Report, No-1 ENV 298 4 Quarterly Progress

3 RESEARCH AND DEVELOPMENT STUDY RELATED TO THE SYNTHESIS OF FORMALDEHYDE FROM CO2 and AH2

GARD Project 1416

6 P. Budininkas

R. W. Ferris

G. A. Remus

≫August -90ctober 1966 6 [[0

For ARC Technical Monitor

Contract No. NAS2-3889 - 2014

National Aeronautics and Space Administration

Ames Research Center

Moffett Field, California	
N 67-22173	1
ACCESSION NUMBER) (THRU)	
: <u>10 3275 12-25</u>	i
(NASA CE OR TMX OR AD NUMBER)	-
	·
2	-
GENERAL AMERICAN RESEARCH DIVISION 3	
Thomspiritum of Comp. Not 2, ill 2	

Quarterly Progress Report No. 1

SYNTHESIS OF FORMALDEHYDE

1. Introduction

This report summarizes the activities of the General American Research Division during August through October, 1966 on Contract NAS2-3889, Synthesis of Formaldehyde. The activities during this period were concerned with (1) general survey of the published abstracts of literature pertaining to the synthesis of formaldehyde (2) a review of methods for the synthesis of formaldehyde and their suitability for space applications (3) detailed literature survey on the oxidation of methane to formaldehyde.

2. <u>General Survey of the Abstracts of Literature Pertaining to the</u> Synthesis of Formaldehyde

A literature search on the synthesis of formaldehyde was initiated with a general survey of published abstracts and reviews. The general subject headings used in all phases of the literature search were:

1. Formaldehyde: formation, production, manufacture, catalysts and catalytic processes, polymerization, separation, analysis, kinetics and mechanism;

2. Methane: oxidation, formaldehyde from, catalysis - catalytic processes, uses, products, reactions of, methanol from, formic acid from;

3. Methanol: formation, preparation, manufacture, synthesis, formaldehyde from, reactions of, electrolysis;

4. Oxides of carbon: reduction, hydrogenation, catalysis - catalytic processes, formation of formaldehyde, methanol, formic acid.

GENERAL AMERICAN RESEARCH DIVISION

The following publications were examined and abstracts of pertinent papers were obtained from them:

- (a) Chemical Abstracts
- (b) U.S. Patent Index and the Official Gazette of the U.S. Patent Office
- (c) Technical Announcement Bulletin (TAB), and Technical Abstract Bulletin (TAB), published by the Defense Documentation Center (DDC)
- (d) Scientific and Technical Aerospace Reports (STAR), and Technical Publication Announcements (TPA), published by the National Aeronautics and Space Administration (NASA)
- (e) International Aerospace Abstracts (IAA), published by the American Institute of Aeronautics and Astronautics (AIAA)
- (f) Nuclear Science Abstracts (NSA), published by the Atomic Energy Commission (AEC)
- (g) U.S. Government Research Reports (U.S.G.R.R.), published by the Commerce Department, Office of Technical Services (OTS), and U.S. Government Research and Development Reports (U.S.G.R.D.R.) and Government Wide Index of Research and Development Reports (G.W.I. R.D.R.), published by the Clearinghouse of Federal Scientific and Technical Information (C.F.S.T.I.)
- (h) Monthly Catalog of U.S. Government Publications, published by the Superintendent of Documents, U.S. Government Printing Office (U.S. G.P.O.)
- (i) Chemical Reviews
- (j) Warden, E.C., "Chemical Patents Index", Chemical Catalog Co., New York, N.Y., 1927

GENERAL AMERICAN RESEARCH DIVISION

- (k) Kirk, R.E. and Othmer, D.F., "Encyclopedia of Chemical Technology",Vol. 6, The Interscience Encyclopedia, Inc., New York, N.Y., 1951
- Ulmanns Encyklopadie der technischen Chemie, 2nd Ed., Urban and Schwarzenberg, Berlin, 1929
- (m) Ulmanns Encyklopadie der technicschen Chemie, 3rd Ed., Urban and " Schwarzenberg, Munchen - Berlin, 1956
- (n) Beilsteins Handbook der organischen Chemie, 4th Ed., Friedrich
 Richter, Drittes Erganzungswerck, Springer Verlag, Berlin, 1960
- (o) Walker, J. F., "Formaldehyde", 3rd Ed., Rheinhold PublishingCorp., New York, N.Y., 1964
- (p) Miscellaneous publications, periodicals, books, etc.

The abstracts and reviews obtained from the above sources were carefully reviewed and the information categorized according to the reactions for systematic evaluation; final selection was made of those publications which were to be obtained in complete form.

3. Review of Methods for the Synthesis of Formaldehyde

Literature reveals essentially three possible routes for the synthesis of formaldehyde from CO_2 and H_2 , namely, direct formation of formaldehyde, formation of methanol with subsequent conversion to formaldehyde, and production of methane which can be then oxidized to formaldehyde. Commercially, most of the formaldehyde is produced by the oxidation of methanol; some of the formaldehyde, particularly in the European countries, is obtained from the oxidation of methane and other hydrocarbons. However, successful commercial methods are not necessarily the most suitable for space applications.

GENERAL AMERICAN RESEARCH DIVISION

Therefore, it is important to consider the advantages and the disadvantages of each method in the light of space conditions and limitations.

(a) Direct synthesis of formaldehyde from $\operatorname{CO}_2(\operatorname{or} \operatorname{CO})$ and H_2 . Because of its direct, one step reaction, this method is very attractive. The formation of formaldehyde from carbon oxides and hydrogen is thermodynamically unfavorable and requires high pressures to proceed at all. Fischer⁽¹⁾ calculated that pressures of 10^3 to 10^4 atmospheres would be required to obtain practically acceptable formaldehyde yields ranging from 1.6 to 13 mol % of the carbon oxide. Although there are claims, particularly in the older literature, of catalysts and processes leading to direct production of formaldehyde from carbon oxides, there has never been any industrially developed process. In fact, Neuman and Biljcevic⁽²⁾ reinvestigating all these claims could not find any of practical value. It seems that because of the very high pressures needed, even if suitable catalysts could be found, this reaction would be difficult to apply to space conditions.

(b) The methanol route is a two step operation where the carbon oxides are first converted to methanol which is then oxidized to formaldehyde. The conversion of methanol to formaldehyde is a rather easy process and is being used extensively for commercial production of formaldehyde. It involves passing a methanol vapor and air mixture over solid catalysts at essentially atmospheric pressure and absorbing the formaldehyde formed in water. The

- (1) F. Fischer, Oel und Kohle <u>39</u>, 521 (1943)
- (2) B. Neuman and Biljcevic, Z. angew, Chemie 40, 1469 (1927)

GENERAL AMERICAN RESEARCH DIVISION

usual catalysts are silver, copper, or iron-molybdenum oxide. The reaction is run at temperatures of 450 - 600°C with yields of formaldehyde ranging from 83 to 92% of the methanol reacted. The process, if run under suitable conditions, produces practically no side reactions, the only products being formaldehyde, water, and unreacted methanol.

The investigation of the methanol route will be centered mainly on the formation of methanol from the carbon dioxide and hydrogen. The free energy of reaction is influenced both by temperature and by the pressure and high conversions can be obtained at elevated pressures. Several solid catalysts are being used for commercial production of methanol; however, most of them operate at high pressures, usually around 280 atmospheres. For instance, a ZnO catalyst containing 0.25% Fe₂O₃ produces methanol at 300 - 325°C and 200 - 210 atm; a Cu-Al₂O₃ catalyst gives best results at 285 - 400 atm. pressures. Literature also indicates processes and catalyst claims which permit the conversion of CO₂ to methanol at pressures only slightly above atmospheric.

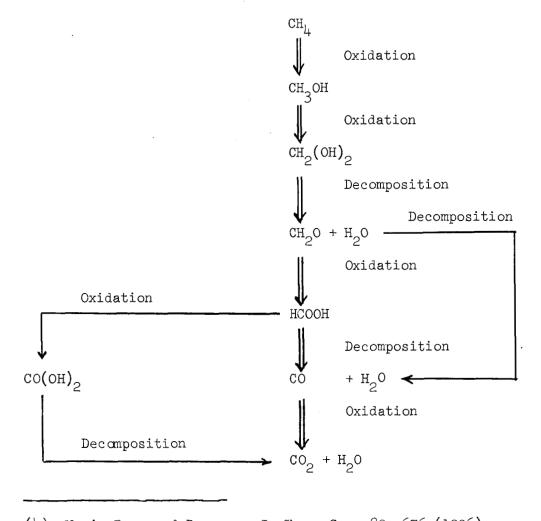
(c) The carbon dioxide - methane - formaldehyde route is also a twostep process. The catalytic reduction of CO_2 by H_2 to form CH_4 , however, is very well known and produces up to 99% conversion of CO_2 to methane at moderate temperatures (357°F) and at atmospheric pressures using a ruthenium powder catalyst.⁽³⁾ The oxidation of methane to formaldehyde has been the subject of numerous investigations using solid and gaseous catalysts, and non-catalytic devices. While the yields of formaldehyde are not as high as those obtained from the oxidation of methanol, the methane route has the advantage that the entire process can be carried out at atmospheric pressure.

⁽³⁾ G.A. Remus, R.W. Ferris, and J.D.Zeff, GATC Final Report, Contract AF 33(615)-1210, December 31, 1964.

Based on the general literature survey, it appears that the methane route may be the most suitable for space applications, primarily because the reactions proceed at atmospheric pressure thus avoiding high pressure equipment and operations which would cause additional weight and energy penalties. Therefore, the carbon dioxide - methane - formaldehyde process was selected to be investigated first and a detailed literature review has been made from the actual publications instead of the abstracts used in the general survey.

(d) The process of formaldehyde formation by first converting CO_2 and H_2 into formic acid and then obtaining formaldehyde either by reduction or decomposition of formic acid has not been investigated extensively. Catalysts, however, have been proposed both for the formation of formic acid and for its conversion to formaldehyde. At this time, it is unclear whether this process would be more advantageous than other methods.

4. Oxidation of Methane to Formaldehyde


(a) General

Based on the information obtained from various abstracts, copies of complete articles and publications pertaining to the oxidation of methane to formaldehyde were obtained for detailed study and review. Efforts were made to secure a collection, as complete as possible, of publications on the subject. Over 90% of all the U.S. and foreign articles and patents, mostly in their original languages, were obtained and evaluated. The remainder consist of either obscure publications generally not available in the U.S., articles which seemed to have little pertinence, or repeat patents issued in various countries but covering the same subject. It is interesting that most of the articles on

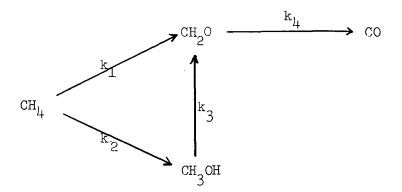
GENERAL AMERICAN RESEARCH DIVISION

the oxidation of methane to formaldehyde have been published outside of the U.S., the early ones being mostly British or German, with the Russian publications accounting for more than one half of the published material after World War II.

