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FOREWORD

This is the final report prepared undez NASA Contract NAS8-20570,
"Birefringent Devices". This report describes wcrk performed on a
one-year program whose goal was to advance the state of the art of
optical birefringent devices. The work described here was performed
in the Quantum Electronic Techniques Department of the Advanced
Technology Laboratory of Sylvania Electronic Systems - Western
Operation in Mountain View, California, during the period 8 March 1966
through 8 March 1967. The project leader was Dr. E. O. Ammann; another
principal contributor was Mr. J. M. Yarborough. The experimental phases
of the program received expert technical assistance from Mr. Eo J. Sleep.

All work on this contract was under the direction of the Astronautics

Laboratory at George C. Marshall Space Flight Center, Huntsville, Alabama.
Dr. J. L. Randall was the technical representative for this program, and
Messrs. C. Wyman and C. Q. Lee were alternate technical representatives.
Their guidance on this program is gratefully acknowledged.
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ABSTRACT

This report summarizes the results of a one-year program whose goal was to

advance the state of the art of optical blrefrlngent devices. Both theory and

e==perimentswere performed and are repo[ted.

Theoretical work was performed in several areas. A generalization of the

original blrefringent network synthesis procedure of Harris, Ammann, and Chang [i]

is given _ich allows the synthesis of networks having asymmetric trans-

mlttances. This new procedure increases the versatility of blrefrlngent

networks considerably at no expense in network complexity. In addition, a

double-pass technique is described which can be used in connection with the

new synthesis procedure. This techniqae reduces by a factor of two the

number of network components needed to realize most transmlttances. Finally,

procedures are given for synthesizing optical amplitude modulators' having

less distortion than conventional modulators. /

Experiments were performed on both slngle-pass and double-pass naturally

birefringent networks. The results of these experiments provide the first

direct verification of the single- and double-pass blrefrlngent network

synthesis procedures. In addition, distortion measurements were made on one-

and three-stage amplitude modulators to verify the calculations mentioned

above.

iii
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I° INTRODUCTION

This report presents the results of a one-year applied research program on ......

optical blrefringent devices° The object of this program was to perform theo-

retical and experimental studies which would advance the state of the art of

blrefrlngent devices°

In this report, we use the term "blrefrlngent devices" to denote optical

devices consisting of polarizers and blrefrlngent crystals. The blrefrlngenee

of the crystals can be either natural or electrlcally-inducedo Networks con-

taining naturally-birefringent crystals will be called naturally-birefrlngent

networks, while networks containing electro-optlc crystals will be called

electro-optlc networks. Much of the pre_ious birefrlngent network theory,

i_ addition to the theory developed on this program, is applicable to both

types of network.

A brief resum_ of birefringent networks is perhaps appropriate here to

put the contributions of the present program into proper perspective. The

first blrefrlngent devices used _n optical systems were the Lyot _nd Sole

filters. The Lyot filter was discovered in 1933, while the Sole f±Iter

followed some 20 years l_ter. Both these devices are narrow-band filters

capable of very narrow passbands. In fact, the major attraction of blre-

frlngent devices is their capability of producing bandwidths the order of

Angstroms or less.

The Lyot and Sole filters are both particular crystal-polarlzer configura-

tions giving particular transmission characteristics. Hence the use of

birefrlngent devices to produce other types of characteristics awaited the

development of a synthesis procedure. This important development occurred

in 1964 when Harris, Ammann, and Chang found two procedures [1,2] for

synthesizing blrefringent networks whose transmittance could be arbitrarily

s_clfled. These procedures opened the possibility of using blrefrlngent

networks to realize a variety of devices for optical and laser systems.

i
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Shortly thereafter, Amman** [3,4] found a method for reducing (by a factor

of two) the number of network components needed to realize a desired trans-

mittance. The technique involved passage of the light through the blrefringent

network twice and hence was called a "double-pass" procedure. This discovery

was followed closely by the realization [5] that the techniques which had been

developed for naturally-birefringent networks could also be applied to electro-

optic networks. This opened the way for synthesis of electro-optic shutters,

modulators, and so on.

It was with this background that the present program was begun. The

object of this program was to further extend the theory of birefringent

devices, and in addition, to carry out an experimental program. There were

at least three broad goals for the theoretical portion of the work. First,

it was desired to find still more general or powerful synthesis techniques

in order to increase the versatility and usefulness of birefringent devices.

The synthesis procedure of Section II-A and Appendix A is an example of a

result which succeeds along these lines. Second, we wished to find modifica-

tions of existing procedures or completely new procedures which would result

in simplification of the form of the resulting birefringent networks. Tile

goal here, of course_ is to obtain the simplest possible practical form for

the devices which are obtained. The work of Section ll-B and Appendix B

is an example of work which has accomplished this goal. Finally, the third

goal was to apply the synthesis procedures to particular devices of special

importance. The results of Section II-C and Appendix C on the synthesis of

amplitude-modulators are typical of this goal.

The experimental portion of the work was expected to yield much valuable

information, for although substantial progress had occurred in the past few

years in the theory of birefringent devices, experimentation had not kept

pace. Hence much work remained to be done in verifying the recently

developed theory, and for providing guidance in establishing problem areas

for future study. In addition to verifying the theory, the experimental

program would also yield some useful devices, of course.

This report is organized in the following manner. Section II gives the

theory performed on the program, while Section III reports the_experimental
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results. The conclusions reached and recommendations for future work are

given in Section IV. The re_earch contributions resulting from the work

of this program are sunmlarized in Section V, while Section VI lists the

Journal publications and papers presented at conferences° References

are listed in Section VII and several appendices are given at the end of

the report.

S
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Iio THEORY OF BIREFRINGENT NETWORKS

In this section, we discuss the theoretical work which was performed during

the program. This work has resultcd i_ several significant advances in the

_het.°yof optical birefringent networks. The first of these is a generalization

of the earlier procedure of Harris, et al. [i] which allows the synthesis of

birefringent networks with asymmetric amplitude-transmittances. This has

resulted in an entire new class of birefringent networks with very versatile

characteristics. The second accomplishment is the discovery of double-pass

procedures which are applicable to this new class of network. These two

topics are discussed in greater detail in Parts A and B of this Section, and

in Appendices A and B. A third accomplishment concerns the synthesis of

electro-optlc amplitude modulators. Methods were found for synthesizing

amplitude modulators having less distortion than present conventional

modulators. These are fully described in Part C of this Section and in

Appendix C.

In addition to the above problems which were successfully solved, several

additional topics were studied with only limited success. These are mentioned

in Parts D and E of this section.

A. SYNTHESIS OF LOSSLESS NETWORKS CONTAINING EQUAL-LENGTH CRYSTALS AND
COMPENSATORS

Harris, Ammann, and Chang [i] have given a procedure for synthesizing

birefringent networks whose amplitude transmittance could be specified.

The work described here is a generalization of that procedure which provides

still greater flexibility in the synthesis of birefringent networks. We will

not go into the mechanics of the procedure in this section since they are

g_en in Appendix A. Instead we will describe here what can be accomplished

with the new procedure.

The procedure of Harris, et al. [i] allows the rea!ization of a bire-

fringent network whose amplitude transmittance C(m) is of the form,

C(m) = C0 + Cle-iam + C2e-i2am + ... + Cne-inam • (2.1)
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The number of terms employed in C(_) is finite but arbitrary. The choice

of the term coefficients (the Ci) is also arbitrary as long as each Ci is

rea_._l.The form of the network obtained from this synthesis procedure is

shown in Figure I of Appendix A. The network consists of a series of

identical cascaded birefringent crystals between and input and output

polarizer. The network may be thought of as composed of several stages,

with each stage consisting of one birefringent crystal. A network contain-

ing n stages is required for a C(_) having n+l terms. Once C(_)

has been chosen, the rotation angles (the _i) of the crystals and the

output polarizer can be calculated from the synthesis procedure.

The synthesis procedure of this section allows greater freedom in the

choice of C(_) and results in a network whose basic form is shown in

Figure 2 of Appendix A. The desired amplitude transmittance C(_) is

still written in the form of Equation (2.1), but the Ci may now be complex.

An n-stage network is again required to realize a C(_) having n+l terms,

but each stage now consists of an optical compensator and birefringent

crystal. The synthesis procedure determines the rotation angle of each

crystal, the retardation introduced by each compensator, and the rotation

angle of the output polarizer.

The _lexibility obtained by dealing with complex Ci instead of real

Ci may be explained as follows. If one is limited to real Ci, one is

limited to amplitude transmittances whose real part has even symmetry and

whose imaginary part has odd symmetry. When complex Ci can be used, the

real and imaginary portions of the transmittance may have any symmetry

whatsoever. Finally, it should be mentioned that this technique can be

used (as can all the previous techniques) on both naturally-birefringent

and electro-optic networks.

A detailed description Of the _Jynthesisprocedure is given along w1_h

an example in Appendix A.

5
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B. ADDITIONAL TECHNIQUES FOR THE SYNTHESIS OF LOSSLESS DOUBLE-PASS NETWORKS

It was mentioned in the introduction that Ammann has found a procedure

[4] which, under certain circumstances, reduced by a factor of two the

number of network components necessary to give a certain transmittance.

That procedure was applicable to the type of network described in Reference [I],

i.e., when the Ci of Equation (2.1) are real. A logical question arises then

as to whether a double-pass procedure can be found for use with the more

general synthesis procedure of Section II-A, i.e., when the Ci of (2.1) are

complex. This Section and Appendix B give the successful solution to that

question.

Let us briefly review the essence of the double-pass procedure of

Reference [4]. For a certain class of amplitude transmittances C(_) ,

the birefringent network which results from using the synthesis procedure

of Reference [i] has a particular symmetry. Because of this symmetry, the

last half of the birefringent network can be replaced by a mirror which

reflects the light back through the first half of the network. In

Appendix B, it is show_1that networks obtained using the synthesis procedure

of Section II-A can be made to have this symmetry. Having done this, the

techniques of Reference [4] can then be used directly.

The details are given in Appendix B which is a copy of the paper

accepted for publication in the Journal of the Opt_gal Society of America.

C. SYNTHESIS OF ELECTRO-OPTIC MODULATORS FOR AMPLITUDE MODULATION OF LIGHT

A technique has been found for synthesizing electro-optic amplitude

modulators having arbitrary modulation characteristics. The technique is

an adaptation of the procedure of Appendix A for synthesizing naturally-

birefrlngent networks. The desired amplitude-transmission vs. applied

voltage function K(v) of the modulator is written as an exponential

series containing a finite number of terms. The resulting modulator consists

of a series of stages between an input and output polarizer, with each stage

consisting of an electro-optlc element and optical compensator. The induced

blrefringence of the electro-optic medium is assumed to be directly propor-

tional to the applied modulating voltage v . The question of how K(v)

should be chosen was also investigated. Two cases were considered:
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(a) an amplitude modulator te be used with an envelope detector, and (b) an

amplitude modulator to be used with a square=law detector° For each case,

the ideal K(v) and several methods of approxi_atlng it were found° It

was found that the manner in which K(v) is chose_l is of great importance°

Best results were obtained when the term coefficients (the Ci) of K(v)

were chosen to directly optimize the modulator property (or properties)

deemed most important° Modulator designs corresponding to several useful

K(v) were tabulated°

The details of this procedure are given in the paper of Appendix C

which will be submitted for publication.

D. SELECTION OF C(_ BY CHOOSING ITS ZEROS

In this section, a discussion is given of the relationship between

the zeros of C(_) and the behavior of C(e) over one perlod. This work

was undertaken in the hope that it might prove feasible to determine C(_)

by choosing its zeros. (The transmittance C(_) is usually chosen now by

writing a Fourier series approximation to the ideal function and truncating

it.) It appears however that only in certain l_mited circumstances can an

acceptance C(_) be found from selection of its zeros. Nonetheless it is

felt that this technique is sufficiently illuminating to merit a short

discussion here.

The transmittance C(_) is normally written as in Equation (2.1). We

can consider C(_) to be a polynomial in e-la_ ._and therefore rewrite (2.1)

as

[(Co Cn CI Cn e-ina_iC(_) = Cn / ) + ( / )e-ia_ + ... +

-ia_)
Cn(-z I + e=la_) e-la_) + e ,= (-z2 + ... (-zn

where the z's are the zeros of the polynomial. These zeros are, in general,

complex and can be plotted on the "complex e plane" as shown in Figure 2.1.
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Figure 2.1 Typical set of zeros for C(_)
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_ia_
Figure 2.1 has the imaginary part of e plotted along the y axis

-ia_
and the real part of e plotted along the x axis. Let us now consider

-ia_
what path is traced out on the e plane when m is changed sufficiently

to cover one period of the characterlstic.

-iam
The quantity e always has a magnitude of unity and hence must

=ia_
always lie on the unit circle. The phase of e is linearly proper-

-Jam
tional to m . Thus as m increases, the quantity e uniformly

traces out the unit circle. If one of tilezeros of C(_) lies on the unit

circle, C(m) will be zero when the value of m is reached which causes
-ia_
e to equal that root. If several zeros lie on the unit circ]e, then

C(m) will be zero a corresponding number of times.

Thus the number and spacing of the nulls of C(m) can be controlled

by properly choosing its zeros. The difficulty with this procedure is that

even though the nulls of C(m) can be precisely controlled, C(m) will often

have unacceptable behavior between its nulls. Hence unless the nulls of

C(m) are the major properties of interest (as they might be, for example,

in the design of a band-stop filter), this technique will probably not

prove satisfactory.

As an illustration, let us consider a Lyot filter having n = 15. The

amplitude-transmittance of such a filter is given by

i -Jam -i2am -i3am =i4am -i5am -i6am
C(m) = _-@(i+ e + e + e + e + e + e

-17aro -18a_o -i9am -llOao_ -llla_ -l12a_
+e +e +e +e +e +e

-il4am -il5am
+ e-il3am + e + e ).

The zeros of C(m), written in polar form, are i_, i_, 16_.5_ °, 1/90°,

i_, I_, i_, 1/180°, 1/202.5°, I_.225_°, i_, 127L__q_, i_,

13/___, and 1,/337.50. These zeros are shown in Figure 2.2. We see that all th_

zerof, lie on the unit circle and hence C(m) is forced to zero many times during
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Figure 2.2 Zeros of C(_) for Lyot filter with n = 15
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each period. In addition, we see that the zeros are uniformly spaced around

the unit circle except that one is missing at the point _O_Q_. This

suggests that the filter passband occurs when _ has a value which makes
-Jam

e = i . This is indeed so a_ seen from Figure 2_3 which is a plot of

the amplitude-transmittance of the Lyot filter.

E. OTHER TOPICS

During this program, work was performed on two other theoretical problems

for which successful solutions were not found. The first of these was the

problem of obtaining a procedure which could be used for synthesizing single-

sideband modulators. None of the birefringent network synthesis procedures

developed to date are appropriate for designing a single-sideband modulator.

It can be shown that all electro-optlc devices designed from existing

procedures will have symmetric output spectra, but a single-sideband modulator

by its very definition has an asymmetric output spectrum (e.g., the first

upper sideband should be absent). Hence it is necessary to develop a basically

different procedure in order to synthesize single-sideband modulators.

An attempt was made to find a procedure which would produce a network

of the form shown in Figure 2.4. This network is different from previous

network forms in that driving voltages to the various crystals are not

identical. The phases of the driving voltages were allowed to be different

and were to be calculated from the synthesis procedure. In addition, the

rotation angles of the various stages were to be calculated. The network

of Figure 2.4 is capable of producing an asymmetric spectrum as required.

However, the very thing which distinguishes the network of Figure 2.4 from

previous networks also eliminates the possibility of obtaining a synthesis

procedure by generalizing or modifying previous results. For the key

requirement of existing procedures has been identical blrefrin_entcryst61s

and thi_ is violated by the network of Figure 2.4. The result is that a

general synthesis procedure is substantially more difficult to formulate

when non-ldentlcal blrefrlngent stages compose the network. The complexity

of the problem has thwarted attempts thus far to find a synthesis procedure

for the general ease.

ii
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It is proposed that one possible alternate approach to obtaining a

single-sideband modulator synthesis procedure might be to begin with a

more modest problem. For example: instead of allowing the driving voltage

of each stage to have a different phase, the phases might be restricted

to be either 0° or 90°. Perhaps a synthesis procedure could then be

found for this simpler network. This solution to the simplified problem

might then give insight into how the general problem should be approached.

It appears in any case that the task of devising a synthesis procedure

for single-sideband modulators is a very difficult o1:e.

Another general problem area which was studied during the program

was that of synthesizing lossless birefringent networks composed of

unequal-length crystals. This important problem was approached through

the synthesis procedure of Harris, et al. [i] in the following way. The

general form of the network resulting from that procedure is shown in

Figure 1 of Appendix A. Suppose now that two consecutive crystals are

rotated to the same angle. This would be equivalent to a single crystal

which is twice as long. Hence the problem under consideration may be

restated as, "What must be true about C(m) in order to cause two or more

consecutive crystals to be rotated to the same angle?"

Again this quest has resulted in little succe_,s. Studies were made

to detect possible relationships between the Ci Which would cause several

crystals to be rotated to the same angle. Some relations were found among

the Ci, but they were sufficiently complex so as to be of little or no

practical value. In addition, relations were sought among the zeros of C(m),

but again unsuccessfully. Thus no set of restrictions has been found which

is simple enough to be practical. This problem is an important one, however;

its solution would contribute considerably to the practicality of birefringent

networks.

14
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III. EXPERIMENTAL RESULTS

In this section, the results of the experimental program are given. The

experiments may be conveniently divided into two parts: (a) those performed

on naturally-birefringent networks and (b) those performed on electro-optic

networks. The experimental program had several goals among which were verifi-

cation of the various theories, illumination of practical problem areas, and

the realization of actual devices.

A. NATURALLY-BiREFRINGENT NETWORKS

A major goal of these experiments was to verify the synthesis procedures

of References [i] and [4]. The optical network involved consists of a series

of naturally-birefringent crystals between input and output polarizers (see

Figure 1 of Appendix A) o Such a network was built and tested in order to

compare actual and predicted performance. The details of the construction

of the network are discussed below.

i. Physical Considerations

a. Crystal material and sizes

Many materials are suitable for use as the "basic building blocks" of a

naturally-birefringent network. One must consider the frequency range of

interest and the desired basic periodicity of the network in order to choose an

appropriate material. The material must be transparent to the optical frequency

band of interest and should be of good optical quality. Having determined the

material to be used, the lengths of the crystals can then be chosen to give

the periodicity desired for the network's transmittance. A useful graph for

determining the periodicity is given in Figure 7 of Reference [i].

For the present experiments, we elected to use an optical wavelength of

6328 _ (from a He-No gas laser), and to use calcite crystals with a length of

2 cm. This gives a periodicity of about i00 GHz. Calcite was chosen

primarily because of its availability, large birefringence, and good optical

quality. The cross section of the crystals was chosen to be 1 cm by i cm.

Calcite is a negative crystal, and hence the optic axl8 is the slow axis.
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The crystals were cut with the optic axis in the planes of the end faces, as

shown in Figure 3.1.

b__z_.Crystal tolerances and compensators

The synthesis of optical birefringent networks requires the use of

"identical" crystals. This means that each crystal must have exactly the

same retardation. The following calculation points out the difficulty in

making identical crystals.

We shall calculate the number of "retardation waves" in a calcite

crystal 2 cm long. By retardation waves, we mean the number of optical

wavelengths the slow (S) component of an incident impulse of light is

retarded compared to the fast (F) component. The indices of refraction

of calcite at 6328 _ are approximately _o = 1.654 and ne = 1.485. Then

the number of optical waves along the F axis is L/%e or Lqe/%v , while

the number of optical waves along the S axis is L/%° or L_o/%v , where
= 6328 2. The difference is then

V

Lqe Lqo Lqe - Lq°Retardation =-- ....
V V V V

= ,(2)(.169) = 5300 waves.
(6328 x 10 .8 )

The problems involved in making crystals with exactly the same number of

retardation waves are obvious. Even if all crystals were perfectly homo-

geneous, the lengths would have to be the same to within, say, 1/360 of a
2

retardation wave. This requires a length tolerance of (360) x (5300) =
.01 micron.

The crystals can be made to all have an inteKral number of waves

retardation (although not necessarily the same integer in each case) by

adding thin "trin_er" plates (compensators) with Just enough birefringence

to make the combination of crystal and compensator have an integral number

of waves retardation. Thus, for example, one might have crystal-

compensator combinations with delays of 5280, 5325, and 5336 waves. The

percentage difference in these is small enough that the actual transmittance

16
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Figure 3.1 Calcite crystals used as basic unit of bire_ringentnetwork
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of the network will not differ significantly from the ideal transmittance

over the wavelength range of interest. In our experiments, quartz crystals

were used for the compensator crystals.

Due to the large number of retardation waves in the calcite crystals,

the retardation varies rapidly as a ray moves off-axis. A change of only

a few degrees in ray direction is sufficient to significantly deteriorate

performance. In order to insure that the light travels down the propagation

axis, there must be no refraction at the surfaces, which means that the end

faces must be very parallel.

Another problem in preparing the crystals is in properly orienting them.

If the optic axis does not lie exactly in the plane of the face, the index

of the extraordinary ray is changed. Again, only slight change is necessary

to deteriorate performance substantially.

The final problem in preparing the crystals is flatness of the faces.

If there is much variation, again the re=ardation will change significantly.

All of the above considerations apply also to the quartz compensators,

although the requirements are not quite so stringent in this case. The

only critical item concerning the compensators is parallelism. Again the

faces must be very parallel in order to avoid refraction. Other factors

are not as critical since the compensators have many fewer retardation

waves delay.

For quartz, n° 1.542 , ne 1.551. Thus, for a 2 mm quartz crystal,

Retardation =_= (.2)(.009) = 28 waves.
6328 x 10-8

c. Temperature effects

All of the above discussion assumes a constant temperature, for bire-

frlngence in general varies with temperature. In calcite crystals as long

as the ones being used, the retardation thus varies substantially with

temperature. Accordingly, all compensators must be matched to their crystal

at a particular temperature.
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Actually, the retardation of the compensators also varles with tempera-

ture. However, since the compensator8 are thin (2 _) compared to the

crystals and made of a much less birefringent material (quartz), they do not

vary nearly as rapidly and hence are satisfactory over several waves change

in the calcite. The temperature dependence of the networks is discussed in

more detail later.

In the present experiments, advantage was taken of the temperature-

dependellt hirefringence to sweep the transmittance of the networks through

several cycles. This method proved to be quite successful, and at the same

time provided valuable data on the temperature behavior of optical networks.

To our knowledge, this technique has not been used previously to measure the

transmittance of birefrlngent devices.

d. Selection of a reference crystal and matching of crystals and
compensators

From the above discussion, it is clear that all crystal-compensator

combinations must have an integral number of waves delay at some fixed

temperature. This temperature is arbitrary, but certain practical consid-

erations set limits on the range into which it must fall. In order to

make the temperature-control system as simple as possible, it is desirable

to keep the oven above room temperature so that no cooling system is needed.

Room temperature is normally 20 to 25°C, so that one would llke to pick a

reference temperature at least 10°C above this. The most convenient

choice is to put a calelte crystal into the oven and note the temperature

at which it is an integral number of waves long. Then if all compensators

are matched to crystals at this reference temperature (Tref) , the

reference crystal will not need a compensator. Using one crystal (which we

shall call crystal #i) as a reference, Tref was determined to be 36.264°C.

One could, of course, use a Pigher temperature for the reference temperature

since the crystal's transmittance is periodic, but this temperature was

deemed adequate for the present experiments. Having established this

temperature, compensators were then matched to the remaining crystals

(#2, 3, and 4). A one-cm calcite crystal was also cut and matched with a

compensator for use in the double-pass experiments. This crystal will be

called #5 henceforth.
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e. Ali_nment

A very convenient way to aligning the calcite crystals is to use the

characteristic isogyre pattern, which may be observed by placing the crystal

in diverging or converging light between crossed polarizers. When light

propagates at right angles to the optic axis of a uni-axial crystal, as is

the case here, the isogyre pattern is a family of hyperbolae as indicated

in the sketch of Figure 3.2a. A photograph of the observed pattern of one

of the crystals is shown in Figure 3.2b. Each crystal was carefully aligned

so that the laser beam hit exactly in the middle of the pattern. After the

crystals were thus aligned, they were placed in the oven and compensators

were matched to them.

2. Experimental Apparatus

a. Oven

Of central importance to the experiments with naturally birefringent

networks are the oven and temperature control unit (to be discussed below).

It has already been pointed out that an oven is necessary to select a

reference temperature and to match compensators to crystals. Preliminary

calculations suggested that a change in temperature of .01°C would change

the retardation of a crystal by i°. After investigating commercially

available units, it was decided to build an oven. A photograph of the oven

constructed is shown in Figure 3.3. It was made of aluminum with glass end

windows to allow passage of the laser beam. A "V" block (shown in

Figure 3.5a) was bolted to the bottom to hold the crystal holders (to be

described later). The oven was made long enough to hold five crystals, and

was made watertight so it could be filled with an index matching oil to

reduce reflection losses. The oven was wrapped with a heating coil and

insulated on all sides by 2" of styrofoam. The oven was equipped with

adjustable feet which could be mounted on an optical bench.

b. Temperature control unit

As mentioned above, it was decided to build a temperature controller

rather than buying one. A schematic of the unit built, as well as the

oven, is shown in Figure 3.4. The circuit consists basically of a bridge
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Figure 3.2b Typical isogyre pattern for calcite

22

1967011192-032



23

1967011192-03



+40V

1K

L

270n __

5K \L2K

/ I DIFF _ - - _#

J :- -
TO2K\ -_

(lEMPSET) ", 100 /_'100

/ 1_

' - i e

I

THERMISTOR- 6B32J2

EDINSIDEOVEN) .._"

OVENWRAPPEDWITH
LASERBEAM HEATINGCOILS

\ (10_._RESISTANCE)

Figure 3.4 Temperature control unit for oven
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circuit and a differential amplifier. The power device is a power transistor.

The unit runs from an un-regulated power 8upplyo This unit turned out to do

an extremely good job of controlling temperature in the oven. It has been

verified by direct measurement that the unit maintains the oven temperature

constant to within .005°C over 24-hour periods.

_\ Crystal holders

The crystal holders were constructed as shown in Figures 3.5a and 3.5b.

The calcite crystals were mounted in rectangular aluminum holders which,

in turn, were spring mounted in steel cylinders to allow adjustment of the

crystals. The compensators were placed in brass plugs which were inserted

in the back of the aluminum crystal holders. The circumference of the steel

cylinder was graduated in i° increments in order to allow precise rotation

of the crystals. The steel cylinders were placed in the cylindrical block

on the bottom of the oven. With this arrangement, it was thus possible to

use the same crystals to synthesize different networks simply by rotating

them to new angles.

d. Thermometer

In order to work within the tight temperature tolerances mentioned above,

it is obviously desirable to be able to measure temperatures very accurately.

To do this, a Hewlett-Packard Model 2801A quartz thermometer was used. This

instrument has two temperature sensors and is capable of reading temperatures

to within .0001=C. The digital temperature output was converted to an analog

signal by a digital-to-analog converter and used to drive the x axis of an

x-y recorder.

e. Detector

The detector used in these experiments was an ordinary silicon solar

cell. Since this device is a square-law detector, the square of the

amplitude-transmission characteristic will be detected. The detected signal

was applied to the y axis of the x-y recorder.

f_ Experimental setup

The components mentioned above were used to record the transmission

curves of the various networks. For each experiment, the crystals were
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rotated to the prescribed angles, and the oven was heated to about 50°C.

The power to the oven was turned off and the oven allowed to slowly cool.

