
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 

https://ntrs.nasa.gov/search.jsp?R=19670013912 2020-03-16T18:32:50+00:00Z



-	 113



AGARDograph 113

NORTH ATLANTIC TREATY ORGANIZATION

ADVISORY GROUP FOR AEROSPACE RESEARCH AND DEVELOPMENT

(ORGANISATION DU TRAITE DE L'ATLANTIQUE NORD)

L-

FREE-FLIGHT TESTING IN HIGH-SPEED WIND TUNNELS

by

Bain Dayman, Jr

Jet Propulsion Laboratory,

California Institute of Technology,

Pasadena, California, USA

This is one of a series of publications by the NATO-AGARD Fluid Dynamics Panel.

Professor Wilbur C. Nelson of Th: University of Michigan is the editor.



SUMMARY

The adaptation of free-flight techniques to testing in a conventional

wind tunnel was made operational recently at the California Institute of

Technology Jet Propulsion Laboratory. This AGARDograph describes this

technique in enough detail that it can be applied to other facilities

with a minimum amount of development. Examples and results of many

applications are included in order to demonstrate the need and advantages

for using this free-flight technique.

RESUME

L'adaptation des techniques de vol libre aux essais en tunnel

aerodynamique a atteinte P k at de marche au California Institute of
Technology Jet Propulsion Laboratory. L'AGARDograph ci-dessous

presente la technique en detail suffisant pour qu'on peut P appl;quer

a d'autres installations avec une mise au point minimum. On a donne

des exempl.es et les resultats des applications diverses afin de

demontrer la n4cessite et les avantages d'emploi de cette technique en

vol libre.
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NOTATION

a	 model acceleration

A	 model reference area = 477d2

b i non-linear coefficients in	 CL

cg center of gravity

c i non-linear coefficients in 	 CD

C D local drag coefficient = drag/qA

C DD drogue drag coefficient (based on drag area)

CD eff effective drag coefficient of an oscillating model

CDo total drag coefficient at zero angle of attack

C L local lift coefficient = lift/qAd

CLa lift slope at zero angle of attack (per radian)

Cm local pitching moment coefficient = (pitching moment)/qAd

Cma pitching moment slope at zero angle of attack

(Cma)eff effective pitching moment slope of an oscillating model

Cmq + Cm a effective dynamic damping coefficient (assumed constant during a cycle

mac	 ac 
11
1 v"

of oscillation) = I a	 +a&7	 d

(CNa)eff effective normal force slope coefficient (per radian) of an oscillating

model = (normal force slope)/qAd

d model base (reference) diameter

E Legendre canonical form of the elliptic integral of the second	 kind

f frequency of oscillation (cycles per second)

F Legendre canonical form of the elliptic integral of the first kind

g acceleration due to gravity

I model moment of inertia

I 
calibrating body moment of inertia
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Cma Y rm 0

K	 wire torsional constant

1	 model .length

m	 mass of free-flight model

freestream Mach number

d2
dynamic damping term = (Cmq + Cma) qA V

A
static damping term = (CD eff — CLa ) q

V.

number of oscillation cycles

base pressure

freestream static pressure

freestream total pressure

pitot pressure

freestream dynamic pressure

ballast core radius of hypothetical spherical shape

non-linear coefficient in Cm

outside radius of hypothetical spherical shape

base radius of cone model

nose radius of spherical blunted cone model

correction factor for non-linear pitchinr moment effect on reduction for

dynamic stability coefficient

freestream unit Reynolds number

freestream Reynolds number based on model diameter

length of useful trajectory of free-flight model

time



T o	freestream stagnation temperature

Tw	model wall temperature

T.	 freestream static temperature

V	 model longitudinal velocity relative to freestream

Vm	model longitudinal velocity relative to ground

V.	 freestream flow velocity relative to ground

W	 weight of free-flight model = mg

x	 longitudinal location of model relative to ground

xcg	 center-of-gravity location (from nose of model) () M measured;

()th calculated

xCp	 center-of-pressure location (from nose of model)

X	 distance model travels longitudinally relative to freestream

X o	value of X at some arbitrary initial condition

XL	distance X for one quarter oscillation cycle (linear pitching moment)

XN	distance X for one quarter oscillation cycle (non-linear pitching

moment)

y	 lateral location of model relative to ground

^y	 peak-to-peak model swerve motion

a	 angle of attack

env	 angle-of-attack oscillation envelope

ap	 initial oscillation envelope

ao	effective oscillation envelope

at	angle of attack oscillation envelope at time t

CL
	 angle of attack oscillation envelope at distance x

b`	 root-mean-squared angle of attack

B	 angle between freestream velocity vector and model centerline

Ho	 A at arbitrary initial condition (X = X o). Also, equivalent to ao

x



8B	 amplitude decay during a half cycle of oscillation

p	 gas freestream density

C7	 cone apex half-angle

X	 hypersonic viscous interaction parameter based on cone surface cc^ditions

and model length = M3(C c /R i d 	where Cc is the Chapman-Rubesin

coefficient, and () c represents cone surface conditions

q	 angle of yaw

distance oscillation frequency; radians (27T cycles) per unit distance (X)

of model travel

( 4 )	 derivative with respect to time

( )'	 derivative with respect to distance

xi



FREE-FLIGHT TESTING IN HIGH-SPEED WIND TUNNELS

Bain Dayman Jr

1. INTRODUCTION

The need for and the advantages of support interference-free aerodynamic data has

been recognized from the very start of aerodynamic testing. Also, the attainment of

realistic model motion during free-flight trajectory has always been an important

requirement. As flight vehicles become more complex and expensive, the greater

becomes the need for a better understanding of the factors which go into the design

of the actual vehicle and the manner in which they affect its predicted performance.

Consequently, a great deal of effort has been put into observing the motion of bodies

having all six-degrees-of-freedom and obtaining valid interference-free data.

'During the past four years at the Jet Propulsion Laboratory, a considerable amount

of effort has been put into developing the techniques of free-flight testing in con-

ventional wind tunnels and the acquisition of useful quantitative data. A

conventional wind tunnel is defined as a tunnel having starting times in the order of

a second and run times of at least several seconds. In order to explain the reasons

for this development program, it would be useful to give a brief chronological

description of free-flight testing over the years.

Both internally- and externally-mounted stores have been dropped from supported

models during subsonic wind tunnel tests for many years. The free-flight motion of

these stores was studied with the aid of medium-speed movie cameras. Attempts were

made to obtain quantitative data from setups which were essentially qualitative in

nature. Nevertheless, a better understanding of the store-drop problems was achieved

which aided the development of techniques for successful release of stores from full-

scale aircraft. There is no doubt that this use of the free-flight technique was

essential for minimizing both the cost and time in arriving at the final satisfactory

design.

Many subsonic vertical wind tunnels 1,2 ' have been used for model spin tests and

recently for dynamic stability studies on Eeveral re-entry shapes with and without

trailing devices such as drogue parachutes. The spin tests were a powerful tool in

developing and proving the design of airplanes.

However, it was in the ballistic ranges 
3-6 

that the large variety and high quality

of data retrieval techniques were developed from free-flight models in ground-based

facilities under controlled conditions. In addition to the aerodynamic coefficient

Reference 2 contains references to several vertical spin tunnels and to many other free-flight

testing techniques
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data (drag, lift and pitching moment slope, and dynamic stability), information was

obtained on the wake structure 7 . This wake information (ablation, transition,

diffusion, electrical properties, etc.) is being obtained currently in specialized

faciiities8 -10

Shock tunnels 11,12 are also used to measure drag and static stability derivatives.

Low Reynolds number drag information at high Mach numbers has been obtained in both

arc-discharge tunnels 13,14
 and in a low-density hyper-v?locity wind tunne1 15 . Movies

have been made of vehicle motion characteristics when dropped from airplanes. Actual

flight tests 16 , dependent mainly upon internal instrumentation, have produced a large

quantity of valuable data, but usually of below-desired quality. The information

gained per dollar is extremely low compared with that from ground-based facilities,

and the time scale is not only large, but unpredictable. Nevertheless flight data

are valuable for purposes of validation. Sometimes, it is the only way to obtain

certain information because it is impractical or even impossible to simulate the

necessary conditions in ground-based facilities.

Recently a new approach to obtaining actual flight data made use of the "sky-diving"

technique. The motion of spheres dropped from an airplane was studied by a sky-diver

filming the descent from close range 17 . Until parachute deployment, the sky-diver

has considerable control over both descent velocity and lateral position.

The use of magnetic suspension as a technique for obtaining interference-free data

in a wind tunnel, was initiated quite some time ago
18119	 Recently, the capability

of this technique has been extended from only drag measurements to lift and static

stability 20,21 . Pressure measurements 22,23 are made on magnetically supported models

as well as wake characteristics studies24.

The free-flight technique as presented in this report was successfully employed 
25

as early as 1954. Here simple models (from which drag measurements were made) were

blown out of tubes against the airstream in a vertical supersonic wind tunnel. The

high-speed wind tunnel free flight nesting technique is intended only to complement

the many other interference-free and supported-model testing methods. Also, it

serves t9 validate or show limitations in the information obtained in wind tunnels

with supported models. This, in itself, is a very valuable capability.

2. DESCRIPTION OF MOTION STUDIES'

2.1 Detailed History During One Cycle of Oscillatory Motion

A description of the data obtained from a model during one complete cycle of

oscillation serves as an introduction to the many basic types of vehicle motion

studies that are practical in a conventional wind tunnel. Both the angle of attack

and velocity can be precisely determined by the use of high-speed (5000 frames/sec)

motion pictures.

Although the model can to gun-launched, the use of the wire-release technique is

usually satisfactory. The model size should be fairly large in order to obtain a

• Some expressions used in this section may be unclear. They will be defined in later sections
during the discussion of specific aspects of the free-flight techniques
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relatively large film image and to limit (by means of a low ratio of mass to moment

of inertia) the oscillation to slightly more than one complete cycle. In this manner,

some 300 separate frames of model motion during one cycle of oscillation can be

obtained. Very detailed analysis during a small portion of the trajectory can be made.

The angle of attack can be measured to about t0.1 deg and the model location to about

0.1% of model length. An example of an angle-of-attack history 26 is shown in

Figure 1(a). Note should be taken of the negligible data scatter. The picture

quality obtainable is shown in Figure 1(b).

By spinning up the models prior to gun-launch, the models can be given desired

rate of roll about the axial centerline. In this case, it is necessary to record the

model motion in the horizontal plane, as well as the usual vertical plane. In general,

when the models are not specifically given roll rates, their motion is contained

entirely in the vertical plane, and pictures of one plane are adequate.

2.2 Drag Studies

The presence of a sting support affects the model base pressure. At low Mach

numbers, the base pressure car. be a substantial portion of the total drag, especially

for low form-drag models. Thus, under an appreciable range of testing conditions, it

becomes virtually impossible to measure the total drag of certain models accurately

(say, within t2%) when they are supported on a sting. For purposes of ill•.;tration,

Table I indicates the importance of the base-pressure drag on several cones. For

simplicity, skin friction was neglected. The base pressure was taken as one-half

the freestream nressure; this is not exactly the actual case, but is probably within

a factor of two cf the usual condition. These are certainly adequate assumptions to

point out the importance of an error in the base pressure when correct total drag is

a test requirement.

