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ABSTRACT

The literature has been studied to determine two things; first to
determine “he principles, the methods, and the current results of calculations
of inelastic neutron scattering from polycrystalline beryllium and graphite,
and secondly to determine the agreement that has been obtained be“ween
calculations and measurements of the elastic and inelastic neutron scattering
cross section. The principles by which the inelastic scattering cross section
is calculated are outlined, some of the Born-Von Karman models proposed for
hexagonal lattices are described, and methods of numerically evaluating the
inelastic scattering cross section formulas are discussed.
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I. INTRODUCTION
Interference scalttering of neutrons from polycrystalline graphite

and beryllium may be an important factor in the operation of a NERVA type
reactor. This is especially true since the beryllium operates quite cold.
The work which this progress report concerns is directed toward understanding
the effect of interference scattering of neutrons by beryllium and graphite.
The work, to date, has consisted of a study of existing calculations
and experimental data. In this progress report methods used to calculate the
cross section for elastic and inelastic scattering of neutrons from crystalline
solids are discussed. The derivation of relevant formulas are sketched, and
points where the more important approximations enter are noted.
Calculation of one phonon process for polycrystalline solids is
explained. Present calculations of this cross section and available
experimental data are discussed.
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II. ELASTIC SCATTERING

The differential cross section for scattering neutrons from crystalline
solids is given in the Born approximation aa,

c-GRe) uT cH[m[is*

(1)

For elastic neutron scattering from a crystal lattice using the
Fermi psuedopotential and after integration over space coordinates » including

an ensemble average over initial states this beconesl

ta“ )h (ln’\ )g 2 s (Tl' P(h ))

N 2 (2

X Z “a'e'(k'-ka).rip; Fajn;

T
x X

F).Jy;:’ = (“:’ e’ QJU'Q'J"QJU-QJ ,“J> (3)

Plo,)- | (- W R
T STy “

1\3:0
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In expression (1) and (2) the symbols are defined as follows:

Go = elastic, single crystal, differential neutron scattering cross
section

m, = mass of the neutron

N = number of unit cells in the crystal

k, = magnitude of the wave vector of the incident neutron

-il = wave vector of the incident neutron

k2 = magnitude of the wave vector of the scattered neutron

12 = wave vector of the scattered neutron

4 f'HIi)a'-'-* indicates the square of the appropriate matrix element

|£> is the final state
|i) is the initial state

= is the sum over all cccupation numbers n; of the Jth normal
£ mode and branch of the crystal dispersion relation.
J

P(nJ) probability of occupation of the njth level of the jth normal
mode

N
m P(nj) constitutes the weighting for a particular choice of each n j
=1 for an ensemble average

o is used to indicate unit cells of the crystal

=l

O~ = equilibrium position 2£ the unit cells of the crystal lattice.
Fog a Bravis lattice o~ gives the equilibrium position of the
o-'h atom. For a crystal with a basis the position of an atom

is given by:

-—p
R =0 +
o,b

-~ e
b+u

-
b = the basis vector (’S = 0 for a Bravis lattice)

B = time dependent displacement from the equilibrium position in
the lattice
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%o~ 1is the bound atom scattering length of the atom @~.
8y = (&-X-]-) 8p.0e+ Here ap.. . is the free atom scattering length.

nJ) = is a single particle Harmonic oscillator state of energy twjnJ.

*
a 3 and aJ are annihilation and creation operators for the state ' nJ)

nJ-l)

a; J) ,]m In + 1)

aJaJ—aJa =]

J

"

Yoo T mth Z[‘krkz)' ]e“d""

s = represents the polarization of a lattice wave

gf = the polarization vector for mode f
8
hw 3 = energy of a lattice vibration of mode and branch J.

T j = wave vector of a lattice wave of mode and branch j.

kl = Boltzmann constant

T = temperature of the crystal.