The oxidation of methane is a complex reaction leading to a mixture of products whose composition depends on the reaction conditions. This variety of products is readily explained by the hydroxylation theory of Bone.⁽⁴⁾ The course of the methane oxidation according to Bone's theory, as constructed by Wheeler and Blair⁽⁵⁾ proceeds as follows:

(4) W. A. Bone and Drugman, J. Chem. Soc. <u>89</u>, 676 (1906)
(5) Wheeler and Blair, J. Soc. Chem. Ind. <u>42</u>, 81-92T (1923)

GENERAL AMERICAN RESEARCH DIVISION


?

Double lines indicate the usual course of the oxidation; however, $CH_2(OH)_2$ and $CO(OH)_2$ have not been isolated. The difficulty in a complete acceptance of the hydroxylation theory was the failure of early investigators, conducting oxidation experiments mainly without the use of catalysts, to isolate any methanol. Later work⁽⁶⁾ showed that, indeed, there was some methanol formed.

The experimental data on the formation of alcohol and formaldehyde and the kinetics of their oxidation accumulated in the literature raised the question whether Bone's theory represents a true picture of the methane oxidation; there seemed to be evidence that both formaldehyde and methanol may be produced simultaneously by parallel routes. As early as 1923, Berl and Fischer⁽⁷⁾ showed that formaldehyde was formed directly from methane. Investigating the kinetics of the initial stages of the methane oxidation, Karmilova, Enikolopyan, and Nalbandyan⁽⁸⁾ showed that formaldehyde and alcohol were formed together at the very start of the oxidation. Using carbon labeled compounds, and NO₂ as a catalyst, Moshkina, Galanina, and Nalbandyan⁽⁹⁾ found that formaldehyde and methanol formed by two parallel routes and showed that under conditions where the intermediate products reach stationary values, the rate of the formation of formaldehyde from the methane is nine time greater than the rate of formation of methanol. The methyl alcohol is oxidized

- (6) Elworthy, Trans. Roy. Soc. Can. III, 16, 93 (1922)
- (7) E. Berl and H. Fischer, Z. anorg. Chem. 36, 297 (1923)
- (8) L.V. Karmilova, N. S. Enikolopyan, and A. B. Nalbandyan, Zhur. Fiz. Khim. <u>30</u>, 798 (1956)
- (9) R. I. Moshkina, N. L. Galanina, and A. B. Nalbandyan, Izvest. Akad. Nauk SSSR, Otdel. Khim. Nauk. <u>1959</u>, 1725

to formaldehyde which is oxidized further to give carbon monoxide. The results of this investigation may be represented by

where $k_1 = 9 k_2$, $k_2 = k_3$ and $k_4 = k_1 + k_3$. Thus, under given conditions a dynamic equilibrium is achieved where the rate of methane disappearance becomes equal to the formation of CO and the concentration of formaldehyde remains constant. Consequently, in a flow system, the concentration of formaldehyde in the product is increased by increasing its rate of formation and decreasing the rate of CO formation.

Numerous investigators have attempted to increase the yields of formaldehyde from the oxidation of methane by the use of heterogeneous or homogeneous catalysts, photechemical methods, electric discharge, and various combinations of these methods summarized in the following sections.

(b) Solid Catalysts

Table 1 summarizes processes for the formation of formaldehyde by the catalytic oxidation of methane using solid catalysts described in the literature. The descriptions of catalysts, conditions of reaction, and the amounts of formaldehyde formed, indicated in this and in subsequent Tables were expressed in the same manner as found in the literature. The proposed solid catalysts include many metals, metal oxides, and other mater-

GENERAL AMERICAN RESEARCH DIVISION

ials which are general oxidation catalysts. In the presence of oxygen and at elevated temperatures, it is difficult to stop the oxidation at the formaldehyde stage; it has been shown that the process wherein methane and oxygen react in the presence of a catalytic surface is not only heterogeneous, but that a homogeneous process also occurs away from the catalyst surface.⁽¹⁰⁾

Most of the formaldehyde is formed on the catalyst surface, but some is formed in the gas phases. Some formaldehyde reacts further on the surface to form CO_2 ; but an additional and possibly larger part can undergo oxidation by a chain reaction in the gas phase. It is conceivable that at high temperatures the solid catalyst or species adsorbed on its surface may act as chain reaction initiators. Therefore, it is thought⁽¹¹⁾ that even at short contact times the formaldehyde concentration in the product can increase only up to a certain limiting value. Generally, the concentration of formaldehyde in the product is low; overall production of formaldehyde can be increased by using recycle systems.

(c) Gaseous Catalysts

Processes utilizing gaseous catalysts, alone or in conjunction with solid catalysts, are listed in Table 2. The gaseous catalysts used include O_3 , NO_2 , NO, HNO_3 , Cl_2 , HCl, SO_2 and others; however, the most promising seem to be ozone and the nitrogen oxides. While single pass operation results in a low formaldehyde concentration, recycling increases

(10) P.M. Stadnik and V.I. Gomonai, Kinetika i Kataliz <u>4</u> (3), 348 (1963)
(11) N.S. Enikolopyan and G.V. Koralev, Doklady Akad. Nauk SSR 118, 983 (1958)

GENERAL AMERICAN RESEARCH DIVISION

the formaldehyde production considerably. The Guttehoffnungshutte process utilizing nitrogen oxide catalyst is being used on a pilot plant scale in Rumania.⁽¹²⁾ A gas mixture consisting of 18% CH_{4} , 9% O_{2} , 68% N_{2} , 3% CO, 1.6% CO_{2} and containing 0.08% NO is recirculated through a tubular reactor at 600 - 620°C and contact time of 0.15 - 0.2 seconds. About 8% of the methane is converted into formaldehyde. A similar process is being used in the USSR producing 3000 tons/year of formaldehyde.⁽¹³⁾

The most promising appears to be the patent claim of the Hibernia process (14) utilizing a solid catalyst and ozonized oxygen or air. It is claimed that this process can convert up to 40% of the methane into form-aldehyde. The advantages of this process are high conversion to formal-dehyde, low operating temperature $(106 \,^{\circ}C)$, ease of removal of the unreacted ozone, if any, from the product, and the absence of by-products.

(d) Miscellaneous Methods

Miscellaneous methods described for the production of formaldehyde are listed in Table 3. None of these methods, however, have achieved any significant success. The claims of formaldehyde production in the presence of an electric discharge may actually be due to the nitrogen oxides or ozone formed in the gas mixture.

- (12) N.S. Enikolopyan, N.A. Kleimenov, L.V. Karmilova, A.M. Markevich, andA.B. Nalbandyan, Zh. Prikl. Khim. 32, 913 (1959)
- (13) S.F. Gudkov, Gazovaya Promischlennost 8, (9), 44 (1963)
- (14) Ger.891, 687 (Oct. 1, 1953)

5. Future Activities

During the next quarter, the experimental set-up for the formation of formaldehyde from methane will be assembled and tested. The actual experimentation will be started by investigating etched quartz catalysts, ozone, nitrogen oxides, and then combinations of other solid and gaseous catalysts.

The experimental apparatus consists essentially of a vertical quartz tube surrounded by an electric heater which permits regulation of the temperature of the reaction zone. The tube can be used with either gaseous catalysts or solid catalysts. Solid catalysts will be tested in the tube by placing a support structure for the catalyst bed in the desired position. The metered reaction gases are admitted separately, preheated as required, and then passed through the reaction tube. The product gas stream is cooled rapidly to "freeze" the composition by blowing air over the bottom portion of the quartz tube extending below the heater. Sampling ports permit withdrawal of gases both from the reacting mixture and from the product for analysis. The gas mixture and the product will be analyzed by gas chromatographic methods. The entire system will be provided with thermocouples to measure inlet, catalyst bed, and outlet temperatures at various points in the system cross-section.

GENERAL AMERICAN RESEARCH DIVISION

TABULAR LISTING OF REFERENCES AND CATALYSTS

• .

_

GENERAL AMERICAN RESEARCH DIVISION

Remarks		8	Mixture of formalde- hyde, methanol, and formic acid is obtained.			Gas velocity con- trolled to give partial oxidation products.		Conditions changed to favor desired oxygenated products.				Reaction temperature is below red heat.				Possible traces of chordes in catalyst could account for relatively high conversion.
Formal debude Produced		7		A portion of CH ₄ is conv. to CH ₂ 0												5% of methane conv. to formaldehyde
Conditions	Feed Composition	9	CH4 or natural gas, air	3 perts CH ₄ and 100 parts moist air		CH4, and gas contg. O2	Natural gas; 1 g. mol. hydrocarbon mixed with 1 g. atom 0	Natural gas with small proportion of 0	Equal volumes of CH ₄ and air	CH ₄ , air, or oxygen			CH4, air	CH _L with excess air, oxygen, or ozonized air	CH ₄ , air or oxygen	14% CH4, 18% 02, N2
	Temp., °C Pressure	5	30 - 50	150 - 200		550	250 - 500 60-300 ætm		60	30 - 50	500		150	600 - 1000 Above atmos- pheric	575	500 - 700
4	1SATB18	14	Tan bark	Cu, Ag, or both	Cu, Fe, Mn, Cr oxides on pumice or other carriers	Mo oxide	Unspecified	Pt, Pd, Cr, Mn, Fe, Cu, N1, Au, Ag, oxides of Cu, Mn, Fe, N1, V, Cr, Mo, Ce	Cu, pumice, asbestos	Bark	V205	Vanadic or Molybdic acids	Cerous cobalt nitrate	Porous pumice, brick, asbestos, quartz sand, slag wool	B203 or P205 contg. materials	Glass surfaces, lead borates, lead phos- phates
	Publication	3	U.S. 891,753 (June 23, 1908)	Ger. 286,731 (August 24, 1915)	Brit. 236,086 (October 17, 1924)	U.S. 1,675,029 (June 26, 1928) U.S. 1,941,010 (December 26, 1934)	Can. 291,411 (July 16, 1929) U.S. 1,776,771 (Sentember 30, 1930)		Ger. 109,014 (1898)	Ger. 214,155 (1906)	Brit. 170,022 (1921)	Ger. 347,610 (June 23, 1916)	Ger. 307,380 (March 26, 1916)	Ger. 421,215 (December 9, 1922)	U.S. 1,487,020 (March 18, 1924)	тталв. Катроv. Inst. Сћеш., Ио. 3, 54 (1924)
Reference	Author	5	M.C. von Unruh	Verein fur chem. Ind. in Mainz	K. Kaiser	J.H. James	E.H. Boomer E.H. Boomer	J.C. Walker	G. Glock	G. Hildebrandt	Seliden	Моћ1	F. Muller	R. Hessen	Mittasch, Willforth, Balz	Medvedev
	No. Abstract	1	1 CA 2, 2979	2 CA 10, 1911	3 CA 20, 970	4 CA 22, 2951	5 CA <u>23</u> , 5308 CA <u>24</u> , 5985	6 ca <u>23</u> , 846	4	8	6	10	T	12	13	14 CA 21, 2457

Table 1. OXIDATION OF METHANE USING SOLID CATALYSTS

.

.

