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A13STRACT

The literature has been studied to determine two things; first to
i

determine the principles, the methods, and the current results of calculations

r	 of inelastic neutron scattering from polycrystalline beryllium and graphite,

and secondly to determine the agreement that has been obta-1ned be'veen

calculations and measurements of the elastic and inelastic neutron scattering

cross section. The principles by which the inelastic scattering cross section

is calculated are outlined, some of the Born-Von Karman models proposed for

hexagonal lattices are described, and methods of numerically evaluating the

inelastic scattering cross section formulas are discussed.

1
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I. INTRODUCTION

Interference snW4tering of neutrons from polycrystalline g.-aphite

and bei.-yllium may be an important .factor in the , operation of a NERVA type

reactor. This is especially true since the beryllium operates quite :old.

The work which this progress report concerns is directed toward understanding

t2,,e effect of interference scattering of neutrons by beryllium and graphite.

The work, to da -' e, has consisted of a study of existing calculations

and experimental data. In this progress report methods used to calculate the

cross section for elastic and inelastic scattering of neutrons from crystalline

solids are discussed. The derivation of relevant formulas are sketched, and

points where the more important approximations enter are noted.

Calculation of one phonon process for polycrystalline solids is

explai.ied. Present calculations of this cross sectioti and available

experimental data are discussed.

1
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II. ELASTIC SCATTERING

The differential cross section for scattering neutrons fro g, crystalline
solids is given in the Born approximation as;

For elastic neutron scattering from a crystal lattice using the

Fermi psuedopotential and after integration over space coordinates, including

an ensemble average over initial states this becomes l:

L 
0	

©0	 1^

Go = (- °^ } ^̂ - ( dam --)	 ^'' o • •	 UT P(^  ^
o	 N r o J =1

N	 ^^^	 (2)

CT'

a.

e	 OT	 "';^	 w

.P()) •
.1 ) 

=	 = ( I- e Vi °T ) 	 '? ,OT

 -	 i(h^ + ) ^ w j T (4;,hj =0

• f

..,
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in expression (1) and (2) the symbols are aef ined as follows:

G0 = elastic, single crystal, differential neutron scattering cross
section

TO = mass of the neutron

N = number of unit cells in the crystal

kl = magnitude of the wave vector of the incident neutron
—W
kl = wave vector of the incident neutron

k2 = magnitude of the wave vector of the scattered neutron

•	 k2 = wave vector of the scattered neutron
L	 a

f Ml i^ =- inciica,tes the square of the appropriate matrix element

If> is the final state

i) is the initial state

= is the sum over all occupation numbers n_ii of the jth normal
mode and branch of the crystal dispers-4 0A relation.

n4

	

P(ni )	 probability of occupation of the ri,^ th level of the Jth normal
mode

N

+	 -F P(nj )	 constitutes the weighting for a particular choice of each nj
.	 J=1	 for an ensemble average

	

a-	is used to indicate unit cells of the crystal

^" = equilibrium position of the unit cells of the crystal lattice.
FoIha Bravis .latticeCr- gives the equilibrium position of the

•	 a- atom. For a crystal u::th a basis the position of an atom
is given by:

RCr-'b=a..+b+u

b = the basis vector ( b = 0 for a Bravis lattice)

u = time dependent displacement from the equilibrium position in
the lattica

4. -
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ate- is the hound atom scattering length of the atom CF.

ate' ( AA' ) 3free' Here afree j s the free atom scattering length.

In j > = is a single particle Harmonic oscillator state of energy t(A) nJ.

a^ and a^ are annihilation and creation operators for the atate Inj >

aj I nj > = n j	 nj - 1

a I nj )	 nj+l n+ 1>

a a - a^ a^ = 1

t2  _ 1

J(r	 2:^^ ^	 a	 1	 2 )0 5^

s = repre3ents the polarization of a lattice wage

—• f = the polarization •,rector for made f
s

1hwi = energy of a lattice vibration of mode and branch J.