In equation (2) Td‘ has been expanded in terms of normal modes of

the crystal and written in terms of annihilation and creation operators.
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The expressicn 2 has been evaluated (references 1,2,3) to give the

diﬂ'erentia.l cross section.

-aW 4 b
(}oz.@&?_- + -”-"’iée ol x(‘lz-zw T) (5)

2= ¥ (GE) [(;':;Q).zs] coth Sradr

hw; : (6)

R: Hw (;1 -a ) the incoherent average of scattering amplitudesl (7)
S = Yar - the coherent average of scattering a.mplitudesl (8)
The new symbols in expressions (5), (6), (7), and (8) are:

R = incoherent average of scattering amplitudes. The term in expression
5 containin~ ° gives the elastic incoherent scattering cross section.

S = coherent ave: of scattering amplitudes. The term in expression 5
containing S _ives the elastic scattering cross section (diffraction
scattering).

B = volume of the unit cell of the direct lattice

=k, -_l.tg is the wave vector change of the sg’attered neutron
Ra

© = scattering angle, between'Tcl and-lzz

=
T = reciprocal lattice vector associated with the latiice planes
which bisect ©.
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Since the purpose of this report is to discuss only beryllium and
graphite scattering cross sections, the incoherent cross section can be dropped
from consideration. This is because® R is measured to be negligibly small for
bqth graphite. g.nd beryllium,

Equation 5 gives the elastic differential coherent scattering cross

saction as:
< X a _-aW - —
do"sml, al .1125. S(K'J"z’) ”

dLl is the solid angle into which the neutron is scattered.

Equation 9 holds for a single crystal small enough so that extinction
effects are not appreciable {(i.e. & microcrystal). The superscript T means
that the scattering occurs from the crystal planes denoted by -‘Z.' .

The cross section for a polycrystalline solid can be obtained by
averaging equation 9 over all orientation of ?, (references 1,5), giving for

the polycrystalline cross section for the crystal plenes denoted by T ;

X
I oz ech’ __Se ™ ook, simS - am7)

dfL T8mM B (10)
The total coherent elastic scattering cross section for lattice
planes T is obtained from equation 10 by integrating over d..QS.
' awW
Co, col\r e R (11)

ABTRT €



Astronuclear
Laboratory

The totf.al coherent elastic scattering cross section is then obtained

by smihg over lattice planes, or more conveniently, over reciprocal lattice

vectouis.
S i -aw
w ‘ oy
b

s R
= T?""' = wavelength of the neutron.
In going from equation 5 i¢ squation 72 it has been assumed that
\ —
W is independent of the angle between-!z , and 2. However W depends on
- = 2 - 3
(K es) , and in usual approximations this becomes proportional to ( K).
o\ a

In equation 12 ( K) in W must be replaced by (W T)" as a consequence of
the delta function of equation 10, The sum over modes in equation 6 for W is
usually evaluated by an integral over the frejuency spectrum. See equations
39 through 42.

If an expansion of the total cross section in terms of Legendre
polynomials Pn(cos ©) is desired, the nth coefficient can be obtained from
equation 10 by first multiplying by Pn(cos ©) before integrating cver the solid
angle.

For a non-Bravis lattice, the form factor must be included in
equation 12, If the crystal is composed of n molecules each containing m atoms
then reference 1 gives the following substitutions to include the form factor.

Here hk £ are Miller indices of a plane and Xgps Y, Z:)r are the coordinates

J
of an atom in the lattice.