GENERAL AMERICAN RESEARCH DIVISION

β	Molybdic oxide is the most active catalyst	Higher conc. of HC1 result in decrease of formaldehyde	Partial oxidation to CH20			CHP_O separated by HP_O scrubbing	Pressure and space velocity waried to determine effect on CH ₂ O yield	Controlled partial oxidation reaction employed	The reaction products from Fe and H2PQ, were found to prevent the decomposition of hydro- carbon oxidation products to CO ₂ and H2O	Ni and Monel catalysts gave the best results. A massive catalyst gave better results than wire gauze.	The most active catalysts were Mo oxide - SiO ₂ which was better than V oxide - SiO ₂	Good yields were obtained from the catalytic oxidation, more than 90% aldehydes being ob- tained. Steam gave no significant yields.	Liquid phase catalysis produced a mixture of MeOH, CH20 and ACH-H2SOL used as oxidizer.
2	6.75% based on weight of methane treated	About 3% formeldehyde in the pro- duct gas		19.3 mg CH20/1 1. gas mixture			Ago, Cuo - 30 mg CH20/ 100 1 gas; Fe203 - 23 mg CH20/ 100 1 gas				Max. yield =3% CH20 (based on input 02)	20% СН20, 27% СН ₃ СН0	
6	CH ₄ , air in ratio 1:1 but not over 1:3.5	сн 58%, 02-26%, N2-8.7% Н2-7%, нсп-0.13-0.3%	C ₂ H ₄ , air	CH _L , air or O ₂	CH4, (air or O ₂)	CH4, 02 (1:1, vol.)	Matural gas (94.95% GH4), air (7:3 vol)	Exothermically oxidi- zable hycarbons, O ₂	Aliphatic hydrocarbons, (air or 0 ₂)	снц, о, м	СН4, СрН6, С3Н8, пат. gas, (air or O ₂)	CH4 or C ₂ H4 (air or 02	Mat.gas, 80-98% H2Solt
5	550	80	415 - 500	600 - 610		400 - 600 1-20 atm	350 100 atm				50 - 650 39 19 186		240 - 320
_+	Oxides of Mo, V, Mun, W, U, Cr, T1, Zr, Th, Ag	Phosphates or borates	Mo oxide, silica gel	Iron borate, tin phosphate	Activated matural bleaching earths & silica gel, active C, Cu, Ag, Co, Mn		Ago, Cuo, Fe ₂ 0 ₃	Fe oxide, antiknock reagent, e.g. Fe pentacarbonyl	Froducts of reaction of Fe & H ₃ FO ₄	Cu, Ag, Zn, N1, Monel	Electrolytic Cu, SiOp 35 gel, CuO-SiOp, V oxides 73 on SiOp, Mo oxides on SiOp, bronze	Steam; catalytic oxidation	Ce, Rb, Pt, Pd, Pb, and their compounds
3	U.S. 1,588,836 (June 15, 1926)	Trans. Karpov. Inst. Chem. No. 4, 117 (1925)	U.S. 2,066,622 (1937)	Nat. Gases U.S.S.R. No. 4/5 29 (1932)	Ger. 657,194 (1938)	U.S. 2,196,188 (1940)	J. Soo. Chem. Ind. Japan 43, 453 (1940)	U.S. 2,270,779 (1942)	u.s. 2,434, 850 (1948)	Can. J. Research <u>25B,</u> 494 (1947)	Mich. St. Coll. Agr. Eng. Expt. Sta. Bull., 106 (1946)	Petroleum Processing <u>4</u> , 794 (1949)	Brit. 606,967 (1948)
5	J.H. James	Medvedev	R. Hasche (A.O. Smith Corp.)	S.S. Medvedev	H. Harter	W. Bone, D. Newitt (Imp. Chem. Indus. Ltd.)	A. Metul, M. Yesuda	E. Berl (Berl Chem. Corp.)	C. Hochwalt, et. al. (To Monsarto Chem. Co.)	E. Boomer, S. Naldrett	C. Dewitt, L. Hein	P. Sherwood	Clark Bros. Co., Inc.
1	2	16 CA 20, 2273 (1923)	17 CA <u>31</u> , 1045	18 CA <u>31</u> , 3869	19 CA <u>32</u> , 3773	20 CA <u>34</u> , 5094	21 CA <u>35</u> , 3796	22 CA <u>36</u> , 3187	23 CA <u>42</u> , 3426	24 CA <u>42</u> , 1869	25 CA <u>42</u> , 857	26 CA <u>111</u> , 1017	27 CA 44, 1525
	15	H											

•

1 x

•

•

1

 $\mathcal{L}_{\mathcal{M}} = \{ (1,2,2), (1,2,2), (2,$

8	A fluidized bed of CuO oxidized CH ₄ to CH ₂ O. The Cu produced was reoxidized to CuO in a regeneration zone.	1 Other aliphatic hydrocarbons were oxidized. Group Tb metal oxides were also tested as catalysts. A recycle system was argloyed. The contact thme was 0.72 sec.	The CH_O vield was found to be influenced by concentration of free 0. The space velocity used was 286 hr ⁻¹ and the con- tact time was 12.6 sec.	Solid catalysts were found to decrease yield. Pure silite rod (heater element) gave best results.	These catalysts produced CK20 from CH4 in quantitative yields.	These catalysts are suggested as a possibility for oxidizing CH4 to CH20.	A wide range of materials was tested. Space velocity was varied from 15,000 to 50,000 meters were varied.	CH20 conversion was found to be strongly influenced by tempera- ture and space valocity. Glass packing inhibits CH20 decompo- sition and conversion to acids at <350°, CH20 conversion in- creased with contact time.	CH4, oxidation was most rapid in HF-treated SiOF and yrrex vessels. B203 conted surfaces gave results similar to pyrex.	MgCl ₂ found to be a negative catalyst for CH ₂ O formation.	Hexagonal microcrystals cata- Tyzed while PREM, inhibited Tyzed for PREM, inhibited Tyzed for a tatalytic activity of glass indicated sur- face covered with a microlayer of hexagonal microcrystals.
4		80% Mol yfeld CH20 (based on CH4,)	95% Mol yield CH20 (based on CH4)	47% yield CH20 (based on C2H1, con- verted)			CH2O yield= 25% (CH4)	Max. CH20 converted (based on 0) = 10%			
Q	CH4, Cuo	97% CEL, 0.7% SO3, 0.5% SO2, 1.8% CO, CO2 SO2, 1.8% CO, CO2	67% CH ₁₄ and inerts, 2% 80 ₃ , 30% 80 ₂ , 0.8% 0	сещь, о ₂ (9:1)	cH4, 02		Nat. gas (93% CH4, 2% 0), (air or 0 ₂)	Butanes, O	cHu, o	$\operatorname{CH}_{4,}$ (air or O_2)	Hydrocarbons with $C > l_i$, (air or 0_2)
5		330	350 20-600 pet	500 1. stm			375 - 500	350 - 400	1450 - 500 100-400 mm		Low temp.
4	Cu oxide; Cu, Cu oxide	Act. Algo3, Co sul- fate, 0.02% wt. AgNO3	Group Ib saits and oxides; transition elements	Fe sulfate, NH ₄ dichromate, NH ₄ vanadate	Salts of Group 1 and 7, metals activated by salts of Group 6 on a porous carrier	Frecipitated Mo oxide with Co or Ni oxide with Si, W, Ti, Be, Zr, Cr, U as promo- ters	MoO ₃ , Ag ₂ 0, Pumice	Glass	HF treated SiO ₂ and pyrex vessels; soda- glass; KCl & alkal1 treated vessels	MgCl2 coated walls	Class surfaces, metal ordes, surfaces, heragonal surfaces phart, Cu, Sn plated Al surfaces
3	Brit. 633,334 (1949)	Brtt. 643,862 (1950)	Brtt. 644, 027 (1950)	Ber. <u>768.</u> 957 (1943)	Ital. 464,173 (1951)	u.s. 2,625,519 (1953)	Tr. Kharkovsk. Politekhm. Inst. <u>39</u> , 19 (1962)	Chem. Age India <u>14</u> , 250 (1963)	Combustion and Flame 1, 25 (1957)	Ukrain. Khim. Zhur. 26, 440 (1960)	Mem. Fac. Eng. Hiroshima Univ. 1, 309 (1961)
Q	M.W. Kellogg Co.	Clark Bros. Co., Inc.	Clark Bros. Co., Inc.	R. Schwarz, M. Ruhnke	M. Marconi (To Societa per Azioni Polvere Metalii)	M. Hartig (To du Pont de Nemours & Co.)	V. Atroshchenko, Z. Shchedrinskaya	M. Baccaredda, et. al.	A. Egerton, et. al.	T. Kornienko, M. Polyakov	M. Mtyanishi
1	28 CA 444, 5900	29 CA <u>45</u> , 3865	30 CA <u>45</u> , 3865	31 CA <u>38</u> , 3247	32 CA <u>46</u> , 9583	33 CA <u>47</u> , 11226	34 cA <u>61</u> , 2878	35 CA <u>60</u> , 5311	36 ca <u>51</u> , 7828	37 CA <u>55</u> , 8002	38 ch <u>55</u> , 20400

.

8	K2B407 found to promote UE20 formation while percelain in- hibited CH20 decomposition. A clow rate of 180 m//hr and a contact time of 0.4 sec was used.	Ag ₂ O and Ag ₂ O + Cr ₂ O ₃ produced MeOH and CH ₂ O. Mo oxide pro- duced only CH ₂ O. The volumetric velocity through the catalyst was SO,000 cc/m	Product gas condensate con- tained 19% CH ₂ O and 20% hydroperoxides.	The catalyst is deposited as a thin coating on the walls of a heat exchanger to prevent $\operatorname{CH}_{20}^{0}$ decomposition.	A process is described for controlled oxidation of CH4 to CH20.	These catalysts prevented dis- sociation of CH20 formed at higher temperatures.	When glass vessel walls were othed with sublimed fibers of various metals, only metals forming hexagonal metal as formation. PBRM, inhibited formation.	An elongated tubular reactor was used.	Since glass surfaces catalyze CH20 formation in a Pb-lined condustion chamber, it was con- cluded that glass is composed of hexagonal microcrystals.	High CH2O yield was obtained then air and CH1, was obtained of unsaturated Nutrocarbons, E2O, DO2, and H2S. A detailed method is given for accomplish- ing this purification.	A number of other catalysts were also tested.
2	CH2O conc. in prod. gases=3.3%		10.63 mg. CH2O/liter gas mixture	3 gms. CH20/m3 gas mixture							70-101 mg. CH20/10 11ters CH4
6	CH4, 0, N (1:1:1 vol)	CH ₁ contg. gases, O ₂ (98:2 vol)	CH4, air (1:1 vol)	cH4, 02	CH4, (air or O ₂)	CH4, O2 or mir	Heptane, O	CH ₄ , (air or O ₂)	n hydrocarbons, (air or 0 ₂)	CH ₄ , 0 or air	CH4, (mir or O ₂)
5	650	375 - 390 25-75 atm	540	620	5-10 atm	560	150 - 400	480 - 650		70 - 80	650 1 ætm
. 4	K ₂ B407, porcelain	Fumice, Mo oxide; pumice, Ag20; pumice, Ag20, Cr203	BaCl ₂ on kaolin	5 pts. Na silicate, 1 pt. ZnO, 0.1 pt. NaOH	Na_B407	Hydrogenation cata- lysts, e.g. Fe or Co oxide with Ni or Co activators on kieselguhr	Hexagonal crystals, FbET4	Solid particulate material, CuO	Glass surfaces	Oxidized copper chips	rethaol, WO3, MnO2, V205, Tho2
£	Gazovays Prom. No. 6, 32 (1957)	u.s.s.r. 132,623 (1960)	Khim. Fere. Neft. Uglev., Trudy Vses. Sov. Kom. Khim. Pere. Neft. Gasov. 339 (1956)	Ger. 765,968 (1953)	ger. 861,242 (1952)	Ger. 845,505 (1952)	J. Fuel Soc. Japan <u>34</u> , 373 (1955)	U.S. 2,689,210 (1954)	Bull. Fac. Eng., Hiroshime Univ. <u>4</u> , 353 (1955)	Ital. 485,052 (1953)	J. Fuel Sol. Japan <u>32</u> , 249 (1953)
Q	A. Anisonvan, et. al.	V. Atroshchenko, et. al.	B. Losev	0. Zechetmayr (Guttehoffmungshutte Sterkrade AG.)	P. Nashan (Guttehoffnungshutte Sterkrade AG.)	A. Zechetmayr (Guttehoffmngshutte Sterkrade AG.)	M. Myanishi	F. Leffer (Universal 011 Products Co.)	M. Mtyanishi	M. Marconi	M. Maki
	39 CA <u>51</u> , 18501	40 CA 55, 8823	14 CA 51, 18023	42 CA <u>52</u> , 2476	43 CA 53, 222	44 CA 53, 12178	45 CA 49, 13630	46 CA 49, 5043	47 CA <u>50</u> , 5382	48 CA <u>50</u> , 16829	49 CA <u>49</u> , 6822

.