--1-
f^ = wave vector of a lattice wave of mode and branch J.

k1 = Boltzmann constant

Z' = temperature of the crystal.

In equation (2) , has been expanded in terms of normal .modes of

the crystal and written in te r ma of annihilation and creat^ .on operators.

i
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The expression 2 has been evaluated (references 1,2,3) to give the

dWerential cross section.

R= Or	 the incoherent average of ; cattering amplitudes 7)

g Ir mod-	 the coherent average of scattering ampiitudesi	(S)

The new symbols in expressions (5), (6), (7), and (8) are:

R = incoherent average of scattering amplitudes, The term in expression
5 containji.nr	 gives the elastic incoherent scattering cross section.

3 = coherent aver	 of scattering amplitudes. ThP term in expression 5
containing S ,,.eves the elastic scattering cross action (diffraction
scattering).

B = volume of the unit cell of the direct lattice
-+ --;	 --Ob
K = kl - k2 is the wave vector change of the scattered neutron

e	 ^

== scattering angle, between k  and k2

2' = reciprocal lattice vector associated with the lattice planes
which bisect ®.

r
4
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Since the purpose of this report is to discuss only reryll .um and

graphite scattering cross sections, the incoherent cross section can be dropped

from consideration. This is because4 R :.s measured to be r.egl.igibly small for

both graphite and beryllium.

Equation 5 gives the elastic differential coherent scattering cross

section as

a.

^_ 6TC^,Y	
d

^ S 	 -1J S(K
- J -hV)

d 
	

(9)l^Z 

dII is the solid angle into which the neutron is scattered.

Equation 9 holds for a single crystal =ail enough so that extinction

effects are not appreciable (i.e. a microcrystal). The superscript Z means

--•
that the scattering occurs from the crystal planes denoted by Z .

The cross sectior. for a polycrysta.11iar:e solid can be obtained by

averaging equation 9 over all orientation of *Z-, (references 1, 5) , giving for

the polycrystalline `Noss section for the crystal planes denoted by 'r;

d -CL	 8 - B ^	 (10)

The total coherent elastic scattering cross section for lattice

planes r is obtained from equation 10 by integrating over d..25

6
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The total coherent elastic scattering cross section is then obtained

by ! ,,xwing over lattice planes, or more conveniently, over reciprocalocal .lattice

vectu

S'tr	 ,	 I	 -,aw
(12)

wavelength of the neutron.

In going from equation 5 t. aquation 3.2 it has been assumed that
,ft..P.

W is independent of the angle between K, and 2'	 However W depends on

and in usual app:►ox.im,ations this becomes proportional to (K) .

In equation 12 C 	 in W must bt replaced by (-)- 'N Z- )'
 
 as a consequence of

the delta function of equation 10. The sum over modes in equation o for 11 is

usually evaluated by an integral over the frequency spectrum. See equations

39 through 42.

If an expal-ision of the total cross section in terms of Legend.re

polynomials Pn(cos A) is desired l the nth co pP'r cl ent car. be obtained from

equation 10 by first multiplying by Pn(cos A) before integrating ;°ver the solid

angle.

For a non-Bravis lattice, the form factor must be included in

equation 12. If the crystal is composed of n milecules each containing .m atoms

then reference 1 gives the following substitutions to include the form factor.

Here hk P are Miller indices of a plane and X .jr , Y jr, Z jr are the coordinates

of an atom in the lattice.

7
f
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Re 
-.1 V -0-

y ^ 	 ar e
r= ^ (13a)

S

I

J	 J	 j	 r
h: I 	 (13b)

W depends on the mass of the atom and so must carry the subscript Wr. Equation

12 becomes for a lattice with a basis:

	

,pa.	 t J._KL(hy +kY 41 Z } 1 2.

	

0o,co _ .^8
	

n.Fe	 Ir 'fir a	 (14)

The sum over Z" includes all values of r since no multiplicity

factor is included in equation 14 to take account of values of Z' which, for

different values of hkA , are equal in magnitude.