Astronuclear
Laboratory

'
Re“‘w—-— VR : " a.: ¢ W .
r=) (13a)

AL ™m H A - . a
(Se'aw)g,krﬂm Z: quca"" Ch )(J"+kY"'dzJ")e'\"/’
P~

J

r=| (13b)

W depends on the mass of the atom and so must carry the subscript W,. Equation
12 becomes for a lattice with a basis:

= N, 2 L(hXp +RY 422 ) _w |t
o;,e.m—'é’i? W T DI a...e‘""( gt kY4 17,), (14)
?g-im A rsi

The sum over ¢ includes all values of _‘2.'. since no multiplicity
factor is included in equation 14 to take account of values of T which, for
different values of hkR, are equel in magnitude.
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III. INELASTIC SCATTERING
1.' One Phonon Exchanges
In the Born approximation the differential scattering cross section
for single phonon absorption by a neutron scattered from an initial etate-;l

to a final state-l'c'z is, (reference 1);

cove) ) 5 T (1 o)

Yleo

: --;“‘F ‘o : cn.-O-Qt o¥
x :Qg-e.(k' ) l) i“.-llelco'a- ) Peu )I\“>

(15)

G,y is the cross section for one phonon absorption by a neutron. All of the
other symbols have the same meaning as in equation 2,
Equation 15 is evaluated in reference 1 ana shown to simplify to:
-adW
k,e

__®* i :
a"-S'uMth 2;-: I:(k k) GJ e L _|

(16)

[R+—)- $ S(k-ky+F- ’-'""')]

T\ W = the energy of the absorbed phonon and is positive.
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Conservation of energy requires:

E,=E + fw (17)
where: 2.2 3
h" Rk _ %k
Eh== J!v»: E;L-' .Rv;ikg

E1 and E, are the neutron kinetic energy before and after scattering. Equation 16
is for phonon absorption (neutron up-scatter).
The delta function in equation 16 includes the conservation of crystal
momentum for coherent scattering as,
-E'--l;l: anT-f (18)
We will consider only the coherent scattering term of equation 16
because measurements show R for graphite” and beryllium* to be negligibly
small.
Next the development to the total one phonon absorption cross section
is sketched, and the "incoherent approximation" is illustrated.
The coherent term of equation 16 is summed over all orientations of
-§2 and averaged cver all directions of the reciprocal lattice vector in order
to obtain the total one phonon polycrystalline cross section for absorption
of a phonon of wave vector-?, contributed by the reciprocal lattice point -'Zt p

(references 1,5). The result is,

doo (E~E)" w¥%HS = 7| _-aw(19)
o f QMNBka‘ ‘hw(e"’% I)'z"t' F'e

10
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do (E~E,)
dE 5

going neutron directions, for a phonon of wave vector‘? for a polycrystalline

is the one phonon absorption cross section integrated over out-

i
solid for the contribution of one point (T°) of the reciprocal lattice. It is
differential in final neutron energy. Any dependence of W on the angle of

scattering has been neglected.

In order to obtain the total one phonon absorption cross section,
equation 19 must be summed over all final neutron energies which can be reached
with the reciprocal lattice point_?..", and also summed over all reciprocal
lattice points which contribute, consistant with momentum and energy conservation.
The sum over final neutron energies is done by doing an integral over phonon

wave vectors in references 1 and 5.

> 2.1;'15 -aw = T |
O;.(E:) =JT1NBn, ffjf,f(,uqn_,),‘mr f,(a_-,?)a sz (20)

The angular part of this integration is facilitated by the

substitut :Lon5 s

anr-f =awr+pf -Iga< |
(21)

Substitution of 21 inte 20 leads to

(E.Z; Sﬁ;e.:"w ff (J.1r2'+lf)ae:av 2164 (22)

11
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The evaluation of the limits of integration, )1, )2, fM’ is carried out in
references 1,5 on the basis of the Debye approximation. Equation 22, with the
Debye approximation then gives the total one phonon up-scatter cross section
contributed by the reciprocal lattice points -'E' . The equivalent phonon
emission (down scattering) cross section is obtained by changing (e ."'/'”;l)

_hw/hT), ref. 1.

to ( I-e
—lp
Equation 22 must be summed over all C" which can contribute in order

to obtain the total one phonon absorption cross section at energy Eys

o, (E)=3 o ()" (23)
T allowed

The incoherent approximation is obtained by replacing the above sum
over reciprocal lattice vectors-'l."’ by an integration. This approximation should
be better for neutrons of higher energy (Ej~- kOD)l, when many reciprocal
lattice vectors contribute. The Debye temperature of the scattering material

is OD.