It is readily apparent that a l0yo error in the base pressure, which can be a

realistic situation because of sting interference, can cause a significant error in

the total drag at the lower Mach numbers. The base-pressure effect on total drag

is considerably more serious, and extends further into the higher Mach number region

as the cone becomes more slender.

2.2.1 Zero Angle of Attack

Figure 2 shows a typical actual size film image and an enlargement of a cone model

used for drag data. Examples
28 of free-flight cone drag data appear in Figure 3(a)

(the effect of Mach numLar) and Figure 3(b) (the effect of nose bluntness). Because

of their relatively high acceleration, it was not practical to use the simplified

ds/dt versus t approach in making the drag measurements. The log e (1 + Vm/V')

versus X approach 
29 

is required because of the substantial variation of dynamic

pressure on the model during the free-flight trajectory. Figure 4 demonstrates the

linearity obtained from the drag data reduction using this more universal aethod.

Figure 5 shows an example for drag reduction when the model has low (< 10 g)

acceleration.

2.2.2 Oscillatory Motion

In many cases, drag is required from oscillating yodels. For slender models, the

drag can be a strong function of angle of attack. In order to obtain the average drag



4

during one oscillation cycle, it is desirable to analyze the linear motion during

several complete cycles. This permits considerable relaxation of the position

measurement requirements. For example, the model axial location need be measured

only at zero angle of attack. The design of the models should be such that the

oscillation amplitude is essentially unaffected by the various factors contributing

to decay (lift, drag, and dynamic damping). This allows for extremely simple data

reduction without compromising final data accuracy. Of course, the suggested design

requirement is not a necessity; but if deviations (i.e., the amplitude of oscillation

varies during trajectory or the model has high acceleration) do occur, the simplified

approach to data reduction may not be adequate. This is not necessarily a dis-

advantage, because a slight complication in the data reduction may be more than offset

by the simplification of model design or the ability to obtain a wider variety of data

during a single trajectory. The variation of velocity with angle of attack is quite

noticeable in Figure 6, where the velocity is compared with the local angle of attack.

The drag at zero angle of attack may be deduced from the total average drag at

several amplitudes of oscillation in a manner similar to that used in ballistic

ranges; the total drag is a linear function of the square of the oscillation envelope

and, hence, the data may be extrapolated to zero angle.

2.2.3 Decaying Oscillatory Motion

Trajectories of slender models designed especially for dynamic stability studies

are expected to have substantial decay in the oscillatory envelope and consequently

will have a large variation in the average drag from the beginning to the end of the

flight. The effective average drag coefficient as a function of some particular

angle-of-attack amplitude is not the ultimate in accuracy, but drag as a function of

several angle-of-attack amplitudes can be obtained during a single flight 30. The

variation of log e (1 + Vm /Vm) with X (and amplitude) is shown in Figure 7 and the

resulting total drag coefficients for this type of trajectory is shown as a function

of the square of the angle-of-attack envelope in Figure 8.

2.2.4 Low Reynolds Number

The accurate measurement of drag at low Reynolds numbers is extremely complicated

due to the magnitude of the force involved. It is difficult to build, maintain, and

successfully use appropriate balances. However, by free-(lightin g small models (as

small as 0.05 in. D, or even smaller for spherical models) at low tunnel dynamic

pressures (about 0.1 lb/in . 2 abs.), it is practical 31 to measure drag levels down to

10-u lb to within t2%. Figure 9 presents a drag study of slender cones at low

Reynolds numbers.

Interference effects on the base pressure due to the presence of a sting support

is normally expected. An example of such an interference appears in Figure 10. An

increase in the ratio of the sting to model base diameter from 0.25 to 0.50 dc.ubles

the base pressure for this particular case. It is possible that the most significant

effect of the sting interference is not limited to the base area. As the boundary-

layer thickness on cones in low Reynolds number flow can be on the order of the model

radius, a pressure disturbance on the base may feed forward through the subsonic

portion of the thick boundary layer and consequently distort the boundary layer on

the cone surface. The magnitude of the resulting effect on drag and stability data
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has not yet been determined. This effect should not be assumed to be negligible

until so demonstrated.

A similar situation exists in the use of low density wind tunnels where the

boundary-layer thickness may be about half of the nozzle radius. Any variation in the

test chamber (plenum) pressure affects the nozzle exit Mach number 32 . The only way

that this could occur would be for the pressure variation to feed upstream into the

nozzle through the subsonic portion of the boundary layer and change its character-

istics. A change in Mach number from this cause is shown in Figure 11.

2.2.5 Undistorted Configuration

In order to study airplane configurations experimentally in wind tunnels, it is

usually necessary to alter the basic shape in the region of the base to accommodate a

sting support and balance (Fig.12). The effect of this alteration can be studied by

the use of the free-flight technique. Another similar problem is the study of boat-

tailing effects on drag. In many instances, this study is limited by the presence of

the sting and the housing of the balance. Consequently, the desired variation of the

boat-tailing cannot be achieved. This problem, which also applies to pitching moment

studies, can be solved by free-flight testing.

2.3 Static Stability Studies

2.3.1 Basic Static Stability

The one cycle angle-of-attack history of Figure 1(a) can be used to obtain pitching-

moment slope data. The large number of accurate data points may even permit the

determination of the local pitching moment throughout the angle-of-attack oscillation.

An even higher degree of accuracy for the effective pitching moment slope can be

achieved by having several complete cycles of oscillation recorded during the

trajectory. Rather than requiring an extremely careful curve fit to the single cycle

of data, only the times (or distances) at several successive zero angles of attack

are then needed. Figure 13 shows a typical example of non-decaying angle-of-attack

history for a model having over five cycles of oscillation. The effect of oscillation

amplitude on the pitching moment slope 30 appears in Figure 14.

The models designed for free-flight testing in a wind tunnel usually do not swerve

(vary in a lift direction away from a zero-lift trajectory) enough to determine

accurately the lift-curve slope as is typically done in a ballistic range. But, by

placing the center of gravity at several locations, the center-of-pressure location,

as well as the normal force slope, can be determined 31 (Fig.15).

2.3.2 Low Reynolds Number

As with the measurement of drag at low Reynolds number, tnere is considerable

difficulty in developing and using balances for measurement of very small magnitudes

of pitching moment. Effective pitching moment, as deduced from the oscillation fre-

quency, can be measured for values as low as 10" 5 in.lb to within 5%. Figure 15 is

an example of such data, the smallest r.m.s. moments measured being about

in. lb.1.5 x 10in.
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2.3.3 Effects of Hysteresis

Some shapes have flow characteristics which may be a function of the angle of

attack and the motion history. Separation ahead of a step or a flare is a typical

example of such flow. Ablation and muss injection can also have a significant effect

on flow over a body. At low Reynolds numbers, the boundary layer ahead of a

flare (Fig.16) is likely to be separated 33,3 4 .
 

The amount of separation at a

particular angle of attack may depend upon the direction in which the angle is

approached, and at what rate.

One way of investigating the effect of boundary-layer separation hysteresis on

static stability is the free-flight technique, where the pitching moment slope can be

determined to within 2%. The oscillation amplitude can be controlled, and the

oscillation frequency can be varied.

2.3.4 Lifting Bodies

It is practical to study the motion of a lifting body by the use of the free-flight

technique in a conventional wind tunnel. It is not particularly important whether

the trajectory is longitudinal (as with a zero-lift body) or lateral. In either case

the motion can be adequately photographed on high-speed movie film. However, for the

lifting body, the use of a full-frame rather than half-frame camera is required as the

entire viewing area (not just the horizontal center-line region) must be recorded.

The lifting body can be wire released. A possibly more satisfactory method would be

to employ some sort of a simple, quick-release model holder located at the floor of

the test section. The shock waves from such a device would not intersect with the

crucial region of the model trajectory except at low Mach numbers or low lift-to-drag

ratio bodies. This technique permits direct measurement of the interference-free

trim angle, lift-to-drag ratio, and drag.

2.4 Dynamic Pitch Damping

Although it may be practical to measure dynamic damping at high amplitudes of

oscillation by using models cross-supported on gas or mechanical (ball or roller)

bearings, the effect of the disturbances caused by the support is not always

negligible. In such cases, it is necessary to rely upon the free-flight technique for

such data in order to at least establish a confidence level for the supported model.

Many damping studies have been made for oscillation amplitudes up to 90 deg and a few

up to 150 deg. In Figure 17 are shown two cases of damped motion at high amplitudes

of oscillation; one is for a model having very small and the other (slender cone)

having fairly large dynamic stability damping. Figure 18 gives some typical results 
3C

of the damping coefficient for a 10-deg half-angle sharp-nose cone at moderate

angle-of-attack envelopes.

The practicality of this technique for obtaining dynamic damping in pitch can be

illustrated by describing hypothetical results for two extremes in model design:

Model A (minimum radius of gyration) — light-weight foam shape, ballasted with a gold

sphere at the center of gravity; Model B (maximum radius of gyration) — thin-shell

aluminum shape, ballasted at the forward tip with gold. The hypothetical model and

test conditions are as follows:

:.F
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= 10 deg (cone half-angle)

rN/rs = 0 (sharp nose)

cg at 50% of model length

as = 0.1 rad (initial angle-of-attack amplitude)

S = 2 ft (length of wire-release trajectory)

M = 8

V, = 3880 ft/sec (900oF supply temperature).

For models with varying base diameters, the trajectories of the two methods of

construction are compared in Table II. Also, the effect of an order of magnitude in
the tunnel dynamic pressure on the % in. D Model A is shown. In all cases, the
dynamic-damping effect on the amplitude is based upon an assumed value of
CmQ = Cm& = —2 . Low radius of gyration and high tunnel dynamic pressure are
important requirements for the measurement of dynamic damping. For gun-launched

models, having trajectories in both directions across the viewing area, the values
for t and N are doubled, and the values for (at/aca )	 are squared.

env

2.5 Flow Discontinuity Effects

The effect of flow non-uniformities. such as a gust or a nuclear blast upon the
motion of a vehicle, can be studied in detail. A .pressure-gust can be simulated in a

wind tunnel by the use of a flow-turning wedge. The effects of small pressure
disturbances on free-flighted cones have been observed. A nuclear blast condition
could be created by use of "electrically exploding" wires, an explosive charge, or by
aiming a shock tube at the wind tunnel model trajectory region.

2.6 Multibody Studies

Definitive experimental studies of the motion of bodies while in the aerodynamic
influence of other bodies are virtually non-existent. The use of free-flight techniques
makes it practical to study the motion of conditions such as: removal of base cover on
re-entering vehicles; separation of launch vehicle stages; flight of a salvo of closely
spaced missiles. An example of the motion of two closely spaced, gun-launched slender
cones is shown in Figure 19.