8
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III. INELASTIC SCATTMING

1. One Phonon Exchanges

in the Barn approximation the differential scattering cross section

for single phonon absorption by a neutron scattered from an initial state kl

to a final state k2 is, (reference 1);

ir k 	
-P (-AOro I	 a;	 SIT

°	 -n,=0	 rN= 4 S 1sI

a 
i C o^ ^, e ^(Qfa- o- l+ I a-

CL
 ̂ >

x	 CL	 < Y1
T" 	1 	 15)

x T < v• e t ic' i JCr J
^	 J

Gol is the cross section for one phonon absorption by a neutron. All of the

other symbols have the same meaning as in equation 2.

Equation 15 is evaluated in reference 1 anui shown to simplify to:

8-rr MN "Aw	 k i	 1	 01
^T

(^6 j

JC [^ + )3

w = the ermsy of the absorbed phonon and is positive.

9
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Conservation of energy requires:

F—A = C I # '^w
	

(17)

r l and E2 ara the neutron kinetic energy before and after scattering. Equation 16

is for phonon absorption (neutron up-scatter).

The delta function in equation 16 includes the conservation of crystal

momentum for coherent scattering as,

k,—
._

k^ It1''Z'—f (18)

We will consider only the coherent scattering term of equation 16

because measurements show R for graphite4 and beryllium4 to be negligibly

small.

Next the development to the total one phonon absorption cross section

is sketched, and the "incoherent approximation" is illustrated.

The coherent term of equation 16 is summed over all orientations of

K2 snd averaged over all directions of the reciprocal Tattice vector in order

to obtain the total one phonon polycrystalline cross section for absorption
..e	 ­go

of a phonon of wave vector f, contributed by the reciprocal lattice point "Z "

(references 1,5). The result is,

j	 ( E ­40	
Ir	

;L	 _.W --W	
19

JEJ	 °aeI ak^^ tiw a `^/Ar-1^

10
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d^	 E"a)
is the one phonon absorption cross section integrated over cut-

dEz
going neutron directions, for a phonon of wave vector f for a polycrystalline

---W
solid for the contribution of one point (?) of the reciprocal lattice. It, is

differential in final neutron energy. Any dependence of V. 1 on the angle of

scattering has been neglected.

In order to obtain the total one phonon absorption cross section,

equation 19 must be summed over all final neutron energies which can be reached
-W

with the reciprocal lattice point ?', and also summed over all reciprocal

lattice points which contribute, consistart with momentum and energy conservation.

The sum over final neutron energies is done by doing an integral over phonon

wave vectors in references 1 and 5.

.N^^°^s	 ew A	 'r -	 133	 20a- CE ) _	 r r f 	 d f O
of i	 JM	 k^	 t W c	 kT_ 1,

The angular part of this integration is facilitated by the

tubstitutior -

air_f = c:Z7r	 I c e I
(21)

Substitution of 21 into 20 leads to
fM ^^

r	 '"
IVn rM	 fk^'	 i! iw (e W/kOT-o

f'jfd A	 (22)
1

11
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The evaluation of the limits of integration, A if A 29 fM , is carried out in

references 1,5 on the basis of the Debye approximation. Equation 22, with the

Debye approximation then gives the total one phonon up-scatter cross section

contributed by the reciprocal lattice points ?'	 The equivalent phonon

emission (down scattering) cross 93ction is obtained by changing a ^"f hT
- h wl^. Tto (I- 	 ), ref. 1.

Equation 22 must be summed over all 'Z' which can contribute in order

to obtain the total one phonon absorption cross section at energy El;

a- l E)(^	 (23)

The incoherent approximation is obtained b, ► replacing the above gum
over reciprocal lattice vectors 	 by an integration. This approximation should

be better for neutrons of higher energy (El ,... k8D) l , when many reciprocal

lattice vectors contribute. The Debye temperature of the scattering material

is AD.