;-. lhrBf'z'"d 3 ol

Using 24 in 19 and then integrating over f yields, according to ref. 1, the
same result as would be obtained from treating the incoherent term in equation
16, except that R is replaced by S. The results for the total one phonon
‘absorption cross section on the Debye approximation and the incoherent

approximation is, according to Kothari and Singwil ’
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Ea‘ ko eb
Qe (E' )mez. Oy, (Eo"' E.\.) d Ea. (25)
max (0,E,~k, 6, 5

35%° -
Tiyime (E."E ) "'um, ™ E.ﬁ, 6,,)? (e hw/kT. c) f Je “1/”4)
-lmg('ff' "'V'E.')'l (26)

2. Multiphonon Processes

Multiphonon processes become important when the incident neutron
energy approaches the Debye temperature (El~ kOD) of the scattering material.
At sufficiently high incident neutron energy the multiphonon cross section
approaches the free atom cross section (ref. 1).

Treatments of the multiphonon cross section are usually done in the
incoherent approximation because, so the arguments go, the relatively high
neutron energy required to make multiphonon processes appreciable validates

use of the incoherent approximation.
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Cross sections for multiphonon processes can be obtained by

modification of eq. 151. As many terms

i @ a. +Q- CLJ .
< v - e! Wyor 07 Vi V>
;= " (27)

are removed from the product in equation 15 as there are phonons absorbed by

the neutron.
However, evaluation of the resultant equations are difficult, except
on this basis of many approximations. Approximate expressions for multiphonon

cross sections are given in numerous references, some of which are 1, 2, 6, 7,

8, 9, and 19.

3. Scattering Law
The scattering law is a way of combining the up-scatter and the down
scatter cross sections into one formula in which the condition of detailed
balance is explicitly taken into account, and was first introduced by Van Hovelo.
The double differential scattering cross section for neutrons
scattering from an atomic system for a neutron wave vector change‘i, and energy
change + W is written in terms of the scattering law as a product of a neutron

term and an atomic term;

A (g— £
do(EEs0) o1Ex -3 (|| hw) (28)
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TN .
Here | EJ = h&\mjt y=ha

@ dis the net_x_t‘ron scattering angle

XY
k,
N e
E, = E, +€
E=+ hw

Plus is for phonon absorption (neutron up-scatter).
Mirnmus is for phonon emission (neutron down-scatter).
S('fl, fuo ) is the scattering law. In the polycrystalline

iy
case S( K,'hw) depends only upon E., E., and ©, that is,

2)
-
it is independent of the polar angle of Ky.

-y
As an example of S( K, W) we re-write the one phonon absorption coherent

differential cross sectlon, equation 16 as

Gm)” ¢ (_R—a.'n T+f)

o

15
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The subscript T on 5y (-T(, $w) indicates that the summation over reciprocal
T

lattice vectors has not yet been performed.
The scattering law, equation 28, holds for all orders of phonon

processes, with energy conservation generalized to:

£y, +€

(30)

€= 24, : B (W~ ) (31)

k=t A=

Where n is the number of phonons absorbed by the neutron and n' is the number

and

of phonons emitted by the neutron during the scattering.
The scattering law is useful in experimental work in that data from

up-scatter and down-scatter can be combined and averaged to give an experimental
S('EI, hw). In calculations of scattering kernels, the scattering law makes

it unnecessary to calculate both up-scatter and down-scatter, since the one can
be easily obtained from the other through equation 29. Properties of S(' K', bhw)

are discussed in references 10, 11, and 12.