One simple device 35 that can be used to separate a tandem configuration (two models
in series) while in free-flight is shown in Figure 20(a). The rod is free to slide
within the forward spherical ballast. The vertical wire used for wire-launch goes
through the ballast sphere and through a hole in the left-hand end of the rod. In
this position the rod is in a forward position, thus forcing the wire fingers
together. The trailing cone is centered on the right-hand end of the rod with the
fingers squeezed into holes on the cone nose. In this manner, the trailing cone is
held in position against the base of the forward cone. When the vertical wire breaks
within the forward model, the rod springs aft due to the spring-action of the fingers,

allowing the models to separate. A flight example of the separation of these tandem

cones is shown in Figure 20(b).
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2.7 Drogued Configurations

Up to now, the motion study of drogued configurations has been hampered by the

effects of support interference (see Figure 21 for an example of the severe shock

wave patterns caused by a single small transverse wire support) and the lack of

complete motion simulation. Both simple drag studies and the more complicated motion

studies of drogued configurations have been carried out 36. An example of the effect

of a small drogue body upon the angle-of-attack history of the main (forward) body is

shown in Figure 22. the drag of a trailing sphere without support interference is

shown in Figure 23.

2.8 Base Measurements

The presence of any type of support has been shown to affect model base pressure

and heating. Much of the theoretical work being done in this field also lacks

definitive experimental data. with the free-flight models, telemetry is relatively

simple because of the low accelerations (< 100 g). A variety of releases. including

gun-launch and wire-release, can be used. Examples of base pressure data obtained by

the wire-release 
37 

and the gun-launch 
38 

are shown in Figure 24.

2.9 Wake Studies

2.9.1 Optical

Two techniques are practical for obtaining schlieren pictures of free-flight model

wakes. For non-oscillating models (which, for this purpose, are wire-released into

their trajectory), one 4 in. x 5 in. spark schlieren photograph can be taken per

flight. For the JPL optical system the model image size is quite large, about 1/6

actual size. Examples of such wake schlierens 39 are in Figure 25. However, since

the spark technique is not practical for an oscillating model, use is made of high-

speed schlieren movies on 35 mm half-frame film. In this case, the film image is

about 1/30 actual size. A schlieren sequence of an oscillating cone wake taken on

high-speed (4000 frames/sec) 35 mm film 30 is shown in Figure 26. In spite of the

small model film image (0.03 in. base diameter), the resolution is surprisingly good.

Model diameters up to 3 in. have been used in order to improve the definition and

increase the number of pictures per cycle.

It has been customary to support a model from the side, rather than from the base,

in order to observe wake properties. Under most conditions, this is not a satis-

factory approach for such data. Comparisons" of cone wakes with and without single-

transverse wire support (0.020 in. D wire for 1.5 in. D cone) are shown in Figure 27.

At M = 2 , when the wake of the free-flight cone appears to be turbulent, the

presence of the wire suppert has negligible effect on the wake shape; at M = 4.7

the wire substantially alters the laminar wake*. A similar wire interference effect,

• It should not be assumed that the presence of a wire has no effect on a turbulent wake just

because there is no major effect an the schlieren-observed wake shape. Detailed pitot and

static pressure probing in the wakes of large cones with turbulent boundary layers at

M = 4 indicate appreciable differences in the pressure profile between those taken in the

plane of the supporting wire and cross-wise to the wire d. The wire diameter was 0.7% of

the model base diameter. The optical wakes of these wire-supported models compared

fpvarably with the equivalent free-flight wakes.
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movement of the wake neck toward the model, has been noticed for sphere models. The

variation of the sphere wake neck location with wire diameter is shown in Figure 28.

The schlieren pictures indicate that the flow field in the plane of the wire support

has no obvious major disturbance due to the wire. But, as can be seen in Figure 21,

the flow field in the plane normal to the wire support is severely disturbed by the

presence of the wire. Hence, it is not surprising that a seemingly insignificant

wire support can materially alter the wake shape.

The effect of model ablation on the free-flight wake can be conveniently studied.

The use of low temperature ablators such as carbon dioxide or "moth balls" permit

sufficient variation in the mass ratio for meaningful studies. Even intricate models

capable of ejecting gas through the surfaces are feasible.

2.9.2 Surveys

Pressure surveys, and perhaps temperature or hot-wire surveys can be made through

the wake of a free-falling, heavily ballasted model. Two-inch diameter, lead-filled

aluminum cones weighing several pounds have been dropped, and near-vertical pitot

pressure surveys have been made through the wake at various stations aft of the base.

This technique will give realistic, interference-free measurements at locations

considerably downstream of the wake neck. How close to the base such probing can be

done must be carefully investigated for each particular case (model shape, Mach and

Reynolds numbers, probe geometry, etc.). Two methods are available to assess the

degree of interference. Recourse may be made to the use of high-speed 35 mm film

schlierens and/or the history of the telemetered base pressure as the model drops down

and its wake becomes clear of the probe.

The pressure probe can be designed for a response time on the order of 1-2 millisec.

As the vertical travel is only 0.08 in. during 2 millisec after the model has already

dropped two inches, this lag time is acceptable. An example of a pressure survey

through a cone wake 42 is illustrated in Figure 29. This free-fall technique is very

useful when the axial acceleration is less than the acceleration due to gravity, but

becomes less productive as the model axial acceleration increases.

3. MODEL LAUNCHING

3.1 General

For free-flight testin g in conventional wind tunnels, the models can be launched

into free-flight trajectories in several ways. The two most common techniques are

wire-release and gun-launch. Another technique which has important advantages, as

well as severe limitations, consists of dropping the model through the flow.

Additional techniques are used for both specialized and general applications at other

facilities.

3.2 Wire-Release

The model can be supported on a wire strung across the test section at the forward

end of the viewing area 43 . Nor-aalt,; the wire is in the same plane as the windows.

If it is desired to have a wire support in a plane orthogonal to a window, either of
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two cautions must be observed. The window must be recessed from the flow or protected

in some manner such that the ruptured wire will not come in contact with the window,

for if it does, damage to the window may occur. This window damage can be prevented

by substituting monofilament string for the wire, such as 0.040 in. diameter fishing

line. It is necessary to knot the string inside the model in order to create a stress

point; when an impulse load is added to the noinal tension load, the string will break

within the model.

The wire normall y used for launching is piano wire ranging from 0.008 to 0.026 in.

diameter, notched on one side only to a depth of 0.003 to 0.007 in. at a point within

the model. Should the stagnation temperature be above 300 eF, it is preferable to use

a high-temperature steel wire. Although the piano wire has a higher yield strength

at room temperature, at elevated temperatures it is substantially weaker than the

high-temperature steel wire. At stagnation temperatures above 1000 0F, and when the

heat input to the wire is high enough to cause the wire to break at its intersection

with the model bow shock wave, it is necessary to use a hollow-tube (e.g., 0.036 in.

diameter, 0.006 in. wall thickness, and a 0.001 in. circumferential notch), which is

internally cooled with either water or some gas such as nitrogen or air.

A shield can be used to cool a model which is located in a flow having a high

stagnation temperature. This wedge-shaped shield can encompass the model, but can

even be located entirely upstream of the model. Gaseous nitrogen ejected from this

shield over the model will cool the model down to about O oF. Liquid nitrogen ejected

over the model will cool the model to approximately —320 0F. The shield is rapidly

removed from the flow gust prior to model launch. The depth of the notch on the wire

or tube must be increased in order to retain a proper strength balance of the wire

between the cooled notch region and the remainder of the wire which is at a higher

temperature. If this is not done the notch may be the strong point, and the rupture

of the wire will occur at another location.

Table III lists several wire-tunnel conditions which have been proven to be

operational at JFL. It will serve as a basis for incorporatin g such a launch

technique without an undue amount of development.

, A typical wire-launch installation is shown in Figure 30. A shield, from which

either liquid or gaseous nitrogen can be ejected over the model for cooling purposes,

is shown in the down position. This shield can be raised completely out of the flow

in 0.1 to 0.2 seconds. The wire tension and the impulse load to rupture the wire is

generally applied in either of two methods. Originally weights were used to preload

the wire and then additional weights were dropped (about 6-8 in.) in order to supply

the impulse load. The current method uGes a pneumatic piston for both the tension

preload and the wire-breaking impulse load. An example of a wire-release model

flight is shown in the high speed movie sequence of Figure 31.

It is not necessary to rupture a support wire by the use of tension acting at a

pre-determined atress point. Another very satis.actory method would be to explode

the wire, or at least a limited region of it, by usin g electrical energy. Controlled

wire rupture by the use of electrical energy at a desired region (pyro-fuse) -,as been

successfully developed by Lockheed-California Company" 101ir use in a shock tunnel.

This technique can be readily adapted to conventional wind tunnels.
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3.3 Gun-Launch

The resulting trajectory of a wire-launch model is once across the viewing area in
a downstream direction. By launching a model upstream against the air flow, both an
upstream and a downstream trajectory across the viewing area are obtained. To optimize
the information from such a trajectory, the model must be propelled to the upstream
edge of the viewing area. A trajectory which goes considerably forward of the window
usually penalizes the quality of the data. A trajectory which is too short generally
penalizes the data a lesser amount.

Several means can be used to propel the model forward into the test section.
Consideration was given to a "pelton-type" revolving launch wheel. This, however,
would require a great deal of room and a considerable degree of precisely timed

actuating mechanism. Therefore, it was discarded. The use of some type of launch
gun seemed to be more appropriate: pneumatic power was chosen over several other
approaches such as spring or gun-powler.

The design criteria used for the pneumatic launcher are as follows:

(i) The launcher had to be able to propel the model from a point downstream of
the viewing window to the upstream edge of the window (a distance of
approximately 34 in. in the JPL supersonic wind tunnel).

(ii)The angle of attack at release could be set from 0 to 180 deg for both
slender models and for short, blunt models.

(iii)The mass of the models could vary from % to 100 grams.

(iv)Since the trajectory is determined by the model shape, mass, and tunnel
dynamic pressure, the launch velocities must vary from 10 to 150 ft/sec.

Because of the structural geometry of the supersonic wind tunnel, the pneumatic
launcher assembly was mounted 3 in. to the side of the tunnel centerline. In order
to compensate for the gravity effect and maintain the model's flight as near centered
in the viewing window as possible, the assembly was mounted 2 in. above the tunnel
centerline. An alternative method would be to tilt the gun upward several degrees.
The model separated from the launcher 7 in. downstream of the trailing edge of the
viewing window. This was done to insure that the near-wake of the model would be
free from any influence of the projecting mechanism.

In general the model is mounted on the launcher at the desired angle of attack and
is secured by a set of fasteners or holding device 45 while tunnel flow conditions are
established. An installation of a model at 20 deg angle of attack is shown in
Figure 32. A cam-actuated micro-switch coupled to the fastener or holding device
shaft, opens the holding device end also starts a high-speed camera. An event switch,
synchronized with the camera, actuates the piston release mechanism approximately one
quarter of a second later, starting the model on its way. This delay is necessary to
allow for the high speed camera reaching the selected speed of 5000 frames/sec before
the model appears in the viewing area. The picture sequence in Figure 26 shows the
flight of a model released et positive angle of attack. As many as thirteen complete

cycles of oscillatory model motion in a given flight have been filmed using this
technique.
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The original launch system supported the model on a pistcn-sabot within the launch

tube and projected the models at 0 deg angle of attack only. Examination of the high-

speed movies indicated that the models were being influenced by the bow shock of the

launch tube and would pitch or yaw as they passed through this shock. To correct this,

the supporting piston-sabot combination was extended to release the model upstream of

the bow shock from the launch-tube. Another problem was a resonant-air condition in

the interior of the tube which at times could blow the model off the support before

launch if it was not firmly held in position. This approach was abandoned in favor

of supporting the models in the airstream, as shown in Figure 32. Modifications were

also made in the method of releasing the piston. This included an air-actuated

auxiliary piston in conjunction with the launch tube.