.

	Remarks	8	With gas catalysts shown Cu; Ag, their oxides, activated tharcoal, Pt oxide, BaO2 were found unstifactory.	,		N oxides are formed from air by an elec- tric flaming arc.		Various solids used as additional catalysts.		Fast cooling of pro- duct used to prevent formaldehyde decomp.	Pb(C ₂ H ₅) ₁ controls the limit of oxida- tion to produce axygenated products.		Feed mixture contained up to 7% of C2H6
	Formaldehyde Produced	7	15-30% of oxygenated derivatives were obtained										Up to 3.6% of hydro- carbons in feed con- verted to CH20
Conditions	Feed Composition	6	CH4, or matural gas with O2	cH4, 02	cHt, O2	CH ₄ , O ₂ or air	ca _t , o ₂	CH _L , air	œ₄, o₂	CH4, air	Hydrocarbons with air	CH ₄ er mat. gas, air	Nat. gas, air in ratios up to 1:4
	Temp., °C	5	100 - 700	above 500				100 - 500	600 - 750	450		250 - 560	700 - 750
	Catalyst	ħ	NO2, MENO2	Halogenating agent such as Cl ₂	Halogenating agent such as Cl ₂	N oxides with solid catalysts Cu, Ag, Co, Mn, active C, silica gel	N oxides with con- tact materials: Mg, Pt, W, Cr, Ni, Mn, Si, Cu, Ag or their oxides, quartz	Decomposing NO and bleaching (fullers) earth	NO with oxides or carbonates of End and 4th group; also of Al, Cr, V, Mo, W, Mn, Ni or Co	N oxides	Pb(C2H5)4	1-2% nitric acià fumes	Nitrogen oxides obtained by bubbling feed through conc. HNO ₃
	Publication	£	Ind. Eng. Chem. <u>20</u> , 1052 (1928)	U.S. 1,697,106 (Jenuary 1, 1929)	U.S. 1,697,105 (January 1, 1929)	Brit. 337,407 (June 24, 1929)	Fr. 709,823 (Januery 14, 1931)	U.S. 1,985,875 (December 25, 1935) Ger. 657,194 (February 28, 1938)	Fr. 770,179 (September 10, 1934)	U.S. 1, 319, 748 (1919)	U.S. 1,939,255 (December 12, 1934)	U.S. 1,392,886 (October 4, 1921) Re. 15,789 (March 11, 1924)	Ind. Eng. Chem. 21, 633 (1929)
Reference	Author	2	T.E. Laying and R. Soukup	F.J. Carmen and T.H. Chilton		R. Harter	Guttehoffnungshutte Oberhausen AG.	H. Harter		R.K. Balley	G. Egloff	C.H. Bibb	C.H. Eitb and H.J. Lucas
	No. Abstract		1 CA <u>22</u> , 4333	2 CA 23, 1142	3 CA 23, 1142	4 CA <u>25</u> , 2156	5 cA <u>26</u> , 1302	6 CA 29, 1103	7 cA 29, 480	8	9 CA <u>28</u> , 1354	10	П
	No	1	l										

Table 2. OXIDATION OF METHANE USING GASEOUS CATALYSIS

.

ļ

l I

· • • •

ļ

I

12 13 CA <u>32</u> , 14 CA <u>32</u> , 15 CA <u>34</u> , 16 CA <u>35</u> , 16 CA <u>35</u> ,				ATTON IT STORI				
12 12 13 13 15 15 15 15 15 15 15 15 15 15 15 15 15		5	е	1	2	6	7	8
13 13 13 13 13 13 13 13 13 13		D.F. Smith and R.T. Milner	Ind. Eng. Chem. <u>23</u> , 357 (1931)	Nitrogen oxides ob- tained by bubbling through conc. HNO ₃	500 - 700	CH ₄ , oxygen, various ratios	Up to 3.7% of the methane converted to CH ₂ 0	
14 CA <u>36</u> L5 CA <u>34</u> L6 CA <u>35</u> , L6 CA <u>35</u> , L7 CA <u>36</u>	<u>31</u> , 3869	S.S. Medvedev	Nat. Gasses U.S.S.R. No. 4/5, 29 (1932)	HCl, Al, Fe phos- phate	600 - 610	CH4, air or O2, 0.3% HCL	1	HCL improves CH2O yield only up to a limit. Air gives higher CH2O yield than O2.
L5 CA <u>34</u> , L6 CA <u>35</u> , 17 CA <u>36</u>	5, 1283	P. Nashan (Guttehoffnungshutte Oberhausen AG.)	u.s. 2,102,160 (1938)	N oxides, alkaline earth metal oxide, metal oxides (Co and Ti)	600 - 700	CH4, 02, N oxides < 1≸ (Vol.)		The Co as T1 oxide acceler- ates CH1, oxidation while the oxide mixture prevents undesired oxidation of CH20.
17 CA <u>36</u>	ł, 5413	A. Matui, M. Yasuda	J. Soc. Chem. Ind. Japan, 43, 117 (1940)	U02, BeO, NO2	500 - 700	CH4 (from nat. gas), air (7:3 vol.)		Fyrex, quartz, porcelain and copper tubes used as reactors.
17 CA <u>36</u> ,	2, 2855	A. Kreshkov		CL ₂ & superheated steam with CuCl ₂ , BaCL ₂ , V ₂ O ₅ catālysts activated carbon, pumice carrier		CH4, (air or O ₂)	Av. yleld = 1.05%	Lover contact times found to give higher yields.
	5, 492	Guttehoffmungshutte Oberhausen AG.	Brit. 520,480 (1940)	NO, difficully re- ducible solid oxides	500 - 700	Hydrocarbons (air or O ₂)		Lover molecular weight aliphatic aldehydes produced. Reaction gas was passed through numerous heated tubes.
18 CA <u>37</u> ,	2, 5082	Guttehoffnungshutte Oberhæusen AG.	Ger. 721,883 (1942)	N oxides, 2nd Group metal oxides, or Al, Mo, Ni oxides alone or mixed	500 - 800	Paraffins with > 1C, 0 ₂ , 1≸ N oxides		
19 CA <u>39</u> ,	619 f	C. Thomas (Monsarto Chem. Co.)	U.S. 2,365,851 (1944)	Fe phosphate, "Proknocks" vapor	650	C ₃ H8, air (1.5:8.5); CH4, air (3:7)		Recycle system employed. Re- actants preheated to 300°. Fe phosphate inhibits CH20 decomposition.
20 CA <u>39</u> ,	2, 3555	W. Derby (Monsanto Chem. Co.)	u.s. 2,376,668 (1945)	HN0.3		cHų, C2HG, C ₃ Hg, nat. gas , air		Reactor constructed of an alloy containing 55% Ni, 17% Mo, 15% Cr, 4% W, Fe, Si, Mn. The reaction was run isothermelly.
21 CA <u>39</u> ,	2, 5253	H. Harter	Ger. 737,418 (1943)	N oxides	500 - 600	CH4, (and gases contg. CH4,) 02 (and gases contg. 02)		The oxidant and N oxide were preheated to 500-600°, then mixed with the CH4 immediately before the reaction
55 CA H1	333	M. Fatry, F. Monceaux	Compt. Rend. 223, 329 (1946)	Non-cetalytic; N ₂ O	760 ; 570	CH4, 0 (8:2)	Non-cat., 760°, 1.7 sec,0.6% yield CH20 N20; 570° N20; 570° CH20 CH20	
23 CA 41,	ca <u>41</u> , 2070	T. Sherwood (To Goûfrey I. Cabot, Inc.)	U.S. 2,412,014 (1946)	2% (vol) NO2	650 1 atm	Mat. gas, air (3 to 5: 7 to 5 vol)	Condensate conc=19% CH20 soln.	The reactor was a series of wortical alloy steel and silica tubes. The contact time varied from 0.25-0.5 sec.

•

• •

.

