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Abstract

The general problem of. time open maneuvering of an orbital

vehicle in a Newtonian gravitational field while conserving the- char-

acteristIc velocity of the maneuver is considered. The problen. is first

formulated-as a pseudodynamical system in the classical terms of a Ham-

Utonian. The canonical, equations -of Hamilton are presented and the max-

imum principle is applied.

The -equivalent formulation in terms of the necessary conditions

of the calculus of variations is made along with the interpretation of the

problem as a search for geodesics, or minimum length paths, in a metric

space. The approach which has been so --,-,-.cessM for this problem and

has produced the recent outpouring of results is presented. This ap-

proach considers separately the Weierstrass necessary condition and the

Weierstrass-Erdmann comer condition. Since the metric of the state

space is very much nonconvex, this eliminates most maneuvers as von-

optimal, leaving a relatively small proportion of maneuvers as possible

optimals.

This approach is applied in detail to the coplanar motion problem.

However, the ideas discussed apply to the completely general nonco-

planar case.

The further requirements of the maximum principle are briefly

discussed. The equivalence of the maximum principle and Huygen's
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wave principle is examined. The complete optimization approach is

applied to the coplanar, coaxial case.



Nomenclature

c - exhaust speed of propella#it

e - eccentricity, f/4

F - second focus of elliptical orbit

f - linear eccentricity, distance between foci of orbit

f  - functions governing the pseudodynamical system, -eG . (4)

H - Hamiltonian, or pseudo Hamiltonian, eq. (5)

- length of major axis of orbit

m - mass of space vehicle

Pi - generalized momenta, ccstate. variables, adjoint variables, Lagrange
multipliers, eq . (6)

p - unit vector defining a direction in dx i space

t - time

v - speed of space vehicle

xi - state variables of the orbit treated as a dynamical system

a - a control variable, angle between thrust direction and plane of motion

$ - orientation of major axis of orbit in its plane of motion, Fig. 1

$ i - the three Eulerian angles of the orbit in 3 space

y - flight path angle, angle velocity vector makes with local horizontal,
Fig. 1

8 - a control variable, true anomaly of space vehicle, polar angle in
the plane measured from perigee in the direction of motion,
Fig . 1

iv



v

T - acceleration due to thrust

^ - value of cp at end of maneuver

cp - characteristic velocity, latent velocity, eq. (2)

W - a control variable, thrust angle in the plane of motion, Fig. 1



1

I

in the aerospace engineering sciences there is a basic problem

of optimization which has not been solved and in which little progress

had been made until recently. This problem is that of changin g orbits

with a space vehicle and performing the maneuver in some optimum

sense. Classicaliy, this problem has been treated under the constraint:

of vastly si ►aplifying assumptions, but even so. up until now results

have been sparse. The approach which has produced the recent out-

pouring of results for the simplified problem is the subject of this

paper.

The first and obvious simplification for this problem is to assume

that there is a single attracting gravitational body with an attractive

force varying inversely with the square of the distance from it. This

assumption Implies that the vehicle is far enough from the planet so

that atmospheric forces and oblateness effects can be neglected, and

yt not so far from the planet that third body forces are important.

The traiectories are conic sections: hyperbolas, parabolas, and ellipses.

The simplest criterion of optimization is equally obvious.

From the very first and far into the foreseeable future the space mission

has been and will be limited by the available payload. Since the pay-

load is directly related to the final mass of tl-i vehicle, the obvious

goal is to maximize the final vehicle mass Vb.Lch this, in mind, the
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simplest criterion of optimization is to minimize the fuel expenditure

during a maneuver. The quantity which furnishes the direct measure

of the fuel expenditure is the "characteristic" velocity, or "latent"

velocity. This is the theoretical maximum achievable velocity increment

for a given expenditure of propellent. For a simple rocket traveling in a

straight line in the-absence of any external force, the change of velocity

effected by a differential amount of propellent, dm, is

dv - - dm c	 (1)
M

where m is the instantaneous mass of the rocket and unexpended fuel

and c is the instantaneous exhaust velocity of the propeller.".. The

characteristic velocity may thus be defined as

m
rr	 t

CP - J mo m dm = It T dt	 (2)
0

where T is the instaneous magnitude of acceleration due to thrust.