-.0. 4 Tr g f 2' 2' d r	 r

Z'
4)

Using 24 in 19 and then integrating over f yields, according to ref. 1, the

same result as would be obtained from treating the incoherent term in equation

16, except that R is replaced by S. The results for the total one phonon

absorption cross section on the Debye approximation and the incoherent

approximation is, according to Kothari and Singwil

12
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E ^^' o o

(El
61

x (0) Ej—^p 8®)
	 8ti	 E4)d Eal	

(25)

0 (AFE + jXE I

(E

	

13S t Sw	 -a

	

ty 	 J eME

2. MultiphorloIl ProceSseg

Multiphonon processes become important when the ii-icident neutron

ever - approaches the Debye temperature. (E l ,-, k8D) of the scattering material.

At stSficiently high incident :ieutron energy the multiphonon cross section

approaches the free atom crass section (ref. 1) .

Treatments of the multiphonon cross section are usually done in the

incoherent approximation because, so the argumetnts go, the relatively hie Ii

neutron energy required to make multiphonon processes appreciable validates

use of the incoherent approximation.

13
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Cross sections for multiphonon processes can be obtained by

are removed from the product in equation 15 as there are phonons absorbed by

the neutron.

However, evaluation of the resultant equations are difficult, except

on this basis of many approximations. Apprcximate expressions for multiphonon

cross sections are given in numerous references, some of which are 1, 2, 6, 7,

8, 9, and 19.

3. Scattering Law

The scattering law is a way of combining the up -scatter and the down

scatter cross sections into one formula in which the condition of detailed

balance is explicitly taken into account, and was first introduced by Van Hove10.

The double differential scattering cross se(;tion for neutrons
-..

scattering from an atomic system for a neutron wave vector change K, and energy

change + tu) is written in terms of the scattering law as a product of a neutron

term and an atomic term;

d Cr (E,--* E -% ) ®)_	 E^	 - aS O-1
^° c —	 I /dEaa11 	 E, 49rr

(28)

K = h^

14
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Here 	 k^	 -E.
	 a)Mp

A is the neuron scattering angle

lie
+F

E = ± t 

Plus is for phonon absorption (neutron up--scatter).

Minus is for phonon emission (neutron down-scatter).

S(! K I, ^ W ) is the scattering law. In the polycrystalline

case S( K, n W) depends only upon E l , E2 , and A, that is,
-00

it is independent of the polar angle of k2.

As an example of S( K,	 we re-write the one phonon absorption coherent

differential cross section, egt.^ation 16 as

G o y =S 
t e -Z .S, CK, w )14 Tr
	 r

S K w 	 "^	 (?9)
- 8 -Tr MN	 , 	 S ,^ akT ' e- a R ^ w¢	 S	 ^

3
Ca^	 -^,^r r+ fS K

I d.

15
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-..
The subscript r on S 1 ( K, tu)) indicates that the summation over reciprocal

Z
lattice vectors has not yet been performed.

The scattering law, equation 28, holds for ali orders of phonon

processes, with energy conservation generalized to:

F.Cz l= E, + E
cso>

and

P	 (31)
^= I	 .e• I

Where n is the number of phonons absorbed by the neutron and n' is the number

of phonons emitted by the neutron during the scattering.

The scattering .law is useful in experimental work in that data from

up--scatter and down-scatter can be combined and averaged to give an experimental

S(i K , h W ) . In calculations of scattering kernels, the scattering law makes

it unnecessary to calculate both up-scatter and down-scatter, since the one can

be easily obtained from the other through equation 29. Properties of S(i K I, ^ w )

are discussed in references 10, 11, and 12.

