (6b) and (6c) are to be satisfied simultaneously. Noting that $D_{i}^{\prime}=e^{-i} \mu D_{i}$, we can rewrite (7a) as

$$
\begin{equation*}
C_{0}^{*} C_{n}+D_{0}^{*} D_{n}=0 \tag{7b}
\end{equation*}
$$

But Eq. (7b) is automatically satisfied from conservation of energy since it is identical to Eq. (B9) of Appendix B.
Since the C_{i} and D_{i}^{\prime} are complex, we can rewrite (6b) in the form

$$
\begin{equation*}
\exp \left[i\left(b_{p}-\mu\right)\right] \cdot \tan \theta_{p}=\left|D_{n}^{\prime} / C_{n}\right| \exp \left(i \alpha_{p}\right) \tag{8}
\end{equation*}
$$

where in (8) we have expressed $\left(D_{n}^{\prime} / C_{n}\right)$ as a magnitude and phase angle. It is apparent from (8) that the rotation angle θ_{p} of the polarizer and compensator should be chosen to be

$$
\begin{equation*}
\tan \theta_{p}=\left|D_{n}^{\prime} / C_{n}\right| \tag{9}
\end{equation*}
$$

By further manipulations of Eqs. (6a), (6b), and (6c), we obtain

$$
\begin{equation*}
\tan b_{p}=-\operatorname{Im}\left(C_{0}\right) / \operatorname{Re}\left(C_{0}\right) \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu=b_{p}-\alpha_{p} \tag{11}
\end{equation*}
$$

Having determined $\alpha_{p}, \boldsymbol{b}_{n}$, and μ, we can substitute these values into (5) to obtain F_{i}^{n} and S_{i}^{n}, the outputs along the fast and slow axes of the nth stage. We must next find the rotation angles and compensator delays of the n stages of the network.

To do this, vere write expressions relating the input and output of each stage. With the help of Figs. 4(b) and 4 (c), we obtain

First Stage

$$
\left[\begin{array}{l}
F_{0}^{1-} \tag{12a}\\
S_{1}^{1}
\end{array}\right]=\left[\begin{array}{c}
-\sin \theta_{1} \\
\exp \left(-i b_{1}\right) \cdot \cos \theta_{1}
\end{array}\right]\left[I_{0}^{0}\right]
$$

Second Stage
$\left(\begin{array}{l}F_{0}{ }^{2} \\ F_{2}{ }^{2} \\ S_{1}{ }^{2} \\ S_{2}{ }^{2}\end{array}\right]=\left[\begin{array}{cc}\cos \theta_{2} & 0 \\ 0 & -\sin \theta_{2} \\ \exp \left(-i b_{2}\right) \cdot \sin \theta_{2} & 0 \\ 0 & \exp \left(-i b_{2}\right) \cdot \cos \theta_{2}\end{array}\right]\left[\begin{array}{l}F_{0}{ }^{1}, \\ S_{1}{ }^{1}\end{array}\right]$

Third Stage

$$
\left(\begin{array}{c}
F_{\mathrm{F}^{3}}{ }^{3} \tag{12c}\\
F_{1}{ }^{8} \\
F_{2}{ }^{3} \\
S_{1}{ }^{3} \\
S_{2}{ }^{3} \\
S_{3}{ }^{3}
\end{array}\right)=\left[\begin{array}{cccc}
\cos \theta_{3} & 0 & 0 & 0 \\
0 & \cos \theta_{3} & -\sin \theta_{3} & 0 \\
0 & 0 & 0 & -\sin \theta_{3} \\
\exp \left(-i b_{3}\right) \cdot \sin \theta_{3} & 0 & 0 & 0 \\
0 & \exp \left(-i b_{3}\right) \cdot \sin \theta_{3} & \exp \left(-i b_{3}\right) \cdot \cos \theta_{3} & 0 \\
0 & 0 & 0 & \exp \left(-i b_{3}\right) \cdot \cos \theta_{3}
\end{array}\right)\left(\begin{array}{c}
F_{0}{ }^{2} \\
F_{1}{ }^{2} \\
S_{1}{ }^{2} \\
S_{2}{ }^{2}
\end{array}\right)
$$

and in general,
j th Stage

($\Gamma_{0}{ }^{j}$)		$\cos \theta_{j}$	0	0	. .	0	0	0	
$F_{1}{ }^{i}$		0	$\cos \theta_{j}$	0	. \cdot	0	0	0	$\left(F_{0}{ }^{j-1}\right.$
$F_{2}{ }^{\text {j }}$		0	0	$\cos \theta_{j}$	-••	0	0	0	$F_{1}{ }^{i-1}$
: $: ~$: : :	: :	: $:$: $:$:	: :	: :	$F_{2}{ }^{j-1}$
$F_{j-3}{ }^{i}$		0	0	0	. \cdot	$-\sin \theta_{j}$	0	0	: $: ~$
$F_{j, ~}^{\text {j }}{ }^{\prime}$		0	0	0	. . .	0	$-\sin \theta_{j}$	0	$F_{j-3^{i n-1}}$
$F_{j-1}{ }^{i}$		0	0	0	...	0	0	$-\sin \theta_{j}$	$F_{j-2}{ }^{i-1}$
$S_{1}{ }^{i}$		$\exp \left(-i b_{j}\right) \cdot \sin \theta_{j}$	0	0	\ldots	0	0	0	$S_{1}{ }^{i-1}$
$S_{2}{ }^{i}$		0	exrio $\left.-i b_{j}\right) \cdot \sin \theta_{j}$	0	\cdots	0	0	0	$S_{2}{ }_{2}{ }^{-1}$
$S_{3}{ }^{i}$		0	$\cdots 0$	$\exp \left(-i b_{j}\right) \cdot \sin \theta_{j}$	\cdot	0	0	0	S^{1-1}
: $:$: :	: :	: :		: $:$: $:$: :	: : :
$S_{j-2}{ }^{i}$		0	0	0		$\exp \left(-i l_{j}\right) \cdot \cos \theta_{j}$	0	0	$\mid S_{j-2}{ }^{j-1}$
$S_{j-1}{ }^{i}$		0	0	0		0	$\exp \left(-i b_{j}\right) \cdot \cos 0_{j}$	0	$\left(S_{j-1}{ }^{j-1}\right.$
$\left(S_{j}{ }^{\prime}\right)$		0	0	0	\cdots	0	0	$\exp \left(-i b_{j}\right) \cdot \cos \theta_{j}$	

Putting $j=n$ in (12d), we have the irput and output relations for the nth stage. We know the output (the $F_{i}{ }^{n}$ and $S_{i}{ }^{n}$) and wish to find θ_{n}, b_{n}, and the input. As discussed in detail in Part 1 , an input exists which produces our given output provided that

$$
\begin{array}{r}
\exp \left(i b_{n}\right) \cdot \tan \theta_{n}=-F_{n-1}^{n} / S_{n}^{n}=\left|F_{n-1}^{n} / S_{n}^{n}\right| \\
\times \exp \left(i \alpha_{n}\right) \tag{13a}
\end{array}
$$

and

$$
\begin{equation*}
F_{0}{ }^{n *} F_{n-1}{ }^{n}+S_{1} n^{*} S_{n}^{n}=\mathrm{C} \tag{13b}
\end{equation*}
$$

Note that α_{n} includes the effect of the minus sign which precedes ${ }_{n-1}^{n} / S_{n}{ }^{n}$.

We can satisfy Eq. (13a) by properly choosing b_{n} and θ_{n}, while (13b) is automatically satisfied by conservation of energy. Knowing b_{n} and θ_{n}, we can then calculate the input to the nth stage from (12d). This, of course, is also the output from the $n \cdot-1$ stage; hence we can repeat the procedure just described to determine b_{n-1} and θ_{n-1}. In this fashion, we can work our way back through the entire network until all rotation angles
and compensator delays have been determined. The general equations for the j th stage are

$$
\begin{align*}
& \exp \left(i b_{j}\right) \cdot \tan \theta_{j}=-F_{j-1}^{j} / S_{j}^{j}=\left|F_{j-1}^{j} / S_{j}^{j}\right| \\
& \tag{14a}\\
& \text { and }
\end{align*}
$$

$$
\begin{equation*}
F_{0}{ }^{j^{*}} F_{j=-1}{ }^{j}+S_{1}{ }^{j^{*}} S_{j}{ }^{j}=0 \tag{14b}
\end{equation*}
$$

which gives

$$
\begin{equation*}
b_{j}=\alpha_{j} \tag{15a}
\end{equation*}
$$

and

$$
\begin{equation*}
\tan 0_{j}=\left|F_{j-1}{ }^{j} / S_{j}^{j}\right| \tag{15b}
\end{equation*}
$$

As seen from Appendix B, Eq. (14b) is always automatically satisfied by conservation of energy.

Note that if $\alpha_{J}=0$, a compensator is not required (in theory) for that particular stage. Furthermore it is possible to eliminate the compensator from a stage which has $\alpha_{j}=\pi$. This is because when $\alpha_{j}=\pi$, an alternate solution to Eq. (14a) is

$$
\begin{equation*}
b_{j}=0, \tag{15c}
\end{equation*}
$$

and

$$
\begin{equation*}
\tan \theta_{j}=-\left|F_{j-1}{ }^{j} / S_{j^{j}}\right| . \tag{15d}
\end{equation*}
$$

Hence whenever $\alpha_{j}=\pi$, Eqs. (15c) and (15d), rather thai (15a) and (15b), should be used to determine b_{j} and θ_{j}.

We now have sufficient information to synthesize a birefringent network. The procedure to be followed is summarized below.

C. Summary of Synthesis Procedure

(1) Choor: the desired amplitude transmittance $C(\omega)$ and write it in the form of Eq. (1). The C_{i} may be complex.
(2) The required length L for all crystals is ${ }^{-1}$ given by $L=a c / \Delta i$, where c is the velocity of light in a vacuum and $\Delta \eta$ is the difference between the extraordinary and ordinary indices of refraction of the crystal. The quantity a is determined by comparing $C(\omega)$ as written in step (1) to $C(\omega)$ as given by Eq. (1).
(3) Choose a (real) value for $I_{0}{ }^{0}$. The choice is arbitrary as long as $\left(I_{0}{ }^{0}\right)^{2}$ is greater than or equal to the maximum magnitude of $C(\omega) C^{*}(\omega)$.
(4) Calculate $D(\omega) D^{*}(\omega)$ from Eq. (3b). Use the melhod of Appendix A to solve for $D(\omega)$ from $D(\omega) D^{*}(\omega)$. This gives the D_{i} ' of Eq. (4), but does not determine μ. Several different $D(\omega)$ result, and each of these, when used with $C(\omega)$ results in an acceptable network. The D_{i}^{\prime} of these $D(\omega)$ are, in general, complex. The remaining steps should be carried out for each $D(\omega)$.
(5) Calculate the rotation angle θ_{p} of the output polarizer and final compensator from Eq. (9), the phase delay b_{p} of the final compensator from Eq. (10), and μ from Eq. (11).
(6) Calculate the F_{i}^{n} and S_{i}^{n} from Eq. (5).
(7) Using Eq. (15b), calculate the rotation angle θ_{n} of the last stage. The compensator delay b_{n} for that stage should be computed from (15a). Using Eqs. (C1)
and (C2), calculate the input to the last stage (which is the output from the preceding stage).
(8) Repeat the procedure of step (7) on each succeeding stage until the rotation angle and compensator delay of each stage have been determined. If $\alpha_{j}=\pi$ for a particular stage, Eqs. (15c) and (15d) rather than (15a) and (15b) should be used to calculate b_{j} and θ_{j}.

III. DISCUSSION

We now consider the implications of being able to choose C_{i} which are complex. In Part I, we were limited to amplitude transmittances having all C_{i} real. This meant that we were limited to $C(\omega)$'s whose real parts were even and whose imaginary parts were odd. These restrictions have now been removed; the real and imaginary portions of $C(\omega)$ can now be asymmetrical.
An objection might be raised that since the C_{i} are complex, our network has an impulse response, given by Eq. (2), which is complex; but it is well known that the impulse response of a physical retwork must be real. This dilemma arises because our theory requires the use of achromatic optical compensators in the network. The theory assumes that these compensators introduce a delay which is independent of ω. Such a delay is not realizable in practice. Compensators can approximate this behavior over a limited frequency range hotvever. Hence the response of the synthesized network closely approximates $C(\omega)$ over the frequency range ior which the compensators may be considered achromatic. Outside of this frequency range, the transmittance departs from $C(\omega)$. Since birefringent networks are ordinarily designed for use over a limited frequency range, this is an acceptable situation.
Thus we see that $C(\omega)$ accurately describes the netwo:k's transmittance over only a limited spectral range. But when we take the inverse Fourier transform of (1) to obtain the impulse response given by (2), we are (incorrectly) assuming that Eq. (1) is valid for all possible values of ω. Hence it is not surprising that the result is a complex impulse response for the network. Even though (2) does not accurately give the network impulse response, the time-domain approach is very useful for visualizing and understanding the synthesis procedure.
Part II of this series ${ }^{4}$ described a second synthesis procedure which achieved the same goal as the procedure of Part I, but via a different form of birefringent network. Moreover, the procedure of Part II can be used when complex C_{i} are present in $C(\omega)$. The network which results, however, contains internal polarizers and hence is not a "lossless" network. For that reason, the network of this paper is preferable to that of Part II for most applications.
The network resulting from the synthesis p. ©dure of this paper contains an optical compensator . to

[^3]the output polarizer. In practice, it is often possible to remove this optical compensator. Suppose for example that we have synthesized a retwork which has a desired $C(\omega)$. If we now remove the final compensater from that network, the new transmittance is $\exp \left(i b_{p}\right) \cdot C(\omega)$. Thus tie new transmittance differs from the desired transmittance by only a constant phase factor. Often the introduction of this phase factor is of no consequence, and hence the final compensator can be removed. Further. more, we note from Eq. (10) that if C_{0} is chosen to be real, $b_{p}=0$ and the need for the final compensator is automátically eliminated.

Finally, we note that (as seen in Figs. 1 and 2) the network of this paper contains a greater number of components than the network of Part I. It should be emphasized, nowever, that Figs. 1 and 2 show the networks predicted by theory. In practice, the network of Part I requires the use of an optical compensator with each crystal of the network to compensate for slightly incorrect crystal lengths. Thus the practical forms of the networks of this paper and of Part I are identical; the additional flexibility is obtained at no expense in actual network complexity. In this paper, each optical compensator serves the dual functions of (a) introducing the delay required by theory, and (b) compensating for incorrect crystal length.

IV. EXAMPLE

A sample calculation is performed to illustate the synthesis prosedure of Sce. II. Suppose we wish to approximate the real transfer function $G(\omega)$ shown in lig. 5. Since $G(\omega)$ is neither cven nor odd, complex coefficients are required in the approximating exponential serics. For this example we use a seven-term complex Fourier series.

Fis. 5. Ideal and approximating amplitude cransmittances of example. Ideal transmittance is shown by dotted line and ap. proximating transmittance by solid line.

The Fourier-series approximation to the ideal transfer $G(\omega)$ is given by

$$
\begin{align*}
K(\omega)= & \left(1 / \pi^{2}\right)\left[(4 / 9-i 2 / 9) e^{i 3 a \omega}-e^{i 2 a \omega}\right. \\
& +(4+i 2) e^{i a \omega}+\pi^{2} / 4+(4-i 2) e^{-i a \omega}-e^{-i 2 a \omega} \\
& \left.+(4 / 9+i 2 / 9) e^{-i 3 a \omega}\right], \tag{16}
\end{align*}
$$

which is plotted in Fig. 5. Following the method of Part i, we convert this noncausal approximating function to a causol function by multiplying by $e^{-i \mathrm{Ba} \mathrm{\omega}}$, which gives

$$
\begin{align*}
& C(\omega)= e^{-i 3 a \omega} K(\omega)= \\
&+(4+i 2) e^{-i 2 a \omega}+\left(\pi^{2}\right)\left[\left(\pi^{2} / 4\right) e^{-i n \omega}+(4-i 2) e^{-i 4 a \omega}\right. \\
&\left.-e^{-i 5 a \omega}+(4 / 9+i 2 / 9) e^{-i \theta a \omega}\right] \tag{17}
\end{align*}
$$

Multiplication by $e^{-i 3 a \omega}$ is equivalent to introducing a pure time delay in the time domain, and thus the impulse response and transfer function are essentially unchanged. Since the series sontains seven terms, the synthesized network contains six stages.

We now calculate $D(\omega)$. From Eq. (3b) we have

$$
\begin{align*}
|D(\omega)|^{2}= & D(\omega) D^{*}(\omega)=\left(I_{0}{ }^{0}\right)^{2}-C\left(\omega, 2^{*}(\omega)=\left(I_{0}{ }^{0}\right)^{2}-0.44257-(0.11139+i 0.14695) e^{i a \omega-}(0.11139-i 0.14695) e^{-i a \omega}\right. \\
& -(0.09990+i 0.12775) e^{i 2 \omega \omega}-(0.09990-i 0.12775) e^{-i 2 a \omega-(-0.05961-i 0.05232) e^{i 8 a \omega}} \\
& -(-0.05961+i 0.05232) e^{-i 3 a \omega}-0.05589 e^{i 4 \alpha \omega}-0.05589 e^{-i 4 a \omega}-(-0.00913+i 0.00456) e^{i \sigma a \omega} \\
& -(-0.00913-i 0.00456) e^{-i 5 a \omega}-(0.00552-i 0.00203) e^{i 6 \omega \omega}-(0.00152+i 0.00203) e^{-i 6 a \omega} . \quad(18 \tag{18}
\end{align*}
$$

The area $I_{0}{ }^{0}$ of the input impulse must now be chosen in order to obtain $|D(\omega)|^{2}$. It may have any real value as long as $\left(I_{0}{ }^{0}\right)^{2}$ is larger than the maximum value of $C(\omega) C^{*}(\omega)$. The maximum of $C(\omega) C^{*}(\omega)$ has been calculated to be 1.035. Thus let us choose $I_{0}{ }^{0}=1.050$, which gives $\left(I_{0}\right)^{0}=1.1025$. Equation (18) then becomes, after making the substitution $x=e^{- \text {-faw }}$,

$$
\begin{align*}
|D(\omega)|^{2}=- & (0.00152+i 0.00203) x^{6}-(-0.00913-i 0.00456) x^{5}-0.05589 x^{4}-(-0.05961+i 0.05232) x^{3} \\
& -(0.09990-i 0.12775) x^{2}-(0.11139-i 0.14695) x+0.65093-(0.1139+i 0.14695) x^{-1} \\
& -(0.09990+i 0.12775) x^{-2}-(-0.05961-i 0.05232) x^{-3}-0.05589 x^{-4} \\
& -(-0.00913+i 0.00456) x^{-6}-(0.001 .52-i 0.00203) x^{-8} \tag{i9}
\end{align*}
$$

which is in the corm of Eq. (A.2). Following the procedure of Appendix Λ, we find the roots of (19) to be

$$
\begin{array}{ll}
x_{1}=0.06608-i 0.27538, & \left(1 / x_{1}\right)^{*}=0.82394-i 3.43353, \\
x_{2}=-0.09690-i 0.27436 . & \left(1 / x_{2}\right)^{*}=-1.14455-i 3.24004, \\
x_{3}=-0.67656-i 0.06373, & \left(1 / x_{3}\right)^{*}=-1.46526-i 0.13704, \\
x_{4}=0.17633+i 0.17387, & \left(1 / x_{4}\right)^{*}=2.87546+i 2.83537, \\
x_{5}=0.57518+i 0.17898, & \left(1 / x_{6}\right)^{*}=1.58510+i 0.49323, \\
x_{6}=0.59387+i 1.30936, & \left(1 / x_{6}\right)^{*}=0.28729+i 0.63342 .
\end{array}
$$

There are $128\left(2^{n+1}\right)$ possible sets of D_{i} which can be obtained from these rootc However, sixty-four of these sets are simply negatives of the other sixty-four. We consider only the set that is formed by constructing the polynomial

$$
\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)\left(x-x_{4}\right)\left(x-x_{5}\right)\left(x-x_{6}\right)
$$

Performing the indicated multiplication, we obtain

$$
\begin{align*}
x^{6}+(-0.63801-i 1.04187) x^{5}+ & (0.02599-i 0.29300) x^{4}+(0.06553+i 0.44610) x^{3} \\
& +(-0.23903-i 0.05436) x^{2}+(0.04871-i 0.00793) x+(-0.00721+i 0.00961) \tag{20}
\end{align*}
$$

As stated in Eqs. (A9), a set of $D_{i}{ }^{\prime}$ is proportional to the coefficients of this polynomial. Evaluating $|q|$ using (A10), ive find that

$$
|q|=0.45943
$$

and so

$$
\begin{array}{lll}
D_{0}^{\prime}=-0.00331+i 0.00441, & D_{3}^{\prime}=0.03011+i 0.20496 . & D_{6}^{\prime}=-0.29312-i 0.48203, \\
D_{1}^{\prime}=0.02238-i 0.00364, & D_{4}^{\prime}=0.01194-i 0.13461, & D_{6}^{\prime}=0.45943 . \\
D_{2}^{\prime}=-0.10982-i 0.02495, & &
\end{array}
$$

From Eqs. (9), (10), and (11) we may now calculate θ_{ρ}, b_{p}, and μ. The results are

$$
\theta_{p}=83^{\circ} 45^{\prime}, \quad b_{p}=0.46365 \mathrm{rad}, \quad \mu=-5.35589 \mathrm{rad}
$$

Using Eqs. (A9), we find that

$$
\begin{array}{lll}
D_{0}=e^{i \mu} D_{0}^{\prime}=-0.00552+i 0, & D_{3}=e^{i \mu} D_{3}^{\prime}=-0.14590+i 0.14706, & D_{5}=e^{i \mu} D_{5}^{\prime}=0.20976-i 0.52372, \\
D_{1}=e^{i \mu} D_{1}^{\prime}=0.01634+i 0.01572, & D_{4}=e^{i \digamma} D_{4}^{\prime}=0.11485-i 0.07122, & D_{6}=e^{i \mu} D_{6}^{\prime}=0.27566+i 0.36755, \\
D_{2}=e^{i \mu} D_{2}^{\prime}=-0.04593-i 0.10282, & &
\end{array}
$$

and hence $D(\omega)$ is completely known. Equation (5) is now used to calculate the $F_{i}{ }^{6}$ and $S_{i}{ }^{6}$, giving

$$
\left(\begin{array}{l}
F_{0}{ }^{6} \\
F_{1}{ }^{6} \\
F_{2} \\
F_{3}{ }^{6} \\
F_{4}{ }^{6} \\
F_{5}{ }^{6}
\end{array}\right]=\left(\begin{array}{r}
0.05065+i 0.00000 \\
-0.09187-i 0.04675 \\
0.27526+i 0.37154 \\
0.23817+i 0.09512 \\
0.43791+i 0.00776 \\
-0.11293+i 0.01201
\end{array}\right),
$$

$$
\left(\begin{array}{l}
S_{1}{ }^{6} \\
S_{2}{ }^{6} \\
S_{3}{ }^{6} \\
S_{4}{ }^{6} \\
S_{5}{ }^{6} \\
S_{6}{ }^{6}
\end{array}\right]=\left(\begin{array}{r}
0.00637+i 0.01069 \\
-0.01604-i 0.06272 \\
-0.12067+i 0.15836 \\
0.16353-i 0.07079 \\
0.19863-i 0.52554 \\
0.27731+i 0.36975
\end{array}\right] .
$$

As a check, we should note that $F_{0}{ }^{6}$ must be real and that $F_{6}{ }^{6}$ and $S_{0}{ }^{6}$ must be zero. As a further check, we can ${ }^{\cdots}$ rify that Eq. (14b) is satisfice.
$\because \quad \therefore$ now able to calculate θ_{6} and b_{6}, the relative angle of the last stage and the optical compensator delay. Using (15b), we find

$$
\theta_{0}=13^{\circ} 48^{\prime}
$$

and from (15a),

$$
b_{6}=5.24997 \mathrm{rad}
$$

The input impulses to the sixth stage are now calculated from Eqs. (C3) and (C4). Equations (15b) and (15a) are then applied again, yielding

$$
\theta_{5}=36^{c} 45^{\prime}
$$

and

$$
b_{5}=6.11153 \mathrm{rad}
$$

By alternately applying Eqs. (C3) and (C4) and Eqs. (15a) and (15b), we obtain the remaining θ_{i} and b_{i}. The
summarized results of the synthesis are
$\left(\begin{array}{l}\theta_{1} \\ \theta_{2} \\ \theta_{3} \\ \theta_{4} \\ \theta_{5} \\ 0_{6} \\ \theta_{p}\end{array}\right]=\left[\begin{array}{l}6^{\circ} 15^{\prime} \\ 13^{\circ} 48^{\prime} \\ 36^{\circ} 45^{\prime} \\ 43^{\circ} 00^{\prime} \\ 36^{\circ} 45^{\prime} \\ 13^{\circ} 48^{\prime} \\ 83^{\circ} 45^{\prime}\end{array}\right], \quad\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3} \\ b_{4} \\ b_{5} \\ b_{8} \\ b_{p}\end{array}\right]=\left[\begin{array}{l}2.10838 \\ 2.96994 \\ 0.74123 \\ 0.74123 \\ 2.96994 \\ 5.24997 \\ 0.46365\end{array}\right] \quad$ radians.

The Jones calculus ${ }^{5}$ can be used to verify that these angles and compensator delays give the desired transfer function of Eq. (17).

ACKNOWLEDGMENTS

The authors are grateful to S. Barnard for assistance in performing the calculations of Sec. IV, and to Professor S. E. Harris for a careful reading of the manuscript.

[^4]
APPENDIX A

We describe in this appendix a method for calculating $D(\omega)$ from $|D(\omega)|^{2}$. The method is similar to that given in Appendix A of Part I, but differs in its details. The differences are necessary because (a) we now begin with a $C(\omega)$ containing complex C_{i}, and (b) complex values of D_{i} can now be tolerated in $D(\omega)$.

We begin with the positive semidefinite polynomial

$$
\begin{align*}
|D(\omega)|^{2}= & D(\omega) D^{*}(\omega)=\left(I_{0}^{0}\right)^{2}-C(\omega) C^{*}(\omega) \\
= & A_{n} e^{i n a \omega}+A_{n-1} e^{i(n-1) a \omega}+\cdots+A_{1} e^{i \alpha \omega}+A_{0} \\
& +A_{1}{ }^{*} e^{-i a \omega}+\cdots+A_{n-1}{ }^{*} e^{-i(n-1) a \omega} \\
& +A_{n}{ }^{*} e^{-i n a \omega} . \tag{A1}
\end{align*}
$$

Letting $x=e^{-i a \omega}$ and reversing the order of the terms, Eq. (A1) becomes

$$
\begin{align*}
|D(x)|^{2}= & A_{n}{ }^{*} x^{n}+A_{n-1}^{*} x^{n-1}+\cdots+A_{1}^{*} x+A_{0} \\
& +A_{1} x^{-1}+\cdots+A_{n-1} x^{-(n-1)}+A_{n} x^{-n} \tag{A2}
\end{align*}
$$

Assume that x_{1} is a root of Eq. (A2). Then

$$
\begin{align*}
& A_{n}{ }^{*} x_{1}{ }^{n}+A_{n-1}{ }^{*} x_{1}{ }^{n-1}+\cdots+A_{1}{ }^{*} x_{1}+A_{0}+A_{1} x_{1}{ }^{-1}+\cdots \\
&+A_{n-1} x_{1} x_{1}^{-(n-1)}+A_{n} x_{1}{ }^{n}=0 . \tag{A3}
\end{align*}
$$

If we now take the complex conjugate of Eq. (A3), we obtain

$$
\begin{align*}
A_{n}\left(x_{1}^{*}\right)^{n}+ & A_{n-1}\left(x_{1}^{*}\right)^{n-1}+\cdots \\
& +A_{1} x_{1}^{*}+A_{0}^{*}+A_{1}^{*}\left(x_{1}^{*}\right)^{-1}+\cdots \\
& +A_{n-1}^{*}\left(x_{1}^{*}\right)^{-(n-1)}+A_{n}^{*}\left(x_{1}^{*}\right)^{-n}=0 \tag{A4}
\end{align*}
$$

Equation (A4) can be rewritten as

$$
\begin{align*}
& A_{n}\left(1 / x_{1}^{*}\right)^{-n}+A_{n-1}\left(1 / x_{1}^{*}\right)^{-(n-1)}+\cdots \\
& \quad+A_{1}\left(1 / x_{1}^{*}\right)^{-1}+A_{0}^{*}+A_{1}^{*}\left(1 / x_{1}^{*}\right)+\cdots \\
& \quad+A_{n-1}^{*}\left(1 / x_{1}^{*}\right)^{n-1}+A_{n}^{*}\left(1 / x_{1}^{*}\right)^{n}=0 . \tag{A5}
\end{align*}
$$

But we now see that (A3) and (A5) have identical coefficients, with x_{1} being the variable in Eq. (A3) and ($1 / x_{1}{ }^{*}$) the variable in (A5). Thus if x_{1} is a root of (A2), then $\left(1 / x_{1}^{*}\right)$ is also a root. One of these two roots is associated with $D(x)$ and the other with $D^{*}(x)$. Hence we associate half of the roots of Eq. (A2) with $D(x)$ and half with $D^{*}(x) . D(x)$ [and hence $\left.D(\omega)\right]$ can then be constructed (to within a multiplicative phase factor) from a knowledge of its roots.

To summarizค, begin with $|D(\omega)|^{2}$ written in the form of Eq. (A1). The A_{i} are in general complex. Form the equation

$$
\begin{align*}
A_{n}{ }^{*} x^{n}+A_{n-1}{ }^{*} x^{n-1}+\cdots & +A_{2}{ }^{*} x+A_{0}+A_{1} x^{-1}+\cdots \\
& +A_{n-1} x^{-(n-1)}+A_{n} x^{-n}=0 \tag{A6}
\end{align*}
$$

Solve for the $2 n$ roots of this equation. These roots always exist in pairs of the form

$$
\begin{array}{cc}
x_{1}, & 1 / x_{1}{ }^{*}, \\
x_{2}, & 1 / x_{2}{ }^{*}, \\
x_{3}, & 1 / x_{8}^{*}, \\
\vdots & \vdots \\
x_{n}, & 1 / x_{n}{ }^{*}
\end{array}
$$

Construct all possible equations using one root from each row of (A7). One possibie grouping, for example, is

$$
\begin{align*}
& \left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-1 / x_{3}{ }^{*}\right) \cdots\left(x-1 / x_{n}{ }^{*}\right) \\
& \quad=x^{n}+d_{n-1} x^{x^{n-1}}+\cdots+d_{2} x^{2}+d_{1} x+d_{0} \tag{A8}
\end{align*}
$$

Each different grouping of roots results in a different $D(\omega)$.

The D_{i} are proportional to the d_{i}, where q, the constant of proportionality, is in general complex. Writing q in the form $q=|q| e^{i \mu}$, we obtain

$$
\begin{gather*}
D_{0}=|q| e^{i \mu} d_{0}=e^{i \mu} D_{0}^{\prime} \\
D_{1}=|q| e^{i \mu} d_{1}=e^{i \mu} D_{1}^{\prime} \\
\vdots \tag{A9}\\
D_{n}=|q| e^{i \mu} d_{n}=e^{i \mu} D_{n}^{\prime}=|q| e^{i \mu}
\end{gather*}
$$

where

$$
D_{i}^{\prime}=|q| d_{i}
$$

The necessity of allowing q to be complex car: be seen by noting that if $D(\omega)$ is a solution of Eq. (3b), then $e^{i \mu} D(\omega)$ is also a solution.

The quantity $|q|$ is calculated from

$$
\begin{equation*}
|q|^{2}\left[d_{0} d_{0}^{*}+d_{1} d_{1}^{*}+\cdots+d_{n-1} d_{n-1}^{*}+1\right]=A_{0} \tag{A10}
\end{equation*}
$$

In order to calculate the phase angle μ, however,. dditional infromation must be provided. The necessary information is obtained from the restriction that $F_{0}{ }^{n}$ must be real, a condition which results from our formulation of the synthesis procedure. With this restriction, μ is uniquely determined (see Sec. IIb) and $D(\omega)$ can be obtained.