The oven cooled at a rate of about 0.001°C/see. Plots of the optical

network's transmittance were obtained by the thermometer driving the x-axis

and the silicon solar cell driving the y-axis of an x-y recorder. These

traces were taken in the temperature range from about 39°C to 33°C, so

that the reference temperature fell about in the middle of the graphs.

3. Data

a. Single-pass experiments

We now give the experimental results obtained for the single-pass

birefringent networks. All single-pass experiments were performed on

three-stage networks (n = 3) consisting of three appropriately rotated

calcite crystals and an input and output polarizer. In each case, a four-

term C(m) was found (using Fourier techniques) which approximated the ideal

characteristic in question. The synthesis procedure of Reference [i] was

then used to calculate the rotation angles (the el) for the network

stages. The 8i used for the various characteristics are summarized in

Table I. Three different ideal transmittances were used in these experi-

ments. They were the triangular wave of Figure 3.6a, the rectangular wave

of Figure 3.6b, and the square wave of Figure 3.6c.

A photograph and schematic of the experimental setup used for the single-

pass experiments are shown in Figures 3.7a and 3.7b. On each of the following

graphs, the reccrder trace shows the measured value of IC(m)l2 while the

circles show the calculated values of IC(m)12.

(i) Triangular wave (n = 3)

The first characteristic was a three-crystal approximation to a triangular

wave. Crystals #i, #2, and #3 were used. The ideal function in this case is

the triangular wave sketched in Figure 3.6a.i With three crystals we can

achieve a four-term Fourier series approximation to the ideal function. The

trace from the x-y recorder is shown in Figure 3.8, with the theoretical points

denoted by circles. Agreement with theory is very good. Note that the
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Figure 3.6 Ideal transmittances used for the naturally-birefringent network
experiments: (a) triangular wave, (b) rectangular wave,
(c) square wave.
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SINGLE-PASS NETWORKS

Ideal eI 82 e3 eCharacteristic _ __ __ __ _j_

Triangular Wave 3 - 4°35 ' -37°45 ' -37°45 ' 85°25 '

Rectangular Wave 3 -17o10 ' -33o31 ' -33o31 ' 72o50 '

Square Wave 3 -27o27 ' 49o23 ' 49o23 ' 62o33 '

DOUBLE-PASS NETWORKS

Ideal
eI 82 0o, 84Characteristic n --

Triangular Wave 3 - 4o35 ' 37o45 ' - -

Rectangular Wave 3 -17o10 ' 33o31 ' - -

Square Wave 3 -27o27 ' -49o23 ' - -

Triangular Wave 5 l°28 ' - 4o56 ' 34o34 ' -

Rectangular Wave 5 3o50 ' -14o04 ' 23°04 ' -

Triangular Wave 7 0o43 ' - l°48 ' 5o00 ' -33o28 '

Rectangular Wave 7 3o09 ' 2o44 ' -14o57 ' 26o26 '

Table I

Rotation Angles Used in Single-Pass and Double-Pass

Birefringent Network Experiments
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detected curve is the square of the approximation curve, since a square-law

detector was used. The trace was taken by cooling the oven slowly from

approximately 39°C to 33°C (which took about five hours). The small

irregularities in the trace, as well as succeeding traces, are due to

laser power fluctuations.

The second characteristic synthesized was a rectangular wave, whose

ideal characteristic is shown in Figure 3.6b. The actual experimental

trace is shown in Figure 3.9, with the theoretical points again super-

imposed as circles. Again three crystals were used, and agreement with

theory found to be very good.

(3_ Square wave (n = 3)

The final characteristic chosen to be syn_ zed is sketched in

Figure 3.6c. The experimental curve is shown in Figure 3.10. Again

agreement with theory is very good.

b. Double-pass experiments

We next give the results of experiments performed on double-pass

birefringent networks. Recall that with the double-pass technique [4],

the optical signal passes through the birefringent network twice. As a

result, a given C(m) can be obtained using only half the number of stages

required by the synthesis procedure of Reference [i]. Thus a C(m) with

n = 3 can be realized by a 1 i/2-stage birefringent network (one full-

length calcite crystal and one half-length calcite crystal) while n = 5

can be realized by a 2 i/2-stage network, and so forth.

Double-pass experiments were performed for n = 3, 5, and 7. The

experimental arrangement is shown in the sketch of Figure 3.11 and in the

photograph of Figure 3.12. As seen in those figures, a mirror reflects

the light back through the birefringent network for the second pass, and

a prism deflects the returning beam to the detector.

For these experiments, four-term (n = 3), six-term (n = 5), and eight-

term (n = 7) C(m)'s were found using Fourier techniques which approximated
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the various ideal functions of Figure 3.6. The synthesis procedure of

Reference [i] was then used to calculate the rotation angles (the 8i)

for the stages of the corresponding sin__networks. These single-

pass networks were each symmetric about their midpoint. Hence they could

be converted to double-pass networks by replacing the last half of the

network by a mirror, and by replacing the input polarizer by a polarizing

beam splitter. The rotation angles used for the double-pass network

stages are summarized in Table I. The following graphs again show measured

and calculated values of IC(_)I 2.

(i) Triangular wave (n = 3, 5, and 7)

The double-pass experimental results for the triangular wave character-

istic of Figure 3.6a are shown in Figures 3.13, 3.14, and 3.15. These

figures show the cases of n = 3, n = 5, and n = 7, respectively. It can be

seen that the agreement between theory and experimental results is very

good for all cases. It was apparent, however, that greater care must be

taken in aligning the crystals as one goes to larger values of n . Even

so, no particular difficulty was encountered in obtaining any of the three

traces of Figures 3.13, 3.14, and 3.15.

(2) Rectangular wave (n = 3, 5, and 7)

Double-pass experimental results for the rectangular wave character-

istic of Figure 3.6b are shown in Figures 3.16, 3.17, and 3.18 for the cases

of n = 3, 5, and 7, respectively. The agreement between experiment and theory

is again seen to be very good for each of the values of n . It is worth

noting that adjacent passbands of these characteristics are separated by

approximately i Angstrom. Thus these birefringent networks are actually

band-pass filters having bandwidths of about 1/3 _ and a periodicity of about

1 _. One might wonder perhaps why the width of the passband does not decrease

greatly in going from n = 3 to n = 5 to n = 7. This happens because we are

approximating the same ideal function of Figure 3.6b in each of these cases.

If we had wished, we could have approximated successively narrower

"rectangular functions" as we went to larger values of n , and then the

bandwidth could have indeed been reduced. However, our object here was
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simply to compare experimental results with theory, rather than to obtain the

narrowest possible pass-band from a given birefringent network.

The experimental results for the square-wave characteristic of Figure 3.7c

are given in Figure 3.19 for n = 3. For the n = 3 case, theory and experi-

mental results have failed thus far to show good agreement with theory. This

is believed to be due to one of two possible causes: (a) Perhaps this

particular characteristic is particularly susceptible to crystal misalignment,

or (b) the possibility exists that a mistake is present in our calculations

of the angles for the stages of the network. We are presently checking both

possibilities but, due to time limitations, have not yet succeeded in pinpoint-

ing the problem.

4. Discussion of Results

a. Single-pass experiments

As has been pointed out earlier, quantitative agreement of the n = 3

single-pass experiments with theory is virtually exact. Thus the theory

of Reference [i] has been demonstrated to be sufficient for synthesizing

arbitrary amF,itude-transmission characteristics. Three dissimilar character-

istics w_ "e synthesized with equally good results. While it is true that none

of these characteristics required the more complicated synthesis procedure of

Appendix A, nevertheless the two types of network are essentially the same

in practical form, and hence there is no reason to believe that new diffi-

culties would arise. In addition, the results from the amplitude modulator

experiments to be presented later substantiate the generalized synthesis

procedure of Appendix A since this procedure was used to calculate the rota-

tion angles and retardations.

b. Double-pass experiments

The data presented in the previous section substantiates the theory of

double-pass networks of Reference [4]. Again agreement with theory is very

good. We believe the development of this new technique and its demonstration

to be a significant technical advance, and that double--pass techniques

st, ,id be used whenever possible. The use of more than two passes becomes an

atLractive possiblity which we believe should be investigated further, for
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the advantages of such a system are obvious. The double-pass experiments

for n = 3, 5, and 7 have also demonstrated that greater care in crystal

alignment must be used for increasing values of n , as might be expected.

B. ELECTRO-OPTIC h'ETWORKS: AMPLITUDE MODULATOR

We now discuss the results of experiments which were performed oN

electro-optlc networks. The set of experiments carried out had an

object of verifying the amplitude-modulator theory of Appendix C. A

three-stage amplitude modulator was designed (using that theory) and

tested, and the measured distortion compared with the predicted distor-

tion. In addition, a conventional tone-stage) modulator was tested and

its measured and calculated distortion compared. The factors which

influenced the design of our amplitude modulator will now be discussed.

i. Physical Considerations

a. Crystal material and size

As in the naturally birefringent case, many materials are suitable

for use as the basic "building blocl_s" of these networks. One must

consider the optical frequency of interest, the optical quality of the

material, the electro-optic coefficients and many others.

In the present experiments, it was decided to use KDP as the electro-

optic material. In order to avoid the problem of natural birefringence of

KDP, the crystals were oriented so that the light propagated along the

optic axis. (An oven would have been required to stabilize the temperature

if the light propagated at right angles to the optic axis, for KDP is

birefringent in that orientation.) Again the crystals were chosen to be

i cm by i cm in cross section, while the length was chosen to be 4 cm.

A sketch of the crystal size and orientation is given in Figure 3.20.

b. Crystal tolerances and compensators

The crystal tolerances are less severe in this case than for calcite

since the lengths do not have to be kept exactly the same. This is because

the half-wave retardation voltage of KDP is independent of length in the

orientation being used. The parallelism requirement of the end faces is

also less stringent.
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Again it was decided to use quartz compens_ors. In this case, each

compensator was ground and polished to the precise retardation required

by the theory.

c. Temperature effects

Since light propagates along the optic axis of the KDP crystals, the

only effect of a change in temperature is to change the retardation of

the compensators. It has been pointed out previG_sly that the retardation

of the quartz compensators changes by about i° per °C. Thus fluctuations

of a few degrees Centigrade are not harmful.

d. Alignment

The isogyre pattern was again used to align the crystals. In this

case, one sees the characteristic "bull's eye" pattern obtained by shining

diverging or converging light through a crystal between crossed polarizers.

The alignment procedure is indicated scb_atically in Figure 3.21a, and a

photograph of the observed pattern is g_en in Figure 3.21b. Each crystal

was carefully aligned so the laser beam hit in exactly the middle of the

pattern.

e. Method of applyin_ modulatinB vol_a_e to KDP

Large electric fields are required to modulate KDP when the orientation

of Figure 3.20 is used. These large fields may be achieved in either of

two ways. The first is to use a resonant cavity of high Q in which the KDP

is placed, while the second possibility is to apply a large voltage to a

nonresonant circuit. The first method has the advantage of requiring a

lower applied voltage, but suffers from at least one serious disadvantage.

It would be necessary for each resonant circuit of the modulator to be

tuned precisely to the same frequency. If the resonant circuits were not

tuned precisely to the same frequency, the voltage applied to the various

stages would differ in amplitude and phase thereby causing error in the

results. To avoid this problem, we chose to use nonresonant circuits

driven by an amplifier capable of producing a large voltage swing. With

this arrangement, a voltage of about 7500 volts (zero to peak) was necessary

in order to obtain 100% amplitude modulation.
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Figure 3.21b Typical isogyre pattern for KDP
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2. Experimental Ap2aratus

a. Crystal holders

The KDP crystal holders were constructed as in Figures 3.22a and 3.22b.

The KDP crystals were mounted in Rexolite rectangular blocks which were in

turn supported un aluminum cylinders by nylon screws. Copper electrodes

with holes drilled to allow passage of the laser beam were mounted at each

end of the crystal, with one electrode grouned to the cylinder and the

other connected to the high voltage. The compensators were placed in brass

holders which were slipped in behind the rear electrode.

Early experiments showed that the KDP was strained, causing slight

natural birefringence. To cancel this natural birefringence, additional

compensators were used with each stage. These compensators were mounted

in the same brass holders which contain the compensators required by

theory.

b. Plexiglass box

A plexiglass box with an aluminum "V" block at the bottom was

constructed to hold the crystals. This apparatus is shown in Figure 3.23.

A high-voltage bus runs the length of the box, and the crystal electrodes

are connected to it.

c. High-voltage amplifier

It was found that a high-voltage amplifier with a peak-to-peak voltage

swing of 15,000 volts was needed to obtain 100% modulation. Such a device

was constructed using a high-voltage beam tetrode tube, with feedback to

reduce distortion. A schematic of the amplifier is shown in Figure 3.24.

The experiments were all run at a modulating frequency of i000 Hz. The

amplifier was driven by a signal generator.

d. Detector

An RCA 931A phototube was used as a detector.
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e. Experimental setu_

The components described above were set up as shown _n Figure 3.25.

The crystals were rotated to the angles prescribed by the s}nthesis

procedure of Appendix C, and a wave analyzer was used to measure the

amplitude of fundamental and harmonics as a function of the drive

voltage.

3. Data

The data obtained from the experiment is shown in Figures 3.26a,

3.26b, and 3.26c, where fundamental, second harmonic, and third harmonic

amplitudes are plotted as a function of normalized modulating voltage.

Solid curves represent theoretical values, with the experimental points

plotted as circles for n = 1 and as squares for n = 3. It will be noted

that the fundamental and third harmonic curves fit rather well for both

n = i and n = 3, while the second harmonic curve is somewhat more

irregular. Particularly conspicuous is the notch in the second harmonic

curve for the three-crystal case. It was found that this notch could

be moved by slightly rotating one of the crystals. Later tests revealed

that one of the crystals was modulating to or4y 85% the depth of the

other two, and _+ is =_I_.... _ _nan making all crystals modulate equally will

remove the notch.

Also of note is that the n = i modulator, while theoretically pro-

ducing no second harmonic modulation, actually had more than the three-

crystal modulator. The reason for this has not been determined, but its

presence makes the three-crystal modulator even more valuable.

4. Discussion of Results

The experimental data presented in the preceding section agree quite

well with the theory of Appendix Co As pointed out earlier, one of the

three crystals used in the modulator differed from the other two by 15%

in electro-optic effect. We are presently modifying the crystal holders

in an attempt to equalize the modulation of the three crystals. It will

not be possible, however, to give these results in this report. However,

the fact that reasonably good results were obtained in spite of this

problem is very encouraging, for it appears that such modulators are not

overly sensitive to crystal differences.
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Figure 3.26b Measured and calculated amplitude of the second harmonic vs. V/Vn
for the one- and three-stagemodulators of Table II. The calculated
amplitude of the second harmonic for a one-stage modulator is zero.
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Figure 3.26c Measured and calculated amplitude of the third harmonic vs. V/VO
for the one- and three-stagemodulators of Table II.
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We feel that this experimental data verifies the theory reasonably well.

Thus it indeed appears possible to synthesize improved amplitude modulators

using the techniques o_ Appendix C.
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IV. CONCLUSIONS AND RECOMMENDATIONS

The goal of this program was to advance the state of the art of optical

birefringent devices. Progress in both theory and experimentation was made

and has been reported. Tee advances in theory have resulted in (i) the

availability of more general and versatile synthesis techniques; (2) a

simplification in the practical form of many birefringent devices; and

(3) some detailed analyses of certain particularly important birefringent

devices.

Experiments were performed which verify much of the theory and, in

addition, demonstrate the practicality of the type of devices under

study. These experiments included tests on three-stage single-pass

birefringent networks and tests on three-, five-, and seven-stage double-

pass networks. The results of these experiments agree very well with

predicted results.

Under the conditions of this program, three devices are to be delivered

to NASA. These devices will be a single-pass birefringent network having

n = 3, a double-pass network (derived from the single-pass network) having

n = 7, and a three-stage electro-optic amplitude modulator.

Both the theory and experiments indicate that the birefringent networks

have become sufficiently well understood to consider the design and

realization of particular devices. The device which would probably be of

greatest interest at presene _s a very narrow-band band-pass filter.

Several unsolved theoretical problems remain which are quite important.

First, any techniques which could be found for increasing (or even analyzing)

the angular aperture of birefringent networks would be most welcome° Second,

double-pass techniques developed on this and previous programs have

substantially simplified the practical form of birefringent networks. Any

techniques which allow still more passes through the network would give

still further simplification. Third, the synthesis of networks composed of
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unequal-length crystals is of extreme importance since that would yield

networks composed of fewer, but longer crystals. Still other topics come

to mind, but these are probaoly the most significant.
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V. SU_4ARY OF RESEARCH CONTRIBUTIONS ON BIREFRINGENT DEVICES

The ma4or research achievements of this program on optical birefringent

devices are su_narized below:

(i) A generalization of the original birefringent network synthesis

procedure of Harris, et al. [i] was found which permits the synthesis of

networks having asymmetric transmlttances. This new procedure substantially

_ncreases the versatility of birefringent networks at no expense in network

complexity. The new procedure is applicable both to naturally-birefringent

networks and electro-optic networks, but will probably De most important in

connection with the latter.

(2) A double-pass technique was developed which could be used with the

new synthesis procedure mentioned above. The double-pass technique reduces

by a factor of two the number of network components needed to realize a given

asymmetric transmittance. A double-pass network is approximately one-half

the size of the corresponding single-pass network.

(3) Techniques were developed for synthesizing multi-stage amplitude

modulators having less distortio_ than conventional (slngle-stage) modulators.

Two cases were considered: (a) the synthesis of modulators to be used with

a linear detector, and (b) the synthesis of modulators to be used with a

square-law detector. Designs for i-, 2-, 3-, 4-, 5-, 6-, 7-, 8-, 9-, and

10-stage modulators were tabulated.

(4) Single-pass and double-pass experiments were performed on

naturally-birefringent networks using calcite as the birefringent material.

The results of these experiments provide the first experimental confirma-

tion of the synthesis techniques involved. Single-pass experiments were

performed on networks with n = 3, while double-pass experiments were

performed on networks with n = 3, 5, and 7o
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(5) Experiments were performed to verify the calculations on the

synthesis of amplitude modulators. Distortion measurements made on one-

and three-stage amplitude modulators agreed reasonably well with pre-

dicted results.
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Optical Network Synthesis Using _lrefnngen_ Crystals. V. Synthesis of Lossless
Networks Containing Equal-Length Crystals and Compensators*

]_.O. AM_ANN AND J.IVY.YARBOROUGH

Electron_c Defense Laboratories, Sylvania Electronlc Systems, Mountain View, California 94040

(Received 23 June 1966)

Part I of this series reported a procedure for synthesizing birefringent networks having a prescribed
amplitude transmittance. The desired transmittanceC(oJ) waswrittenas C(oJ)= Co+Cle'-c"o+C_e-n_+ "'" +
Cop-_"_, where the C_could be arbitrarily chosen as long as each was real. The synthesis procedure of this
paper is a generalization of the procedure of Part I and allows for the realization of C(o_) having complex C_.
The resulting network consists of n stages between an input and output polariz :r, with each stage containing
a birefringent crystal and (achromatic) optical compensator. The form of tlfis network is essentially the same
as the practical form of the network obtained from Part I, and hence the additional versatility is obtained at
no extra cost in network complexity.

INDEXHEADINGS:Polarization; Crystals; Filters; Birefringence.

I. INTRODUCTION input and output polarizer. The network may be thought
of a- _omposed of several stages, with each stage con-

ART I of this seriest described a procedure for sistmg of one birefringent crystal. A network containiuh
synthesizing birefringent networks whose ampli- n stages is required for a C(o0 having n+l terms. Once

tude transmittance could be specified. The purpose of C(w) has been chosen, the rotation angles (the 4)i)of the
this paper is to describe a generalization of that pro- crystals and the output polarizer can be calculated from
ccdure which provides still greater flexibility in the the synthesis procedure.
synthesis of birefringent networks. The synthesis procedule of this paper allows greater

The procedure of Part I allows the realization of a freedom in the choice of C(o_)and results in a network
birefringent network whose amplitude transmittance whose basic fO1Tais shown in Fig. 2. The desired ampli-
C(o_)is of the forrri, rude transmittance C(o_)is still written in the form of

C(o_)=Coq-Cle-i"_q-C2e-i2"_-k...q-C,,e -_"_. (1) Eq. (1), but the Ci may now be complex. An n-stage
network is again required to realize a C(oJ)having nq-1

The number of terms employed in C(_o)is finite but terms, but each stage now consists of an optical
arbitrary. The choice of the coefficients (tt'e C,.) is also compensator 2 and a birefringent crystal. The synthesis
arbitrary as long as each C_is real. The form of the net- procedure determines the rotation angle of each crystal,
work obtained from the synthesis procedure of Part 1 the retardation introduced by each compensator, and
is shown in Fig. 1. The network consists of a aeries of the rotation angle of the output polarizer.
identical cascaded birefringent crystals between an The networks of Part I have been termed !osslessbi-

refringent networks since there are no energy-dissipating
components between the input and output polarizers.
The networks of this paper are lossless in the same sense,
since no internal polarizers are required.

The following sections contain a description of the
synthesis procedure and give an example of its applica-
tion.

II. SYNTHESIS PROCEDURE

A. General

The object of the synthesis procedure is to find the n
birefringent-crystal angles, the retardations of the n+ 1
optical compensators, and the output-polarizer angle
which result in the desired amplitude transmittance
C(_o).For a given C(_o),2_zq-2network parmneters are
to be determined. This matches the numberof quantities

Fro. 1. Basic configuration of birefringentnetwork(4 stages) in C(co)whicll we are free to choose, for we may specifyobtained from the synthesis procedure of Part I. 1"and S denote the real and imaginary parts of the u+ 1 coefficients C+
the"fast" and "slow"axesofthe birefringent crystals. The length L of the crystals (all crystals have the same

* Work supl)orted by the National Aeronautics and Space length) is determined by the periodicity of the desired
Administration under Contract NAS8-20570. amplitude transmittance.

t S. F.. Harris, E. O. Ammann, and I. C. Chang, J. Opt. Soc.
Am. 54, 1267 (1964). _H. G. Jerrard, J. Opt. Soc. Am. 38, 35 (1948).
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The notation, conventions, and approaches used here _. ["-_
follow closely those used in Part I. Iience for brevity it F
is assumed that the reader is familiar with that refer- _'_--_-

i

ence, and much of the information contained therein is F '

not repeated here. Because of this, an understanding of _r--__

Part I is important to the understanding of this v_per. F/_ S. _,, _ ___,_,s ,_

In this paper, optical compensators play an important _',,/ % .,',s
role. A compensator is used with each cryslal of the _/_', s\ \\ ,\
network and with the output polarizer. Since compen- _\_ _ )_

sators were not required (in theory)in Part Iand hence f<_--_,-_ _>/Q/
were not discussed, we briefly describe thPir ope-'dion f \\ o-_." \ \\( /
and analysis. Optical compensators behave essc,,tially
the same as very short birefringent crystals. A com-
pensator introduces a phase difference of b radians
(where 0<b<27r) between slow-axis (S) and fast-axis
(F) components. It is assumed that thisphase difference FEG.2. Basic configuration of bircfrlngent netw,,rk (4 stages)
is independent of w, an assumption which is approxi- obtained from the synthesis I)roccdurcof th.s Palwr.
mately wdid for most cases of interest. If this assump-
tion is wdid, light passing through the compensator is also complex. Thc explanation of this apparent l);tra -
polarized in the S direction is operated upon by e-_b, dox and its significance is given in Scc. III.
while light polarized in the F direction is operated upon In the synthesis, we begin with the ,it.sired C(w) as
by unity, given by Eq. (1). This is equiwdent to prescribing the

We assume in this paper (as in Part I) that the bite- impulse reponse C(t) of the network. We next l)rocee[t
fringent crystals and optical compensators of the net- from the last component of the network (the output
work are lossless. This means that energy must be con- polarizer) back to the first (the input polarizer), calcu-
served at all points within the network between the lating the impulse trains which exist at all intermediate
input and output polarizers. Energy conservation points. The areas of the individual impulses of these
places certain important restrictions on the F; and S_, trains are denoted by the 1;,_ and Sj of Fig. 3, where
and on the Ci and D;. These restrictions are derived and the Fd' impulses are polarized along the fast axis of the
listed in Appendix B. preceding (jth) crystal and the Sj impulses along the

As in Part I, it is convenient to deal with relative slow axis. In the course of calculating these impulse
angles (0,) of the stages instc,_d of absolute angles (@i). trains, the crystal angles, compensator delays, an(l
By relative angle, we mean the additional angle of rota- output polarizer angle are determined.
tion measured from the preceding stage. The relative Assume that C(c0) and therefore the desired Ci of
angles are given in terms of the ¢, of Fig. 2 by Eqs. (1) and (2) h;,ve beeq chosen. We must next find

the sigl,al D(co) which is polarized perpendicular to
0_=¢_, C(oJ) and therefore is stopped by the output polarizer.
02=¢2-@,, Since the network is lossless (between the input and

: output polarizers), the signal energy entering the first
0,,=@,,-@,__, crystal must equal the sum of the energies in the C(o_)

Op=@v-@,. and D(to) outputs. In equation form, this gives 3

C(o_)C*(oJ)TD(oJ)D*((o) = (I00)2, (3a)
B. Procedure

where Io° is the area of the impulse which is incident
As mentioned in Part I, a useful approach to the upon the first crystal. Rewriting this, we have

synthesis problem is to consider the impulse responso
of the network. Since the inverse Fourier transform of D(oJ)D*(oJ)= (lo°)2-C(oJ)C*(co). (310

the amplitude transmittance of a network yields its

impulse response, we obtain, by taking the inverse t_eur ts, zna 3ra .,, outputPOLAq'ZER STAGE S[AGE SIAGt SlAGE POLARIZER

1.'ourier transform ofEq. (1,, the impulse response of I _"'' _"'' _1 _ '[''nW_ Uc'Hthe,,,'t',';orkofrig.2 LlllslLIIIs sF'lIIJ, 0,
C (t) = C08(t) d"C ,8(t - a) q- C28(t- 2a)+... 0.,

+C,8(t-na). (2) C¢,MPglSAIOR

i'm. 3. n-stage network. Each stage contains a hirefringent

Thus the impulse response of our network consists of crystal and optical compensator.
a series o" equally spaced impulses whose areas are given a Asterisksare used in this paper to den.te the complex co,qu-
by the C_. Since the C_ are complex, the impulse response gate of aquantity.
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FINAL F Although the method of .Appendix A gives us the wdues
COMPENSATOR S (OUTPUTPOLARIZER of the D/, it does not determine avalue for/_. The quan-

F\ /_ TRANSNIISSlONAXIS) tity g must be determined from other considerations
\-. // 0 p and, as is described shortly, has a value which is fixed\

" / t S by the manner in which the synthesis is formulated.
.... --_/'k_ Let us now relate the inputs (the F," and S,") and

/ -. outputs (the C, and D,) of the final compensator. It/ \
/ \ should be remembered that the 1,'_" and S," are ('oln-\

/ (OUTPUTPOLARIZER ponents along the fast and slow axes of the preceding
(A) REJECTIONAXIS) (nth) stage while lhe C, and D, are components along

nlh STAGE the slow and fast axesof the compensator. With the aid
of Fig. 4(a), we find

l
F\ kS,',J-kexp(ib_,).cosOv sino,,JLc,.D,'J' (.5)\ /s

\ /_ where Ovis the relative angle of the final compensator

k // _.\ I (and hence also of the output polarizer), and bp is the
X _/ S

/" _\ compensator delay.
/ We must next determiue the quantities #, 0_, and by./ \

// \\ To do this, we derive and solve three simultaneous
\ ith STAGE equations. The f.;st of these equations is obtained by

(B) noting that the first impulse to leave the nda stage must
i-! th STAGE have a real area. This is equivalent to stating that Fo"

must be real. This condition arises fi'om our convention

S of Sec. IIA which states that light passing through a

/_.... compensator polarized in the S direction is operated

upon by e-ib while light polarized in the F direction is

Oix- operated upon by unity. Since the first impulse to leave
F-_. [/ _ INPUTPOLARIZER the nth stage must have been polarized along the F

_----___ .' TRANSMISSIONAXIS axis of each preceding stage, this hnpulse will have been

_s operated upon by unity in each compensator and will

II t STAGE therefore be real. From Eq. (5) we obtain for F0"

/ Fo" = exp (ib,,_. (si,10,,). Co-- ei". (cos0,,) •Do'.
(C)

I.'tG.4. Angle conventionsused in the synthesisprocedure: Equating the imaginary parts of the left- and right-hand
(a) linal compensator(and output polarizer); (b) ith stage; (c) sides of this equation, we obtain the first of our three
inlmt polarizer, desired equations,

0 = sln0_[-hn (Co) cosbp+ Re (Co) sinbv-I

We are now ready to choose a value _or I0°. The left --cos0v_Im(D0 _) cos#+Re(D0') sin#_, (6a)
side of (3b) must he nonnegative for all frequencies;
thus (Io")_ must be chosen greater than, or equal to, the where Im and Re denote the imaginary and real parts
nwximum wdue of C(o_)C*(o). Having chosen I0°, we of the quantity in question. The remaining two equa-
can calculate D(o) fl'om D(co)D*(o_) using the method tions result because the first and last impulses leaving
given in Appendix A. the nth stage nmst have been polarized along its fast

l)oing this, we obtain D(co) in the form and slow axes, respectively. This means that

D (co) = Do'+ Dlte " "_+ D2'e-'_'"o+ . . .+ D,/ e-'"% F,,"=So"= O,

where tim D[ are in general complex, it is important which, with (5), gives

to note, however, that if DGo)is a solution of Eq. (3b), expEi(b_,-g)-I, tan0v= D [/C, (Gb)
then ei"D(oJ) is also a solution. Hence a more general and

solution for D(o_) is exp[--i(b_,-t_)], tanOv=Co/Do'. (6c)

D(oo) = d,[_Do%Dt'e-i"_+D2'e-_o-I-... Taking the complex conjugate of both sides of Eq. (6c),

+D.,e-_....,] we obtain

= Do+Dle-_"_+D2e-'_a_+ ''. +D,e-_"a% (4) exp[i(b_-g)], tanO_,=- (Co*/Do'*).
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Combining this equation with Eq. (6b), we obtain and

Co*C,+Do'*D,'= O, (7a) p- bp-ap. (1 1)

the relation which must be tree if Eqs. (6b) and (6c) Having determined a,,, b.,, and p, we can substitute
are to be satisfied simultaneously. Noting that these values into (5) to obt..dn F_" and Si", the outputs
D_'= e-i_'D_, we can rewrite (7a) as along the fast and slow axes of the nth stage. We must

pext find the rotation angles and compensator delays
Co*C,+Do*D,=O. (7b) of the n stages of the network.