If the magnitude of acceleration is unlimited chen the velocity change

due to thrust alone can be assumed to take place discontinuously

and the characteristic velocity is simply the magnitude of the impulsive

velocity change.

The most far.-reaching simplification which is classically

made for this problem is the assumption that the duration of the maneuver
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is unlimited. This is referred to as the time open assumption. Many

of the consequences of -this assumption are completely, unrealistic, but

the assumption is necessary in order that the problem be tractable to-

solution in general. Some major consequences of this assumption. are:

1) Only elliptical transfer between elliptical=-trajectories

need be considered, along with the two limiting cases of the parabolic

trajectories tangent at the periapses of the initial and the-final ellipse.

For the time open problem in its broadest sense all portions of an

hyperbolic trajectory are _made available by starting far enough back in

time. In this case the transfer between two 1.7perbelic trajectories

can be effected by a maneuver with an infinitesimal characteristic

velocity. In general this requires six infinitesimal impulses:

i) Change the angular momentum to zero at in-

finity on the original hyperbolic trajectory.

ii) Change the energy to zero (parabolic) at the

origin.

iii) Enter a large circular orbit at infinity on the

degenerate parabola.

iv) Return on another degenerate parabola with the

proper orientation.

v) Change the energy at the origin to the desired

final energy.

vi) Change the angular momentum at infinity to the

desired final value.



available. Position in orbit is eliminated as a discriminatory state

variable.

3) Impulsive transfers are available to all space vehicles.

A vehicle with a finite maximum thrust may approach impulsive maneuvers

in the limit by applying its maximum thrust for an infinitesimal time,

coasting completely around the orbit and again applying maximum thrust

at the same place. This has the effect of multiplying the maximum

thrust by any factor until, in the limit, it becomes infinite.

4) The rendezvous problem is the same as the transfer problem.

If there is another vehicle in the final orbit which must be joined, the
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solution to the simple transfer problem suffices for this rendezvous

problem when one of the maneuvers is split in two. By interrupting one

of the maneuvers and waiting in a chosen intermediate orbit with a

slightly different period, the vehicle can simply bide its time until

the other vehicle is in the proper position. This waiting period requires

only a finite time as soon as one knows that all constant period maneuvers

are nonpptimal and consequently there is always a finite interval of

periods available during an optimal maneuver from which a suitable

rational period may be chosen. The period of an orbit is a function

only of the length of its major axis, and hence, only of the energy

of the orbit. Thus, a constant period maneuver must have the velocity

change always at right angles to the velocity of the vehicle. In the

coplanar case such a velocity change is easily shown to be nonoptimal,

and it is reasonable to suspect the same for the general case.

In the light of these four consequences it should be apparent

that the assumption that the duration of the maneuver be unlimited

becomes unrealistic. However, it is an unrealistic assumption only

if the resulting optimal maneuver for a particular transfer requires

an infinite amount of time. But many solutions turn out to require only

a finite elapsed time which is compatible with the restrictions of

typical space projects. The optimal maneuver under the time open

assumption provides a lower bound for the characteristic velocity
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requirements of an orbit transfer in which duration is considered.

If this optimal maneuver involves a duration which is acceptable to the

actual problem, then it provides a very good lower bound. Therefore,

the greatly simplified problem as stated is of strong current interest

and only now are general results beginning to appear.

The problem as posed can be considered as an optimal control

problem, as well as a problem of the calculus of variations, or as a

geodesic or minimum distance problem in a metric space. The discussion

of this paper will attempt to point out this equivalence and use it to great

advantage.
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II

The problem in various guises has been studied by a number of

researchers. Hohmann in 1925 displayed one famous solution which be-

came known as the Hohmann transfer. The problem lay dormant until after

World War II when Lawden began his work on the more general problem.

Lawden worked virtually alone on this problem for ten years and produced

practically all of the early results. Lawd-en used time as the independent

variable necessitating special handling for impulsive velocity changes

and less-than-maximum-thrust maneuvers.