Thus the method of this appendix allows us to find $D(\omega)$ to within a multiplicative phase factor $e^{i \mu}$. We obtain values for the D_{i}^{\prime}, where

$$
\begin{align*}
& D(\omega)=e^{i \mu}\left[D_{0}{ }^{\prime}+D_{1}^{\prime} e^{-i a \omega}+D_{2}^{\prime} e^{-i 2 a \omega}+\cdots\right. \\
& \left.\quad+D_{n-1}^{\prime} e^{-i(n-1) a \omega}+D_{n}^{\prime} e^{-i n a \omega}\right] \\
& =D_{0}+D_{1} e^{-i a \omega}+D_{2} e^{-i 2 a \omega}+\cdots \\
& \tag{A11}\\
& \quad+D_{n-1} e^{-i(n-1) a \omega}+D_{n} e^{-i n a \omega}
\end{align*}
$$

APPENDIX B

In this appendix, the restrictions placed upon the F_{i} and S_{i} (and upon the C_{i} and D_{i}) because of conservation of energy are derived. Consider the i th stage of the network of Fig. 2. Since the network is lossless, the energy in the fast-axis output plus the energy in the slow-axis output of the i th stage must equal the energy incident upon the first stage. Stated mathematically, this gives

$$
\begin{equation*}
F^{i}(\omega) F^{i *}(\omega)+S^{i}(\omega) S^{i *}(\omega)=\left(I_{0}^{0}\right)^{2} \tag{B1}
\end{equation*}
$$

If we write out Eq. (B1) and equate the coefficients of corresponding terms, we obtair the equations

$$
\begin{align*}
F_{0}^{i *} F_{0}^{i}+F_{2}^{i *} F_{1}^{i} & +\cdots+F_{i-1}^{i *} I_{i-1}^{i}+S_{1}^{i *} S_{1}^{i} \\
& +S_{2}^{i *} S_{2}^{i}+\cdots+S_{i}^{i *} S_{i}^{i}=\left(I_{0}^{0}\right)^{2} \tag{B2}
\end{align*}
$$

$$
\begin{gather*}
F_{0}{ }^{i *} F_{i}{ }^{i}+F_{1}{ }^{i *} F_{2}{ }^{i}+\cdots+F_{i-2}{ }^{i *} F_{i-1}{ }^{i}+S_{1}{ }^{i *} S_{2}^{i} \\
+S_{2}^{i *} S_{3}^{i}+\cdots+S_{i-1}{ }^{i *} S_{i}{ }^{i=}=0 \tag{B3}\\
F_{0}{ }^{i *} F_{2}{ }^{i}+F_{1}{ }^{i *} F_{3}{ }^{i}+\cdots+F_{i-3}{ }^{i *} F_{i-1}+S_{1}{ }^{*} S_{3}^{i} \\
+S_{2}{ }^{i *} S_{4}{ }^{i}+\cdots+S_{i-2}{ }^{i} S_{i}{ }^{i}=0 \tag{B4}\\
\vdots \tag{B5}\\
F_{0}{ }^{i *} F_{i-1}{ }^{i}+S_{1}{ }^{*} S_{i}{ }^{i}=0
\end{gather*}
$$

$C(\omega)$ and $D(\omega)$ must also satisfy conservation of energy, giving the following restrictions on the C_{i} and D_{i}.

$$
\begin{gather*}
C_{0}{ }^{*} C_{0}+C_{1}{ }^{*} C_{1}+\cdots+C_{n}{ }^{*} C_{n}+D_{0}{ }^{*} D_{0}+D_{1}{ }^{*} D_{1}+\cdots \\
+D_{n}{ }^{*} D_{n 2}=\left(I_{0}\right)^{2}, \\
C_{0}{ }^{*} C_{1}+C_{1}{ }^{*} C_{2}+\cdots+C_{n-1}{ }^{*} C_{n}+D_{0}{ }^{*} D_{1}+D_{1}{ }^{*} D_{2}+\cdots \\
\\
+D_{n-1}{ }^{*} D_{n}=0, \\
C_{0}{ }^{*} C_{2}+C_{1}{ }^{*} C_{3}+\cdots+C_{n-2}{ }^{*} C_{n}+D_{0}{ }^{*} D_{2}+D_{1}{ }^{*} D_{3}+\cdots \tag{B8}\\
+D_{n-2}^{*} D_{n}=0, \tag{B9}
\end{gather*}
$$

APPENDIX C

This appendix gives a systematic and rapid method of calculating the input to a stage, once the output is known. This is simply a formalized procedure of solving for the F^{j-1} and S^{j-1} of (12d) once the F^{j} and S^{j} are
known. The expressions are similar to those of Appendix C of Part I but differ somewhat due to the complex quantities involved.

We begin by defining $F_{j-1}{ }^{j}$ and $S_{j}{ }^{j}$ in polar form:

$$
\begin{align*}
F_{j-1}^{j} & =\left|F_{j-1}{ }^{j}\right| \exp \left(i f_{j-1}{ }^{j}\right) \tag{C1}\\
S_{j}^{j} & =\left|S_{j}{ }^{j}\right| \exp \left(i s_{j}^{j}\right) . \tag{C2}
\end{align*}
$$

Using these definitions, we find the expressions for the F^{j-1} and S^{j-1} in matrix form
$\left[\begin{array}{c}F_{0}^{j-1} \\ F_{1}^{j-1} \\ \vdots \\ F_{j-1}^{j-1}\end{array}\right]=\frac{\exp \left(-i s_{j}^{j}\right)}{\left\{\left.\left|F_{j-1}\right|^{j}\right|^{2}+\left|S_{j}^{j}\right|^{2}\right\}^{\frac{2}{2}}}\left[\begin{array}{cc}F_{0}^{j} & S_{1}^{i} \\ F_{1}^{j} & S_{2}^{j} \\ \vdots & \vdots \\ F_{j-1}^{j} & S_{j}^{j}\end{array}\right]\left[\begin{array}{c}S_{j}^{j} \\ -F_{j-1}^{j}\end{array}\right]$.
$\left[\begin{array}{c}S_{0}^{j-1} \\ S_{1}^{j-1} \\ \vdots \\ S_{j-1}^{j-1}\end{array}\right]=\frac{\exp \left(i b_{j}\right) \cdot \exp \left(\dot{j s}_{j}{ }^{j}\right)}{\left\{\left.\left|F_{j-1}\right|^{j}\right|^{2}+\left|\tilde{S}_{j}^{j}\right|^{2}\right\}^{\frac{1}{2}}}\left(\begin{array}{cc}F_{0}{ }^{j} & S_{1}{ }^{j} \\ F_{2}^{j} & S_{2}{ }^{j} \\ \vdots & \vdots \\ F_{j-1}{ }^{j} & S_{j}{ }^{j}\end{array}\right]\left[\begin{array}{c}F_{j-1} j^{*} \\ S_{j} j^{*}\end{array}\right]$ (C
As before, the calculated values F_{j-1}^{j-1} and S_{0}^{j-1} should always be zero.

Appendix B

脂 $870200^{\circ}-20$

OP'TICAL NETWORK SYNTHESIS USING BIREFRINGENT CRYSTALS.

VI. ADDITIONAL TECHNIQUES FOR THE SYNTHESIS OF LOSSLESS DOUBLE-PASS NETWORKS

E. O. Ammann ar.J.J. M. Yarborough
Electronic Defense Laboratories
Sylvania Electronic Systems - Western Operation Mountain View, California

to be published in
Journal of the Optical Society of America

I. INTRODUCTION

In Part IV of this series ${ }^{1}$, it was shown that a certain class of amplitude transmittances can be realized by birefringent networks containing only half as many crystals as normally required. The technique involved was called a double-pass synthesis procedure since the light makes two passes througin the network. The purpose of this paper is to give additional double-pass procedures which are applicable, when the number of network stages is odd, to a still broader class of amplitude transmittances.

We will make use of results obtained in several previous papers of this series. Although some of this material is reviewed, familiarity with these papers is desirable. It is particularly important that the reader be acquainted with the techniques and results of Part IV ${ }^{1}$, and to a lesser degree, with the contents of Parts I^{2} and V^{3}.

The double-pass procedures described in Part IV are applicable to the type of birefringent network described in Part I. The first part of this paper gives additional circumstances in which a double-pass procedure can be used with that type of network. The second part of this paper deals with double-pass procedures for the more general type of birefringent network of Part V.

Let us briefly review the essence of the double-pass procedures of Part IV. For a certain class of amplitude transmittances $C(\omega)$, the birefringent network which results from using the synthesis procedure of Part I has a particular symmetry. Because of this symmetry, the last half of the birefringent network can be replaced by a mirror which reflects the light back through the first half of the network. In this paper, we show how networks obtained for still other classes of $C(\omega)$ can be made to have this symmetry. Having done this, the techniques of Part IV can then be used directly.

The forms of the networks obtained using the procedures of Part I and Part V are shown in Figs. 1 and 2 respectively. In Fig. 1, each stage of the network consists of a birefringent crystal, while in Fig. 2 each stage consists of a birefringent crystal and optical compensator (wave-plate). The network of Fig. 1 can be considered to be a special case of the network of Fig. 2 in which all optical compensators introduce zero retardation. The ϕ_{i} shown in Figs. 1 and 2 are the absolute rotation angles of the stages. The $\dot{\varphi}_{i}$ denote the angle between the slow axis of each crystal and the transmission axis of the input polarizer. It will also be useful to deal with relative angles $\left(\theta_{i}\right)$ of the stages, defined as the angle between the slow axis of a stage and the slow axis of the preceding stage. The θ_{i} are related to the ϕ_{i} by

$$
\begin{align*}
\theta_{1} & =\phi_{1}, \\
\theta_{2} & =\phi_{2}-\phi_{1}, \\
\theta_{3} & =\phi_{3}-\phi_{2}, \\
& \cdot \\
& \tag{1}\\
{ }^{\theta_{n}} & =\phi_{n}-\phi_{n-1}, \\
\theta_{p} & =\phi_{p}-\phi_{n} .
\end{align*}
$$

We now derive a property of these networks which will be used throughout this paper. Suppose that we alter a birefringent network by (a) for the jth stage, changing θ to $-\theta$ and adaing π radians of optical compensation, and (b) for the preceding stage, adding π radians of optical compensation. The output of the new network will be identical to that of the original network.

To prove this statement, we will use the Jones calculus ${ }^{4}$. Figure 3 shows the jth stage of the network of Fig. 2. The u and v directions are those of the S and F

Figure 1

B-4

〕 ココกロัョ

B－5
axes of the preceding ($j-1$) stage while u^{\prime} and v^{\prime} denote the S and F directions of the jth stage. The complex amplitudes of the E field of the incoming and outgoing light are related by

$$
\mathrm{E}^{\prime}=\mathrm{MS}\left(-\theta_{\mathrm{j}}\right) \mathrm{E},
$$

which, when written out, is

$$
\begin{align*}
\binom{E_{u^{\prime}}}{E_{v}} & =\left(\begin{array}{ccc}
e^{-i b_{j}} e^{-i a \omega} \\
0 & 1
\end{array}\right)\left(\begin{array}{cccc}
\cos & \theta_{j} & \sin & \theta_{j} \\
-\sin & \theta_{j} & \cos & \theta_{j}
\end{array}\right)\binom{E_{u}}{E_{v}} \\
& =\left(\begin{array}{ccccc}
e^{-i b_{j_{e}}} & \cos & \theta_{j} & e^{-i a b_{j}} & \sin \\
e_{j} & \theta_{j} \\
-\sin & \theta_{j} & \cos & \theta_{j}
\end{array}\right)\binom{E_{u}}{E_{v}} \tag{2}
\end{align*}
$$

The quantity b_{j} is the retardation of the compensator while $a \omega$ is the retardation of the crystal. For convenience, let us denote the 2×2 matrix of (2) by

$$
\left(\begin{array}{ll}
A_{j} & B_{j} \tag{3}\\
C_{j} & D_{j}
\end{array}\right)
$$

Suppose that we now change θ_{j} to $-\theta_{j}$, and b_{j} to $b_{j}+\pi$. This causes
$e^{-i b_{j}}$ to become $-e^{-i b_{j}}$, and $\sin \theta_{j}$ to become $-\sin \theta_{j}$. The new matrix for the j th stage is thus

$$
\left(\begin{array}{cc}
-A_{j} & B_{j} \tag{4}\\
\cdots C_{j} & D_{j}
\end{array}\right)
$$

In ada. $\mathbf{i} \mathbf{i o n}$, for the preceding stage let us change b_{j-1} to $b_{j-1}+\pi$. This means that the matrix for the ($\mathrm{j}-1$)th stage is

$$
\left(\begin{array}{cc}
-A_{j-1} & -B_{j-1} \tag{5}\\
C_{j-1} & D_{j-1}
\end{array}\right)
$$

The matrix for the ($\mathrm{j}-1$)th and j th stages together is found by multiplying (4) and (5).

$$
\left(\begin{array}{cc}
-A_{j} & B_{j} \tag{6}\\
-C_{j} & D_{j}
\end{array}\right)\left(\begin{array}{cc}
-A_{j-1} & -B_{j-1} \\
C_{j-1} & D_{j-1}
\end{array}\right)=\left(\begin{array}{cc}
A_{j} A_{j-1}+B_{j} C_{j-1} & A_{j} B_{j-1}+B_{j} D_{j-i} \\
C_{j} A_{j-1}+D_{j} C_{j-1} & C_{j} B_{j-1}+D_{j} D_{j-1}
\end{array}\right)
$$

But this is identical to the matrix which would be obtained for the original ($\mathrm{j}-1$)th and j jth stages. Therefore in making the changes $\theta_{j} \rightarrow-\theta_{j}, b_{j} \rightarrow b_{j}+\pi$, and $b_{j-1} \rightarrow b_{j-1}+\pi$, we have not altered the network's behavior; the desired result has thus been proved.

We make one further observation. Suppose that we make the changes $\theta_{1} \longrightarrow-\theta_{1}$ and $b_{1} \longrightarrow b_{1}+\pi$ on the first stage of a birefringent network. Since there is no preceding stage, the question arises as to how the network's performance is affected. It can be shown that such a change causes the amplitude-transmittance $\mathrm{C}(\omega)$ of the network to become $-\mathrm{C}(\omega)$. As noted in Part III^{5}, this sign change is of no practical importance.

II. TECHNIQUES WHICH ARE APPLICABLE WHEN THE C C_{i} ARE REAL

Two basic types of lossless birefringent network are shown in Figs. 1 and 2. For both types, the amplitude transmittance $C(\omega)$ is given by

$$
\begin{equation*}
C(\omega)=C_{0}+C_{1} \mathrm{e}^{-\mathrm{i} a \omega}+\mathrm{C}_{2} \mathrm{e}^{-\mathrm{i} 2 a \omega}+\cdots+\mathrm{C}_{\mathrm{n}} \mathrm{e}^{-\mathrm{in} a \omega} \tag{7}
\end{equation*}
$$

When the C_{i} of (7) are real, the synthesis procedure of Part I can be used and the type of network shown in Fig. 1 results. When the C_{i} are complex, the procedure of Part V must be used and the type of network shown in Fig. 2 results. Part IV gave two double-pass procedures (methods A and B) and the circumstances under which they could be applied when $C(\omega)$ contained real C_{i}. In this section we show that for real C_{i}, additional circumstances exist under which double-pass procedures can be used.

In Part IV it was seen that Methods A and B are applicable to networks exhibiting the symmetry shown in Fig. 4a. In Fig. 4a, symmetry requirements are given both in terms of the Φ_{i} and θ_{i}. Although optical compensators are not present in Fig. 4a, equivalent symmetry requirements can be stated for a network which contains them. These requirements are shown in Fig. 4b, where the b_{i} are the retardations introduced by the respective optical compensators. For both Figs. 4a and 4b, the symmetry requirements may be summarized as follows. The birefringent network (a) musi have its input and output polarizers crossed, and (b) must have stages which are symmetric (both with respect to rotation angle and compensator delay) about the midpoint of the network. Satisfaction of these criteria allows methods A and B of Part IV to be applied.

Theorem 5b of Part III states that if the C_{i} of the desired transmittance are chosen so that $\mathrm{C}_{0}=-\mathrm{C}_{\mathrm{n}}, \mathrm{C}_{1}=-\mathrm{C}_{\mathrm{n}-1}, \mathrm{C}_{2}=-\mathrm{C}_{\mathrm{n}-2}, \mathrm{C}_{3}=-\mathrm{C}_{\mathrm{n}-3}, \ldots$ etc., then each of the resulting lossless birefringent networks will have $\theta_{1}=-\theta_{\mathrm{p}} \pm 90^{\circ}$, $\theta_{2}=-\theta_{n}, \theta_{3}=-\theta_{n-1}, \theta_{4}=-\theta_{n-2}, \cdots$ etc. As pointed out in Part $I V$, these angle restrictions are precisely those required for using methods A and B and hence doublepass procedures can be applied.

Suppose, however, that the C_{i} satisfy $C_{0}=C_{n}, C_{1}=C_{n-1}, C_{2}=C_{n-2}$, $C_{3}=C_{n-3}, \cdots$ etc. Theorem $4 b$ of Part III states that the resulting birefringent

networks have $\theta_{1}=\theta_{\mathrm{p}} \mp 90^{\circ}, \theta_{2}=\theta_{\mathrm{n}}, \theta_{3}=\theta_{\mathrm{n}-1}, \ldots$ etc. This symmetry is not appropriate for double-pass techniques, but we now show how it can be made so when n is odd.

We illustrate by considering the case of $n=9$. If $\mathrm{C}(\omega)$ is chosen so that $\mathrm{C}_{0}=\mathrm{C}_{9}, \mathrm{C}_{1}=\mathrm{C}_{8}, \mathrm{C}_{2}=\mathrm{C}_{7}, \mathrm{C}_{3}=\mathrm{C}_{6}$, and $\mathrm{C}_{4}=\mathrm{C}_{5}$, the networks obtained using the synthesis procedure of Part I will have the symmetry tabulated in Table I. Let us now make use of the result discussed in Section I of this paper. If we change θ_{9} to $-\theta_{2}, b_{9}$ to π, and b_{8} to π, the transmittance of the network is unchanged. Similarly we can change θ_{7} to $-\theta_{4}, b_{7}$ to π, b_{6} to $\pi ; \theta_{5}$ to $-\theta_{5}, b_{5}$ to π, b_{4} to $\pi ; \theta_{3}$ to $-\theta_{3}, b_{3}$ to π, b_{2} to π; and θ_{1} to $-\theta_{1}, b_{1}$ to π without affecting the transmittance of the network. The network now has the symmetry shown in Table II which is the symmetry required. Hence methods A and B are directly applicable. Similar techniques apply for other odd values of n. If n is even, the use of the above procedure does not result in a symmetrical network and hence these techniques do not succeed. To date, comparable ones have not been found which apply when n is even.

In methods A and B, the symmetric network is halved by cutting it through the middle stage. For this example, the 5th stage is the middle stage and consists of a crystal of length L and compensator whose retardation is π radians. When this stage is halved, the components are a crystal of length $L / 2$ and a compensator whose retardation is $\pi / 2$ radians.

III. TECHNIQUES WHICH ARE APPLICABLE WHEN THE C_{i} ARE COMPLEX

Part V described a procedure for synthesizing birefringent networks whose transmittances contain complex C_{i}. The form of the resulting network is shown in Fig. 2. This section describes how a double-pass procedure can be obtained for use with this class of network.

STAGE	ROTATION ANGLE	COMPENSATOR RETARDATION (radians)	
1	θ_{1}	$=\theta_{1}$	$\mathrm{~b}_{1}=0$
2	θ_{2}	$=\theta_{2}$	$\mathrm{~b}_{2}=0$
3	θ_{3}	$=\theta_{3}$	$\mathrm{~b}_{3}=0$
4	θ_{4}	$=\theta_{4}$	$\mathrm{~b}_{4}=0$
5	θ_{5}	$=\theta_{5}$	$\mathrm{~b}_{5}=0$
6	θ_{6}	$=\theta_{5}$	$\mathrm{~b}_{6}=0$
7	θ_{7}	$=\theta_{4}$	$\mathrm{~b}_{7}=0$
8	θ_{8}	$=\theta_{3}$	$\mathrm{~b}_{8}=0$
9	θ_{9}	$=\theta_{2}$	$\mathrm{~b}_{9}=0$
output	θ_{p}	$=\theta_{1} \pm 90^{\circ}$	$\mathrm{b}_{\mathrm{p}}=0$

Table I

$\left.\begin{array}{rlr}\text { STAGE } & \begin{array}{c}\text { ROTATION } \\ \text { ANGLE }\end{array} & \begin{array}{c}\text { COMPENSATOR } \\ \text { RETARDATION }\end{array} \\ \text { (radians) }\end{array}\right\}$

Table II

Our goal will again be to obtain a network having the symmetry shown in Fig. 4 b . We begin by stating a theorem. Asterisks denote complex conjugates.

Theorem

If the C_{i} of the desired transmittance are chosen so that $\mathrm{C}_{0}=\mathrm{C}_{\mathrm{n}}^{*}$, $\mathrm{C}_{1}=\mathrm{C}_{\mathrm{n}-1}^{*}, \mathrm{C}_{2}=\mathrm{C}_{\mathrm{n}-2}^{*}, \mathrm{C}_{3}=\mathrm{C}_{\mathrm{n}-3}^{*}, \cdots$ etc, then the resulting lossless birefringent networks have $\theta_{1}=-\theta_{p}+90^{\circ}, \theta_{2}=\theta_{n}, \theta_{3}=\theta_{n-1}, \theta_{4}=\theta_{n-2}, \cdots$ etc, and $b_{1}=b_{n}-\pi, b_{2}=b_{n-1}, b_{3}=b_{n-2}, b_{4}=b_{n-3}, \cdots$ etc.

The proof of this theorem is similar to the proofs of Theorems $4 b$ and $5 b$ in Part III and hence will not be given here.

We will again use a network with $\mathrm{n}=9$ for illustration; the technique is applicable only when n is odd. If the C_{i} satisfy the requirements listed above, the resulting networks will have the symmetry shown in Table III. We next apply the result of Section I by noting that $\mathbf{C}(\omega)$ for the network remains unaltered if we change θ_{8} to $-\theta_{3}, b_{8}$ to $b_{2}+\pi, b_{7}$ to $b_{3}+\pi ; \theta_{6}$ to $-\theta_{5}, b_{6}$ to $\mathrm{b}_{4}+\pi, \mathrm{b}_{5}$ to $\mathrm{b}_{5}+\pi$; θ_{4} to $-\theta_{4}, b_{4}$ to $b_{4}+\pi, b_{3}$ to $b_{3}+\pi$; and θ_{2} to $-\theta_{2}, b_{2}$ to $b_{2}+\pi, b_{1}$ to $b_{1}+\pi$. In addition, b_{p} is changed to 0 . This new network, whose θ_{i} and b_{i} are listed in Table IV, has the symmetry necessary for application of methods A and B, and hence the desired result has been obtained. For other odd values of n, the same technique can be applied.

Several items should be briefly mentioned at this point. The first is to note that when the C_{i} are complex, one begins manipulating the $(\mathbf{n}-1)$ th stage while when the C_{i} are real, one starts with the nth stage. The second point concerns our setting b_{p} to zero. This step is necessary if the input and output polarizers are to be the "mirror-images" of each other. The result of setting b_{p} to zero is that the transmittance of the double-pass network will be ($\exp \mathrm{ib}_{\mathrm{p}}$). C (ω) instead of the

STAGE	ROTATION ANGLE	COMPENSATOR RETARDATION (radians)
1	$\theta_{1}=\theta_{1}$	$\mathrm{b}_{1}=\mathrm{b}_{1}$
2	$\theta_{2}=\theta_{2}$	$\mathrm{b}_{2}=\mathrm{b}_{2}$
3	$\theta_{3}=\theta_{3}$	$\mathrm{b}_{3}=\mathrm{b}_{3}$
4	$\theta_{4}=\theta_{4}$	$\mathrm{b}_{4}=\mathrm{b}_{4}$
5	$\theta_{5}=\theta_{5}$	$\mathrm{b}_{5}=\mathrm{b}_{5}$
6	$\theta_{6}=\theta_{5}$	$\mathrm{b}_{6}=\mathrm{b}_{4}$
7	$\theta_{7}=\theta_{4}$	$\mathrm{b}_{7}=\mathrm{b}_{3}$
8	$\theta_{8}=\theta_{3}$	$\mathrm{b}_{8}=\mathrm{b}_{2}$
9	$\theta_{9}=\theta_{2}$	$\mathrm{b}_{9}=\mathrm{b}_{1}+\pi$
output polarizer	$\theta_{p}=-\theta_{1}+90^{\circ}$	$\mathrm{b}_{\mathrm{p}}=\mathrm{b}_{\mathrm{p}}$

Table III
\(\left.$$
\begin{array}{ccc}\text { STAGE } & \begin{array}{c}\text { ROTATION } \\
\text { ANGLE }\end{array} & \begin{array}{c}\text { COMPENSATOR } \\
\text { RETARDATION }\end{array}
$$

(radians)\end{array}\right\}\)| $\theta_{1}=\theta_{1}$ |
| :---: |
| 2 |

[^5]desired $C(\omega)$. The difference is only a constant phase factor, which in most instances; is unimportant. Furthermore, if C_{0} is originally chosen to be real, $\mathrm{b}_{\mathrm{p}}=0$ and the need for the final polarizer is automatically eliminated.

Finally, if the C_{i} satisfy $C_{0}=-C_{n}^{*}, C_{1}=-C_{n-1}^{*}, C_{2}=-C_{n-2}^{*}$, $\mathrm{C}_{3}=\mathrm{C}_{\mathrm{n}-3}^{*} \cdots$ etc., the technique of this section is also applicable. This can be seen by noting that if we multiply such a $C(\omega)$ by the factor i, the new $C(\omega)$ satisfies the constraints of the theorem given in this section.

IV. DISCUSSION

We have seen in Sections II and III that if certain restrictions are satisfied by the C_{i}, double-pass synthesis procedures can be emp. . uj_{j}. An important question, then, is how severely these restrictions limit one in choosing a $C(\omega)$. In discussing this, it will be convenient to deal with $K(\omega)$ as well as $C(\omega)$. $K(\omega)$ is formed by multiplying $C(\omega)$ by $e^{i(n / 2) a \omega}$ and therefore has the form

$$
\begin{align*}
K(\omega 1) & =C_{0} e^{i(n / 2) a \omega}+C_{1} e^{i[(n / 2)-1] \omega}+\cdots \\
& +C_{n-1} e^{-i[(n / 2)-1] a \omega}+C_{n} e^{-i(n / 2) a \omega} \tag{8}
\end{align*}
$$

The usefulness of $K(\omega)$ stems from the fact that it is often real, whereas $C(\omega)$ is complex. In choosing a desired transmittance, it is often written first in the form of Eq. (8) and then converted to $C(\omega)$.

In terms of $K(\omega)$, the restrictions upon the C_{i} have the following effects:
(a) The restrictions $C_{0}=-C_{n}, C_{1}=-C_{n-1}, C_{2}=-C_{n-2}, C_{3}=-C_{n-3}$, ... etc, which were necessary in Part IV of this series are equivalent to requiring that $K(\omega)$ be purely imaginary and have odd symmetry .
(b) The restrictions $\mathrm{C}_{0}=\mathrm{C}_{\mathrm{n}}, \mathrm{C}_{1}=\mathrm{C}_{\mathrm{n}-1}, \mathrm{C}_{2}=\mathrm{C}_{\mathrm{n}-2}, \mathrm{C}_{3}=\mathrm{C}_{\mathrm{n}-3}, \cdots$ etc. which were necessary in Section II of this paper are equivalent to requiring that $\mathrm{K}(\omega)$ be real and have even symmetry.
(c) The restrictions $\mathrm{C}_{0}=\mathrm{C}_{\mathrm{n}}^{*}, \mathrm{C}_{1}=\mathrm{C}_{\mathrm{n}-1}^{*}, \mathrm{C}_{2}=\mathrm{C}_{\mathrm{n}-2}^{*}, \mathrm{C}_{3}=\mathrm{C}_{\mathrm{n}-3}^{*}, \cdots$ etc. which were necessary in Section III of this paper are equivalent to requiring that $K(\omega)$ be real. The symmetry of $K(\omega)$ is not restricted in any wav. Thus these restrictions (particularly those of Section III) impose relatively little constraint upon the choice of desired amplitude transmittance.

Finally we note that the procedure of Section II can be considered to be a special case of the more general procedure of Section III.

ACKNOWLEDGMENT

The authors gratefully acknowledge stimulating discussions with R. B. Emmons.

FOOINOTES

* This work was supported by the National Aeronautics and Space Administration under Contract NAS8-205 70.

1. E. O. Ammann, J. Opt. Soc. Am. 56, 952 (1966).
2. S. E. Harris, E. O. Ammann, and I. C. Chang, J. Opt. Soc. Am. 54, 1267 (1964).
3. E. O. Ammann and J. M. Yarborough, J. Opt. Soc. Am. 56, (1966).
4. R. C. Jones, J. Opt. Soc. Am. 31, 488 (1941).
5. E. O. Ammann, J. Opt. Soc. Am. 56, 943 (1966).

CAPTIONS FOR FIGURES AND TABLES

『゙心． 1 Basic configuration of birefringent network（4 stages）obtained from the synthesis procedure of Part I．F and S denote the＂fast＂and＂siow＂ axes of the bircfringent crystals．

Fig． $2 \quad$ Basic configuration of birefringent network（4 stages）obtained from the synthesis procedure of Part V．

Fig． 3 Single stage of the network of Fig．2．Components are a birefringent crystal and optical compensator．

Fig． 4 Network symmetry which is required in order for methods A and B （of Part IV of this series）to be applicable．（a）Lossless network without compensators，and（b）lossless network with compensators．

Table I Network symmetry which results for $n=9$ when the（real） C_{i} are chosen to satisfy $\mathrm{C}_{0}=\mathrm{C}_{9}, \mathrm{C}_{1}=\mathrm{C}_{8}, \mathrm{C}_{2}=\mathrm{C}_{7}, \mathrm{C}_{3}=\mathrm{C}_{6}$ ，and $\mathrm{C}_{4}=\mathrm{C}_{5}$ ．

Table II Network which is equivalent to that listed in Table I．
Table III Network symmetry which results for $\mathrm{n}=9$ when the（complex） C_{i} are chosen to satisfy $\mathrm{C}_{0}=\mathrm{C}_{9}^{*}, \mathrm{C}_{1}=\mathrm{C}_{8}^{*}, \mathrm{C}_{2}=\mathrm{C}_{7}^{*}, \mathrm{C}_{3}=\mathrm{C}_{6}^{*}$ ，and $\mathrm{C}_{4}=\mathrm{C}_{5}^{*}$ ．

Table IV Network which is equivalent to that listed in Table III．

Appendix C

的67-20525

SYNTHESIS OF ELECTRO-OPTIC MODULATORS FOR AMPLITUDE

MODUULATION OF LIGHT

E. O. Ammann and J. M. Yarborough
Electronic Defense Laboratories
Sylvania Electronic Systems - Western Operation Mountain View, California

to be subnitted for publication

I. INTRODUCTION

Amplitude modulation of light using an electro-optic medium has been the subject of onsiderable investigation the past few years. Most of this work has centered on (1) studying comising electro-optic materials [1] - [8] and (2) finding suitable means for applying ectric fields to these materials. The latter work can be conveniently divided into investiations of cavity-type modulators [9] - [11] and traveling-wave modulators [12] - [17]. his work has resulted in several useful electro-optic materials and a variety of ingenious orms of amplitude modulators.

It is perhaps surprising, then, that all of these devices produce amplitude modulation in ssentially the same fashion as the simplified modulator of Fig. 1. That is, regardless of ie material used and the manner in which the modulating field is applied, the model of ig. 1 can be used to describe the essential modulation characteristics of virtually all xisting electro-optic amplitude modulators. (We have assumed, for simplicity, that fnchronism conditions are perfectly satisfied, that the medium is not naturally birefringent 1 the direction of light propagation, etc.)

The modulator model of Fig. 1 consists of an input polarizer, an slectro-optic medium, quarter-wave plate, and an output polarizer. The birefringence of the electro-optic nedium is assumed to be directly proportional to the modulating signal, a condition which y satisfied exactly by Pockels-effect materials and approximately by Kerr-effect materials iased with a dc voltage. The modulator of Fig. 1 has an amplitude-transmission vs. pplied voltage characteristic

$$
\begin{equation*}
K(v)=\frac{(1+i)}{2 \sqrt{2}} e^{i \frac{\pi}{2} \frac{v}{V_{0}}}+\frac{(1-i)}{2 \sqrt{2}} e^{-i \frac{\pi}{2} \frac{v}{V_{0}}}=\cos \left(\frac{\pi}{2} \frac{v}{V_{0}}-45^{\circ}\right), \tag{1}
\end{equation*}
$$

here V_{0} is the half-wave retardation voltage.