L. Considerations for Coherent Calculation
In order to calculate the double differential one phonon scattering

cross section

M(E~E,, ©)
dE, dQ

it is necessary to sum Sl(,l?l, hw) (equation 29) over all phonon wave vectors

(32)

16
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—

-? and all reciprocal lattice vectors °, for a given T)u), consistent with the

relation; -

K: Q‘W;’T:

or ,k,- k-x" ,J.n?—?,s Rtk . (33)

With |
-% | - g
w(f)=+(E-E)=w(f+r2m?) (34)
h o
A polycrystalline average of equat ' on 29 can be performed to
obtain an expression useful in a coheresnt calculation of the one phonon cross
section. The average is taken by neglecting the dependence of W on the
orientation of-i relative to a microcrystal, and averaging the delta function
q. — =
of equation 29 over all angles between K and the vector difference ZTT 'Z"'F .

The y axis is taken along QA :E'-f "
w

S(K-2wT+f)sine de do
( v et 5

(. |

| 1

i

<
3|~
R.a
Lﬁ

€:0 ¢:=0

17
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= o [ [S(K)$ (k) (- JawT-7] ) x:c':%‘

(36)

 S(R|-[2wZ- F)
L3 Ia.*rrz- {-"

The polycrystal double differential one phonon scattering cross

section becomes, from equation 29, 36:

E—~E,0 2
CIO-;J(EMLO.Jl )"S E ‘s' } '(Klat"") (37)

.1.1\:/

S.(K ﬁw)'sMN

Condition 34 defines surfaces of constant frequency within the first Brillouin
—p

zone centered about the reciprocal lattice point touched by T°. In order for

a contribution to the scattering to arise from the first Brillouin zone

i -8
surrounding the reciprocal lattice point ¢ , the sphere of radius| K I centered

18
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about the reciprocal lattice origin must intersect the constant frequency
surface '*’z;)- The intersection of the constant frequency surface with a
sphere of radius | | satisfied condition 33.

The summation over wave vectors along the intersection of the sphere
and constant frequency surface must be done by an integration. The contributions
at individual'aF vectors must be added to obtain the double differential cross
section.

The value of W must be obtained from equation 6 by replacing the

sum over wave vectors by an integration over the first Brillouin zone centered

about the origin.

:"'(&3)3 fdg‘;. (39)
|t BZ. .

Jd
However the variations of phonon polarization vectors GS with phonon branch

and location in the first Brillouin zone make evaluation of such an integral
difficult. A simpler approximation for the evaluation of W is to assume that
the polarization vectors are everywhere orthogonal, an assumptior which is true
for an isotropic homogenous solid but wrong for a hexagonal space lattice, and

replace the sum by an integration over the frequency spectrum;

Z "’f g(w)dw (40)
v w=o0

19
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with the above assmnption and 4O, equation 6 becomes

w (“’)
QV’:«MN Lj‘““'a'oﬁ‘,? o dw (41)

g(w) is the lattice frequency distribution function. g(Ww) gives the fraction

of eigenfrequencies of the lattice which have frequency between W and w+dw .

For nomaliczoation
fg(w)dw=l (42)

If a g(W) function for the lattice is constructed, then the
integration in 37 can be readily performed, although numerical techniques will,
in general, have to be used.

The formulas so far have all been for lattices with one atom per unit
cell. Generalizations to lattices with more than one atom per unit cell are
straightforward. A form factor must be included in S( lﬁ' , hw) to account for
the phase difference in scattering from various atoms in the unit cell, and
sums over wave vectors must be over all 3n branches of the phonon spectruml,
where n is the number of atoms in the unit cell.

Multiphonon processes would be difficult to calculate by explicit
numerical integration over volumes of the first Brillouin zone. Authors seem
to agreelr2:6,758,9,19) that such an explicit calculation of multiphonon
processes is not necessary. Whgn the neutron energy is great enough to make
multiphonon processes appreciable, it is great enough to make the incoherent
approximation valid, is the argument. So the conclusion about multiphonon

20
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processes is that they can probably be treated adequately by an incoherent
approximation, and an approximation to the dispersion curves.