The structure and the state of the structure of the state of the state

	8	The reactants were passed thru a steel tube at 900°, then thru a silica tube at 1200°.	The O ₃ had no effect on yield up to 600°. Between 650-700° the yield doubled.	The flow rate was found to greatly affect the yield but to have no effect on conver- sion. Substitution of Q2 for air gave both lower conversion and yield.	The product CH ₂ O was scrubbed with R ₂ O to give a 40% solu- tion. The contact time varied from 0.5-2 sec.		At lower temperatures Cl ₂ is found to promote oxidation. The contact time was 0.11 min.	A cyclic process was employed using two ovens in series. The flow rate used was 25 cm/sec. Homologs of CH4, were also tested	The reaction is carried out in a small flame. The contact time varies from 0.001-0.5 sec.	The influence of the ratio of fresh to redirculated gas on fresh to was determined. An unsuccessful attempt was made to repeat the Hibernia results.	This process optimizes CH ₂ O yields by using low flow rates and short contact times.	The product gages were cooled in the presence of SiC to pre- vent CH ₂ O decomposition.	A schematic is given of the process equipment used. Good yields of RCOM and RCOR reported.	A procedure is described for inhibiting CH20 dispropor- tionation.	
	7			Max. yield (>JIM) at 2.4% conv., max. conv. of 20% corresp. to max. wt./vol yield=37 g. CH20/m3CH4	25-30 gm. CH ₂ 0/m ³		0.27% CH ₂ 0 yield	65¢ СН ₂ 0	40% conver- sion	40% yield		"High" yield			
	6	Nat. gas, air (1:1 vol) 0.29 lb NO2/1000 cu ft CH4	сяц, о ₃	CHų, air	50% CH4, 10% 0, 0.1-1% NO, 00, 002, H2, N2	α ₄ , ο, ο ₃	CH ₄ , air, Cl ₂ (12:36:1 vol)	CH1, 0 (1:1 vol.), NO (0.2% vol.)	CH4, NO2 (2:1 mol)	CH ₄ , air	CH ₄ (homologs), O ₂ or air	CH4, air or O2 (1:5 vol), 0.1≸ NO	Simple saturated hydro- carbons, O, SO ₂	ся ₄ , 0 ₂ , H ₂ , со	
nt.	5	900; 1200	650 - 700	650	570 - 650 0.17 atm		800	362	450 - 700			1470	175 - 450		
Table II Cont.	4	NO2	o ³	N oxides	QU	о ₃ , вао ₂	с1 ₂	N oxides, NO tetra- borate	1 10 2	^C OREI	N oxides, NO tetraborate	NO, fluidized pumice	SO ₂ , metal oxide and salts	Solid catalyst and NO or NO ₂	
	3	U.S. 2,476,993 (1949)	Mem. Services Chim. Btat. 33, 423 (1947)	Arhitv. Kem. <u>23</u> , 10 ⁴ (1951) (Eng. 117)	Brit. 664,741 (1952)	Chemie (Prague) $\overline{5}$, 23 (1949)	Zhur. Obsh. Khim. 22, 1770 (1952)	Brit. 686,424 (1953)	U.S. 2,667,513 (1954)	Arhiv. Kem. <u>24</u> , 123 (1952)	Brit. 692,840 (1953)	Ger. 1,050,752 (1959)	u.s. 2,776,317 (1957)	Ger. 872,202 (1953)	
	N	R. Rossman (To Godfrey L. Cabot, Inc.)	P. Monceaux	P. Luetic, I. Brinta	J. Tebboth (To British Oxygen Co. Ltd.)	J. Cech	N. Zemlyanski, O. Frib, M. Sharypkina	Guttehoffmungshutte Oberbausen AG.	A. McKinnis (To Union Oil Co. of Calif.)	F. Luetic, I. Brihta	Guttehoffnungshutte Oberhausen AG.	H. Gertges, H. Héinze, W. Brocke	W. Reeder (To Dresser Operations, Inc.)	P. Mashan (Bergban Akt. Ges. Neuehoffnung)	
		24 CA <u>43</u> , 5792	25 CA <u>43</u> , 6159	26 cA <u>46</u> , 10091	27 CA 16, 10191	28 CA 46, 2781	29 CA <u>47</u> , 5347	30 CA <u>48</u> , 5208	31 CA <u>48</u> , 5469	32 cA <u>48</u> , 6958	33 CA <u>48</u> , 10057	34 ca <u>55</u> , 3436	35 CA <u>51</u> , 7403	36 CA <u>52</u> , 9193	

н н

Ì

the a call and the second second constraints.

80	A bed of hot fluidized pumice as used to catalyze CH20 formation while a bed of cold fluidized pumice together with avhilite the moving as used for	0, was found to eliminate the induction time for the reaction. Major products from CH1, oxida- tion by 0, were CO, CH202, CO2, and H20.		The reactant gases were passed thru HCL before entrance to the reactor. The reactor wall was coated with Pbo. A partial oxidation process was used. Contact time warled from 0.5- 1.5 sec.	CH20 yield as a function of catalyse concentration, pre- heating, solid catalyses, and contact time was studied. Con- tact time varied from 0.2- 0.6 sec.	H2O was found to prevent decom- position of CH2O. H2O2 shorten- de the induction period, but neither H2O nor H2O2 increased the maximum yield.	The rate of CH ₄ oxidation was found to be affected by H ₂ O vapor, and by the properties of container surfaces.	H ₂ was found to improve CH ₂ O yield and inhibit CH ₂ O decom- position. CO ₂ was found to decrease CH ₂ O yield.	A 94% Cu-6% Sn alloy mesh screen containing Site was placed before the quenching zone. A residence time of 0.35 sec. was used.
~	188 gm. ch20/m3 ch1	0	For HNO ₃ , 0 conversion= 60-70%; CH ₂ 0 concentration =1.6-2.3%; CH ₂ 0 (based on CH ₄)	"Economical" yield	CHPO conc.= 2%; CHPO yield=30% CHu			(СН ₂ О)/(СН ₄) у1е1d=5%	сп ₅ 0 у1е1d= 837 g/m3 спц. (этг)
6	СН4, О2, № (6:30:0.11 vol)	CH4, 03 (ozone)	CH4, 0, NO (90:10: 1 to 3 Mol)	CH4, free O	CH ₄ , 0, NO (90:10: 1 to 3 vol)	$CH_{4,2}$ (air or O_2)	GH_{μ} , (air or O_2)	GH_{μ} , (air or O_2)	CHL, air (1:5 vol), 0.1≸ NO
2	670 - 85	150 - 285	89	480 - 700	600 - 700	423 - 513		1-9 ст.Нg	670
	NO, pumice	0 ₃ (ozone)	HNO3, NO2, NO	HC1, Pb0	NO, solid catalyst	Н202, Н20	Fyrex; silica, H ₂ 0	H ₂ O, 40 megacycle discharge; H ₂ ; CO ₂	ND, (porcelain re- actor) 4 mm grain size, fludized Ital, pumice
, m	Ger. 1,181,192	West. States Sect. Combust. Inst. Pap. WSS/CI 63 (1963)	Nemryo Kyokaishi, <u>42</u> (438) (1963)	u.s. 3,014,969	Menryc Kyokatshi, <u>43</u> (442) 118 (1964)	2nur. Fiz. Knim. <u>35</u> , 1046 (1961)	Bull. Soc. Lorraine Sci. 1, No. 4, 29 (1961)	Shinku Kagaku 2, 55 (1961)	Brtt. 880,873 (1960)
~	W. Brocke, et.al. (Huttenwerk Oberhausen AG.)	F. Dillemith, C. Schubert	E. Otsuiza, H. Watarzbe	E. Magee (Esso Research & Eng. Co.)	E. Otsuka, H. Matanabe	L. Karmilova, N. Enikolopyan, A. Nalbandyan	R. Mart, M. Niclause, M. Dzierzynski	S. Takahashi	Huttenwerk Oberhausen AG.
	37 CA <u>62</u> , 6396	38 CA <u>60</u> , 10440	39 CA <u>64</u> , 4895	40 CA <u>56</u> , 7137	41 CA <u>62</u> , 5162	42 cA <u>56</u> , 8050	43 CA <u>56</u> , 10952	144 CA <u>56</u> , 1331	45 CA <u>5</u> 9, 11259

.

.

CAREAD, AND THEAD MEAN AREAD ARE THE CON

ß	Partial oxidation of CH ₄ was carried out in enamel and glass- lined reactors.	The reactor surface-volume ratio was 3 cm ⁻¹ . The contact time was 2 sec. The products in- cluded 61% GH2O2 and 10% H02H3O2.	The reactor was a PbO coated teel tube with a surface-volume ratio of $S {\rm cm}^{-1}$. The contact time was 2 sec. The $\mathcal{C}_{2}HS$ was preheated.	Stainless-steel reactors coated with PbO, with surface- volume ratio of 2 to 37 cm ⁻¹ were used. The contact time was 0.3 sec.	Partial adibatic oxidation was employed. The contact time was 0.17 sec; the flow rates were 2145 m3/hr. mt. gas, 4265 m3/hr. air, 8 m3/hr NO.	An inverse flame oxidation method was used. Air and gas were mixed in a burner then heated to 570° in a tube for 0.5 sec. Flow rates were 0.8 Lhr air, 8 Lhr mat. gas (96, CH4, 2.5% C2H6), 0.3 L/hr. NO2	An unsuccessful attempt was made to repeat the Hibberh arssults. GF20 decomposition was believed to be the cause. In a silent discharge tube a copper electrode gave 12 times the yield of CH20 that glass gave.	The reactant gas was drawn through an electric furnace.	A pilot-plant operation is des- cribed which produces 3000 tons 37% GH_20/yr. Contact time varied from 0.1-0.15 sec.	A recycle system reclaimed N oxides from waste gases from a OHgO converter
7		19% CH20	CHPO se- lectivity (% C2H6 con- verted=90%	CH_O yield= 1.6 mole%; selectivity =32%	cH_O vield= 0.76%	40 g CH20/ m3 CH4			CH20 yield= 2.55-2.82% (on CH4 basis) 0.85- 0.94% (on mixt. basis)	
9	СН ₄ , о	co ₂ , c ₂ H ₆ (4:10), o ₃	0 ₂ , c _{2H} 6 (4:10), 0.9% 6 ₃	CH4, 0, NO2 (4:1: 0.12 vol)	Nat. gas (96% CH4), air (1:2 vol)	Air, mat. gas, NO2 (18:8:0.3 vol)	तम, ०	CH4, air	Mat. gas, air (1:1 vol), 0.1≸ NO	Nat. gas, (air or O ₂)
5	400 - 750	150	315	650 1-50 atm	593 - 5	570		600 - 50	590 - 610	
η	N oxides	03, Cr-Ni alloy reactor	₽60, В ₂ 03, №02, 03	N oxide, PbO	N oxides	200	0 ₃ ; silent discharge	NO.	QN	N oxides
3	Hung. 137,268 (1962)	u.s. 3,056,833 (1962)	u.s. 3,086,995 (1959)	u.s. 3,232,991	Vestn. Tekhn. 1 Ekon Inform. NauchnIssled. Inst. Tekhn-Ekon. Issled. Gos. Kom. Khini.1 Meft Prom. Pri. Gos. Plane S.S.S.R. (1963) (8), 13	Fr. 1,359,877 (1964)	Nemryo Kyoraish, <u>42</u> , 523 (1963)	Rhim. V Shkole (6) (1964) 55	Gazovaya From. 8, No. 4 35 (1963)	cas: Prom. <u>9</u> , (9), 44 (1963)
Q	Nitrokemia Ipartelepek	C. Heath (Esso Research & Eng. Co.)	C. Heath, W. Barton (Esso Research & Eng. Co.)	E. Magee (Esso Research & Eng. Co.)	S. Gudkov, et. al.	F. Pouliquen, B. Gourdon	E. Otsuka, H. Watamabe	N. Tslaf	S. Gudkov, et. al.	S. Gudkov
1	46 CA <u>58</u> , 4428	47 CA <u>59</u> , 10085	48 cA <u>59</u> , 9800	49 CA <u>64</u> , 12551	50 CA <u>61</u> , 14431	51 CA <u>61</u> , 14445	52 CA <u>61</u> , 4202	53 CA 62, 5862	54 CA <u>59</u> , 2559	55 CA <u>59</u> , 15100

, .