It is well known [18] - [19] that this $\mathrm{K}(\mathrm{v})$ is not the optimum characteristic for an amplitude modulator. The device of Fig. 1, and the efore existing amplitude modulators, have performance characteristics which depart from ideal. The result is that harmonics, intermodulation products, and other undesirable components are present in the modulator output. These distortion components are small when small depths of modulation are used, but their effects become more pronounced at greater modulation depths.

One of the purposes of this paper is to describe a synthesis procedure which allows the realization of amplitude modulators having an arbitrarily specifiable voltage transfer function. With this synthesis procedure it is possible to design modulators whose properties are tailored to the particular application at hand. The synthesized modulator (shown in Fig. 3) consists of a series of cascaded stages between an input and output polarizer. Each stage contains electro-optic material and an optical compensator [20] (wave-plate). The number of stages required depends upon the complexity of the desired voltage transfer function $K(v)$. It should be omphasized that there is nothing new about any of the components which make up the synthesized modulator; rather, it is the arrangement of these standard components which results in a device whose characteristics can be arbitrarily prescribed.

This paper also discusses the transfer function of an ideal amplitude modulator and methods of approximating it. The ideal transfer function depends upon the type of detector employed to demodulate the signal. Two cases are considered: the use of (a) envelope detection, and (b) square-law detection. While it is possible in theory to synthesize a modulator having an ideal transfer function, it would contain an infinite number of stages. Hence in practice it is necessary to find suitable approximations to the ideal function which can be roalized by modulators containing a finite number of stages. Several approximation techniques are described and compared on the basis of distortion present in the demodulated signal. Finally, modulator designs which correspond to these approximations are tabulated.

II. THE SYNTHESIS PROCEDURE

A. General

The procedure to be described for synthesizing amplitude modulators draws heavily upon the results given in a series of papers [21] - [26] dealing with birefringent network synthesis. Since several papers of this series are especially applicable, we will begin by mentioning their results and how they apply to the problem at hand.

Part I [21] of the series reported a procedure for synthesizing birefringent networks having a prescribed frequency transfer function $C(\omega)$. The desired transfer function is written as

$$
\begin{equation*}
\mathrm{C}(\omega)=\mathrm{c}_{0}+\mathrm{C}_{1} \mathrm{e}^{-\mathrm{i} a \omega}+\mathrm{C}_{2} \mathrm{e}^{-\mathrm{i} 2 \boldsymbol{a} \omega}+\ldots+\mathrm{C}_{\mathrm{n}} \mathrm{e}^{-\mathrm{in} \boldsymbol{a} \omega}, \tag{2}
\end{equation*}
$$

where the number of terms employed is finite but arbitrary. $C(\omega)$ might typically be the complex Fourier series representation of a given function truncated after a certain number of terms. Any method, however, may be used to choose $\mathrm{C}(\omega)$ as long as each C_{i} is real. Figure 2 shows the form of the network resulting from the synthesis procedure of Part I. The network consists of a series of identical naturally-birefringent crystals between an input and output polarizer. The "fast" and "slow" axes of the crystal are denoted by F and S, respectively. A network containing n crystals is necessary to realize a $C(\omega)$ having $n+1$ terms. For a given $C(\omega)$, the synthesis procedure is used to calculate the rotation angles $\left(\phi_{i}\right)$ of the crystals and the output polarizer.

Because the procedure of Part I requires that the C_{i} be real, it can be used only when $C(\omega)$ is Hermetian (i.e., the real part of $C(\omega)$ is even and the imaginary part is odd). Part V [26] describes a generalization of the synthesis procedure of Part I which allows the realization of $C(\omega)$ having complex C_{i}. An $n-s t a g e$ birefringent network is again required to produce a $C(\omega)$ having $n+1$ terms, but each stage now consists of a birefringent crystal and optical compensator. Such a network is shown in Fig. 3. The synthesis procedure of

Figure 2

Part V determines the rotation angle of each crystal, the retardation introduced by each compensator, and the rotation angle of the output polarizer.

Recently it has been noted [25] that the techniques which were developed in Parts I-V [21] - [24], [26] for synthesizing optical networks composed of naturally-birefringent crystals can also be used, with very little modification, in the syniulesis of networks composed of electro-optic crystals (or liquids). The two situations are, in fact, analogous. If a Pockels-effect material is used, the voltage applied to the electro-optic medium plays the same role that frequency does in naturally-birefringent materials. If a Kerr-effect material is used, frequency is replaced by the square of the voltage. This means that the same techniques which were developed to synthesizs birefringent networks having arbitrary frequency transfer functions can be used to syrichesize electro-optic networks having arbitrary transmission vs. applied voltage characteristics. In Ref. [25] it was shown that a procedure analogous to the synthesis procedure of Part I could be used to design electro-optic shutters with improved characteristics. In this paper we will see that a procedure analogous to the more general procedure of Part V can be used to synthesize amplitude modulators having specified modulation characteristics.

Since the modulator synthesis procedure is a direct analogy of the procedure described in Part V, only a brief discussion will be glyen. It is assumed in what follows that the reader is familiar with the material covered in Part V [26] and in Ref. [25].

The frequency-voltage analogy between a birefringent network and an electro-optic network can be understood in the following way. The basic building block of the birciringent networks of Parts I-V is the naturally birefringent crystal shown in Fig. 4. Light which enters the crystal with its electric field polarized in the F direction is operated upon by the frequency transfer function $e^{i a \omega / 2}$, while light polarized along S is operated upon by $e^{-1 a \omega / 2}$. The quantity a is proportional to the crystal's birefring nnce and is given by

$$
\alpha=L \Delta \eta / c,
$$

where I is the length of the crystal, $\Delta \eta$ is the difference between the crystal's extraordirary and ordinary indices of refraction, and c is the velocity of light in a vacuum.

Now suppose that the building block of Fig. 4 is an electro-optic cell, and that its birefringence is linearly proportional to the applied electric field. The F and S frequency transfer functions are again $\mathrm{e}^{\mathrm{i} \sigma_{\omega} / 2}$ and $\mathrm{e}^{-\mathrm{i} \alpha_{\omega} / 2}$. In this case, however, Q is due to the applied electric field while in the previous case, ℓ was due to the natural birefringence of the medium Hence we can rewrite the F and S irmanfer functions of $t w$ electro-optic cell in the form $e^{i \frac{\pi}{2} \frac{V}{V_{0}}}$ and $e^{-i \frac{\pi}{2} \frac{V}{V_{0}}}$, where v is the voltage applied to the meitium and V_{0} is the voltage required to produce one-half wave (π radians) of retardation. In

writing the F and S transfer functions of the electromoptic cell in this way,

several simplifying assumptions h. re been made. Most important of these is that perfect synchronism exists between the modulating voltage and the transrnitted light, anc hence that transit-time effects are not a problem.

The transfer functions for the electro-optic cell are seen to depend upon v in exactly the same fashion as the transfer functions for the birefringent crystal depend upon frequency ${ }^{1}$. Thus the transfer function of a cell or series of cells varies with v in precisely the same fashion that the transfer function of a birefringent crystal or series of orystals varies with ω. Since we are able from Part V to synchesize a birefringent network with an arbitrary transmission vs. frequency characteristic, we are also able to synthesize an electro-optic modulator which has an arbitrary transmission vs. applied-voltage characteristic.

Using the analogy just discussed, the desired voltage transfer function for the modulator is written as

Figure 4

$$
\begin{align*}
K(v)= & C_{0} e^{i \frac{n}{2} \pi \frac{v}{V_{0}}}+C_{1} e^{i \frac{(n-2)}{2} \pi \frac{v}{V_{0}}}+C_{2} e^{i \frac{(n-4)}{2} \pi \frac{v}{V_{0}}} \\
& +\ldots+C_{n-2} e^{-i \frac{(n-4)}{2} \pi \frac{v}{V_{0}}}+C_{n-1} e^{-i \frac{(n-2)}{2} \pi \frac{v}{V_{0}}}+C_{n} e^{-i \frac{n}{2} \pi \frac{v}{V_{0}}} \tag{3}
\end{align*}
$$

The synthesized modulator has the general form shown in Fig. 3, with each stage composed of an electro-optic cell of half-wave voltage V_{0} and an optical compensator. All cells must exhibit the same birefringence; hence (1) all cells must be identical, and (2) all cells must have the same signal applied to them. Note that the manner of applying the modulating field to the medium has not in any way bee.. restricted. Hence it is immaterial whether the modulating field is transverse or longitudinal, is applied by resonant structure or travelingwave structure, as long as the induced birefringent axes are oriented as in Fig. 4.
B. Outline of Synthesis Procedure

The steps to be followed in synthesizing an amplitude modulator are summarized below:
(1) Choose the desired transmission vs. voltage characteristic $\mathrm{K}(\mathrm{v})$ for the amplitude modulator and write it in the form of Eq. (3). The C_{i} may be complex.
(2) Multiply $K(v)$ by $e^{-i \frac{n}{2} \pi \frac{V_{0}}{V_{0}}}$, which gives

$$
\begin{align*}
C(v)= & e^{-i \frac{n}{2} \frac{\pi}{V_{0}}} K(v)=C_{0}+C_{1} e^{-i \pi \frac{v}{V_{0}}}+C_{2} e^{-i 2 \pi \frac{v}{V_{0}}}+\ldots \\
& +C_{n} e^{-i n \frac{v}{V_{0}}} \tag{4}
\end{align*}
$$

(3) Follow steps (3) through (8) of Section II-C of Ref. [26]. This determines the rotation angle of each electro-optic cell, the delay introduced by each optical compensator, and the rotation angle of the output polarizer.

III. AMPLITUDE MODULATORS FOR USE WITYI ENVELOPE DETECTORS

As mentioned earlier, the choice of an ideal characteristic for an amplitude modulator depends upon the properties of the detector used to demodulate the signal. In this section we discuss the ideal rharacteristic (and approximations to it) for an amplitude modulator which is used with an envelope detector. Although envelope detectors at optical frequencies are not presently available, this case is still of interest since optical heterodyne detection can be employed to shift the amplitude-modulated signal down in frequency to a range in which envelope detectors are available.

A. Ideal Modulator Characteristic

From conventional modulation theory, it is well known [27] that a linear modulator characteristic gives distortionless results when envaice detection is employed. Hence one possible ${ }^{2}$ ideal voltage transfer function for an amplitude modulator is that shown in Fig. 5. Since an electro-optic amplitude modulator does not add energy to the carrier, the magnitude of the characteristic can not exceed unity. Note that $\mathrm{v} / \mathrm{V}_{0}$ (voltage applied to each cell/ the half-wave retardation voltage of each cell) is plotted along the abscissa. This normalized form of voltage is quite convenient and will be used throughout this paper.

Before proceeding further, let us establish performance criteria so that we nay make quantitative comparisons of the modulators synthesized. There are a number of different criteria which could be employed, and hence our choice must be somewhat arbitraxy. We will assume that a single-tone signal of the form

$$
\begin{equation*}
\mathrm{v}=\mathrm{V} \cos \omega_{\mathrm{m}}^{\mathrm{t}} \tag{5}
\end{equation*}
$$

is the modulating signal. Ideally then, the demodulated signal should be directly proportional to (5). That is, the amplitude of the fundamental (ω_{m} component) should be linearly proportional to V; furthermore there should be no harmonics present at $2 \omega_{n}$:, $3 \omega_{m}$, etc. Hence as a measure of performance we will examine the detector cutput for (1) the deviation from linearity of the fundamental's amplitude, and (2) the amplitudes of the second and third harmonics.
Kiv)

Figure 5

Using these criteria, let us establish thict the characteristic of Fig. 5 is indeed an ideal characteristic. The analytic expression for the characteristic of Fig. 5 is

$$
\begin{equation*}
K(v)=\frac{1}{2}+\frac{v}{V_{0}} \tag{6}
\end{equation*}
$$

Assume that the incoming optical signal is of frequency ω, has an electric field of unity amplitude, and hence is given by

$$
\begin{equation*}
E_{i n}=e^{i \omega t} \tag{7}
\end{equation*}
$$

The signal $\mathrm{E}_{\text {out }}$ leaving the modulator is $\mathrm{E}_{\mathrm{in}} \mathrm{K}(\mathrm{v})$, and is therefore given by

$$
E_{\text {out }}=\left(\frac{1}{2}+\frac{v}{V_{0}}\right) e^{i \omega t}
$$

Assuming that $v=\mathrm{V} \cos \omega_{\mathrm{m}} \mathrm{t}$, we obtain

$$
\begin{equation*}
E_{o u t}=\left(\frac{1}{2}+\frac{V}{V_{0}} \cos \omega_{m}^{t}\right) e^{i \omega t} \tag{8}
\end{equation*}
$$

the signal which impinges on the detector. The detector's output $I_{\text {out }}$ is proportional to the envelope of $\mathrm{E}_{\text {out }}$, which is just the term in parentheses (provided it remains non-negative). Thus the output is

$$
\begin{equation*}
I_{\text {out }}=k\left(\frac{1}{2}+\frac{V}{V_{0}} \cos \omega_{m}^{t}\right) \tag{9}
\end{equation*}
$$

where k is a constant of proportionality. We see that the detector output of Eq. (9) contains a fundamental whose amplitude is linearly proportional to V , and no higher harmonics. This satisfies our criteria for perfect modulator performance.

B. Formulas for Amplitudes of Fundamental and Harmonics

The modulators synthesized using the procedure of Section II will have voltage transfer functions of the form shown in Eq. (3). We derive here general expressions for the amplitudes of the fundamental and harmonics present in the detector output. The resulting expressions are functions of $\mathrm{V} / \mathrm{V}_{0}$, and contain the C_{i} as parameters. For this calculation and others later, it will be convenient to separately consider the cases of n odd and n even.

1. n odd

For n odd, expressions are derived for $1,3,5,7$, and 9 stage networks. From Eq. (3), the voltage transfer functions for these networks are seen to be
$n=1 \quad K(v)=C_{0} e^{i \frac{\pi}{2} \frac{v}{V_{0}}}+C_{1} e^{-i \frac{\pi}{2} \frac{v}{V_{0}}}$,
$n=3 \quad K(v)=C_{0} e^{i \frac{3 \pi}{2} \frac{V}{V_{0}}}+C_{1} e^{i \frac{\pi}{2} \frac{v}{V_{0}}}+C_{2} e^{-i \frac{\pi}{2} \frac{v}{V_{0}}}+C_{3} e^{-i \frac{3 \pi}{2} \frac{v}{V_{0}}}$,
$n=5 \quad K(v)=C_{0} e^{i \frac{5 \pi}{2} \frac{V}{V_{0}}}+C_{1} e^{i \frac{3 \pi}{2} \frac{v}{V_{0}}}+C_{2} e^{i \frac{\pi}{2} \frac{V}{V_{0}}}+C_{3} e^{-i \frac{\pi}{2} \frac{v}{V_{0}}}+C_{4} e^{-i \frac{3 \pi}{2} \frac{V}{V_{0}}}$

$$
\begin{equation*}
+\mathrm{C}_{5} \mathrm{e}^{-\mathrm{i} \frac{5 \pi}{2} \frac{\mathrm{v}}{\mathrm{~V}_{0}}} \tag{10c}
\end{equation*}
$$

$n=7$

$$
\begin{equation*}
+C_{5} e^{-\mathrm{i} \frac{3 \pi}{2} \frac{\mathrm{v}}{\mathrm{~V}_{0}}}+C_{6} \mathrm{e}^{-\mathrm{i} \frac{5 \pi}{2} \frac{\mathrm{v}}{\mathrm{~V}_{0}}}+C_{7} e^{-\mathrm{j} \frac{7 \pi}{2} \frac{\mathrm{v}}{\mathrm{~V}_{0}}} \tag{10d}
\end{equation*}
$$

$n=9 \quad K(v)=C_{0} e^{i \frac{9 \pi}{2} \frac{V}{V_{0}}}+C_{1} e^{i \frac{7 \pi}{2} \frac{v}{V_{0}}}+C_{2} e^{i \frac{5 \pi}{2} \frac{v}{V_{0}}}+C_{3} e^{i \frac{3 \pi}{2} \frac{v}{V_{0}}}+C_{4} e^{i \frac{\pi}{2} \frac{v}{V_{0}}}$

$$
\begin{equation*}
+C_{5} e^{-i \frac{\pi}{2} \frac{v}{V_{0}}}+C_{6} e^{-i \frac{3 \pi}{2} \frac{v}{V_{0}}}+C_{7} e^{-i \frac{5 \pi}{2} \frac{v}{V_{0}}}+C_{8} e^{-i \frac{7 \pi}{2} \frac{v}{V_{0}}}+C_{9} e^{-i \frac{9 \pi}{2} \frac{v}{V_{0}}} \tag{10e}
\end{equation*}
$$

We will go through the details of the computation for $n=9$ only. Results for $n=1,3,5$, and 7 are obtained from the $n=9$ results by setting appropriate C_{i} equal to zero and renumbering the remaining C_{i}.

At this point we will impose the requirement that our approximating $\mathrm{K}(\mathrm{v})$ be real. If a complex $\mathrm{K}(\mathrm{v})$ is used, the phase as well as the amplitude of the demodulated fundamental will depend upon V. Hence for the envelope detector case, a real $K(v)$ should be employed in order to avoid phase distortion. This means that in Eq. (10e), $C_{0}=C_{9}^{*}, C_{1}=C_{8}^{*}$, $\mathrm{C}_{2}=\mathrm{C}_{7}^{*}, \mathrm{C}_{3}=\mathrm{C}_{6}^{*}$, and $\mathrm{C}_{4}=\mathrm{C}_{5}^{*}$. (Asterisks denote complex conjugate.) Using this fact, and letting

$$
\begin{equation*}
C_{i}=A_{i}+i B_{i} \tag{11}
\end{equation*}
$$

Eq. (10e) can be rewritten as

$$
\begin{align*}
& K(v)=2\left[A_{0} \cos \frac{9 \pi \mathrm{~V}}{2}+\mathrm{V}_{0} \cos \frac{7 \pi \mathrm{v}}{2}+\mathrm{V}_{0} \cos \frac{5 \pi \mathrm{~V}}{2}+\mathrm{V}_{0} \cos \frac{3 \pi \mathrm{~V}}{2} \mathrm{~V}_{0}\right. \\
& +\mathrm{A}_{4} \cos \frac{\pi \mathrm{~V}}{2 \mathrm{~V}_{0}}-\mathrm{B}_{0} \sin \frac{9 \pi \mathrm{v}}{2 \mathrm{~V}_{0}}-\mathrm{B}_{1} \sin \frac{7 \pi \mathrm{v}}{2 \mathrm{~V}_{0}}-\mathrm{B}_{2} \sin \frac{5 \pi \mathrm{v}}{2 \mathrm{~V}_{0}} \\
& \left.-\mathrm{B}_{3} \sin \frac{3 \pi \mathrm{v}}{2 \mathrm{~V}_{0}}-\mathrm{B}_{4} \sin \frac{\pi \mathrm{v}}{2 \mathrm{~V}_{0}}\right] . \tag{12}
\end{align*}
$$

If we assume that light incident upon the modulator is given by $e^{i \omega t}$, the light ($E_{\text {out }}$) leaving the modulator is given by Eq. (12) multiplied by $e^{i \omega t}$. Substituting $\mathrm{v}=\mathrm{V} \cos \omega_{\mathrm{m}} \mathrm{t}$, we obtain

$$
\begin{align*}
& E_{\text {out }}=2\left[A_{0} \cos \left(\frac{9 \pi}{2} \mathrm{~V}_{0} \cos \omega_{m}{ }^{t}\right)+A_{1} \cos \left(\frac{7 \pi}{2} V_{0} \operatorname{V} \cos \omega_{m}{ }^{t}\right)\right. \\
& +A_{2} \cos \left(\frac{5 \pi \quad V}{2} V_{0} \cos \omega_{m}^{t}\right)+A_{3} \cos \left(\frac{3 \pi}{2} V_{0} \cos \omega_{m} t\right) \\
& +A_{4} \cos \left(\frac{\pi}{2} V_{0} \cos \omega_{m}{ }^{t}\right)-B_{0} \sin \left(\frac{9 \pi-V}{2} \cos \omega_{0}{ }^{t}\right) \\
& -B_{1} \sin \left(\frac{7 \pi V}{2} V_{0} \cos \omega_{m}{ }^{t}\right)-B_{2} \sin \left(\frac{5 \pi V}{2 V_{0}} \cos \omega_{m} t\right) \\
& \left.-B_{3} \sin \left(\frac{3 \pi V}{2 V_{0}} \cos \omega_{m} t\right)-B_{4} \sin \left(\frac{\pi V}{2 V_{0}} \cos \omega_{m} t\right)\right] e^{i \omega t} . \tag{13}
\end{align*}
$$

Using the standp-d expansions for $\cos (k \cos \theta)$ and $\sin (k \cos \theta)$, Eq. (13) becomes

$$
\begin{align*}
E_{\text {out }}=\{ & 2\left[A_{0} J_{0}\left(\frac{9 \pi V}{2 V_{0}}\right)+A_{1} J_{0}\left(\frac{7 \pi V}{2 V_{0}}\right)+A_{2} J_{0}\left(\frac{5 \pi V}{2} V_{0}\right)\right. \\
& \left.+A_{3} J_{0}\left(\frac{3 \pi V}{2 V_{0}}\right)+A_{4} J_{0}\left(\frac{\pi V}{2 V_{0}}\right)\right] \\
- & 4\left[B_{0} J_{1}\left(\frac{9 \pi V}{2 V_{0}}\right)+B_{1} J_{1}\left(\frac{7 \pi V}{2 V_{0}}\right)+B_{2} J_{1}\left(\frac{5 \pi V}{2 V_{0}}\right)\right. \\
& \left.+B_{3} J_{1}\left(\frac{3 \pi V}{2 V_{0}}\right)+B_{4} J_{1}\left(\frac{\pi V}{2 V_{0}}\right)\right] \cos \omega_{m}^{t} \\
-4 & {\left[A_{0} J_{2}\left(\frac{9 \pi V}{2 V_{0}}\right)+A_{1} J_{2}\left(\frac{7 \pi V}{2 V_{0}}\right)+A_{2} J_{2}\left(\frac{5 \pi V}{2 V_{0}}\right)\right.} \\
& \left.+A_{3} J_{2}\left(\frac{3 \pi V}{2 V_{0}}\right)+A_{4} J_{2}\left(\frac{\pi V}{2 V_{0}}\right)\right] \cos 2 \omega_{m}^{t} \\
+ & 4 \\
& {\left[B_{0} J_{3}\left(\frac{9 \pi V}{2 V_{0}}\right)+B_{1} J_{3}\left(\frac{7 \pi V}{V_{0}}\right)+B_{2} J_{3}\left(\frac{5 \pi V}{2 V_{0}}\right)\right.} \\
& \left.+B_{3} J_{3}\left(\frac{3 \pi V}{2 V_{0}}\right)+B_{4} J_{3}\left(\frac{\pi V}{2 V_{0}}\right)\right] \cos 3 \omega_{m}^{t} \tag{14}\\
+ & \ldots\} e^{i \omega t},
\end{align*}
$$

where J_{n} is a Bessel function of first kind and order n. As long as the bracketed term multiplying $e^{i \omega t}$ in (14) remains non-negative, the detector output $I_{\text {out }}$ will be directly proportional to it. Hence we obtain the desired result,

$$
\begin{aligned}
I_{\text {out }} / k=2 & {\left[A_{0} J_{0}\left(\frac{9 \pi V}{2 V_{0}}\right)+A_{1} J_{0}\left(\frac{7 \pi V}{2 V_{0}}\right)+A_{2} J_{0}\left(\frac{5 \pi V}{2 V_{0}}\right)\right.} \\
& \left.+A_{3} J_{0}\left(\frac{3 \pi V}{2 V_{0}}\right)+A_{4} J_{0}\left(\frac{\pi V}{2 V_{0}}\right)\right]
\end{aligned}
$$

$$
\begin{align*}
& -4\left[B_{0} J_{1}\left(\frac{9 \pi V}{2} V_{0}\right)+B_{1} J_{1}\left(\frac{7 q V}{2} V_{b^{\prime}}\right)+B_{2} J_{1}\left(\frac{5 \pi V}{2 V_{0}}\right)\right. \\
& \left.+B_{3} J_{1}\left(\frac{3 \pi V}{2 V_{0}}\right)+\mathcal{B}_{4} J_{1}\left(\frac{\pi V}{2 V_{0}}\right)\right] \cos \omega_{m}{ }^{t} \\
& -4\left[A_{0} J_{2}\left(\frac{9 \pi V}{2} V_{0}\right)+A_{1} J_{2}\left(\frac{7 \pi V}{2 V_{0}}\right)+A_{2} J_{2}\left(\frac{5 \pi V}{2} V_{0}\right)\right. \\
& \left.+A_{3} J_{2}\left(\frac{3 \pi V}{2 V_{0}}\right)+A_{4} J_{2}\left(\frac{\pi V}{2 V_{0}}\right)\right] \cos 2 \omega_{m}{ }^{t} \\
& +4\left[\mathrm{~B}_{0} \mathrm{~J}_{3}\left(\frac{9 \pi \mathrm{~V}}{2 \mathrm{~V}_{0}}\right)+\mathrm{B}_{1} \mathrm{~J}_{3}\left(\frac{7 \pi \mathrm{~V}}{2 \mathrm{~V}_{0}}\right)+\mathrm{B}_{2} \mathrm{~J}_{3}\left(\frac{5 \pi \mathrm{v}}{2} \mathrm{~V}_{0}-\right)\right. \\
& \left.+B_{3} J_{3}\left(\frac{3 \pi V}{2 V_{0}}\right)+B_{4} J_{3}\left(\frac{\pi V}{2 V_{0}}\right)\right] \cos 3 \omega_{m}{ }^{t} \tag{15}
\end{align*}
$$

+ higher order harmonics.
Equation (15) gives the dc, fundamental, second harmonic, and third harmonic components present in the envelope-detector output for $n=9$. Note that the even harmonic amplitudes are determined by the B_{i} while the odd harmonic amplitudes depend upon the A_{i}.

2. n even

For n even, we will consider $2,4,6,8$, and 10 stage networks. The voltage transfer functions for these networks are given by

$$
\begin{array}{rl}
n=2 & K(v)=C_{0} e^{i \frac{\pi v}{V_{0}}}+C_{1}+C_{2} e^{-i \frac{\pi v}{V_{0}}} \\
n=4 & K(v)=C_{0} e^{i \frac{2 \pi v}{V_{0}}}+C_{1} e^{i \frac{\pi v}{V_{0}}}+C_{2}+C_{3} e^{-i \frac{\pi v}{V_{0}}}+C_{4} e^{-i \frac{2 \pi v}{V_{0}}} \\
n=6 & K(v)=C_{0} e^{i \frac{31 i v}{V_{0}}}+C_{1} e^{i \frac{2 \pi v}{V_{0}}}+C_{2} e^{i \frac{\pi v}{V_{0}}}+C_{3}+C_{4} e^{-i \frac{\pi v}{V_{0}}} \\
& +C_{5} e^{-i \frac{2 \pi v}{V_{0}}}+C_{6} e^{-i \frac{3 \pi v}{V_{0}}} \tag{16c}
\end{array}
$$

$n=8 \quad K(v)=C_{0} e^{i \frac{4 \pi v}{V_{0}}}+C_{1} e^{i \frac{3 \pi v}{V_{0}}}+C_{2} e^{i \frac{2 \pi v}{V_{0}}}+C_{3} e^{i \frac{\pi v}{V_{0}}}+C_{4}$

$$
\begin{align*}
& n=10 \quad K(v)=C_{5} e^{-i \frac{\pi v}{V_{0}}}+C_{6} e^{-i \frac{2 \pi v}{V_{0}}}+C_{7} e^{-i \frac{3 \pi v}{V_{0}}}+C_{8} e^{-i \frac{4 \pi v}{V_{0}}} \tag{16d}\\
& n=C_{1} e^{i \frac{4 \pi v}{V_{0}}}+C_{2} e^{i \frac{3 \pi v}{V_{0}}}+C_{3} e^{i \frac{2 \pi v}{V_{0}}}+C_{4} e^{i \frac{\pi v}{V_{0}}} \\
&+C_{5}+C_{6} e^{-i \frac{\pi v}{V_{0}}}+C_{7} e^{-i \frac{2 \pi v}{V_{0}}}+C_{8} e^{-i \frac{3 \pi v}{V_{0}}}+O_{9} e^{-i \frac{4 \pi v}{V_{0}}} \\
&+C_{10 e^{-i \frac{5 \pi v}{V_{0}}}} \tag{1.6e}
\end{align*}
$$

It will be sufficient to carry out the calculation only for $n=10$; results for $n=2$, 4,6 , and 8 can be oltained from the $n=10$ results by setting appropriate C_{i} ecual to zero and renumbering the remaining C_{i}.

The calculation procecds similarly as for n odd. We first stipulate that $\mathrm{K}(\mathrm{v})$ be real. This requires that the C_{i} of (16e) satisfy $\mathrm{C}_{0}=\mathrm{C}_{10}^{*}, \mathrm{C}_{1}=\mathrm{C}_{9}^{*}, \mathrm{C}_{2}=\mathrm{C}_{8}^{*}$, $C_{3}=C_{7}^{*}, C_{4}=C_{6}^{*}$, and that C_{5} be real. Again the substitution $v=V \cos \omega_{m}$ is made, and standard expansions for $\cos (k \cos \theta)$ and $\sin (k \cos \theta)$ employed. The final result for $n=10$ is

$$
\begin{aligned}
\mathrm{I}_{\text {out }} / k & =A_{5}+2\left[A_{0} J_{0}\left(\frac{5 \pi V}{V_{0}}\right)+A_{1} J_{0}\left(\frac{4 \pi V}{V_{0}}\right)+A_{2} J_{0}\left(\frac{3 \pi V}{V_{0}}\right)\right. \\
& \left.+A_{3} J_{0}\left(\frac{2 \pi V}{V_{0}}\right)+A_{4} J_{0}\left(\frac{\pi V}{V_{0}}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& -4\left[B_{0} J_{1}\left(\frac{5 \pi V}{V_{0}}\right)+B_{I} \Gamma_{1}\left(\frac{4 \pi V}{V_{0}}\right)+B_{2} J_{1}\left(\frac{3 \pi V}{V_{0}}\right)+B_{3} J_{1}\left(\frac{2 \pi V}{V_{0}}\right)\right. \\
& + \\
& \left.-B_{4} J_{1}\left(\frac{\pi V}{V_{0}}\right)\right] \cos \omega_{m}^{t} \\
& -4\left[A_{0} J_{2}\left(\frac{5 \pi V}{V_{0}}\right)+A_{1} J_{2}\left(\frac{4 \pi V}{V_{0}}\right)+A_{2} J_{2}\left(\frac{3 \pi V}{V_{0}}\right)+A_{3} J_{2}\left(\frac{2 \pi V}{V_{0}}\right)\right. \\
& + \\
& +4\left[A_{4} J_{2}\left(\frac{\pi V}{V_{0}}\right)\right] \cos 2 \omega_{m} J_{3}\left(\frac{5 \pi V}{V_{0}}\right)+B_{1} J_{3}\left(\frac{4 \pi V}{V_{0}}\right)+B_{2} J_{3}\left(\frac{3 \pi V}{V_{0}}\right)+B_{3} J_{3}\left(\frac{2 \pi V}{V_{0}}\right) \\
& + \\
& \left.+B_{4} J_{3}\left(\frac{\pi V}{V_{0}}\right)\right] \cos 3 \omega_{m}^{t}
\end{aligned}
$$

+ higher order harmonics.
C. Fourier Approximation to Ideal Characteristic

We are now ready to find approximations to the ideal characteristic of Fig. 5 which can be written in the form of Eq. (3). One obrious choice is to use the Fourier approximation to determine the C_{i} of Eq. (3). Since the $\mathrm{K}(\mathrm{v})$ given by (10) and (16) are periodic, the ideal characteristic must also be periodic.