Development was concentrated next 	 the support and release of the models at

discrete angles of attack. The difficulties encountered in supporting the model at

angle of attack, for instance, were shock interference from adjacent tunnel structure

and a force-moment couple during the acceleration phase. Both of these problems were

solved with the use of a triangular-shaped blade, placed on the launch gun rod (Fig.33).

This type of support gives maximum side-load resistance to shock waves from the

diffuser centerbody leading edge. This centerbody is a slender, metal plate spanning

from the tunnel floor to the ceiling. along the length of the contraction section.

The same support also resists the vertical-force couple by extending into the plastic

model and holding it firmly in place. Figure 33 illustrates the triangular support

which was used for angles of attack that varied from 0 to 30 deg. While this method

of supporting is adequate for cones. other model shapes may require further support

development. It was found that it is not absolutely necessary to recess the model

when launching with the pneumatic gun. The model can be held on a concave support

and launched against the airstream in a manner similar to that used by a shot-putter.

In this case the model is held against the form-fitted support with a rubber band or

nylon string. This tie is then cut by a razor blade when the launch-stroke is about

at the half-way point. The model is free to release itself from the launch tube at

the end of the stroke. Although it is convenient to launch models in this manner up to

angles of attack of 120 deg, yaw motion is likely to be introduced in addition to the

planned pitch motion. Then pictures taken in two planes (ideally orthegcnal) are

required to reduce the data during the trajectory. The recessed models very rarely

have non-planar trajectories. That is to say, the motion is confiiied to the vertical

plane for releases up to 90 de g angle of attack.

In order to prevent the model holder from rotating about the launch tube axis

during the launching, the tube was fabricated from square tubing. The piston was then

made to seal by incorporating vacuum-formed square cups of polyethylene sheet plastic.

The various sections of the pneumatic launch tube are shown in Figure 34. The drive-
piston packing seals off the exhaust ports near the end of the stroke, which is

accompanied by an increase of pressure in the tube. A combination of a pneumatic

dash pot and a coiled spring is used to stop the acceleration rod'. This system is

effective in decelerating the piston and rod assembly within 1 in. (from a velocity of

100 ft/sec to rest). This deceleration has been adequate for most models tested.

Bench calibrations have been performed to evaluate the system's repeatability at

various piston-supply pressures. The calibration equipment consists of two

.-	 * This rod is actually a hollow-tube in order to minimize the mass which must be decelerated at
the end of the stroke
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photo-multiplier tubes, light sources, and an oscilloscope. The plotted data of

supply pressure versus velocity are shown in Figure 35, with an insert cf a typical

trace from the oscilloscope. With this information, it is possible co pradict the

pressures required to project the models at desired velocities. A first approximation

(which neglects friction) for the required pressure is based upon the equations of

motion, Section 4.2, using the model's velocity (Vm):

V® (m + m1 )
P =

	

	 (1)
2S1A1

where A l = area of launch-tube piston

m = mass of free-flight model

m 1 = mass of launch-tube accelerating parts (piston, rod, model holder)

S1 = length of launch-tube piston stroke.

In order to utilize the wind tunnel more efficiently, several launch assemblies can

be installed, thus allowing two or more launches per tunnel entry. A remote-loading

launch gun may be preferable. The wind tunnels Rt the Ballistic Research Laboratories

use a gun incorporating a technique for landing several models during a single tunnel

entry46. At Arnold Engineering Development Center (AEDC) a launch gun has been

developed which can be retracted from the tunnel flow to be reloaded with a model

without interrupting the flow47.

3.3 .1 Spinning Models

Models can be gun-launched with desired roll rates". Cone models have been

launched with spin rates up to 200 revolutions per second. Substantially higher

rates have been demonstrated during bench tests but have not yet been required for

actual model tests. Initial angles of pitch at lwunch have varied from zero to 30 deg.

Launch success is not decreased by the incorporation of spin.

Spin is achieved by an air-driven motor. This small motor (about 1 in. D by 1 in.

long, mounted on the end of the launch rod) is adjustable in angle of pitch. The

pre-launch spin rate is indicated by a magnetic pick-up incorporated in the motor.

The air to the motor is automatically disconnected when the launch gun first begins

to drive the rod forward. A setup of this system is shown in Figure 36. The air jet

tube is used to give the model desired amounts of yaw rates. This additional

capability makes it possible to vary the pitch-yaw motion history of a spinning model

through a wide spectrum. Similar techniques for launching spinning models are used

by the Naval Ordnance Laboratory 49 and the Ballistic Research Laboratoriesso

3.4 Vertical Drop

Under some conditions, dropping the model from the top of the test section is a

very useful technique. This approach has been successfully applied to spherically

and conical models 51 in the AEDC wind tunnel facilities. In order for the vertical-

drop to be useful, the acceleration due to the drag force cannot be substantially

greater than the gravity acceleration.

i
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If the physical arrangement of a wind tunnel is such that a model can be dropped

into the flow from above the test section and the model can be conveniently caught

below the test section, the vertical-drop is very valuable for a model having drag

acceleration small compared to that of gravity. An intricate model, such as one

containing considerable amounts of internal mechanism (properly packaged telemetry

equipment, etc.) can be flown many times without serious damage to the instrumentation*.

3.5 Vertical Tunnel

When it is practical to closely match the model drag force with the model weight,

a vertical tunnel is very useful in the study of model dynamic stability. This

technique has been successfully used in the arc-heated wind tunnel at the NASA Ames

Research Center for the study of ablation effects on very short, high-drag model

configurations 53 . The model is held against a hollow sting with a monofilament

line. Once the tunnel has reached the desired operating conditions, the protective

shield is removed laterally from ahead of the model. Then, when steady-state

ablation is achieved, the monofilament line is electrically burned at the model base

and the sting is quickly retracted, leaving the model in free-flight. Orthogonal-

plane cameras are used to record the motion of the flights, which can be several

seconds long.

4. MODELS

4.1 General

Due to the low accelerations (usually less than 100 g) that models are subjected

to in a conventional wind tu -,. ' free-flight test, there is a large variety of

applicable model design and coiAstruction techniques. This low acceleration is in

direct contrast to the high acceleration for a ballistic range test (approximately

10 5 g). Before discussing the major model designs which are currently in use, it

would be appropriate to go into the effects of the various model mass characteristics

(mass, center of gravity, and moment of inertia) which affect the model motion during

its free-flight trajectory. The significance of model design parameters upon the

trajectory will then become apparent.

4.2 Simplified Equations of Motion

In order to guide the preparation of a test program, simplified planar-motion

equations are adequate. They are based upon linearized theory and small amplitude of

oscillation with the dynamic pressure on the model remaining constant during the

entire trajectory (the model velocity is negligible compared to the freestream flow

velocity). The following equations describe the trajectory as a function of the model

mass and flow characteristics:

Model

acceleration:	 a = gACDeff g	
(2)

W

Heavily-instrumented models can be caught with no internal damage and minor external even when
flown under conditions of high axial acceleration. Such a special model catcher has been

developed for use in the General Dynamics San Diego wind tunnels 
52
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Model velocity

after traveling :
distance	 S : Vm = 

(LrQACDeff (3)M

Time to travel

distance	 S t	 =
7Deff

(4)
gA

Cycles of oscillation
while gaveling Id m =
distance	 S N =	 -	 -- S - - (5)

7T	
CDeff	

2 I

Frequency of 1	 AdgC	 =
oscillation ( c/s): f = — - (6)

27T	 I

Peak-to-peak
model vertical	 2 a I(

LCML

motion:	 py = _. o	 a	 (q)

and	 a

Angle-of-attack

oscillation envelope 	 2 (^ * m
at end of distance Se	 (8)

uU
(!^)env

4.3 Materials

A great number of solid materials can be used to build free-flight models. The

material density can range from light-weight plastics to platinum. A list of

practical and familiar materials is included in Table IV. The specific heats and the

thermal conductivities of the metals are included as well as the densities of all

materials. The thermal properties aid in the choice of a material for models which

are to have wall temperatures differing from adiabatic. The three light metals

(magnesium, beryllium, aluminum) are good choices for light-weight model shells

whether the models are adiabatic, cooled, or heated.

Materials that are usually used for the model core are lead, copper (adiabatic

models at high temperature), and gold (the optimum choice for the maximum ratio of

mass to moment of inertia). The choice of material for the core, as well as for the

model-shell, is generally limited to plastics or malleable metals which minimize

damage to the wind tunnel structure. The use of hard materials such as chromium,

steel tungsten, platinum, or hevimet should be avoided even though they do have

certain advantages. Since a model can contain several different metals, the thermal

expansion coefficient is listed in Table IV in order to point out possible problems

when the model wall temperature during the test is different from room temperature.
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4.4 Equations for Body Mass Characteristics

Equations useful in computing model mass, center of gravity, and moment of inertia

are presented. In model design it is necessary to have a suitable total weight,

proper center-of-gravity location, and an upper or lower limit for the moment of

inertia. Additional information may be found in Reference 55.

4.4.1 Mass: m = p j dx dy dz

4.4.1.1 Circular cylinder

Solid: m = p7rr2h

Thin Nall: m = p7rdth (open ends).

4.4.1.2 Circular cone

Solid: m = s prrr2h i
Thin wall: m = p-7rrt(r 2 +h 2),  (open base).

4.4.1.3 Sphere

Solid: m = a p^rr3

Thin wall: m = 4p7rr 2 t .

4.4.1.4 Ellipsoid

Solid: m 3 pnabc

Thin wall: m = a p7rt (ab + ac + bc) .

4.4.2 Center of Gravity: Xeg 
= V 

x dV

4.4.2.1 Circular cone

Solid: Xcg = 1h from base

Thin wall: Xcg = 3h from base (open base).

4.4.2.2 Truncated Circular Cone

F:
h (R2 + 2rR + 3r2)

Solid: Xcg =

	

	
from base

4 (R2 + rR + r2) 

Thin wall: Xog = h R + 2r (open ends).
3 R + r
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4.4.2.3 Hemisphere

Solid: Xcg = e r from base

Thin wall: Xcg = 2r (open base).

4.4.2.4 Segment of a sphere

3 (2r — h)2
Solid: Xcg = 

4 (3r — 
h) (from sphere center)

Thin wall: Xcg = 2 h (flat, open base body).

4.4.2.5 Hemi-ellipsoid

Solid: Xcg = 2 length of semi-axis normal to base from base

Thin wall: Xcg = 2 length of semi-axis normal to base from base
(open base).

4.4.3 Moment of Inertia: I = f x 2p dm

4.4.3.1 Circular cylinder (about an axis through c.g. perpendicular to axis
of symmetry)

Solid: I = m (3r2+h2)
12

Thin wall: I = m (r 2 + 6h 2) (open ends).
2

4.4.3.2 Right circular cone (about an axis through its c.g. and perpendicular to
axis of symmetry)

Solid: I= 80 m Or e + h2)

r 2 	 h2
Thin wall: I = to 4 + 18 (open base).

