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Introduction 

This paper presents a new technique f o r  determining an input-output model of 
L 

a system with f i n i t e  s e t t l i ng  t i m e .  

t ha t  the problem of system ident i f icat ion is closely related t o  the problem of 

pattern recognition. ”* 
given, an explanation of the concept of the technique is  presented. 

This technique grew out of a real izat ion 

Therefore, before the mathematical relationships are 

Consider a f i n i t e  s e t t l i ng  time system. The relevant input past of such a 

system can be represented by a set of N uniformly spaced samples, such as those 

obtained at the taps  of a lossless  delay l ine.  

forms an orthogonal set of coordinates, such tha t  the input past is  a vector i n  

t h i s  coordinate system. 

input vector. 

scalar  output value. 

N + 1 dimensional space. 

hypersurface is the value of the system output. 

surface i s  a hyperplane, the system output being a l i nea r  combination of the 

input sample values. 

format ion hypersurf ace. 

The set of sample time points 

The output of the system is a scalar  function of the 

The system performs a transformation of the input vector t o  the 

This transformation can be viewed as a hypersurface i n  an 

The projection of the t i p  of the input vector t o  the 

For a l i nea r  system the hyper- 

System identification i s  the determination of the trans- 

Pat tern recognition i s  closely related t o  system ident i f icat ion.  A pattern 

i s  characterized by a set of pattern features, such t h a t  the pattern can be viewed 

as a point i n  an N dimensional feature space. Each pattern belongs t o  a specific 
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category. The problem is t o  sort  the patterns in to  their  proper categories. 

i s  done by observing a t ra ining set of patterns, where the correct category f o r  

each pattern i s  known. 

must correctly categorize test patterns whose correct category i s  unknown. 

This 

After observing the training set, the pattern recognizer 

Pattern recognition is  usually performed by determining a s e t  of surfaces, 

or discriminant functions, which separate the t ra ining set in to  t h e l r  correct 

categories. These surfaces are determined by first assuming a general form for  

the surfaces and then i t e r a t ive ly  adjusting these surfaces after observing each 

member of the t ra ining set. 3 This i s  called "nonparametric" training. 

The analogy between Pattern Recognition and System Ident i f icat ion i s  clear.  

Both require the determination of a hypersurface. 

is viewed as a sequence of patterns,  then the w e l l  developed techniques of 

pattern recognition can be applied. 

transformation and the error-correcting t ra ining algorithms are  used t o  determine 

the specific hypersurface. 

this viewpoint naturally leads t o  the use of techniques from a seemingly unrelated 

f ie ld  . 

If the input data t o  the  system 

A general form I s  asswd f o r  the system 

Note that it is  the viewpoint which i s  important, as 

4 Volterra Series Representation 

Consider the linear system of F i g .  (1). The output y( t ) i s  given by the 

convolution integral  

y ( t )  =JR.h(T) x ( t  - T )  d.7" 
- w  

C l e a r l y ,  
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then a bounded input t o  the system produces a bounded output. 

cal led "stable". 

Such a system i s  

The systems that w i l l  be considered here are those systems 

which are called "stable". 

N e x t ,  examine the nonlinear system of F i g .  (2). Since 

z ( t )  = Y 2 ( t >  

the output of the system is given by 

then 

The two dimensional kernel h&T', T2) i s  called a "regular homogeneous" 

functional of second degree. This kernel is "realizable" i f  

f o r  either Tl or  r2 L 0 h2('1, 72)  = 0 

* . and "stable" if 

(4) 
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Those functionals w i t h  realizable kernels are called vol te r ra  kernels. 

Kernels of t h i s  type play an important role  in the  a n a l y ~ i s ~ ' ~  and synthesis 738 

of nonlinear systems. 

Next, consider the case where the nonlinear block is  an a rb i t ra ry  continuous 

f'unction. 

The f'unction f ( y )  can be approximated* by a f i n i t e  sequence of polynomials 
N 

i=1 

Consequently %(t) can be expressed a s  

+ . . . . .  . . . . . .  

or 
N 

where 

_ _  
* 

The Weierstrass theorem assures tha t  a sequence of polynomials ex i s t  which con- 

verge everywhere t o  f (y) .  

the mean. Thus, discontinuous nod inea r i t i e s  are excluded. 

For bounded m c t i o n s ,  t h i s  implies convergence i n  
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If f (y)  i s  analytic i n  a given region, then f ( y )  can be expanded i n  a 

p e r  series 

and 
w 

z ( t )  = bi hi(T1 ,..., Ti) x(t-Tl) ... x ( t - 5 )  dTl ... dTi (16) 
i=l -OD -00 

Since the  power ser ies  (15) will converge for  all 

the functional power series will converge for  all 

Systems which can be represented by a functional power series with a nonzero 

radius of convergence are cal led “analytic systems”.9 Although the l i m i t  of (13) 

and expression (16) are the  same i n  the region of convergence of the functional 

power series,expression (16) i s  res t r ic ted  i n  i t s  range of val idi ty .  

If the  system w a s  time varying, then Eq. (13) would be extended t o  the more 

general expression 

The systems which will be investigated are the c lass  of nonlinear systems 

whose output depends t o  an a rb i t r a r i l y  smaJJ. extent on the remote past .  

words, f i n i t e  s e t t l i ng  time systems. 

with f i n i t e  s e t t l i n g  t i m e  could be characterized by a l i nea r  network which charac- 

t e r i zed  the  input past, followedby a zero memory nonlinearity. 