The symmetry of the ideal characteristic must be different for the cases of n odd and n even. For n odd, we will choose the ideal characteristic over one period to be that shown in Fig. 6a. This characteristic is, of course, only one of an infinite number of possibilities, and no claim is made that it is in any way optimum. It was chosen because it does not have any discontinuities and one might therefore hope that its Fourier series converges rapidly. For n even, the ideal characteristic of Fig. 6 b will be used. It is identical to the characteristic of Fig. 6a over the region $-0.5<\mathrm{v} / \mathrm{V}_{0}<1.5$, but differs over the remainder of its period.

1. n odd

The complex Fourier series was calculated for the ideal characteristic of Fig. 6 a . The expression for $K(v)$ for each value of n was found by truncating the series after an appropriate number of terms. Each truncated series was then normalized to have a maximum magnitude of unity. The resulting $K(v)$ are

$$
K(v)=0.353553(1-\mathrm{i}) \mathrm{e}^{\mathrm{i} \frac{\pi}{2} \frac{\mathrm{v}}{\mathrm{~V}_{0}}}+0.353553(1+\mathrm{i}) \mathrm{e}^{-\mathrm{i} \frac{\pi}{2} \frac{\mathrm{v}}{\mathrm{~V}_{0}}}
$$

$n=3$ $K(v)=-0.0353553(1+i) e^{i \frac{3 \pi}{2} \frac{v}{V_{0}}}+0.318198(1-i) e^{i \frac{\pi}{2} \frac{v}{V_{0}}}+0.318198(1+i) e^{-i \frac{\pi}{2} \frac{v}{V_{0}}}$ $-0.0353553(1-\mathrm{i}) \mathrm{e}^{-\mathrm{i} \frac{3 \pi}{2} \frac{\mathrm{v}}{\mathrm{V}_{0}}}$,
$+0.307141(1+\mathrm{i}) \mathrm{e}^{-\mathrm{i} \frac{\pi}{2} \frac{\mathrm{~V}}{\mathrm{~V}_{0}}}-0.0341268(1-\mathrm{i}) \mathrm{e}^{-\mathrm{i} \frac{3 \pi}{2} \frac{\mathrm{~V}}{\mathrm{~V}_{0}}}$

$$
\begin{equation*}
-0.0122856(1+i) e^{-i \frac{5 \pi}{2} \frac{\mathrm{v}}{\mathrm{~V}_{0}}} \tag{18c}
\end{equation*}
$$

$$
\mathrm{n}=7 . \quad \mathrm{K}(\mathrm{v})=0.0061589(1+\mathrm{i}) \mathrm{e}^{2} 0-0.012071 .6(1-\mathrm{i}) \mathrm{e}
$$

$$
\begin{aligned}
& -0.0335323(1+i) e^{i \frac{3 \pi}{2} \frac{v}{V_{0}}}+0.301791(1-\mathrm{i}) \mathrm{e}^{\mathrm{i} \frac{\pi}{2} \frac{\mathrm{v}}{\mathrm{~V}_{0}}}+0.301791(1+\mathrm{i}) \mathrm{e}^{-\mathrm{i} \frac{\pi}{2} \frac{\mathrm{v}}{V_{0}}} \\
& -0.0335323(1-\mathrm{i}) \mathrm{e}^{-\mathrm{i} \frac{3 \pi}{2} \frac{\mathrm{v}}{\mathrm{~V}_{0}}}-0.0120716(1+\mathrm{i}) \mathrm{e}^{-\mathrm{i} \frac{5 \pi}{2} \frac{\mathrm{v}}{\mathrm{~V}_{0}}}+0.0061589(1-\mathrm{i}) \mathrm{e}^{-\mathrm{i} \frac{7 \pi}{2} \frac{\mathrm{v}}{V_{0}}}
\end{aligned}
$$

$$
\begin{align*}
& n=9 \quad K(V)=0.003687(1-i) e^{i \frac{9 \pi}{2} \frac{V}{V_{0}}}+0.006094(1+i) e^{i \frac{7 \pi}{2} \frac{V}{V_{0}}}-0.011945(1-i) e^{i \frac{5 \pi}{2} \frac{V}{V_{0}}} \\
& -0.033182(1+\mathrm{i}) \mathrm{e}^{\mathrm{i} \frac{3 \pi}{2} \frac{\mathrm{~V}}{\mathrm{~V}_{0}}}+0.298643(1-\mathrm{i}) \mathrm{e}^{\mathrm{i} \frac{\pi}{2} \frac{\mathrm{~V}}{\mathrm{~V}_{0}}}+0.298643(1+\mathrm{i}) \mathrm{e}^{-\mathrm{i} \frac{\pi}{2} \frac{\mathrm{~V}}{\mathrm{~V}_{0}}} \\
& -0.033182(1-\mathrm{i}) \mathrm{e}^{-\mathrm{i} \frac{3 \pi}{2} \frac{\mathrm{v}}{\mathrm{~V}_{0}}}-0.011945(1+\mathrm{i}) \mathrm{e}^{-\mathrm{i} \frac{5 \pi}{2} \frac{\mathrm{v}}{\mathrm{~V}_{0}}}+0.006094(1-\mathrm{i}) \mathrm{e}^{-\mathrm{i} \frac{7 \pi}{2} \frac{\mathrm{~V}}{\mathrm{~V}_{0}}} \\
& +0.003687(1+\mathrm{i}) \mathrm{e}^{-\mathrm{i} \frac{9 \pi}{2} \frac{\mathrm{v}}{\mathrm{~V}_{0}}} . \tag{18e}
\end{align*}
$$

These $\mathrm{K}(\mathrm{v})$ are shown plotted in Fig. 7 over the portion of the characteristic which is of most interest, $-0.5<\mathrm{v} / \mathrm{V}_{0}<+0.5$. Solid curves are used for $\mathrm{n}=1,3$, and 5 , and dotted curves for $n=7$ and 9 . The ideal characteristic is shown dashed. These conventions will be used throughout. The curve $\mathrm{n}=1$ corresponds to the conventional amplitude modulator of Fig. 1.

As expected, the approximation to the ideal $\mathrm{K}(\mathrm{v})$ improves with increasing n . In general, for all n the approximation is better for $-0.5<\mathrm{v} / \mathrm{V}_{0}<0$ than for $0<\mathrm{v} / \mathrm{V}_{0}<+0.5$. This might have been expected since there is a discontinuity in the slope of $K(v)$ at $\mathrm{v} / \mathrm{V}_{0}=+0.5$, while there is none at $\mathrm{v} / \mathrm{V}_{0}=-0.5$.

Of primary interest, however, is not how well the $K(v)$ of Eqs. (18) approximate the ideal $\mathrm{K}(\mathrm{v})$, but rather how well the criteria established in Section IIIA are satisfied. To determine this for $n=9$, we substitute the A_{i} and B_{i} of (18e) into Eq. (15). For the other values of n, the A_{i} and B_{i} are substituted into the appropriate equations derived from Eq. (15). This gives the information desired on the fundamental and harmonic amplitudes present in the demodulated signal.

The results are plotted in Fig. 8 where (a) the dc component, (b) the fundamental amplitude, (c) the second-harmonic magnitude, (d) the third harmonic magnitude, and (e) the deviation from linearity of the fundamental are shown as a function of $\mathrm{V} / \mathrm{V}_{0}$.

Graphs (a), (b), (c), and (d) are found from the appropriate terms of Eq. (15). The deviation from linearity of the fundamental is calculated in the following way. The slope of each curve of Fig. 8b is calculated at the origin. A straight line is then constructed for each curve by extrapolating this small-signal slope. The difference between each amplitude curve aid its extrapolated straight line is termed the deviation from linearity. In Fig. 8e we plot the magnitude of this deviation.

The following results are seen from Fig. 8. The fundamental amplitude is approximately linear with $\mathrm{V} / \mathrm{V}_{0}$ for all values of n . Hence from Fig. 8 b alone, it is difficult to compare modulator performance on the basis of linearity of fundamental. The deviation from linearity curves of Fig. 8e, however, give a ciear comparison for various n. From Fig. 8e we see that in all cases, deviation from linearity increases with increasing depth of modulation, although not necessarily in a monotonic fashion. Furthermore, we see that while the deviation from linearity for $n=5$ and 9 is less than for $n=1$, it is greater for $n=3$ and 7. Hence we conclude that with respect to deviation from linearity of the fundamental, systematic improvement is not obtained as one uses more stages.

The second harmonic magnitudes are shown in Fig. 8c. Here a fairly uniform improvement with increasing n is obtained. For example the second harmonic amplitude for $n=7$ is less than that for $n=1$ by an order of magnitude for all values of V / V_{0}.

The third harmonic magnitudes are plotted in Fig. 8d. The curves for the third harmonic magnitude are very similar in form to those of Fig. 8 e which show deviation from linearity of the fundamental. The magnitude of the third harmonic is reduced for $n=5$ and 9 , but is greater for $\mathrm{n}=3$ and 7 .

From the above results, we conclude that the technique of determining $K(v)$ by finding the complex Fourier series of the ideal characteristic of Fig. 6a did not prove to be satisfactory. While improvement was noted over conventional modulator performance for some vaiues of n, poorer performance was obtained for others. One difficulty with this approach lies in the following. The C_{i} were chosen to approximate a certain voltage

Figure 8a

Figure 8b

Figure 8c
C-29

Figure 8d
C-30

transfer function. Our ultinate concern, however, is not with how well this transfer function is approximated, but rather with modulator performance as measured by the amplitudes of the fundamental and harmonics present in the demodulated signal. Thus it is more desirable to choose the C_{i} by some technique which directly optimizes the modulator properties of interest. In the following section, this approach is employed to determine the C_{i} of the inodulator transfer funstion.

2. n even

Since the Fourier approximation technique did not prove satisfactory for n odd, the equivalent calculation for n even was not performed.
D. Maximally-linear Approximation to Ideal Characteristic

1. n odd

Equation (15) gives the dc, fundamental, second harmonic, and third harmonic components present in the demodulated output for $\mathrm{n}=9$. This is a general expression which is valid for any choice of $\mathrm{C}_{\mathbf{i}}$. Consider now the portion of Eq. (15) which gives the amplitude of the fundamental.

$$
\begin{align*}
\begin{array}{l}
\text { amplitude of } \\
\text { fundamental }
\end{array}=-4 & {\left[B_{0} J_{1}\left(\frac{9 \pi V}{2 V_{0}}\right)+B_{1} J_{1}\left(\frac{7 \pi V}{2 V_{0}}\right)+B_{2} J_{1}\left(\frac{5 \pi V}{2 V_{0}}\right)+B_{3} J_{1}\left(\frac{3 \pi V}{2 V_{0}}\right)\right.} \\
& \left.+B_{4} J_{1}\left(\frac{\pi V}{2 V_{0}}\right)\right] \tag{19}
\end{align*}
$$

If we write each Bessel function of (19) in series form, we obtain

$$
\begin{align*}
& \begin{array}{l}
\text { amplitude of } \\
\text { fundamental }
\end{array}=-4\left[\frac{\pi}{4} \frac{\mathrm{~V}}{\mathrm{~V}_{0}}\left(\mathrm{~B}_{4}+3 \mathrm{~B}_{3}+5 \mathrm{~B}_{2}+7 \mathrm{~B}_{1}+9 \mathrm{~B}_{0}\right)-\frac{\pi^{3}}{128}\left(\frac{\mathrm{~V}}{\mathrm{~V}_{0}}\right)^{3}\right. \\
&\left(\mathrm{B}_{4}+3^{3} \mathrm{~B}_{3}+5^{3} \mathrm{~B}_{2}+7^{3} \mathrm{~B}_{1}+9^{3} \mathrm{~B}_{0}\right)+\frac{\pi^{5}}{12,288}\left(\frac{\mathrm{~V}}{\mathrm{~V}_{0}}\right)^{5} \\
&\left(\mathrm{~B}_{4}+3^{5} \mathrm{~B}_{3}+5^{5} \mathrm{~B}_{2}+7^{5} \mathrm{~B}_{1}+9^{5} \mathrm{~B}_{0}\right)-\frac{\pi^{7}}{2,359,296}\left(\frac{\mathrm{~V}}{\mathrm{~V}_{0}}\right)^{7} \\
&\left(\mathrm{~B}_{4}+3^{7} \mathrm{~B}_{3}+5^{7} \mathrm{~B}_{2}+7^{7} \mathrm{~B}_{1}+9^{7} \mathrm{~B}_{0}\right)+\frac{\pi^{9}}{754,974,720}\left(\frac{\mathrm{~V}}{\mathrm{~V}_{0}}\right)^{9} \\
&\left.\left(\mathrm{~B}_{4}+3^{9} \mathrm{~B}_{3}+5^{9} \mathrm{~B}_{2}+7^{9} \mathrm{~B}_{1}+9^{9} \mathrm{~B}_{0}\right)-\ldots\right] \tag{20}
\end{align*}
$$

Since ideally the amplitude of the fundamental is directly proportional to $\mathrm{V} / \mathrm{V}_{0}$, the $\mathrm{V} / \mathrm{V}_{0}$ ' m of (20) is the desired portion of the output while the $\left(\mathrm{V} / \mathrm{V}_{0}\right)^{3},\left(\mathrm{~V} / \mathrm{V}_{0}\right)^{5},\left(\mathrm{~V} / \mathrm{V}_{0}\right)^{7}$, etc. .erms represent distortion. Hence we will choose the B_{i} so as to eliminate as many of these distortion terms as possible.

In order to make the coefficient of the $\left(\mathrm{V} / \mathrm{V}_{0}\right)^{3}$ term be zern, the B_{i} must satisfy

$$
\begin{equation*}
\mathrm{B}_{4}+3^{3} \mathrm{~B}_{3}+5^{3} \mathrm{~B}_{2}+7^{3} \mathrm{~B}_{1}+9^{3} \mathrm{~B}_{0}=0 \tag{21a}
\end{equation*}
$$

Similarly, if the B_{i} satisfy

$$
\begin{equation*}
\mathrm{B}_{4}+3^{5} \mathrm{~B}_{3}+5^{5} \mathrm{~B}_{2}+7^{5} \mathrm{~B}_{1}+9^{5} \mathrm{~B}_{0}=0 \tag{21b}
\end{equation*}
$$

the coefficient of the $\left(\mathrm{V} / \mathrm{V}_{0}\right)^{5}$ term will be zero. And finally if the coefficients of the $\left(\mathrm{V} / \mathrm{V}_{0}\right)^{7}$ and $\left(\mathrm{V} / \mathrm{V}_{0}\right)^{9}$ terms are to be zero, the B_{i} must satisfy

$$
\begin{equation*}
\mathrm{B}_{4}+3^{7} \mathrm{~B}_{3}+5^{7} \mathrm{~B}_{2}+7^{7} \mathrm{~B}_{1}+9^{7} \mathrm{~B}_{0}=0 \tag{21c}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{B}_{4}+3^{9} \mathrm{~B}_{3}+5^{9} \mathrm{~B}_{2}+7^{9} \mathrm{~B}_{1}+9^{9} \mathrm{~B}_{0}=0 \tag{21d}
\end{equation*}
$$

Since we are free to choose five $B_{i}\left(B_{0}, B_{1}, B_{2}, B_{3}\right.$, and $\left.B_{4}\right)$, we are able to make four coefficients of (20) become zero. The first remaining nonzero distortion term is $\left(\mathrm{V} / \mathrm{V}_{0}\right)^{11}$, and hence we call this method of determining the $\mathrm{B}_{\mathbf{i}}$ a maximally-linear approximation.

In Eqs. (21a), (21b), (21c), and (21d) we have four simultaneous linear equations.
Solving them, we obtain

$$
\begin{array}{ll}
\mathrm{B}_{3} & =-2 / 27 \mathrm{~B}_{4}, \\
\mathrm{~B}_{2} & =2 / 175 \mathrm{~B}_{4} \\
\mathrm{~B}_{1} & =-1 / 686 \mathrm{~B}_{4}, \\
\mathrm{~B}_{0} & =1 / 10,206 \mathrm{~B}_{4} . \tag{22}
\end{array}
$$

The results we have just derived are for the case $n=9$. For the case $n=7, K(v)$ is given by (10d) and an expression similar to Eq. (20) can be derived for the amplitude of the fundamental. Since one less B coefficient is available, we are able to force one less distortion term to zero. For $n=7$, the equations obtained by requiring that the coefficients of the $\left(\mathrm{V} / \mathrm{V}_{0}\right)^{3},\left(\mathrm{~V} / \mathrm{V}_{0}\right)^{5}$, and $\left(\mathrm{V} / \mathrm{V}_{0}\right)^{7}$ terms be zero are

$$
\begin{align*}
& \mathrm{B}_{3}+3^{3} \mathrm{~B}_{2}+5^{3} \mathrm{~B}_{1}+7^{3} \mathrm{~B}_{0}=0 \tag{23a}\\
& \mathrm{~B}_{3}+3^{5} \mathrm{~B}_{2}+5^{5} \mathrm{~B}_{1}+7^{5} \mathrm{~B}_{0}=0, \tag{23b}\\
& \mathrm{~B}_{3}+3^{7} \mathrm{~B}_{2}+5^{7} \mathrm{~B}_{1}+7^{7} \mathrm{~B}_{0}=0 \tag{23c}
\end{align*}
$$

The solutions for the B_{i} are

$$
\begin{array}{ll}
\mathrm{B}_{2}=-1 / 15 \quad \mathrm{~B}_{3} \\
\mathrm{~B}_{1} & =1 / 125 \quad \mathrm{~B}_{3} \\
\mathrm{~B}_{0} & =-1 / 1715 \mathrm{~B}_{3} . \tag{24}
\end{array}
$$

Correspondingly, for $n=5$ we are able to make $\left(\mathrm{V} / \mathrm{V}_{0}\right)^{3}$ and $\left(\mathrm{V} / \mathrm{V}_{0}\right)^{5}$ terms be zero, while for $n=3$ we can make only the $\left(V / V_{0}\right)^{3}$ term be zero. The solutions for the B_{i} for these last two cases are

$$
\begin{array}{ll}
\mathrm{B}_{1}=-1 / 18 & \mathrm{~B}_{2} \\
\mathrm{~B}_{0}=1 / 250 \quad \mathrm{~B}_{2}, & \mathrm{n}=5 \tag{25}
\end{array}
$$

and

$$
\begin{equation*}
\mathrm{B}_{0}=-1.27 \quad \mathrm{~B}_{1} . \quad \mathrm{n}=3 \tag{26}
\end{equation*}
$$

We have thus determined relative values for the B_{i} for $n=3,5,7$, and 9 by eliminating as many higher-order terms as possible from the series expansion of the amplitude of the fundamental. Since the A_{i} are not present in the expression for the fundamental, they remain to be determined. The A_{i} are present in expressions for the dc,
second harmonic, fourth harmonic, etc. components of the output (see Eq. (15)), and hence can be chosen to optimize one of these. Our choice will be to pick the A_{i} to minimize the ainplitude of the secend harmonic.

We again return to the expression of Eq. (15) for $n=9$. From (15), the amplitude of the second harmonic is seen to be

$$
\begin{align*}
& \begin{array}{l}
\text { second harmonic }=-4\left[A_{0} J_{2}\left(\frac{9 \pi V}{2 V_{0}}\right)+A_{1} J_{2}\left(\frac{7 \pi V}{2 V_{0}}\right)+A_{2} J_{2}\left(\frac{5 \pi V}{2 V_{0}}\right)\right. \\
\text { amplitude }
\end{array} \\
& \left.+A_{3} J_{2}\left(\frac{3 \pi V}{2 V_{0}}\right)+A_{4} J_{2}\left(\frac{\pi V}{2 V_{0}}\right)\right] . \tag{27}
\end{align*}
$$

If we rewrite each Bessel function in series form, (27) becomes

$$
\begin{align*}
\begin{array}{l}
\text { second harmonic } \\
\text { amplitude }
\end{array}=-4 & {\left[\frac{\pi^{2}}{32}\left(\frac{\mathrm{~V}}{\mathrm{~V}_{0}}\right)^{2}\left(\mathrm{~A}_{4}+3^{2} \mathrm{~A}_{3}+5^{2} \mathrm{~A}_{2}+7^{2} \mathrm{~A}_{1}+9^{2} \mathrm{~A}_{0}\right)\right.} \\
& -\frac{\pi^{4}}{1536}\left(\frac{\mathrm{~V}}{\mathrm{~V}_{0}}\right)^{4}\left(\mathrm{~A}_{4}+3^{4} \mathrm{~A}_{3}+5^{4} \mathrm{~A}_{2}+7^{4} \mathrm{~A}_{1}+9^{4} \mathrm{~A}_{0}\right) \\
& +\frac{\pi^{6}}{196,608}\left(\frac{\mathrm{~V}}{\mathrm{~V}_{0}}\right)^{6}\left(\mathrm{~A}_{4}+3^{6} \mathrm{~A}_{3}+5^{6} \mathrm{~A}_{2}+7^{6} \mathrm{~A}_{1}+9^{6} \mathrm{~A}_{0}\right) \\
& -\frac{\pi^{8}}{47,185,920}\left(\frac{\mathrm{~V}}{\mathrm{~V}_{0}}\right)^{8}\left(\mathrm{~A}_{4}+3^{8} \mathrm{~A}_{3}+5^{8} \mathrm{~A}_{2}+7^{8} \mathrm{~A}_{1}+9^{8} \mathrm{~A}_{0} .\right. \\
& +\ldots]
\end{align*}
$$

We can make the $\left(\mathrm{V} / \mathrm{V}_{0}\right)^{2},\left(\mathrm{~V} / \mathrm{V}_{0}\right)^{4},\left(\mathrm{~V} / \mathrm{V}_{0}\right)^{6}$, and $\left(\mathrm{V} / \mathrm{V}_{0}\right)^{8}$ terms go to zero by requiring that

$$
\begin{align*}
& \mathrm{A}_{4}+3^{2} \mathrm{~A}_{3}+5^{2} \mathrm{~A}_{2}+7^{2} \mathrm{~A}_{1}+9^{2} \mathrm{~A}_{0}=0 \tag{29a}\\
& \mathrm{~A}_{4}+3^{4} \mathrm{~A}_{3}+5^{4} \mathrm{~A}_{2}+7^{4} \mathrm{~A}_{1}+9^{4} \mathrm{~A}_{0}=0 \tag{29b}\\
& \mathrm{~A}_{4}+3^{6} \mathrm{~A}_{3}+5^{6} \mathrm{~A}_{2}+7^{6} \mathrm{~A}_{1}+9^{6} \mathrm{~A}_{0}=0 \tag{29c}\\
& \mathrm{~A}_{4}+3^{8} \mathrm{~A}_{3}+5^{8} \mathrm{~A}_{2}+7^{8} \mathrm{~A}_{1}+9^{8} \mathrm{~A}_{0}=0 \tag{29d}
\end{align*}
$$

Solving these four simultaneous linear equations, we obtain

$$
\begin{array}{ll}
\mathrm{A}_{3}=-2 / 9 \quad \mathrm{~A}_{4}, & \\
\mathrm{~A}_{2}=2 / 35 \quad \mathrm{~A}_{4}, & \\
\mathrm{~A}_{1}=-1 / 98 \quad \mathrm{~A}_{4}, & \mathrm{n}=9 \\
\mathrm{~A}_{0}=1 / 1134 \mathrm{~A}_{4} . & \tag{30}
\end{array}
$$

Proceeding as before, we find for $\mathrm{n}=3,5$, and 7 that

$$
\begin{array}{ll}
\mathrm{A}_{2}=-1 / 5 \quad \mathrm{~A}_{3} \\
\mathrm{~A}_{1}= & 1 / 25 \quad \mathrm{~A}_{3}, \\
\mathrm{~A}_{0}=-1 / 245 & \mathrm{~A}_{3} . \tag{31}
\end{array}
$$

$$
\begin{array}{lll}
A_{1}=-1 / 6 & A_{2} & \\
A_{0}= & 1 / 50 & A_{2} . \tag{32}
\end{array}
$$

$\mathrm{A}_{0}=-1 / 9 \quad \mathrm{~A}_{1} . \quad \mathrm{n}=3$
Two additional constraints must now be applied in order to obtain absolute values for the A_{i} and B_{i}. Consider the $n=9$ case again. We have obtained values for the B_{i} in terms of B_{4}, and values for the A_{i} in terms of A_{4}. So far, however, the size of B_{4} relative to A_{4} has not been determined. In order to make this choice, we observe the following. All calculations performed thus far have assumed that the depth of modulation never exceeds 100%. That is, we have assumed that a value of v is never reached for which $K(v)$ is negative. : This means, for example, that for the ideal characteristic of Fig. 5, v / V_{0} is never iess than $-1 / 2$. Thus we would hope that the $K(v)$ which we obtain for the maximally-linear case would be roughly comparable to the characteristic of Fig. 5. We would like for $K(v=0)$ to be
approximately 0.5 , and we would further hope that $K(v)$ would be unity and zero for approximately equal positive and negative values of $v_{\text {" }}$ By setting $B_{4}=-A_{4}$, we attempt to force this behavior. For from (10e) we recall that B_{4} and A_{4} are the amplitudes of the $e^{i \frac{\pi V}{2 V_{0}}}$ and $e^{-i \frac{\pi}{2 V_{0}}}$ terms in $K(V)$, and hence the above choice gives

$$
\mathrm{C}_{4} \mathrm{e}^{\mathrm{i} \frac{\pi \mathrm{v}}{2 \mathrm{~V}_{0}}}+\mathrm{C}_{4}^{*} \mathrm{e}^{-\mathrm{i} \frac{\pi \mathrm{~V}}{2 \mathrm{~V}_{0}}}=2 \mathrm{~A}_{4} \cos \left(\frac{\pi \mathrm{v}}{2 \mathrm{~V}_{0}}-\frac{\pi}{2}\right)
$$

Thus the first Fourier component of $K(v)$ is a cosine curve which is maximum at $v / V_{0}=1 / 2$ and zero at $\mathrm{y} / \mathrm{V}_{0}=-1 / 2$. To summarize then, by making $\mathrm{B}_{4}=-\mathrm{A}_{4}$ we attempt to make the general shape of $\mathrm{K}(\mathrm{v})$ comparable to that of the ideal $\mathrm{K}(\mathrm{v})$ of Fig. 6a. The detailed shape will be determined by the other A_{i} and B_{i} given in Eqs. (22) and (30).

We now have for the $\mathrm{n}=9$ case,

$$
\begin{align*}
K(v)=A_{4} & {\left[\left(\frac{1}{1134} \cdots \frac{i}{10,206}\right) e^{i \frac{9 \pi v}{2 V_{0}}}-\left(\frac{1}{98}-\frac{i}{686}\right) e^{i \frac{7 \pi v}{2 V_{0}}}\right.} \\
& +\left(\frac{2}{35}-\frac{2 i}{175}\right) e^{i \frac{5 \pi v}{2 V_{0}}}-\left(\frac{2}{9}-\frac{2 i}{27}\right) e^{i \frac{3 \pi v}{2 V_{0}}} \\
& +(1-i) e^{i \frac{\pi v}{2 V_{0}}}+(1+i) e^{-i \frac{\pi}{2} V_{0}}-\left(\frac{2}{9}+\frac{2 i}{27}\right) e^{-i \frac{3 \pi v}{2 V_{0}}} \\
& +\left(\frac{2}{35}+\frac{2 i}{175}\right) e^{-i \frac{5 \pi v}{2 V_{0}}}-\left(\frac{1}{98}+\frac{i}{686}\right) e^{-i \frac{7 \pi v}{2 V_{0}}} \\
& +\left(\frac{1}{1134}+\frac{i}{10,206}\right) e^{-i \frac{9 \pi v}{2 V_{0}}} \tag{34}
\end{align*}
$$

Our final task is to choose A_{4} so that the maximum magnitude of (34) is unity. Doing this we obtain
$n=9$

$$
\begin{aligned}
K(v) & =(0.000274-i 0.000030) e^{i \frac{9 \pi v}{2 V_{0}}}-(0.003179-i 0.000454) e^{i \frac{7 \pi v}{2 V_{0}}} \\
& +(0.017806-i 0.003561) e^{i \frac{5 \pi v}{2 V_{0}}}-(0.069248-i 0.023082) e^{i \frac{3 \pi v}{2 V_{0}}} \\
& +(0.311616-i 0.311616) e^{i \frac{\pi v}{2 V_{0}}}+(0.311616+i 0.311616) e^{-i \frac{\pi v}{2 V_{0}}} \\
& -(0.069248+i 0.023082) e^{-i \frac{3 \pi v}{2 V_{0}}}+(0.017806+i 0.003561) e^{-i \frac{5 \pi v}{2 V_{0}}} \\
& -(0.003179+i 0.000454) e^{-i \frac{7 \pi v}{2 V_{0}}}+(0.000274+i 0.000030) e^{-i \frac{9 \pi v}{2 V_{0}}} .
\end{aligned}
$$

The final $K(v)$ for $n=1,3,5$, and 7 are similarly found to be

$$
\begin{aligned}
K(v)= & -(0.001294-i 0.000184) e^{i \frac{7 \pi v}{2 V_{0}}}+(0.012683-i 0.002536) e^{i \frac{5 \pi v}{2 V_{0}}} \\
& -(0.063414-i 0.021138) e^{i \frac{3 \pi v}{2 V_{0}}}+(0.317074-i 0.317074) e^{i \frac{\pi v}{2 V_{0}}} \\
& +(0.317074+i 0.317074) e^{-i \frac{\pi v}{2 V_{0}}}-(0.063414+i 0.0211 .38) e^{-i \frac{3 \pi v}{2 V_{0}}} \\
& +(0.012683+i 0.002536) e^{-i \frac{5 \pi v}{2 V_{0}}}-(0.001294+i 0.000184) e^{-i \frac{7 \pi v}{2 V_{0}}}
\end{aligned}
$$

$n=5 \quad K(V)=(0.006489-i 0.001297) e^{i \frac{5 \pi V}{2 V_{0}}}-(0.054077-i 0.018025) e^{i \frac{3 \pi V}{2 V_{0}}}$

$$
\begin{align*}
& +(0.324465-i 0.324465) e^{i \frac{\pi v}{2 V_{0}}}+(0.324465+i 0.324465) e^{-i \frac{\pi v}{2 V_{0}}} \\
& -(0.054077+i 0.018025) e^{-i \frac{3 \pi v}{2 V_{0}}}+(0.006489+i 0.001297) e^{-\mathrm{i} \frac{5 \pi v}{2 V_{0}}} . \tag{35c}
\end{align*}
$$

$n=3 \quad K(v)=-(0.037258-i 0.012419) e^{i \frac{3 \pi V}{2 V_{0}}}+(0.335330-i 0.335330) e^{i \frac{\pi \frac{V}{2}}{2 V_{0}}}$

$$
\begin{equation*}
+(0.335330+i 0.335330) e^{-\mathrm{i} \frac{\pi \mathrm{v}}{\Delta \mathrm{v}_{0}}}-(0.037258+\mathrm{i} 0.012419) \mathrm{e}^{-\mathrm{i} \frac{3 \pi v}{2 \mathrm{~V}_{0}}} \tag{35d}
\end{equation*}
$$

$n=1 \quad K(v)=(0.353553-i 0.353553) e^{i \frac{\pi v}{2 V_{0}}}+(0.353553+i 0.353553) e^{-i \frac{\pi v}{2 V_{0}}}$.
(35e)
We can now substitute the A_{i} and B_{i} of Eqs. (35) into Eq. (15) [or, in the cases of $\mathrm{n}=1,3,5$, and 7 , into the appromiate expressions derived from (15)] to assess the modulator performance obtained using the maximally-linear approximation. The results are shown in Fig. 9 where (a) the dc component, (b) the first harmonic amplitude, (c) the second harmanic magnitude: (d) the 3rd harmonic magnitude, and (e) the deviation from linearity of the fundamental are plotted as a function of $\mathrm{V} / \mathrm{V}_{0}$. The case $\mathrm{n}=1$ again corresponds to a conventional amplitude modulator. Results for n even are also shown on Fig. 9, but for the present we will limit our remarks to the case of n odd.

Figures $9 \mathrm{c}, 9 \mathrm{c}$, and 9 e show that a substantial, uniform reduction in distortion occurs for increasing values oi n . These results must be interpreted with care, however, for Fig. 9b shows that there is also a reduction in the amplitude of the fundamental. Hence as n increases, fine reduction in distortion is accompanied by a reduction in the desired output.