To do this, we write expressions relating the input
But Eq. (7b) is automaticaUy satisfied from conserva-

and output of each stage. With the help of Figs. 4(b)
tion of energy since it is identical to Eq. (B9) of Ap- and 4(c), we obtain
pendix B.

Since the C_ and D{ are complex, we can rewrite First Stage
(6b) in the form

VFo_'l F --sin0, l__ o_

expEi(b,-#)].tanO,=lO.'/C.lexp(_:), (8) - -,_-/S,'|=|expf-ih).cosolLI°J' (t2a)
where in (8) we have expressed (D,//C,) as a magnitude

and phase angle. It is apparent from (8) that the rota- Second Stage
tion angle 0p of the polarizer and compensator should be
chosen to be IFo2] _ cos02 0

tansy= [D,'/C,[. (9) /F_q [ 0 --sinO_ I Fo_, I (12b)
|S_2[ = exp(--ib2).sin02 0 iS,: i

By further manipulations of Eqs. (6a), (6b), and (6c), (S2Zj 0 exp(-ib_), cos02
we obtain

tanbp= - hn (Co)/Re(Co) (10) Third Stage

F s[ 0 cos03 - sin03
F2a/ 0 0 0 - o_ |F a[
St"l = exp(-iba).sin03 0 0 is,q, (t2c>
$23I o exp (-ib3). sin0a exp (- ib3)' cos03 LS22JS3aJ 0 0 exp (- ib3). cos0_J

and in general,

jth Stage

Fd cos0j 0 0 ... 0 0 0 .
Fd 0 cosO_ 0 ... 0 0 0 Fd-z
F2 i 0 0 cos0/ ... 0 0 0 Ft i-t

i:_ _! _ii iii _! !i_ _ii IV-'.,.

F__.at 0 0 0 .... sin0._ 0 0 : : :
l,)..g 0 0 0 ... 0 -sin0t 0 Fj-3_-_
Ft__t 0 0 0 ... 0 0 -sinOt l"/-d -l
Sd = exp(-ibt).sinO t 0 0 ... 0 0 0 Sti__ . (12d)
S_I 0 ex_,(-ibm). sine1 0 .., 0 0 0 S_i-_
Sa_ 0 0 exp(- ibt)"sin0t ..- 0 0 0 S__-_

S_-g 0 0 0 ... exp(-ibi).cos0i 0 0 S_-d-_
St_t_ 0 0 0 ... 0 exp(-ibi) .cos0_ 0 S._-__-t

. Sil 0 O 0 ... 0 0 exp(-ibt).cos01.

Putting j=n in (12d), we have the. ir.,put and output Note that _, includes the effect of the minus sign
relations for the nth stage, We know the output (the which precedes F,_t"/S,, _.
F_" and S#) and wish to find 0,, b,, and the input. As We can satisfy Eq. (I3a) by properly choosing b,
discussed in detail in Part I an input exists which and 0,, while (13b) is automatically satisfied by con-
produces our given output provided that servation of energy. Knowing b, and 0,,, we can then

calculate the input to the nth stage from (I2(1). This,
exp(ib,), tan0,,= -.F.-t"/S,"= [F,_t"/S,"[ of course, is also the output from the n,- 1 stage; hence

Xe:_p(ia,) (130.) we can repeat the procedure just descrihed to determ_ine
and b,_t aud 0,-t. In this fashion, we can work our w_y

Fo"*Fn-tn+St"*S."=C. (13b) back through the entire network until all rotation angles
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_md compensator delays have been determined. The and (C2), _alculate the input to the last stage (which
general equations for tile jth stage are is the output from the preceding stage).

(8) Repeat the procedure of step (7) on each suc-
exp(ibt), tan0i= -Fj_li/Sj= ll%d/Sdl ceeding stage until the rotation angle and compensator

Xexp(iai), (14a) delay of each stage have been determined. If air 7rfor a
and particular stage, Eqs. (15c) and (15d) rather than (15a)

Foi*Ft__ls+SI_*Sji=O, (14b) and (15b) should be used to calculate b1and 0i.
which gives

bi=at (15a) III. DISCUSSION
and

tan0j= 1Fi_11/$t_I. (15b) We now consider the implications of being able to
choose C_which are complex. In Part I, we were limited

As seen from Appendix B, Eq. (14b) is always auto- to amplitude transmittances having all Ci real. This
matically satisfied by conservation of energy, meant that we were limited to C(co)'swhose real parts

Note that if a_=0, a compensator is not required (in were even and whose imaginary parts were odd. These
theory) for that particular stage. Furthermore it is restrictions have now been removed; the real and
possible to eliminate the compensator from a stage imaginary portions o_ C(oJ) can now be asymmetrical.
which has airy. This is because when ai=% an alter- An objection might be raised that since the C_ are
nate solution to Eq. (14a) is complex, our network has an impulse response, given

by Eq. (2), which is complex; but it is well known that
b_.=0, (15c) the impulse response of a physical r etwork must be real.

and This dilelmna arises because our theory requires the
tan0_-=--[Fi_li/Sj[. (15d) use of achromatic optical compensators in the network.

The theory r_ssumesthat these compensators introduce
Hence wheneverai=Tr, Eqs. (15c) and (15d), rather thau a delay which is independent of co.Such a del_y is not
(15a) and (15b), should be used to detenuine b1and 0i. realizable in practice. Compensators can approximate

We now have sufficient information to synthesize a this behavior over a limited frequency range however.
birefringent network. The procedure to be followed is Hence the response of tile synthesized network closely
summarized below, approximates C(co)over the frequency range for which

the compensators may be considered achromatic.
C. Sununary of Synthesis Procedure Outside of this frequency range, the transmittance

(1) Chooo"_the desired ,'unplitude transmittance departs from C(co). Since bircfringent networks are
C(oJ)and write it in the form of Eq. (I). The C_may be ordinarily designed for use over a limited frequency
complex, range, this is an acceptable situation.

(2) The required length L for all crystals is'given Thus we see that C(co)accurately describes the net-
. work's transmittance over only a limited spectralby L = ac/A'q, where c is the velocity of light ,.a a vac-

uum and Anis the diff':rence between the extraordinary range. But when we take the inverse Fourier transform
avd ordinary indices of refraction of the crystal. The of (1) to obtain the impulse response given by (2), we
quantity a is determined by comparing C(co)as written are (incorrectly) assuming that Eq. (1) is valid for all
in step (l) to C(co)as given by Eq. (1). possible values of _. Hence it is not surprising that the

(3) Choose a (real) value for I0°. The choice is result is a complex impulse response for the network.
arbitrary as long as (Io°)2is greater than or equal to the Even though (2) does not accurately give the network
w.aximum magnitude of C(co)C*(co). impulse response, the time-domain approach is very

(4) Calculate D(co)D*(co) from Eq. (3b). Use tlle useful for visualizing and understanding the synthesis
method of Appendix A to solve for D(co)from D(co)D*(co). procedure.

Part II of this series4 described a second synthesisThis gives the D__of Eq. (4), but does not determine #.
Several different D(co) result, and each of these, when procedure which achieved the same goal as the pro-
used with C(co) results in an acceptable network. T.he cedure of Part I, but via a different form of birefringent
D_'of these D(co)are, in general, complex. The remaining network. Moreover, the procedure of Part II can be
steps should be carried out for each D(co). used when complex C_are present in C(co).The network

which results, however, contains internal polarizers and(5) Calculate the rotation angle 0p of the output
polarizer and final compens_tor from Eq. (9), the phase hence is not a "lossless" network. For that reason, the

network of this paper is preferable to that of Part II fordelay b_,of the final compensator from Eq. (I0), and
from Eq. (I1). most applications.

(6) Calculate the El" and Sg' from Eq. (5). The network resulting from rite synthesis in,, "_:dure
(7) Using Eq. (15b), calculate the rotation angle 0, of this paper contains an optical compensator . to

of the last stage. The compensator delay b,, for that ,E. O. Ammannand I. C. Chang,J. Opt. See.Am. 55, 835
stage should be computed from (15a). Using Eqs. (CI) (1965).
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the output polarizer. In practice, it is often possible to :':_x _/_'_"_"

remove this optical compensator. Suppose for example [ "_k 1"7"that we have synthesized a network which has a desired _, /
C(o_).If we now remove the final compensator from that \network, the new transmittance is exp (ibl,).C(o:). Thus
ti_enew transmittance differs from the desired transmit- ,.......

tance by only a constant phase factor. Often the intro- _0°_,,_ 1_0°/ 0° _°°
duction of this phase factor is of no consequence, and // ....
hence the final compensator can be removed, Further-
more, we note from Eq. (10) that if Co is chosen to be
real, b1,=0 and the need for the final compensator is
automatically eliminated. -I. 0co_--_,

Finally, we note that (as seen in Figs. 1 and 2) the F_c. 5. Ideal and approximating amplitude transmittance._of
example.Ideal transmittancei3 shownby (lotted lineand ap.

network of this paper contains a greater number of proximating transmittance by solidline.
components than the network of Part I. It should be

emphasized, however, that Figs. 1 and 2 show the net- The Fourier-series approximation to the ideal transfer
works predicted by theory. In practice, the network of G(oJ)is given by
Part I requires the use of an optical compensator with
each crystal of the netw')rk to compensate for slightly K(¢o)= (1/Td)[(4/9--i2/9)e_S"_'--e _'
incorrect crystal lengths. Tiros the practical fonns of +(4+i2)c.¢"_'+7r'/4+ (4-i2)e -i_'-e-i2"°,
the networks of this paper and of Part I are identical; + (4/9+i2/9)e-_J"_'], (16)

the additional flexibility is obtained at no expense in which :z plotted in Fig. 5. Following the method of
actual network complexity. In this paper, each optical Part I, we convert thi_ noncausal approximating ftmc-
compensator serves the dual functions of (a) introducing tion to a causal function by wultiplying by e-;3"%
the delay required by theory, and (b) compensating which gives

for incorrect crystal length. C(_) = e-_3a_K(o_)= (1/7r2)[(4/9- i2/9)- e- _''
IV. EXAMPLE + (4+i2)e-;_"_+ (zc2/4)e-'_'+ (4"-i2)e -'4_'

A sample calculation is performed to illust,'a_.e the -e-i_°'+(4/9+i2/9)e-_"'°]. (17)
synthesis pro:edv-e o_.S._c. II. Suppose we wish to Multiplicatio_ by e-_3_ is equivalent to introducing a
approximate the real transfer flmction G(_) shown in pure time delay in the time domain, and thus the ira-
Fig. 5. Since G(¢o) is neither even nor odd, complex pulse response and tra_sfer function are essentially
cocltficier,ts are required in the approximating exponen- unchanged. Since the series :ontains seven tcrms, the
tial series. For this example we use a seven-term complex synthesized network contains six stages,
Fourier series. We now calculate D(o_). From Eq. (31))we have

[D (_) [_= D(co)D*(_) = (I0°)2- C (,o)S*(co)= (I0°)_- 0.44257-- (0.11139+i0.14695)e '"_- (0. I 1139- i0.14695)e- '_'°
t2a_ " t8 a ',_

-- (0.09990+i0.12775)e ;_- (0.09990--i0,I2775)e- -.(--0.05961--i0.05232)e' "
t3ao_ {4a_ r] {4a_- (-0.0.961+i0.05232)e-' -0.05589e -0.0558_e- -- (-0.00913+i0.00456)e _"_

--(--0.00913-i0.00456)e- --(0.00152--i0.00203)e --(0.00152+i0.00203)e- . (18)

The area Io° of the input impulse must now he chosen in order to obtain [D(_o)[*. It may have any real value as
long as (I0°)_ is larger than the maximum vahm of C(o_)C*(o_).The maximum of C(o_)C*(o_)has heen calculated
to be 1.035. Thus let us choose 1o°= 1.050, which gives (Io_)*= 1.1025. Equation (18) then becomes, after making
the substitution x= e-_',

ID(o_)1_.... (0.00152+i0.00203)x _- (-- 0.00913-- i0.00456)x _- 0.05589x_-- (- 0.0596I+i0.05232)x _
- (0.09990-- i0.12775)x_- (0.11i39- i0.14695)x+ 0.65993- (0.I 1139+ i0.14695)z-'
-- (0.09990+i0.I2775)._f "_- (- 0.05961--i0.05232)x -s- 0.05589x"-*

-- (--0.00913+i0.00456)._ __- (0.00152-i0.00203)x _s, (19)

which is in the form of Eq. (A2). Following the procedure of Appendix A, we find the roots of (I9) to be

xt= 0.06608- i0.27538, (I/xt)* = 0.82394- i3.43353,
x,=--0.09690-/0.27436. (1/x_)*= _I.I4455-i3.24064,
,c_=-0.67656-i0.06373, (I/x_)*---.- t.46526--i0.I3704,
x_= 0.I7633+i0.!7387, (I/x,)* = 2.87546+i2.83537,
x_= 0.57518+i0.17898, (I/x_)*= 1.58510+i0.49323,
x_= 0.59387+iI30936_ (l/x,) = 0.28729+{0.63342.
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There are 128 (2"+') possible sets of D_which can be obtained from these root° However, sixty-four of these sets
are simply negatives of the other sixty-four. We consider only the set that is formed by constructing the polynomial

(x-x,) (x- xj)(x- x,)(x- xs)(x- x0).

Performing the indicated multiplicat'on, we obtain

xG+ (-0.63801-il.04187)x5+ (0.02599-i0.29300)x4+ (0.05553+i0.44610)x 3
+ (- 0.23903- i0.05436)x2+ (0.04871- i0.00793)x+ (- 0.00721+i0.00961). (20)

As stated in Eqs. (A9), a set of D_' is proportional to the coefficients of this polynomial. Evaluating [q[ using
(A10), ',_ _nd that

Iql=0.4s943,
and so

Do'= -0.00331+i0.00441,Da'=0.03011+i0.20496.D5'=-0.29312--i0.48203,

Dt'=0.02238-i0.00364,D4'=0.01194-i0.13461,D6'=0.45943.

D2'= - O.10982-i0.02495,

l:romEqs.(9),(I0),and (II)we may now calculate0,,br,and#.The resultsare

0,=83°45', bp=0.46365rad, #----5.35589rad.

UsingEqs.(A9),we findthat

Do= ei_Do'=--0.00552+i0, Da= #_DJ= - 0.14590-{-i0.14706,Ds= e_D5'=0.20976-i0.52372,

D,=ei_Dl'=O.O1634+iO.O1572, D4=#_'D4'=O.11485--iO.07122, Ds=e_'Ds'=0.27566+iO.367.55,
Dz= ei,'Dz'= - 0.04593- i0.10282,

and hence D(o0)is completely known. Equation (5) is now used to calculate the F_s and Si s, giving

F06] 0.05065+i0.00000] fS,Q 0.00637+/0.01069"
F_6| -- 0.09187-- i0.04675J [S_8[ - 0.01604-- i0.06272
F26| = 0.27526+i0.371M| [S._s [ - 0.12067+i0.15836
F36| 0.23817+i0.09512 [' ]S_6[= 0.16353--i0.07079
F46[ 0.43791+i0.00776 [ ]S_s ] 0.19863--i0.52554
Fs_J --0.11293+i0.01201J [S,,6J 0.27731+i0.36975

As a check, we should note that F0s must be real and summarized results of the synthesis are
that F66and So6 must be zero. As a further check, we
can -'-rify that Eq. (14b) is satisfied. "0_ 6° lY b_ "2.10838

V. _..e now able to calculate 0_and b6, the relative 02 13°48 t b2 2.96994
angle of the last stage and the optical compensator 03 36°4Y b3 0.74123
delay. Using (15b), we find 04 = 43° 00' , b4 = 0.74123 radians.

05 36° 45' b5 2.96994
0_=13° 48' 00 13° 48' be 5.24997

and from (15a), fl_ 83° 45'. br 0.46365
b6=5.24997 tad.

The Jones calculus5 can be used to verify that these

The input impulses to the sixth stage are now calcu- angles and compensator delays give the desired transfer
lated from Eqs. (C3) and (C4). Equations (15b) and function of Eq. (17).

(15a) are then applied again, yielding ACKNOWLEDGMENTS

05= 36_45' The authors are grateful to S. Barnard for assistance
and in performing the calculations of Sec. IV, and to

b5=6.11153 tad. Professor S. E. Harris for a careful reading of the
manuscript.

By alternately applying Eqs. (C3) and (C4) and Eqs.
(15a) and (15b), we obtain the remaining 0_and b_.The bR. C. Jones,J. Opt. Soc. Am. 31, 488 (1941).
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APPENDIX A Construct all possible equations using one root from
each row of (A7). One possible grouping, for example, is

We describe in this appendix a method for calculating

D(_o)from [D(o_)12.The method is similar to that given (x-z1) (x-z2) (z- 1/x_*).. • (x-- 1/x,*)
in Appendix A of Part I, but differs in its details. The =x"+d,_lx"-l+. . .+d_x_+dxx+do. (A8)
differences are necessary because (a) we now begin
with a C(oJ) containing complex Ci, and (b) complex Each different grouping of roots results in a different
values of Di can now be tolerated in D(oJ). D(_0).

We begin with the positive semidefinite polynomial The Di are proportional to the dr, where q, the con-

[D (co)[2= D (co)D*(o_)= (Io°)_- C (_0)C*(oJ), stant of proportionality, is in general complex. Writing
=A,e i.... +A,_tet(,_l>oo+. ".+Ald_O+Ao q in the form q= [q[e% we obtain

+ A l*e-¢°_+ . . . + A ,,_l*e-_("-1)_ Do= ]q ]#"do= d"Do',

q-.4.*e-' .... . (A1) Dr= IqleC"dt=et"D_',
Letting x= e-;_ and reversing the order of the temas,
Eq. (A1) becomes D.= Iqle"d,,=d'D,,'= iqle% (A9)

where
ID(x) I==A,,*x"+A.-,*x"-'+... +A l*x+A 0 D/= Iqld,.

+A1_-1+ ...+A"_tx-(,,-l)+A.x-". (A2)
The necessity of allowing q to be complex cat: be seen

Assume that xt is a root of Eq. (A2). Then by noting that if D(_) is a solution of Eq. (3b), then
A n*Xt"+A n--l'X1"--1+ "'' +A l*xl+A o+A lXC1+ ''" e_D (o0)is also a solution.

+A,_lxl-("-I)+A,,xl-"= 0. (A3) The quantity [q [ is calculated from

If we now take the complex conjugate of Eq. (A3), we [ql_[dodo*+d_dx*+ .. .+d,,__d,__*+l]=Ao. (A10)

obtain In order to calculate the phase angle #, however, ",ddi-
A,(xl*)"+A,,-l(xi*)"-t+ ''" tional infermation must be provided. The necessary

+A1Xl*+Ao*+Al*(xl*)-_+ ... information is obtained from the restriction that Fo"
+An_t*(xx*)-("-1)+A,*(xl*)-"=O. (A4) must be real, a condition which results from our

formulation of the synthesis procedure. With this re-
Equation (A4) can be rewritten as striction,/z is uniquely determined (see Sec. lib) and
A,, (1/Xl*)-_+A,_x (1/xt*)-("-l)+ ''" D(oJ) can be obtained.

+Ai(1/xI*)-I+A o*+Al*(1/xl*)+" • • Thus the method of this appendix allows us to find
+A,__*(1/x_*),-a+A,*(1/xx*)"=O. (A5) D(oo) to within a multiplicative phase factor e_. We

obtain values for the D, _,where
But we now see that (A3) and (A5) have identical

coefficients, with xa being the variable in Eq. (A3) and D(o)--et"[Do'+Dt'e-¢°°'+D_/e-i_°°+ '''
(1/Xl*) the variable in (A5). Thus if x_ is a root of (A2), __n 'o--t(n-_)a__t_D 'o-_._7l,t_,I,-.l o /_I_ _ ..1,

then (1/Xx*) is also a root. One of these two roots is =Do+D_e-i,,_,+D_e-,_,,o+...

associated with D(x) and the other with D*(x). Hence +D,__e-lO'-l)_+D,,e -_'_°'. (All)
we associate half of the roots of Eq. (A2) with D(x)
and half with D*(x). D(x) [-and hence D(o_)] can then APPENDIX B
be constructed (to within a multiplicative phase factor)
from a knowledge of its roots. In this appendix, the restrictions placed upon the

To summarize, begin with [D(_o)[_ written in the F, and S, (and upon the Ci and D;) because of conserva-
form of Eq. (A1). The A, are in general complex. Form tion of energy are derived. Consider the ith stage of
the equation the network of Fig. 2. Since the network is lossless, the

energy in the fast-axis output plus the energy in the
A,*x"+A,_x*x'-x+ ... +A _*x+A o+A x_¢'_+''" slow-axis output of the ith stage must equal the energy

+A,_tx-'(,-_)+A,x-"=O. (A6) incident upon the first stage. Stated mathematically,
/

Solve for the 2n roots of this equation. These roots this gives
_lways exist in pairs of the form Ft(o)Ft*(_o)+St(o_)S¢*(_o)=(I0°)_. (B1)

x_, 1/xt*, If we write out Eq. (B1) and equate the coefficients of
x2, 1/xa*, corresponding terms, we obtain the equations

x_,: 1/xt*,: (AT) Fo,,Fo%F£,Ft%. . .+F__t_,F_..ti+S_t,S_ t

X,, 1/x_*. +Si_*Si_+. . "+S_*S_= (Io°)*, (B2)
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Fo_*F_+FI_*F_-q-... +F__2_*F_l_+Sl_*S2_ known. The expressions are similar to those of Appendix

+S21*Sa% .. .+Si_£*Si_=0, (B3) C of Part I but differ somewhat due to the complex
quantities involved.

F°¢*F21+Fli*F_¢+"" + F¢-Si*Fi-I_+S{*S3_ We begin by d_fining Fs_l_and S_s in polar form:
-[-S2i*S41q-...-t-Si_2iSi _= O, (B4)

: Fj_lJ=li_J-{Iexp(ifi-t0 (C1)

Fo_*Fi_t'q-St'*S,'= O. (B5) Sj= ISA exp (isj). (C2)
C(co) and D(o_) must also satisfy conservation of

energy, giving the following restrictions on the C¢and D;. Using these definitions, we find the expressions for
the F_ and S s-t in matrix form

Co*Co+CI*CI-[-. . .+C,*C,,-[-Do*Do-b Dx*DI+ . . .

+D,*D,,=(lo°) 2, (B6) f Fd'-I [Fd' Sv"]

_o,_+_,,_+...+__,*_+_o*_i+_,*_+...I_,_' ex_-_,,OF,'_'IF_'']
Co*(2+Ct*C3+... +Cn_2*C,-kDo*D2q-D_*Ds+... LFj 1-/'-'-1 I.Fi_xJ S/'J (C3)

+D,_2*D,=0, (B8)

: iso,-,] . [Fo,sQ
APPENDIXC i {IF;-{l%lS/lq_[ i i It- a?"J"

This appendix gives a systematic and rapid method LSj I_U LF_-_£' Sj./ (C4)
of calculating the input to a stage, once the output is
known. This is simply a formalized procedure of solving As before, the ca!culated values Fi_t j-1 and Soj-1
for the Fi-1 and Ss-1 of (12d) once the FJ and S j are should always be zero.
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I. INTRODUCTION

t
In Part IV of this series , it was shown that a certain class of amplitude

transmittances can be realized by birefringent networks containing only half as

many crystals as normally required. The technique involved was called a

double-pass synthesis procedure since the light makes two passes tnrough the

network. The purpose of this paper is to give additional double-pass procedures

which are applicable, when the number of network stages is odd, to a still

broader class of amplitude transmittances.

We will make use of results obtained in several previous papers of this series.

Although some of this material is reviewed, familiarity with these papers is desirable.

It is particularly important that the reader be acquainted with the techniques and

results of Part IV 1, and to a lesser degree, with the contents of Parts 12 and V3.

The double-pass procedures described in Part IV are applicable to the type

of birefringent network described in Part I. The first part of this paper gives addi-

tional circumstances in which a double-pass procedure can be used with that type of

network. The second part of this paper deals with double-pass procedures for the more

general type of birefringent network of Part V.

Let us briefly review the essence of the double-pass procedures of Part IV.

For a certain class of amplitude transmittances C(U_), the birefringent network which

results from using the synthesis procedure of Part I has a particular symmetry.

Because of this symmetry, the last half of the birefringent network can be replaced

by a mirror which reflects the light back through the first half of the network. In this

paper, we show how networks obtained for still other classes of C(u_) can be made to

have this symmetry. Having done this, the techniques of Part IV can then be used

directly.