4. Considerations for Coherent Calculation

In order to calculate the double differential one phonon scattering

cross section

EA) e
^Ea. d1. (32)

it is necessary to sum S1(K , h w ) (equation 29) over all phonon wave vectors

16
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—
4' and all reciprocal lattice vector3 ^' , for a given 63, cons iste n^ with the

relation;	 --O,	 ;	 ,+K=	 f

or	 k^—kdl^ lanr-f lt ^^tR2	 (33)

With

A polycrystalline average of equation 29 can be performed to

obtain an expression useful in a coherent calculation of the one phonon cross

section. The average is t;uen by neglecting the dependence of W on the

orientation of K relative to a microcrystal, and averaging the delta function

of equation 29 over all angles between K and the vector difference ^?f — T

The y axis is taken along a K 2"—

'K air

47r fJ
9'p 0^:D

ilk	 Z- r^	 K K K
_n^ (35)

Zff 7- ^K

I'?-

PK

h 
d

1

^	 4

d

Z
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dk ^k
1- 4^r f ^S^KX )S^K9 )^'(K3 -^^nr-fjl Ka—^ stK

S ( -'' - 1
(3b)

The polgcrystal double differential one phonon scattering cross

section becomes, from equation 29, 36:

ja 
- ( E,--* Eap 0)F—E

12 	 - ^Ea d
	 a
	

(K2- ^w)	 (37)

 _ '^fae^(K ẑ  ^ W^ 8MN7

stlK!
Condition 34 define] surfaces of constant frequency within the first Brillouin

--s

zone centered about the reciprocal lattice point touched by 'r	 In order for

a contribution to the scattering to arise from the first Brillouin zone
_,.	 1-0 1

surrounding the reciprocal lattice point 'r , the sphere of radius K centered

18
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about the reciprocal lattice origin must intersect the constant frequency

surface w M. The intersection of this constant frequency surface with a
-Ar.

sphere of radius K i satisfied condition 33.

The summation over wave vectors along the intersection of the sphere

and constant frequency surface must be done by an integratwon. 	 The contributions

at individual Z' vectors must be added to obtain the double differential cross

section.

The value of J must be obtained from eq,.i.ation b by replacing the

sum over wave vectors by an integration over the first Brillouin zone centered

about the origin.

L B	 -
(ads 3

3
 k39)

J
(at Q.Z.	 ^

P
However the variations of phonon polarization vectors S with phonon branch

and location in the first Briilouin zone make evaluation of such an integral

difficult. A simpler approximation for the evaluation of W is to assume that

the polarization vectors are everywhere orthogonal, an assumption which is true

for an isotropic homogenous solid but wrong for a hexagonal space lattice, and

replace the sum by an integration over the frequency spectrum;

9	 LLI	

(k0)

W=O

19
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equation 6 becomes.rith the above assumption and 40,

a. I^f = ^̂ K ^" Hof ^, .^
Q M N 

w=o	
a4 OT

g(w) is the iatt,ice frequency distribution function. g( W) gives the Vrac;tion

of eigenfrequencies of the lattice which have frequency between W and l.W+du! .

For normalization
co

(w)dw = 1	
(42)

0

If a g(W) function for the lattice is constructed, then the

integration in 37 can be readily performed, although numerical techniques will,

in genera-"_, have to be used.

The formulas so far have all been for lattices with one atom per unit

cello Generalizations to lattices with more than one atom per unit cell are

straightforward. A form factor must be included in S(17 1 ' tuj) to account for

the }phase difference in scattering from various atoms in the unit cell, and

suuas over wave vectors must be over all 3n branches of the phonon spectrum ,

where n is the number of atoms in the unit cell.

Multiphonon processes would be difficult to calculate by explicit

numerical integration over volumes of the first Brillouin zone. Authors seem

to agreel i 2 ' 6p7,8,9119) that such an explicit calculation of multiphonon

processes is not necessary. When the neutron energy is great enough to make

multiphonon processes appreciable, it is great enough to make the incoherent

approximation valid, is the argument. So the conclusion about multiphonon

20
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processes is that they can probably be treat3d adequately by an incoherent

approximation, and an. approximation to the dispersion curves.

An incentive to perform a one phonon coherent calculation of the

polycrystalline double differential scattering cross section for beryllium

is the dar a of Schmunkl3 . He presents scattering law measurements for incident

neutron energies from 0.04 to 0,10 ev.