4.4.3.3 Sphere (about a diameter)

Solid: I = s mr2

Thin wall: I = 3 mr 2

4.4.3.4 Ellipsoid (about semi-axis e )

Solid: I = m (a 2 +b2)

5

Thin wall: I =
m (sib + a3e + b 3 + b 3 + 3a2bC + 3ab2c

5	 ab + ac + be

i
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4.4.3.5 Hemisphere (about an axis through c.g. perpendicular to axis of symmetry)

Solid: I = 320mr2

Thin wall: I = 12

Symbol	

(open base).

Symbol Defi,niton for Model Mass Characteristics

a,b,c	 semi-axes of ellipsoid

d	 diameter

h	 height

m	 mass

r	 radius

R	 base radius of truncated cone

t	 wall thickness

V	 volume of material

4.5 Design and Construction

Numerous methods of model design and construction have already been successfully

employed. As the maximum acceleration experienced by the models prior to and during

the data acquisition period are usually below 10 ` g, the models can be of very

delicate, yet simple, construction. For example, the center of gravity can be located

near the forward end of the model. In addition, airplane models having delicate

surfaces can be easily built and successfully tested. Construction of the Apollo

abort configuration (re-entry vehicle with tower and escape rocket) is not difficult,

even though the tower design consists of a fine skeletal framework. These examples

serve to illustrate the wide variety of materials and model configurations which can

be used because of the low loads that models experience during free-flight testing

(launch and trajectory) in a wind tunnel.

The acceleration of the models should not be so low as to have the flight path drop

out of view before sufficient information is acquired. On the other hand, too high an

acceleration will decrease the number of high-speed movie frames of the flight below

the desired number (say 200 frames at 4000 frames/sec). If a steady light source is

used for the movies, the model image may be elongated due to excessive model movement

during one frame (60-80 µsec exposure). Model acceleration and the resulting flight

time and velocity (relative to ground) at the termination of a wire-release trajectory

are shown in Figures 37, 38, and 39. These values also apply to each half of a

gun-launch trajectory.

The model design can be somewhat complicated when dynamic stability and/or pitch-

moment data are desired. This becomes evident from the approximate equations of

motion. The amplitude decay and the number of oscillation cycles during the model's

travel across the viewing area are all a function of the model size and the ratio of

the model mass to the moment of inertia about its center of gravity. For similarly
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constructed models, a decrease in model size results in an increase in both the

amplitude decay (or growth) and the number of cycles of oscillation during a certain

distance (relative to ground) that the model travels.

In order to obtain the required ratio of mass to moment of inertia, the model shape

can be a thin shell or else a very light-weight solid material (such as 2 lb/ft3

polyurethane foam) with a spherical core of lead or, preferably gold. The size of the

core can be chosen to optimize the ratio m/I . For purposes of illustration,

Figure 40 shows the variation of the value r s (m/I) with rc /rs for various diameters

of spherical models (% in. to 3 in. diameter) made of a heavy core, such as lead or

gold, at the center of a light-weight substance. Polyurethane foam can be used such

that the density of the core is 100 or 200 times the density of the homogenous outer

shell. Usually it is desirable to choose a somewhat larger ratio of rc/rs than

optimum for maximum rsm/I in order to increase the model weight and thus increase

the total flight time.

The most simple model can be formed out of a single piece of material, usually

aluminum or magnesium. The base of the model can be hollowed out in order to place

the center of gravity at the desired location. An example of this type of con-

struction is in Figure 41(a). In order to increase the number of cycles of oscillatory

motion while the model is in the viewing area, it is necessary to increase the ratio

of the model mass to the moment of inertia (m/I). This is done by adding a core of

some relatively soft but dense material such as copper, lead or gold. Figure 41(b)

shows an aluminum model with a copper cylindrical slug for ballast. Usually the

shell can be made as thin as 1% of the local diameter. Using the process of

electrolysis, 1 in. diameter models have been made with copper shell of 0.003 in.

thick wall.

Models are often constructed of some plastic material and then ballasted with a

lead or gold core. Originally, models were cast from polyurethane foam (Fig.41(c)),

but, due to the lack of ability to duplicate the foam density and uniformity from

model to model, injection-molded polystyrene model construction was developed. Not

only were the injection-molded modei4 considerably more uniform, they were stronger

and took far less time to construct. By experiment, it was found that models could

be molded with walls as thin as 0.015 in. which, when compared with a polyurethfine-

foam model of the same shape, had less than cne half the mass (before ballast wits

added). Injection-molding presses are shown in Figure 42. The smaller one shown is

hand operated and is used principally for sample runs or small models. It will inject

up to % oz of polystyrene per cycle. Only up to 20 models per hour can be made with

this small press. It is limited to models which have a diameter below 1% in. The

larger press is semi-automatic and, with this one, it is possible to make in excess

of one-hundred models per hour. The ability to inject 3 oz of polystyrene makes it

possible to mold larger models. Figure 43 shows the various molding dies required

for one type of model and Figure 41(d) shows a typical completed model with a section

removed.

4.6 Measurement of Mass Characteristics

An item of major importance to the quality of the final data is the measurement of

the mass characteristics of the models. The care required for satisfactory measure-

ments is more severe than for ballistic range models because the wind tunnel models

are, as a rule, very light-weight.
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14.6.1 Mass

Fortunately, the availability of precision analytical balances makes very accurate

determination of the model mass convenient. However, extreme caution should be

exercised in applying the measured model reference lengths to the data reduction

process. Since the linear dimensions are obtained at room temperature, coefficient-

of-expansion corrections must be included in order to compensate for the different-

from-room model temperature which may exist during the flight trajectory. This

temperature consideration must also be applied to the moment of inertia measurement,

and, if not in dimensionless form, to the model center-of-gravity location.

4.6.2 Center of Gravity

The instrument for locating the model center of gravity consists of two analytical

► ,alanceS 45 each capable of measuring to 0.1 m gm. One balance is used to measure the

o ss. The left-hand beam of the other balance has been altered to provide a reference

Dad and platform to support the model (Fig. 44). The accuracy to which the balance

rcint could be determined was markedly improved by the addition of a microscope for

dewing the pointer. Precision ball bearings ran ging in diameter from 0.250 in.

(1.047 gm) to 1.000 in. (65.690 gm) were used to calibrate the system. A series of

bars, rods, tubes, and flat plates were then used to demonstrate the degree of

accuracy when the center-of-gravity measurement system was applied to a typical model.

This result is shown in Figure 45. The inaccuracies of this system are within

1% for calibrating bodies as light as 0.3 gm. As the weight increases the

accuracy increases, and for model weights of 10 gm, the error is insignificant.

4.6.3 Moment of Inertia

The instrument complex 45 for measuring the moment of inertia is composed of a wire

and its overhead support, model support, light source, photo cell, electronic

frequency divider, and a counter (Fig.46). The sensitivity of this system for

measuring the oscillation period of a model is t0.2,, msec. Viscous effects on the

system do not appear to be significant. There is generally no need for performing

this measurement in a vacuum. An atmospheric-pressure, still-air environment is

usually adequate.

Calibration of this system is accomplished by inserting precision shapes, such as

discs, rods, tubes, and flat plates, for which the moments of inertia have been

calculated (based upon their dimension and mass). In order to increase the overall

accuracy of the system the model holder should be of minimum moment of inertia. This

Is especially true for the very small and light models. The reference period of the

system and model holder, with no model in place, is determined at frequency intervals.

This provides a comparison when the same procedure is followed during the measurement

of the actual models. The calibrating bodies are designed to bracket the expected

moments of inertia of the free-flight models and shiald be of the same wei ght and the

same general shape or len gth. Such an approach minimizes both the effect of wire

tension on the wire torsional constant and the effect of viscosity. Although both of

these effects are usually small (less than 1%). it is always desirable to eliminate

any possible source of error.

The results of an extensive calibration study are presented in Figure 47. Here

the effect of the calibrating body weight on the wire torsional constant can be seen.
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Regardless of the shape of the calibrating body, the data fall within a 1% band

throughout the entire ran ge of weights. Using data in the form in Figure 47,

the equation used to obtain the moment of inertia of a model is

	

I - K(m+h)t 2(m+h) - I	 (9)h

where I = model moment of inertia

I h = model holder moment of inertia

K (m+h) = wire torsional constant for model in holder

t (m+h) = oscillation period for model in holder.

An acceptable, but somewhat less accurate, alternative approach is simply to plot

the square of the oscillation period against the calculated moments of inertia for

the calibrating bodies, arbitrarily setting the empty holder condition to zero moment

of inertia. If the calibration points plot up as a straight line (see Figure 47),

then the equation

t2	 t2
I	 +h)	 h	 (10)Ic —(m

t (c+h) th

where I c = calibrating body moment of inertia

t (c+h) = oscillation period for calibrating body in holder

t h = oscillation period for empty holder,

can be used to calculate the model moment of inertia. If the curve is not linear,

then the values of the model moment of inertia can be interpolated from the Paired

data points.

5. DATA ACQUISITION

5.1 General

The types of data which can be obtained from free-flight testing fall into three

general categories: model motion studies, flow field studies, and telemetry

information. The basic aerodynamic coefficients (drag, static and dynamic stability,

and lift) are deduced from motion studies in much the same manner as is done in normal

ballistic range testing. The flow field studies can be of two distinct types, visual

and probe aurveys. Telemetry is used to determine model base pressure and heating,

and can also be employed to deduce model motion characteristics from accelerometer

data. To date, visual model motion studies form the bulk of information gathered from

free-flight testing. Nevertheless, the other types of information are extremely

important and do depend. in mar cases, upon interference-free testing techniques.

5.2 Model Motion Studies

The model motion is normally recorded on movie film at 2000 to 5000 frames per

second. The larger 35 and film generally is preferred to 16 mm film. If only several

views of the model (up to ten) are required during its trajectory, discreet views as a

function of time may be superimposed upon a single large film sheet (11 in. x 14 in.)
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by the use of a multiple strobe light. This procedure has two distinct advantages:
(1) all of the motion is recorded on a single sheet of film, and (ii) the model image
appears full-scale rather than at a greatly reduced scale for the usual parallel

light movie film system.

Two electronic -type means are also used in order to record the model motion. An

electronic-visual system, such as a cathode-ray tube follower unit, can be used to

measure axial displacement from which the acceleration, and consequently the pertinent
noefficients, can be determined. In order to have the model independent of any visual
access, the model can be instrumented with accelerometers which use telemetry

techniques to transmit the information56

5.2.1 Non-Planar Motion

When the model motion is not planar, such as would be expected for spinning models,
It is necessary to record its motion in two planes in order to obtain the aerodynamic
characteristics from film data.

To install an orthogonal optical system in an open jet wind tunnel, generally minor
modifications are required". But for a two-dimensional tunnel having n. flush -walled

test section, modifications become more difficult.

Rather than perform major alterations on the upper and lower walls in the test
section of the JPL Supersonic Wind Tunnel, in order to make a two-plane parallax-free

optical system, the conventional horizontal optical beam was split in two parts and
re-directed through the vertical windows. Figure 49 shows the mirror system which
generates an 'T' optical path inside the test section. Due to hardware limitations,
it wren not possible to have these two planes at right angles ^o each other. However,

the included angle of 60 deg does not significantly degrade the determination of the
model angular orientation relative to that with an orthogonal system. Simple trigono-
metric functions convert the data to the normal orthogonal system. Then conventional

ballistic range techniques ( linearized aerodynamics) can be used to reduce the data°.