Figure 9a

Figure 9b

Figure 9e

A clearer picture of these results is given in Fig. 10 where (a.) the deviation from linearity of the fundamental, and (b) the magnitude of the second harmonic are plotted vs. n for certain fixed values of the amplitude of the fundamental. Curves are given for fundamental amplitudes of 0.475 (which corresponds to a degree of modulation of roughly 90%), 0.4 (approximately 70%), 0.3 (approximately 50%), 0.2 (approximately 30%), and 0.1 (approximately 15%). Points representing odd values of n are connected by solid lines while points for even values of n are connected by dotted lines. Since the behavior of the third harmonic's magnitude was very similar to Fig. 10a, a separate graph was not plotted for it.

Figure 10a shows how distortion in the fundamental varies with n. It is seen that in going from a conventional modulator to a three stage modulator, the fundamental distortion does not improve, and in fact, becomes slightly worse. For $n=5$, some improvement is noted while for $\mathrm{n}=7$ and 9 , significant improvement is obtained. Similar results are obtained for the second harmonic magnitude.

We therefore conclude that for n odd, the maximally-linear approximation technique is only partially successful. For small values of $n(n \leq 5)$, relatively little improvement is obtained while for larger values of $n(n \geq 7)$, substantial improvement occurs. Thus the improvement increases with increasing values of n.

It is of some interest to know what a plot of $\mathrm{K}(\mathrm{v})$ looks like for the maximally-linear case. Figure 11 shows the $K(v)$ of Eqs. (35) plotted as a function of v / V_{0}. We see that the $\mathrm{K}(\mathrm{v})$ are closely approaching a straight line with increasing n . Note that the slopes of the curves of Fig. 11 decrease somewhat with increasing n; this causes the slight decrease in the amplitude of the fundamental which was mentioned in the previous paragraph. It should also be noted that the value of $\mathrm{v} / \mathrm{V}_{0}$ at which $\mathrm{K}(\mathrm{v})$ becomes zero is slightly different for different values of n. The maximum voltage, therefore, which can be applied becomes somewhat greater as n is increased. In Fig. 9, the curves are plotted up to this maximum permissible voltage.

Figure 11

The modulator designs which correspond to the $\mathrm{K}(\mathrm{v})$ derived by using the maximallylinear technique are tabulated in Table I. These designs were found by applying the synthesis procedure of Section II to the $\mathrm{K}(\mathrm{v})$ of Eqs. (35). The quantities listed in Table I are the rotation angle $\left(\theta_{i}\right)$ of each electro-optic cell, the retardation (b_{i}) introduced by each optical compensator, and the rotation angle (θ_{p}) of the output polarizer.

2. n even

An equivalent calculation can be carried out for modulators having an even number of stages. Although this calculation is similar in many respects to that just described for n odd, it is different in at least one important aspect - namely, modulators can be designed which produce no even harmonics in the demodulated output.

Let us restrict our attention to the $n=10$ case. Equation (17) gives the demodulated output leaving the envelope detector for $n=10$. The amplitude of the fundamental is given by

$$
\begin{align*}
\begin{array}{c}
\text { amplitude of } \\
\text { fundamental }
\end{array}=-4 & {\left[B_{0} J_{1}\left(\frac{5 \pi V}{V_{0}}\right)+B_{1} J_{1}\left(\frac{4 \pi V}{V_{0}}\right)+B_{2} J_{1}\left(\frac{3 \pi V}{V_{0}}\right)\right.} \\
& \left.+B_{3} J_{1}\left(\frac{2 \pi V}{V_{0}}\right)+B_{4} J_{1}\left(\frac{\pi V}{V_{0}}\right)\right] \tag{36}
\end{align*}
$$

Writing each Bessel function in series form, we obtain

$$
\begin{align*}
\begin{array}{l}
\text { amplitude of } \\
\text { fundamental }
\end{array}=-4 & {\left[\frac{\pi}{2} \frac{\mathrm{~V}}{\mathrm{~V}_{0}}\left(\mathrm{~B}_{4}+2 \mathrm{~B}_{3}+3 \mathrm{~B}_{2}+4 \mathrm{~B}_{1}+5 \mathrm{~B}_{0}\right)\right.} \\
& -\frac{\pi^{3}}{16}\left(\frac{\mathrm{~V}}{\mathrm{~V}_{0}}\right)^{3}\left(\mathrm{~B}_{4}+2^{3} \mathrm{~B}_{3}+3^{3} \mathrm{~B}_{2}+4^{3} \mathrm{~B}_{1}+5^{3} \mathrm{~B}_{0}\right) \\
& +\frac{\pi^{5}}{384}\left(\frac{\mathrm{~V}}{\mathrm{~V}_{0}}\right)^{5}\left(\mathrm{~B}_{4}+2^{5} \mathrm{~B}_{3}+3^{5} \mathrm{~B}_{2}+4^{5} \mathrm{~B}_{1}+5^{5} \mathrm{~B}_{0}\right) \\
& -\frac{\pi^{7}}{18,432}\left(\frac{\mathrm{~V}}{\mathrm{~V}_{0}}\right)^{7}\left(\mathrm{~B}_{4}+2^{7} \mathrm{~B}_{3}+3^{7} \mathrm{~B}_{2}+4^{7} \mathrm{~B}_{1}+5^{7} \mathrm{~B}_{0}\right) \\
& \left.+\frac{\pi^{9}}{1,488,060}\left(\frac{\mathrm{~V}}{\mathrm{~V}_{0}}\right)^{9}\left(\mathrm{~B}_{4}+2^{9} \mathrm{~B}_{3}+3^{9} \mathrm{~B}_{2}+4^{9} \mathrm{~B}_{1}+5^{9} \mathrm{~B}_{0}\right)-\ldots\right] \tag{37}
\end{align*}
$$

8	蒚云
\square	婁志
π	娞哭
\because	－
9	
4	管管
$\stackrel{\square}{2}$	管菭
$\stackrel{y}{*}$	离点
\cdots	商。
	\％

We can make the coefficients of the $\left(\mathrm{V} / \mathrm{V}_{0}\right)^{3},\left(\mathrm{~V} / \mathrm{V}_{0}\right)^{5},\left(\mathrm{~V} / \mathrm{V}_{0}\right)^{7}$, and $\left(\mathrm{V} / \mathrm{V}_{0}\right)^{9}$ terms be zero by setting

$$
\begin{align*}
& \mathrm{B}_{4}+2^{3} \mathrm{~B}_{3}+3^{3} \mathrm{~B}_{2}+4^{3} \mathrm{~B}_{1}+5^{3} \mathrm{~B}_{0}=0, \tag{38a}\\
& \mathrm{~B}_{4}+2^{5} \mathrm{~B}_{3}+3^{5} \mathrm{~B}_{2}+4^{5} \mathrm{~B}_{1}+5^{5} \mathrm{~B}_{0}=0, \tag{38b}\\
& \mathrm{~B}_{4}+2^{7} \mathrm{~B}_{3}+3^{7} \mathrm{~B}_{2}+4^{7} \mathrm{~B}_{1}+5^{7} \mathrm{~B}_{0}=0, \tag{38c}\\
& \mathrm{~B}_{4}+2^{9} \mathrm{~B}_{3}+3^{9} \mathrm{~B}_{2}+4^{9} \mathrm{~B}_{1}+5^{9} \mathrm{~B}_{0}=0, \tag{38d}
\end{align*}
$$

Solving these four equations, we obtain

$$
\begin{array}{ll}
\mathrm{B}_{3}=-2 / 7 \quad \mathrm{~B}_{4} \\
\mathrm{~B}_{2} & =1 / 14 \mathrm{~B}_{4}, \\
\mathrm{~B}_{1} & =-1 / 84 \mathrm{~B}_{4}, \\
\mathrm{~B}_{0}=1,1050 \mathrm{~B}_{4} . & \mathrm{n}=10 \tag{39}
\end{array}
$$

Similar calculations can be carried out for $\mathrm{n}=2,4,6$, and 8 . For these cases, we obtain

$$
\begin{array}{ll}
\mathrm{B}_{2}=-1 / 4 \quad \mathrm{~B}_{3}, & \\
\mathrm{~B}_{1}=1 / 21 \quad \mathrm{~B}_{3}, & \\
\mathrm{~B}_{0}=-1 / 224 \mathrm{~B}_{3} . & \mathrm{n}=8 \\
\mathrm{~B}_{1}=-1 / 5 & \mathrm{~B}_{2}, \\
\mathrm{~B}_{0}= & \\
& 1 / 45 \tag{41}\\
\mathrm{~B}_{2} . & \mathrm{n}=6
\end{array}
$$

and

$$
\begin{equation*}
\mathrm{B}_{0}=-1 / 8 \quad \mathrm{~B}_{1} . \quad \mathrm{n}=4 \tag{42}
\end{equation*}
$$

It is interesting to note that as far as the B_{i} are concerned, the $n=10$ case is verv similar to the $\mathrm{n}=9$ case. In both cases, we make the $\left(\mathrm{V} / \mathrm{V}_{0}\right)^{3},\left(\mathrm{~V} / \mathrm{V}_{0}\right)^{5},\left(\mathrm{~V} / \mathrm{V}_{0}\right)^{7}$, and $\left(V / V_{0}\right)^{9}$ terms be zerc by appropriately choosing B_{0}, B_{1}, and B_{2}. As we are about to sec, however, the two cases are quite different as far as the A_{i} are concerned.

For $n=10$, we will set all A_{i} except A_{5} equal to zero. As seen from Eq. (17) this will automatically make the amplitude of the second harmonic (and all other even harmonics) zero. It is important to note that we are able to do this and still have $K(v)$ assume the general form of the ideal function of Fig. 6b. The ideal function of Fig. 6b may be thought of as consisting of a constant term of 0.5 plus a triangular wave of odd symmetry. Hence, the A_{i} are not required (except for A_{5}) and the ideal $K(v)$ can be approximated by a K(v) consisting of a constant term plus sine terms. This was not possible in the case of the ideal function of Fig. 6a since both cosine and sine terms are needed to approximate it.

To conclude our determination of the $K(v)$ for n even, it is necessary only to set the constant term $C_{n / 2}$ equal to 0.5 and to normalize the B_{i} so that $K(v)$ has a maximum value of +1 . Doing this, we obtain
$n=10$

$$
\begin{align*}
K(v)= & -i 0.0002159 e^{i \frac{5 \pi v}{V_{0}}}+i 0.0026996 e^{i \frac{4 \pi v}{V_{0}}}-i 0.0161975 e^{i \frac{3 \pi v}{V_{0}}} \\
& +i 0.0647900 e^{i \frac{2 \pi v}{V_{0}}}-i 0.2267650 e^{i \frac{\pi v}{V_{0}}}+0.5 \\
& +i 0.2267650 e^{-i \frac{\pi v}{V_{0}}}-i 0.0647900 e^{-i \frac{2 \pi v}{V_{0}}}+i 0.0161975 e^{-i \frac{3 \pi v}{V_{0}}} \\
& -i 0.0026996 e^{-i \frac{4 \pi v}{V_{0}}}+i 0.0002159 e^{-i \frac{5 \pi v}{V_{0}}}, \tag{43a}
\end{align*}
$$

$n=8$

$$
\begin{align*}
K(v) & =i 0.0010318 e^{i \frac{4 \pi v}{V_{0}}}-i 0.0110064 e^{i \frac{3 \pi v}{V_{0}}}+i 0.0577835 e^{i \frac{2 \pi v}{V_{0}}} \\
& -i 0.2311339 e^{i \frac{\pi v}{V_{0}}}+0.5+i 0.2311339 e^{-i \frac{\pi v}{V_{0}}} \\
& -i 0.0577835 e^{-i \frac{2 \pi v}{V_{0}}}+i 0.0110064 e^{-i \frac{3 \pi v}{V_{0}}}-i 0.0010318 e^{-i \frac{4 \pi v}{V_{0}}}, \tag{43b}
\end{align*}
$$

$n=6 \quad K(v)=-i 0.0052498 e^{i \frac{3 \pi v}{V_{0}}}+i 0.0472481 e^{i \frac{2 \pi v}{V_{0}}}-i 0.2362406 e^{i \frac{\pi v}{V_{0}}}$
$+0.5+i 0.2362406 e^{-i \frac{\pi v}{V_{0}}}-i 0.0472481 e^{-i \frac{2 \pi v}{V_{0}}}$
$+i 0.0052498 e^{-\mathrm{i} \frac{3 \pi \mathrm{v}}{\overline{\mathrm{V}}_{0}}}$,
$\mathrm{n}=4$

$$
\begin{equation*}
K(v)=i 0.0303643 e^{i \frac{2 \pi v}{V_{0}}}-i 0.2429150 e^{i \frac{\pi v}{V_{0}}}+0.5 \tag{43c}
\end{equation*}
$$

$$
\begin{equation*}
+i 0.2429150 e^{-\mathrm{i} \frac{\pi \mathrm{~V}}{\mathrm{~V}_{0}}}-\mathrm{i} 0.0303643 \mathrm{e}^{-\mathrm{i} \frac{2 \pi \mathrm{~V}}{\mathrm{~V}_{0}}} \tag{43d}
\end{equation*}
$$

$$
\begin{equation*}
n=2 \quad K(v)=-i 0.2500000 e^{i \frac{\pi v}{V_{0}}}+0.5+i 0.2500000 e^{-i \frac{\pi v}{V_{0}}} . \tag{43e}
\end{equation*}
$$

Figure 12 shows these $\mathrm{K}(\mathrm{v})$ plotted as a function of $\mathrm{v} / \mathrm{V}_{0}$. Solid lines are used for $n=2,4$, and 6 , dotted lines for $n=8$ and 10 , and a dashed line for the ideal characteristic. The performance of the modulators corresponding to these $K(v)$ is evaluated by substituting the A_{i} and B_{i} of (43a) into (17), and the A_{i} and B_{i} of (43b)-(43e) into the corresponding equations derived from (17). The results are shown in Fig. 9a through 9e.

Since all A_{i} except $A_{n / 2}$ were chosen to be zero, the de component of the output is constant with a value of 0.5 . For the same reason, the magnitude of the second harmonic is zero for all n even. The deviation from linearity of the fundamental and the magnitude of

Figure 12
the third harmonic, seen in Figs. 9d and 9e, again behave in very similar fashion to each other. These figures show that the maximally-linear approximation is, in general, less successful for n even than for n odd. For example, there is more fundamental and third harmonic distortion present for $n=10$ than for $n=9$ for all values of v / V_{0}. In some cases, the n even networks produce less distortion than the n odd networks for small values of v / V_{0}, but for larger values of v / V_{0} the n even networks are consistantly inferior in performance.

In order to obtain the entire picture, however, the variation of the fundamental amplitude with n must also be considered. This is shown in Fig. 9a, where it is seen that the fundamental amplitude does not fall off nearly as much with increasing n when n is even as when n is odd. However, as can be seen from Fig. 10a where fundamental distortion is plotted vs. n for constant values of the fundamental amplitude, the modulators having n even are still inferior to those with n odd.

To summarize then, the maximally-linear approximation technique is perhaps less successful for n even chan for n odd. For n even, an advantage 1 s obtained in that the onn nd, fourth, sixth, etc. harmonics are zero. li the elimination of even harmonics is of prime importance, the n even case may well be the solution. The distortion present in the odd harmonics of the output, however, is worse for n even than for n odd.

IV. AMPLITUDE MODULATORS FOR USE WITH SQUARE-LAW DETECTORS

In this section we consider the ideal characteristic and methods for its approximation for an amplitude modulator to be used with a square-law detector. This case is probably of greater general interest than the envelope-detector case since various square-law detectors are available and widely used.

A. Ideal Modulator Characteristic

In Section III it was seen that for the envelope-detector case, one possible ideal characteristic is

$$
K(v)=\left(\frac{1}{2}+\frac{v}{V_{0}}\right)
$$

It is not difficult to see, then, that for the square-law case the corresponding ideal characteristic is

$$
\begin{equation*}
K(v)=\left(\frac{1}{2}+\frac{v}{V_{0}}\right)^{1 / 2} . \tag{44}
\end{equation*}
$$

To verify that the $K(v)$ of (44) is indeed an ideal modulator transfer function, assume that an optical signal $e^{i \omega t}$ enters a modulator having such a $K(v)$. The signal $E_{\text {out }}$ leaving the modulator is given by

$$
\begin{equation*}
E_{\text {out }}=\left(\frac{1}{2}+\frac{\mathrm{v}}{\mathrm{~V}_{0}}\right)^{1 / 2} \mathrm{e}^{\mathrm{i} \omega t} \tag{45}
\end{equation*}
$$

If we assume that the modulating signal v has the form $v=V \cos \omega_{m}{ }^{t}$, Eq. (45) becomes

$$
\begin{equation*}
E_{\text {out }}=\left(\frac{1}{2}+\frac{V}{V_{0}} \cos \omega_{m}\right)^{1 / 2} e^{i \omega t} \tag{46}
\end{equation*}
$$

the signal which is incident upon the detector. The detector output $\mathrm{I}_{\text {out }}$ is given by $\mathrm{kE}_{\text {out }} \mathrm{E}_{\text {out }}^{*}$, which using (46) gives

$$
\begin{equation*}
I_{\text {out }}=k\left(\frac{1}{2}+\frac{V}{V_{0}} \cos \omega_{m} t\right) \tag{47}
\end{equation*}
$$

As noted before, this satisfies perfectly the oritemia which we have selected for modulator performance, namely that the detentor nutnui contain a fundamental whose amplitude is linearly proportional to V, and no higher harmonics. The ideal characteristic of Eq. (44) is plotted in Fig. 13. Finally, it should be noted that just as there were an infinite number of possible ideal characteristics (of various slopes) for the envelope-detector case, there are likewise an infinite number of possibilities for the square-law case.

For the square-law case, we will consider only n odd. The previous section showed it to be more useful than n even in almost all respects. The sole exception was in elimination of even harmonics, where by proper choice of the A_{i}, a modulator with n even could be designed to produce no even harmonics. However as we will see, even this potential advantage is not present in the square-law case, since the even harmonic amplitudes are now functions of the A_{i} and B_{i} rather than the A_{i} alone.
B. Formulas for Amplitudes of Fundamental and Harmonics

We now derive general expressions for the amplitudes of the fundamental and harmonics present in the detector outpi... The voltage transfer functions for $1,3,5,7$, and 9 stage networks are again given by Eqs. (10). The details of the computation will be given for $\mathrm{n}=9$ only, since results for $\mathrm{n}=1,3,5$, and 7 are derivable from the $\mathrm{n}=9$ case.

We again impose the requirement that $\mathrm{K}(\mathrm{v})$ be real. This condition was necessary in the envelope-detector case to ensure that the phase of the demodulated fundamental did not depend upon V; it is not necessary, however, in the square-law case. Hence the decision to restrict $\mathrm{K}(\mathrm{v})$ to being real is admittedly an arbitrary one, made primarily for convenience. An additional incentive is provided, however, by the work of Ammann and Yarborough [28]. They have shown that if $\mathrm{K}(\mathrm{v})$ is real, a modification of the synthesis procedure of Part V can be used which results in a modulator containing only half as many stages as normally required.

With this restriction, $K(v)$ for $n=9$ becomes

$$
\begin{align*}
K(v) & =C_{0} e^{i \frac{9 \pi v}{2 V_{0}}}+C_{1} e^{i \frac{7 \pi v}{2 V_{0}}}+C_{2} e^{i \frac{5 \pi v}{2 V_{0}}}+C_{3} e^{i \frac{3 \pi v}{2 V_{0}}}+C_{4} e^{i \frac{\pi v}{2 V_{0}}} \\
& +C_{4}^{*} e^{-i \frac{\pi v}{2 V_{0}}}+C_{3}^{*} e^{-i \frac{3 \pi v}{2 V_{0}}}+C_{2}^{*} e^{-i \frac{5 \pi v}{2 V_{0}}}+C_{1}^{*} e^{-i \frac{7 \pi v}{2 V_{0}}}+C_{0}^{*} e^{-i \frac{9 \pi v}{2 V_{0}}} \tag{48}
\end{align*}
$$

The square-law detector output is given by

$$
I_{\text {out }}=k K(v) K^{*}(v) E_{i n} E_{\text {in }}^{*}
$$

which for the E_{in} of Eq. (7) gives

$$
\begin{equation*}
I_{o u t}=k K(v) K^{*}(v) \tag{49}
\end{equation*}
$$

Substituting (48) into (49) gives

$$
\begin{aligned}
& \mathrm{I}_{\text {out }} / \mathrm{k}=\mathrm{K}(\mathrm{v}) \mathrm{K}^{*}(\mathrm{v})=2\left[\mathrm{C}_{0} \mathrm{C}_{0}^{*}+\mathrm{C}_{1} \mathrm{C}_{1}^{*}+\mathrm{C}_{2} \mathrm{C}_{2}^{*}+\mathrm{C}_{3} \mathrm{C}_{3}^{*}+\mathrm{C}_{4} \mathrm{C}_{4}^{*}\right] \\
& +e^{i \frac{\pi v}{V_{0}}}\left[2\left(C_{0} C_{1}^{*}+C_{1} C_{2}^{*}+C_{2} C_{3}^{*}+C_{3} C_{4}^{*}\right)+C_{4} C_{4}\right] \\
& +\mathrm{e}^{-\mathrm{i} \frac{\pi \mathrm{~V}}{\mathrm{~V}_{0}}}\left[2\left(\mathrm{C}_{0}^{*} \mathrm{C}_{1}+\mathrm{C}_{1}^{*} \mathrm{C}_{2}+\mathrm{C}_{2}^{*} \mathrm{C}_{3}+\mathrm{C}_{3}^{*} \mathrm{C}_{4}\right)+\mathrm{C}_{4}^{*} \mathrm{C}_{4}^{*}\right] \\
& +e^{i \frac{2 \pi v}{V_{0}}}\left[2\left(\mathrm{C}_{0} \mathrm{C}_{2}^{*}+\mathrm{C}_{1} \mathrm{C}_{3}^{*}+\mathrm{C}_{2} \mathrm{C}_{4}^{*}+\mathrm{C}_{3} \mathrm{C}_{4}\right)\right] \\
& +e^{-\mathrm{i} \frac{2 \pi \mathrm{v}}{\mathrm{~V}_{0}}}\left[2\left(\mathrm{C}_{0}^{*} \mathrm{C}_{2}+\mathrm{C}_{1}^{*} \mathrm{C}_{3}+\mathrm{C}_{2}^{*} \mathrm{C}_{4}+\mathrm{C}_{3}^{*} \mathrm{C}_{4}^{*}\right)\right] \\
& +e^{i-\frac{3 \pi v}{V_{0}}}\left[2\left(C_{0} C_{3}^{*}+C_{1} C_{4}^{*}+C_{2} C_{4}\right)+C_{3} C_{3}\right] \\
& +e^{-i \frac{3 \pi v}{V_{0}}}\left[2\left(\mathrm{C}_{0}^{*} \mathrm{C}_{3}+\mathrm{C}_{1}^{*} \mathrm{C}_{4}+\mathrm{C}_{2}^{*} \mathrm{C}_{4}^{*}\right)+\mathrm{C}_{3}^{*} \mathrm{C}_{3}^{*}\right] \\
& +e^{i \frac{4 \pi v}{V_{0}}}\left[2\left(C_{0} C_{4}^{*}+C_{1} C_{4}+C_{2} C_{3}\right)\right]
\end{aligned}
$$

$$
\begin{align*}
& +e^{-i \frac{4 \pi v}{V_{0}}}\left[2\left(C_{0}^{*} C_{4}+C_{1}^{*} C_{4}^{*}+C_{2}^{*} C_{3}^{*}\right)\right] \\
& +e^{i \frac{5 \pi v}{V_{0}}}\left[2\left(C_{0} C_{4}+C_{1} C_{3}\right)+C_{2} C_{2}\right] \\
& +e^{-i \frac{5 \pi v}{V_{0}}}\left[2\left(C_{0}^{*} C_{4}^{*}+C_{1}^{*} C_{3}^{*}\right)+C_{2}^{*} C_{2}^{*}\right] \\
& +e^{i \frac{6 \pi v}{V_{0}}}\left[2\left(C_{0} C_{3}+C_{1} C_{2}\right)\right]+e^{-i \frac{6 \pi v}{V_{0}}}\left[2\left(C_{0}^{*} C_{3}^{*}+C_{1}^{*} C_{2}^{*}\right)\right] \\
& +e^{i \frac{7 \pi v}{V_{0}}}\left[2 C_{0} C_{2}+C_{1} C_{1}\right]+e^{-i \frac{7 \pi v}{V_{0}}}\left[2 C_{0}^{*} C_{2}^{*}+C_{1}^{*} C_{1}^{*}\right] \\
& +e^{i \frac{8 \pi v}{V_{0}}}\left[2 C_{0} C_{1}\right]+e^{-i \frac{8 \pi v}{V_{0}}}\left[2 C_{0}^{*} C_{1}^{*}\right] \\
& +e^{i \frac{9 \pi v}{V_{0}}}\left[C_{0} C_{0}\right]+e^{-i \frac{9 \pi v}{V_{0}}}\left[C_{0}^{*} C_{0}^{*}\right] \tag{50}
\end{align*}
$$

Letting $C_{i}=A_{i}+i B_{i}$, we obtain
$\mathrm{I}_{\text {out }} / \mathrm{k}=2\left[\mathrm{~A}_{0}^{2}+\mathrm{A}_{1}^{2}+\mathrm{A}_{2}^{2}+\mathrm{A}_{3}^{2}+\mathrm{A}_{4}^{2}+\mathrm{B}_{0}^{2}+\mathrm{B}_{1}^{2}+\mathrm{B}_{2}^{2}+\mathrm{B}_{3}^{2}+\mathrm{B}_{4}^{2}\right]$
$+2 \cos \frac{\pi v}{V_{0}}\left[A_{4}^{2}-B_{4}^{2}+2\left(A_{0} A_{1}+B_{0} B_{1}+A_{1} A_{2}+B_{1} B_{2}+A_{2} A_{3}+B_{2} B_{3}+A_{3} A_{4}+B_{3} B_{4}\right)\right]$
$-2 \sin \frac{\pi v}{V_{0}}\left[2\left(-A_{0} B_{1}+A_{1} B_{0}-A_{1} B_{2}+A_{2} B_{1}-A_{2} B_{3}+A_{3} B_{2}-A_{3} B_{4}+A_{4} B_{3}+A_{4} B_{4}\right)\right]$
$+2 \cos \frac{2 \pi v}{V_{0}}\left[2\left(A_{0} A_{2}+B_{0} B_{2}+A_{1} A_{3}+B_{1} B_{3}+A_{2} A_{4}+B_{2} B_{4}+A_{3} A_{4}-B_{3} B_{4}\right)\right]$
$-2 \sin \frac{2 \pi v}{V_{0}}\left[2\left(-A_{0} B_{2}+A_{2} B_{0}-A_{1} B_{3}+A_{3} B_{1}-A_{2} B_{4}+A_{4} B_{2}+A_{3} B_{4}+A_{4} B_{3}\right)\right]$

$$
\begin{align*}
& +2 \cos \frac{3 \pi v}{V_{0}}\left[A_{3}^{2}-B_{3}^{2}+2\left(A_{0} A_{3}+B_{0} B_{3}+A_{1} A_{4}+B_{1} B_{4}+A_{2} A_{4}-B_{2} B_{4}\right)\right] \\
& -2 \sin \frac{3 \pi v}{V_{0}}\left[2\left(-A_{0} B_{3}+A_{3} B_{0}-A_{1} B_{4}+A_{4} B_{1}+A_{2} B_{4}+A_{4} B_{2}+A_{3} B_{3}\right)\right] \\
& +2 \cos \frac{4 \pi v}{V_{0}}\left[2\left(A_{0} A_{4}+B_{0} B_{4}+A_{1} A_{4}-B_{1} B_{4}+A_{2} A_{3}-B_{2} B_{3}\right)\right] \\
& -2 \sin \frac{4 \pi v}{V_{0}}\left[2\left(-A_{0} B_{4}+A_{4} B_{0}+A_{1} B_{4}+B_{1} A_{4}+A_{2} B_{3}+A_{3} B_{2}\right)\right] \\
& +2 \cos \frac{5 \pi v}{V_{0}}\left[A_{2}^{2}-B_{2}^{2}+2\left(A_{0} A_{4}-B_{0} B_{4}+A_{1} A_{3}-B_{1} B_{3}\right)\right] \\
& -2 \sin \frac{5 \pi v}{V_{0}}\left[2\left(A_{0} B_{4}+A_{4} B_{0}+A_{1} B_{3}+A_{3} B_{1}+A_{2} B_{2}\right)\right] \\
& +2 \cos \frac{6 \pi v}{V_{0}}\left[2\left(A_{0} A_{3}-B_{0} B_{3}+A_{1} A_{2}-B_{1} B_{2}\right)\right] \\
& -2 \sin \frac{6 \pi v}{V_{0}}\left[2\left(A_{0} B_{3}+A_{3} B_{0}+A_{1} B_{2}+A_{2} B_{1}\right)\right] \\
& +2 \cos \frac{7 \pi v}{V_{0}}\left[A_{1}^{2}-B_{1}^{2}+2\left(A_{0} A_{2}-B_{0} B_{2}\right)\right]-2 \sin \frac{7 \pi v}{V_{0}}\left[2\left(A_{0} B_{2}+A_{2} B_{0}+A_{1} B_{1}\right)\right] \\
& +2 \cos \frac{8 \pi v}{V_{0}}\left[2\left(A_{0} A_{1}-B_{0} B_{1}\right)\right]-\varepsilon \sin \frac{8 \pi v}{V_{0}}\left[2\left(A_{0} B_{1}+A_{1} B_{0}\right)\right] \\
& +2 \cos \frac{9 \pi v}{V_{0}}\left[A_{0}^{2}-B_{0}^{2}\right]-2 \sin \frac{9 \pi v}{V_{0}}\left[2 A_{0} B_{0}\right] \tag{51}
\end{align*}
$$

For convenience we will designate the bracketed terms in (51) by Q_{0}, Q_{1},
 Q_{9}, and \int_{9} respectively. Equation (51) then becomes

$$
\begin{aligned}
\mathrm{I}_{\mathrm{out}} / \mathrm{k} & =2 a_{0}+2 a_{1} \cos \frac{\pi \mathrm{v}}{\mathrm{~V}_{0}}-2 \frac{\Theta_{1} \sin \frac{\pi \mathrm{v}}{\mathrm{~V}_{0}}+2 a_{2} \cos \frac{2 \pi \mathrm{v}}{\mathrm{~V}_{0}}}{} \\
& -2 \theta_{2} \sin \frac{2 \pi \mathrm{v}}{\mathrm{~V}_{0}}+2 a_{3} \cos \frac{3 \pi \mathrm{v}}{\mathrm{~V}_{0}}-2 \otimes_{3} \sin \frac{3 \pi \mathrm{v}}{\mathrm{~V}_{0}}+2 a_{4} \cos \frac{4 \pi \mathrm{v}}{\mathrm{~V}_{0}}
\end{aligned}
$$

$$
\begin{align*}
& -{ }_{2} B_{4} \sin \frac{4 \pi v}{\mathrm{v}_{0}}+2 a_{5} \cos \frac{5 \pi \mathrm{v}}{\mathrm{v}_{0}}-2 B_{5} \sin \frac{5 \pi \mathrm{v}}{\mathrm{v}_{0}}+2 Q_{6} \cos \frac{6 \pi \mathrm{v}}{\mathrm{v}_{0}} \\
& -{ }_{2} B_{6} \sin \frac{6 \pi \mathrm{v}}{\mathrm{v}_{0}}+2 a_{7} \cos \frac{7 \pi \mathrm{v}}{\mathrm{v}_{0}}-2 B_{7} \sin \frac{7 \pi \mathrm{v}}{\mathrm{v}_{0}}+2 a_{8} \cos \frac{8 \pi \mathrm{v}}{\mathrm{v}_{0}} \\
& -{ }_{2} B_{8} \sin \frac{8 \pi \mathrm{v}}{\mathrm{v}_{0}}+2 a_{9} \cos \frac{9 \pi \mathrm{v}}{\mathrm{v}_{0}}-2 B_{9} \sin \frac{9 \pi \mathrm{v}}{\mathrm{v}_{0}} \tag{52}
\end{align*}
$$

If we now let $v=V \cos \omega_{m}{ }^{t}$ and expand the $\cos (\cos \theta)$ and $\sin (\cos \theta)$ terms which result, the desired expression is obtained for $n=9$.

$$
\begin{equation*}
+\quad \text { higher order harmonics. } \tag{53}
\end{equation*}
$$