The intrinsic independent parameter for this time open problem is

the quantity to be conserved, the characteristic velocity. Then the prob-

lem is what is referred to in control theory as a time optimal problem,

since it is the independent variable which is to be conserved. With this

choice of independent variable, one can handle impulses, continuous thrust

arcs of all types, and coasting arcs equally well. This is the choice made

by Busemann in 1958 working at the Langley Research Center of NASA.

Busemann's work culminated in his Prandtl Lecture in Vienna in 1965. A

similar approach was used by Contensou (1961) . Breakwell, (1963) ,

followed Contensou and applied the maximum principle. The basic ap-

proach is applicable to the general problem outlined at the first of this

paper, but to achieve concrete results all of these investigators have

thus far restricted the problem to coplanar motion.
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The first step is to formulate the problem in classical Hamiltonian

terms and apply the max_mum principle. Every orbit is treated as a possible

state of a dynamical s,,--±Pm described by a state vector x and a set of

differential equations describing the change in the state vector under the

influence of perm4ssible controls. For this problem there are five compo-

nents of the state vector. A convenient choice of state variables is:

x1-81

x2 = S2	 orientation in space	 (3)

x3=83

x 4 = -t	 energy or period

'5 = f (or 0	 shape parameter

where the S,i are the Eulerfan angles of the orbit treated as a solid body in

three space, -t is the length of the major axis of the orbit and is a measure

of the energy of the orbit and the period of the orbit, f is the distance be-

tween foci of the orbit (e is	 f/-G, the eccentricity of the orbit) .

The controls available are those governing the use of the rocket

Lo achieve a state change. The first of these is the position along the

orbit of the rocket engine during its use. This will be measured by the

tree anomaly, 0, of the veh i cle. Two other controls measure the direction

in space of the velocity increment (aligned with the rocket thrust) . The

first of these will be the angle W in the plane of motion measured in the

same mariner as the flight path angle. The second is the angle a which
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the thrust direction makes with the plane of motion (Figure 1) .

The differential equations governing this dynamical system are

of the form

dxi = f  (3t; 8,	 0)	 i = 1, ... , 5	 (4)
dCp

The Hamiltonian, or pseudo Hamiltonian as it is sometimes called, is

fc ►_-med as:
_	 dx.

H(p , x;	a)= Ep . 	p. f .	 (S)

	

1 1 drp	 1 1 1

where p is the generalized momentum vector, also known variously as the

adj oint vector in mathematics, the costate vector in control heory, or the

Lagrange multiplier vector in the calculus of variations. The components

Of p satisfy the equations

dCP _ - aKi
dpi 	 aH	 (6)

and the differential equations for the state -ariables can be rewritten as

dxi aH

dCP bpi (7)

f- rming the canonical equations of Hamilton for this dynamical system.

The maximum principle (or minimum principle as it is called with a sign

change) applies and states that along an optimal trajectory H is a maxi-

mum and is constant.

H(P( cP), X(cP); e(Cp) , * ( CP) , a (CP)) = max  H	 (8)

H = Ho = constant
	

(9)
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For this problem the domain of the control variables is open. The controi

variables are all angles wi*h no restrictions on th^ir val-es . Then equa-

tLon (8) yields the additional equations which must be satisfied at any

local extremum of H:

a H = aH	 aH =
ae	 a° a* = °	 a. °

The problem can be treated as either an initial value problem

w ith initial conditions

X'(% = o	 P (CPO) = Po	(11)

or a boundary value problem with boundary conditions

x(cpo) = xo	 x(f) = xf	 (12)

where § is the value of cp (variable) at the terminal state. The boundary

value problem is the natural formulation for specific problems, and x 

can be generalized to a target set of state vectors, in which case the

additional end condition, or transversality condition, must be added that

p M must be normal to the target set. There are numerous iterative tech-

niques f :r solving such a problem, but it is very difficult to draw general

results or conclusions from the solutions of these specific problems.