Young and KoppelI4 performed a coherent calculation for beryllium

over a limited range of energy transfer and obtained reasonable agreement with

Schmunk 1 s13 data.

F

. 'a1

a	

j

• i	

tP

F

z

	

21
s^

r



W Astronuciear
Laboratory

IV. LATTICE DYN.WICS AND SCATTERING LAW

1. General

The Harmonic approximation description of lattice dynamics is

discussed in detail in many places 3 , 15 0 16 0 17 1 18 The approximation consists

of replacing the forces between pairs of atoms of the crystal by two idealized

components; a, bond stretching force proportional to the first power of the

change in distance from the equilibrium positions of the two atoms, and a bond

bending force proportional to the change in angle betweenthe equilibriwn line

joining the atoms and an arbitrary axis, that is proportional to the component

of displacement perpendicular to the equilibrium li.nE! joining two atoms lb . The

total force acting on a particular atom is the sum of these two components

arising from all of the other atoms of the crystal. The influence of other

atoms of the crystal is usually taken in practice out to the third to the

tenth shell of neighbors, although it could be taken to as many shells of

neighbors as desired. The bulk compressibility of the electron gas of the

solid can also be taken into ccount20.

Force constants are introduced into the model. They usually are

adjustable parameters. It would be possible to have three separate bond

stretching force constants and three separate bond bending force constants

for each atom whose influence is considered, in addition to three electron

gas compressibili ties. If three shells of neighbors from a hexagonally close

packed (hcp) lattice were considered, and there are six neighbors per shell,

then there could be a total of 3 . 6.6 = 108 force constants plus the electron

22
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gas compressibility. The features which distinguish different models of a

lattice is how many shells of neighbors are considered and how many- force

constants are introduced.

Classical elasticity theory '21,22 is used to deriver' relations

between the atomic force constants. These relations can be used to evaluate

atomic force constants from elasticity data, or as checks on the consistency

of values obtained for the atomic force constants in other ways, for example,

fitting by least squares to measured dispersion relations.

2. Beryllium

Several models proposed for beryllium will be comp&,^ed. The crystal

structure of beryllium is hexagonally close packed (hcp). The tadt cell is a

right hexagonal prism containing two identical atoms. If the origin of a unit

cell is chosen at the position of one of the atoms, the two basis vectors ara23

r9 	= 0

Here al , a2 , and a3 are the usual_ hexagonal lattice unit vectors,

in the sketch below.

as shown

n
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A model of a hcp lattice developed by Begbie and Born 24 , and by

Begbie25 , includes interactions with nearest neighbors only. Seven atomic

force constants are used in this model for both bond stretching and bond

bending forces.

The hcp model of Slutsky and Garland 23 considers three shells of

neighbors. The atomic interactions are taken tc be bona stretching only, and

three force constants are introduced, one for each shell of neighbors. The

electron gas compressibility is also included as a parameter.

Collins 26 has developed a model for a hcp lattice and applied it to

magnesium. The model goes to fourth nearest neighbors and introduces four

independent force constants for each of the first three neighbor shells and

two force constants for the fourth eheil. Of the four constants one is for

bond bending and three for bond stretching. In this general tensor model

there are altogether fourteen independent force constants. Collins evaluated

only nine of these constants using a combination of elasticity data and single

phonon inelastic neutron scattering from a phonon of known polarization.

DeWames, Wolfram, and Lehman 27 have given a model of the hcp lattice.

It is referred to as the modified axially symmetric model. They have applied

it to beryllium grid zinc. These authors include interactions out to the sixth

shell of neighboring atoms and use three force constants for each shell of

neighbors, one for bond :3tretching and two for bond bending. One of the bond

bending force constants is for bending within the base plane and the other for

bending out of the base plane, however, the ratio for these two bending

constants is taken to be the same for each neighbor shell. So they actually
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use two force constants for each shell plus the ratio of the two bending force

constants, a total of thirteen constants for six shells of nearest neighbors.