An incentive to perform a one phonon coherent calculation of the
polycrystalline double differential scattering cross section for beryllium
is the data of S«:hmmk:L3 . He presents scattering law measurements for incident
neutron energies from 0.04 to 0,10 ev,

Young and KOppelu‘ performed a coherent calculation for beryllium

over a limited range of energy transfer and obtained reasonable agreement with
Schmunk ' s13 data.

21
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IV. LATTICE DYNAMICS AND SCATTERING LAW
1. General

The Harmonic approximation description of lattice dynamics is
discussed in detail in many placee3’15’16’l7’18. The approximation consists
of replacing the forces between pairs of atoms of the crystal by two idealized
components; a bond stretching force proportional to the first power of the
change in distance from the equilibrium positions of the two atoms, and a bond
bending force proportional to the change in angle betweenthe equilibrium line
joining the atoms and an arbitrary axis, that is proportional to the component
of displacement perpendicular to the equiliibrium line joining two atomslé. Thé
total force acting on a particular atom is the sum of these two components
arising from all of the other atoms of the crystal. The influence of other
atoms of the crystal is usually taken in practice out to the third to the
tenth shell of neighbors, although it could be taken to as many shells of
neighbors as desired. The bulk compressibility of the electron gas of the
solid can also be taken into wccount <0,

Force constants are introduced into the model. They usually are
adjustable parameters. It would be possible to have three separate bond
stretching force constants and three separate bond bending force constants
for each atom whose influence is considered, in addition to three electron
gas compressibilities. If three shells of neighbors from a hexagonally close
packed (hcp) lattice were considered, and there are six neighbors per shell,
then there could be a total of 3:6:6 = 108 force constants plus the electron



Astronuclear
Laboratory

gas compressibility. The features which distinguish different models of a
lattice is how many shells of neighbors are considered and how many force
constants are introduced.

Classical elasticity theoryzl:zz is used to derivel® relations
between the atomic force constants. These relations can be used to evaluate
atomic force constants from elasticity data, or as checks on the consistency
of values obtained for the atomic force constants in other ways, for example,

fitting by least squares to measured dispersion relations.

2, Beryllium
Several models proposed for beryllium will be compared. The crystal
structure of beryllium is hexagonally close packed (hcp). The unit cell is a
right hexagonal prism containing two identical atoms., If the origin of a unit
cell is chosen at the position of one of the atoms, the two basis vectors are?3
-
ry {()=0
g (1)
e iha + 3. e, + i 2,
rg(a)= 3o+ % R T %y

Here ?il . '3,2 , and 33 are the usual hexagonal lattice unit vectors, as shown

2;

in the sketch below. 2, 4

23
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A model of a hep lattice developed by Begbie and Born?4, and by
Begbiezs, includes interactions with nearest neighbors only. Seven atomic
force constants are used in this model for both bond stretching and bond

bending forces.
The hep model of Slutsky and Garlandz3 considers three shells of

neighbors. The atomic interactions are taken tc be bond stretching only, and
three force constants are introduced, one for each shell of neighbors. The
electron gas compressibility is also included as a parameter.

Collins26 has developed a model for a hep lattice and applied it to
magnesium. The model goes to fourth nearest neighbors and introduces four
independent force constants for each of the first three neighbor shells and
two force constants for the fourth shell., Of the four constants one is for
bond bending and three for bond stretching. In this general tensor model
there are altogether fourteen independent force constants. Collins evaluated
only nine of these constants using a combination of elasticity data and single
phonon inelastic neutron scattering from a phonon of known polarization.

DeWames, Wolfram, and Lehman27 have given a model of the hcp lattice.
It is referred to as the modified axially symmetric model. They have applied
it to beryllium and zinc. These authors include interactions out to the sixth
shell of neighboring atoms and use three force constants for each shell of
neighbors, one for bond stretching and two for bond bending. One of the bond
bending force constants is for bending within the base plane and the other for
bending out of the base plane, however, the ratic for these two bending
constants is taken to be the same for each neighbor shell. So they actually



Astronuclear
Laboratory

use two force constants for each shell plus the ratio of the two bending force
constants, a total of thirteen constants for six shells of nearest neighbors.
The relations of elasticity and crystal stability give relations between
various groups of the atomic force constants, and these relations are met
consistently by their numerical wvalues.