B-2
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The forms of the networks obtained using the procedures of Part I and Part V

are shown in Figs. 1 and 2 respectively. In Fig. 1, each stage of the network consists

of a birefringent crystal, while in Fig. 2 each stage consists of a birefringent crystal

and optical compensator (wave-plate). The network of Fig. 1 can be considered to be

a special case of the network of Fig. 2 in which all optical compensators introduce

zero retardation. The _i shown in Figs. 1 and 2 are the absolute rotation angles of

the stages• The ¢i denote the angle between the slow axis of each crystal and the

transmission axis of the input polarizer. It will also be useful to deal with relative

angles (0i) of the stages, defined as the angle between the slow axis of a stage and

the slow axis of the preceding stage. The 0.1 are related to the _i by

01 = _1'

82 = _2 - _1 '

03 = _3- _2'

8n = _n- _n-l'

% = %- Cn" (1)

We now derive a property of these networks which will be used throughout this

paper. Suppose that we alter a birefringent network by (a) for the jth stage, changing

0 to -0 and adding _ radians of optical compensation, and (b) for the preceding stage,

adding _ radians of optical compensation. The output of the new network will be iden-

tical to that of the original network.

To prove this statement, we will use the Jones calculus 4. Figure 3 shows the

jth stage of the network of Fig. 2. The u and v directions are those of the S and F

B-3
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axes of the preceding (j-l) stage while u' and v' denote the S and F directions of the

jth stage. The complex amplitudes of the E field of the incoming and outgoing light

are related by

E' = IvIS(-Sj)E,

which, when written out, is

E 0 cos Oj sin Oj E

\Ev/ 1 -sin oj cosej E

Je cos Oj e Je sin 8 Eu

\ -sin 8j cos 8j E (2)

The quantity bj is the retardation of the compensator while ac_ is the retardation of

the crystal. For convenience, let us denote the 2x2 matrix of (2) by

/_CI BI/ . (3)
D

Suppose that we now change 0j to -ej, and bj to bj + -. Tiffs causes

-ib. -lb.
e J to become -e J, and sin e. to become -sin e.. The new matrix for the jthJ J

stage is thus

B-6
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In add_ion, for the preceding stage let us change bj_ 1 to bj_ 1 + _r. This

means that the matrix for the (j-1)th stage is

Aj-1 -Bj-I_ . (5)

Cj_I Dj_I /

The matrix for the (j-1)th and jth stages together is found by multiplying (4)

and (5).

= (6)

-C: D. \ Cj_ 1 D. \CjAj_ 1 + D.Cj j j J j-1 CjBj-1 + DjDj-1

But this is identical to the matrix which would be obtained for the original (j-1)th and

jth stages. Therefore in making the changes 0.---_-0j j, b.--_b.j] + _r, and bj_l--_b]_1. . +
Tr_

we have not altered the network's behavior; the desired result has thus been proved.

We make one further observation. Suppose that we make the changes

01--->- -91 and bl-----_b 1 + ._ on the first stage of a birefringent network. Since there

;s no preceding stage, the question arises as to how the network's performance is

affected. It can be shown that such a change causes the amplitude-transmittance C(a_)

of the network to become -C('o). As noted in Part HI5 , this sign change is of no

practical importance.

II. TECHNIQUES WHICH ARE APPLICABLE WHEN THE C. ARE REAL
1

Two basic types of lossless birefringent network are shown in Figs. 1 and 2.

For both types, the amplitude transmittance C(oJ) is given by

e -inau_ (7)C(o0) = CO + C1e-ia''° + C2e-i2a¢_ + ' • • + Cn

S-8
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When the C. of (7} are real, the synthesis procedure of Part I can be used and the1

type of network shown in Fig. 1 results. When the C. are complex, the proceduret

of Part V must be used and the type of network shown in Fig. 2 results. Part IV

gave two double-pass procedures (methods A and B) and the circumstances under

which they cotlld be applied when C(u_) contained real C.. In this section we show1

that for real Ci, additional circumstances exist under which double-pass procedures

can be used.

In Part IV it was seen that Methods A and B are applicable to networks

exhibiting the symmetry shown in Fig. 4a. In Fig. 4a, symmetry requirements are

given both in terms of the e. and e.. Although optical comlcensators are not present
t 1

in Fig. 4a, equivalent symmetry requirements can be stated for a network which con-

tains them. These requirements are shown in Fig. 4b, where the b. are the retar-1

dations introduced by the respective optical compensators. For both Figs. 4a and 4b,

the symmetry requirements may be summarized as follows. The birefringent net-

work (a) must have its input and output polarizers crossed, and (b) must have stages

which are symmetric (both with respect to rotation angle and compensator delay)

about the midpoint of the network. Satisfaction of these criteria allows methods A

and B of Part IV to be applied.

Theorem 5b of Part III states that ff the C. of the desired transmittance are1

chosen so that CO = -C n, C1 = -Cn_ 1, C2 = -Cn_ 2, C3 = -Cn_ 3, ... etc.,

then each of the resulting loss!ess birefringent networks will have _1 = -ep _=90°

e2 = -%' e3 = -Sn-l' 84 = -%-2' "" etc. As pointed out in Part tV, these anglc

restrictions are precisely those required for using methods A and B and hence double-

pass procedures can be applied.

Suppose, however, that the Ci satisfy CO = Cn, C1 = Cn_ 1, C2 = Cn_ 2,

C3 = Cn_ 3, .. • etc. Theorem 4b of Part III states that the resulting birefringent
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networks have eI = %_:90 °, e2 = %, e3 = %-1' '" etc. This symmetry is not

appropriate for double-pass techniques, but we now show how it can be made so when

n is odd.

We illustrate by considering the case of n = 9. If C(oJ) is chosen so that

C O = C 9, C 1 = C 8, C2 = C 7, C 3 = C 6, and C4 = C5, the networksobtained

using the synthesis procedure of Part I will have the symmetry tabulated in table I.

Let us now make use of the result discussed in Section I of this paper. If we change

e9 to -e2, b 9 to _r, and b 8 to _, the transmittance of the network is unchanged.

Similarly we can change O7 to -04, b 7 to _, b6 to _r; e5 to -O5, b5 to _,

b 4 to_; e3 to -e3, b 3 to _, b2 to _r; and eI to -e I , b 1 to _ without affecting

the transmittance of the network. The network now has the symmetry shown in

Table II which is the symmetry required. Hence methods A and B are directly

applicable. Similar techniques apply for other odd values of n. If n is even, the

use of the above procedure does not result in a symmetrical network and hence these

techniques do not succeed. To date, comparable ones have not been found which

apply when n is even.

In methods A and B, the symmetric network is halved by cutting it through the

middle stage. For this example, the 5th stage is the middle stage and consists of a

crystal of length L and compensator whose retardation is _ radians. When this

stage is halved, the components are a crystal of length L/2 and a compensator

whose retardation is _r./2 radians.

III. TECHNIQUES WHICH ARE APPLICABLE WHEN THE C. ARE COMPLEX
1

Part V described a procedure for synthesizing birefringent networks whose

transmittances contain complex C i. The form of the resulting network is shown in

Fig. 2. This section describes how a double-pass procedure can be obtained for use

with this class of network.
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ROTATION COMPENSAT OR
STAGE ANG LE RE TARDATION

(radians)

1 81 = 91 b I = 0

% -- b2--o

3 93 = 83 b 3 = 0

4 94 = 94 b4 = 0

5 95 = 95 b5 = 0

6 96 = 95 b 6 = 0

7 97 = 94 b 7 = 0

8 98 = O3 b 8 = 0

9 99 = O2 b 9 = 0

output 8 = 81 ±90 ° b = 0
polarizer P P

Table I
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ROTATION C OM PENSAT OR
STAGE ANGLE RETARDATION

(radians)

1 01 -_ -01 b1 -_ 7r

2 02 = 02 b2--_ _r

3 03_ - 03 b 3 --_ _'

4 04-- 04

5 05 _ - 05 b 5-- _t

6 06 = 05 b6--.-

7 97 "_ -0 4 b7-'--_ _"

8 08 = 93 b8--*- _t

9 09 _ -% b9"--_ _"

output 0 = 01±90 ° b = 0
polarizer P P

Table II
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Our goal will again be to obtain a network having the symmetry shown in Fig.

4b. We begin by stating a theorem. Asterisks denote complex conjugatcs.

Theorem

If the C i of the desired transmittance are chosen so that CO = Cn,

C 1 = Cn_ 1, C2 = Cn_2, C 3 = Cn_ 3, ... etc, then the resulting lossless bire-

fringent networks have O1 = -%+90 °, O2 = On , O3 = %-1' 64 = %-2' '" etc,

-- b 2 b 3 = b b 4 ... etc.and b 1 = bn , = bn-l' n-2' = bn-3'

The proof of this theorem is similar to the proofs of Theorems 4b and 5b in

Part HI and hence will not be given here.

We will again use a network with n = 9 for illustration; the technique is

applicable only when n is odd. If the C. satisfy the requirements listed above, the1

resulting networks will have the symmetry shown in Table III. We next apply the

result of Section I by noting that C (a_} for the network remains unaltered if we change

68 to -O3 , b8 to b2 +_, b 7 to b 3 +_'; 66 to -65 , b 6 to b 4+_r, b 5 to b 5 +Tr;

O4 to -64 , b4 to b4+_, b 3 to b 3+_; and O2 to -62, b 2 to b 2 +_, b I to b 1 +y.

In addition, b is changed to 0. This new network, whose O. and b. are listed inp 1 1

Table IV, has the symmetry necessary for application of methods A and B, and hence

the desired result has been obtained. For other odd values of n, the same technique

can be applied.

Several items should be briefly mentioned at this point. The first is to note

that when the C. are complex, one begins manipulating the (n-1)th stage while when1

the C. are real, one starts with the nth stage. The second point concerns our1

setting bp to zero. This step is necessary if the input and output polarizers are to

be the 'Ynirror-images" of each other. The result of setting bp to zero is that the

transmittance of the double-pass network will be (exp ibp). C(u_) instead of the
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ROTATION C OMPE NSAT OR
STAGE ANGLE RETARDATION

(radians)

1 01 = eI b 1 = b 1

2 82 = 02 b 2 = b 2

3 e3 = 93 b3 = b3

4 e4 = 04 b4 = b4

5 05 = e5 b5 = b 5

6 e6 = 05 b 6 = b 4

7 07 = e4 b 7 = b 3

8 08 = e3 b 8 = b 2

9 e9 = e2 b 9 = b 1 +

output 0p =-01 +90 ° b = b
polarizer P P

Table III
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ROTATION C OMPE NSAT OR
STAGE ANGLE RE TARDATION

(radians)

1 el = el bl_._ bl +

2
02--_ _02 b2_ b2 + _-

3 03 = O3 b3--_ b3 + _r

4 o4___% %_,.b4+,

5 05 = 05 b5--,,- b5 + _r

6
06-'_" _ 05 b 6 -'*" b4 + _"

7 07 :" 94 b7"_'b 3 + V'

8 08-'_ -03 b 8 "4'- b2 + qr

9 09 = 02 b9 = bl +

output = = 0
polarizer Op -01 + 90° bp

Table IV
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desired C(w). The difference is only a constant phase factor, which in most instances

is unimportant. Furthermore, if CO is originally chosen to be real, bp = 0 and the

need for the final polarizer is automatically eliminated.

Finally, ffthe Ci satisfy CO = -On, C1 = -Cn_ 1, C2 = -Cn_2,

C3 = -Cn_ 3 ' • • etc., the technique of this section is also applicable. This can be

seen by noting that if we multiply such a C(c0} by the factor i, the new C(_d} satisfies

the constraints of the theorem given in this section.

IV. DISCUSSION

We have seen in Sections II and III that if certain restrictions are satisfied by

the Ci, double-pass synthesis procedures can be eml:--_ :d. An important question,

then, is how severely these restrictions limit one in choosing a C(_). In discussing

this, it will be convenient to deal with K(oJ) as well as C(co). K(u_) is formed by mul-

tiplying C(_o) by e i(n/2)ac° and therefore has the form

K(tL9 = C0ei(n/2)aa}+C1 ei[(n/2) - l_ga +...

[(n/2) l_a,_ e-i(n/2)ao_ (8)
+ Cn_l e-i - + Cn

The usefulness of K(_0) stems from the fact that it is often real, whereas C(co) is

complex. In choosing a desired transmittance, it is often written first in _.he fonn of

Eq. (8) and then converted to C(m).

In terms of K(u_) the restrictions upon the C. have the following effects:' 1

(a) The restrictions CO = -_Cn, C 1 = -Cn_ 1, C2 = -Cn_ 2, C3 = -Cn_3,

• " etc, which were necessary in Part IV of this series are equivalent to requiring

that K(_) be purely imaginary and have odd symmetry.
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(b) The restrictions CO = Cn, C1 = Cn_ 1, C2 = Cn_ 2, C3 = Cn..3, '..

etc. which were necessary in Section II of this paper are equivalent to requiring that

K(to) be real and have even symmetry.

(c) The restrictions CO = Cn, C1 = Cn_ 1, C2 = Cn_ 2, C 3 = Cn_ 3, ...

etc. which were necessary in Section III of this paper are equivalent to requiring

that K(m) be real. The symmetry of K(u_) is net restricted in any way. Thus thcsc

restrictions (particularly those of Section III) impose relatively little constraint

upon the choice of desired amplitude transmittance.

Finally we note that the procedure of Section II can be considered to be a

special case of the more general procedure of Section III.
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CAPTIONS FOR FIGURES AND TABLES

I,',_. 1 Basic configuration of birefringent network (4 s,_ages) obtained from the

synthesis procedure of Part I. F and S denote the "fast" and "slow"

axes of the bircfringcnt crystals.

Fig. 2 Basic configuration of birefringent network (4 shages) obtained from the

synthesis procedure of Part V.

Fig. 3 Single stage of the network of Fig. 2. Components are a birefringent

crystal and optical compensator.

Fig. 4 Network symmetry which is required in order for methods A and B

(of Part IV of this series) to be applicable. (a) Lossless network

without compensators, and (b) lossless network with compensators.

Table I Network symmetry which results for n = 9 when the (real) Ci are

chosen to satisfy CO =C 9, C1 =C 8, C2 =C 7, C3 =C 6, andC 4 =C 5.

Table II Network which is equivalent to that listed in Table I.

Table III Network symmetry which results for n = 9 when the (complex) C i are

chosen to satisfy CO =C 9, C 1 =C 8, C2 =C 7, C3 =C 6, and

C4 = C5 .

Table IV Network which is equivalent to that listed in Table III.
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I. INTRODUCTION

Amplitude modulation of light using an electro-optic medium has been the subject of

msiderable investigation the past few years. Most of this work has centered on (1) studying

:omising electro-optic materials [1] - [8] and (2) finding suitable means for applying

Lectric fields to these materials. The latter work can be conveniently divided into investi-

_tions of cavity-type modulators [9]- [11] and traveli:,tg-.wave modulators [12]- [17].

his work has resulted in several useful electro-optic materials and a variety of ingenious

)rms of amplitude modulators.

It is perhaps surprising, then, that all of these devices produce amplitude modulation in

ssentially the same fashion as the simplified modulator of Fig. 1. That is, regardless of

m material used and the manner in which the modulating field is applied, the model of

ig. 1 can be used to describe the essential modulation characteristics of virtually all

k_sting electro-optic amplitude modulators. (We have assumed, for simplicity, that

cnchronism conditions are perfectly satisfied, that the medium is not naturally birefringent

1 the direction of light propagation, etc. )

The modulator model of Fig. 1 consists of an input polarizer, an electro-optic medium,

quarter-wave plate, and an output polarizer. The birefringence of the electro-optic

radium is assumed to be directly proportional to the modulating signal, a condition which

3 satisfied exactly by Pockels-effect materials and approximately by Kerr-effect materials

iased with a dc voltage. The modulator of Fig. 1 has an amplitude-transmission vs.

pplied voltage characteristic

.17 V ._ V

V

 2v0 (l-i) o ° )
K(v) - (1+i) e +--e = cos - 45° , (i)

,hereV0 isfl_ehalf-waveretardationvoltage.
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It is well lmown [18] - [19] that this K(v) is not the optimum characteristic for an

amplitude modulator. The device of Fig. 1, and therefore existing amplitude modulators,

have performance characteristics which depart from ideal. The result is that harmonics,

intermodulation products, and other undesirable components are present in the modulator

output. These distortion components are small when small depths of modulation are used,

but their effects become more pronounced at greater modulation depths.

One of the purposes of this paper is to describe a synthesis procedure which allows the

realization of amplitude modulators having an arbitrarily specifiable voltage transfer

function. With this synthesis procedure it is possible to design modulators whose prop-

erties are tailored to the particular application at hand. The synthesized modulator

(shown in Fig. 3) consists of a series of cascaded stages between an input and output

polarizer° Each stage contains electro-optic material and an optical compensator [20]

(wave-plate). The number of stages required depends upon the complexity of the desired
)

voltage transfer function K(v). It should be emphasized that there is nothing new about any

of the components which make up the synthesized modulator; rather, it is the arrangement

of these stan0ard components which results in a device whose ¢haracteristics can be arbi-

trarily prescribed.

This paper also discusses the transfer function of an ideal amplitude modulator and
I

methods of approximating it. The ideal transfer function depends upon the type of detector

employed to demodulate the signal. Two cases are considered: the use of (a) envelope

detection, and (b) square-law detection. While it is possible in theory to synthesize a

modulator having an ideal transfer function, it would contain an infinite number of stages.

Hence iu practice it is necessalT to find suitable approximations to the ideal function which

can be realized by modulators containing a finite number of stages. Several approximation

techniques are described and compared on the basis of distortion present in the demodulated

signal. Finally, modulator designs which eorrespond to these approximations are tabulated.
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II. THE SYNTHESIS PROCEDURE

A. General

The procedure to be described for synthesizing amplitude modulators draws heavily

upon the results given in a series of papers [21] - [26] dealiug with birefringent network

synthesis. Since several papers of this series are especially applicable, we will begin by

mentioning their results and how they apply to the problem at hand.

Part I [21 ] of the series reported a procedure for synthesizing birefringent networks

having a prescribed frequency transfer function C(oz). The desired transfer function is

written as

C1e -iQ_+C(U)) = CO + C2e-i2{2w + "" + ('n"e -in_u), (2)

where the number of terms employed is finite but arbitrary. C(a_) might typically be the

complex Fourier series representation of a given function truncated after a certain number

of terms. Any method, however, may be used to choose C(w) as long as each Ci is real.

Figure 2 shows the form of the network resulting from the synthesis procedure of Part I.

The network consists of a series of identical naturally-birefringent crystals between an

input and output polarizer. The "fast" and "slow" axes of the crystal are denoted by F and S,

respectively. A network containing n crystals is necessary to realize a C(oz) having n+l

terms. For a given C(oz), the synthesis procedure is used to calculate the rotation angles

(_i) of the crystals and the output polarizer.

Because the procedure of Part I requires that the C i be real, it can be used only when

C(o_) is Hermetian (i.e., the real part of C(a_) is even and the imaginary part is odd).

Part v [26] describes a generalization of the synthesis procedure of Part I which allows the

realization of C(a_) having complex Ci. An n - stage birefringent network is again required

to produce a C(0¢) having n+l terms, but each stage now consists of a birefriugent crystal

and optical compensator. Such a network is shown in Fig. 3. The synthesis procedure of
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Part V determines the rotation angle of each crystal, the retardation introduced by each

compensator, and the rotation angle of the output polarizer.

Recently it has been noted [25 ] that the techniques which were developed in Parts I-V

[21] - [24], [26] for synthesizing optical networks composed of naturally-b_refringent

crystals can also be used, wif]l very little modification, in the syni_,esis of networks composed

of electro-optic crystals (or liquids). The two situations are, in fact, analogous. If a

Pockels-effect material is used, the voltage applied to the electro-optic medium plays the

same role that frequency does in naturally-birefringent materials. If a Kerr-effect material

is used, frequency is replaced by t:he square cf the voltage. This means that the same tech-

niques which were developed to synthesize birefringent networks having arbitrary frequency

transfer functions can be used to syn_.hesize electro-optic networks having arbitrary trans-

mission vs. applied voltage characteristics. In Ref. [25] it was shown that a procedure

analogous to the synthesis procedure of Part I could be used to design electro-optic shutters

with improved characteristics. In this paper we will see that a procedure analogous to the

more general procedure of Part V can be used to synthesize amplitude modulators having

specified modulation characteristics.

Since the modulator synthesis procedure is a direct analogy of the procedure described

in Part V, only a brief discussion will be _ven. It is assumed in what follows that the

reader is familiar with the material covered in Part V [26] and in Ref. [25].

The frequency-voltage analogy between a birefringent network and an electro-optic

network can be understood in the following way. The basic building block of the birefringent

networks of Parts I-V is the naturally birefringent crystal shown in Fig. 4. Light which

enters the crystal with its electric field polarized in the F direction is operated upon by

the frequenoy transfer function e i _,w/2, while light polarized along S is operated upon

by e"iQ°a/2, The quantity_, is proportional to the crystal's birefringmce and is given by

= L All/c,
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where L is the length of the crystal, A_ is the difference b_tween the crystal:s ext_:aordi-

nary and ordinary indices of refraction, and c Is file velncity of light in a vacuum.

Now suppose that the building block of Fig. 4 is an electro-optic cell, and that its bire-

fringence is linearly proportional to file applied eleet_'ic field. The F and S frequency

transfer functions are again e i U.t_/'2 and e-i _z_,/2. In this case, however, Q is due to

the applied electric field while in the previous case, _ was due to the natural birefringencc

of the medium Hence we can rewrite the F and S transfer functions of fl:" electro-optic

i_v 0 -i _'v2 Vo
cell in the form e and e , where v is the voltage applied to the medium m_d

V0 is the voltage required to produce one-half wave (_ radians) of retardation, h_

writing the F and S transfer functions of the electro-opticcell in this way,

several simplifying assumptions h. ce been m_de. Most important of these is that perfect

synchronism exists between the modulating voltage and the transmitted light, m'_£hence that

transit-time effects are not a problem.

The transfer functions for the electro-optic cell are seen to depend upon v in exactly

1
_e same fashion as the transfer functions for the birefringent crystal depend upon frequency .

Thus the transfex function of a eelI or series of cells varies with v in precisely the same

fashion that the trmlsfer function of a birefrtmgent crystal or series of cb'ys*m!s v,_ries r,ith

c0. Since we are able from Part V to syn'_hesize a birefringent network with an arbitral7

transmission vs. frequency characteristic, we are also able to synthesize an electro-optic

modulator which has an arbitrary transmission vs. applied-voltage characteristic.

Using the analogy just discussed, the desired voltage trmlsfer function for the modulator

is _vritten as
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.nnv __:_ n v (n-4) _ v
1Y Vo i 2 _o i 2 V'o

K(v) = C0e + Cle + C2e

-i _ 7r v (.n-2) _r v n g v
2 v0 -i 2 Vo Vo

+ .... + Cn-2e + Cn-1 e + Cne (3)

The synthesized modulator has the general form shown in Fig. 3, with each stage composed

of an electro-optic cell of half-wave voltage V0 and an optical compensator. All cells must

exhibit the same birefringence; hence (1) all cells must be identical, and (2) all cells must

have the same signal applied to them. Note that the manner of applying the modulating field

to the medium has not in any way bee.. restricted. Hence it is immaterial whether the

modulating field is transverse or longitudinal, is applied by resonm_t structure or traveling-

wave structure, as long as the induced birefringent axes are oriented as in Fig. 4.

B. Outline of Synthesis Procedure

The steps to be followed in synthesizing an amplitude modulator are summarized below:

(1) Choose the desired transmission vs. voltage characteristic K(v) for the amplitude

modulator and write it in the form of Eq. (3). The Ci may be complex.

.n_ v

-12 V0
(2) Multiply K(v) by e , which gives

. n _r v -i _r v -i2 tr v

2 V0 V0 V0
C(v) = e K(v) = C O + Cle + C2e +...

-in n.y_

V0
+ C e (4)n °

(3) Follow steps (3) through (8) of Section II-C of Ref. [26]. This determines the

rotation angle of each electro-optic cell, the delay introduced by each optical

compensator, and the rotation angle of the output polarizer.
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III. AMPLITUDE MODULATORS FOR USE WITIt ENVELOPE DETECTORS

As mentioned earlier, the choice of an ideal characteristic for an amplitude modulator

depeuds upon the properties of the detector used to demodulate the signal. In this section we

discuss the ideal characteristic (and approximations to it) for an amplitude modulator which

is used with an envelope detector. Although envelope detectors at optical frequencies are

not presently available, this case is still of interest since optical heterodyne detection can

be employed to shift the amplitude-modulated signal down in frequency to a range in which

envelope detectors are available.

A. Ideal Modulator Characteristic

From conventional modulation theory, it is well known E27] that a linear modulator

characteristic gives distortionless results when enve,c.pe detection is employed. Hence one

possible 2 ideal voltage transfer function for an amplitude modulator is that shown in Fig. 5.

Since an electro-optic amplitude modulator does not add energy to the carrier, the magnitude

of the characteristic can not exceed unity. Note th_¢. v/V 0 (voltage applied to each cell/

the half-wave retardation voltage of each cell) is plotted along the abscissa. This normalized

form of voltage is quite convenient and will be used throughout this paper.

Before proceeding further, let us establish performance criteria so that we may make

qum_titative comparisons of the modulators synthesized. There are a number of different

criteria which could be employed, and hence our choice must be somewhat arbitrary. We

will assume that a single-tone signal of the form

v = V coSt0mt (5)

is the modulating signal. Ideally then, the demodulated signal should by directly proportional

to (5). That is, the amplitude of the fundamental (_0m component) should be linearly pro-

portional to V; furthermore there should be no harmonics present at 2 _On:,, 3 0¢m, etc.

Hence as a measure of performance we will examine the detector (ratput for (1) the deviation

from linearity of the fundamental ts amplitude, and (2) the amplitudes of the second and third

hm'monic s.
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Using these criteria, let us establish that the characteristic of Fig. 5 is indeed an

ideal characteristic. The analytic expression for the characteristic of Fig. 5 is

1 v

K(v) = +  00" (6)

Assume that the incoming optical signal is of frequency o_, has an electric field of unity

amplitude, and hence is given by

E. = e iwt . (7)in

The signal Eou t leaving the modulator is EinK(v), and is therefore given by

Eou t = _ + e .

Assuming that ,, = V cos Wmt, we obtain

the signal which impinges on the detector. The detectorVs output Iout is proportional to the

envelope of Eou t, which is just the term in parentheses (provided it remains non-negative).

Thus the output is

(1 V )Iout = k "2-+'_0 cos Wmt , , (9)

where k is a constant of proportionality. We see that the detector output of Eq. (9) contains

a fimdamental whose amplitude is linearly proportional to V, and no higher harmonics. This

satisfies our criteria for perfect modulator performance.