٠

and a second of the second second

8	Presence of both oxides results in marked increase in CH20 yield which reaches a maximum one hundred degrees lower than in their absence. Surface vol ratio should be $> 8 \text{ cm}^{-1}$.	A static system with a quartz reactor was used. When only quartz was present the TH20 concentration first rises concentration first rises (stably then falls of T. With ND two <u>AT</u> maxime occurred; <u>A</u> T (wall tempcenter temp). The (vall tempcenter temp). The first resulted from hongeneous formulation of 0 and CH20, and the second from CH20, and the se	Natural gas with 91% CHi, 6% higher hydrochoons also tested higher hydrochoons also tested oxidation by 0, was direct; CH, oxidation did fot occur by de- composition of the 0, to 0 and 0 followed by reaction of the 0 with CHi.	The contact time was varied from 2-20 sec.	Reaction mechanisms were studied. Contact time varied from 0.02 sec. to 2 hrs.	Gases in place of CO and H2 may be used which have a greater affinity for O2 than CH1. Combustion of such gases supples thet for, and controls tempera- ture of, CH1, oxidetion reactions.	A pilot plant operation is des- crited espaths of processing 13 m ³ CH ₄ and ar/hr. A quartz reactor gave unreproductble CH ₂ O yields but when coated with $K_{2}^{\rm Ell}O_{7}$ gave both reproducible and higher yields. The contact time was 0.1 sec.	When initiators were not used CH ₂ O yield depends on reaction CH ₂ O will frets, wall effects, doubtions, e.g., wall effects, doubtions were added yield was initiators were added yield was independent of contitions.
7			10 mg. CH ₂ 0/ liter gas mixture				70% CH1, re- acted form- ed CH20	
6	$GH_{4,9}$ (air or 0_2)	GH ₄ , air (15:60 vol), 0.2∯ NO	Nat. gas (>99% CH ₄), air (1:1 vol)	CH4, air	CH_{4} , (air or O_{2})	(H4, air or O ₂ , trace NO, CD or H2.	33% CHu, 66% air, 1 mole NO, 10 moles CH2 formed	CH4, (air or O ₂)
5		300 mm	- 30 	150 - 350	423 - 700 200 mm - 1 atm		600 - 800 1 atm	
4	N oxides, Pb oxides	Q	0.1% CL2, BaCl2	Ag20, HgO, HNO ₃ , steam	Thermel oxid.; N oxides	NO, Wazbudz	N oxids, KSB407 treated porcelain	Non-cetalytic; 0.02%- 0.53% NO; 0.3-0.5% Cl
e	J. Phys. Chem. <i>έ</i> 7, 936 (1963)	Ukrain. Khim. Zhur. <u>22</u> , 702 (1956)	Vsesoyuz. Zaochuyi. Pol. Inst. Sb. Stat. (1955) No. 12	Japan 7458 (1960)	Zhur. Fiz. Khim. <u>31</u> , 851 (1957)	der. 871,445 (1953)	Zmr. Priklad. Khia. <u>3</u> 2, 913 (1959)	Deklady Akad. Mauk. SSSR 118, 983 (1958)
Q	B. Magee	V. Urizko, M. Folyakov	B. Losev	M. Morita (Noguchi Research Foundation)	L. Karmilova, et. al	P. Nashen (Bergbau AktGes. Neuehoffmung)	N. S. Brikolopyan, et.al.	N. S. Brikolopyan, G. Kornlev
Ţ	56 CA <u>59</u> , 419	57 CA 51, 7813	58 CA <u>51</u> , 1829	59 CA 22, 6377	60 CA 52, 4965	61 CA <u>52</u> , 17108	62 CA <u>53</u> , 21627	63 CA <u>53</u> , 206

and the second state of the second state of the

8	Three packed reactors were used in series. 20-30 moles GH20 were formed for wery mole of NO. The product gases were continuously recycled.	A recycle system was used which operated at rate of 40 cm/sec. ir.	A tracer method was used to establish the reaction mechanism.	W oxides lowered the reaction temperature and increased (T2O yield. Quartz reactor wils caused (TGO decomposition; caused (TGO decomposition; lowers, K2BUO, wall coverings lowered the decomposition.	CH20 yield was studied as a function of pressure and inlet composition.	In the presence of NO the CH ₄ outsetion thretic curve exhibited two meating; the first being due to CH ₂ O formation and the second being due to CH ₂ O de- second being due to CH ₂ O de- composition to CO and H ₂ .	CH ₂ O was the principal product formed within a wide range of experimental conditions.	Using a cyclic process maximum $CH_{2}O$ yield was obtained using a 0.5 :l volume ratio of 0 to CH_{4} .	SiO2 reactors with surface- 19 viume restors of 3.2 to 11.8 2 cmm ¹ vere used. Corfact time varied from 0.29-0.54 sec.	Thermodynamic data is given for 26 CH4 oxidation reactions.	Partial oxidation was carried out in a reactor where a short core was heated to 500° while the remainder was kept below 100°
7	CH20 yield= 30%	For 1:1 GH eir mixture, B2 gms. GH20 formed per hr for 0.5:1 CH4 air mix- ture, 99 gms. GH20 formed							Production rate=35 to 59 gm CH_O(liter/ hr. CH_O in exit gas=12 to 18 gm/m ³		
9	CH ₄ , air, 0.1% NO	Edu, air (1:1 vol); (0.5:1 vol)	сн ₁ , аіг, NO, CO, C ^{l4} H ₂ O (33:66:0.1:0.5:0.07 vol)	CH4, air (15:85 vol), 1.37% N oxides (based on CH4)	c ₂ H6, 0	GH_{μ} (air or o_2)	$CH_{t, t}$ (air or O_2)	CH4, atomic O	80% CTH, 10% 0, 0.2- 0.4% NO, N2	CH4, air	Rydrocarbone, (air or O2)
5			670	525	"High" 25 ==	515 - 542 585 - 600	"High"	"Normel" 1-10 stm	89	600 1 atm	200
4	ON	N oxides, alkali borate	NO	K2B407, N oxides	NO ₂ quartz reactors washed with (1) H_2F_2 (2) $K_2B_4O_7$ soln.	NO; non-catalytic	ON	N oxides, alkali- metal borates	91	NO2	N oxides
3	Zhur. Priklad. Khim. <u>3</u> 2, 1132, (1959)	der. 863,654 (1953)	Izvest. Akad. Nauk. SSSR Otdel. Khim. Nauk (1955) 789	Doklady Akad. Neuk SSSR <u>95</u> , 1239 (1954)	Doklady Akad. Nauk SSSR <u>118</u> , 1138 (1958)	Dopovidi Akad. Nauk. Ukr. R.S.R. (1953), 307	Zhur. Fiz. Khim. <u>30</u> , 798 (1956)	Brit. 735,107 (1955)	Brit. 716,181 (1954)	Rev. Chim. (Bucharest) <u>5</u> , 537 (195 ⁴)	u.s.s.R. 112,633 (1958)
2	N. Enikolopyan	P. Mashan (Guttehoffmungshutte Oberhausen AG.)	I. Antonova, et.al.	V. Urizko, M. Polyakov	N. Enikolopyan, G. Korolev	V. Urizko, M. Folyakov	L. Karmilova, et.al	Guttehoffnungshutte Sterkrade AG.	S. Miller, et.al. (Brit. Oxygen Co. Ltd.)	M. Constantinesch	S. Gudkov, V. Fedulova
1	64 CA <u>53</u> , 17892	65 (ck 23, 3061	66 CA <u>50</u> , 7551	67 CA 49, 10714	68 CA 53, 4116	69 CA <u>49</u> , 2838	70 CA <u>50</u> , 16315	71 CA <u>50</u> , 7844	72 CA <u>50</u> , 5019	73 CA 49, 15430	74 CA <u>53</u> , 4136

.

,

GENERAL AMERICAN RESEARCH DIVISION

œ	The Guttehoffrungshutte Process for Industrial production is described. Information on this process uss orbained in 1947 by interrogetion of P. Manhan. The interrogetion of P. Manhan. The temperature partial oxidation of CH1, employing a recycle system.	The Hibernia Process for indus- trial production is described. Information on this process was obtained in 1947 by interroga- tion of K. Schmitt. The process is a low temperature, low pres- sure catalytic means for converting CHL to GEO by partial oxidation with 0g or air. The catalyst preparation procedure and the operating	Ozonized air gives better re- sults than ozonized oxygen.	Process consists of three reactors connected in series.
2	CH2O vield= 9.7% (The- oretical)	CH4 conver- CH4 conver- CH20 yield= 90% (The- oretical)	130-230 g. CH ₂ O per cu. meter of CH ₄	220-350 g. und 220-350 g. und meter of filt
ę	Nat. gas (92% CH4,), air (1:3.7 vol)	Coke oven gas (70% CH4,), O2 (2:1 vol)	CH4, ozonized oxygen or air	GHų-50%, CoH6-0.1%, C2Hų- 0.2%, O0-12%, and 30% oxygen ozonized to 2%
	• 600	80 - 120 1 atm		ğ
Table II Cont.	£	03. BaO2, 0.5% Ag20, umglazed porcelain chips	0zone	0.5% Ago, 03
£	FLMT Final Report No. 1085, (31 March 1947)	FIAT Final Report No. 1065 (31 March 1947)	Ger. 886,901 (August 17, 1953)	Ger. 891,687 (October 1, 1953)
α	M. Holm, E. Reichi	M. Holm, B. Reichl	E. Rindtorff and K. Schmitt (To Hibernia A. G.)	Hibernia A. U.) K. Schmitt (To Hibernia A. G.)
г	75	46	77	82

.

LENGAL AMERICAN RESEARCH DIVISION

MISCELLANEOUS
USENC
METHANE
Б
OXIDATION
÷
Table

METHODS

I.

ļ

ļ

ļ

.

.

, .