Schmnnkze, et.al., measured the dispersion relation along several
symmetry directions for beryllium by one phonon inelastic neutron scattering.
They attempted to fit their data to the Begbie-Born model and the Slutsky-
Garland model, both of which gave qualitative agreement. In order to achieve
better quantitative agreement between their experiment and a model they
extended the central force model of Slutsky and Garland to include interactions
of the fourth and fifth neighbor shells, With this extended central force model
they achieved a reasonable fit to their experimental data.

DeWames2, et.al., obtained a better fit to the data of Schmunk<S,
et.al. with their model than the extended Slutsky-Garland model gave.

Young®? and Young and Koppel?® used the extended Slutsky-Garland

8, et.al. to calculate the

model with the force constants obtained by Schmunk2
frequency distribution of beryllium. From their frequency distribution they
calculated the polycrystalline inelastic neutron scattering cross section both
in the incoherent approximation3l’29 and in a coherent calculation of one
phonon proc9333332 for small energy transfer. This latter calculation compares
favorably with the polycrystalline inelastic double differential neutron

scattering measurements made by Schmnnk33.

25
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A comparison of beryllium double differential inelastic scattering
cross section measurements made by Sinclair with calculations based on the
incoherent approximation is given by Young and KOpp0131. The calculations
were made by the code SUHMIT36 using the frequency spectrum obtained from the
extended Slutsky-Garland model by Young and Koppel31. The calculation misses
the data points at low momentum trasfer where interference effects are
important. No comparison has been made between an incoherent calculation and
the data of Schmunk32,. Young and Kopp9132 have made a comparison of their low
energy transfer coherent calculation and Schmunk's?> data. If this
calculationBz were developed into a full scattering kernel,it would allow an
accurate evaluation of the role of coherent inelastic scattering on the
operation of cold beryllium moderated reactors,

A more accurate numerical method for the incoherent approximation
than was used in the code SUMMIT36 has been written into a pair of codes called
GASKET and FLANGE42 by people at General Atomics. Beryllium kernels calculated
on the basis of these two codes should be available in the future from the
Brookhaven National Laboratory Evaluated Nuclear Data File (ENDF)*2. A copy
of the FLANGE code was given to the author by Dr. J. A. Young and Dr. John Neil,

both of General Atomics.

26



Astronuclear
Laboratory

3. Graphite

The crystal structure37 of graphite is hexagonal with four atoms
per unit cell, It tends to form into weakly coupled plane sheets with atoms
arranged in hexagons.

A Born-von Karman model of graphite has been developed by Yoshimori
and Kitan037. Their model includes the anisotropy of the graphite lattice,
by including four force constants; the first for bond stretching in the base
planes, the second for bond bending in the base planes, the third for bond
stretching along the C axis, and the fourth for the displacement of an atom
out of a base plane. Only first neighbor interactions are considered.

Calculation of a scattering kernel for graphite using the frequency
spectrum of Yoshimori and Kitano? ! is presented by Wilkner38, et.al. They
used the incoherent approximation, the code SUMMIT36, for their calculation.
Wilkner38, et.al. give a comparison of their calculation with the measurement
of the inelastic graphite scattering law by Egelstarf39. The agreement is
good, except for interference effects at low momentum transfer where the
incoherent approximation is expected to fail. Wilkner38, et.al., state that
reactor parameters calculated on the basis of their kernel agree also with
experiment.

Young and KOppelho have derived a more accurate graphite frequency
spectrum using the model of Yoshimori and Kitano37 than was obtained by
Yoshimori and Kitan037. Young and Koppel used the root sampling technique which
is a better numerical method than was employed by Yoshimori and Kitano.
Ybunghl, et.al. have compared scattering kernels computed using their new
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frequency spectrum and the one computed by Wilkner, et.al., and reached the
conclusion that the two scattering kernels are nearly identical. However,
measurements by Whittemre“‘ apparently show a discrepancy in the predictions
of the Young-Koppel calculation.