B. Formulas for Amplitudes of Fundamental aud Harmonics

The modulators synthesized using the procedure of Section II will have voltage transfer

fimctions of the form shown in Eq. (3). We derive here general expressions for the ampli-

tudes of the fundamental and harmonics present in the detector output. The resulting

expressions are functions of V/V0, and contain the Ci as parameters. For this calculation

and others later, it will be convenient to separately consider the cases of n odd and n even.
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1. n odd

For n odd, expressions are derived for 1, 3, 5, 7, and 9 stage networks. From

Eq. (3), the voltage transfer functions for these networks are seen to be

.yv w v

_0 -_T_o
n = 1 K(v) = C0e + Cle , (10a)

.2_ v ._ v .?r v .37r v

'= _0 1_% -_ _0 -_-r_o
n = 3 K{v) = C0e + Cle + C2e + C3e , (10b)

.5Ir v .3_' v ._r v ._r v .37r v

_ _0 _-r_o _ vo -_rr0 -_-r_o
n = 5 K(v) = C0e + Cle + C2e + C3e + C4e

.51r v

-1 2 V0
+ C5e , (10c)

• 7_r V .5_ V .3_r V ._r V ._ V

1-_- V--0 I 2 V0 1 2 V0 I"2 V0 -1_" V-O
n = 7 K(v) = C0e + Cle + C2e +C3e + C4e

.3w v .5y v .7_r v

-1 2 V0 -1 2 V0 1 2 V0
+ C5e + C6e + C7e , (lOd)

.9_r v .7_ v .5w v .3_r v ._ v

_2 v0 _2 vo ' 2 v° _- vo ire-o
n = 9 K(v) = C0e + Cle + C2e + C3e + C4e

.y v .3w v .5_ v .7tr v .9y v

-1_V0 -1_ v0 -1T vo -'Y vo _2 v0
+ C5e + C6e + C7e + C8e + C9e

(10e)

We will go through the details of the computation for n = 9 only. Results for n = 1, 3, 5,

and 7 are obtained from the n = 9 results by setting appropriate Ci equal to zero and

renumbering the remaining C i.
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At this point we will impose the requirement tha_ our approximating K(v) be real, If

a complex K(v) is used, the phase as well as the amplitude of the demodulated ftmdamental

will depend upon V. Hence for the envelope detector ease, a real K(v) should be employed
, *

in order to avoid phase distortion. This means that iu Eq. (10e), C O = C9, C 1 = C8 ,
$ * $

C2 = C7, C 3 = C6, and C4 = C5. (Asterisks denote complex conjugate.) Using this

fact, and letting

Ci = Ai + iBi, (11)

Eq. (10e) can be rewritten as

K(v) = 2 [ A0cos 9_ v 7_ v 511' v + A3cos 3_ v2 V0 + AlC°S 2 V0 + A2c°s'2 V0 2 V0L

v 9_r v 7Y v B2si n 5y v
+ A4cos 2 V0 B0sin 2 V0 Blsin 2 V0 2 V0

-B3 sin 3yv2 V0 B4sin YV012 " (12)

If we assume that light _aident upon the modulator is given by e i u_t, the light

(Eout) leaving the modulator is given by Eq. (12) multiplied by ei u_t. Substituting

v = V cos O3mt, we obtain

[ ( v t)Eou t = 2 A0cos V0 cosoJ + AIces 7_t2 V0 cos u_

+ A2cos V0 cos_ + A3cos - V0 cos u_

( oo ot)o0 Vo

)- Blsin _--_'V0 ' - B2 V _m t
#

- B3sin (32_0eOS_mt) - B4sin (2-_v_eOSmmt) ] e iu_t. (13)
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Ush_g the standP_d expansions for cos (koos 0) mid sin (kcos 0), Eq. (13) becomes

+ BSJI \._.Vo + _v t

v.,-1
COS 2 0.)nlt/]

+_J_/_Vo +_4__Vo

+ ... } ei0Jt, (14)

where Jn is a Bessel function of first kind and order n. As long as the bracketed term

multiplying e i a_t in (1.4) remains non-negative, the detector output Iout will be directly

proportional to it. Hence we obtain the desired result,

 .Vo)

C-17

1967011192-134



) + B4J 1 cOSWmt

- 4 .... _ + /

yO VO ) cos 2 What

+ 4 _oJ_ Vo Vo

(v)]+ B3J3 ._. v0V + B4J3 '_ VO- cos 3Wmt

+ higher order harmonics. (15)

Equation (15} gives the dc, fundamental, second harmonic, and third harmonic components

present in file envelope-detector output for n = 9. Note that the even harmonic amplitudes

are determined by the Bi while file odd harmonic amplitudes depend upon file Ai.

2. n even

For n even, we will consider 2, 4, 6, 8, and 10 stage networks. The voltage transfer

flmctions for these networks are given by

.17V .17V

z V---0- -l'_O (16a)
n = 2 K(v) = C0e + C1 + C2e

• 2_'v .17 v .17 v .2_'v

, vo '-vV0 -_vo -_v--0
n--4 K(v) = C0e + Cle + C2 + C3e + C4e (16b)

• 31.iv .2t7v . _ v -i _ v
'-_0 ' V0 ' V0 V'--O

n = 6 K(v} = C0e + Cle + C2e + C 3 + C4e

. 277v .317v

V0 V0
+ Cse + C6e (i6c)
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4yv 3yv 2yv lr v

iv%- _Vo- _--v0 _Vo
n = 8 K(v) = C0e + Cle + C2e + C3e + C4

• Y v .2?tv . 3_rv .4yv
...... 1 -- -1 _-

t V0 1 V0 V0 Vo (16d)
+ C5e + C6e + C7e + C8e

• 5yv .4_tv .3_tv .2_tv . I/v

%- 'To _T _Vo _v0
n = 10 K(v) = C0e + Cle + C2e -I C3e + C4e

• _t v .2_tv .3yv .4yv

-_%- -'% -__o -_Vo
+ C 5 + C6e + C7e 4- C8e + C9e

• 5yv

-1 V---0"
+ C10 e . (16e)

It will be sufficient to carry out the calculation only for n = 10; results for n = 2,

4, 6, and 8 cm_ be obtained from the n = 10 results by setting appropriate C i equal to

zero and renumberhlg the rema#_hlg Ci.

The calculat'.on proceeds similarly as for n odd. We first stipulate that K(v) be

real This requires that the Ci of (16e) satisfy C O = '_ C 1 = C 9 C2 = C 8' '_I0 ' '

C 3 = C7, C4 = C6, and that C5 be real. Again fi__esubstitution v = VcesCOmt is

made, mid standard expansions for cos{kcos 8) and sin{kcos 0) employed. The fhml restllt

for n = 10 is

_/k --A_-,-_[Ao_o ,-TO/_1_0_To] _o _To/

]
' _o _W_o/A_okT) J
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+B4J1

4 [Ao_,v-q-j+_d_.tToJ+Ad_kTo/ vo

+ B4J 3 Y(LVT)j COS 30_mt

higher order harmonics. (17)

C. Fourier Approximation to Ideal Characteristic

We are now ready to find approximations to the ideal characteristic of Fig. 5 which can

be wl-itten in the form of Eq. (3). One obTious choice is to use the _'ourier approximation to

determine the Ci of Eq. (3). Since the K(v) given by (10) and (1.6) are periodic, the ideal

characteristic must also be periodic,

The symmetry of the ideal characteristic must be different for the cases of n odd

m_d n even. For n odd, we will choose the ideal characteristic over one period to be

that shown fl_ Fig. 6a. This characteristic is, of course, only one of an infinite number of

possibilities, and no claim is made that it is in any way optimum. It was chosen because it

does not have mW discontinuities and one might therefore hope thai: its Fourier series

converges rapidly. For n even, the ideal characteristic of Fig. 6b will be used. R is

identical to the characteristic of Fig. 6a over the region -0.5 (v/V 0 _ i. 5, but differs

over the remainder of its period.
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1. n odd

The complex Fourier series was calculated for the ideal characteristic of Fig. 6a.

The expression for K(v) for each value of n was found by truncating the series after an

appropriate number of terms. Each truncated series was then normalized to have a

maximum magnitude of unity. The resulting K(v) are

._ v ._' v

z 2 V0 -IT _o (18a)n = 1 K(v) = 0.353553(1-i) e + 0.353553(1+i) e ,

.3_ v ._ v ._r v

1 2 V0 I T_ 0 -12 V0
n = 3 K(v) = -0.0353553(1+i)e + 0.318198(1-i)e + 0.318198(1+i)e

.3w v

-_-T _0 (18b)-0.0353553(I-i)e

3_t v i_r v

.52_r v0V i 2 V0 2 V0
n = 5 K(v) -- -0.0122856(1-i)e - 0.0341268(1+i)e + 0.307141(1-i)e

317 v

v _iT Vo-i 2 v 0
+0. 307141(1+i) e - o. 0341268(1-i) e

.5t? v

-1- 2 V0 (18c)-0. 0122856(1+i) e

• 717 v .5y v

w0 'T vo
n = 7 K(v) = 0.0061589(1+i) e - 0.012071.6(1-i) e

I/ v
• 3y 5 . Y v__ _i2
IT "0 IT V0 V o

-0. 0335323(1+i) e + 0.301791(1-i) e + 0. 301791(1+i) e

• 3_ v _i5_ v _i7___ v
-1 2 V0 2 V0 2 V(

• -0. 0335323(1-i}_e - 0. 0120716(1+i) e + 0. 0061589(1-i) e

(18d)
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• 9rr v . 7_r v . 517 v

1 2 V0 1 2 V0 t 2 V0
n = 9 K(v) = 0.003687(1-i)e + 0.006094(1+i)e - 0.011945(1-i)e

.317 v .?r v . ?r v

1 2 V0 1_- V---_ 12 V0
- 0. 033182(1+i) e + 0.298643(1-i) e + 0.298643(1+i) e

t/

• 37r v .5rr v .71r v
-1 -1 -1

2 V0 2 V0 2 V0
- 0. 033182(1-i) e - 0. 011945(1+i) e + 0. 006094(1-i) e

.9_ v
-1

2 V0
+ O. 003687(1+i) e (18e)

These K(v) are shown plotted in Fig. 7 over the portion of the characteristic which is

of most interest, -0.5 (v/V 0 (+0.5. Solid curves are used for n = 1, 3, and 5, and

dotted curves for n = 7 and 9. The ideal characteristic is shown dashed. These

conventions will be used throughout. The curve n = 1 corresponds to the conventional

amplitude modulator of Fig. 1.

As expected, the approximation to the ideal K(v) improves with increasing n. In

general, for all n the approximation is better for -0.5 ( v/V 0 ( 0 than for 0 ( v/V 0 ( +0.5.

This might have been expected since there is a discontinuity in the slope of K(v) at

v/V 0 = +0.5, while there is none at v/V 0 = -0.5.

Of primary interest, however, is not how well the K(v) of Eqs. (18) approximate the

ideal K(v), but rather how well the criteria established in Section IIIA are satisfied. To

determine this for n = 9, we substitute the Ai and Bi of (1Be) into Eq. (15). For the

other values of n, the A. and B. are substituted into the appropriate equations derived
1 1

from Eq. (15). This gives the information desired on the fundamental and harmonic

amplitudes present in the demodulated signal.

The results are plotted in Fig. 8 where (a) the dc component, (b) the fundamental

amplitude, (c) the second-harmonic magnitude, (d) the third harmonic magnitude, and (e)

the deviation from linearity of the fundamental are shown as a function of V/V 0.
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Graphs (a), {b), (c), and (d) are found from the appropriate terms of _q. (15). The deviation

from linearity of the fundamental is calculated in the following way. The slope of each curve

of Fig. 8b is calculated at the origin. A straight line is then constructed for each curve by

extrapolating this small-signal slope. The difference between each amplitude curve m_d its

extrapolated straight line is termed the deviation from linearity. In Fig. 8e we plot the

magnitude of this deviation.

The following results are seen from Fig. 8. The fundamental amplitude is approxi-

mately linear with V/V 0 for all values of n. Hence from Fig. 8b alone, it is difficult to

compare modulator performance on the basis of linearity of fundamental. The deviation

from linearity curves of Fig. 8e, however, give a clear comparison for various n. From

Fig. 8e we see that in all cases, deviation from linearity increases with increasing depth of

modulation, although not necessarily in a monotonic fashion. Furthermore, we see that

while the deviation from linearity for n = 5 _tnd 9 is less than for n = 1, it is greater

for n = 3 and 7. Hence we conclude that with respect to deviation from linearity of the

fundamental, systematic improvement is not obtained as one uses more stages.

The second harmonic magnitudes are shown in Fig. 8c. Here a fairly uniform

improvement with increasing n is obtained. For example the second harmonic amplitude

for n = 7 is less than that for n = 1 by an order of magnitude for all values of V/V 0.

The third harmonic magnitudes are plotted in Fig. 8d. The curves for the third

harmonic magnitude are very similar in form to those of Fig. 8e which show deviation from

liuearity of the fundamental. The magnitude of the third harmonic is reduced for n = 5

and 9, but is greater for n = 3 and 7.

From the above results, we conclude that the technique of determining K(v) by

fhlding the complex Fourier series of the ideal characteristic of Fig. 6a did not prove to be

satisfactotT. While improvement was noted over conventional modulator performance for

some values of n, poorer performance was obtained for others. One difficulty with this

approach lies in the following. The Ci were chosen to approximate a certain voltage
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Figure 8d
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transfer function. Our ultin:ate concern, however, is not with how well this transfer function

is approximated, but rather with modulator performance as measured by the amplitudes of

the fundamental and harmonics present in the demodulated signal. Thus it i_ more desirable

to choose the C. by some technique which directly optimizes the modulator properties of1

interest. In the following section, this approach is employed to determine the C. of the

modulator transfer fun3tion.

2. n even

Since the Fourier approximation technique did not prove satisfactory for n odd, the

equivalent calculation for n even was not performed.

D. Maximally-linear Approximation to Ideal Characteristic

1. n odd

Equation (15) gives the dc, fundamental, second harmonic, and third harmonic compo-

nents present in the demodulated output for n = 9. This is a general expression which is

valid for any choice of Ci. Consider now file portion of Eq. (15) which gives the amplitude

of the fundamental.

amplitude of [ C9_rV_ + (7,V) (5_V)+ B3JI(_0)fundamental :-4 B0J 1 \-_0 / BIJ 1 _ + B2J 1 2V 0

+B4J 1 7r(2---_0) ] (19)

If we write each Bessel function of (19} in series form, we obtain

amplitude of =-4 I4 V _3(_00) 3fundamental V0 (B4 + 3B3 + 5B2 + 7B1 + 9B0} 128

/v 5
(B4 + 33B3 + 53B_. + 73B1 + 93B0 ) + 12,288_"0)

(B4 + 35B3 + 55B2 4 75B1 + 95B0 } 2,359,296

Ir9 (-_019(B4 + 37B3 + 57B2 + 77B1 + 97B0} + 754,974,720

(B4 + 39B3 + 59B2 + 79B1 + 99B0 } - .... ] (20}
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Since ideally the amplitude of the fundamental is directly proportional to V/V 0, the V/V 0

•m of (20) is th:' desired portion of the output while the (V/V0)3, (V/V0)5, (V/V0)7, etc.

_erms represent distortion.. Hence we will choose the B. so as to eliminab_ as many of1

these distortion terms as possible.

In order to make the coefficien_ of the (V/V0 }3 _rm be zero_ the Bi must satisfy

B4 + 33B3 + 53B2 • 73B1 + 93B0 = 0. (21a)

Similarly, if the Bi satisfy

B4 + 35B3 + 55B2 + 75B1 + 95B0 = 0, (21b)

the coefficient of the (V/V0)5 term will be zero. And finally ff the coefficients of the

(V/V0)7 and (V/V0)9 terms are to be zero, the Bi must satisfy

B4 + 37B 3 + 57B 2 + 77B1 + 97B 0 = 0, (21c)

and

9
B4 + 3 B3 + 59B2 + 79B1 + 99B0 = 0. (21d)

Since we are free to choose five Bi {B0, B1, B2, B3, and B4), we are able to make four

coefficients of (20) become zero. The first remaining nonzero distortion term is (V/V0)11,

and hence we call this method of determining the Bi a maximally-linear approximation.

In Eqs. (21a), (21b}, (21e}, and (21d) we have four simultaneous linear equations.

Solving them, we obtain

B3 = - 2/27 B4,

B2 = 2/175 B4,

B 1 = -1/686 B4,

B 0 = 1/10,206 B4. n = 9 (22)
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The results we have just derived are for the case n = 9. For the case n = 7, K(v)

is given by (10d) and an expression similar to Eq. (20) can be derived for the amplitude of

the fundamental. Since one less B coefficient is available, we are able to force one less

distortion term to zero. For n = 7, the e_tations obtained by requiring that the

coefficients of the (V/V0)3, (V/V0)5, and (V/V0)7 terms be zero are

B3 + 33B2 + 53B1 + 73B0 = 0, (23a)

B3 + 35B2 + 55B1 + 75B0 = 0, (23b)

B3 -_ 37B 2 + 57B1 + 77B0 = 0. (23c)

The solutions for the Bi are

B2 = - 1/15 B3,

B1 = 1/125 B_,

B0 = -1/1715 B 3. n = 7 (24)

Correspondingly, for n = 5 we are able to make (V/V0)3 and (V/V0)5 terms be

zero, while for n = 3 we can make only the (V/V0)3 term be zero. The solutions for

the B. for these last two cases are
1

B1 = - 1/18 B2,

B0 = 1/250 B2, n = 5 (25)

m_d

B0 = - ]./27 B1. n = 3 (26)

We have thus determined relative values for the B. for n = 3, 5, 7, and 9 by1

eliminating as mm_y higher-order terms as possible from the series expansion of the

amplitude of the fundamental. Since the Ai are not present in the expression for the

ftmdamental, they remain to be determined. The Ai are present in expressions for the dc,
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second harmonic, four_ harmonic, etc. oomponents of the output (see Eq. (15)), and

hence can be chosen to optimize one of these. Our choice will be to pick the Ai to

minimize thc amplitude of the second harmonic.

We again return to the expression of Eq. (15) for n = 9. From (15), the amplitude

of the second harmonic is seen to be

seeondamplitudeharmonic= - 4 AOJ2 "_0] + AIJ2 _0 + A2J2 2 V0

/3_tV\ ( _rV )] (27)+ o
If we rewrite each Bessel function in series form, (27) becomes

seeond harmonic = - 4 V
amplitude -_ + 32A3 + 52A2 + 72A1 + 92A0

1536 A4 + 3 A3 + 54A2 + 74A1 + 94A0

_- 196,608 4 4- 36A 3 + 56A2 + 76A1 + 96A0

- 47,185,920 A4 + 38A3 + 58A2 + 78A1 + 98A0

+ ... ] (28)

We can make the (V/Vo)2, (V/Vo)4, (V/Vo)6, and (V/Vo)8 terms go to zero by

requiring that

A4 + 32A3 + 52A2 + 72A1 + 92A0 = 0, (29_r)

A4 + 34A3 + 54A2 + 74A1 + 94A0 = 0, (29b)

A4 + 36A3 + 56A2 + 76A1 + 96A0 = 0, (29c)

A4 + 38A3 + 58A2 + 78A1 + 98A0 = 0. (29d)
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Solving these four simultaneous linear equations, we obtain

A3 =- 2/9 A4,

A2 = 2/35 A4,

A1 =- 1/98 A4,

A0 = 1/1134A 4. n = 9 (30)

Proceeding as before, we find for n = 3, 5, and 7 that

A2 =- 1/5 A3,

A1 = 1/25 A3,

A0 = -1/245 A3. n = 7 (31)

A 1 = - 1/6 A2,

A0 = 1/50 A 2. n = 5 (32)

A0 = - 1/9 A1. n = 3 (33)

Two additional constraints must now be applied in order to obtain absolu_ values for

the A. and B.. Consider the n = 9 ease again. We have obtained values for the B. in1 1 1

terms of B4, and values for the Ai in terms of A4. So far, however, the size of B4

relative to A4 has not been determined. In order to make this choice, we observe the

following. All calculations performed thus far have assumed that the depth of modulation

never exceeds 100%. That is, we have assumed that a value of v is never reached for

which K(v) is negative. ' _nis means, for example, that for the ideal characteristic of

Fig. 5, v/V 0 is never ,ess than - 1/2. Thus we wou&d hope that the K(v)

which we obtain for the maximall_-linearcase woul_ be roughly compa:_able

to the characteristicof Fig. 5. We woul_ like for K(v=O) to be
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approximately 0.5, and we would further hope tlmt K(v) would be unity and zero

for approx_nately equal positive and negative values of v. By setting B4= -A4, we

attempt to force thisbehavior. For from (10e)we recallthat B 4 and A4 are the

.W V .W V

12 V0 -i2 V---_
amplitudes of the e and e terms in K(v), and hence the above choice gives

.Tt v .Tr v
i-- -l_

2 V 0 , 2 V 0 (_ v _)C4e + C4e = 2A 4 cos V0 2 "

Thus the first Fourier component of K(v) is a cosine curve which is maximum at v/V 0 -- 1/2

and zero at v/V 0 = - 1/2. To summarize then, by making B 4 = -A 4 we attempt to make

the general shape of K(v) comparable to that of the ideal K(v) of Fig. 6a. The detailed

shape will be determined by the other Ai and B i given in Eqs. (22) and (30).

We now have for the n = 9 case,

• 9Yv

1 i i i 2V 0
K(v) = A4 1":24 10,20 e - 98 686 e

• 5_rv . 3_rv

+ 35 175 e - 9 _-_ e

.Y v .Y v .3yv

1 2 V0 -t 2 V0 2i
+ (1-i) e + (l+i) e - + e

• 5_rv .7_rv

+ + e - +6--_- e

• 9_v

(11341 u,_.oi ) -12V0
+ + 1,-,0 .' e . (34)
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Our final task is to choose A4 so that the maximum magnitude of (34) is unity• Doing this

we obtain

• 9 cry . 7 _v

1 2V 0 1-2V---_
n = 9 K(v) ,, (0. 000274 - i0. 000030) e - (0. 003179 - i0. 000454) e

• 5_tv .3_rv

o
+ (0.017806-i0.003561)e - C0.069248-i0.023082)e

._?v .?T v

i 2 V--_ -i 2 V0
+ (0. 311616 - iO. 311616) e + (0. 311616 + iO. 311616) e

• 3¢rv . 5_rv

-i 2V0 -t 2V_0
- (0. 069248 + iO. 023082) e + (0. 017806 + iO. 003561) e

• 7._v .9_rv

°
- (0. 003179 + i0. 000454) e + (0. 000274 + i0. 000030) e .

(35a)

The fh_al K(v) for n = 1, 3, 5, and 7 are similarly found to be

• 7_v .5_v

t 2V--_ ' 2V---O
n,, 7 K(v) - - (0.001294-i0.000184)e + (0.012683-i0.002536)e

.3_v ._v

1 2V 0 12V_0
- (0. 063414 - iO. 021138) e + (0. 317074 - iO. 317074) e

¢rv 3frv
-i 2V----- i 2V 00

+ (0. 317074 + iO. 317074) e - (0. 063414 + iO. 021].38)e

-i 5 _v
o2V_ i 7 yv2V 0

+ (0.012683 + i0.002536) e - (0. 001294 + i0. 000184) e

(35b)
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• 5_v i 3_v
1 2V-_-O 2V 0

n -- 5 K(v) = (0.006489 - i0.001297) e - (0.054077 - i0.018025) e

._v .Try

2V 0-'0
+ (0. 324465 - iO. 324465) e + (0. 324465 + iO. 324465) e

• 3_rv . 5?rv

°
- (0.054077 + i0.018025) e + (0.006489 -_ i0.001297)e

(35c)

.3yv . try

1 2V 0 1 2V 0
n = 3 K(v) = - (0.037258 - i0.012419) e + (0. 335330 - i0.335330) e

._TV .3_7V
-l - .-J-w'_ -1

" 2V0"v 0
+ (0.335330 + i0.335330)e - (0.037258 + i0. 012419) e

35d'( J

._7V ._TV

1% _ 2V 0
n = I K(v) - (0.353553 - i0.353553)e + (0.353553 + i0.353553)e .

(35e)

We e&n now substitutethe A i and Bi of Eqs. (35)intoEq. (15)[or, in the cases of

n = 1, 3, 5, and 7, intothe approoriate expressions derived from (15)]to assess the

modulator performance obtainedusing the maximally-linear approximation. The results

are shown in Fig. 9 where (a)the dc component, (b)the firstharmonic amplitude, (c)the

second harmo, dc magnitude: (d)the 3rd harmonic magnitude, and (e)the deviationfrom

linearityof the fundamental are plottedas a functionof V/V 0. The case n = 1 again

corresponds to a conventionalamplitude modulator. Results for n even are also shox_m

on Fig. 9, but for the present we willlimitour remarks to the case of n odd.

Figures 9c, 9d, and 9e show that a substantial,uniform reduction in distortionoccurs

for hmreash_g values of n. These resultsmust be interpretedwith care, however, for

Fig. 9b shows thatthere is also a reduction in the amplitude of the fundamental. Hence as

n Lmreases, _he reduction in distortionis accompanied by a reduction in the desired output.
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A clearer picture of these results is given in Fig. 10 where (a) the deviation from linearity

of the fundamental, and (b) the magnitude of the second harmonic are plotted vs. n for

certain fixed values of the amplitude of the fundamental. Curves are given for fundamental

amplitudes of 0.475 (which corresponds to a degree of modulation of roughly 90%), 0.4

(approximately 70%), 0.3 (approximately 50%), 0.2 (approximately 30%), and 0.1 (approxi-

mately 15%). Points representing odd values of n are connected by solid lines while

points for even values of n are connected by dotted lines. Since the behavior of the third

harmonic's magnitude was very similar to Fig. 10a, a separate graph was not plotted for it.

Figure 10a shows how distortion in the fundamental varies with n. It is seen that in

going from a conventional modulator to a three stage modulator, the fundamental distortion

does not improve, and in fact, becomes slightly worse. For n = 5, some improvement is

noted while for n = 7 and 9, significant improvement is obtained. Similar results are

obtained for the second harmonic magnitude.

We therefore conclude that for n odd, the maximally-linear approximation technique

is only partially successful. For small values of n (n < 5), relatively little improvement

is obtained while for larger values of n (n > 7), substantial improvement occurs. Thus

the improvement increases with increasing values of n.

IS is of some interest to know what a plot of K(v) looks like for the maximally-linear

case. Figure 11 shows the K(v) of Eqs. (35} plotted as a function of v/V 0. We see that

the K(v} are closely approaching a straight line with increasing n. Note that the slopes of

the curves of Fig. 11 decrease somewhat with increasing n; this causes the slight decrease

in the amplitude of the fundamental which was mentioned in the previous paragraph. It should

also be noted that the value of v/V 0 at which K(v) becomes zero is slightly different _or

different values of n. The maximum voltage, therefore, which can be applied becomes

somewhat greater as n is increased. In Fig. 9, the curves are plotted up to this maximum

permissible voltage.
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The modulator designs which correspond to the K(v) derived by using the maximally-

linear technique are tabulated in Table I. These designs were found by applying the synthesis

procedure of Section II to the K(v) of Eqs. (35). The quantities listed in Table I are the

rotation angle (0i) of each electro-optic cell, the retardation (bi) introduced by each

optical compensator, and the rotation angle (0p) of file output polarizer.
2. n even

An equivalent calculation can be carried out for modulators having an even number of

stages. Although this calculation is similar in many respects to that just described for n

odd, it is different in at least one important aspect -namely, modulators can be designed

which produce no even harmonics in the demodulated output.