The relations of alasticity and crystal stability give relations between

various groups of the atomic .Force constants, and these relations are met

consistently by their numerical values.

Schmunk28 , et.al ., measured the dispersion relation along several

symetry directions for beryl_litm by one phonon inelastic neutron scatterLrig.

They attempted to 4`i.t their data to the Begbie-%, rn model and the Slutsky-

Garland model, both of which gave qualitative agreement. In order to achieve

better quantitative agreement between their e .periment w,,d a model they

exteaded the central .force model of Slutsky and Garland to include interactions

of the fourth and fifth neighbor shells. With this extended central force model

they achieved a reasonable fit, to their experimental data.

DeWames27 , et.al., obtainedI a better fit to the data of Schmunk28.9

st.41. with their model than the extended Slutsky- garland model gave.

Young 29 and Young and Koppel3o used the extended Slutsky-Garland

model with the force constants obtained by Schmunk28 1 et.al . to calculate the

frequency distribution of beryll%i . From, their frequency distribution they

calculated the polycrystalline inelastic neutron scattering cross section both

in the incoherent approximati.on31 i 29 and in a coherent calculation of one

phonon processes32 for small energy transfer. This latter calculation compares

favorably with the polycrystalline inelastic double differential neutron

scattering measurements made by Schmunk33.

25



W Astronuclear
Laboratory

A comparison of beryllium double differential inelastic scattering

cross section measurements made by Sinclair with calculations based on the

incoherent approximation is given by Young and Koppe1 31. The cal.culatiors

were made by the code SUMMIT36 using the frequency spectrum obtained from -the

extended Slutsky-Garland model by Young and Koppe1 31. The calculation misses

the data points at low momentum trasfer where interference effects are

important. No comparison has been made between an incoherent, calculation and

the data of Schmunk33 .. Young and Koppel32 have made a comparison of their low

energy transfer coherent calculation. and Schmunk's 33 data. If this

calculation32 were developed into a full scattering kernel,it would allow an

accurate evaluation of the role of coherent inelastic scattering on the

operation of cold beryllium moderated reactors.,

A more accurate numerical method for the incoherent approximation

than was used in the code SMIT36 has been written into a pair of codes called

GASKET and FLANGE 
42 

by people at General .Atomics. Beryllium kernels calculated

on -the basis of these two codes should be available in the future from the

Brookhaven National Laboratory Evaluated Nuclear Data File (END7F)43 .	 A copy

of the FLANGE code was given to the author by Dr. J. A. Young and Dr. John Neil,

both of General Atomics.
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3. Graphite

The crystal structure37 of graphite is hexagol-al with four atoms

per unit cell. It tends to form into weakly coupled plane sheets with atoms

arranged in hexagons.

A Borri-von Kaman model of graphite, has been developed by Yoshimori

and Kitano37 . Their model. includes the anisotropy of the graphite lattice,

by including four force constwits; the first for bond stretching in the base

planes, the second for bond bendinr; in the base planes, the third for bond

stretching along the C axis, and the fourth for the displacement, of an atom

Out of a base plane. Only first neighbor interactions are considered.

Calculation of a scattering kernel for graphite using the frequency

spectrum of Yoshimori and Kitano37 is presented by Wilkner38, et.&l. They

used the incoherent approximation, the code SLI-IMIT36 , for their calculation.

Wilkner38 , et,al. give a comparison of their calculation with the measurement

of the inelastic graphite scattering law by Egelstaff39 . The agreement is

good, except for interference effects at low momentum transfer where the

incoherent approximation is expected to fail. Wilkner38 , et.al . state that

reactor parameters calculated on the basis of their kernel agree also with

experiment.

Young and Koppe140 have derived a more accurate graphite frequency

spectrum using the model of Yoshimori and Kitano37 than was obtained by

Yoshimori and Kitano37. Young and Koppel used the root sampling technique which

is a better numerical method than was employed by Yoshimori and Kitano.