From (53) we see that the amplitudes of the fundamental and harmonics are functions of both the A_{i} and B_{i}. This is in contrast to the envelope-detector case where even-harmonic amplitudes are functions of the A_{i} only, while odd harmonic amplitudes are functions of the B_{i}.

$$
\begin{aligned}
& \mathrm{I}_{\text {out }} / \mathrm{k}=2\left[\boldsymbol{a}_{0}+\boldsymbol{a}_{1} \mathrm{~J}_{0}\left(\frac{\pi \mathrm{~V}}{\mathrm{~V}_{0}}\right)+\boldsymbol{a}_{2} \mathrm{~J}_{0}\left(\frac{2 \pi \mathrm{~V}}{\mathrm{~V}_{0}}\right)+\boldsymbol{a}_{3} \mathrm{~J}_{0}\left(\frac{3 \pi \mathrm{~V}}{\mathrm{~V}_{0}}\right)+\boldsymbol{a}_{4} \mathrm{~J}_{0}\left(\frac{4 \pi \mathrm{~V}}{\mathrm{~V}_{0}}\right)\right. \\
& \left.+\boldsymbol{a}_{5} \mathrm{~J}_{0}\left(\frac{5 \pi \mathrm{~V}}{\mathrm{~V}_{0}}\right)+\boldsymbol{a}_{6} \mathrm{~J}_{0}\left(\frac{6 \pi \mathrm{~V}}{\mathrm{~V}_{0}}\right)+\boldsymbol{a}_{7} \mathrm{~J}_{0}\left(\frac{7 \pi \mathrm{~V}}{\mathrm{~V}_{0}}\right)+\boldsymbol{a}_{8} \mathrm{~J}_{0}\left(\frac{8 \pi \mathrm{~V}}{\mathrm{~V}_{0}}\right)+\boldsymbol{a}_{9} \mathrm{~J}_{0}\left(\frac{9 \pi \mathrm{~V}}{\mathrm{~V}_{0}}\right)\right] \\
& -4\left[\Omega_{J_{1}}\left(\frac{\pi \mathrm{~V}}{\mathrm{~V}_{0}}\right)+\boldsymbol{\Omega}_{2} \mathrm{~J}_{1}\left(\frac{2 \pi \mathrm{~V}}{\mathrm{~V}_{0}}\right)+\Theta_{3} \mathrm{~J}_{1}\left(\frac{3 \pi \mathrm{~V}}{\mathrm{~V}_{0}}\right)+\Theta_{4} \mathrm{~J}_{1}\left(\frac{4 \pi \mathrm{~V}}{\mathrm{~V}_{0}}\right)+\Theta_{5} \mathrm{~J}_{1}\left(\frac{5 \pi \mathrm{~V}}{\mathrm{~V}_{0}} \cdot\right)\right. \\
& \left.+\Theta_{6} \mathrm{~J}_{1}\left(\frac{6 \pi \mathrm{~V}}{\mathrm{~V}_{0}}\right)+\boldsymbol{\Omega}_{7} \mathrm{~J}_{1}\left(\frac{7 \pi \mathrm{~V}}{\mathrm{~V}_{0}}\right)+\Theta_{8} \mathrm{~J}_{1}\left(\frac{8 \pi \mathrm{~V}}{\mathrm{~V}_{0}}\right)+\boldsymbol{S}_{9} \mathrm{~J}_{1}\left(\frac{9 \pi \mathrm{~V}}{\mathrm{~V}_{0}}\right)\right] \cos \omega_{\mathrm{m}}{ }^{\mathrm{t}} \\
& -4\left[a_{1} \mathrm{~J}_{2}\left(\frac{\pi \mathrm{~V}}{\mathrm{~V}_{0}}\right)+a_{2} \mathrm{~J}_{2}\left(\frac{2 \pi \mathrm{~V}}{\mathrm{~V}_{0}}\right)+a_{3} \mathrm{~J}_{2}\left(\frac{3 \pi \mathrm{~V}}{\mathrm{v}_{0}}\right)+a_{4} \mathrm{~J}_{2}\left(\frac{4 \pi \mathrm{~V}}{\mathrm{~V}_{0}}\right)+a_{5} \mathrm{~J}_{2}\left(\frac{3 \pi \mathrm{~V}}{\mathrm{~V}_{0}}\right)\right. \\
& \left.+\boldsymbol{a}_{6} \mathrm{~J}_{2}\left(\frac{6 \pi \mathrm{~V}}{\mathrm{~V}_{0}}\right)+\boldsymbol{a}_{7} \mathrm{~J}_{2}\left(\frac{7 \pi \mathrm{~V}}{\mathrm{~V}_{0}}\right)+\boldsymbol{a}_{8} \mathrm{~J}_{2}\left(\frac{8 \pi \mathrm{~V}}{\mathrm{~V}_{0}}\right)+\boldsymbol{a}_{9} \mathrm{~J}_{2}\left(\frac{9 \pi \mathrm{~V}}{\mathrm{~V}_{0}}\right)\right] \cos 2 \omega_{\mathrm{m}}^{\mathrm{t}} \\
& +4\left[\Theta_{1} J_{3}\left(\frac{\pi V}{V_{0}}\right)+\boldsymbol{\beta}_{2} J_{3}\left(\frac{2 \pi V}{V_{0}}\right)+\omega_{3} J_{3}\left(\frac{3 \pi V}{V_{0}}\right)+\boldsymbol{\Theta}_{4} J_{3}\left(\frac{4 \pi V}{V_{0}}\right)+\boldsymbol{\beta}_{5} J_{3}\left(\frac{5 \pi V}{V_{0}}\right)\right. \\
& \left.+\boldsymbol{\beta}_{6} \mathrm{~J}_{3}\left(\frac{6 \pi \mathrm{~V}}{\mathrm{~V}_{0}}\right)+\mathscr{B}_{7} \mathrm{~J}_{3}\left(\frac{7 \pi \mathrm{~V}}{\mathrm{~V}_{0}}\right)+\boldsymbol{B}_{8} \mathrm{~J}_{3}\left(\frac{8 \pi \mathrm{~V}}{\mathrm{~V}_{0}}\right)+\mathscr{B}_{9} \mathrm{~J}_{3}\left(\frac{9 \pi \mathrm{~V}}{\mathrm{~V}_{0}}\right)\right] \cos 3 \omega_{\mathrm{m}}{ }^{\mathrm{t}}
\end{aligned}
$$

C. Fourier Approximation to Ideal Characteristic

One might again consider using the Fourier approximation to determine the C_{i}. This calculation was carried out for the ideal characteristic of Fig. 14 and the resulting A_{i} and $\mathrm{B}_{\mathbf{i}}$ substituted into Eq. (53) (or, for the cases of $\mathrm{n}=1,3,5$, and 7 , into equivalent expressions) to assess the modulators' performance. This approximation method again proved unsuccessful in yielding modulators with improved performance characteristics, and hence the results will be briefly summarized instead of presented in detail. The deviation from linearity of the fundamental was found to be greater for $n=5$ and 9 than for $\mathrm{n}=1$, while for $\mathrm{n}=3$ and 7 the deviation from linearity was only slightly less than for $n=1$. In addition since for $n=1$ there is no second larmonic, the conventional modulator's performance is superior in this respect also. Therefore the conclusion is again reached that the Fourier method is not successful in designing improved amplitude modulators.

As mentioned earlier, the problem is probably at least partially due to the abrupt changes of slope of $K(v)$ which occur at $v / V_{0}=-0.5$ and +0.5 . In an attempt to verify this, another approach was tried. Instead of approximating the ideal $K(v)$ of Fig. 12, a new $\mathrm{K}(\mathrm{v})$ was chosen which closely follows the $\mathrm{K}(\mathrm{v})$ of Fig. 12 for $-0.45<\mathrm{v} / \mathrm{V}_{0}<0.45$, but which deviates from it in such a fashion that abrupt slope changes are avoided in the vicinity of $\mathrm{v} / \mathrm{V}_{0}= \pm 0.5$. Using graphical techniques, the Fourier coefficients for this new $K(v)$ were found and substituted into Eq. (53).

This technique resulted in a systematic, but fairly small, reduction in the deviation from linearity of the fundamental for $n=1,3,5$, and 7 . For $n=9$, however, the deviation returned to essentially its $n=1$ value. The second harmonic magnitudes decreased only slightly with increasing n. Thus although this technique was more successful than the regular Fourier approximation of the $K(v)$ of Fig. 12, it still leaves much to be desired. The improvements which it produces are not substantial enough, or sufficiently uniform with increasing n, to merit its use.

D. Maximally-linear Approximation to Ideal Characteristic

The approximation technique which proved most useful for the envelope-detector case is one in which the C_{i} were chosen to directly optimize the fundamental and second harmonic amplitudes. The goal was to minimize the second harmonic amplitude and to make the fundamental amplitude directly proportional to V , the amplitude of the modulating signal. We will now apply this same technique to the square-law detector case.

Equation (53) gives a general expression for the demodulated signal from a square-law detector. The amplitude of the fundamental is given by

$$
\begin{align*}
\begin{array}{l}
\text { amplitude of } \\
\text { fundamental }
\end{array} & -4\left[\boldsymbol{B}_{1} J_{1}\left(\frac{\pi V}{V_{0}}\right)+\boldsymbol{B}_{2} J_{1}\left(\frac{2 \pi V}{V_{0}}\right)+\boldsymbol{B}_{3} J_{1}\left(\frac{3 \pi V}{V_{0}}\right)+\boldsymbol{B}_{4} J_{1}\left(\frac{4 \pi V}{V_{0}}\right)\right. \\
& +\beta_{5} J_{1}\left(\frac{5 \pi V}{V_{0}}\right)+\boldsymbol{B}_{6} J_{1}\left(\frac{6 \pi V}{V_{0}}\right)+{\underset{7}{7}} J_{1}\left(\frac{7 \pi V}{V_{0}}\right)+\boldsymbol{B}_{3} J_{1}\left(\frac{8 \pi V}{V_{0}}\right) \\
& \left.+B_{9} J_{1}\left(\frac{9 \pi V}{V_{0}}\right)\right],
\end{align*}
$$

while the amplitude of the second harmonic is given by

$$
\begin{align*}
\begin{array}{l}
\text { second harmonic } \\
\text { amplitude }
\end{array}= & \cdots 4\left[Q_{1} \mathrm{~J}_{2}\left(\frac{\pi \mathrm{~V}}{\mathrm{~V}_{0}}\right)+a_{2} \mathrm{~J}_{2}\left(\frac{2 \pi \mathrm{~V}}{\mathrm{~V}_{0}}\right)+a_{3} \mathrm{~J}_{2}\left(\frac{3 \pi \mathrm{~V}}{\mathrm{~V}_{0}}\right)+a_{4} \mathrm{~J}_{2}\left(\frac{4 \pi \mathrm{~V}}{\mathrm{~V}_{0}}\right)\right. \\
& +Q_{5} \mathrm{~J}_{2}\left(\frac{5 \pi \mathrm{~V}}{\mathrm{~V}_{0}}\right)+a_{6} \mathrm{~J}_{2}\left(\frac{6 \pi \mathrm{~V}}{\mathrm{~V}_{0}}\right)+Q_{7} \mathrm{~J}_{2}\left(\frac{7 \pi \mathrm{~V}}{\mathrm{~V}_{0}}\right)+a_{8} \mathrm{~J}_{2}\left(\frac{8 \pi \mathrm{~V}}{\mathrm{~V}_{0}}\right) \\
& \left.+O_{9} \mathrm{~J}_{2}\left(\frac{9 \pi \mathrm{~V}}{\mathrm{~V}_{0}}\right)\right] \tag{55}
\end{align*}
$$

It should be kept in mind that the A_{i} and \mathcal{B}_{i} are functions of the A_{i} and B_{i}.
Writing each Bessel function of (54) and (55) in series form, we obtain
amplitude of fundamental

$$
\begin{aligned}
& =-4\left[\frac { \pi } { 2 } \cdot \frac { V } { V _ { 0 } } \left(B_{1}+2 B_{2}+3 B_{3}+4 B_{4}+5 B_{5}+6 B_{6}\right.\right. \\
& \left.+7 \boldsymbol{B}_{7}+8 \boldsymbol{B}_{8}+9 \boldsymbol{B}_{9}\right)-\frac{\pi^{3}}{16}\left(\frac{V}{V_{0}}\right)^{3}\left(B_{1}+2^{3} \boldsymbol{B}_{2}+3^{3} \boldsymbol{B}_{3}\right.
\end{aligned}
$$

$$
\begin{align*}
& \left.+4^{3} \boldsymbol{B}_{4}+5^{3} \boldsymbol{B}_{5}+6^{3} \boldsymbol{B}_{6}+7^{3} \boldsymbol{B}_{7}+8^{3} \boldsymbol{B}_{8}+9^{3} \boldsymbol{B}_{9}\right) \\
& +\frac{\pi^{5}}{384}\left(\frac{V}{V_{0}}\right)^{5}\left(B_{1}+2^{5} \boldsymbol{B}_{2}+3^{5} B_{3}+4^{5} B_{4}+5^{5} \boldsymbol{B}_{5}\right. \\
& \left.+6^{5} \boldsymbol{B}_{6}+7^{5} \boldsymbol{B}_{7}+8^{5} \boldsymbol{B}_{8}+9^{5} \boldsymbol{B}_{9}\right)-\frac{\pi^{7}}{18,432}\left(\frac{V}{V_{0}}\right)^{7}\left(B_{1}+2^{7} \boldsymbol{B}_{2}\right. \\
& \left.+3^{7} \boldsymbol{B}_{3}+4^{7} \boldsymbol{B}_{4}+5^{7} \boldsymbol{B}_{5}+6^{7} \boldsymbol{B}_{6}+7^{7} B_{7}+8^{7} \boldsymbol{B}_{8}+9^{7} \boldsymbol{B}_{9}\right) \\
& +\frac{\pi^{9}}{1,474560}\left(\frac{V}{V_{0}}\right)^{9}\left(B_{1}+2^{9} B_{2}+3^{9} B_{3}+4^{9} B_{4}+5^{9} B_{5}\right. \\
& \left.\left.+6^{9} B_{6}+7^{9} B_{7}+8^{9} B_{8}+9^{9} B_{9}\right)-\ldots\right], \tag{56}
\end{align*}
$$

and

$$
\begin{aligned}
\begin{array}{l}
\text { second harmonic } \\
\text { amplitude }
\end{array} & -4\left[\frac { \pi ^ { 2 } } { 8 } (\frac { \mathrm { V } } { V _ { 0 } }) ^ { 2 } \left(a_{1}+2^{2} a_{2}+3^{2} a_{3}+4^{2} a_{4}+5^{2} a_{5}+6^{2} a_{6}\right.\right. \\
& \left.+7^{2} a_{7}+8^{2} a_{8}+9^{2} a_{9}\right)-\frac{\pi^{4}}{96}\left(\frac{\mathrm{~V}}{\mathrm{~V}_{0}}\right)^{4}\left(a_{1}+2^{4} a_{2}+3^{4} a_{3}\right. \\
& \left.+4^{4} a_{4}+5^{4} a_{5}+6^{4} a_{6}+7^{4} a_{7}+8^{4} a_{8}+9^{4} a_{9}\right) \\
& +\frac{\pi^{6}}{3072}\left(\frac{\mathrm{~V}}{\mathrm{~V}_{0}}\right)^{6}\left(a_{1}+2^{6} a_{2}+3^{6} a_{3}+4^{6} a_{4}+5^{6} a_{5}\right. \\
& +6^{6} a_{6}+7^{6} a_{7}+8^{6} a_{8}+9^{6} a_{y^{\prime}}-\frac{\pi^{8}}{184,320}\left(\frac{V^{V}}{V_{0}}\right)^{8}\left(a_{1}\right. \\
& +2^{8} a_{2}+3^{8} a_{3}+4^{8} a_{4}+5^{8} a_{5}+6^{8} a_{6}+7^{8} a_{7}+8^{8} a_{8}
\end{aligned}
$$

$$
\begin{align*}
& \left.+9^{8} a_{9}\right)+\frac{\pi^{10}}{8,847,360}\left(\frac{\mathrm{~V}}{V_{0}}\right)^{10}\left(Q_{1}+2^{10} a_{2}+3^{10} a_{3}\right. \\
& \left.+4^{10} a_{4}+5^{10} a_{5}+6^{10} a_{6}+7^{10} a_{7}+8^{10} a_{8}+9^{10} Q_{9}\right) \\
& -\ldots] \tag{57}
\end{align*}
$$

There are ten different A_{i} and B_{i} to be determined: $A_{0}, A_{1}, A_{2}, A_{3}, A_{4}, B_{0}, B_{1}$, $\mathrm{B}_{2}, \mathrm{~B}_{3}$, and B_{4}. One of these is used up in normalizing $\mathrm{K}(\mathrm{v})$ to have a maximum magnitude of unity. Another will be fixed when we set $B_{4}=-A_{4}$ in an attempt to make the general form of $K(v)$ similar to that of the ideal function of Fig. 14. The remaining eight A_{i} and B_{i} can be chosen to make eight term coefficients in (56) and (57) be zero. The choice of which eight are made zero is arbitrary. Our choice will be the $\left(\mathrm{V} / \mathrm{V}_{0}\right)^{3}$, $\left(\mathrm{V} / \mathrm{V}_{0}\right)^{5},\left(\mathrm{~V} / \mathrm{V}_{0}\right)^{7}$, and $\left(\mathrm{V} / \mathrm{V}_{0}\right)^{9}$ terms in the fundamental amplitude and the $\left(\mathrm{V} / \mathrm{V}_{0}\right)^{2}$, $\left(\mathrm{V} / \mathrm{V}_{0}\right)^{4},\left(\mathrm{~V} / \mathrm{V}_{0}\right)^{6}$, and $\left(\mathrm{V} / \mathrm{V}_{0}\right)^{8}$ terms in the second harmonic amplitude.

The corresponding equations are

$$
\begin{align*}
& \boldsymbol{B}_{1}+2^{3} \boldsymbol{B}_{2}+3^{3} \boldsymbol{B}_{3}+4^{3} \boldsymbol{B}_{4}+5^{3} \boldsymbol{B}_{5}+6^{3} \boldsymbol{B}_{6}+7^{3} \boldsymbol{B}_{7}+8^{3} \boldsymbol{B}_{8}+9^{3} \boldsymbol{B}_{9}=0, \\
& \boldsymbol{B}_{1}+2^{5} \boldsymbol{B}_{2}+3^{5} \boldsymbol{B}_{3}+4^{5} \boldsymbol{B}_{4}+5^{5} \boldsymbol{\beta}_{5}+6^{5} \boldsymbol{B}_{6}+7^{5} \boldsymbol{B}_{7}+8^{5} \boldsymbol{B}_{8}+9^{5} \boldsymbol{B}_{9}=0, \\
& \boldsymbol{B}_{1}+2^{7} \boldsymbol{B}_{2}+\boldsymbol{B}^{1} \boldsymbol{B}_{3}+4^{7} \boldsymbol{B}_{4}+5^{7} \boldsymbol{B}_{5}+5^{7} \boldsymbol{B}_{6}+7^{7} \boldsymbol{B}_{7}+8^{7} \boldsymbol{B}_{8}+9^{7} \boldsymbol{B}_{9}=0, \\
& \boldsymbol{B}_{1}+2^{9} \boldsymbol{B}_{2}+3^{9} \boldsymbol{B}_{3}+4^{9} \boldsymbol{B}_{4}+5^{9} \boldsymbol{B}_{5}+6^{9} \boldsymbol{B}_{6}+7^{9} \boldsymbol{B}_{7}+8^{9} \boldsymbol{O}_{8}+\mathbf{5}^{9} \boldsymbol{B}_{9}=0, \\
& a_{1}+2^{2} a_{2}+3^{2} a_{3}+4^{2} \boldsymbol{a}_{4}+5^{2} \boldsymbol{a}_{5}+6^{2} \boldsymbol{a}_{6}+7^{2} \boldsymbol{a}_{7}+8^{2} \boldsymbol{a}_{8}+9^{2} \boldsymbol{a}_{9}=0 \\
& a_{1}+2^{4} a_{2}+3^{4} a_{3}+4^{4} \boldsymbol{a}_{4}+5^{4} \boldsymbol{a}_{5}+6^{4} \boldsymbol{a}_{6}+7^{4} \boldsymbol{a}_{7}+8^{4} \boldsymbol{a}_{8}+9^{4} \boldsymbol{a}_{9}=0 \\
& a_{1}+2^{6} a_{2}+3^{6} \boldsymbol{a}_{3}+4^{6} a_{4}+5^{6} \boldsymbol{a}_{5}+6^{6} \boldsymbol{a}_{6}+7^{6} \boldsymbol{a}_{7}+8^{6} \boldsymbol{a}_{8}+9^{6} \boldsymbol{a}_{9}=0, \\
& a_{2}+2^{8} \boldsymbol{a}_{2}+3^{8} \boldsymbol{a}_{3}+4^{8} \boldsymbol{a}_{4}+5^{8} \boldsymbol{a}_{5}+6^{8} \boldsymbol{a}_{6}+7^{8} \boldsymbol{a}_{7}+8^{8} \boldsymbol{a}_{8}+9^{8} \boldsymbol{a}_{9}=0 \text {. } \tag{58}
\end{align*}
$$

If we rewrite the above equations expressing the \boldsymbol{Q}_{i} and $\boldsymbol{\beta}_{i}$ in terms of the A_{i} and B_{i}, and if we let $B_{4}=-A_{4}$, we obtain

$$
\begin{aligned}
& -\mathrm{A}_{4}^{2}+9 \mathrm{~A}_{4} \mathrm{~B}_{3}+35 \mathrm{~A}_{4} \mathrm{~B}_{2}+91 \mathrm{~A}_{4} \mathrm{~B}_{1}-7 \mathrm{~A}_{4} \mathrm{~A}_{3}+27 \mathrm{~A}_{3} \mathrm{~B}_{3}+6 \mathrm{~B}_{3} \mathrm{~B}_{2}+133 \mathrm{~A}_{3} \mathrm{~B}_{1} \\
& -19 \mathrm{~A}_{4} \mathrm{~A}_{2}+63 \mathrm{~A}_{2} \mathrm{~B}_{3}+125 \mathrm{~A}_{2} \mathrm{~B}_{2}+217 \mathrm{~A}_{2} \mathrm{~B}_{1}-37 \mathrm{~A}_{4} \mathrm{~A}_{1}+117 \mathrm{~A}_{1} \mathrm{~B}_{3}+215 \mathrm{~A}_{1} \mathrm{~B}_{2} \\
& +343 \mathrm{~A}_{1} \mathrm{~B}_{1}+189 \mathrm{~A}_{4} \mathrm{~B}_{0}+243 \mathrm{~A}_{3} \mathrm{~B}_{0}+351 \mathrm{~A}_{2} \mathrm{~B}_{0}+513 \mathrm{~A}_{1} \mathrm{~B}_{0}-61 \mathrm{~A}_{4} \mathrm{~A}_{0}+189 \mathrm{~A}_{0} \mathrm{~B}_{3} ; \\
& +335 \mathrm{~A}_{0} \mathrm{~B}_{2}+511 \mathrm{~A}_{0} \mathrm{~B}_{1}+729 \mathrm{~A}_{0} \mathrm{~B}_{0}=0, \\
& -\mathrm{A}_{4}^{2}+33 \mathrm{~A}_{4} \mathrm{~B}_{3}+275 \mathrm{~A}_{4} \mathrm{~B}_{2}+1267 \mathrm{~A}_{4} \mathrm{~B}_{1}-31 \mathrm{~A}_{4} \mathrm{~A}_{3}+243 \mathrm{~A}_{3} \mathrm{~B}_{3}+1025 \mathrm{~A}_{3} \mathrm{~B}_{2} \\
& +3157 \mathrm{~A}_{3} \mathrm{~B}_{1}-211 \mathrm{~A}_{4} \mathrm{~A}_{2}+1023 \mathrm{~A}_{2} \mathrm{~B}_{3}+3125 \mathrm{~A}_{2} \mathrm{~B}_{2}+7777 \mathrm{~A}_{2} \mathrm{~B}_{1}-781 \mathrm{~A}_{4} \mathrm{~A}_{1} \\
& +3093 \mathrm{~A}_{1} \mathrm{~B}_{3}+7775 \mathrm{~A}_{1} \mathrm{~B}_{2}+16,807 \mathrm{~A}_{1} \mathrm{~B}_{1}+4149 \mathrm{~A}_{4} \mathrm{~B}_{0}+8019 \mathrm{~A}_{3} \mathrm{~B}_{0}+16,839 \mathrm{~A}_{2} \mathrm{~B}_{0} \\
& +32,769 \mathrm{~A}_{1} \mathrm{~B}_{0}-2101 \mathrm{~A}_{4} \mathrm{~A}_{0}+7533 \mathrm{~A}_{0} \mathrm{~B}_{3}+16,775 \mathrm{~A}_{0} \mathrm{~B}_{2}+32,767 \mathrm{~A}_{0} \mathrm{~B}_{1} \\
& + \\
& +59,049 \mathrm{~A}_{0} \mathrm{~B}_{0}=0,
\end{aligned}
$$

$$
-A_{4}^{2}+129 A_{4} B_{3}+2315 A_{4} B_{2}+18,571 A_{4} B_{1}-127 A_{4} A_{3}+2187 A_{3} B_{3}+16,385 A_{3} B_{2}
$$

$$
+78,253 \mathrm{~A}_{3} \mathrm{~B}_{1}-2059 \mathrm{~A}_{4} \mathrm{~A}_{2}+16,383 \mathrm{~A}_{2} \mathrm{~B}_{3}+78,125 \mathrm{~A}_{2} \mathrm{~B}_{2}+279,037 \mathrm{~A}_{2} \mathrm{~B}_{1}
$$

$$
-14,197 \mathrm{~A}_{4} \mathrm{~A}_{1}+77,997 \mathrm{~A}_{1} \mathrm{~B}_{3}+279,935 \mathrm{~A}_{1} \mathrm{~B}_{2}+823,543 \mathrm{~A}_{1} \mathrm{~B}_{1}+94,509 \mathrm{~A}_{4} \mathrm{~B}_{0}
$$

$$
+282,123 \mathrm{~A}_{3} \mathrm{~B}_{0}+823,671 \mathrm{~A}_{2} \mathrm{~B}_{0} \div 2,097,153 \mathrm{~A}_{1} \mathrm{~B}_{0}-61,741 \mathrm{~A}_{4} \mathrm{~A}_{0}+277,749 \mathrm{~A}_{0} \mathrm{~B}_{3}
$$

$$
\begin{equation*}
+823,415 \mathrm{~A}_{0} \mathrm{~B}_{2}+2,097,151 \mathrm{~A}_{0} \mathrm{~B}_{1}+4,782,969 \mathrm{~A}_{0} \mathrm{~B}_{0}=0 \tag{59c}
\end{equation*}
$$

$$
\begin{align*}
& -A_{4}^{2}+513 A_{4} B_{3}+20,195 A_{4} B_{2}+281,827 A_{4} B_{1}-511 A_{4} A_{3}+19,683 A_{3} B_{3} \\
& +262,145 \mathrm{~A}_{3} \mathrm{~B}_{2}+1,953,637 \mathrm{~A}_{3} \mathrm{~B}_{1}-19,171 \mathrm{~A}_{4} \mathrm{~A}_{2}+262,1.43 \mathrm{~A}_{2} \mathrm{~B}_{3}+1,953,125 \mathrm{~A}_{2} \mathrm{~B}_{2} \\
& +10,077,697 \mathrm{~A}_{2} \mathrm{~B}_{1}-242,461 \mathrm{~A}_{4} \mathrm{~A}_{1}+1,952,613 \mathrm{~A}_{1} \mathrm{~B}_{3}+10,077.695 \mathrm{~A}_{1} \mathrm{~B}_{2} \\
& +40,353,607 \mathrm{~A}_{1} \mathrm{~B}_{1}+2,215,269 \mathrm{~A}_{4} \mathrm{~B}_{0}+10,097,379 \mathrm{~A}_{3} \mathrm{~B}_{0}+40,354,119 \mathrm{~A}_{2} \mathrm{~B}_{0} \\
& +134,217,729 \mathrm{~A}_{1} \mathrm{~B}_{0}-1,690,981 \mathrm{~A}_{4} \mathrm{~A}_{0}+10,058,013 \mathrm{~A}_{0} \mathrm{~B}_{3}+40,353,095 \mathrm{~A}_{0} \mathrm{~B}_{2} \\
& +134,217,727 \mathrm{~A}_{0} \mathrm{~B}_{1}+387,420,489 \mathrm{~A}_{0} \mathrm{~B}_{0}=0, \\
& 10 A_{4} A_{3}+6 A_{4} B_{3}+26 A_{4} \dot{A}_{2}+10 A_{4} B_{2}+50 A_{4} A_{1}+1 \dot{A}_{4} R_{i}+9 A_{3}^{2}-9 B_{3}^{2} \\
& +34 \mathrm{~A}_{3} \mathrm{~A}_{2}-30 \mathrm{~B}_{3} \mathrm{~B}_{2}+58 \mathrm{~A}_{3} \mathrm{~A}_{1}-42 \mathrm{~B}_{3} \mathrm{~B}_{1}+25 \mathrm{~A}_{2}^{2}-25 \mathrm{~B}_{2}^{2}+74 \mathrm{~A}_{2} \mathrm{~A}_{1}-70 \mathrm{~B}_{2} \mathrm{~B}_{1} \\
& +49 A_{1}^{2}-49 B_{1}^{2}+82 A_{4} A_{0}+18 A_{4} B_{0}+90 A_{3} A_{0}-54 B_{3} B_{0}+106 A_{2} A_{0}-90 B_{2} B_{0} \\
& +130 A_{1} A_{0}-126 B_{1} B_{0}+81 A_{0}^{2}-81 B_{0}^{2}=0, \tag{59e}\\
& 34 A_{4} A_{3}+30 A_{4} B_{3}+194 A_{4} A_{2}+130 A_{4} B_{2}+674 A_{4} A_{1}+350 A_{4} B_{j}+81 A_{3}^{2} \\
& -81 . B_{3}^{2}+514 A_{3} A_{2}-510 B_{3} B_{2}+1282 A_{3} A_{1}-1218 B_{3} B_{1}+625 A_{2}^{2}-625 \mathrm{~B}_{2}^{2} \\
& +2594 \mathrm{~A}_{2} \mathrm{~A}_{1}-2590 \mathrm{~B}_{2} \mathrm{~B}_{1}+2401 \mathrm{~A}_{1}^{2}-2401 \mathrm{~B}_{1}^{2}+1762 \mathrm{~A}_{4} \mathrm{~A}_{0}+738 \mathrm{~A}_{4} \mathrm{~B}_{0} \\
& +2754 A_{3} A_{0}-2430 B_{3} B_{0}+4834 A_{2} A_{0}-4770 B_{2} B_{0}+8194 A_{1} A_{0}-8190 B_{1} B_{0} \\
& +6561 \mathrm{~A}_{0}^{2}-6561 \mathrm{~B}_{0}^{2}=0, \tag{59f}
\end{align*}
$$

$$
\begin{align*}
& 130 A_{4} A_{3}+126 A_{4} B_{3}+1586 A_{4} A_{2}+1330 A_{4} B_{2}+9650 A_{4} A_{1}+6734 A_{4} B_{1} \\
& +729 A_{3}^{2}-729 B_{3}^{2}+8194 A_{3} A_{2}-8190 B_{3} B_{2}+31,378 A_{3} A_{1}-31,122 B_{3} B_{1} \\
& +15,625 \mathrm{~A}_{2}^{2}-1.5,625 \mathrm{~B}_{2}^{2}+93,314 \mathrm{~A}_{2} \mathrm{~A}_{1}-93,310 \mathrm{~B}_{2} \mathrm{~B}_{1}+117,649 \mathrm{~A}_{1}^{2} \\
& -117,649 \mathrm{~B}_{1}^{2}+39,442 \mathrm{~A}_{4} \mathrm{~A}_{0}+23,058 \mathrm{~A}_{4} \mathrm{~B}_{0}+94,770 \mathrm{~A}_{3} \mathrm{~A}_{0}-91,854 \mathrm{~B}_{3} \mathrm{~B}_{0} \\
& +235,426 A_{2} A_{0}-235,170 B_{2} B_{0}+524,290 A_{1} A_{0}-524,286 \mathrm{~B}_{1} \mathrm{~B}_{0}+531,441 \mathrm{~A}_{0}^{2} \\
& -531,441 \mathrm{~B}_{0}^{2}=0 \text {, } \tag{59~g}\\
& 514 \mathrm{~A}_{4} \mathrm{~A}_{3}+510 \mathrm{~A}_{4} \mathrm{~B}_{3}+13,634 \mathrm{~A}_{4} \mathrm{~A}_{2}+12,610 \mathrm{~A}_{4} \mathrm{~B}_{2}+144,194 \mathrm{~A}_{4} \mathrm{~A}_{1} \\
& +117,950 A_{4} B_{1}+6561 \mathrm{~A}_{3}^{2}-6561 \mathrm{~B}_{3}^{2}+131,074 \mathrm{~A}_{3} \mathrm{~A}_{2}-131,070 \mathrm{~B}_{3} \mathrm{~B}_{2} \\
& +781,762 A_{3} A_{1}-780,738 B_{3} B_{1}+390,625 A_{2}^{2}-390,625 B_{2}^{2}+3,359,234 A_{2} A_{1} \\
& -3,359,230 \mathrm{~B}_{2} \mathrm{~B}_{1}+5,764,801 \mathrm{~A}_{1}^{2}-5,764,801 \mathrm{~B}_{1}^{2}+912,322 \mathrm{~A}_{4} \mathrm{~A}_{0}+650,178 \mathrm{~A}_{4} \mathrm{~B}_{0} \\
& +3,372,354 A_{3} A_{0}-3,346,110 B_{3} B_{0}+11,530,114 A_{2} A_{0}-11,529,090 B_{2} B_{0} \\
& +33,554,434 \mathrm{~A}_{1} \mathrm{~A}_{0}-33,554,430 \mathrm{~B}_{1} \mathrm{~B}_{0}+43,046,721 \mathrm{~A}_{0}^{2}-43,046,721 \mathrm{~B}_{0}^{2}=0 . \tag{59h}
\end{align*}
$$

It is now necessary to solve these eight simultaneous equations for $A_{0}, A_{1}, A_{2}, A_{3}$, B_{0}, B_{1}, B_{2}, and B_{3} in terms of A_{4}. In the linear detector case, the simultaneous equations were linear; in the square-law case, they are nonlinear and hence considerably more difficult to solve. Furthermore it is not known a priori whether real solutions for the A_{i} and B_{i} even exist.