5.3 High Speed Movies (HSM)

5.3.1 Film Size and Frame Rrte

Sinca the image size is 2% timee, larger, the use of 35 mm film* is preferred to

16 mm. The 5000 frame/sec speed of the 35 mm half-frame is more than adequate for
free-flight motion studies. There does not seem to be any requirement for the 8000
frame/sec rate achievable with the 16 mm film. One advantage of a hi gh frame speed
is to minimize the model motion during the exposure time of each frame if a steady
light source is being used. At 5000 frames/sec the film frame exposure time is about
67 µsec. With a model velocity relative to ground of 100 ft/sec, this would result
in model movement of 0.08 in. during an exposure. This is a large amount since
model-position reading accuracy on the film is about 0 . 01 in. This model motion
during exposure can be decreased well below the film reading error by using a multi-
flash strobe light having 1-2 µsec exposure. The reluctance pickup on the movie
camera sprocket is used to synchronize the strobe with the camera. shutter.

• For sw types of tests 70 mm, even at its lower frame rate, mV be the optimum choice

}
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5.3.2 Lighting

The model can be front-lighted if multiple exposures are desired upon a single

sheet of film. Due to the usual model curvature, this type of illumination does not

give optimum contrast between the model edges and the dark background. ?f multiple

exposures on a single picture are not desired, then the model should be back-lighted

in preference to front-lighting. Back-lighting, either silhouette or schlieren,

outlines the model adequately_ The silhouette lighting gives the highest and most

consistent definition between the model edges and the background. However, the

schlieren lighting for defining the flow field about the model is usually a desirable

capability and is required for certain tests. The multiple strobe equipment which is

capable of 500-1000 consecutive flashes at a rate of 5000 per second can be used

either to silhouette the model or to create the schlieren lighting. The silhouette

effect can be achieved by either of two approaches. The first employs light from

schlieren system light-house with the knife-edge cut-off removed. The second takes

advantage of a ground glass which is illuminated by a light source, and can be located

outside the viewing area away from the camera.

When it is required to observe reference marks on the model, white marks are put on

a black model. The front lighting will make it possible to observe these reference

marks without decreasing the contrast between the model edge and the back lighting.

This technique is required for spinning models.

5.3.3 Trajectory Reference Marks

For convenience in film reading, a precision grid of fine, tacit wires

(0.010-0.020 in. diameter) can be incorporated in one of the viewing areas. This

grid serves both to locate the model in space and to determine the model attitude.

By having a grid cover thi entire viewing area, distortions which can occur in the

optical system and photogrhphic processing are not serious since the model measure-

ments can always be related to known reference lines in the immediate vicinity of the

model image. An example of the actual size of a recorded image and a subsequent

enlargement are in Figure 2.

5.3.4 Film Liaulsion Type

Surprisingly enough, a high-speed film emulsion is not required for this application.

The lighting, either steady or strobe, is of high enough intensity such that the

choice of a medium speed (ASA -v 100) is the best choice. This is a compromise between

the contrast of a high speed film and the fine grain of a low speed film. Perhaps

the lighting may vary enough from various wind tunnel facilities that the optimum

film choice will have to be evaluated. Serious consideration should always be given

to the lower speed films.

5.3.5 Camera a.a Location

Any of the several high speed (greater than 1000 frames per second) motion picture

cameras can be used for recording the model motion during its trajectory across the

viewing areas. In testing, the camera must be started up at the r oper time relative

to the trajectory. Allowance should be made to have the film transport process come

up to full steady speed at the time the model trajectory is first recorded. It is

important to have provisions for putting accurate timing marks on the film. In
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addition, it is desirable to have the camera shutter synchronized with the strobe

light.

The camera is normally located outside of the wind tunnel flow channel. Should

the size of a tunnel permit, it may be useful to install a camera within the tunnel

at the downstream end of the model trajectory in order to view the model motion along

its axis of motion. The camera outside the tunnel can be incorporated in the

schlieren system. Using the schlieren system in conjunction with the movies, parallax

can be eliminated. Otherwise, a correction must be made for parallax. This is a

simple matter if the camera distance from the model is large compared to the length

of the viewing area and the camera axis is normal to the model trajectory.

5.4 Wake Studies

5.4.1 Optical

As schlieren and shadowgraph techniques are quite widely used, there is no need to

go into the specific details here. The other additional requirement is for timing the

optical spark source to obtain a picture of the flow field when the model is in a

desired location or attitude. The use of a hi gh speed movie camera greatly simplifies

this timing problem, but only at the cost of degradation in the quality of the data.

The use of a single large sheet of film will give excellent optical definition. The

timing of the spark source for trim-angle trajectories can be done by employing a

timing delay at launch or by a photocell system which lies in a plane normal to the

data plane and intersects the model trajectory.

5.4.2 Survey Probe

There are several major criteria which must be established in order tv obtain valid

data. The instrument (pressure, temperature, etc.) must have respons, Ames of no

more than several milliseconds. The data accuracy required and the oxtent of the data

desired during the model trajectory determine the maximum instrument response time.

The instrument must be designed such that the portions immersed in thQ model wake do

not disrupt the interference-free flow conditions upstream of the probe leading edge

(see Figure 29). This minimum interference requirement is not compatible with minimum

response time. Therefore, compromises must be made. In the case of a pressure probe,

the transducer container should be located just above the initial wake position and a

pressure probe is `offset" to the desired location in the wake. Care must be exercised

in the calibration of the instrument. Usually the sensitivity is stable, so the level

is the only item requiring on-the-spot calibration. This can generally be done by

traversing the instrument into the undisturbed free-stream or by having a dual-probe

system, one being used for establishing a reference pressure but having a very long

response time. The remaining required information is knowledge of the model position

relative to the instrument as a function of the instrument reading. High speed movies,

taken in the normal manner, along with correlating timing identifications take core of

this requirement.

5.5 Base Studies

Since a sting, or any other physical support such as wires and side mounts, is

likely to alter the flow in the base region, it is necessary to use an interference-

free technique, such as free-flight, in order to measure valid model base conditions
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(pressure and heat transfer). This can be done very conveniently by the use of

telemetry techniques. Since the model maximum acceleration rarely exceeds 100 g, it
is relatively simple to design, build, and operate telemetry systems including the
measuring transducers, compared to the problems which would be involved in taking
similar measurements in a ballistic range model, where the accelerations can exceed
10 5 g. A typical setup for a gun-launch free-flight base pressure telemetry test is
shown in Figure 51.

A typical telemetry package (0.80 in. long by 0.80 in. diameter, weighing about
10 gm) with its pressure transducer is shown in Figure 52. Its circuit diagram and
details of its design 58 appear in Figure 53. The electronic circuit used is a
colpitts oscillator, consisting of a printed circuit inductor, a pressure sensitive
capacitor, two small mercury cells, and other circuit components of the micro-
miniature pellet type construction. The inductor also serves as the transmitter
antenna. A frequency range of 98-118 Mc is used. Further details on this system can
be found in Reference 58. This telemetry technique is also operational at AEDC 51 and
the NASA Ames Research Centerss

A sample oscilloscope trace from a gun-launch free-flight base pressure trajectory
is shown in Figure 54. In addition, a reference run is presented in which the pressure
sensor is sealed off. In order to increase the accuracy of the interference-free base
pressure measurement, the initial reference pressure can be lowered to the expected
value of the desired base pressure measurement. The use of the wire-release technique

z can also be used to obtain interference-free base pressure values. However, this
method does not permit any convenient control over the magnitude of the reference
pressure. The reference pressure can be measured by a minimal interference pitot
tube which can be rapidly removed from the flow just prior to model release. An

P	

example of data using this approach is in Figure 29. By replacing the pressure trans-
ducer with a heat meter, the same telemetry package can be used to measure base
heating.

It may be necessary to use telemetry along with probes mounted on the model base in
order to make measurements in the wake region between the model base and the wake neck.
This is due to the possibility that any protrusion into this region from downstream
will disturb the flow. Although the use of telemetry eliminates the interference
problems caused by an externally mounted probe, it may not be adequate because of the
possible interference from the probe which extends aft from the base. In any case,
the base pressure can be measured and observed in order to indicate the presence of
flow disturbance caused by any probe within the wake. Optical studies should not
solely be used to give a qualitative indication as to whether or not a probe within
the wake regic disturbs the flow being studied.

6. TRAJECTORY MOTION DATA REDUCTION

6.1 Introduction

For convenience, only the planar* trajectory runs are generally reduced. Linear .
pitching moment is usually assumed in order to reduce the data. The resulting dynamic

• By obtaining motion studies in orthogonal (or near-orthogonal) planes, non-planar trajectory
runs caused by spinning models or by non-ideal launchers can be handled by the use of normal
ballistic range data reduction programs
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damping stability is assumed to be an effective constant over a particular oscillation

cycle during a limited oscillation range. However, as the oscillation amplitude

approaches 90 deg (and can even go nearly to 180 deg), the assumption of a linear

pitching moment curve is no longer valid. For such cases, a more complex theoretical

approach is required as a basis to obtain dynamic stability data of acceptable

accuracy. However, the actual data reduction process is not materially complicated

for the non-linear pitching moment case.

In this report both the linear and non-linear pitching moment, planar trajectory

data reduction approaches and procedures will be discussed. No discussion will be

included on the non-planar, spinning model.

6.2 Film Reading

Orthogonal-view high-speed movie records are made of each run. The upper camera,

which views the motion in the horizontal plane, is normally used only to confirm that

the trajectory motion is planar and lies entirely in the vertical plane. Its field

of view covers just a portion of the useful trajectory and non-parallax problems are

severe. The film from the side camera, which records the model motion in the vertical

plane, is used for the detailed data reduction. However, if the trajectory does not

achieve the desired degree of planar motion, use can be made of the film from the

upper camera in order to augment the side _ew for data reduction. Of course, if the

model has spin, ;.:len data reduction must be accomplished by using both planes of view.

When the runs are few, it is convenient to make photographic prints for a selected

number of frames from the hi gh speed movie film. These enlargements, which can be

about half of actual model size, can be read by use of a scale and protractor. But

first it is necessary to construct a template the same size as the enlarged model

image. This template serves to integrate the edges of the image in order to obtain

the best consistency and accuracy in reading the model angle of attack and center-of-

gravity location. For large quantities of data, the enlarged photograph approach is

not convenient, and use of a semi-automatic film-image projection-type data reading

equipment is desirable. Here again the procedure requires the use of a template to

optimize the quality of the data.

Regardless of the approach used to read the film, it is usually not necessar y to

read every frame of data. The type of model trajectory guides the choice as to how

many frames of obtained data need be read. For zero oscillation drag runs, perhaps

only every tenth frame need be read. For the usual damped motion oscillating

trajectories, every second or third frame is sufficient. For obtaining the best

accuracy of the oscill tion envelope, it is best to read the model angle for every

frame of data in the region of the peak amplitude. A typical plot of oscillation

amplitude for a model with highly damped motion is shown in Figure 55. A sample raw

data tabulation is in Table V.