For the general problem as is being considered in this raper it

is desired to know all the optimal pu tl;s iedding from every point of the

state space. Thus, the natural formulation is as an initial value problem.

However, unless the problem can be solved analytically this also is a

(10)
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laborious method of aLtaining general results. Breakwell and Moyer have

used this technique and while they do produce =nr.;c general results, their

rapers are illustrative of how this method clouds the problem.

Before presenting the approach which appears to yield the great-

est insight to the general problem, it should be pointed out that the Ham-

iltonian formulation does pre ,; uce some valuable general analytical results

rather quickly. It turns out that the Hamiltonian does not depend explic-

itly on the three state variables, the Eulerian angles. This is apparent

from the fact that the spatial axes can be rotated arbitrarily without alter-

ing the physics of the problem . Thus, the Eulerian angles as state vari-

ables are what are called cyclic or ignorable variables . It follows that

the generalized momenta conjugate to thc.;e three variables are constants,

as can be seen from equations (6) . This has several important implications.

1. If the initial and final orbits have one or more of their

Eulerian angles identical, then throughout the optimal

transfer these angles remain uncharged. In terms of the

initial value problem, if a maneuver starts out with no

change in one or more Eulerian angles, then those angles

remain constant --From then on. In particular:

coplanar, coaxial transfer (the three initial Eulerian

angles identical to the three final ones) is accom-

plished optimally only by coplanar, coaxial



12

maneuvers. As will be seen, this restricts the control

to that of tangential impulses at the apses .

b) Coplanar transfer (the first two Eulerian angles con-

stant) is accomplished optimally by coplanar maneu-

vers only.

e) Coaxial transfer (the third Dulerian angle constant_) is

accomplished by coaxial maneuvers only.

2. The variation of each of the Eulerian angles is strictly

monotone throughout an optimal maneuver. At no intermed-

iate point of the maneuver do any of the Eulerian angles equal

that of the final orbit unless it does at every point of tt,:

maneuver. An Eulerian angle cannot take on the same value

at two sepai3te points of a maneuver unless it is constant

throughout.

3. The characteristic velocity of a maneuver is a strictly in-

creasing function of Ids i I , the magnitude of the changes in

each of the Eulerian angles. The one exception is the mini-

mum escape and return maneuver (biparabolic maneuver)

which does not depend on the relative orientation of the in-

itial and final ellipses.

This is a considerable contribution which comes directly from

the Hamiltonian formulation. using other techniques, researchers have
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spent much effort to prove that optimal transfer between two coplanar or-

bits is always coplanar, and between two coaxial orbits is always coax-

ial. It falls out immediately, as shown above, when the Hamiltonian ap-

proach is used. However, beyond this point general results are difficult

to obtain directly. In the next section the approach which proves so

fruitful is presented.
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III

1nC conditions of the maximum principle of the Hamiltonian

system set forth in the preceding section are local necessary conditions

for optimality. This point brings one back to the basic idea behind the

search for optimals . The basic idea is one of elimination. Tests are

devised which an optimal maneuver must satisfy, and then possible man-

euvers are checked by these tests. All maneuvers which fail one or more

of the necessary conditions are eliminated. Ideally, it is known that an

optimal path exists, and all but one path are eliminated as nonoptimal .

The remaining maneuver must be the optimal one. However, it seldom

works out this nicely. A major step will be achieved if some simple tests

can be devised which eliminate most possible maneuvers as nonoptimal.

This is what will be done.

The formulation of the previous section can be expressed equiv-

alently in terms of the local necessary conditions of the calculus of var-

iations. Equations (6) for the generalized momenta are equivalent to the

first necessary condition of the calculus of variations. Equation (8) ,

the requirement that the Hamiltonian be maximum under an optimal con-

trol, is equivalent to the second necessary condition, or the Weierstrass

necessary condition. Equation (9) , the requirement that the Hamiltonian

be constant throughout an optimal maneuver, contains the Weierstrass-

Erdmann corner condition of the calculus of variations. A maneuver
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which fails to satisfy any one of these conditions is nonoptimal . Thus,

it may simplify the task if these conditions are considered separately as

is encouraged by the calculus of -variations.