Let us restrict our attention to the n = 10 case. Equation (17) gives the demodulated

output leaving the envelope detector for n = 10. The amplitude of the fundamental is given by

amplitude of [ {5_V {4_V_ 37rVfundamental =-4 B0J 1 \--_-0 )+ B1J1 _(_0/+ B2J1 (--_0)

+ B3J i _--_0-/+ B4J 1 • (36)

Writing each Bessel function in series form, we obtain

amplitude of _ y V

fundamental = - 4 L2"% {B4 + 2B3 + 3B2 + 4B1 + 5B0)

3 3

16 (B4 + 23B3 + 33P'2 + 43B1 + 53B0 )

_5 /V 5

+-_ _-,_-) (B4 + 2%3 + 35B2+ 4%1 + _sBo)

_7 (._o)7- 18,432 (B4 + 27B3 + 37B2 + 47B1 + 57B0)

+ 1,488,060 (B4 + 29B3 + 39B2 + 49B1 + 59B0 ) - '"

(37)
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We can make the coefficients of the {V/V0 )3, (V/V0)5, (V/V0)7, and (V/V0)9 terms be

zero by setting

B4 + 23B3 + 33B2 + 43B1 + 53B0 = 0, (38a)

B4 4- 25B3 + 35B2 + 45B1 + 55B0 = 0, (38b)

B4 + 27B3 + 37B 2 + 47B1 + 57B 0 = 0, (38e)

B4 + 29B3 + 39B2 + 49B1 + 59B0 = 0. (38d)

Solving these four equations, we obtain

B3 = - 2/7 B4,

82 = 1/14 B4,

B1 = - i/s4 B4,

B0 = 1/1050 B4. n = 10 (39)

Similar calculations can be carried out for n = 2, 4, 6, and 8. For these cases, we

obtain

82 =- 1/4 B3,

B I = 1/21 B3,

B0 = - 1/224 B3. n = 8 (40)

B1 =- 1/5 B2,

B 0 = 1/45 B2. n = 6 (41)

mid

B0 = - 1/8 BI. n = 4 (42)
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It is interesting to note that as far as the Bi are concerned, the n = 10 case is very

similar to the n = 9 case. In both cases, we make the (V/V0)3, (V/V0)5, (V/V0)7,
and

(V/V0)9 terms be zero, by appropriately choosing B0, B1, and B2. As we are about to sec,

however, the two cases are quite different as far as the A. are concerned•1

For n = 10, we will set all Ai except A5 equal to zero. As seen from Eq. (17)

this will automatically make the amplitude of the second harmonic (and all other even

harmonics) zero. It is important to note that we are able to do this and still have K(v)

assume the general form of the ideal f,mction of Fig. 6b. The ideal function of Fig• 6b may

be thought of as consisting of a constant term of 0.5 plus a triangular wave of odd symmetry.

Hence, the Ai are not required (except for A5) and the ideal K(v) can be approximated by a

K(v) consisting of a constant term plus sine terms. This was not possible in the case of the

ideal function of Fig. 6a since both cosine and sine terms are needed %o approximate it.

To conclude our determination of the K(v) for n even, it is necessary only to set

the constant term Cn/2 equal to 0.5 and to normalize the Bi so that K(v) has a maximum

value of +1. Doing this, we obtain

• 51/v .4_v . 3_v
1"_ 1_ 1_

V0 V0 V0
n : 10 K(v) : - i0.0002159 e + i0.0026996 e - i0.0161975 e

• 2 _'v . ftv

1V---_- 1_V0
+ i0.0647900 e - i0.2267650 e + 0.5

• _v .2_v . 3?Iv

-' V--o 1 V0 -1 V---O-
+ i0.2267650 e - i0.0647900 e + i0.0161975 e

• 4yv . 5?Iv
-1-- 1

V0 V0
- i0. 0026996 e + i0. 0002159 e , (43a)
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.4Yv .3?iv .2yv

1 V--0- ' V--_ 1 VO
n = 8 K(v) = i0.0010318 e - i0.0110064 e + i0.0577835 e

• ?iv . _v
1 V--:'- 1 V0O

- i0.2311339e + 0.5 + i0.2311339e

2 ?iv 3 ?iv .4 ?iv
-i_ -i_ -i-_

V0 V0 V0
- i0.0577835e + i0.0110064e - i0.0010318e ,

(43b)

• 3 ?iv .2 ?iv . Try

,v--V ,v-T ,v0
n = 6 K(v) = - i0.0052498 e + i0.0472481 e - i0.2362406 e

• ?iv . 2 ?iv

-'Vo ' v-V+ 0.5 + i0.2362406e - i0.0472481e

• 3?iv
"i

V0
+ i0.0052498 e , (43c)

• 2 ?Iv . ?iv

'Von = # K(v) = i0.0303643e - i0.2429150e + 0.5

• ?iv .2 ?iv
- _ -i V'_-

i VO 0
+ i0.2429150 e - iO. 0303643 e , (43d)

• ?iv . I/v

-,v°
n = 2 K(v) = - i0.2500000 e + 0.5 + i0.2500000 e . (43e)

Figxire 12 shows these K(v) plotted as a function of v/V 0. Solid lines are used for

n = 2, 4:, mid 6, dotted lines for 11 = 8 and 10, and a dashed line for the ideal character-

istic. '12m performm_ce of the modulators corresponding to these K(v) is evaluated by

substituting tlle Ai and Bi of (433)into (17), and the Ai and Bi of (43b)- (43e)into the

correspondhlg equations derived from (17). The results are shown in Fig. 9a through 9e.

Shlce all Ai except An/2 were chosen to be zero, the de component of the output

is constant with a value of 0.5. For the same reason, the mag_lttude of the second harmonic

is zero for all n even. The deviation from Iineavity of the ftmdamental and the magnitude of
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the third harmonic, seen in Figs. 9d and 9e, again behave in very similar fashion to each

other. These figures show that the maximally-linear approximation is, in general, less

successful for n even than for n odd. For example, there is more fundamental and third

hm_monic distortion present for _ = 10 than for n = 9 for all values of v/V 0. In some

cases, the n even networks produce less distortion than the n odd networks for small

values of v/V 0, but for larger values of v/V 0 the n even networks are consistantly

inferior in performance.

In order to obtain the entire picture, however, the variation of the fundamental

amplitude with n must also be considered. This is shown in Fig. 9a, where it is seen

that the fundamental amplitude does not fall off nearly as much with increasing n when

n is even as when n is odd. However, as can be seen from Fig. 10a where fundamental

distor_don is plotted vs. n for constant values of the fundamental amplitude, the modulators

having n even are still inferior to those with n odd.

To summarize then, the maximally-linear approximation technique is perhaps less

successful for n even _han for n odd. For n even, an advantage _s obtained in that the

o_nd, fourth, sixth, etc. harmonies are zero. If the elimination of even harmonics Js of

prime importance, the n even ease may well be the solution. The distortion present in

the odd harmonics of the output, however, is worse for n even than for n odd.

IV. AMPLITUDE MODULATORS FOR USE WITtt SQUARE-LAW DETECTORS

In this section we consider the ideal characteristic and methods for its approximation

for an amplitude modulator to be used with a square-law detector. This case is probably of

greater general interest than the envelope-detector case since various square-law detectors

are available and widely used.
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A. Ideal Modulator Characteristic

h_ Section III it was seen Nat for the envelope-detector case, one possible ideal

characteristic is

It is not difficult to see, then, Nat for the square-law ease the corresponding ideal

charaeteristic is

1/2
V

To verify that the K(v) of (44) is indeed an ideal modulator transfer function, assume Nat

an optical signal ei tot enters a modulator having such a K(v). The signal Eou t leaving

the modulator is given by

v e (45)

If we assume that the modulating signal v has the form v = V cos tom t, Eq. (45) becomes

, 1/2 i wt

vE°ut = + _00 c°Stomt) e , (46)

the signal which is incident upon the detector. The detector output Iou t is given by kEoutEout ,

which using (46) gives

V
cos Wmt ) . (47)Iout = k (-_ + V--0

As noted before, this satisfies perfectly the ,._r__te%awMch we have selected for modulator

performance, namely that the detector outpm, certain a fundamental whose amplitude is

linearly proportional to V, and no higher harmonics. The ideal characteristic of Eq. (44)

is plotted in Fig. 13. Finally, it should be noted that just as there were an infinite number

of possible ideal characteristics (of various slopes) for the envelope-detector case, there

are likewise an hffinite number of possibilities for the square-law case.
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For the square-law case, we will consider only n odd. The previous section showed

it to be more useful than n even in almost all respects. The sole exception was in elimi-

nation of even harmonics, where by proper choice of the Ai, a modulator with n even

could be designed to produce no even harmonics, dowever as we will see, even this

potential advantage is not present in the square-law case, since the even harmonic amplitudes

are now functions of the A. and B. rather than the A. alone.
1 1 1

B. Formulas for Amplitudes of Fundamental and Harmonics

We now derive general expressions for the amplitudes of the fundamental and harmonics

present in the detector outp'.._. The voltage transfer functions for 1, 3, 5, 7, and 9 stage

networks are again given by Eqs. (10). The details of the computation will be given for

n = 9 only, since results for n = 1, 3, 5, and 7 are derivable from the n = 9 case.

We again impose the requirement that K(v) be real• This condition was necessary

in the envelope-detector case to ensure that the phase of the demodulated fundamental did

not depend upon V; it is not necessary, however, in the square-law case. Hence the

decision to restrict K(v) to being real is admittedly an arbitrary one, made primarily for

convenience. An additional incentive is provided, however, by the work of Ammann and

Yarborough [28]. They have shown that if K(v) is real, a modification of the synthesis

procedure of Part V can be used which results in a modulator containing only half as many

stages as normally required.

With this restriction, K(v) for n = 9 becomes

• 9_v . 7_v . 5_v . 3_v . lr v

12V 0 _ 2V 0 _ 2V----0 _ 2V'--O _ 2V---0-
K(v) = C0e + Cle + C2e + C3e + C4e

• cry .3_tv .5cry -i7¢rv . 9cry
19v0 -1 9.v0 -1  .v0 -1$ $ $ # _¢

+ C4e + C3e + C2e 4 Cle + C0e (48)
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Th_ square-law detector output is given by

Iout = k K(v) K (v) EinEin ,

which for the E. of Eq. (7) givesin

Iout = k K(v)K (v}. (49)

Substituting (48) into (49) gives

Iout/k = K(v)K (v) = 2 0C0 + C1C 1 + C2C 2 + C3C 3 + C4C 4

1/V

iVoI2 * * * * 1+ e (CoC 1 + C1C 2 + C2C 3 + C3C 4) + C4C 4

'ffV

+ e (CoC 1 + C1C 2 + C2C 3 + C3C 4)+ C4C 4

• 2_v

V0 I 2 * * * 1
+ e (CoC 2 + C1C 3 + C2C 4 + C3C 4)

.27rv
1

V0 I2 * * * * * 1
+ e (CoC 2 + C1C 3 + C2C 4 + C3C 4)

• 3yv
I '---

7°[2* * 1+ e (CoC 3 + C1C 4 + C2C 4) + C3C 3

• 3yv

+ e (CoC 3 + C1C 4 + C2C 4) + C3C 3

• 47iv

v°E * 1+ e (CoC 4 + C1C 4 + C2C 3)
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4ffv

+ e 2(COC 4 + CIC 4 + C2C3)

5yv

Vo

+ e E2(COC4 + CIC3)+ C2C21

5qTv

+ e 2(COC 4 + C1C3) + C2C 2

6qTv .6_v

] [ ** **1+ e 2(COC 3 + C1C2) + e 2(COC 3 + CIC2)

7_v . 7_v

 vo[ ] I** **I+ e 2CoC 2 + CIC I + e 2CoC 2 + CIC I

8_'v .8_'v
1_ -1---

Vo[ j 1+ e 2CoC 1 + e 2CoC 1

9_v .9_v

+ e CoC O + e CoC O (50)

Letting C i = Ai + iBi, we obtain

Iout/k = 2 + A 1 + A2 + A3 + A4 + B 0 + B 1 + B 2 + B 3 + B 4

" [_'(-Ao_+A_0-A_.+_._ - _+ A_.- _ +_ +_4"4)1- 2sin _

+ _.eos--_--0 2(AoA 2 + B0B 2 + AIA 3 + B1B 3 + A2A 4 + B2B 4 + AaA 4 - BaB4)

- zsin-_0 2(-AoB 2 + A2B 0 - A1B 3 + AaB1 - A2B 4 + A4B 2 + AaB4 + A4Ba)
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+ zcos--_0 A 3 - B 3 + 2(AoA 3 + B0B 3 + AIA 4 +BIB 4 + A2A 4 - B2B4)

3,v [2(_AoB3 + A3B0 - AIB4 + A4B1 + A2B4 + A4B2 + A3B3) ]- 2sin "_0

4yv

+ 2cos-_0 [2(AoA 4 + B0B 4 + A1A 4 - B1B 4 + A2A 3 - B2B3) ]

4,v [2(_AoB4 + A4B0 + A1B4 + B1A4 + A2B3 + A3B2)]- 2sin -_0

51rv 2 2 + 2(AoA4 _ BoB4 + AIA3 1+ zcos--_0 I A2 - B2 - B1B3)

"I

5 _V I 2(AoB4 "_ A4BO "_ A1B3 -_ A3B1 "_w A2B2) 1- 2sin

6_v [2(AoA3 - BoB3 + A1A2 - B1B2 )]+ 2cos-_0

6,v [2(AoB3 + A3B0 + AIB2 + A2B1)I- 2sin -_0

+ zc°s-V-o0_7 _Tv A2 B12 + 2(AoA2 _ BoB2 ) _ _.sm___0 2(AoB2 + A2B0 + AIB1 )

+ _ 8yv _ BoB1)] _ r . 81rvzc os--_0 [ 2(AoA 1 [2(AoB1,.sm-_0 + AIB 0) ]

_ 9,v[2 _.]_2sin9_,v[ 0] (51)+ zcos-_0 A 0 - B 0 V_0 2AoB

Forconveniencewe,,,illdesig_at_thebracketedt_rmsin¢51)by(:70'Qr "_r

(_9' mid _9 respectively. Equation (51) then becomes

_lCOS E j_. ,v /Y 2,vIout/k : 2 _0 + 2 _v 2 lSln_00 + 2 aa.2cos-v_ 0

f2 . 31rv ,,7 4_v

- 2-_ " --2_v+ 2 l_Z3cos3_rv 2_3sm-v--_-o + 2 u_4cos- E2 sm v 0 v 0
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2_4sin 4_tv _5 5_tv 2_5sin 5¢tv n 67rvVO + 2 cos VO VO 4- 2_ ____ t_6cos --_0

___oo_+_¢oo_"____7_+ _asOO_vVo Vo Vo Vo

_ 288sin8J__y_v + 2/_,9cos9_tv 2_9sin9yV (52)
V0 V0 V0

If we now let v = V cos ¢Omt and expand the cos(cos O) and sin(cos O) terms which

result, the desired expression is obtained for n = 9.

'ou¢_ --_ o+a_% _T° , _-_o_+a_o _-VVoj

+' - ,-_-o, - o - u --_ F_o, (,-To)]05Jo/'5_'V.] /'6'ttV_ /(.7_rV] + ajo/.S_'V ] j 9_'V+o_%,-v:-j+aao_T_ +a_o

__ _ (_)+__v_+,_w0j_,(-Wo}_a_t-Wo, _,,_o,
• 8_'V 9_V ]

+ _d_I6_v_+_TjiIT"v_+_8_(%-o) +_9J_(--¢_-o)jc°sc°mt_V 0 ! _V 0 /

IQ1 2_tV 3yV 4_tV__ _.<_)+o_.(w>+o_,_.(_Wo)+o_,,.(_Wo)+o__v_,_,
+ {_6J2(6_'V;+ aTj2/7,v_ 8,v (.9,v t,go, ,-7o+ o9,

+_[_,_{_)+_ _._.,,v_+__Wo,_ _,,v._+__Wo_.@__,,v__--n-o_+_'_,_V_vo,

+ _6J3/-6¢tV_ + _TJ3_-7_tV_ + _SJ3/8_tV'l + _J3(gv-_-)] cos 3Wmtvo_ _-_o_ _-_o_

+ higher order harmonics. (53)

From (53) we see that the amplitudes of the fundamental and harmonics are functions

of both the A. and B.. This is in contrast to the envelope-detector case where even-harmonic
I 1

amplitudes are functions of the Ai only, while odd harmonic amplitudes are functions of the Bi.

C-63

1967011192-180



C. Fourier Approximation to Ideal Characteristic

One might again consider using the Fourier approximation to determine the C.. This1

calculation was carried out for the ideal characteristic of Fig. 14 and the resulting A. and1

Bi substituted into Eq. (53) (or, for the cases of n = 1, 3, 5, and 7, into equivalent

expressions) to assess the modulators' performance. This approximation method again

proved unsuccessful in yielding modulators with improved performance characteristics,

and hence the results will be briefly summarized instead of presented in detail. The de-

viation from linearity of the fundamental was found to be p.'gre_mrfor n = 5 and 9 than for

n = 1, while for n = 3 and 7 the deviation from linearity was only slightly less than for

n -- 1., In addition since for n = 1 there is no second harmonic, the conventional

modulator's performance is superior in this respect also. Therefore the conclusion is

again reached that the Fourier method is not successful in designing improved amplitude

modulators.

As mentioned earlier, the problem is probably at least partially due to the abrupt

changes of slope of K(v) which occur at v/V 0 = - 0.5 and + 0.5. In an attempt to verify

this, another approach was tried. Instead of approximating the ideal K(v) of Fig. 12, a

new K(v) was chosen which closely follows the K(v) of Fig. 12 for -0.45 (v/V 0 ( 0.45,

but which deviates from it in such a fashion that abrupt slope changes are avoided in the

vicinity of v/V 0 = + 0.5. Using graphical techniques, the Fourier coefficients for this

new K(v) were found and substituted into Eq. (53).

This technique resulted in a sys_matic, but fairly small, reduction in the deviation

from linearity of the fundamental for n = 1, 3, 5, and 7. For n = 9, however, the

deviation returned to essentially its n = 1 value. The second harmonic magnitudes

decreased only slightly with increasing n. Thus although this teclmique was more successful

than the reg_flar Fourier approximation of the K(v) of Fig. 12, it still leaves much to be

desired. The improvements which it produces are not substantial enough, or sufficiently

m_iform with increash_g n, to merit its use.

C-64

1967011192-181



f

m,,l

v

I I I I

__° o

..... _ _ d d ,-4 "4
t I i I I

IJ_

"i
-,_

. °

!

M
!

C-65

1967011192-182



D. Maximallyqinear Approximation to Ideal Characteristic

The approximation technique which proved most useful for the envelope-detector case

is one in which the C i were chosen to directly optimize the fundamental and second harmonic

amplitudes. The goal was to minimize the second harmonic amplitude and to make the

fundamental amplitude directly proportional to V, the amplitude of the modulating signal.

We will now apply this same technique to the square-law detector case.

Equation (53) gives a general _.xpression for the demodulated signal from a square-law

detector. The amplitude of the fundamental is given by

amplit_deof = - 4 [_ (_tV)+ _2Jll2_tV_ _3Jll'3_V_ _4Jl(4_tV_

+ _9J1/911'V__-v-y) , (_4>
.;

while the amplitude of the second harmonic is given by

secondharmonic [_I 17(_00)+ _ j (2"V._ + _j2t3_TV_amplitude = -- 4 J2 2 2_-_0 ] k%-_-] + qJ2/4"V_k-_O]

+ O_J_vo j+ °6J2k-E-oj + k-E-0,+ °_'_2_-E-0 ,

t9_'V_ ]+ _9J2 [--_0 ] . (55)

It should be kept in mind that the _i mid _i are functions of the Ai and Bi •

Writhlg each Bessel ftmction of (54) and (55) in series form, we obtain

amplitude°f = - 4 _r V _1 _2 _3 _4 _5 _6fundamental 2V 0 ( " + 2 + 3 + 4 + 5 + 6

_.3[ V 3
+ 7_7 "'" 8_8 + 9_9)- i"6-\'_0"0) (_1 + 23_2 + 33_3
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(v)°

mld

Fo___]_,._____2 22 + 42
second harmonic =- 4 (Q1 + (_2 _ 32a3 04 + 52a5-' 62a(;amplitude L8Wo.,

4 ( v_4

_.6 (.v_V_o)6

.8 _)8+ 6606 + 76_7 + 80_8 + 96_ _ 184=,320 ({_I.
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lo (_)1o 210+ 98Q9) + 8,847,360 (O1+ 02 + 31003

+41oq+ + ,o,q+ loa,+ o8 +9 ci'9)

• .- [ • (57)
.1

There are ten different Ai and Bi to be determined: A0, A1, A2, A3, A4, B0, B1,

B2, B3, and B4. One of these _s used up in normalizing K(v) to have a maximum mag_i-

tu4e of unity. Another will be fixed when we set B4 = - A4 in an attempt to make the

general form of K(v) similar to that of the ideal function of Fig. 14. The remaining eight

A. and B. can be chosen to make eight term coefficients in (56) and (57) be zero. The
1 1

choice of which eight are made zero is arbitrary. Our choice will be the (V/V0)3,
5

(V/V0) , (V/V0)7, and (V/V0)9 terms in the fundamental amplitude and the (V/V0)2,

(V/V0)4, (V/V0)6, and (V/V0)8 terms in the second harmonic amplitude.

The corresponding equations are

i_1 + 23_2 + 3383 + 43_4 + 5385 + 631_6 + 73L1_74-83_8 + 93_9 = O,

_1 + 25_2 + 35_3 _- 45_4 + 55_5 + 65_6 + 75_7 + 85_8 + 95_9 = O,

_1 + 2"792 "" :_;_3 + 47_4 + 57_5 + S"/_6 + 77_:'7 + 87_8 + 97_9 = O,

_l + 29_ 2 + 39_3 + 49_4 + 59_5 + 69_6 + 79_7 + 89_8 + 99_9 = O,

_l + 22C_2 4-32_3 + 421_4 + 52_5 + 62_'26 + 721_7 + 821_8 + 92_9 = 0,

C_I_- 2402 + 341_3 + 441_4 .4-54a5 + 64_6 + 74_,., + 84_8 + 94_ 9 = O,

O l+ 26_2 + 36_3 + 46_4 + 5605 + 66_6 + 76a7 + 8608 + 96_ 9 = O,

.!

a, + 28Q2 + 381_3 " 4804 + 5805 + 6806 + 7807 + 881_8 + 9809 = O. (58)
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If we rewrite the above equations expressiug the _i and _i in terms of the Ai mxd

Bi , and if we let B 4 = - A4' we obtain

2 + 9A4B 3 + 35A4B 2 + 91A4B1 - 7A4A3 + 27A3B3 + 65A3D2 + 133A3B1- A 4

- 19AAA 2 + 63A2B 3 + 125A2B 2 + 217A2B 1 - 37A4A 1 + llTA1B 3 + 215A1B 2

+ 3&BA1B 1 + 189AAB 0 + 24:BA3B 0 + 351A2B 0 + 513A1B 0 - 61A4A 0 + 189A017';;(5'0a)

+ 335AoB2 ,- 511AoB1 + 729AoB 0 = 0,

2 + 33A4B 3 + 275AAB2 + 1267A4B1 - 31A4A3 + 2&3A3B3 + 1025A3B2- A4

+ 3157A3B 1 - 211A4A 2 + 1023A2B3 + 3125A2B 2 + 7777A2B 1 - 7B1AAA 1

+ 3093A1B3 + 7775A1B2 + 16,807A1B1 + 41A9A&B0 + 8019A3B0 + 16,839A2B0

+ 32,769A1B0 2101A4A0 + 7533AoB3 + 16,775AoB2 + 32,767AoB1- (59b)

+ 59,049AoB0 = 0,

2 + 129A4B 3 + 2315AAB2 + 18'571A4BI - 127A4A3 + 2187A3B3 + 16,385- A 4

+ 78,253A3B1 - 2059A4A 2 + 16,383A2B3 + 78,125A2B2 + 279, q37A2B1

_ 14,197A&A1 + 77,997A1B3 + 279,935AIB2 + 823,543A1B1 + 94,509A4B0

+ 282,123A3B0 + 823,671A2B0 -',2,097,153AIB0 - 61,TAIA4A0 + 277,749A 0]

+ 823,415AOB2 ._ 2,097,151AoBI + 4,782,969AoB 0 = 0,
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A24 + 513A4B 3 + 20,195A_B 2 + 281,827A4B 1 - 511A4A 3 + 19,683A3B 3

+ 262,145A3B 2 + 1,953,637A3B I - 19,171A4A 2 + 2_2,143A2B 3 + I_953,125A_2

+ 10,077,697A2B I - 242,461A4A I + i,952,613AIB 3 + 10;077.695AID 2

40, 353,607AIB I + 2,215,269A4B 0 + 10,097,379A3B 0 + 40,354,119A2B0

+ 134,217,729AIB 0 - I,690,981A4A 0 + I0,058,013AoB 3 + 40,353,095AoB 2
(59d)

+ 134,217,727AoB! + 387,420,489AoB 0 = 0,

10A4A3 + 6A4B3 + 26A4A2 L 10A4B 2 + 50A4A I + i¢Y'42i * 9A23 - 9B32
70B2B I

25A 2 74A2A 1

+ 34A3A 2 - 30B3B 2 + 58A3A 1 - 42B3B 1 + ._ - 25B 2

49A21 - 49B2i + 82A4A0 + 18A4B0 + 90A3A0 - 54B3B0 + 106A2A0 - 90B2B0+

(59e)

+ 130AIA 0 - 126BIB0 + 81A 2 - 81B2 = 0,

O

3_A4A 3 + 30A4B 3 + 194A4A 2 + 130A4B 2 + 674A4A I + 350A4B_. + 9_-281A3

+ - 1218B3B I + - a__b 2

_ 81B 2 + 514A3A 2 - 510B3B 2 1282A3AI 625A2
9.

738A4B 01762A4A 0
+

+ 2594A2A1 _ 2590B2B1 + 2401A_ - 2401BI

+

+ 2754A3A 0 - 2430B3B 0 + 4834A2A 0 - 4770B2B 0 + 8194AIA 0 - 8190BIB 0
(59f)

+ 5561A 0 - 6561B20 = 0'
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130A4A 3 + 12644B3 + 158644A2 + 1330A4B 2 + 9650A4A1 + 6734A4B1

+ 7294% - 729B2 + St9¢A3A2 - St90B3B2 + 3t'37sA3A1 - 3t'122B3B1

+ 15,625'_ - 1.5,625_ + 93, 3t4A2At - 93, 3t0B2Bt + ltT,649A?

_ t17,B49B21 + 39,44244A0 + 23,058A4B0 4:94,770A3A0 - 9t, 854B3B0

+ 235,426A2A0 235,t70B2B0 + 524,290A140 - 524,286BtB0 + 531,44142- (59g)

- 531,4411520= 0,

514A4A _ + 5t0A4B3 + t3,634AAA2 + 12,6!0A4B2 + t44,194AAAI

+ tlT,950A4Bt + 6561.K2 - 6561152 + 131,074A3A2 - 131,070B3B2

+ 781,762A341 - 780,738B3B1 + 390,6254_ - 390,625B2 + 3,359,2344241

_ 3, 359, 230B2B1 + 5,764,80tK2 - 5,764,801152 + 912,322A440 + 650, t78A4B0

+ 3,372, 3544340 - 3,346,1t0B3B0 + 11,530,1t4A240 - 11, 529,090B2B0

+ 33,554,434A140 33,554,430BIB0 + 43,046,72142 - 43,046,72tB2 = 0'
- (5£

It is now necessary to solve these eig=ht simultaneous equations for h 0, At' h2' h

]50' Bt' B2, and B 3 in terms of A4. h_ the linear detector case, the simultaneous

equations were linear; in the square-law case, they are nonlinear and hence eonsiderabl

more difficult to solve. Furthermore it is not known a priori whether real solutiOnS fo]

the Ai and B i even exist.
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The Eqs. (59) were solved by computer, and the Ai and Bi were found to have real

solutions• These solutions are

A 3 = - 0.0864814 A4,

A 2 = 0.0010356 A4,

A 1 = 0.0025003 A4,

A 0 = - 0.0003848 A4,

B 3 = 0.2232322 A4,

B 2 = - 0.0579300 A4,

B 1 = 0.0099872 A4,

B 0 = -0.0008140 A4. n = 9 (60)

We now lmow the coefficients of K(v) in terms of A4. By normalizing K(v) to have a

maximum magnitude of unity, absolute values are obtained.