Young4 , et. al. have compared scattering kernels computed using their new
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frequency spectmm and the one computed by Wilkner, et, al. , and reached the

conclusion than the two scattering kernels are nearly identical. However,

measurements by Whittemore" apparently show a discrepan.y in the predictions

of the Young-:Koppel calculation_.

A copy of the GASKET42 computed scattering law for 296 °K graphite

was given to the author by Dr. J. A. Young acid Dr. John Neil, both of General

Atomic. With the copy of FLANGE42 also giver, to -the author 'by the above two

people, a kernel up to 1.0 ev was computed on the WANL TNS fine mesh. However

this kernel has not been put on the TNS library tapes, to date.

4. Method of Calculating the Frequency Distribution &(w )

The Born model of lattice vibrations discussed in Section 1 above

leads to a set of coupled linear homogenous algebraic equations, the solution

to which can be written in the determinant form;

=0
(42)

If there are n atoms per unit cell of the crystai lattice, D( k )

and I are 3n x 3n matrices. D( k ) is the dynamical matrix of the lattice
and I is the unit matrix. The eigenvalues of D( k ) are W where j indicates

one of the 3n roots, and the UJ j are the ei.genfrequ3ncies of the lattice. The

elements of the ma,vrix D( .-R ) depend upon the geometry of the lattice, the

model and atomic force constants, and the wave vector k of the vibration. Irr

the papers quoted in Section 2 above explicit formulas for the elements of

D( k ) are worked out on the basis of the different models.

0,

.-
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The frequency distribution function is a very useful function and

is necessary for the approximate evaluation of sums over all eigenmodes of

the lattice. A chapter in Reference 3 explains several methods for calculating

the frequency distribution function g(W ). The calculational method often

adopted is to divide the first Brillouin zone into many small prisms of the

symmetry of the unit cell, to evaluate the matrix D( k ) at the center of each
prism, find the eigenvalues uj at the center of each prism, and to compile

a histogram of the number of eigenvalues between t•+.) and w+A Lv	 The

histogram is then the frequency distribution function g(LO). This procedure

is known as the root sampling method. The frequency distribution function is

usually normalized so that.;
00

fj	 (43)
0

An improvement on the root sampling method has been reported by

Gilat and Haub enheimel 4 . These authors calculate the eigenvalues of D( k )

at the center of many :mall prisms within the first Brillouin zone, gust as in

the root sampling method. However, they also expand the eigenvalue about the

center of the prism in a Taylor expan3ion, keeping only the linear term, and

extrapolate throughout the small prism in order to determine the fraction of

the volume of the small prism contained between surfaces of constant eigenvalue.

The surfaces of constant eigenvalue are approximated within a small prism by

planes. The contribution of each small prism to the histogram channel between

W anu w+ A W is then determined, and the contributions from each cube

added. With this technique of extrapolation they are able to get much better

V.,

a=
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re3olut ion on the histogram than is available in a standard root sampling

technique. They have worked out the calculation in detail only for cubic

lattices, simple cubic, body centered cubic, and face centered cubic. For a

given resolution on the g( W) histogram the Gilat-Raubenheirier extrapolation

Method should require fewer mesh points in the first BriIlouin zone than does

the straight root sampling technique, with a consequent saving in computer time.

V. CONCLUSIONS

The review of the literature concerning calculations and measurements

of inelastic double differential neutron scattering cross section for poly-

crystalline beryllium and graphite shows that rather accurate scattering

kernels calculated on the basis of the incoherent approximation have been

obtained for room temperature. Calculations on the incoherent approximation

are available for many temperatures. J. A. Young, et, a1. are continuing work
on coherent calculations for both materials. Calculation of coherent inelastic

scattering should be pursued in order to determine the effect of coherent

scattering in cold (100°K) beryllium on the operation of a NERVA type reactor.

Sint-, e a NERVA type reactor uses cold beryllium, it would be good to have

available low temperature (liquid nitrogen temperature ^-77°K) measurements

of inelastic polycrystalline Scattering law.

M P
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