The Weierstrass necessary concation may by formulated as

follows. The displacements

dx i = fi(x; e , C a)	 i = 1, ... , 5	 (13)

form a three dimensional hypersurface, a function of x, in the five dimen-

sional space of dx i,which has the curvilinear coordinates 8, fir, a. This

hypersurface represents the displacements dx, which can be had from the1

initial point Y at a cost of characteristic velocity of dep. On this hyper-

surface the curvilinear coordinates ep, * , a of a point specify the control

required to reach that point. A control 8 , a from an initial point x is

said to satisfy the necessary condition of Weierstrass in case the dis-

placement corresponding to this control, equations (131, is a maximum

displacement over all possible controls for some direction in dx i space.

If pis the unit vector specifying a direction in dx,c space, then the dis-

placements which satisfy the Weierstrass condition for this direction are

the solutions (one or more) of the equation

-•	 max	 -^p • dx = 
	 a 	 P dx (x; 8 , V► , a) J	 (14)

That is, displacements satisfying the necessary condition of Weierstrass

are all those displacements which satisfy equation (14) for some direc-

tion p in dxi space.
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The Weierstrass-Erdmann corner condition applies across dis-

continuities in the control functions 8 (c ) , *(ep) , a(cp) . Where the control

functions are continuous this corner condition is satisfied trivially. At a

corner, or discontinuity in the control program, let` ,, ^ ►,, al be the lirrit-

ing values of the controls as the discontinuity is approached with cp in-

creating, and 82 , *2 , a2 be the limiting values as the discontinuity is

approached from the other side. The Weierstrass-Erdmann corner ccndi-

ti on is that across such a discontinuity the relation

p cox (x; 8 1 , l , al) ° P dx (x; 82 *2 , c 2)	 (15)

holds, where p is the direction vector of the Weierstrass necessary condi-

tion and must be the same at both sides of the discontinuity. TY,at is,

the corner condition applies when there is more than one solution of equa-

tion (14) for a given p, and across a corner the controls (or displacements)

must correspond to two solutions of equation (14) for the same p.

It should be noted tha' the unit vector p is colinear with the

generalized momentum (adjoint, costate, or Lagrange multip!.ier) vector

p. Where the displacement hypersurface has a -well-defined normal

direction the Weierstrass necessary condition requires among other

things that?"' be the outer unit normal vector at d--x. . Figure 2 illustrates

these statements with a one dimensional hypersurface (a line) in a two

dimensional space.

This problem may also be thought of as a problem of finding the
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geodesics or minimum distance paths in a five dimensional x s pace over

which a metric is defined by equations (4) or (13) . One of the require-

m ents , mathematically, for a metric is that locally the length of the path

from one point to a second point and then to a third point must be greater

than or equal to the length of the direct path bet •Neen the first and third

point. This is the triangle inequality required of a metric, and is equiv-

alent to the requirement that the metric be convex.

In this case the metric tensor is represented by the displacement

hypersurface . The Weierstrass condition is simply a check of the con-

vexity of the metric. Those portions of the metric which fail this test,

that is, which are nonconvex, are replaced by internal linear combina-

tions of other displacements. The new, or improved, metric consists of

the original metric and all points on the straight lines joining any two

points of the original metric. Only points on the surface of this new

_netric are considered. That is, the original metric is completed by the

smallest possible convex hull. This new metric satisfies the triangle

inequality (which is simply the convexity requirement) and may be used

to determine the geodesics of the space in the usual manner.

Figure 2 illustrates the principie of this technique. The non-

convex portions of the metric (or displacement) tensor are covered by a

developah' -- surface (a surface generated by straight lines) formed by

rolli :g the metric or: a hyperplane of Cie same dimension as the
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hypersurface forr- rig the displacement body. The straight line generators

of this developable surface have endpoints corresponding to the ccr_*:--c

discontinuity across a corner which satisfies the Weierstrass-Erdmann

corner condition.

With this groundwork laid, the approach which has produced the

recent result :or this problem and which is the subject of this paper be-

comes clear. The object of using local necessary conditions is to elimi-

nate as many maneuvers as possible by showing them to be nonoptimal.