Mo. Abstract Author 1 2 2 1 2 355 J. Gruszkiewicz 2 1. 7. a. Vielle 3 CA <u>15</u> , 1726 H. Plauson and 3 CA <u>15</u> , 1726 H. Plauson and 3 CA <u>15</u> , 2494 H. Propsch and 4 CA <u>19</u> , 769 H. V. Wartenberg, 4 CA <u>19</u> , 769 H. V. Wartenberg, 4 CA <u>19</u> , 769 H. V. Wartenberg, 6 24, Mochifiski and G. Roelen 7 22 J744 Oberhausen A.G. 7 CA <u>26</u> , 1525 H. Dreyfus A.G. 8 CA <u>26</u> , 3446 Outtehoffmungehutte 0 Oberhausen A.G. Oberhausen A.G. CA <u>26</u> , 1525 H. Dreyfus A.G. 8 CA <u>26</u> , 3446 Oberhausen A.G. CA <u>26</u> , 3446 Oberhausen A.G. Oberhausen A.G.	Publication 3 3 3 Austr. 7,279 3 Austr. 7,279 (Austr. 7,279 Austr. 7,279 (Austr. 7,279 Brit. 156,148 (December 23, 1913) Brit. 156,148 (December 21, 1920) Brennstorf-Chemie 2, 37 (1924) Brennstorf-Chemie 5, 37 (1924) Fr. 604,969 (1924)	Latalyst None Latalyst None SPCrO ₄ None or Ac	1,000 1,000 1,000	Feed Composition 6 CH4, air CH4, ar matural gas and cO2, or mixture diluted vith inert gas such as N2 CH4, air (16% CH4, 17% O2) CH4, 03 CH4, 03	rormataenvae rroduced 7 7 Product gas contains up to 0.19% GEO	
1 CA 2, 355 CA 15, 1726 CA 15, 1726 CA 19, 769 CA 29, 769 CA 26, 1525 CA 26, 3446 CA 26, 3446 CA 26, 3446 CA 26, 3446 CA 26, 3446	3 Austr. 7,279 (August 23, 1913) Brit. 156,148 (December 21, 1920) Brennstoff-Chemie 5, 37 (1924) (1924) (1924) (1924) (1924) (1924) (1924)	ht . or Ag	5 650	6 CH4, air CH4 or metural gas and cO2, or mixture diluted vith iner gas such as N ₂ CH4, air (16% CH4, 17% O ₂) CH4, 0, 03 CH4, 02	7 Product gas contains up to 0.19% GR20 2% based on GH4	8 Process consists of repid cooling of a CH4 burning flame. Theted anomentarily in a restriction of tube made of various metals. Low \$ of CH4 in feed gives more CH20 per cH41 rescted, but low rotal \$ of CH20 in product.
CA 2, 355 CA 15, 1726 CA 15, 1726 CA 19, 2494 CA 24, 5241 CA 25, 1744 CA 26, 1525 CA 26, 3446 CA 26, 3446 CA 26, 3446 CA 26, 3446	Austr. 7,279 (August 23, 1913) Brit. 156,148 (December 21, 1920) Brennstoff-Chemie 5, 37 (1924) (1924) 2. angew. Chem. <u>37</u> , 457 (1924) Fr. 604,969	or PbCrOy or Ag	1,000	CHu, air CHu, or matural gas and CD2, or matured diluted Vith inert gas such as N2 CHu, air (16% CHu, 17% O2) CHu, air (16% CHu, 17% O2) CHu, 02 CHu, 03	Product gas contains up to 0.19% GF20 2% based on CH4	Process consists of TH, burning flame. (HL, burning flame.) Heated momentarlly in a restriction of tube made of various metals. Low \$ of CH4 in feed gives more CH2 per dit. reacted, but low total \$ of CH2 in total product.
CA 15, 1726 CA 18, 2494 CA 18, 2494 CA 29, 769 CA 24, 5241 CA 25, 1744 CA 26, 1525 CA 26, 3446 CA 26, 3446 CA 26, 3446 CA 26, 3446 CA 26, 3446	Brtt. 156,148 (December 21, 1920) Brennstoff-Chemie 5, 37 (1924) (1924) Tr. 684,969	or PbCrO ₄ or Ag	1,000	CH4 or matural gas and cO2, or matural gas and thi incr gas such as N2 CH4, air (16% CH4, 17% O2) CH4, 03 CH4, 02 CH4, 02	Product gas contains up to 0.19% 대중0 2% based on CH4	Heated momentarily in a restriction of tube made of various metals. Low \$ of CH4 in feed gives more CH20 per CH4, reacted, but low total \$ of CH20 in product.
ca <u>18</u> , 2494 ca <u>19</u> , 769 ca <u>29</u> , 5241 ca <u>26</u> , 1744 ca <u>26</u> , 3446 ca <u>26</u> , 3446 ca <u>28</u> , 3446 ca <u>28</u> , 3446	Brennstoff-Chemie 5, 37 (1924) 2. angew. Chem. <u>37</u> , 457 (1924) Fr. 684,969	or PbCrOy	650	СНЦ, air (16% СНЦ, 17% о ₂) СНЦ, 03 СНЦ, 0 ₂	Product gas contains up to 0.19% GH20 2% based on CH4	Low % of GH ₄ in feed gives more GH20 per CH ₄ reacted, but low total % of GH20 in product.
ca <u>19</u> , 769 ca <u>24</u> , 5241 ca <u>25</u> , 1744 ca <u>25</u> , 1525 ca <u>26</u> , 3446 ca <u>28</u> , 3446 ca <u>28</u> , 3446	Z. angev. Chem. <u>37</u> , 457 (1924) Fr. 684,969	None or PbCrO _{lt} None or Ag	650	сяц, о ₃ сяц, о ₂	2% based on CH ₄	
ca <u>24</u> , 5241 Ca <u>25</u> , 1744 Ca <u>26</u> , 1525 Ca <u>26</u> , 3446 Ca <u>28</u> , 3446 Ca <u>28</u> , 3446 Ca <u>28</u> , 3446	Fr. 684,969	None or Ag		сн ₄ , о ₂		
ca <u>25</u> , 1744 ca <u>26</u> , 1525 ca <u>26</u> , 3446 ca <u>28</u> , 3446 ca <u>28</u> , 3446	(November 14, 1929)					Electric field with visible discharge of high frequency and very high voltage.
1525 1525 1526 1446 15 1446 15 1446 1446	Fr. 694,330 (April 23, 1930)	None		cH ₄ , ∞ ₂		Electric field with visible discharge of high frequency and very high voltage.
CA <u>26</u> , 3446 CA <u>28</u> , 979 CA 26, 3446	Fr. 715,031 (April 9, 1931)	None		сн ₄ , со ₂		Silent electric dis- charge, 25-100 cycles, 10,000-100,000 volts.
26. 3446	Brit. 353,076 (April 29, 1929) Ger. 580,580	None or CaCO ₃ , MgCO ₃ None		CH4, CO2. Conc. of CO2 at least equal to that of CH1		Electric field of high frequency and high voltage.
Ì	(July 15, 1933) Brit. 353,455 (April 29, 1929)	Иоле		CH4 exceeding CO2		
9 CA <u>27</u> , 3675 P. Nashan CA <u>28</u> , 2280 P. Nashan	U.S. 1,909,215 (May 16, 1933) Ger. 566,516 (August 28, 1933)	None None		сн ₄ , о ₂		Electric field of high frequency and high voltage.
10 CA 29, 480 Bellas Proc. Corp.	Fr. 770,065 (September 6, 1934)	None		Natural gas, air or oxygen		Partial exidation by burning.
11 CA <u>24</u> , 625 P. L. Young	U.S. 1,735,486 (November 12, 1930)	None	200 - 600	CH ₄ , hydrocarbons, O ₂		Heated hydrocarbon mixed with preheated CH _L , O ₂ mixture
12 CA 25, 2662 D. F. Smith and R. T. Milner	Ind. Eng. Chem. 23, 357 (1931)	Холе	500 - 700	CH ₄ , Nitrogen oxides	15-30% of the methane used	, ,

GENERAL AMERICAN RESEARCH DIVISION

26

_ _ - -

c	-	~	4		9	7	8
ک	ν		t	~		-	
Morgan Brit. 176,438 (1920)	Brit. 176,438 (1920)		None	350 - 400	68-80% CH4, 20-40% air		Bubbling through molten metals.
Elworthy Trans. Roy. Soc. Can. III 16, 93 (1922)	Trans. Roy. Soc. Can. II. 16, 93 (1922)	5	None		Nat. gas and oxygen		Silent electric discharge
otto (1906) (1906)	Ann. chim. phys. 13, 109 (1906)		None	100	CH4, ozone	Formaldehyde and formic acid were produced	
Drugmen J. Chem. Soc. <u>99</u> , 939 (1906)	J. Chem. Soc. <u>89</u> , 939 (1906)		None	100	CH4, ozone	Formaldehyde and formic acid were produced	
R. V. Wheeler and J. Soc. Chem. Ind. <u>41</u> , Blair 331 (1922)	J. Soc. Chem. Ind. 41, 331 (1922)		None	10 - 400	3% CH ₄ in oxygen. Ozonized	Up to 20% of CH4, to form- aldehyde	
C. A. Kloppenburg U.S. 1,500,080 (July 26, 1922)	U.S. 1,500,080 (July 26, 1922)		Activated carbon	35	CH4, 02		Dark electric discharge, formation of ozone.
F. J. Carman, U.S. 1,697,106 T. H. Carman (January 1, 1929)	U.S. 1,697,106 (January 1, 1929)		Bacl2	1+00 - 500	CH4, 02, C12		CH4 becomes chlorinated; then oxidized to formaldehyde.
E. Gelms,	Nat. Gases U.S.S.R. No. 7, 12 (1933)				Net. gas (air or O ₂)		Economic and technical calcu- lation for the prepn. of CH20 from matural gases.
Fr. 47,135 (1937)	Fr. 47,135 (1937)			High	CH4, 02		An apparatus is described for farming CH20 from CH1, and 0.
C. Dreyfus [1937], 666 (1937)	Fr. 811,826 (1937)				C ₄ H ₁₀ , hydrocarbons & O ₂		Partial oxidation. Hydrocarbon heted to below decomposition pressure by mixing with hot aris, then immediately mixed with gaseous 0. Reaction time is 0.2-3.0 sec.
Y. Mayor Endustrie Chimique 26, 291 (1939)	Industrie Chimique <u>26</u> , 291 (1939)						A review with 13 references.
E. Briner, H. Hoefer Helv. Chim. Acta 23, 800 (1940)	Helv. Chim. Acta 23, 800 (1940)		Electric arcs: 116 640 volts, 50-107 cycles/sec.	40-50 mm Hg	CH1, 02 (4% vol); higher hydrocarbons	16.6 g. CH20/kw. hr.	Circulation system used. Higher hydrocarbons gave carbon black which interfered with arc.
T. Ogura Buil. Chem. Soc. Japan 16, 262 (1941)	Bull. Chem. Soc. Japan 16, 262 (1941)			_	CH4, (air or 02)		Equilibrium data given for CH ₄ oxidation reactions.
H. Levey Chem. Industries 50, 204 (1942)	Chem. Industries 50, 204 (1942)				Net. gas (air or O ₂)		A review with 27 references.
M. Kushmerev, Compt. Rend. Acad. Sci. A. Shekter URSS, <u>32</u> , 560 (1941)	compt. Rend. Acad. Sci. URSS, <u>32</u> , 560 (1941)		Non-catalytic; dis- charge tube	-	990 cc CH4, 550 cc free 0 atoms, 02, A	l6 cc re- action prod. with 50% CH20	O atoms are formed in a discharge tube but not 0_3 . ${\rm GH}_4$ is oxidized by free 0 atoms.
J. Bludworth U.S. 2,369,710 (Celanese Corp.) (1945)	U.S. 2,369,710 (1945)		Non-catalytic	330 - 370 40-65 psi	Gas (pertane, hexane, heptane), air (16:6 vol)		Oxygenated compounds were ob- tained. The contact time was 0.1-1 sec.

•

.