The Eqe. (59) were solved by computer, and the A_{i} and B_{i} were found to have real solutions. These solutions are

$$
\begin{align*}
& \mathrm{A}_{3}=-0.0864814 \mathrm{~A}_{4} \\
& \mathrm{~A}_{2}=0.0010356 \mathrm{~A}_{4}, \\
& \mathrm{~A}_{1}=0.0025003 \mathrm{~A}_{4}, \\
& \mathrm{~A}_{0}=-0.0003848 \mathrm{~A}_{4}, \\
& \mathrm{~B}_{3}=0.2232322 \mathrm{~A}_{4}, \\
& \mathrm{~B}_{2}=-0.0579300 \mathrm{~A}_{4}, \\
& \mathrm{~B}_{1}=0.0099872 \mathrm{~A}_{4}, \\
& \mathrm{~B}_{0}=-0.0008140 \mathrm{~A}_{4} . \tag{60}
\end{align*}
$$

We now know the coefficients of $K(v)$ in terms of A_{4}. By normalizing $K(v)$ to have a maximum magnitude of unity, absolute values are obtained.

Similar calculations can be carried out for $n=7,5$, and 3 . When $n=7$, for example, three terms in the expression for the amplitude of the fundamental and three terms in the expression for the second harmonic amplitude can be set to zero. This requires the solution of six simultaneous nonlinear equations.

The final results for $K(v)$ using the maximally-linear approximation technique are
$\mathrm{n}=9 \quad \mathrm{~K}(\mathrm{v})=-(0.000132+\mathrm{i} 0.000280) \mathrm{e}^{2 \mathrm{~V}}+(0.000859+\mathrm{i} 0.003433) \mathrm{e}$

$$
\begin{aligned}
& +(0.000356-i 0.019911) e^{i \frac{5 \pi v}{2 V_{0}}}-(0.029724-i 0.076727) e^{i \frac{3 \pi v}{2 V_{0}}} \\
& +(0.343708-i 0.343708) e^{i \frac{\pi v}{2 V_{0}}}+(0.343708+i 0.343708) e^{-i \frac{\pi v}{2 V_{0}}}
\end{aligned}
$$

$-(0.029724+i 0.076727) e^{-i \frac{3 \pi v}{2 V_{0}}}+(0.000356+i 0.019911) e^{-i \frac{5 \pi v}{2 V_{0}}}$
$+(0.000859-i 0.003433) e^{-i \frac{7 \pi v}{2 V_{0}}}-(0.000132-i 0.000280) e^{-i \frac{9 \pi v}{2 V_{0}}}$,
$n=7 \quad K(v)=(0.000250+i 0.001207) e^{i \frac{7 \pi V}{2 V_{0}}}+(0.000720-i 0.012645) e^{i \frac{5 \pi v}{2 V_{0}}}$
$-(0.027340-i 0.065522) e^{i \frac{3 \pi V}{2 V_{0}}}+(0.348012-i 0.348012) e^{i \frac{\pi v}{2 V_{0}}}$
$+(0 \cdot 18012+i 0.348012) e^{-\mathrm{i} \frac{\pi \mathrm{v}}{2 \mathrm{~V}_{0}}}-(0.027340+i 0.065522) \mathrm{e}^{-\mathrm{i} \frac{3 \pi \mathrm{v}}{2 \mathrm{~V}_{0}}}$
$+(0.000720+i 0.012645) e^{-i \frac{5 \pi v}{2 V_{0}}}+(0.000250-i 0.001207) e^{-i \frac{7 \pi V}{2 V_{0}}}$,
(61b)
$n=5 \quad K(v)=(0.000705-i 0.005565) e^{i \frac{5 \pi v}{2 V_{0}}}-(0.023582-i 0.050766) e^{i \frac{3 \pi v}{2 V_{0}}}$
$+(0.351045-\mathrm{i} 0.351045) \mathrm{e}^{\mathrm{i} \frac{\pi \mathrm{v}}{2 \mathrm{~V}_{0}}}+(0.351045+\mathrm{i} 0.351045) \mathrm{e}^{-\mathrm{i} \frac{\pi \mathrm{v}}{2 \mathrm{~V}_{0}}}$
$-(0.023582+i 0.050766) e^{-\mathrm{i} \frac{3 \pi \mathrm{v}}{2 \mathrm{~V}_{0}}}+(0.000705+\mathrm{i} 0.005565) \mathrm{e}^{-\mathrm{i} \frac{5 \pi \mathrm{v}}{2 \mathrm{~V}_{0}}}$,
(61c)
$\left.n=3 \quad K(v)=-(0.016675-i 0.030586) e^{i \frac{3 \pi v}{2 V_{0}}}+(0.352987-i 0.35298)^{\prime}\right) e^{i \frac{\pi v}{2 V_{0}}}$

$$
+(0.352987+i 0.352987) e^{-\mathrm{i} \frac{\pi \mathrm{v}}{2 V_{0}}}-(0.016675+i 0.030586) \mathrm{e}^{-\mathrm{i} \frac{3 \pi \mathrm{~V}}{2 \mathrm{~V}_{0}}}
$$

(61d)

Figure 15

$$
\begin{equation*}
n=1 \quad K(v)=(0.353553-i 0.353553) e^{i \frac{\pi v}{2 v_{v}}}+(0.353553+i 0.353553) e^{-i \frac{\pi v}{2 V_{0}}} \tag{61c}
\end{equation*}
$$

The $\mathrm{K}(\mathrm{v})$ of (63) are plotted in Fig. 15 together with the ideal characteristic of Eq. (44). The performance of the modulators corresponding to these $\mathrm{K}(\mathrm{v})$ is evaluated by substituting the A_{i} and B_{i} of Eqs. (61) into Eq. (53) (or, for $n \neq 9$, into comparable expressions). The results are shown in Fig. 16.

From Fig. 16e, the deviation from linearity of the fundamental is seen to decrease substantially with increasing n. Similar behavior is shown in Fig. 16d for the magnitude of the third harmonic. Figure 16c shows the results obtain ${ }^{-1}$ for the second harmonic magnitude. Here it should be recalled that for $n=1$, no second harmonic is present and hence the synthesized modulators are inferior to a conventional modulator in this respect. Finally the amplitude of the fundamental is shown plotted in Fig. 16b. It is seen that the decrease in fundamental amplitude is even more pronounced in the square-law detector case than in the envelope-detector case. Thus it is important that constant fundamental-amplitude curves similar to those of Fig. 10 be plotted to show more accurately the improvement obtained.

Such curves are shown in Fig. 17 where (a) the deviation from linearity of the fundamental and (b) the magnitude of the second harmonic are plotted as a function of n for various fixed values of fundamental amplitude. From Fig. 17a it is seen that substantial uniform improvement in fundamental linearity is obtained for increasing values of n in spite of the fall-off in fundamental amplitude. The greatest improvement is obtained in going from 1 to 3 stages, with slightly less improvement from 3 to 5 , and so forth. That is, the improvement obtained from additional stages is greatest for small n and decreases with increasing n .

Figure 16b

Figure 16 c

Figure 17b

For the square-law case, the maximally-linear approximation technique would have to be considered a qualified success. Fundamental distortion is uniformly reduced by increasing the number of stages, but second harmonic is present for $n=3,5,7,9, \ldots$ which is not present for $\mathrm{n}=1$. The modulator designs which correspond to the $\mathrm{K}(\mathrm{v})$ of Eqs. (61) are listed in Table II for convenience.

V. SUMMARY AND CONCLUSIONS

A technique has been described which allows the synthesis of electro-optic amplitude modulators having arbitrary modulation characteristics. The technique is a direct analogy of the procedure of Ammann and Yarborough [26] for synthesizing naturaliy-birefringent networks. With the procedure of this paper, a voltage transfer function $K(v)$ of the form given in Eq. (3) can be realized by an electro-optic network of the form shown in Fig. 3. The synthesis procedure arranges standard components in a particular fashion to form a modulator having the required voltage transfer function.

The manner in which $K(v)$ is chosen is very important. If sufficient care is not taken in this choice, the performance of the synthesized modulator can easily be inferior to that obtained from the simple, conventional amplitude modulntor of Fig. 1. Several techniques for choosing $K(v)$ were tried with varying degrees of success. The most satisfactory results were obtained when the C_{i} of $K(v)$ were chosen to directly optimize the modulator property (or properties) of greatest interest. This was done for two cases of interest: the design of a modulator for use with (a) an envelope detector, and (b) a square-law detector.

The modulator properties which were chosen (arbitrarily) for optimization in this paper were the following. The modulating signal v was assumed to be of the form, $v=V \cos \omega_{m}{ }^{t}$. The demodulated signal from the detector will in general contain a dc term, a fundamental, and harmonics. It was deemed desirable for the fundamental to be
-

$\begin{array}{ll}\stackrel{\circ}{0} & \stackrel{H}{N} \\ \text { in } \\ \text { in } & \text { H }\end{array}$
$45^{\circ} 00^{\prime}$
0
1.44
 $\begin{array}{llll}-i & \infty & 0 & \infty \\ \infty & \infty & -1 & 0 \\ 0 & \dot{0} & \dot{-} & \dot{0}\end{array}$
 $\begin{array}{ll}\ddot{\circ} & \text { in } \\ i & i \\ i & \text { in } \\ & \end{array}$ -4

b_{5} (rad)
θ_{6}
$\mathrm{b}_{6}(\mathrm{rad})$ θ_{7} $b_{7}(\mathrm{rad})$ θ_{8} θ_{9} $\mathrm{b}_{\mathrm{g}}(\mathrm{rad})$ θ_{p} $b_{p}(\mathrm{rad})$
linearly proportional to V, and for the harmonics to be minimized. Hence modulator performance was measired by calculating the deviation from linearity of the fundamental and the amplitudes of the harmonics.

Best results were obtained for both the envelope and square-law detector cases by writing the fundamental and harmonir amplitudes as power series in V. The C_{i} were then chosen to eliminate as many nonlinear terms from the fundamental expression and as many low-order terms from the second harmonic expression as possibio. The $K(v)$ so derived do indeed give improved modulator performance (see Figs. 9, 10, 15, and 16); the modulator designs corresponding to these $\mathrm{K}(\mathrm{v})$ are tabulated in Tables I and II. IIowever the improvement is, in some respects, less than might be hoped for. It is likely that still other approximation techniques will eventually be found which yield further improvement.

ACKNOWLEDGMENT

The authors are grateful to L. A. Drews, S. Barnard, B. Furst, and M. A. Wright for assistance with the computations.

FOOTNOTES

This work was supported by the National Aeronautics and Space Administration under Contract NAS8-20570.

1. To put it still more accurately, $\pi \mathrm{v} / \mathrm{V}_{0}$ plays the same role for the electro-optic cell that $\boldsymbol{O} \omega$ does for the birefringent crystal.
2. The linear characteristic may have any slces whatsoever, and hence there are an infinite namber of possible ideal characteristics. We have chosen a characteristic with a slope of unity.

REFERENCES

[1] B. H. Billings, "The Electro-Optic Effect in Uniaxial Crystals of the Type $\mathrm{XH}_{2} \mathrm{PO}_{4}$. I. Theoretical," J. Opt. Soc. Am., vol. 39, pp. 797-801, October 1949; "The Electro-Optic Effect in Uniaxial Crystals of the Type $\mathrm{XH}_{2} \mathrm{PO}_{4}$. II. Experimental," J. Opt. Soc. Am., vol. 39, pp. 802-808, October 1949.
[2] F. Sterzer, D. J. Blatmer, aná S. F. Miniter, "Cuprous Chloride Light Modulators," J. Opt. Soc. Am., vol. 54, pp. 62-68, January 1964.
[3] J. E. Geusic, S. K. Kurtz, L. G. Van Uitert, and S. H. Wemple, "Electro-optic Properties of Some ABO_{3} Perovskites in the Paraelectric Phase, "Appl. Phys. Lett., vol. 4, pp. 141-143, April 15, 1964.
[4] S. M. Lee and S. M. Hauser, "Kerr Constant Evaluation of Organic Liquids and Solutions, " Rev. Sci. Instr., vol. 35, pp. 1679-1681, December 1964.
[5] I. P. Kaminow, "Barium Titanate Light Phase Modulator," Appl. Phys. Lett., vol. 7, pp. 123-125, September 1, 1965; vol. 8, p. 54, January 15, 1966.
[6] C. J. Johnson, "Some Dielectric and Electro-optic Properties of BaTiO_{3} Single Crystals," Appl. Phys. Lett., vol. 7, pp. 221-223, October 15, 1965.
[7] F. S. Chen, J. E. Geusic, S. K. Kurtz, J. G. Skinner, and S. H. Wemple, "Light Modulation and Beam Deflection with Potassium Tantalate-Niobate Crystals, " J. Appl. Phys., vol. 37, pp. 388-398, January 1966.
[8] P. V. Lenzo, E. G. Spencer, and K. Nassau, 'Electro-Optic Coefficients in SingleDomain Ferroelectric Lithium Niobate," J. Opt. Soc. Am., vol. 56, pp. 633-635, May 1966.
[9] I. P. Kaminow, "Microwave Modulation of the Electro-Optic Effect in $\mathrm{KH}_{2} \mathrm{PO}_{4}$," r.jus. Rev. Lett., vol. 6, pp. 528-530, May 15, 1961.
[10] D. F. Holshouser, H. Von Foerster, and G. L. Clark, "Microwave Modulation of Light Using the Kerr Effect," J. Opt. Soc. Am., vol. 51, pp. 1360-1365, December 1961.
[11] R. H. Bilumenthal, "Design of a Microwave-Frequency Light Modulator, "Proc. IRE, vol. 50, pp. 452-456, April 1962.
[12] I. P. Kaminow, R. Kompfner, and W. H. Louisell, "Improvements in Light Modulators of the Traveling-Wave Type," IRE Trans. on Microwave Theory and Techniques, vol. MTT-10, pp. 311-313, September 1962.
[13] I. P. Kaminow and J. Liu, "Propagation Characteristics of Partially Loaded TwoConductor Transmission Line for Broadband Light Modulators, " Proc. IEEE, vol. 51, pp. 132-136, January 1963.
[J.4] W. W. Rigrod and I. P. Kaminow, "Wide-Band Microwave Light Modulation," Proc. IEEE, vol. 51, pp. 137-140, January 1963.
[15] M. DiDomenico, Jr. and L. K. Anderson, "Broadband Electro-Optic Traveling-Wave Light Modulators, ${ }^{\top}$ Bell System Tech. J., vol. 42, pp. 2621-2678, November 1963.
[16] C. E. Enderby, "Wideband Optical Modulator," Proc. IEEE (Correspondence), vol. 52, pp. 981-982, August 1964.
[17] C. J. Peters, "Gigacycle-Bandwidth Coherent-Light Traveling-Wave Amplitude Modulator," Proc. IEEE, vol. 53, pp. 455-460, May 1965.
[18] J. E. Hopson, "Harmonic Structure of Modulated Light Beams," IEEE Trans. on Communication Systems, vol. CS-11, pp. 464-469, December 1963.
[19] G. Grau, "Verzerrungen bei der Amplitudenmodulation von Licht," Archiv der Elektrischen U®ertragung, vol. 18, pp. 389-392, June 1964.
[20] H. G. Jerrard, "Optical Compensators for Measurement of Elliptical Polarization," J. Opt. Soc. Am., vol. 38, pp. 35-59, January 1948.
[21] S. E. Harris, E. O. Ammann, and I. C. Chang, "Optical Network Synthesis Using Birefringent Crystals. I. Synthesis of Lossless Networks of Equal-Length Crystals," J. Opt. Soc. Am., vol. 54, pp. 1267-1279, October 1964.
[22] E. O. Ammann and I. C. Chang, "Optical Network Synthesis Using Birefringent Crystals. II. Synthesis of Networks Containing One Crystal, Optical Compensator, and Polarizer per Stage," J. Opt. Soc. Am., vol. 55, pp. 835-841, July 1965.
[23] E. O. Ammann, "Optical Network Synthesis Using Birefringent Crystals. III. Some General Properties of Lossless Birefringent Networks, " J. Opt. Soc. Am., vol. 56, pp. 943-951, July 1966.
[24] E. O. Ammann, "Optical Network Synthesis Using Birefringent Crystals. IV. Synthesis of Lossiess Double-Pass Networks," J. Opt. Soc. Am., vol. 56, pp. 952-955, July 1966.
[25] E. O. Ammann, "Synthesis of Electro-Optic Shutters Having a Prescribed Transmission vs. Voltage Characteristic," J. Opt. Soc. Am., vol. 56, pp. 1081-1088, August 1966.
[26] E. O. Ammann and J. M. Yarborough, "Optical Network Synthesis Using Birefringent Crystals. V. Synthesis of Lossless Networks Containing Equal-Length Crystals and Compensators, " J. Opt. Soc. Am., (to be published).
[27] See for example, T. S. Gray, "Applied Electronics, " New York: John Wiley \& Sons, Inc., 1956, p. 705.
[28] E. O. Ammann and J. M. Yarborough, "Optical Network Synthesis Using Birefringent Crystals. VI. Additional Techniques for the Synthesis of Lossless Double-Pass Networks," J. Opt. Soc. Am., (to be published).

CAPTIONS FOR FIGURES AND TABLES

Fig. 1 Model for conventional electro-optic amplitude modulators.
Fig. 2 Basic configuration for the birefringent network (4 stages) obtained from the synthesis procedure of Part I [21]. F and S denote the "fast" and "slow" axes of the birefringent crystals.

Fig. 3 Basic configuration of the birefringent network (4 stages) obtained from the synthesis procedure of Part V [26]; each stage contains a birefringent crystal and optical compensator. 'This also represents the basic configuration of the modulators obtained by the techniques of this paper; in this case each stage consists of an electro-optic cell and optical compensator.

Fig. 4 Naturally-birefringent crystal used as the basic "building block" of a birefringent network. This also represents an electro-optic cell used as the building block of an electro-optic network.

Fig. 5 Ideal voltage transfer function $\mathrm{K}(\mathrm{v})$ for an amplitude modulator which is followed by an envelope detector.

Fig. 6 Periodic ideal voltage transfer functions for an amplitude modulator having (a) n odd, and (b) n even.

Fig. 7 Fourier approximations to the ideal $\mathrm{K}(\mathrm{v})$ of Fig. 6a.
Fig. 8 Envelope detector output vs. V / V_{0} when modulators having the $K(v)$ of Fig. 7 are employed: (a) dc component of output; (b) amplitude of fundamental; (c) magnitude of second harmonic; (d) magnitude of third harmonic; and (e) deviation from linearity of fundamental.

Fig. 9 Envelope detector output vs. $\mathrm{V} / \mathrm{V}_{0}$ when modulators synthesized using the maximallylinear approximation are employed: (a) dc component of output; (b) amplitude of fundamental; (c) magnitude of second harmonic; (d) magnitude of third harmonic; and (e) deviation from linearity of fundamental. The magnitude of the second harmonic is zero for $n=2,4,6,8$, and 10.

Fig. 1.0 Envelope detector output vs. n when modulators synthesized using the maximallylinear approximation are employed. Each curve represents a constant amplitude of the fundamental. Dotted lines connect points for which n is even while solid lines connect points for which n is odd. Shown are (a) deviation from linearity of fundamental, and (b) magnitude of second harmonic.
lis. $11 \mathrm{~K}(\mathrm{v})$ obtained using the maximally-linear approximation (n odd, envelope detector)
Fig. $12 \mathrm{~K}(\mathrm{v})$ obtained using the maximally-linear approximation (n even, envelope detector)
Fig. 13 Ideal voltage transfer function $\mathrm{K}(\mathrm{v})$ for an amplitude modulator which is followed by a square-law detector.

Fig. 14 Periodic ideal voltage transfer function for an amplitude modulator having n odd.
Fig. $15 \mathrm{~K}(\mathrm{v})$ obtained using the maximally-linear approximation (n odd, square-law detector)
Fig. 16 Square-law detector output vs. V/V V_{0} when modulators having the K(v) of Fig. 15 are employed: (a) dc component of output; (b) amplitude of fundamental; (c) magnitude of second harmonic; (d) magnitude of third harmonic; and (e) deviation from linearity of fundamental. The magnitude of the second harmonic is zero for $\mathrm{n}=1$.

Fig. 17 Square-law detector output vs. n when modulators synthesized using the maximallylinear approximation are employed. Each curve represents a constant amplitude of the fundamental. Shown are (a) deviation from linearity of fundamental, and (b) magnitude of second harmonic. Dotted lines connect points for which n is even while solid lines connect points for which n is odd. For $\mathrm{n}=1$, the magnitude of the second harmonic is zero.

Appendix D

A COMPUTER PROGRAM FOR CALCULATING THE FOURIER SERTES COEFFICIENTS

AN ARBITRARY IDEAL FUNCTION

A common method of choosing the C_{i} of Equation (2.1) is to make them the Fourier series coefficients of the ideal function. Since this calculation was repeated many times during the course of this work, a program was written so the coefficients could be calculated by computer. The computer language used in writing the program is FORTRAN (for a Control Data Corporation 3200 computer).

The program accomplishes the following things. For a given ideal function, the C_{i} are calculated for the cases $n=1,2,3, \ldots 20$. In each case, the C_{i} are normalized so that the maximum value of $|C(\omega)|^{2}$ is unity. In addition, for each case the computer plots the magnitude of $\mathrm{C}(\omega)$ over one period. It should be ment:oned that the program can handle asymmetric as well as symmetric ideal functions; these result in complex values for the C_{i}. The only restriction is that the ideal function must be real.

The program is given below.

```
        OROGRAM FOURIFR
        FXTERNAL FIJNCT
        COMMON F(1P1)
        COMMON IORD.IFUNCT
        DIMFNSIONG(121),A(15),R(1;),GRAND(1?1), X(121),SUM(1?1)
    A ANO R ARF FOUUIFR COFFFI, IFNTS
    F}(\overline{X})=AO+SUM(A(K)*COG(KX)+A(K)*SPN(KX)),K=1,KF FOR KF=1,
    1OO FORMAT(1HO.THC(.12.2H)=,F1?.5.つX.F12.5.10X.F1?.5)
    1O? EORM\triangleT(IH!)
    1O7 FORMAT(1H.5(FR.50.PX,F1?.5.4X))
    |\capA FODMAT(1H^)
    1OG FORMAT(F14.7)
    N=1n
    ロ!=7.14150ア7
    qFAN ! n=, fog
        1non=0
        IEUNCT=1
        กก̆ 1 K=1.1つ1
        x(K)=(K-G1)*P1/Gn。
        1F(K)=F(JNCT(XPK))
            PRYNT 1O३, (X(J),F(J).J=1,G)
            nn > 1 = 1.0.3
        !に=!*5
        P PRINT 10%, X(15+1),F(15+1), X(15+7),F(15+?):X(15+3),F(15+3), X(15+4
            1),F(I5+4), X(15+5),F(15+5)
            PRINT 107. X(1`1),F(1P1)
            CALL PLOT(O)
            ANG=SIMPGON(FUNCT,-PI,مI.FPS)
            A\cap=ANG/(?.*P1)
            OPINT 1\capD
            K=n
            DDINT ION. K,AO
            CALCULATF A(K), R(K),K=1,N
            O\cap 3n K=1,N
            1\capQ\=K
            lFUNICT=1
            ANG=GIMPGON(FONCT,-PY,PI,FPS)
            A(K)=ANG/DI
            IFUNCT=?
            ANG=SIMPGON(FUNCT,-FI,DI,FPSS)
        2O R(K)=ANG/D!
            DOINTT A(K):Q(K)
            nO an }k=1,
            Ci=A(K)/つ.
            Cコ:=-n(k)/つ.
        AO PRINT ION. K.CI.C?
            FORM ARGUMFNTS ANN INITIALITF SUMS
            Mn कn K=!.1つ1
        G0 Sum(K)=A0+A(1)*\operatorname{Cos(x(K))+5(1)*G{N(X(K))}
            O\cap 90 K=1,N
            DRINT In?
            IF(K.FN.1)G1.G1
            Gi กO 60 J=1,1>1
            AO SUM(J)=GUM(J)+A(K)*COS(K*X(J))+R(K)*SlN(K*X(J))
            G1 SIJMMAX=SIJM(1)
```

```
        nn &? J=?.1つ1
F? S!JMMAX=AMAXI(GUM(J), GIIMMAX)
    \capの &` J=1.1つ1
67 F(J)=Glim(J)/allmmax
    ORINT 10.3. (x(J),F(J),J=1.5)
    M\cap.7n 1=1,37
    !ケ=1**
70 PRINT 103, X(15+1),F(15+1), X(15+?),F(15+7), X(15+3),F(15+3), X(15+4
    1),F(1F+4), X(15+5),F(95+5)
        PRINT !\cap7, X(1>1),F(121)
        DD|NT 1^A
        n\cap 74 1=1.K
        11=K-1+1
        1?=1-1
        C1=\Delta(11)/(?.*C1)mm^x)
        C?=-R(1!)/(?.*SUMMAX)
74 PR\NT 1On. I?.C.1, C?
        C1=AO/GIJMMAX
        DQINT 1OO. K,ri
        nの 7& リ=1.K
        C!=\Delta(1)/(?.**IJMMAX)
        C?= R(1)/(?.*&(JMMAX)
        11=K+!
TG DDINT 10n. 11,r1.r?
        CAIL DIOT(K)
an rantiNuF'
        STOD
        FNO
```

```
            RUNCTION EUNRT(X)
            COMMON GIIP1)
            COMMON N.IFUNCT
            @1=7.14150?つ
            T口1=?./0
            |F(X,LT•(-DI))10O.1
```



```
    mn rn Ol
    OO FF(X.LT.(-P!/4.)),30.40
    2n ==--cgrsT(-..5-Trit*x)
    m\cap TO Q1
40 FF(X.I.T.OY/4.)50.60
50 F:=GORT(.5+TP(*)
    Cin TO Q1
    60 1F(X.1.T.(3.*F1/4.))70.80
    7C F==SODT(1.an-TD!**)
    ren Tn of
```



```
    90. F==-GONT (-1,5+TP1*X;
    01 1F(IFUNRT.FO.1)9?.07
    GD FlINTT=F*COC(N*X;
        DETIION
    O2 IF(IFIMNCT.FO.?)9A, SE
    GM FINCT=F*&\N(N*X)
        RETIJPN
    GA RRINT GG.IFUNRT
    96 FORMAT(1HO,7HIFUNCT=,13)
    CALL ARNOQMAL
IO\cap PRINT INI. X
1\cap1 FORMAT(1H\cap.?HX=,F14.7)
    CAI_L NANINQMAI.
    ENM
```

```
    FUNCTION SIMPSON(F,AI,R,E)
    EXTERNAL F
    DIMENSION DX(30), EPSP(30), X2(30), X3(30),F2(30),F3(30),F4(30)
    DIMENSION FMP(3U),FGP(30),EST2(30),EST3(30),PVAL(30.3)
    DIMENSION RTRN(30)
    INTEGER RTRN
    A:A1
    EPS=E
    LVLL=O
    MLVL.=C
    ABSAR=0.0
    EST=O.O
    DA=B-A
    FA=F(A)
    FM=4.0*F((A+B)/2.0)
    FB=F(B)
10 LVL =LVL+1
    MI_VL=LVL
    DX(LVL.)=DA/3.0
    SX=DX(LVL.)/6.0
    FI=4.0*F(A+DX(LVL)/2.0)
    X2(LVL_)=A+DX(LVL.)
    F2(LVL)=F(X2(L.VL))
    <3(LVL) = =2(L_VI_)+DX(LVL_)
    F3(LVL)=F(X3(L.VL))
    EPSP(ILVL)=EPS
    F4(LVL_)=4.0*F(X3(LVL)+DX(LVL_/2.0)
    FMP(LVL)=FM
    EST1=(FA*FF1+F゙2(&VI_))*SX
    FBP(LVL)=FG
    EST2(LVL.)=(F2(LVL)+F3(LVL.)+FFM) %SX
    EST3(LVL)=(F3 (LVL)+F%4(LVL)+FB)*SX
    SUM=ESTi+EST2(LVL)+EST3(LVL)
    ABSAR=ABSAR-AES(EST)+ABS(EST1)+ABS(ESTC(LVVL))+ABS(EST3(LVL))
    IF(ABS(ESST-SUM).LE* EPSP(LVL)*ABSAR)20.15
    15 IF(LVL -LT. 30)30,21
    20 IF(MLVL.LT.4)15,21
    2.1 LVL=LVL-1
    I = مTTRN(L.VL)
    PVAL(LVL.,1)=SUM
    GO TO (40.50.60):1
30 RTRN(LVL)=1
    DA=DX(LVI_)
    FM=F1
    FB=F2(LVL)
    EPS=EPSP(L.VL)/1.7
    EST=EST1
    GO TO 10
40 RTRN(LVL)=2
    DA= DX(LVL)
    FA=Fこ(LVL)
    FM=FMP(LVL)
    FB=F3(LVL.)
    EPS=EPSP(L.VL:/1.7
    EST=EST2(LVL.)
    A=X2(L.VL)
```