It turns out that a separate application of the `Neierstrass necessary con-

dition and tha Weierstrass-Erdmann corner condition eliminates practi-

cally all possible maneuvers. This is the approach used by Buserr_ann and

Contenso u.
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N

This approach will be demonstrated by applying it to the

coplanar case of the problem. For the coplanar case a is identically

zero, and. two of the Eulerian angles are constants of the motion and

may be neglected. The remaining Diierian angle will be referred to

simply as 8 , and is the angle the major axis of an orbit makes with

some reference line in the plane of motion. The state space is now

three dimensional

x  = 8

x2 = -t	 (15)

x3 = f (ore)

with the three differential equations of this oseudodyna mica I system

dxi	 -#
dcp = f  (x; 8	 fir)	 i = 1, 2 , 3	 (17)

where there are now only the two control variables, 6 , the position

in the orbit, and * the direction of the velocity change in the plane.

The displacement hypersurface is nc ,%v just an ordinary two

dimensional surface in the three dimensional displacement apace. This

displacement surface has curvilinear coordinates 8 and * . The nature

of these coordinates makes the construction of this displacement tensor,

or metric, very simple. For a given position in the orbit (fixed 0 ) the
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curve of displacements as the direction of velocity change varies througn

360 degrees (as * varies through 360 degrees) is an ellipse centered

at the initial point x and tangent along its major axis to the 45 0 cone

of revolution with axis parallel to the x 3 axis in state space (Figure 3) .

Actually the displacements should be drawn in displacement space , dx

but superimposing this on the state space as in Figure 3 helps to

indicate how the displacement body (or metric) is generated.

It is helpful to note that the 45 0 cone in state space (Figure 3)

divides the state space into intersecting and nonintersecting orbits.

Points in the region outside the cone represent orbits which physically
y

intersect the original orbit which is represented by x , which serves

as the vertex of the cone. Points on the cone represent orbits which

are tangent to the original orbit. Points inside the upper haif of the

cone represent orbits which are entirely outside the original orbit.

Points inside the lower half of the cone represent orbits which are

wholly inside the original orbit.

Returning now to the displacement tensor, one finds that the

ellipses representing the displacements available from a given position

in the orbit move around the central cone as the position 0 moves

about the initial orbit. As the ellipses move, their major and minor

axes deform continuously. The result is the displacement body of

Figure 4. This is the original metric which must be rendered convex
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by the smallest possible convex hull. That is, the Weierstrass condition

must be checked. Obviously, this metric is highly nonconvex, so the

Weierstrass condition will eliminate a great many possible maneuvers

as nonoptimal.

The improved metric which has been rendered convex by the

method described in the previous section is shown in Figure S. The

body haf7 a natural plane of symmetry formed by the dx 2 - dx3 axes.
H

It also has polar symmetry through the initial point x (the origin of

dx coordinates) . This polar symmetry is equivalent to the existence

of the inverse of every optimal path. If a path is optimal from xo

to xf , then the optimal path from xf to xo is found by using the

polar symmetric image of the first path. That is, the maneuver is performed

in reverse order with the thrust vector turned 180 degrees.

Only those portions of the metric which were originally convex

may represent optimal maneuvers. That is, only those maneuvers repre-

sented by points which are on the surfaces of both the original metric

and the improved, convex metric survive the Weierstrass necessary

condition for optimal maneuvers. As can be seen in Figure 5, only

a very small portion of maneuvers, the points along the ridge around

thE; top and bottom of the body, remain as possible optimals.

The rest of the metric body is covered by three developable

surfaces. One such surface wraps around the side of the body out-
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distancing most of the directly available displacements. The other two

surfaces cover the top and bottom of the body bridging the holes inside the

450
 cone associated with the point x . The straight line generators of

these surfaces connect the pairs of points on the displacement body which

satisfy the Weierstrass-Erdmann corner condition. These connections rep-

resent the only permissible discontinuities in the control program.