Similar calculations can be carried out for n = 7, 5, and 3. When n = 7, for

example, three terms in the expression for the amplitude of the fundamental and three terms

in the expression for the second harmonic amplitude can be set to zero. This requires the

solution ot six simultaneous nonlinear equations.

The final results for K(v) using the maximally-linear approximation technique are

• 9qrv .7?rv

_2V--_ _ "2'r-_0
n = 9 K(v) - - (0.000132 + i0.000280)e + (0.000859 + i0.003433)e

• 5_v . 3_v

1 2V 0 1 2V---_
+ (0.000356 - i0.019911) e - (0.029724 - i0.076727) e

.'n'v .'ffv

i "2V 0 -i 2 V 0
+ (0.343708 - i0.343708) e + (0.343708 + i0.343708) e
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5_Iv

• 3_rv -i-_o-1 2V 0
- (0.029724 + i0.076727)e + (0.000356 + i0.019911) e

9'_v

• 7 _rv -i 2V---O-1 2V 0
i0. 000280) e

+ (0.000859 - i0.003433) e - (0.000132 -

(61a)

5_v

• 7 ?rv i 2V 01 2V 0 i0. 012645) e
n - 7 K(v) = (0.000250 + i0.001207)e + (0.000720 -

• 3_v i _._..___v

1 2V 0 2 V0
i0. 348012) e

_ (0.027340 - i0.065522)e + C0. 348012 -

• _ v -i 3J.____v

-1 _ 2V0
+ (0. •i8012 + i0.348012) e - (0.027340 + i0.065522) e

• 5_v -i 7_rv

-I-_0 2V0i0.001207)e
+ (0.000720 + i0.012645)e + (0.000250 -

(61b)

3_v

• 5 _rv i 2V 01 2V 0 iO. 050766) e
n = 5 K(v) = (0.000705 - i0.005565)e - (0.023582 -

_v ._Tv

-'
+ C0.351045 - i0.351045)e + (0.351045 + i0.351045) e

5_rv

.3 _v -i_0 _-I
- (0.023582 + i0.050766)e + (0.000705 + i0.005565)e ,

(61c)

• 3_¢v i 7r__y.

1 2V----O 2 V 0iO. 35298'1) e
n = 3 K(v) ,= - (0.016675 - i0.030586) e + (0.352987 -

3_tv

._v -i 2--_0-IT-vo
+ (0.352987 + i0.352987) e - (0.016675 + i0,030586) e ,

(61d)
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. ,ff,_r . _ v

1 2 V 0 -t 2V----_.
n = 1 K(v) _, (0.353553 - i0.353553)e + (0.353553 + i0.353553)e

u

(6tc)

The K(v) of (63) are plotted in Fig. 15 together with the ideal characteristic of Eq. (44).

The performance of the modulators corresponding to these K(v) is evaluated by substituting

the Ai and Bi of Eqs. (61)into Eq. (53) (or, for n _ 9, into comparable expressions).

The results are shown in Fig. 16.

From Fig. 16e, the deviation from linearity of the fundamental is seen to decrease

substantially with increasing n. Similar behavior is shown in Fig. 16d for the maguitude of

the third harmonic. Figure 16c shows the results obtain," for the second harmonic magni-

tude. Here it should be recalled that for n = 1, no second harmonic is present and hence

the synfl_esized modulators are inferior to a conventional modulator in this respect. Finally

the amplitude of the fundamental is shown plotted in Fig. 16b. It is seen that the decrease

in fundamental amplitude is even more pronounced in the square-law detector case titan in

the "_nvelope-detector case. Thus it is important that constant fundamental-amplitude

curves similar to those of Fig. 10 be plotted to show more accurately the improvement

obtained.

Such curves are shown in Fig. 17 where (a) the deviation from linearity of the funda-

mental and Co)the magnitude of the second harmonic are plotted as a function of n for

various fixed values of fundamental amplitude. From Fig. 17a it is seen that substantial

uniform improvement in fundamental linearity is obtained for increasing values of n in

spite of the fall-off in fundamental amplitude. The greatest improvement is obtained in

going from 1 to 3 stages, with slightly less improvement from 3 to 5, and so forth. That is,

the improvement obtained from additional stages is greatest for small n and decreases

with increasing n.

C-75

1967011192-192



oO

"", ""- >I_
\N \\

\ \

\\ \ •

\\\ \\\

"\\ \\
\
\

\
d

1,4

I_ r',,. I CI

il -o.'o
#

C

1

I _r_ I I ,,=i I __/_-I_

1N;INOdW03Oil

C-76

1967011192-193



lVlN31NVONIlJ.'103011111dWV

C-77

1967011192-194



eo

TrTTTT_I---T--TTITT_,r'-FT-_[_I I I I 1 I I--I I '_ I 11I I ! i | _-T----_-- d

\

'.\

\ x

\ \

\\ , ..,... ""'.....

2.;

\
till I f I 1 Ititl I t l | lltll I 1 I. I _tllll ! I | 1 L|I|!-} I I ._...._.L.--,--

OINOWttVH(_NZ_.10](InIINgVW

C-78

1967011192-195



OINOfl_VHOaF._.10:](]IlIINflW/

C-79

1967011192-196



C-80

1967011192-198



C-81

1967011192-201



0.1 I-- l i ! I ! .

AMPLITUDEOF
FUNDAMENTAL=O.47.5

-

- _

.-..-0-

O.Ol- o

- o o ___----o 0.4 -_

r -

z
o 0.001
_ -
¢Y _

,-, "00.3 -
i_ -
i1
Q

_" O.01_1

O.00001 0.2

O.000001 , , .1 I I
I 3 5 7 9

n (NUr_BEROFSTAGES)

Figure 17b

C-82

1967011192-202



For the square-law case, the maximally-lfimar approximation technique would have to

be considered a qualified success. Fundamental distortion is uniformly reduced by increasiag

the number of stages, but second harmonic is present for n = 3, 5, 7, 9, ... which is not

present for n = 1. The modulator designs which correspond to the K(v) of Eqs. (61) are

listed in Table II for convenience.

V. SUMMARY AND CONCLUSIONS

A technique has been described which allows the synthesis of electro-optic amplitude

modulators having arbitrary modulation characteristics. The teclmique is a direct analogy

of file procedure of Ammann and Yarborough [26] for synthesizing naturally-birefring,_.nt

networks. With the procedure of this paper, a voltage transfer function K(v) of the form

given in Eq. (3) can be realized by an electro-optic network of the form shown in Fig. 3.

The synthesis procedure arranges standard components in a particular fashion to form a

modulator having the required voltage transfer _.mction.

The manner in which K(v) is chosen is very important. If sufficient care is not

taken in this choice, the performance of the sy_t.hesized modulator can easily be i_fferior

to that obtained from the simple, conventional amplitude modulator of Fig. 1. Several

techniques for choosing K(v) were tried with varying degrees of success. The most satis-

factory results were obtained when the C. of K(v} were chosen to directly optimize the1

modulator property (or properties)of greatest interest. This was done for

two cases of interest: the design of a modulator for use with (a) an envelope

detector, and (b) a square-lawdetector.

The modulator properties which were chosen (arbitrarily) for optimization in this

paper were the following. The modulating signal v was assumed to be of the form,

v = Vcos _m t. The demodulated signal from the detector will in general contain a dc

term, a fundamental, and harmonics. It was deemed deslrable for the fundamental to be
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linearly proportional to V, and for the harmonics to be minimized. I-Ience moclulator

performance was meast'red by calculating the deviation from linearity of the fundame,fl.al

and the amplitudes of the harmonics.

Best results were obtained for both the envelope mud square-law detector cases by

writing the fundamental and harmonic, amplitudes as power series hi V. The C. weret

then chosen to eliminate as mmly nonlinear terms from the fmldamental expression m_d

as many low-order terms from the second harmonic expression as possibie. The K(v)

so derived do indeed give improved modulator performance (see Figs. 9, 10, 15, and 16);

the modulator designs corresponding to these K(v) are tabulated in Tables I and II. lIow-

ever the improvement is, in some reepects, less than might be hoped for. It is likely that

still other approximation techniques will eventually be found which yield further improvement.
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1. To put it still more accurately, _rv/V 0 plays the same role for tim electro-optic cell

that Q co doe_ for the birefringent crystal.

2. The lhlear characteristic may have any sl¢.pe whatsoever, and hence there are an

hffh_ite m,mber of possible ideal characteristics. We have chosen a characteristic

with a slope of unity.
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CAPTIONS FOR FIGURES AND TABLES

Fig. 1 Model for conventional electro-optic amplitude modulators.

Fig. 2 Basic configuration for the birefringent network (4 stages) obtained from the synthesis

procedure of Part I [21]. F and S denote the "fast" mid "slow" axes of the

birefringent crystals.

Fig. 3 Basic configuration of the birefringent network (4 st2.ges) obtained from the synthesis

procedure of Part V [.26] ; each stage contains a birefringent crystal and optical

compensator. This also represents the basic configuration of the modulators

obtained by the techniques of this paper; in this case each stage consists of an

electro-optic cell and optical compensator.

Fig. 4 Naturally-birefringent crystal used as the basic "building block" of a birefringent

network. This also represents an electro-optic cell used as the building block of an

electro-optic network.

Fig. 5 Ideal voltage transfer function K(v) for an amplitude modulator which is followed

by an envelope detector.

Fig. 6 Periodic ideal voltage transfer functions for an amplitude modulator having (a)

n odd, and (b) n even.

Fig. 7 Fourier approximations to the ideal K(v) of Fig. 6a.

Fig. 8 Envelope detector output vs. V/V 0 when modulators having the K(v) of Fig. 7 are

employed: (a) dc component of output; {b) amplitude of fundamental; (c) magnitude

of second harmonic; (d) magnitude of third harmonic; and (e) deviation from

linearity of fundamental.

Fig. 9 Envelope detector output vs. V/V 0 when modulators synthesized using the maximally-

linear approximation are employed: (a) dc component of output; (b) amplitude of

hmdamental; (c) magnitude of second harmonic; (d) magnitude of third harmonic; and

(e) deviation from linearity of fundamental. The magnitude of the second harmonic is

zero for n = 2, 4, 6, 8, andl0.
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Fig. 10 Envelope detector output vs. n when modulators synthesized using the maximally-

linear approximation are employed. Each curve represents a constant amplitude

of fire fundamental. Dotted lines connect points for which n is even while solid

lines connect points for which n is odd. Shown are (a) deviation from linearity

of fundamental, and (b) magnitude of second harmonic.

Fi_. 11 K(v) obtained using the maximally-linear approximation (n odd, envelope detector)

Fig. 12 K(v) obtained using the maximally-linear approximation (n even, envelope detector)

Fig. 13 Ideal voltage transfer function K(v) for an amplitude modulator which is followed

by a square-law detector.

Fig. 14 Periodic ideal voltage transfer function for an amplitude modulator having n odd.

Fig. 15 K(v) obtained using the maximally-linear approximation (n odd, square-law detector)

Fig. 16 Square-law detector output vs. V/V 0 when modulators having the K(v) of Fig. 15

are employed: (a) dc component of output; (b) amplitude of fundamental; (c)

magnitude of second harmonic; (d) magnitude of third harmonic; and (e) deviation

from linearity of fundamental. The magnitude of the second harmonic is zero for

n = 1.

Fig. 17 Square-law detector output vs. n when modulators synthesized using the maximally-

linear approximation are employed. Each curve represents a constant amplitude of

the fundamental. Shown are (a) deviation from linearity of fundamental, and (b)

magnitude of second harmonic. Dotted lines connect points for which n is even

while solid lines connect points for which n is odd. For n = 1, the magnitude

of the second harmonic is zero.
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Appendix D

A COMPUTER PROGRAM FOR CALCULATING THE FOURIER SERIES COEFFICIENTS

AN ARBITRARY IDEAL FUNCTION

A common method of choosing the Ci of Equation (2.1) is to make them the

Fourier series coefficients of the ideal function. Since this calculation

was repeated many times during the course of this work, a program was _mitten

so the coefficients could be calculated by computer. The computer language

used in writing the program is FORTRAN (for a Control Data Corporation 3200

computer).

The program accomplishes the following things. For a given ideal

function, the Ci are calculated for the cases n = i, 2, 3, ... 20. In

each case, the Ci are normalized so that the maximum value of IC(m)l2 is

unity. In addition, for each case the computer plots the magnitude of C(m)

over one period. It should be mentioned that the program can handle

asymmetric as well as symmetric ideal functions; these result in complex

values for the C.. The only restriction is that the ideal function must be1

real.

The program is given below.
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_F_PAM F"_UP IF'I_

("t3MMt')N _'(I P| }

C n MMP)KI In_r)o l FI.JNCT

DIMFNSiON G(121 ),A(I_),B(I¢3)qG_ANr)(IPt ),X(t2_! ),SUM(tPI )

r" A ANt') F_ AI_F F'r)u_ I FP COFFF I," TF'NT£

r' _(X)=AO+.SL)M(A(K)WCO£(KX)+R(K)'W'£IN(KX) ),_ K 1,,K_m" F'OI_ KF=] _,N
r-

IO0 r:OPMAT(IHC),_pHC(,_ T2,2H)=,F12o%,I#X,r-t2,,_,lC)X,IE1;:)oA)

10_ _'mDMAT(1H11

1('}q _'r_pMAT( IN 45(FF}eS©_XoF1?oS,4X))

I rh_ _'hD_AT (1Hh)

|0_ _'r)I_MAT ( F-14 e'7 )

M=1 rt

DT _e t 41_Qg ?

_-Sn 1 r'}=q, ='m_

f ,'_Dr_=r}

f _t PKI("T = 1

nr_ 1 k"=l ,_121

)_(I<) = (k'-61 }_OI/6r_o

I r=(k")=_"IJNC'T(XCk'} 1

PPTNT Ir)_,i (X(J),p_'(.)),_J--I ,_1

r_ g 1--I ,g3

f== T_

...... ? -PI_INT I0"_, X(I_+I },_'(I_+1 },X(15+?),_F(I_+P},X(I.5+_),F(;__+'4),X(I._ ÷��T$�t�1),F( I_+4 },X( I_+_ ) ,F-(I_+5)

pr_INT I0_,_ X(1?I 1_(I71 }

C.ALL PLhT(O)

An=AN_/(:_oW-P I )

Pl_ INT 1 ,'1P
k"_--r}

r rAI_rtgLAT_" A(k'l, R(KI, k"=l ,N

I r_r'}=k"

T_'t Jlklr"T-" 1

AN_=¢;IMP_r)N(F'L;NCT_-PT,_DI iEP._)

A (k')-AN£/D I

IFUNCT=P

"_n R (k")"-"hM_/B f

r PDTMT A (kS) ,_(k"}

n_ 4rl k'=1 ,_N

("i -.-A (_")/#,

(" _.-.-_ (k"}/_o

40 Pr#INT lOr_,l {'('_,CI ,C?

t" _'t'3_M ADGUM_'NT._ ANt3 TNITIALI7F SUMS

_0 SL,IM(K)=AC)+A ( I )_COS(X(K) )+I_(I )'w'(_TN(X(K) )

r}qlNT Ir)_

IF (l,CoP'_,I )_I ,=_1

_I r_o _o J=I,1:_I

&O S[/M(JI-St;MIJ)+A(K)*COSIK._X(J) )+RI_I_-STFJI_C-_XIJ}}

?,I StgMMAX-_t_M(I )
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_'-.I _" ( J ) =_11M ( J )/_L PMMA'K

_I_|NT lr'Jgt (×(J),F'(J},J=I ,_)

.__ .n_..'_9__._/=I, >

70 PlaINT I0.3o X(l_+1 ),F'(]_-I.-1 )oX[ |R+?] oF(|_+P)oX(TS+'3],F'(15+'3) oX(15+4

1 ) ,F"( Tm+a) ,× (T_+R) ,F'(f_+m)
...... I_I?T_.IT .|n_, 'K(1_1 ),_'(1__1 )

_DT_BT 1'ha

nm -Pa T=1 ,k"

I 1 =k"-- T-F 1

T_=f-1

r'1 ,-/5 { 1' '_ }/(_o.I(.._IjMMA_I

CP"-R ( T I )I (2 o'I('SUMMAX)

"74 Pt_TNT I0t34 1_wC1 ,F'_

t" 1 ---- _ (") / _I. ;MM a X

DOTI_0T Ir_(")o k'_rl

rl --_ ( _ )/ ('_e*r-,I.IMM_,_)

("m= I_( T )/(_,')('P--IIMIVIAXI

t 1 --_'-I-T

-'tr4 _r3TN T 10_,_ 11 ,rl ,r_

r^wi_r_lnTtk'_
I:.......

qTn_

_"Iklt3
I,'..................
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r_MM_kl F,(tP1 )

TP I=P •/P

I r_-( X, L T e.(.-_ I ))TON,!

1 fP'(Yol_Te(-"(e_'l_T/'_o } 11_$_A

_ Te_ o I

,oA IF" (XoLTe (_PT//4o ) )30e4_

"_r_ r: =- c,(',tf_T ( - o _- T D T "_'Y )

aO TP'(XoI. T,PT/4o)_OoF_A

_,r3 Tt_ Ol

_A lr(_:,! To(3o_Pl/4e))'t_RO

"7?'__=c-,_l_Tf 1 o6-TDI'W'X)

r.r} Tr'_ c)l

_O, _=-qt3PT(-1 o=_4-TPI'X-×_

c_1 f F { f_'t)_lrT o r:-_ e 1 ) O# e 0"_

c}p Wt)IM?'T=I_'.W.t"_ (Ikl-_-X}

D_T! IDI_J

q4 r:'-IIN("T--_")('P- f F,)(N'ISX " )

O_ P_INT c_T_'UNCT

96 r=C_t_MAT (I NO _7HIFUNCT= * I-'3)

CALL ,8P_Jr_, AI__

IOn pqfNT Inl e X

('ALl_ ARI_It_I_M AI.
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FUNCTION SIMPSONIF,AI ,B,E)

EXTERNAL F

DIMENSION DX (30) ,EPSP(30) ,X2130 ),X3 (30 ),F2 (30) ,F3 (30),F4 (30 )

DIMENSION FMP(3U)_FBPI30),EST2(30) ,EST3130),PVAL(30,3)

DIMENSION _TRN(30)

INT EGEF_ RT_N

A:A!

EPS=E

LVL--O
MLV/.=O

ABSAI_=O,O

EST-O,O

DA=B-A

FA=F (A )

FM= 4,0*F((A+B)/2,O)
FB=F(B)

IO LVL=LVL+I

MLVL=LVL

DX (LVL) =DA/3,0
SX=DX (LVL)/6,0
FI =4, O'X-F(A+DX (LVL)/2,0 )
X2ILVL)=A+DXILVL)

F2 (LVL)=F IX2 (L. VL ) )
X3 ILVL ) =X2 (LVI_)+DX (LVL)
F3 (LVL)=F IX3 (L. VL ] )
EPSP (LVL) =EPS
FQ(LVI._)=_,O*FIX3(LVL)+DX(LVL)/2,0)
FMP (LVL)=FM
ESTI=(F'A+Ft +F2(LVI-))*SX
FBP (LVL)=FB
EST2 (LVL) = ( F2 (LVL)+F3 (LVL)+FM )".;'SX
ESqt'3 i L:V-L ) = ( F-3 (LVL) +F"_ ( LVL ) +FB i *S)<
SUM=ESTi+EST2(LVL)+EST3(LVL)

AISSAR=ABSAR-AD_(EST)+AL_S(ESTI )+AB_(FST_(LVL) )4'AL_S(EbT3(LVL) )
!F (ABS (EST-SUM) ,LE, EPSP (LVL)*ABSAR ) 20, I 5

15 IFILVL =LT, 30)30,21

_ _ _ 20 IF(MLVL,LT,4)I5,21

21 LVL=LVL- I

I=_.T_N (LVL)

PVAL (LVL, I )=SUM
GO TO (40,50o60),I

30 RT#N(LVL )=1
DA=DX (LVL.)
FM=F!

FB=F2 (LVL)

EPS=EPSP (LVL)/1 ,T

EST=EST 1
GO TO I0

40 I_TI_N(LVL)=2

DA= DX (I_VL)
:.... F'A--F2-(LVL)

FM=FMP (LVL)

FB=F3 (LVL)
EPS=EPSP (LVL)/1 ,'7
EST=EST2 (LVL)
A=X2 ( LVL )
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GO TO 10
50 RTRN(LVL) =3

DA=DX (LVL)
FA=F3 (LVL)
FM=F4 (LVL)
FB=FBP (LVL }
EPS=EPSP(LVL)/I,7
EST=EST3 (LVL)
A=X3 (LVL)

GO TO l 0
60 SUM=PVAL (LVL, I )+PVAL (LVL, 2 )+PVAL (LVL, 3 )

IF(LVL®GT, I)20,70

70 SIMPSON=SUM

F_ETURN

END
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_TM_'IxI_,TN_ l._l'I_Ir=" (I71)

TA _,T = _4._0_, rh_

_n rmO_AT ("?_1 _e nT , I_)

L TtXO_( T ) = T_l__,o_

LT_Ir (AI)=T T

I_ TN_-(=_ )--n 1 _nA_6 _

TV(I='(T )_Telel I )_?,P'_

P_ _-( T )---°°oO

_ C OIX,IT T_ol 9_-

p_ mr_ _ T=I o1_1

_ LTIxI_tT _=T^._T

I_I_TT_" (61 ,_0 ) (I_TNF'(T), T=l ,121 )

C _IXIC,T= r thKIST- • O)"_

T_(rr)N_,T,t.l=o-Oo0! )=11_0

_I IV(CONST.LTo-.O_)_)O_?

•"= _ _YT" T_t _"

I TkI_'(T _=Tr_[_l,'_

_o r_o _I _=I_I:_I

I_I_,I=( T )= T=L.MI<

F_I _.ONT _Nt)F

LTN_- (_1):! T

• lF'(CONSToLTeo@C)SeAND_CONST_GToe98mJ)98'9@

..... O_ I_TIxl;E"(_ Pl): r_I F-,InF 0,,F,0 _

......... L Tkl_' (An _ =406n_O_O_

L TN-="(_o) : 11F, nAr_,_m

6_ I _ (C(_N-_T eLT • • ?c)=i • AND $ r.ONS T • ?_T • e-tBmi ) 64, _ _

• " L.fN_" (_ _= 106r_Oe_OR

_. T_ P_
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L f N_" ( 60 ) =ri-#6ci6(")6n_

_r_ Tr_ _

_7 l F" ( C _Ikl._ T e 1_T o ii I_c)_ o AlklP) it C t_N._ T tl _T e o l_t_l=l ) 6_ , 69

6Ft L I N_ (_0) .--_jC)606?)m

r-.,,_ Tr_ _

69 IF(coNST,LT,,4c)5,AND,CONST,C,-T,,48_)70,71

L INP (SO)-c)m6n606nr_

71 i_ (CC)N.qT, LT, ® "_Q_ e_Nr_ orON_ T, r,T,, 38_ )7p ,-t._

_ L fKlc(_.O)--mq6hSOShF_

L f _,l_" (sn) =oah_6n6nR

nth TPh pq

73 IR (CC)NqT, LT,, 29-_, AND, CON.qT, ?.T,, __86 )7a $75

74 L f NF (_c)) :'_3606060R

i_fN_ (-_0) : r)16n6n6?} m ....

_r_ Tr) P_

"TG I F (CONSTeLT o e 195 oANDe CONSTo C_T, o 18_5 ) 76,77

76 L IN_ (_c_ )--3_6N606r_e

L t N_" (&n ):t')P606060m

_r_ Tt_ c)_

7zZ"-IF (CONST ,[_T , • 005 , AND,CONST, AT, ,086 )78,2_

7m L f_,I_-(_0 )= "_'460606 r_m

LIlkl_'(60 )=016_606r_R

r.r_ Ta 9=

...... 100 FOI_MAT(IH ,3X,4H-I80,-! |X,4H-13._,I 1)<-,3H-Ob, f_X-,.3H-45, |4X, |HO,

X !"_X, ?H4_, I3X, ?Hc)O, !3X, _HI 3_, I?X, 3HI 8n )

WDITF(61 ,101 }

1nl _MAT(114| }

tdl_fTff" (61 ,! r)c)}

r_c) IPn 1:1,121

I_(F(I ) oLT,-I,! I )I 100120

1 P,O ?'r_NT fNtJ_

nm I'_0 f=l ,IP1

l.fkl_'(f }=fr_Aql4

l'_n CnNTffktt_"

mO 14n T=!,T#_,I_

LTN#(T ):ToI_U _

1/40 ?ONTINUI _

Wr41T_" (61 , c_0 ) (LIN_(f)_T--I,I_I)

l_F) rnNTfNtJ_

L l_,l_'(&l }--f f

l_'(,_'(l },_T,rON%TIITn, 1t0

" 170 LTN#(I )--|AST

_( y )=-OOo_

1F30 F"f_NT TNU_"

Wl_f TE (61 i_iO ) (LIN_(I),1=I il_.l }

......... D-8
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_..r'li",J_ T = C _M ¢,T-, (_

LTi',,w_( T _=f_l I,,Iw

I _t't r'_MTfMtTl_

[ TMc'_A1 ')--fT

:_l"_O TI=(?I'JI"J_TiLTe-elOI=ioANr't_rONSTi_T.-el 1_)?10,1_1 1

1 _ L INm (_N _=rll _nt_P_mm

.... I_ I _l_="I' _FI _ = m'4 m_ _,O _, mm

?"J'9 Tt'9 I _

?I1 1P ! CONST_ILT e- i_0_ _ ANF)I_ON-ST IGT i-i _ 1 _ i _ 1 _ t? 1 "_

....................................

"-........ _l_ |F(CONST.LT_-./405_AN{3.CONST.GT_-.415)_I6,p17

PI_ LINR(_n_--O46C)F_04_m

L lNc ( _q ) = "4"460_C)60m

I_ IMc (_i _= _ r_A<_

::......... ?_! ? 1F (CO NST;LT ,-._0_, ANn. CONST, GT,-,_ 1 5 } P__ 8, ? I c)
lmll L_rNI_160 )--O_6060AOlm

! l Nm ( _c_ ) : _ f_C}606nF_
17............... r- ................................................................

L 1 f_lm ( _F_ 1 : lmA_N

_m Tr'l 1 _m

_ L 1Nl:" ( 60 l -- OF_60 F_060i__; ..........................