GO TO 10
$50 \mathrm{RTRN}\left(L_{\mathrm{L}} \mathrm{VL}\right)=3$
$D A=D \times(L V L)$
$F A=F 3(L V L)$
$F M=F 4(L V L)$
$F B=F B P$ (LVL)
$E P S=E P S P(L V L) / 1 \cdot 7$
$E S T=E S T 3$ (LVL)
$A=\times 3$ (LVL)
GO TO 10
60 SUM=PVAL (LVL.1) +PVAL(LVLe2) +PVAL(LVL. 3) IF (LVL. GT. 1)20.70
70 SIMPSON=SUM
RETURN
END

```
            GIIRDNIITYNE DI OT (N)
            COMMAON F(1つ1)
            #\MFNGION LINE (1つ1)
            CONGT=1.NO
            IALNN:=ROGMGOAOR
```



```
            1OI|M= OOANAOGRM
            M/R!TF (Gl:1n) N
    in FODMAT (フH1 DI OT, 1P)
            \capn วの l=1,1つ1
            LINF(I)= PMI_NK
        ON CONTINMIF
            LINF(R1)=1\
            I.\NF(GR)=П1A\cap&\capG\capG
```



```
            LINF(GO)=?1GOGOGOR
        >1 n\cap 凉 i=1.1>1
            IF(F(1)!CTT.1.11)つ7.?3
        つ刀 F(1)=-00.0
        >2 CONTINIIE
    za n@ an l=1.1つ1
        PF(F(I).CTT.RONCT)\R.4n
    OK LINFITI=1AST
        F(1)=-00,0
```



```
        WRITF(61.50) (I_INF(1),1=1.121)
        幺O FORMAT(TH,5x&121A1)
            CONGT=CONGT-.O;
            IF(OONST.L.F.-0.O!)F1.f0
            E1 IF(CONST.LT.-.O?)90.57
```



```
        LPNF(T)=1\capACH
    52 CONTINIE
        n\cap 54 1=1,1つ1,15
        1 \NE:(1)=1D||C
    Ga CONTINILE
        G\capTO ク与
    GO NO R1 l=1,1>1
        LINF(P)=1PLNNK
    61 CONT INUF
        LINF(F1)=11
        .IF(CONST.LT..995.AND.CONST.GT..985)98.99
        99 1.1NF(5R)=ח\FOGOGOR
```



```
            LINFIFO;=\OKOROROR
            entn ma
```



```
    GO LINF(5O)=33GOROANR
        LINF(FO)=11G\capG\capGOR
        an TO 2e
        63 1F(CONST.LT...795.ANN.C.ONST.GT..7B5)64.65
        G4 LINF(5O)=77GOGOGOA
            LINF(GO)=10GOGOGOF
            nO TO 25
```

```
    GK IF(CONST.LT..GOG.ANN.CONST.CT..RAFIGG.G7
    GA I |NF(50)= \3GOGOGMA
    LINF(RO)=חフGOGOGOQ
    G\cap T\cap 刀m
    67 IF(CONST.LT..595.AND.CONST.GT..589)6R.69
    GA LINF(5व)=735OGOGOM
    1 INF(FO゙)=NGGOGOGNQ
    rn Tn つ5
    69 1F(CONST.LT..495.AND.CONST.GT..485)70.71
    7O L.INF (59)=33GOGOGOR
    LINF(GO)=OGGOGOG\capR
    O.n Tn 25
    71 1F(CONST.LT..305.ANN.CONGT.GT...385)77.7.7
    7) L|NE(50)=7习G\capGOAOR
    LINF(GO)= =\GONGOGOR
    On TO つa
    7.3 IF(CONGT.LT...795.ANN.CONST.GT..285)74.75
    74 LINF(59)=3.76060GOR
    I_INF(AO)=O3GOGOGOR
    GM TO 3G
    75 IF(CONST.LT..195.AND.CONST.GT..185)76.77
    76 LINF(59)=3360606OR
    L. INF(GO)=OPGOGOGOR
    On T^ oG
    77IF(CONST.LT..OO5.AND.CONST.GT..O85)7R., P5
    7& LPNF(GO)=73GOAOGOA
        LINF(AO)=O1GOGOG\capA
        OM TO 2m
    OO rONTTMNE
        WRITF(R1.10n)
```



```
    X13X,?H45,13X,2H9O,13X, 3H135,1?X,3H180)
        WDITF(G1,101)
    1O! EOQMAT(1H1)
        WRITF (61.100)
        ก\cap 1?n i=1, 1?1
        IF(F(1).L.T.-1.11)110.120
    11\capF(1)=-09.0
    120 CONTINUF
        n\cap 130 I= 1.171
        1.|NF(I)=|MACH
    ITO CONTINUF
        mo 140 i=1.131.15
        LINF(1)=90LUG
    140 CONTINUF
        WRITF(61.50) (LINF(1).1=1.121)
        ก\cap 150 I= 1.1>1
        LINF(I)=IRI.NK
    1mO CONTINUF
        L.INF(A!)=1!
```



```
        IF(F(!).FT.CONST)17O.1RO
    170 LINF(!)={AST
        F(1)=-00.0
    1&O TONTINUF
        WRITF(61.50) (LINF(I).1=1.121)
```

```
        C.ONGT=CONGT...OP
        no lon f=1,1>1
        L_MN(')={利NM
    1On CONTTMIIF
        1. \NF(F1)=\!
    200 IF(CONST.LT.-.1O5.ANN.CONST.GT.-.115)?10.ア1!
    31\cap LINF(GO)=O1GORCG\capa
    1.\NF(50)=3`A\capAOG\capR
    LINF(5R;=1NAGH
    on TO 15m
    P11 1F(CONST=LT.-.2O5.ANN.*゙ONST.GT.-..2151?12.213
    21? LINF(大O)=0フ&OGO60&
    L!NF(59)=7.360GO6OR
    LINF(5, =1\cap^GH
    O0 TM 1与5
    313 1F(CONST.LT.-.3NE&ANN.CONST.GT.-.315)214.215
    714 LINF(GO)=\cap.3GOAOGCA
```



```
        1. NF(GR)=9MAGK
        O\capT\cap 15¢
        ?15 IF(CONST.LT&-.405.ANO.CONST.GT.-.415)216.217
        21G LINF(GO):.N4GOGOGOR
            LINF(50)= 33GOGOGOR
            1. \NF(5Q)=1\cap^GH
            CN Tn 15n
217 IF(CONST•LT.-\bullet5OG.ANN.CONST.GT.-.515)218.219
?19 LINF(60)=05606060R
    1.INF(50)=33606O5nR
    LINF(GR)=1\capAGH
    Gก T\cap 15n
    219 TF(CONST.LT.-.605.ANJO.CONST.GT:-.615)220.72.1
    220 LINF(6O)=OG6OGOGOR
            LINF(59)=3360&O&OA
            LINF(5Q)= In\triangleCH
            GO TO 155
    221 IF(CONST•LT•-.705.AND.CONST.GT.-.715)2?2.2?3
    ว?刀 LINF(GO)=O7KOGOGOR
            LINF(50)=736^GOGOR
            L(NF(5R)=\\cap^CH
            &n Tn 15m
    223 IF(CONST.LT.-.805.ANN.CONST.GT.-.81512?4.7?5
    つアA L.!NF(大O)=1\capGOROKNR
```



```
        LINF(与R)=1\cap^GH
        ~O Tr, 15E
    225 lF(CONST.LT.-.905.ANN.CONST.GT•-*915)226.227
    P`G L.INF(GO)=116OGOKOR
            LINF(59)=3360GO60A
            LINF(G\overline{A})=1MASH
            GO TO 15a
    2\overline{7 IF(CONST.LT.-1.005.ANN.CONST.GT.-1.015)P2R.2Pa}
    3クP LINF(AO)=OOGOGOGOR
            LINF(Fig)=3.36तG0.5Na
            LINF(58)=01606060B
            L!訳(57)=1ロ^GH
            GO TO 15¢
```

220 1F(CONST•LT•-1.105.ANN.CONST.GT.-1.115)230.231
ว3ก LINF (60) $=01$ GO6O6OA
LINF (5Q) $=3.36 \cap$ GOEOA
LINF (5A) = = 1 GOロOAOA

rin TO 155
231 IF (CONST•LF.-1.13)13う.155
1?9 RETIJON
pain

Appendix E

A COMPUTER PROGRAM FOR THE SYNTHESIS OF LOSSLESS NETWORKS CONTAINING EQUAL-LENGTH CRYSTALS AND COMPENSATORS

This Appendix gives a computer program written for performing the synthesis procedure of Appendix A. The computer language used is FORTRAN (for a Contro? Data Corporation 3200 computer). The desired C_{i} are the inputs to the program. The computer calculates the rotation angle θ_{i} and compensator delay b_{i} for each stage of the network. Having calculated the θ_{i} and b_{i}, the computer then calculates the $C(\omega)$ which is obtained from them as a check.

The program is given below.

```
    DRORDAM GYNTHEC
C
C PROGRAM FINDS THF RELATIVE CRYSTAL ANGLFG ANN RFTARDATIONG
r FOR AN OPTICAL FILTFR WITH N CRYSTALS FACH FOLLOMFN FY
r AN ODTICAL COMDFNGATOR
r
    TYP̈F COMPI_FX (4) CMPIX.CONJ
    TYOF COMDLEX (4) C.F.N.R.N.RR.RI
    TVOF COMMDIEX (A) זTMR
    INTFGFR AGRTN
    DFAI IO
    COMMON N.C(17),1O,F(17),A(33),R(37), ח(17)
    DIMFNGION RR(16),RI(16)
        c. IT ARRAY OF GIVEN COMPLFX COFFFICIFNTS
        IO IS MAXIMUM VALUF OF FUNCTION
        A IG \triangleRRAV OF X POLYNOMIAL COF=FICYFNTG
    FOOMAT GTATFMFNTG
101 FORMAT(1HO,1OHC(1). 1=0,.1%)
1\cap> FODMAT(1H\cap, ЭHIO=,F14.7)
10.3 FORMAT (1HO.1\capHA(1), 1=1..13)
1O4 FORMAT (1HON,OHRONTS ARF)
105 FORMAT(1HO.1OHO(1). 1=0.,13)
1OG FORMAT (1HO.14HNO INVFRSF FOR,I3.BH TH ROOT)
10% FORMAT (1HO,2ZHCONJUGATF. INVFRSFS ARE)
IOQ FORMAT(1HO.21HNORMALIZFD ח(1). 1=ח.,13)
```



```
GFT COFFFICIFNTS OF FII.TFR TRANSFFR FUNCTION
l cALL RFANP
    IF(N.FO.O)41.?
        2NII=N+1
    PRINT r AITRAY
DQINT 101.N
CALL PRNTC(NI,C.P)
PRINT 1^つ. 10
C
r COMDITF F(I)
r
nn in i=1.N!
F(I)=CMPLX(n..0.)
!1= !-1
NJ=N1-11
O\cap & J=1.N.J
JT=11+J
G F(1)=F(1)+r(J)*rONJ(C(JI))
1% 「OONTINIF
CNMDUITF N(1)
M=P*N
M1 = M+1
```

```
            no an I=1.N
            11=N1-1+1
            A(1)=-CONJ(F(11))
            NI=N1+I
        On A(NIT)=-F(1+1)
            A(N1)=10*10-F(1)
            A\cap=CRFAL(A}(N))
r
```



```
                            CALI. DRNTC(M!,A,P)
c. FinN monta
C CALL POLYROOT (M.A.1.OE=05,R&ABRTN)
    IFIAROTN.F゙Q.OT30.40
    FORM AND FIND CONJUGATF INVFRSFS
            On 35 1=1.M
            TMP=CNORM(R(I))**?
            IF(TMD.FO.n.)35.21
            3) RE(j)=R(I)
            RI(J)=1•/CONJ(R(I))
            11=1+1
            n\cap 33 K=1.M
            CRFJ=CRFAL (R1(J))
            CRFK=CRFAL (D(K))
```



```
            CIMK=CIMAC(R(K))
```



```
    37>3 IF(AFS((CREJ-CREK)/CREJ).LE.FPS.OR.ARS(CRFJ-CRFK),LF•FPS)32•33
习习ว
    IF(CIMJ.FO.n.O)34.34%F
    3425 IF(ABS(ICIMJ-CIMK)/CIMJ).LE.FPS.OR.ARS(CIMJ-CIMK).LE.EFS)34.33
    CONTT INIF
                    DRINT IMR, J
            nO gnn I=1,M
            P=CRFAL(R(1))
            n=rIMAG(R(1))
            CTMP=!•ノCONJ(R(I))
            x=CRFAL (CTMD)
            Y= CIMAG(r.TMP)
```



```
        501 FORMAT(1HO.?(E14.7.2X.F14.7.5X))
            ra TO 4r
                3A D(K)=CMDI_(n..n.)
            D(!)=CMDLX(n..n.)
            J=J+1
            25 CONTT INIF
            PRTNT MOOTS
            PRINT INHA
            CALL PRNTC(N.RR•1)
            OOINT 107
            CALL DRNTC.(NORI•1)
```

r
C COMPUTF COFFFICIFNTG UGING FIRGT N ROOTG
r
CAI．L．COFFF（N，DR， C$)$
PDINT \cap MDOAV
QD：IT 1 OE．N
CALL DRNTC（N1，$\cap, ?)$
NODMAL ITAF COFFFIC．IFNTG
cilm＝n。
nの $3 \mathrm{~F} \quad \mathrm{I}=1$ ， Ni
af alm＝sllm＋CNORM（n）（1））＊＊？ $B=G \cap R T(A \cap / G U M)$
กก ファ $1=1, N 1$
$37 n(1)=n(1) * n$
DRINT NORMALITFM \cap ARRAY
DRINT 1 OR．N
CAILL PRNTC（NI，N，D）
COMPUTF ANGLFG AND PHASF SHIFTG USING FIRST N ROOTS
－
©MLL MNG̈LEG
40 TNNTINUF
on TO 1
41 CONTINIF GTOD
FNO

```
            GURQOUITINF DFANC
            TYPF COMPLFX (4) CMPIX,CONJ
            TYPF COMPLFX (4) C,F,A,R,N
            COMMON N,C(17),IO•F(17),A(33)•R(3`),N(17)
            RFAL IO
            M!MFNGION I(4O)
            NIMFNGION P(2.17)
                            READ COFFFICIENTS SYMAOLICALLY ANI PRINT
                    RFAN IMM
                    FORMAT((R|1^))
            M IS NUMRFR OF WORNG
            IF(M.FO.O)7.10
            10 pFAR P.(i(J), J=1,*)
                    ? FORMAT(OOAA)
                    DRINT ?
            3 FORMAT(1HI,1GHCOFFFICIFNTS ARE)
            PRINT4% (1(J), J=1,\)
            4 FORMAT(1HN,.3つA4)
            NFFINF COEFEICIFNTG
            pran 1.N
            N IS NUMRFR OF CRYSTALG
            RFAN COFFFICIFNTS
            NT=N1
                    RFAN 5. (D(1,J):P(P&J), J=1,N1)
                    FORMAT((4FOO.10))
            nn G J=1,N1
            AC(J)=CMDLX(D(1.J),D(?.J))
            RFAN 5. in
            RETIIDN
            7 N=O
            RFTIIRN
            FNIN
```

```
            SUBROUTINE PRNTC(N,P,M)
            DIMENSION P(2.33)
            GO TO (1,2).M
            1 PRINT 101, (P(1,1),P(2,1), 1=1,N)
101 FORMAT(1HO.2(E13.6.2X.E13.6.5X))
            RETURNN
    PRINT 1OZ, (P(1,!);̈̈(2.1), I=1,N)
102 FORMAT(1HO.4(E13.6.2X.E13.6.4X)/)
RETURN
ENO
```

Flimerima reinjer)
TYDE COMDLFX (4) CMPIXOCONJ
TVOF COMOIEX (4) ρ
CONJ=CMDIX(CRFAI (C).-CIMAG(C))
DETIJOM
EnIn

```
                        SUARROUTINF POLYROOT (M,C.FRG.R,ARRTN)
    DROGRAM FINOG ROOTS OF POLYNOMIAL WITH COMPLFX COFFFICIFNTS C(I)
    AND WITH NFGRFF M IFO 3?
    M 1G OFGRFF OF DOLYNOMPAL
    C(|) IG LIGT OF COEFFICIFNTS
    C MUST RF DFCIARFN COMPLFX
    C(1) IS COFFFICIFNT OF HIGH-ORDFR TFRM
    FDG IG NFGIRFN RFLATIVF FRROR IN ROOTS
    R IS LIST OF IRFAL AND COMPLFX ROOTS. MUST RF DFCLAREN COMOLFX
    ARRTN IS ARNOIRMAL RFTURN FLAG. }=1\mathrm{ FOR NO CONVFRGFNCF
    TYPF COMPLFX (4) ROOT.R.C,F.GUFSS.CONJ
    IMTEGED MQRTN
    N|MFNGION ((7)),D(3))
        J=1
        N=M
        N1=N+1
        5 CAALL FINDROOT(N.C.FPS,RNOT, ARRTN)
        IF(AROTN.FO.O)10.1OO
        1O T\overline{GT}=\widetilde{CMMAG(ROत̃T)}
        IF(TFGT.FO.N.1PO.50
        DFAL RONT
        on N=N-1
        N1=N1+1
        n(J)=\squareח\capT
        J=J+1
        70 r(1)=c(1)&ROOT*r(1-!)
        lF(N.FN.O)! OO.4O
        \triangleO TF(N.FO.1)AO.5
        COMDIFFX ROOT
    En CALL FVAL (N,r,ROOT,F)
        F1=CNORM(F)
        Q(J)=DOOT
        J=J+1
        N=N-1
        N1=N+1
        n^\mp@code{! !=?.N1}
        ail r(1)=C(1)+RO\capT*C(1-1)
        GUFSS=CONJ(ROOT)
        PALL FVAL.(N.C&CUJFSS,F)
        EP=rNORM(F)
        1F(F゙.LF.F1)FF,40
        F% RONT=GUFGG
        co Tn ?n
    C LAGT I_INFAR FACTOR
        aO R(J)=-C(?)/C(1)
        IO\cap CONTINUF
        QETUON
```

```
    SUFIROUTINF FINNROOT(N.C.ENS,ROOT, ARRTN)
C. S/R FINDS ROOT OF POLYNOMIAL USING TECHNIQUE BASEN ON
C O-ALFMAFRT-S LFMMA
    TYPF COMPLFX (4) GUESS.POINT,F,ROOT,CMPLX,DFLR,DFLI,C
    INTFRFED ARRTN
    MIMFNSION POINT(4),FN(5):C.(33)
    INTTMAL.PTF
    ARRTN=0
    GUFGS=CMPLX(\bullet1..1)
    GUFSS 1S CENTFR POINT OF SOUARF WITH VFRTICFS POINT(1)
    FVALUATF POLYNOMIAL AT GUFSS
    rALL EVAL(N,r.rUFSSQF)
    FN(1)=CNORM(F)
    OFLQ:CMPLX(.5.O.)
    MFLI=MMPLX(ñ...5)
        !1=0
        10=0
    C II INCREMENTS WHEN CENTER POINT IS MOVFD. STFP SIZE REMAINS CONSTANT
    I2 INCREMENTS WHEN STEP SIZE IS DFCREASED, CFNTER POINT RFMAINS SAME
    HAVF THERF RFFN FIVF ATTFMPTS WITH PRFSENT STFD SIZF
    10 IF(11.LT.5!つO.30
        NN: KFFD TRYING
    วn ! |=11+1
        1F(11.LT•50)50.131
    c
        YO YES. HAS STEP SIZE FVER AEEN DECRFASED-IF YES, KEFP ON TRYING
        30 IF(IV.GT.0)?O,40
    NO. INCREMFNT STEP SIZF AND STAART AGAIN
    4\cap 11=1
    NELD=Q**NFLQ
    nE! !=90*NFL!
    CMMDIITF DOINITE
        50 POINT(1)=GUFSS+חFL_R
        O\cap|NT(P)=GUFSS-NELD
        PO\NT(7)=GUFSS+\capNL_Y
        POINT(4)=GUFSS-OFI_1
    C EVALUATF POLYNOMIAL AT POINT(I)
    r
        nก̆\mp@code{M P=O,m}
        CALL FVAL(N,C,OOINT(I-1),F)
        AO FN(I)=CNORM(F)
            IF(1P.GT.1011\cap1.70
    ARF VALUFS OF POL_YNOMIAL ALIL SMALL
        70 ח\cap &O I=1,5
    TFON(ITIGFOIO.)RO.81
        RO CONTINUF
        Y戸今
        co TO 101
```

```
C NO. ARF VALUFS OF POI.YNOMIAL AL.LL CLOSF
\bullet
    R1 nO 100 1=1,5
        O\cap OO j=1.5
        IF(ARS(FN(I)-FN(J)).LE.1.F-03)90.101
        OO CONTTNIJF
        100 cONTINIJF
    C YFS, HAS STEP SIZF EVFR REEN DFCRFASFN
        IFNOT, INCDFMFNT STFDSIZF
        IF(1P.GT.O)1O!,40
        OTHEDMIGF, KFFD ON GOING
        NO. iG GlJFSG A RONT
        101 IF(FN(1).LF.1.F-10)1\capつ.103
        YFC
        1\cap> DOOT=GlJFCa
            BFTimN
    r
        1^7 กO 110 I=?.5
        1F(FN(I):LF.1.F-1011111,110
        11n CONTINUF
            Gn Tn=11?
    C veg
    111品OT=POINT(I-1)
        DFTIIPN
    r
    C NO. COMPARF CFNTFR POINT WITH VFRTICFS
```



```
        IF(FN(1).LT.FN(I))115.123
        115 CONTINLJF
    r
        ROOT LIES WITHIN PRFSFNT SQUARF, IFFCRFASF STFF STMF
        NFLR=NFILR/?.
        OFLI=NFLI/?
        IS STFD G|TFF TOO SMALI.
```



```
        1F(A.FO.O.)116.117
    116 1F'(CREAL (DELR).LF.FFS):IB.121
    117 IF(ABS(CRFAL (DELR)/A).LF.EPS)118,121
    1|A A=C,\MAC(GUFSG)
        IF(A.EO.O.)119.120
    199\mp@code{IF(CRFAL (NELR) -LE.FPSITO2.121}
    1?0 IF(ABS (CRFAL (DFLR)/A).LF.FPG)102.121
        NO. HAVF THFRF BFFN TÖ\cap MÃNY ITTFDATIONG
    1?1 MF(1P.CT.5N)131.1?O
    10> 10=10+1
    ボベデのán
    c
    O FOR CFNTFR OF NFIN SOIIARF
    Tつ? TFGT=FN(?)
        J= 1
```

```
        no 13n 1=3.5
        IF(TFST-IF.FN(1),13n,1?4
        174 TFGT=FN(1)
        J=1-!
        12O CONTTINIF
        GIIESS=POINT (.J)
        FN(1)=FN(J+1)
        GnTO!?
        YFG, GFT \triangleRNORMAI. RFTIIRN
        131 \triangleRRTN=1
        PRINT 137
    132 FORMAT(1HO.14HNO CONVFRGFNCF)
        RONT=ClIFCa
        DETIIDN:
        Fnin
```


GUABOITINF FVALC(N.C. GUFGS,F)

TYDF COMPLFX(4) RIIFGG,F.C
CIMENCION C(27)
$\mathrm{N} \mid=\mathrm{N}+9$
$F=r(1) * G 1)=G C+C(?)$
กn $1 \cap 1=7, N 1$
10 F=F*G!JFSG+C(1) RETIJRN EAin

```
    SUAROUTINF COFFF(K,Y,M,A1,RI)
    C XOY ARE REAL AND IMAGINARY PARTS OF THE ROOTS
    C M IS DFGRFF OF POLYNOMIAL
    C. A1: RI ARF RFSULTING COFFFICIFNTS; RFAL ANI IMAGINARY PARTS.
        REGINNING, WITH HIGH-ORNER TFRM
        DIMFNSION A1(25), R1(25),Aつ(?5),R2(P5), X(24),Y(?4)
        Mq=M+1
        A1(M1)=1.
        B1(MI)=0.
        A1(1)=X(1)*X(Z)-Y(1)*Y(?)
        R1(1)=X(1)*Y(2)+X(2)*Y(1)
        A1(2) =-(X(1)+X(2))
        R1(2)=-(Y(1)+Y(2))
        IF(?-M)5,4.4
    50 3 I=3, M
        AZ(1)=-X(1)*A1(1)+Y(1)*R1(1)
        B2.(1)=-X(1)*R1(1)-Y(1)*A1(1)
        L=1-1
        \cap\cap 1 J=?. L
        A2(J)=A!(J-!)-X(1)*\Delta!(J)+Y(1)*R1(J)
        1 R2(J)=R1(J-1)-Y(1)*A1(J)-X(1)*R1(J)
        AZ(1)=A1(1-1)-X(1)
        R2(1)=RI(1-1)-Y(I)
        DO 2 K=1. 1
        A1(K)=Aつ(K)
            PR1(K)=RP(K)
        3 CONTINUE
        4 DO 6 K=1.M1
            Aつ(K)=A1(K)
        G RO (K)=R1(K)
        J=M1+1-K
        A!(K)=Aつ(J)
        7 R! (K)=R?(J)
        RFTURN
```

 ENIN
    ```
            GIRPROUTINE ANGIFG
            COMMON N.C(17),10,F(17),A(3.3),R(32), n(17)
            TYDF COMDLFX (4) CMPLX,CONJ
            TYDF COMPLFX (4) r.F.A,R,N.CP
            TYPF COMPLFX (4) FI,SI,AA,RR,CR,CTMP,FR,FG,FF,FM
            DFAL in
            DFAL MII
            DIMENSION 1TH(17),FM1N(17),SI(17),F1(17),TH(17),CP(17)
            DIMENSION AA(17,2).BA(2.2),CC(17,2),R(17)
            P1=3-14159??
                            DATON=1RO./D1
    100 FORMAT(1HO,13X,4HF(1).31X.4HS(1))
    101 FORMAT(IHO.?(F14.7.2X.F14.7.5X))
    10? FORMAT(1HI, 43X.2OHTHETA(I), R(I), I=1,.1.3.12H THFTAP, RP)
    10.3 FORMAT(1HO.45X.I4.5H DEG ,F7.3.5H MIN .5X.E14.7)
    1O4 FORMAT(1H\cap, ЭHM()=,F14.7)
    10G FORMAT(1HO.2RHO(1) MINTIPLIFN FY FXP(1*M(1))
    106 FORMAT(1HO.13X.4HC(1).?6X:15HCALCULATFD.C(1))
            N1=N+1
            M1=N1
            CTMP=п(M1)/C(M1)
            THP=\triangleTAN(rNORN(C.TMD))
            TH(Ml)=THP
            R(M1)=ATAN2P!(-CIMAG(C(1)),CREAL(C(1)))
            C\capSR=COC(A(M)))
            S|NR=CIN(R(M1))
            FR=CMPLX(COGQ, SINR)
            A=ATANPPI(CIMAG(CTMP),CRFAL(CTMP))
            M1)=R(M1)-A
            FM=CMPLX(COS(MU),GIN(MU))
            PRINT 1\capA. MII
            nO 5 i=1,M1
            ू
            DRINT 10G
            CALLL PRNTC(M1,n,2)
            T1=THP*RATON
            |TH(M|)=T1
            FMIN(M1)=ARS((T:-1TH(M1))*GO.)
            CINP=CYN(THD)
            COGP=COG(THP)
            \cap\cap in I= | M (
            F!(I)=C(1)*SINP*FR-n(I)*COSD
    1\cap S!(1)=c(1)*rOGP*FR+!(1)*S1NP
            ORINT InN
            ñ゙アO゙I=1.M1
            D=CRFAL (FI(I))
            O=C\overline{MAG`(FTTij)}
            X=CRFAL (G\(1))
```



```
            OO PRINT 1O1, P,O,X,Y
```



```
            IF(M1.FO.O)7N,??
    #> CTMD=F!(M1)/G!(M1+1)
            THP=ATAN(CNORM(CTMP))
            #(M1)=ATANPP!(-CIMAG(CTMP), -CRFAL_(CTMD))
            IF(AHG(R(M1)-D1).LT.1.F-05)2.3.24
```


RF TURN
FMO

```
            SUAROUTINF MÄTMP(A゙,NRA,NCA,F,NRF,NCF,C)
            TYDF COMPIFX (4) A,R,C,CMPLX
            M1MFNGION A(17.2),P(7.7),C(17,ワ)
            nO? IEI:NPA
            n\cap P K=1.NCP
            C(1.K)=CMDLX(O.:n.)
            n\cap 1 J=1.NCA
            1 C(1,K)=C(1,K)+A(IOJ)*R(J\bulletK)
            2 CONTINNF
                RFTIIQN
                FaIn
```

```
            SUAROUTINF CINVERS(N,IO,TH,B,C)
            DFAL IO
            TYPF COMPLFX (4) FM,AA,BR,C,D,FR,CMPLX
            D:MENSION FM(32,30),TH(17), R(17),AA(34,1), BB(34,1),C(17),0(17)
    1OO FORMAT(1HI,1 MHCHFCK PROCRAM)
    101 FORMAT (1HO.1OHD(K), K=0.,13)
    10? FORMAT(1HO.60X, 13X,4HF(1).31X,4HS(1))
    10.3FORMAT(1HO.6OX,2(F14.7.2X.F14.7.5X))
            DRINTION
            NI=N+1
C. FIRST CRYSTAL
            I=1
            |M| =n
            SINT=SIN(TH(I))
            COST=COS(TH(1))
            FB=CMPLX(COS(A(1)),-SIN(A(1)))
            MA (1,1)=-SINT*10
            AR(?.1:=FR*COST* 10
            PRINT IOP
            P=CRFAL (RA(1,1))
            O=CIMAG(AA(1,1))
            X=CRFAL (FRR(?,1))
            Y=CIMAG(BA(2.1))
            PRINT 103. P.Q.X.Y
            SFCONT CRYSTAL
            I=I+1
            IF(I.LF.N)501.70
            501 IMI=1-1
            G\NT=CTN(TH(1);
            COGT=COC(TH(1))
            FA=CMDLX (COG(F(I)),-GIN(R(I)))
            nn 1n J=1.a
            n\cap 1\cap K=1.?
    1\cap FM(J.K)=CMPLX(O., O.)
    FM(1,1)=CMPLX(COST, П\bullet)
            FM(?., ) =CMPLX(-SYNT, O.)
            FM(3.1)=FR*SINT
            FM(4.F)=FR*R\capST
            CALL MATMP1 (FM*4,2,BR,2.1,AA)
            \cap\cap つ\cap J=1.a
    20 PA(J.1)=^A(J,1)
            GR|NTT INS
            กัก 21 J=í?
            J!=J+?
            G=CRFAL.(AR(J.1))
            O=r!mata(RA(J,1))
            X=CRFAL(AG(JI:1))
            v=rimari(aR(.J1,1))
    Fi DQ\NT 10马. O.O.X.Y
            I=P+1
            TF(I-LF.N)3O.7N
            ITH COYGTAL
        30 101=i+1
            |M|=1-1
            GPNT=CPN(TH!|)!
            C\capGT=^NG(TH(I))
```

```
    FAECMPLX(COS(A(1))-SSN(A(Y))
    19=アッ1
    |マ=1?..?
    m^ an \=1,1?
    O\cap 4\cap K=1, \`
4\capFFM(J.K)=CMDLX(O..n.)
    m@ 5n J=1.lM1
    EM(J.J)=CMOL.X(COGT.n.)
    M=J+1
    J2=!Mq+J
    FM(J1,Jつ)=CMPLX(-C!NT.O.)
    |=1+J
    FM(J!,J)=FR*C!NT
    J1=|P|+J
    JP= \M1+J
幺n FM(Jl,J%)=FR*CneT
    CALL MATMP1(FM,1O,13,RF,13,1,AA)
    n\cap G\cap K=1.!?
G\cap FR(K.1)=AA(K.1)
    DR|NT 10?
    \cap\cap fl J=! ! !
    J=.J+!
    o=rofal (Ra(.!,1))
    n=r!MAR(MA(,),1))
    -X=CRFAL(RA(JI:1))
    v=r!mar(an(J!:1))
AI PRINT IOZ, P.O.X.V
    I= P+1
    IF(I,LF.NI3n.7N
    OOLADITFO
70 SINT=SIN(TH(N1))
    COGT=COC(TH(N1))
    FR=CMPLX(COC(R(N1)),--SIN(R(N1)))
    NM=9*N+1
    nn q\ K=1.N
    NMK=N2-K
Q\cap RR(NKK+P.1)=RR(NK.1)
```



```
    RR(N+P,1)=CMDLX(O., ^.)
    #O OO K=1,N1
    NIK=N1+K
    C(K)=FR*SINT*RR(K,1)+FR*COSY*RR(NK.1)
OO n(K)=-COST*BR(K.I)+SINT*RR(NK•1)
    OR|NT 1\cap:.N
    C.ALL PRNTC(NI,N.O)
    BFTIJRA
    FNIN
```


[^0]: * Work supported by the National Aeronautics and Space Administration under Contract NAS8-20570.
 ${ }^{1}$ S. F. Harris, E. O. Ammann, and I. C. Chang, J. Opt. Soc. Am. 54, 1267 (1964).

[^1]: ${ }^{2}$ H. G. Jerrard, J. Opt. Soc. Am. 38, 35 (1948).

[^2]: ${ }^{3}$ Asterisks are used in this paper to denote the complex conjugate of a quantity.

[^3]: ' E. O. Ammann and I. C. Chang, J. Opt. Soc. Am. 55, 835 (1965).

[^4]: ${ }^{5}$ R. C. Jones, J. Opt. Soc. Am. 31, 488 (1941).

[^5]: Table IV