Once the raw data (model c.g. longitudinal and lateral locations, along with model

angular attitude) are obtained as a function of the film frame number, it is necessary

to convert it to a function of time. This is accomplished by relating the film frames

to time by use of the timing marks which are put on the film edge every millisecond.

If two separate rolls of film are obtained for a particular trajectory in order to

record the motion in two planes, it is necessary to put additional marks on the film
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in order to match the films together at just a few points during a trajectory. This

serves as a direct check or, any other attempt to link the two films together.

The raw data, whether it be frame, model position, or attitude versus time is then

smoothed by any convenient data smoothing process. This procedure pinpoints any major

film reading error and also re.^ults in data of nominally higher accuracy than can be

obtained from the original raw data. The smoothed model e.g. axial position data can

then be curve-fitted. This facilitates the calculation of the model horizontal

velocity as a function of time or the relative distance the model travels in the

airstream.

6.3 Drag Reduction

The coordinate system used for the reduction of data is one which references the

model position to the moving gas media; X is the longitudinal distance between the

model and the media and is the independent variable for the angular and translational

equations of motion 29,60-62 The instantaneous drag coefficient may be obtained
directly from the translational equation of motion

PV 
ACD

by changing the independent variable from time to distance. This results in

2m d[loge	
(12)

a + Vm/V.A
CD = - —

pA	 dX

A linear fit through a section of the log e (1 + Vm/%) versus X data yields an
effective constant drag coefficient for that section. When there are sufficient data
at a range of amplitudes, due to the decay, several effective drag points as a
function of various amplitudes of oscillation per flight may be obtained.

6.4 Static and Dynamic Stability Data Reduction*

For an axisymmetric body with first-order linear aerodynamic coefficients
( Cm = Cmaa; CL = CLOCM; C D = C DO ) and small angular excursions, the equation of planar
angular motion may be written as a second-order differential equation with constant
coefficients:

(L

Od
IB =ipV 2AdCm + LpV2Ad(Cmq + Cma)

	
(13)

V)

The translational equation in the X direction (longitudinal) is Equation (11), and
in the Z direction (vertical) if;

mZ = zpV2CL + mg
	

(14)

T.e solution to Equation (13) is

i
a = aoexx cos - 

2I

Ad 
Cma + X2 X	 (15)

• This data reduction analysis is a condensation of that a ppearing in Reference 60
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where
2

X = A [COO - CLa + 

mI 
( Cmq + Cma)	 (16)

In general

	

21d Cma >> ^ 2	 (17)

and therefore

Cma	 pAd 
Q2	

(18)

where 0 is the distance frequency of oscillation (27r cycles per unit distance of X ).
The dynamic stability coefficient may be obtained from the amplitude envelope:

md 2 	4m	 1

	

(Cmq + Cma) — _ —__Xloge	 +CLa - CD 	 (19)
I	 pA X 	 o	 ao

where %, is the particular amplitude corresponding to the distance X , and ao
is the amplitude at X = X o .

However, the conditions imposed upon this solution for the damping coefficient are,
in general, too restrictive. and more applicable solutions are used. An unrestricted
integral equation for determining the dynamic stability (pitch damping) coefficient
from energy considerations has been developed" 62:

Cmq + Cma -

and	
90	 Bo

I d	
Cm(a) d8 -	 CD (a)9' d8

(B0 -S 8 )	 - (80 -S B )

md 2 	Bo
B ' dB

I
-(Bo -S 9 )

(20)

where 90 is the initial amplitude, -(00 40) is the amplitude after one half cycle,
Cm and CD are functions of a , and (C mq + Cma) is the effective constant damping
coefficient. Using small angle assumption and assuming negligible effect of gravity
in Equation ( 14), the terms a and B are related by

B

a = a + (a - 8) = B - A 
f 

CC a)a) dB	 (21)

90

Expanding Cm(a) in a Taylor series about B , and considering only the first-order
derivatives,
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B

C (a) = C (6) _ 
2m dCm (6)	 CL(a) d6

m	 m	 2m d8	 B'
	 (22)

60

The lift and drag coefficients will be assumed to be func-cions of 6 directly instead
of a . This is equivalent to saying the second terms in their Taylor series

expansions are quite small. Since, in general, lift and drag have second-order

effects on the amplitude decay, a small error in their contribution will lead to only

negligible errors in the final solution for the dynamic stability coefficient.

Furthermore, since the decay is very small, 86 << 60 , in all terms except that

containing the prime moment function, C m (6) , the lower limit of integration,
-(60 -56) , will be replaced by 60 . Again, the error introduced by this approxi-

mation will be a small part of a second-order effect. Introducing these into

Equation (20) results in a working form of the energy integral equation:

60	 B0	 0

and	 pAd	 dC (6)	 C (6)
I
	

CM (0)d6 + 2I	 d8	 B' 
dB -	 CD(6)6'dB

(C + C ) and' _
	 - (60 -SB )	

10
	 e0	 -60

mq	 m& I	
60

6' d6

-60 	 (23)

In solving particular problems with this energy integral equation, it will be

assumed that the model angular velocity, 6' , is a function primarily of the hitching

moment, and other contributions can be neglected. In the linear case this is

equivalent to the condition of Equation (17). In most physically probable situations

this assumption proves excellent. In general, then, the following approximation for

6' obtained from the basic equation of motion by neglecting all terms except the

pitching moment, is quite good:

1
B	 2

6' = i pAd	 Cm (6) d6	 (24)
I f

Bo

where the sign of 6' is dependent on the sign of 60 .

Using this expression for the angular velocity, a solution for the dynamic stability

ccafficient of an axisymmetric body with general lift and drag curves at any

oscillation amplitude can be developed for linear and non-linear pitching moments.

6.4.1 Linear Pitching Moment: Cm (a) = Cmaa

Integration of Equation (24) gives
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B 1 = f PAd

I J 
CmO^ dil]
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(25)

Arbitrary lift and drag curves may be approximated to any desired accuracy by power

series in & . For an axisymmetric body the two series will be odd and even

respectively.

M

	

CL (a) = CL (0) = CL^ +	
bi921+1	

(26)

	C D(a) = CD (B) = CDO +	 c1021 .	 (27)

=1

Inserting these in the energy equation and performing the indicated integrations

yields the following solution for a half oscillation cycle:

2	

V
j=j

i+1
and _ _ 4m Q S_e	 2j - 1

(Cmq + Cma) i
	 A Tr 8 + CLa + 2

TT2.bi80i
P 	 0 	 .]

n	 i

CD0 + 2	 2(1 + 1) TT 2j 23 1 
cieoi	

(28)
i-1	

f=1

Notice that this solution is equivalent to the solution of the linear differential

equation (Egn.(19)) when the c i and ki terms are set equal to zero. By extension

then, this solution provides a correction to the linear solution which will account

for non-linear lift and drag over an arbitrary number of cycles. However, the

corrections are based on an amplitude value which changer during the flight due to

the decay. It is, therefore, necessary to define a new amplitude value to be used

for calculations and data correlation. The mean-square resultant angle of attack,

S 2 , is defined as	 x

	

8 2 = 1 a2 dX	 (29)
X f

0

For a constant decay which is small in comparison with the oscillatory frequency,

integration gives

a2 — a2	2 	 x	 o

	

S	
4loge ( %/ao)	

(30)
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The mean amplitude for the flight will be defined in terms of 
8 2 :

2	 2

	

2	 2	 % — N

	

a _
O	 2S	

2loge ( %/MO)	
(31)

In the limit, as the decay approaches zero, a O = a. In the same manner that 82

best represents the mean square angle-of-attack, ao best represents the mean

amplitude.

The usable solution for the dynamic stability coefficient for a body with a linear

pitching moment is then

md 2 	4m	 1

	 (Z)

	
2j - 1

	(CmQ + Cma) -- _ —	 loge	 + CL + 2	 TTbi -&21-
I	 pA X	 O— X 	 2j

1=1 	
J=i

n	 i

	

- CDO + 2	
2(1 + 1) TT 2j 2j I c

i 21	 (32)

j

As an exAmple, if the lift and drag are given by the expressions

CL = CLaa + b i cx3 + b 2 as 	 and CD = CDO + c l a 2 + c 2 Ot	 (33)

the lift and drag terms in the solution are, respectively,

CLa + u bl a2 + e b2ao and CDO + u c l an + e c 2 ao	 (34)

The final forms of the damping coefficient for the linear pitching moment case is

then

2

	(CmQ + Cma) and 
_ 4m	 1	

loge (_^0 + (CLa + u b lao + e b 2ao) -
I	 pA X - XO 

The applicability of this solution for several specific lif, an,1 drag curves has

been verified with an "exact" computer solution of the equations of motion. The

analytical forms of the aerodynamic coefficients were entered iatu the program and

the resulting motion computed. The value of (C mQ + Cma) was then calculated with

the above solution using the computer decay. The deviation between the result and

the input value of (CmQ + Cma) was less than 1% in all cases.

6.4.2 Non-Linear Pitching Moment

The oscillation frequency of a model is noticeably affected by the amount the

pitching moment diverges from being linear. In addition, the effect of the dynamic
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stability upon the oscillation envelope may be dependent upon the amount that the

pitching moment is non-linear. A closed-form analytic solution for these effects is

not a strai ghtforward matter, and does require both a simple form of a non-linear

pitching moment and simplifying assumptions in solving the equations of motion. If the

the pitching moment is either trigonometric or cubic in form, then a first integration

yielding an expression for 6 t may be performed as for the linear case. However,

second integrations, such as those involved in Equation (23), generally lead to

elliptic integrals of the first and second kinds.

An analysis of a cubic non-linear pitching moment of the form

Cm (a) = Cm A t 2rM8 3
	

(36)

where rm > 0 (a destabilizing effect) will be described here*. Figure 56 shows the

shapes of various cubic pitching moment curves as a function of Cma/rm .
Equation (13), neglecting all terms except the pitching moment, can be completely

solved for both a linear and the cubic pitching moment. By equating distance fre-

quencies over a quarter cycle, the effect of the non-linear moment on 8 and 01

may be determined. Converting Equation (13) to distance,

10" = 12pAd]CM (6) + 9' 
2m	

(37)

In the linear case where Cm (B) = CMa0 , by neglecting the O f term, double

integration of Equation (37) yields the quarter-cycle distance

1

X  = 27T _ pAdC :

	

(38)

m

In the non-linear cubic case, by neglecting the second-order e' term, double

integration of Equation (37) yields the quarter-cycle distance

 :	 1	 Z
XN

	 (21

Ad	 C + r 02 
F (k, irr)	 (39)

ma	 m o

where F(k,2m) is the Legendre canonical form of the elliptic integral of the first

kind and

02r
k 2 = —	 ° m 2	 (with 8o in radians).	 (40)

Cma + rmB0

An expression for the effective linear pitching moment slope, 
(Cma) eff I 

which

would give the same distarse period of oscillation over a quarter c ycle as does the

non-linear cubic moment can be obtained by settin g XL = XN and algebraically
solving for (Cma) eff , letting (Cma)eff be equivalent to CMa for the linear

case. Then

• An analysis for the sinusoidal pitching moment C.(0) = M r sin (r9) can be found in
Reference 61
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_ 772(Cma + rma2)
(Cma)eff	 4[F(k, -I -T) ] 2	 (41)

The ratio of (Cma)eff/Cma as a function of 6
0 with Cma/rm as a parameter

appears in Figure 57.