Figure 6 illustrates how few maneuvers remain after the Weierstrass

test. For a given position on the orbit, the directions* which satisfy the

Weierstrass condition form a narrow band between the local horizontal and

the flight path. Since the metric does not contain x l , (8 ) , explicitly and

since x 2 (G), appears only as a scale factor, the controls which yield

maneuvers which satisfy the Weierstrass necessary condition may be pre-

seated as a region in e, 8,* space.. Figure 6 presents a slice of this

region along an a plane. The symmetries of the metric are implicit in the

coordinate scales.

The controls which survive the Weierstrass test are given in detail

in Figures 7 and 8. The surface in e, 8, , r space in Figure 7 represents the

maximum deviation from the horizontal of the velocity change for a given e

and 6. The similar ;surface in Figure 8 represents the nearest to the horizon-

tal the direction of a velocity change may come. To satisfy the Weierstrass

condition the control must lie on or beneath the surface of Figure 7 and on

or above the surface of Figure 8. In all of these figures upper signs go

with upper signs, and lower signs with lower signs.

The Weierstrass-Erdmann corner condition, corresponding to



23

the straight line generators of the developable surfaces on the improves

metric body (Figure 5) , dictates the only way in which two distinctly

different control programs can be joined so that the entire maneuver is

optimal. Only impulses precisejy on the two surfaces of Figures 7 and

8 may participate in such a juncture, since these surfaces represent

the edges of the convex ridges in Figure 5 (the endpoints of the gener-

ators) . The corner condition may be considered as connections between

pairs of points, both on the same surface, of the surfaces of Figures

7 and 3. On each surface every point is connected uniquely to one

other point on the same surface. The connection is always such that

e remains constant, since the vehicle simply coasts around the orbit

during the control discontinuity (when cp is constant; that is, when the

rocket is not firing). Thus, the corner condition may be presented

for every given a as a relation between the positions where the rocket

is extinguished and where it is later refired. These reiatiDns are given

in Figures 9 and 10.

These connections are one way only. That is, there is a

definite order to the points. (Thu inverse of a maneuver is found by

reversing the maneuver and turning the thrust vector 100 degrees, as

discussed above.) One point is where the rocket is turned off, the other

point is where the rocket is reignited. The direction of these connections

is shown in Figure 5. This shows that there are only three possible
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kinds of discontinuities: a forward thrust followed by a rearward thrust

(the side developable surface of Figure 5) , a forward thrust followed by

a forward thrust (the top surface) , and a rearward thrust followed by

a rearward thrust (the bottom surface) . In connecting two forward

thrusts, one finds that the thrust nearer periapsis must come first. For

two rearward thrusts, the one nearer apoapsis comes first.

A tangential thrust is optimal only where the velocity of the

vehicle is horizontal, that is, at the apses. This, along with the corner

condition, yields the well-known Hohmann type of transfers.

Near e equal to one the analysis becomes more complex and

is not included here. For these highly eccentric orbits it turns out

that there are arcs of the orbit between the apses from which no maneuver

other than a coast can be optimal.

These, then, are the results of applving separately only the

Weierstrass necessary conditons and the Weierstrass--Erdmann corner

conditon. This simplified approach has resultEd in the elimination of

practically all maneuvers as nonoptimal. Of course those maneuvers

which have survived this test must al pass ali other necessary condi-

tions, but these need be considerd only when it is desired to further

narrow the selection of possible optimals. The most important remaining

test is the global optimality test. Of all the extremdls connecting two

points, one is the best. This must be found by direct comparison.



One other test which is a local test which is usually applied is the

first necessary condition. This will be discussed next.

25
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V

The remaining parts of the Hamiltonian formulation of the

maximum principle which must be checked are the constancy of the

Hamiltonian throughout a maneuver and the first necessary condition

as embodied in equations (6) for the generalized momenta. It must lie

emphasized that ever_ when this is done the remaining extremals are not

known to be optimal. The maximum principle is a local necessary condition

for optimality and is not a sufficient condition. It is true that if a dis-

placement is directionally convex in an open region of directionally

convex displacements (such as the displacements-in the interior of the

convex ridges ( Fi gure 5) in the example of the preceding section) then

the extremal path given b y the maximum principle is locally optimal for

some finite uiscance. But even when the local optimals are four.;! they

must be checked globally to find the absolute op*_irnals .