A copy of the GASKET42 computed scattering law for 296°K graphite
was given to the author by Dr. J. A. Young and Dr. John Neil, both of General
Atomic. With the copy of FLANGB4? also given to the author by the above two
people, a kernel up to 1.0 ev was computed on the WANL TNS fine mesh. However

this kernel has not been put on the TNS library tapes, to date.

4. Method of Calculating the Frequency Distribution g(w )
The Born model of lattice vibrations discussed in Section 1 above
leads to a set of coupled linear homogenous algebraic equations, the solution
to which can be written in the determinant form;

D(k)- WwrT |=0
(42)

If there are n atoms per unit cell of the crystal lattice, D(_k.)
and I are 3n x 3n matrices. D(-I? ) is the dynamical matrix of the lattice
and I is the unit matrix. The eigenvalues of D(-l'c.) are w‘;' where j indicates
one of the 3n roots, and the wJ are the eigenfrequencies of the lattice. The
elements of the matrix D( % ) depend upon the geometry of the lattice, the
model and atomic force constants, and the wave vector k of the vibration. In

the papers quoted in Section 2 above explicit formulas for the elements of

D( -l-c.) are worked out on the basis of the different models.
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The frequency distribution function is a very useful function and
is necessary for the approximate evaluation of sums over all eigenmodes of
the lattice. A chapter in Reference 3 explains several methods for calculating
the frequency distribution function g(w). The calculational method often
adopted is to divide the first Brillouin zone into many small prisms of the

symmetry of the unit cell, to evaluate the matrix D(-l: ) at the center of each

2
J

a histogram of the number of eigenvalues between W and w+Aw , The

prism, find the eigenvalues W)’ at the center of each prism, and to compile
histogram is then the frequency distribution function g(Ww). This procedure
is known as the root sampling method. The frequency distribution function is
usually normalized so that;

fﬂ(“’) diaiilr (43)

An improvement on the root sampling method has been reported by
Gilat and Raubenheimele*. These authors calculate the eigenvalues of D(? )
at the center of many small prisms within the first Brillouin zone, just as in
the root sampling method. However, they also expand the eigenvalue about the
center of the prism in a Taylor expansion, keeping only the linear term, and
extrapolate throughout the small prism in order to determine the fraction of
the volume of the small prism contained between surfaces of constant eigenvalue.
The surfaces of constant eigenvalue are approximated within a small prism by
planes. The contribution of each small prism to the histogram channel between.
W and w+ Aw is then determined, and the contributions from each cube

added. With this technique of extrapolation they are able to get much better
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resolution on the histogram than is available in a standard root sampling
technique. They have worked out the calculation in detail only for cubic
lattices, simple cubic, body centered cubic, and face centered cubic. For a
given resolution on the g( W) histogram the Gilat-Raubenheimer extrapolation
method should require fewer mesh points in the first Brillouin zone than does
the straight root sampling technique, with a consequent saving in computer time.

V. CONCLUSIONS

The review of the literature concerning calculations and measurements
of inelastic double differential neutron scattering cross section for poly-
crystalline beryllium and graphite shows that rather accurate scattering
kernels calculated on the basis of the incoherent approximation have been
obtained for room temperature. Calculations on the incoherent approximation
are available for many temperatures. J. A. Young, et.al. are continuing work
on coherent calculations for both materials. Calculation of coherent inelastic
scattering should be pursued in order to determine the effect of coherent
scattering in cold (100°K) beryllium on the operation of a NERVA type reactor.
Since a NERVA type reactor uses cold beryllium, it would be good to have
available low temperature (liquid nitrogen temperature ~ 77°K) measurements
of inelastic polycrystalline scattering law.
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