GENERAL AMERICAN RESEARCH DIVISION

8	The CH ₂ O yield was studied as a function of temperature, con- tact time and initial composi- tion.	An apparatus is shown for par- tial oxidation of CH4 using an elongated flame.	A study was made of CH ₄ burning mechanisms.	A review was made of methods of producing oxygenated hydrocar- bons.	A discussion was made of the importance of controlled oxida- tion. It was found that GR20 yield improved with decrease in temperature.	MeOH, AcH and AcOH were also produced.	Most of the CH ₂ O produced was prepared from CH ₃ OH which in was prepared from matural gas.	A review was made of the use of synthesis gas in the CH ₂ O industry.	Static conditions were employed. 1% of the CH, forms Ho2 under numal reaction conditions; however, no H202 is formed when reactive surfaces are present.	A cyclic process was employed. 24 aqueous K2003 was found to absorb peroxide impurites and email amounts of CH20 and there- by improve CH20 yield by 50%.	Two reactors were employed with 0.00 in the first and with re- duced CNO reoxidized and re- cycled in the 2nd reactor. High space velocities were used.	CH2O yield was found to increase CH2O yield was found to increase higher temperatures. Maximum of the initial is a linear function of the initial pressure and PCH4 but is independent of $P_{\rm O2}$.
7	0.01-1.05% yield CH ₂ 0				"Large ants." CH20	37% Ag. CH20			1% CH4 con- verted to CH20			
6	CHL, air (1 to 7:9 to 3 vol)	CH ₄ , air or O ₂ (20 fold excess)			Lover all phatic hydro- carbons (air or 02)	Nat. gas, (air or O ₂)	Nat. gas, 02 (90-95% pure)	Synthesis gas (air or O ₂)	CH_{4} (air or O_{2})	сн _ц	CH4, CuO	CH _L , O, N ₂
5	575 - 800	565 - 650 1 atm							440 - 520		240	423 - 513
<i>t</i> 1	quartz tube reactor	Non-catalytic .	Non-catalytic						Non-catalytic, pyrex reactor			HF-etched quartz vessels
e	Compt. Rend. <u>221</u> , 259 (19 ⁴ 5)	U.S. 2,384,028 (1945)	Ann. Mines & Carburants, Mem. 2, 5 (1943)	011 Gas J. 45, No. 33, 59 (1946)	011 Cas J. <u>46</u> , No. 51 99 (1948)	Petroleum Engr. 216, No. 3 7 (1949)	Chem. Eng. <u>56</u> , No. 1, 92, 132 (1949)	Ingegnere (Milan) 24, 241 (1950)	Puel, <u>32</u> , 516 (1953)	Ger. 811,230 (1951)	u.s. 2,616,898 (1952)	Zhur. F12. Khim. <u>34</u> , 990 (1960)
2	M. Fatry, F. Monceaux	J. Hall	E. Audibert	J. Walker, H. Malakoff	J. Bludworth	A. Foster	J. Hightower	G. Manfredi	G. Minkoff, K. Salooja	Auttehoffmungshutte Oberhausen AG.	P. Keith (To M. W. Kellogg Co.)	L. Karmilova, N. Entkologyway A. Nalbandyan
-1	29 CA 40, 2453	30 CA 40, 349	31 CA 41, 684	32 CA 41, 1598	33 CA <u>42</u> , 5838	34 CA 43, 3993	35 CA <u>45</u> , 8740	36 CA 45, 2157	37 CA <u>47</u> , 12791	38 cA 48, 12790	39 CA <u>48</u> , 1421	110 CA <u>54</u> , 20440

.

.

•

•

GEMERAL AMERICAN RESEARCH DIVISION

8	The kinetics of formation of CH20 and CH3OH from CH1 oxidation were studied. At steady-fatte the rete of CH20 formation is mine times that of CH3OH formation. It was found that CH3OH and CH20 are formed from parallel	CH ₁ oxidation to CH ₂ O and then to CO was studied by means of the "jet" method for short time periods.	For optimum yield reactants such the for volume proportions such that 0 > H > CHL, The product gases were collected at -80° as a withte solid. Flow rates were 8.6 cc/min 0, 16.7 cc/min H, 32.4 cc/min CHL.	A reaction vessel is described having numerous channels for for gas and catalyst recycling.	Maximum CH20 yield occurred after 90 sec. at 70° and after 200 sec. at 670°. Negligible amounts of MeOH and ACH were formed. The reactor was a quartz tube.	Cu, Brass, and Pt wall coatings on a quartz tube reactor de- creased GT20 yield relative to pure quartz. It was concluded that quartz is a selective catalyst for GT20 formative. A flow rate of 3 1/min was used. The GT20 yield was proportional eurface.	Partial localized burning was used to produce CH20. Inert gas or H20 was used to limit the total O2 volume to less than twice the CH4, volume.	CH-O yield was increased by a factor of 3 to 4 when air was was place of 0. Although Ng was present no A oxides were formed.
7	<u> </u>	R						cH20 vield= 8 vol \$ (based on CH4)
9	टम्, ०२, ०.०३% с- Labeled टमनुभा	CH_{μ} , (air or O_{2})	о, н, сн ₄ (8.6.16.7, 32.4)	CH4,5 CH4, homologs (air or 0 ₂)	$CH_{\rm l}$, (air or $O_{\rm Z}$)	CH4, O2 (2:1 VOL)	CH ₁₄ , 5-20% O ₂ inert gas, H ₂ O	Air, Flu, (20:1 vol)
5	1 atm	650 - 670	25 1 atm		676 - 770 1 atm	28		1000
4	Non-cetalytic	Non-catalytic	Hg vapor & U.V. (2537 A)			HF etched quartz		Argon plasma jet
£	Izvest. Akad. Nauk SSSR Otdel Khim. Nauk. (1959)	Radioisotopies Scl. Res. Proc. Itern. Conf. Paris (1957) 2, 72	u.s. 2,908,622 (1959)	Ger, 1,031,776 (1958)	Acad. Rep. Pop. Rom. Stud. Cere. Chim. <u>11</u> , (1963)	Kinetika 1 Kataliz <u>1</u> , (3), 348 (1963)	Fr. 1, 313,722 (1963)	Kinetika 1 Term Khim. Reaktsii v Nizkotemp. Fla - Akad. Nauk SSSR Inst. Neft. Sin. (1965)
2	R. Moshkira, N. Galanina A. Nalbandyan	A. Nelbardyan, M. Neiman, W. Emanuel	J. Bates (To Sun 011 Co.)	E. Hausmann, et.al. (Bergbau. Akt. Ges. Neue Hoffnung)	I. Schneider	P. Stadnik, V. Gomonai	A. Van Tiggelen	A. Ousyannikov, L. S. Polak
1	41 CA <u>5</u> 4, 9456	42 (cA <u>54</u> , 3264	43 CA <u>54</u> , 2171	44 CA <u>54</u> , 16386	45 CA <u>60</u> , 14301	46 ca <u>59</u> , 5826	47 CA 59, 8596	48 ca <u>64</u> , 3255

, **(**

۹

Ì

ł

۹

4

GENERAL AMERICAN RESEARCH DIVISION

α.	C ₂ H ₆ lons oxidized to 80% C ₂ H ₄ yield. In C ₂ H ₄ oxidation, CH ₂ O appears as an intermediate which later goes to CO.	CH2O concentration reaches a maximum near the steps where the pressure rise is a maximum then falls off. The CH2O was formed during the induction period.	Flow rate and inlet composition studied as a function of CH ₂ O yield.	A quartz reactor was used to study the strett of Tal, concen- tration on GF20 yield. At low CH4, concentration, CH20 concen tration was proportional to GH4. At higher CH4, concentration CH20 was independent.	Low temperature $CH_{\rm L}$ oxidation was studied.	The reaction was independent of glass and NaCl surfaces. Major products were CO, CO2, CH2O2, H2O.	CH20 yield was measured as a function of mixture composition, 0, concentration and contact time. Free 0 initiation of CH4, oxidation was studied.	A heating system is described for CH4, and air mixtures in a CH20 converter.	The time at which the maximum The concentration agreese in a linear function of 1/02 concen- tration; the maximum CH20 con- tration is proportional to concentration is proportional to the O2 concentration.		Studies with a flow system in- dicted that the reaction occurs in a few milliseconds, and is independent of surface effects at high temperatures, although dependent at lower temperatures.
2	CH ₂ O yield= from C ₂ Hµ= 80%					CH2O yield negligible				Max. CH20 yield=2.2% of total mixt.	CHAO Vield= 36%
9	сенц, сенб, ог	сн ₁ , о	CH4, 02	cH ₄ , 0 ₂	CH_{4} , (air or O_2)	св ₄ , о ₃	cat, o ₃		cH ₄ , o	Nat. gas (1-2% higher hydrocarbons), < 15% 0 ₂	CH4, air (5:95 vol.)
5	300 = 1400	1440 - 520 100-350 mm	423 - 513 117-375 mm	815					815	25 6,000 kg/m²	1000
4	Non-catalytic	HF etched Fyrex vessels	Non-catalytic	Non-catalytic		Non-catalytic	Non-catalytic		Non-catalytic	Non-catalytic	Non-catalytic
m	Trans. Farad. Soc. <u>59</u> , (492) 2786 (1963)	Froc. Roy. Soc. (London) A235, 158 (1956)	Zhur. Fiz. Khim. <u>35</u> , 1435 (1961)	J. A.C.S. <u>82</u> , 355 (1960)	Doklady Akad. Nauk SSSR 124, 119 (1959)	J. Phys. Chem. <u>64</u> , 1496 (1960)	Doklady Akad. Nauk. SSSR 122, 420 (1958)	Ger. 904,047 (1954)	Jacs; <u>81</u> , 2781 (1959)	Zhur. Fiz. Khim. <u>32</u> , 2242 (1958)	Free. Ray. Soc. (London) <u>A 227</u> , 73 (1954)
2	J. Knox, C. Wells	A. Egerton, et. al.	L. Karmilova, et. al.	B. Magee	N. Kleimenov, A. Nelbandyen	F. Dillemuth, et. al.	N. Kleimenov, A. Nelbanbyan	P. Nashen (Bergbau AktGes. Neue Hoffnung)		A. Markevich, et. al.	J. Burgoyne, H. Hirsch
1	49 CA <u>60</u> , 6712	50 CA <u>51</u> , 199	51 CA <u>55</u> , 27005	52 CA <u>55</u> , 80	53 CA <u>55</u> , 8282	54 CA <u>55</u> , 11033	55 ca <u>55</u> , 1149	56 CA <u>52</u> , 9579	57 CA <u>53</u> , 10916	58 CA <u>53</u> , 10913	59 ca 4 <u>9</u> , 5085

•

٠

GENERAL AMERICAN RESEARCH DIVISION

	80	Rapid heating and cooling of the reaction mixture was accomplish- ed by means of adiabatic com- pression and expansion.	Atomic oxygen was used primarily but when O2 was added CH20 yield was improved.	CH20 decomposition was prevented by passing the product gases over a non-metallic refractory material having a surface- volume ratio > 2 cm ⁻¹ .	An apparatus is described for heating the reactants to high temperatures while maintaining a high flow rate (1000 ft/sec.).	a review was made of GE_0 manufacture by direct oxidation of GH, gas.
	7					
	6	Nat. gas (94% CH4), air or 02	св ₄ , 0	CH ₄ , (air or O ₂)	Nat. gas, O	CH4, (air or O ₂)
- 11	5	4000 atm		350		
ANDA TIT STANT	1	Non-catalytic	Non-catalytic	Non-catalytic		
	m	Doklady Akad. Neuk. SSSR <u>94</u> , 1121 (1954)	Doklady Akad. Nauk. SSSR <u>91</u> , 107 (1953)	Brit. 716,180 (1954)	u.s. 2,722, 553 (1955)	Neguchi Kenkyusho Jiho <u>5</u> , 32 (1957)
	Q	Y. Ryabinin	L. Ayramenko, R. Kolesnikova	J. Tebboth (Brit. Oxygen Co. Ltů.)	J. Mullen, J. Fenn (Chem. Const. Corp.)	J. Morita
	I	ca <u>49</u> , 13715	ca <u>49</u> , 6701	ca <u>50</u> , 5019	20, 3500	CA <u>53</u> , 18851
ľ		60	9	62	63 CA	उ

. .

.

•

i

|

į

の湯子

GENERAL AMERICAN RESEARCH DIVISION