L I Nm ( clq } ="416t"16cF_r_Pl

L 1NF" (_I:t) = I I")A e,H
,"_ ..........................

e.t_ TO I ¢;_

_l I P (C0NST,LT i- e "#0c_l ANr)e CONST. G/i- t "71 _ ) ?__?, _.P3

PPP L ! N I= ( F_0 } :0"#F,0_0F_0_

L i NI:" { _Pl 1= Tr_/_q_i

_ T_ I mm

.... "?_2.3 [F(CONSTtLTI-eF_O_iANr)eCONSTeGTi-IF_iSI?__#4,??_

_g4 [. I_Ktl="( F_rl ) " 1 t'l _ ?1F_(3F__!:I

_t_ Tr_ 1 clcl

22_ I F (CONSTeLT e- e905i ANr)e CONSTIGT i-Igl 5 ) _26 t22"#

L TNF ( _qt ) : _I"460L_0_0Pt

r,t3 Tr_ 1 ¢;_

_P__' IF(CC)N._T,LT, " !,00_,ANP. iCONSTiGT.-Ii01_Si_FlI_;_c)

L INF (miR } :0 ! 606060FJ

I_ 1_',:_ (_'# _ : I nACH "-

D-9

1967011192-223



22q 1_ (CON.SToLT o- 1 • I 0_o ANnoC. 0N_T. GT o=1 ,, I 1R )_30Q 231

L I _4t='-( '=;Q ) = "336n ._,n_sn_

L T f,.l_ ( mR ) =01 ._c)_O_,,t_R

I. f N_ ( _"t ) --_T th ^,_H

(:,_ Tth I _m

1 _ !OI_'TI,II31kI

-" r-"IX,If'_
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Appendix E

A COMPUTER PROGRAM FOR THE SYNTHESIS OF LOSSLESS NETWORKS CONTAINING

EQUAL-LENGTH CRYSTALS AND COMPENSATORS

Tbls Appendix gives a computer program wrltten for performing the

synthesis procedure of Appendix A. The computer language used is FORTRAN

(for a Control Data Corporation 3200 computer). The desired Ci are the

inputs to the program. The computer calculates the rotation angle e. andi

compensator delay bi for each stage of the network. Having calculated

the ei and bi , the computer then calculates the C(_) which is obtained
from them as a check.

The program is given below.

E-I

1967011192-225



DO_¢OAM CYklTW_q

C

C P_OG_AM RIND5 THF PELATIVE CRY_TAL ANGLFq ANn PFTAPOATTONq

C FOR AN OPTICAL FILTFP _#ITH N C_YSTAL_ FACH FOLLOWR_ BY

c AN O_TICAI_ COMO_N_ATO_

TNT_D A_TN

D_AI_ In

COMMON N_CftT),IO_FflT)$Af33),_tB_),n(17)

_IM_NqlON _(16),_1(16)
#

C C 15 A_AY OF GIVEN COMPLEX COFFFICIFNTq

C In I_ MAXIMUM VALt]_ _ _UNCTION

r A T_ _Av O_ X P_LYN_MTAL Ch_I_/PI_NT_
r

101 _MAT(IHO.I_HC(1), I=O_I_)

I0_ FO_MAT(IHO,I_HA(1). I=I_ 13)

ln4 _h_MAT(IHh$OHPhOT_ a_)

10_ _O_MAT(|HO_I4HNO INVER_F FO_I3,RH TH _OOT)

107 FOPMAT(1HO_HCONJUGATE INVE_SFS APE)

-_O_=i.h_-n_ " --

r - _FT C-O_FICImNTS _r =II.T_O TOANSr_ FtJN_TTON

1 rAt_L DWArf

I_(NeF_e_)41 e_

MI =N_I

¢ _DIkIT r ADDAV • ..

DDINT I01_

CALL DD_T_(NI _?_?)

r C_M_t_T_ FIT %

_ 1 n T=leNI

TI=T-I

_tJ=_,l - l 1 ....

_ _ J=I_N,J

Jl=II+J

_(1)==(1)+r(J)_ChNJtC(JI))

I0 d_NTINt_
r

_=gCM

_. _-2
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II -NI -f+1

A(I )'--O..O-NJ (F' ( 1 1 ) )
kl f -._.tI+ I

pn A (NT):-F'( f+l ')
A(N! 3= I O-](.IO-F'(t )

An=?Pm_L(AIKI1 1)
f.,

t"

tALl. DDNTC(MI _AtP)
t"

C mfkvn r_T_
r

CALL POLYI_OOT (M,A, !eOE-O__.I_ABI_TN)

........ T_-i Ai_TN-. _, n-_30, _0
C FOI_M ANn _tNn CONJU_ATf-- t NVF_S_S

':....... "_m J= 1

:............ YM-_i--CNnm_ii_i T_i**_ .... .
1[_" (TM_)o¢"_, _ e _ "_ ,o '41

"__ _, (a-_-_ (T)
l_T (J)=l ,ICONJ(_( T ) )

:................ i_--f+
r_ ":1"4 k"- I_M
OI_I=J=C._AL (#| (J})

C_'K'-CP_"A L (o {k") )
".............. -r-T_3----_-_-_-r:(_t ( J-__...................................

? tMI_=r fMA_ (_ (1<'))
:_ T# (CpF..jo#_o h, (3)32, _2_ _ ..........

"I?73 IF(ABS((CI_EJ-CREK) ICREJ }, LE ,EP£, O#, AI=S ( CI_FJ-CPFK ) ,LE, EPS ) 32,33
i .......

_ - _. /l_-(-_f_j,_,Aon)34,._4-;5 _
3425 IF lABS ((C IMJ-CI MK)ICIMJ ),LEoF'.PSeOPeARS (C IMJ-C IMK) ,LEeEPS) 34,33

_r_TNT Ime,_ .)

m_ _;nm f:l _M

_=r. IMA6(P(! ))

rTM#=I ,/#r_NJ(P(I })

'_= ('I_1='8[_ (('TMm)

y=r TMA_ (_.TMm)

ZOO oI_INT- Y=_l_i_ P,_t'),_X,_Y

_01 _'OI_MAT(IH0,_(E'I40"7,_X,P'I40"7,_6X) )

[ ........ - ............

IO(f )--('Ml_L_f_e.r_e )
.J-J+ I ...........

r
"" .....? ....r_l_-f_iT i_t'It_S

t"

:- ......... m_ fNT l-_&

CALL PI_NTC(N_I_, I )

CALL #_NTC.(N_OI, I )

_'3
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r

t" C_r)lvtl_tJTF" Ce_'_'I:'ItI_NT _, tJ_,iltl_ imlQ¢T _,l _rjriT£
r

rAl_l.. C?_'_ " (l_loD_q ml
t'-

C _r_! N'[_.__n^OOAV
?-

r_r'j,,lT I rjc_i ikv

CALL I_ClklTC'fh!l ,m,;)
F"

E I_lnDM#_l_ i_F" C(gF'I='I='ICII:'hJTC,

t"

c,i J__-N •

mr_ "4?-, I-1 i14,11

":IF, qlIM--__,IIM+C'NI'3_M(ri( 'r ) I.t(---X-_

(_: qr3DT ( Arl/m-,t IM )

"_'7 m( i l=mli _'m_

e" D_INT NPJQ_ALI7Vn n 8I:I_AY

?.,

I_lhiT I P_ilo I%1

t"AI_L l_il_il%J'T'i"(I_IIir"li_)

t"

---? .... _OMI:)Ui'F" ANGLVq AND I_HASI =" S_II='T _, lJ.C,IN_ _'IPST N _(")O'r_

f-

/An i"fhi_OTTNt _"

- _7-_ TH _ .......................
4 1 ?'Oi',lT l'NI I_"

_Tt_m

_-t,,ll'h

E-4
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_1JRl_t IT 11kll=" Dim/_ nC

TYPF C.0MPL_'× (41 C..MI_I._XeCON..I

TYPF" COMPLFX (4) (',_'_hoQ,_l'_

COMMON NqC ( 171 , IO,F'( I 7) ,A (3"3) ,,P(39) ,,r_(I7)

PFAL IC)

r)TM_'N_TONT(an}
" r_lMFNC; ION P(_.,IT)

r"

..... _ ..... _'_-AD COFFFICIE-.NTS £YMROLICALLY--ANq P_INT

I ='t3_MAT ( (R11 "_) }

r" M I._ NtlMRI:'I_ t3P" '_,q_l_l_q

IP' (M=_-r_=n _-P, 1 rt

1-(3 PPAh Pe (Y (J)_ J"| 4M)

? F'P)_MAT ( ?C}_ 4 )

-- D_ 11klT "_

.3 FC)I_MAT( 1HI o | _HC.OFFF'!_IF'NTS AI_E

_:....... P_iNT 4, (I (J), J;l,Y--)- ......

r"

C thP'_' 1 NF ("_'FI:" T r" I ='MT _
P

r'

C N IS NUMB_'P OF CPY._TAL_

r"

e _" A T3 e,tl_v l e I _'NT._

k! l = M+ 1

_l='Ar) =i_ (13(1 ,_Ji_pl_,lJt_ J-| ,_NI )

r_n f_ J=1 Q_II

A _iJ)=t"MDLX(D(I ,,J1,_(_,J})

D_'AT3 _,_ Th

D_'Tt IOM

"7 M= r)

ra_'Tt IDM

I="M t'_

L .......... - - -

i

E-5
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SUBROUTINE PRNTC(N,P,M)
DIMENSION P(2,33)
GO TO (l,2), M

1 PRINT lOl, (P(I, I),P(2, I ), I=I,N)

I01 FORMAT(IHO,2(EI3,6_EX,EI3,6,SX))
RETURN

I02 FORMAT(IHO,4(EI3,6,2X,EI3,6,4X)/)

mETURN

END
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_.,o°

._t JR_Ot JT 7NI_ P_LY_OOT ( M o £ o _'Pq ol_q AR_TN )

(_. PF4fbGI_AM FTNr)£ I_OOT._ OF" POLYNOMIAL WITH C[")MI_L_'X C.O#'F'F'ICTFNTS C( T )

r" M | q thFGr'#_'l _ ('_F I_(")LYfqt_M _'AL

r r(f) fq LtqT (_ r_c_frlvNTq

?' ¢'(| ) |q Ct3.FF'_'I£-I_'NT O_:" HIGH--OI_r)F'I_ TFQM

r _m£ Is nF_I_F_ I_LATIVE F_OO IN _OOTS

r P IS LIST O-#" I_E'.AL AND Cdr,_PEFx-_OOTS, NtUST--R-_" r)FCL_A_F'_F) COMDLI='X

r A_r_TN I£ ARNC)I_MAL #FTtJPN FLAC,, --! FOP NO CONVVP6FNCF

TY6_ CONII_EF-X (4) r_OC)T,I_,C.-_,GU_SS,CONJ ...........

J:1

KIT =N+I

5 _ALL #INr)I_OOT(N_C,mPS,QOOT,ARI_TN} ---

IF(AR_TNm_'f)eh)I O_ | Ot_

tO T_T=£ I_A_ (l_htIT)

r o_ ^L ennT

t_ { .j ) _--Dr_r_T

J= J+ t

..... "_ r ( f )=c ( I )+_OOT_r (f-!-)

¢' C.rl MDI_FX _r_r_T

" + D{J)=Dth_T ...............

J--J+t

_,v=_,t- 1 .............

ko1 =_,I,F 1

_ r{T)=r(f1+c_Ot_T_C(I-1 }

c4JFSS=CONJ (POOT)

e LAqT I_INFAI_ VACTt)I_

_0 P(J)---C(_)/('(I }

I_'Tt JON
t='_,tr3
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SUF_I_ou_rINE F'INr)ROOT(N,C,EPS,ROOT,ARRTN)

C S/R FINDS ROOT OF POLYNOMIAL USING TECHNIQUE BASEr) ON

r r_- ALFM_FI_T- S LFMMA

........... T YP_F. _COMPLEX (4) GUESS_POINTqF,ROOT,CMPLX,DFLI_,DFLI ,C
T_,tT_ AI_DTIM

n T_M__NS I.r)N- _.0 _I_.NT.(4.)_.__oFN(_ ), C (3_ )

r I_,iTT VAI._T7 _"

.............Am_9_'rN_--n...........
(?,I)_'(_._=C'MI_I_X ( , I * * I )

r GUESS IS CENTFI_ I_OINT OF SC_UARF WITH V_'RTICFS I_OINT(1)......................

r P'VALUATF POLYNC)MIAL AT GUESS

CALL _'VAL(N,r'o_tJ_'SS_=')

_'IM(| )--('NORM (F")

n_'Lr_--:CM_LX(,_40. }

II-h

T '__- (_

C 11 INCREMENTS WHEN CENTER POINT IS MOVFD, STF.P SIZE REMAINS CONSTANT

C I_R INCREMENTS WHEN STEP SIZE IS DFCREASED, -C-F'__-NT-ER-POINT I_FNIAINS SAME

r"

.......... Y1-.L ..............

pn TI"|I �IF ( I 1 oLT,_O )c_o, ! .31

C

C YES, HAS STEP SIZE EVER REEN DECREASED-IF YES_ KEEP ON TRYING

.......... ;4-0....................................................
C

....................... .." _ .

C NO, INCREMENT STEP SIZF AND sT-A_-T-AGA IN

4r_ TI=I
.................................

P

(" C hMD| ITI=" Dh I hlT_
P

_0 Pr) INT(1 )=GtJF._S+D_'LI_

I_C) I NT (_) =GUF._._-DF'L I

f-

r ='VALUAT_ _OLYNr)I_IGL 8T PO1NT(I ) --
P

............. HA-_/Y T-'_,: - --
tALL _'VAL(N,_r,r:)r_INTtI-I ),_'}

.................................

_0 t-'N{ | )=I'N_I_M(I='}

IF(I_e_TelOtlr_1 *'tO
r

ARE VALUFS OF POLYNOMIAL ALl_ SMALL

.........T¢-r_N(I-f; [ #'¥i n. )RO, B l

F_O r' eINT t NUI="

c. ve_ ............
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?-

C' Ntho 8_" VALU_'_ OF" 1_(31..YN_MIAL ALL C'L,")._ _"
r

R1 r')q 100 t=t,m

" - nr)cm j=!,_ ......
IF'(ARS(F"N(1 )-FN(J) ),LF'_,I,E-t'I.'3)qO,tOI

QO C_NT I h,lt)F" .....

I 00 rrINT ?Ntlm"
.......................

F"

r Y_'._, HAq .._TFP SIT_F" .E'.V_I_I_EEN r)F'CI_'ASF'r)

r Nt')o 1'e, _tJ_q A Rthr_T
t_ - _ _

101 TF'(F'N(! ),LF',I,F-Ir))107,10'3
: .......................

r y,_"_ ........

I ,rl_ Dht_T..._llFC_q

r__-TI JDkl
t"

........ -h NO, T_ _TNV-hOINT A PdhY .......
imm mr) I 10 I=_,_

T# (FN( f};tj_',I.F- ](3}I II, I I0 ..........
1 10 i-_NTTN[.III_

c" v_P--,
I ............ _ ...........

111 -_h_T--J-PfliNT (I-I)

P_TI I_N
: .....................................

?

t" NO_ COMPAI_F" em'NT_'I_ POINT I_tITH VF'I_T TOm'S

1 _ _th 11_ T=_ .......

IF"(F'N(I I,LT,,FN(I ) 111._., I_.'3

1i-_ _nNT tNU_ ...................................................

...... -F....... i_667 -L-TEs w-t TH_N- pm_-__R-NT--S-dO-A-n_-,-nF.C_AS_. SY-_T_--_-i_-_- -

............. n_L-_=d_i_-_2_,.............
r T_, qTl_m e, TT_ TOO _MALI_

A :rt_"AL (?,_I_'_ ) .........

1_" (A,EO,t'), 1116.I 17

.......1|F; IF'-(¢_EAL(DEL_I,L¢,_mS)I|B,121 -

11"7 IF(ABS(CREAL(DELRI/AI,LF,E'_I_S)118,1_I

I IR A--KIMA_(_,III='._'_I

IF"(A..E"OeC),11 19,1 ?..0
........f]h --I-#(C._AL-(r)ELn I,L _ oFm.__-I52, I-_-I......

120 IF (ABS (CI_F'AL(DF'L_ 1/A 1.LF,,WPq II(32,121
.......d .... N¢),-hAV#-YH-#_V-_FN T{30 -MANY--fT-F.mAT IONq ...................

I;_ T_---I_+l

............ 7!_--t _ _;m ..............

r"

...... -b _Ot)-Ti_ I_S-OtJTSII')E I_._NT-_UAi_E, PINt) MINIMOM- f_OINT

I ?'_. T_":RT=F'N (P)

,)= 1

............................ E-IO ..
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2 ...........................

7........................................................................................

j...........................................................

Jl........................................

E-If
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.SI.iF:3_OUTiN_ COI='I=F:'IX,¥,M,AI ,R| )
C X, Y AI_E REAL AND IWlAGINARY PAPTS OF THE QOOTS

C NI I_ I')_'Gp_"_"0_" POLYNOMIAL

C AI,D B1 ARF RESULTING COFF_'ICIENT.(;Q R_'AL AND TMA_INAI_Y PAINTS,

r R_'GINNING WITH HIGH--OI_r_ T_'QM

OIM_NSION AI (2_),F_! (P_),AP(P_),jR_{P_),X(P4),Y(pa)

MI =PA+I

................. _AL(_M!.._L--__L,.....................
BI (MI)=0,

................A__L(_!_t_--_x_.(L__,_X__ )-v (I}*Y (_ )
Rl (|)--X(I ).W-Y(2)+X(P)-W.Y(| )

A! (P_)=-(X(I )+X(2) )

• " R! (2}-_--(-Y(I )+Y(_))

,._....... .IF_(_'M_}___4,4
DO .'3 l:3_ M

A?(! )=-X(I ).W.A!(I)+Y(I )_RI (I)

B2(l )--X(I I*F_I (I)-Y(T )*AI (I }

L'_ L-I-I ............
nn I J=P, L

,--............ A__..[_J)-AI.(..J-.!I-X( I )*__I_(.J)+Y( [)-_ml (a} ....
I B_(J)-RI (J-I)-Y(I )-X-At(J)-X(!)-w-mI (J)

A2(I )=At (I-I)-X( I)

I__(1)=1:11 (I-I)-Y(I)

DO _ IC=I • T

A1 (K)=APfK)

R B1 (K)=RR(K)

.3 CONT INUE

/4 DO 6 K=I.M1
|_ .................................................................................

A_(I()=_I (M')

;.'E .....

131") "7 t<'=I ,MI

J=MI +1-_"
](_.........................................................................

_I (k')=A_(O)

? F_I(K)-R_(J)

P_"TIJ_N

_-klr3
21 ..................

C; ...............................

_:................................ E-13
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_t IRr_t_tJT [ P,,lr--- ANGI_F¢

COMMON N,p _. (17) ,_I 0,_ ( 17 ) o A (."¢_) ,DQ(3P } ,p_ ( 17 )

TYOF COMPLEX (4) CMI_L'X.,Ct')NJ

. TvOF r_MDL_× fa) r,_,h,#¢r_,r_
TYPF COMPLFX (4) RI,SIsAA,F_R,Cr,CTMP,_4oRc;oFR, r-'M

.. P_A.L In
or:-/_L Mt9

DIMENSION ITH(17),FMIN(17},SI(17),FI (17},TH(IT),CO(17)

" " -DI-MFNs-iON A/_tIT*2i,._f_t2,2-),CC(t7,2-},R(17)

Pl ="_e Iat _OP7

OA Thr_= 1RO •/O f

lOO _'OI_MAT(| NO, I_X,4H_( | ),31X*4H._( I ) )

101 F'OFJ_IAT(iHO,P(FIa,7,2X,I='14,,7,SX) )
102 FOWMAT(IHI,4.3X,2OHTHETA(1)* l_(I), I=I,,I3,I2U THFTAI=, l_l:))

103 FO_MAT(iHr),4_X,14,SH DEG ,F'7,_-,_H MIN ,SX,EI4,7)

104 _'OPMAT(1Hn¢qHMI)=,_"I4.7)

I0_- _O-_MAT(iHr),2RHO(I } MIJLTIPLIFn _V _XFS(I_-NI(i{I

106 FOI_MAT (IHO, 13X,4HC (I ),P6X, I_HCALCULAT_r) .C(I ) )

_tl --Ikt+ 1
NIl=N1
,"'TM_=_ (M-I)/t'(PAl )

THP= ATAN (_N.OI_M (C.TMD }}

TH(MI }--THI_

R(MI )=ATAN2Pl (-CIMAG(C(I)),CI_EAL(C(I )) )

cnS_--cnq (_(MI) )

SINm:_IN(_(_I )}

A-ATANPPl (CIMBG(CTMI_),t'I_AL(CTMP} 1
.............................................................................

MI;--I_ (M1 1-A

FM-CMPLX(C.O._tMU),SIN(MU) )

r)o _ I"I ,M|

n(-I ) =n (f ,_.,E-. ...................
DD I kit | O_

CAE'IL_DI_NTC(MI ,n,2)

T1 - THI_,.W.I_AThm
.............ITI'-H(MI)=T-I- ..........

&'MIN(MI )=AR,_((T_-ITH(MI ))*_O, }

e, f _tO= ¢: }'N (TH _ )
Ct')_D--_.O_ ( 1"l;P )

" n_ lh f--1 ,MI

',='I (I)=O(I )*_INP*mR-D(I )*CO_; o

_OINT Inn

...... _h- pt)--I- I ,M I

D:CI_AL (F"I (I })

o=¢.f _-AK_-#'-fVf )) .................
'_=¢'l_,mAl_ (e-, I ( f ))

THI_=ATAN (("N_I_M {CTM_I )

R(M| )=ATAN_I_I (-CIMAG(CTMD} _-CI_'AI_ (CTMD))
IF (AR._(R(MI)-OI )eLTel e_'-05)2._I*_4
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THD"-THI_

_4 TH(M1 _=TH_
F_--CMPLX(CC)q(R(M| ) ) 4(%IN(F_ (M|) ) )

............. T f.:. :rH_.,_-^ +-.or_
yTH(M1 )=T1

_ TF'=CNO_M(_'T (MI))
T._=CNOI_M((:;I (M1+I) )

¢...................................................

• TMP=SC_T ( TF_TF+TS_T._ }
r)r) '_(3 _=| IM|

'........ AA-( i;i)_-# I (I )

30 AA(I,?)-qI(I+I)
I_........

F_-_i.i-)-;Ki -(M-1+i}
F_FI(p,_I )--i='!(M!)

|,_ ..................................... -- . _

Bm( I o_ ) "CMPLX( h, t r_, )

"_....... CALL MATMI_(A_IM! ,_,_L::}l_.;f,I ,CC)

FS--CMPLX(CRFAL(SI (MI+!))/TS_-CIMAG(SI (M!+!) }/T_)
...............................................

r)o 40 I=! _MI
_0 F'I ( I )=FS_CC( I_ | )/TMP

' ............ (;r-_,---_h-Nji [_F_(-i, ! }i ........
BF_(1, ! )"CONJ(-BF} (_i ! ))
RR(?. _ I ) =CTM_
FF'-'FB}t-CONJ (ES)

_ ............................................

CALL MATM_(AA_MI $_.B19__! ,C'.C)

I_.........................................................................................

_0 S! (|)=FF_CC( li| )/TM_
pl_llklT ! (")r'i

'..... nO F_O I=!,_I_ .............
I_=CP',='AL (_'I ( I ) }

•}..............................

O"CIMAG(FI (I) )

X=CI_FAL (qI (I } )

IF (I,EO, !. AND,MI ,EOe2)5! ,60

.......... p
60 PRINT Ir)li PIO,X,Y

_r) T_ P I

"70 I_INT I0_ N

r_o R_ I=1 _N1
80 PlaINT I03,_ITH(1)$FMIN(!)_I=_(1)

IF(PeGTeOeeANDeTH(I )eGTeOe)81,B2

............ "
G_ TO R4

:........... P::3 -IF(];;o-I._:T-;O-,;-;-,&Nr)eTH(I ) eLTer)e )8..'3;8-4 - --
q'_ IO:-!O

"...... B4 CALL CINVF.hS(N, IO,TH,-R,CBT ..............

_nIN'r lO_

:............... h-6--_ } -=]-,-N! ...........
P'-CPF..AL(C ( I ) )

X=C_FAL(C_(I ) )
3_.

gO PRINT 10! $ PIC#_XiY

'
;.............................
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il ....................................................

13.................................................................

|_ ..............................................................

|_ .................................................................

I1 ...........................................................................................

18 ..................

_:...................................................E-17 .......
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SURF_O-O-TIN_" CINVEPS(N, IO,TH,B,C)-

p_AL 10

TYPE COMPLFX (4) F'M,AAoFIR,C,F),_'FI,C.MPL×

D_.MENSiON FM(3_P,30),TH(I?),R(I?),AA(34,1 ),RB(34,1 },C(I'TitF_(I?)

lC)O P'OI_MAT(IHI ,_ I mHCHP'CK PROGRAM)

101 FOr_MAT(IHOIIOHr)(K)i K=O,_ I3)

lOP I_OI_MAT(IHO,6OX, 1 3X,4HF( I ) ,__)(_4HS( I ) )

10.3 FC)I_MAT(|Hr)$6C)XI2(F|Ae?ePXiE14e?o_X) )

P_ !NT Inn

N! =N+ I

C FI_T CI_Y.ST AL

I=I

SINT=SIN(TH(I ) )

CflST=Ch._ (TH ( I ) )

FB*'CMPLX(COS(R(I )),-SIN(R( I )))

_F_ (I C! )-_--(:;INT* I0

RR(2, I )=_'R*C¢_._T* I :)
]:........................

PI_IIklT IO %_

m--CI_EAL(RR(I ol ))

' ...... _L-cI MA@(_-_-(i, 1 ) ) ....
X=CPFAL (RR(?,_ I ) )

-Y=-C IMAG (BR (?_, I 11 ................

P_INT 103t P_Q,XtY

C S_'CONF_ -C._-YS:TAL ..........

I-I+l

'.......... 11_'-( i ,-LF-,_ N-) 5C) 1 , "?0 ............

_C_I IM1 =I-1
]/ ...................................................................................

qTNT=_IN{THf 1 ) )

('C_T;CI'I_ (TH ( I } )

_'m=eMPL3((rOm ( m ( I ) ),-_ IN (_ ( i ))3 ......................

r_r_ lr_ J=l ,_4

nr_ I_ k"=1 t_

1_ I_M (J, k: ) =r:.MPL X (0, _ O, _

FM(| i 1 }=C. MPLX(COSTICIe )

_M ( g i _ ) -'t_MI3LX ( -._ Tkit _ r) e )

I_M (3i I )=_'R'_S INT " -

" CALL MATMPl (FM,4t2_BR,?__I ,AA)

?0 .I_-'_{J,I }=AA(JI! )

c_r'jfMT Ir1_

Jl --,J4- #

n=rTMA_(_m (J, I }}

..... ×=c_AL.(-_-_( Jl-, l I I ................

V-'r'fMA_(_I_ (.lI ,1 } 1

I=1+1

.... -l-#-.(-j- L_,N)_lhi?( _

r ITH ?DVRTAL

-_n Ic_l=f+l

IMt=f--1

-- e"fr"lT=m IN ('rH ( f 1 ) -

rr_P_T--P._._ (TH ( I I )

E-Z8
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_R=C'MPLX(t"t')c,(R(! ) ) •.,.,S!N(t:t ( y ) ) )

n_ 4n J=l + 17
n_ 4n _=1 o T_

4t_ _M(J,I<')=rMI_I y(N.+_+)
nn mn J=1 , IMI

+ _ . _¢+J,.j)=t"+_l_l _¢+"tbqT, _• )
.)+ = J.+++
J'P=fMt +J

...... C.m-ijl+,j_+=rMpL_C(_c. fNT,t.l• )
.;I .- f +,J
I='m(J1 QJ+ =_'m+_ l P,!.'1"
JI=TPl+J
J_=TMI.I.J

-' CALL I_AtMPl (FM,Ip, 13,ImR,13,l ,AA)

nt_ AI J=1 +It

.! + = .J+ !
O--'r'_Al fnmt .!11 I )
n=rt_,^_tmm(.),11 )

........ _=C++/XL(mm(JI, I + )
V=rTMAr (_n(J1 ,1 _ )

I'1'+1
.... fl+-f i .L_=,_I} _n, 7 n

r _r_LAc_f7_"_

...... 70 _1NT=5_N(TH(N! ) )
¢'t_qT-t_c, t't'H tNt ) )

- FR=CMPLX(COm,(_(NI )),-_,IN(m(N1 ) 1+)

+o .

P_II_'---hi? -I<*
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