Figure 57 (or Equation ( 41)) provides a convenient method for obtaining the

coefficients of a cubic pitching moment from a set of experimental data. The value

Of Cma at a = 00 can be determined by extrapolating (Cma)eff ( as obtained from

Equation (18)). Oscillation data for amplitudes near zero, say 60 = 2-3 deg, are

required in addition to the large amplitude data. Then the ratios of experimental

(Cma)eff/Cma as a function of 6
0 may be calculated. The factor C ma/rm is then

obtained by matching the equivalent (Cma)efi"Cma 
curve in Figure 57 with the

experimental ratio.

The derivation of the form of the dynamic stability term for the case of the cubic

pitching moment is quite involved. The correction factor required in the reduction

of dynamic stability data is generally small. Only the final results of the complete

solution 60 will be given here. They are based upon the assumption that the lift and

drag terms in the solution for the dynamic stability coefficient are not affected

by the non - linearity of the pitching moment. Since these terms are second order,

this is an acceptable simplification.

The dynamic stability data reduction equation for a cubic pitching moment is the

same as Equation ( 28), except that a correction factor is included in the oscillation

amplitude decay term. This correction factor, which can be expressed as a function

of k 2 is shown in Figure 58 as a function of 60 with Cma/rm as a parameter.

The dynamic stability equation is

n	 1+ 1

	

and 2	 4m	 1	 ax	 2f - 1	 21
	(Cmq + Cma) — = R —	 loge	 + C^a + 2	

bia0 -

	

I	 pA X -

 X0)

	 a0	 '	 2,)

i=1	
=i

n	 1

CD0 + 2	
2(1 + 1) 

TT 2J 

2j 
1 C 1 
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01(42)

i=1	
J=i

where

	

R -
	 i k 2 (1 - k 2 )F(k, 2'n)	

(43)
j (1 + k2)E(k, 27r) -( 1 - k 2 )F(k, 27T)l

6.4.3 Other Forms of the Non-Linear Pitching Moment

The destabilizing cubic form of a non-linear pitching moment gives the proper gross

shape of a pitching moment over a wide range of angles of attack. But its form may

not be applicable at the smaller angles of attack, say less than 30 deg. For example,

a slender cone model will exhibit Cma which increases in magnitude as the oscillation
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envelope increases to 30 deg (see Figure 14). In such a region, a stabilizing form

of the cubic pitching moment is required; that is rm < 0 in

C09) = Cmoe + 2rm6 3
	

(36)

As per Reference 63, the effect on the (Cma)eff/Cma as a function of 60 is

merely to make a 'mirror image" about the (Cma) eff/Cma = 1 lin g: of the curves in

Figure 57. This 'mirror imag e" assumption is good for B o < 90 deg and

jCm«/rm1 % 10 .

The effect of the stabilising cubic term in the pitching moment on the duping

parameter is significantly lass than the effect ',f a destabilizing term. But, for

1Cm, rmj ; 10 and 0
0 < OU deg , the 'mirror image" about R = 1 of the curves is

Figure 58 is an adequate approximation 63 . No more than a 1% error in the value of 1,

will occur in this range of Cma/rm End 60 . Beyond these limits, the "mirror
Image" approximation becomes progressively worse.

A more ur.iversal form of a non-linear pitching moment would be a fifth-order

equation. This will accomplish bath pitching moment features of a slender cone:

increasing pitching moment slopes with increasing oscillation env q ^ope for the lower

range of angles; then decreasing pitching moment slope with further increase in

oscillation angle, reaching a maximum value of stabilizing pitching moment near

6 = 90 deg . Information on free-flight data reduction for the quintic form of tre

non-linear pitching moment can be obtained from Reference 63.

6.5 Summary of Data Reduction Equations

6.5.1 Drag	
/	 V

2m  loge (1 + V

pA	 dX

6.5.2 Pitching Moment Slope

(Cma)eff	
2I

= - P1 f2
2

where Q = 27T x oscillation cycles per unit distance .

6.5.3 Pitching Moment

Assuming cubic pitching moment in the form

Cm (6 ) = Com + 2rm63 ,

determine ratio of Cma/rm by matching equivalent (Cm )eff/Cma curve in Figure 57
With (C®a)e^i1[ (Cma)eff] 9 00	

The value of C(C®a)eff^ 9 ^0 is determined by extra-

polating experimental (ea)eY:f versus 60 curve to 60 
0 

0 . Oscillation data for

amplitudes near zero, say 6 0 = 2-3 deg is required. in addition to the large

amplitude data.

e
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6.5.4 Center of Pressure

Obtain (Cma)eff at the same oscillation amplitude for two or more locations of

the model center of gravity. Then the distance of the center of pressure from the

model rose is

_ Xcg1 (Cma2 ) eff - XCg2(Cma1)eff
(Xcp)nose

(Cma2)eff — (Cma1)eff

where the subscripts "1" and "2" refer to the two different center-of-gravity

locations (measured from the model nose).

6.5.5 Normal Force Slope

Using the 
(Cma)eff data obtained for determining the center-of-pressure location,

the normal force slope coefficient is

	

_	 d

	

(CNa) eff -	 (Cma1)eff
Xcgi — Xcp

Due to the usual model mass characteristics, it is not practice' to obtain directly

the effective lift curve slope, (CLd eff I because the amount	 model swerve is

generally too small (see Table III) far sufficient accuracy.

6.5.6 .'^ynamic Stability (Pitch Damping)

General case: static aerodynamic coefficients are non-linear

Cm(6) - Cma + 2rm63

CL = CLaa + b 1 a3 + b2 a5

C  = CDO + C 1 a2 + C2 au

Determine 
(Cma)eff from oscillation frequency. If not practical to estimata re-..

of Cma/rm from (Cma)eff c.,;.3 obtained as a function of Bo , then use Newtor-jei

Impact theory to estimate Cma/rm . Use factor R (Fig.58) on log e (N /a0 ) te.r

correct for non-linearity of pitching moment,

_	 4I J^ 1	 I	 _

Cmq + Cma	
R P^2 \X - X 1oBe a + md2 (C LI + v b l ao + e b2 0C -

0	 0

I
md2 (CD0 + µ- 1 a0 + 6C2ao)

where R is a function of both CmOL/rm and 30 (that is, 60 ) .

In any case, the coefficient (C mq + Cma) is taken to be the effective average

constant over an entire cycle of oscillation and generally does vary with the

oscillation amplitude.
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This damping coefficient equation reduces to the linear case simply by letting

R=1 and b1 =b2 =c 1 =c` =0.

7. CONCLUDING REMARKS

This report presents free-flight testing procedures which are now operational.

The emphasis has been on those techniques used in the Jet Propulsion Laboratory (JPL)

continuous-flow supersonic and hypersonic wind tunnels 64 . The ideas and techniques

described as relating to J:L are not necessarily unique nor original with JPL. It

was just convenient to describe JPL's experience. Free-flight testing is currently

being developed and used at several other establishments (see Table VI).

There are times when this free-flight technique is the most appropriate method for

obtaining data. Under certain conditions it may be an expedient way for obtaining

data, even though not the optimum approach. Also, it can serve to validate data

obtained from models supported by some physical means. This testing technique is a

valuable complement to all other useful techniques.

No attempt was made to enumerate all of the problems that have occurred in

developing the techniques. Nor have all the alternate approaches, which have been

either considered or used, been mentioned. Further detailed information on the use

of this rapidly advancing testing technique along with typical results can be found

in the included references.
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TABLE I

Analytical Comparison of Base Drag to Total Cone Drag

(a = 00)

Cone

half-angle

(deg)

M CDP

(Form drag 27 )

CDB

(Base Drag)

CDOT

(Total Drag)

CDB^CDOT

10 1.25 0.144 0.457 0.601 0.76

2 0.104 0.179 0.283 0.63

5 0.074 0.029 0.103 0.28

10 0.366 0.007 0.073 0.10

20 0.064 0.002 0.066 0.03

20 1.25 0.489 0.457 0.946 0.48

2 0.325 0.179 0.504 0.36

5 0.259 0.64 0.288 0.10

10 0.250 0.007 0.257 0.03

20 0.248 0.002 0.250 0.01
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TABLE III

Typical Conditions for Wire - Release System

Material
Diameter

(in.)

Notch

Depth

(in.)

Notch

Temperature

(OF)

T 0

(OF)

Preload

(lb)

Impulse

Load

(lb)

17-9PH Stainless 0.008 0.003 0 to Adiabatic 1000 10

Steel Wire
0.012 0.005 0 to Adiabatic 1000 7 21

0.020 (	 0.004 -320 600 50 30

0.020 0.004 Adiabatic 600 27 25

0.024 0.007 NO 600 75 30

0.024 0.007 Adiabatic 600 30 30

0.026 0.010 -32 600 60 30

0.026 0.006 100 600 50 30

0.026 0.006 Adiabatic 1000 32 25

321 Stainless 0.036• 0.003t 0 600 30 30

Steel Tube
(0.006 wall) 0,036•

1

0.0031 Adiabatic 600 20 30

• Internally cooled with 50 lb/in.
2 gauge room temp -ature nitrogen gas at tube inlet

{ Circumferential notch
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TABLE VI

Laboratories using Free-Flight Model Testing in

Conventional High-Speed Wind Tunnels

Laboratory Location Cognizant Person

AEDC Arnold Air Force J.Lukasiewicz

von Kdrmdn Gas Dynamics Facility Station, Tennessee

Ballistic Research Laboratories, Aberdeen Proving Ground, C.C.Bush

Supersonic Wind Tunnels Branch Maryland

General Dynamics/Convair, San Diego, California D.P.Cumming

High Speed Wind Tunnel

Jet Propulsion Laboratory, Pasadena, California E.A.Laumann

Aerodynamic Facilities

NASA Ames Research Center, Moffett Field, V.I.Stevens

Thermo- and Gas-Dynamics Division California

National Aeronautical Establishment, Ottawa, Canada K.Orlik-Ruckemann

Unsteady Aerodynamics Laboratory

ONERA Chfitillon-sous-Bagneux P.Carriere

High Speed Wind Tunnels (Seine), France

US Naval Ordnance Laboratories, Silver Springs, S.Hastings

Applied Aerodynamics Division Maryland
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Fig.12	 Example of model aft-portion distortion required to accommodate internal

balance and sting
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Fig. 19	 Example of a dual-cone salvo gun-launched into a free-flight trajectory
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Boundary Mach Pressure	 Rd
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Fig.32 Pneumatic launch gun for externally mounted models

A

t	 -	 f
D	 ;..may	 '

_^	 L

Ref. 45

Fig.33	 Triangular-shaped blade support for cone models
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Fig.41	 Examples of model construction techniques
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Fig. 44	 Analytical balances for locating the center of gravity
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Fig.46	 Instrument for measuring mode moment of inertia
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Fig.51	 Gun-launch installation for base pressure telemetry model
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Fig.53	 Details of pressure telemetry system
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