For the coplanar case just discussed in detail, Breakwell and

Moyer have verified numerically that throughout an impulsive maneuver

which satisfies the conditions of the previous section the Hd,niltonian

is constant and the generalized momenta are given by equations (6) .

This remains to be shown analytically. One particular continuous thrust

maneuver was also checked by these researchers and found to satisfy all

of the maximum principle. This is the Lawden spiral maneuver, so-
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called b ,3c3use it represents a spiral trajectory about the center of

attraction. This maneuver is found by following the 6 1 = 6 2 line in

Figure 9. This is the line represented by the dashed line in Figure 8

which corresponds to a connection of one position in orbit with it:;elf.

The rocket is turned off and then on rapidly until a continuous intermediate

thrust is simulated. Illustrative of the fact that the maximum principle

does not provide sufficient conditions for optimality is the fact that this

maneuver, which does satisfy the maximum principle, has been shown

to be nonoptimal through the use of additional necessary conditions,

usually referred to as the second variations.

A case to which the entire maximum principle can be readily

applied is the coplanar, coaxial case. The extremals for this case

are the Hohmann group of transfers. As noted earlier, the optimal

transfer between two coplanar, coaxial orbits is a coplanar, coaxial

maneuver. It can be determined from the displacement tensor, Figure 5,

that the only maneuvers which satisfy the Weierstrass necessary condi-

tion are tangential thrust at the apses of he orbit. The corner condition

requires that one velocity ci ,,ange at an apse can only be continued with

the same sE!nse or followed by a thrust at the opposing apse. Thus,

the optimals must consist o segments of the 45 0 lines in Figure 11.

It is interesting to consider the propagation of the generalized

momenta for this case. It enables one to pay tribute to the originator
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of this entire optimization principle, Huygen. Huygen's principle was

developed for the propagation of waves. Basically, Huygen's principle

states Lhat the wave propagation problem and the geodesic problem are

equivalent. Huygen's wave principle is precisely equivalent to the

maximum principle, and it preceded the ma:d.mum principle by three

centuries. In Huygen's terms, the displacement body is a "wavelet",

the generalized momentum vector is normal to the wave front, and the

geodesic or optimal path is the path of the disturbance. The propagation

of the generalized momenta is simply a consideration of the local changes

of the wavelets and the consequent turning ci the wave front.

The result of this for the coplanar, coaxial case is shown in

Figure ! I. A velocity increase at periapsis can be followed by either

a velocity increase or a velocity decrease at apoapsis . A velocity

increase at apoapsi3 can be followed only by a velocity decrease at

periapsis. A velocity decrease at apoapsis can only be followed by a

velocity decrease at periapsis. A velocity decrease at periapsis cannot

be followed by any of the other maneuvers. Of course a sufficiently

large velocity change can cause the state point to cross the central axis

in Figure 11, thus interchanging the apses. The above rules may be

used tv form the extremals in this space. Thase maneuvers are the

Hohmann class of transfers. Of course they must be compared globally.

There is usually more than one extremal between two orbits. The best
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known global competitor is the frequently optimal biparabolic transfer

through infinity.

The purpose cf this paper has been to show roar the use of the

Weierstrass necessary condition and the Weierstrass-Erdmann cOrrer

condition provides the desired result of eliminating most maneuvers for

this problem as nonoptimals. This approach of using these separate

conditions rather than the entire maximum principle has been responsible

for the recent results in this problem cf optimizing orbital mane veers .
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Figure 2. Two dimensional illustration of displacement space.
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Figure 3 .	 State sp - . , e and displacement space for coplanar motion
showing generation of displacement ellipse.
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Fiqure 5. The displacement body after the Weierstrass tests.
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Figure 11, The case of coplanar, coaxial motion.
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Figure 12. Huygen's principl-3 app^ied to the coplanar, coaxial case.
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