I n  other 

Wiener’’ shared t h a t  any nonlinear system 

Dr. Wiener used a 
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Laguerre network t o  produce an orthQgonal representation of the input past, then 

followed this  network with a set of Hermite p o l y n d a l s  which represented the 

zero memory nonlinearity. This cascade of two operations i s  essent ia l ly  a specif ic  

form of the functional approach of volterra.  

functionals depend on the values of a real function over a f i n i t e  interval.  

In  t h i s  case the values of the 

"he 

functions are  continuous and square integrable over a f i n i t e  interval.  

approach was also studied by Cameron and Martin. 

This 

ll 

Consider the case where the representation of the input past consists of a 

set of sample values. Thus 

- X(t) = input vector = col  [%(t) x;?(t) ..... xn(tjJ 

xi( t )  = x( t  .. (i-1)T) 

T = sampling interval  

nT = se t t l i ng  t i m e  of system 

Furthermore, the input w i l l  be assumed t o  be piecewise constant 

This type of input i s  inherent i n  a d i g i t a l  computer controlled system. 

12 Under these assumptions, Eq. (13) becomes 

where 
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(ki+l)T f o r  k i e  m 

t f o r  ki = m 
M={ 

If Eq. (21) i s  expanded, taking in to  account the symmetry of the kernels, 

then the form of the transformation surface is seen. 

n 

(23) ( t )  xi 0 . .  x 
+ % * e  c H i . . . q  9 

f . . . . . .  
i=1 9= - 

N S U W  

Note that If N = 1 ( l inea r  system) the t r a n s f o m t i o n  surface is  a hyper- 

plane, f o r  N = 2 a quadric surface, o r  i n  general, an ~ t h  order pol~nomial type 

surf ace. 

$ Learning Machine13 

The term " 9 learning machine" refers t o  the generic form of a pat tern 

recognition device. 

The first  operation is  a transformation of the input vector (pat tern)  

vector - F i n  9 space. Vector 2 is a set of l i n e a r u  independent functions 

fi(2). The coordinates i n  

specific examples of 3 functions Bpe: (g has d dimensions) 

The general block diagram of t h i s  device i s  shown i n  F i g .  (3). 

,X i n to  a 

space a re  a s e t  of functions which span the space 

1. Linea r  functions fi(g) = xi i = 1, ... d 

m 
2. Quadric functions fi(3) has the form sn xi 

k,R = l,...,d and n , m = O  and 1 
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3. r t h  order polynomial functions: f i (X)  has the form - 

f o r  
r 

1, ..., a and 1, 5,  ..., n = 0 and 1 r 

If the or iginal  vector g was  defined i n  a d dimensional space, the vector 

F(5) = If,(z), f2(s), ..., fM(5)) i s  defined i n  an M dimensional space where 

M = ( ' l r ) - 1  r = order of polynomial (24) 

The second operation is a l i nea r  summation of the functions fi(_X). The 

function 

i=1 

represents a hyperplane i n  space, and an rth order polynomial surface i n  the 

or iginal  2 space. 

I n  the transformed space, or h space, the separating surface $(,X) i s  

adjustable by an i t e r a t ive  e r ror  correcting algorithm. 

transformation t o  a nonlinear space considerably eases the conceptual and com- 

Consequently the use of a 

putational d i f f i cu l t i e s  i n  achieving a given separating hypersurface i n  the 

original. l inear  space. 

regression,13 where a least squares f i t  t o  a given surface i s  achieved. 

The general procedure i s  qui te  similar t o  tha t  of multiple 

Equivalence of Volterra Series and 5 Machine 

The equivalence between a vol te r ra  series expansion f o r  a nonlinear system 

and a 9 learning machine w i l l  now be demonstrated. The case that w i l l  be con- 

sidered i s  the time invariant expansion (13). 
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n 

x. ... x 
9 

? 
+ H i  . . .q  1 

i=l q= 

This represents an Nth order polynomial hypersurface i n  - X space. On the 

other hand, this  i s  exactly the same type of surface implemented by an Nth order 

f machine 

d d d  d d 

Therefore, the techniques used i n  determining the separating surfaces f o r  

pat tern recognition can be d i rec t ly  applied t o  the problem of determining the 

transformation surface f o r  nonlinear systems. This is  indeed a useful analogy, 

as the techniques f o r  pattern recognition are well developed. 

Training Procedure 

The training procedure uses an error-correcting algorithm t o  t r a i n  the 

$-machine. 

portion of the $-machine based upon the no& operating record of the system.14 

This algorithm i te ra t ive ly  adjusts the weight vector of the l inear  

The algorithm uses the following nomenclature: 

= output of the system at the ith iterat ion.  Y i  

X. = input vector t o  the system a t  the ith iterat ion.  

z = $(Xi) = output of 3-machine at  the ith iterat ion.  

W. = weight vector of 5 -machine a t  the ith iterat ion.  

-1 

i 

-1 
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gi = 

11 gill = ziT zi (squared Euclidian nom). 

= output of 9 -processor at the i t h  i t e r a t ion  

a = convergence factor  of algorithm. 

"he sequences of steps used with the algorithm i s  as follows: 

1. 

2. Determine yi and &. 
3. Generate zi and zi. 

Set the i n i t i a l  weight vector. A zero weight vector i s  adequate. 

4. Calculate new weight vector using the following error-correcting 

-or ithm .3 A'+ 

where 0 C CY 4 2 .  

Repeat starting with s tep  2. 5. 

This procedure generates a sequences of W ' s  whose components w u 1  con- -i 

verge t o  the kernels of the Volterra representation of the system under cer ta in  

conditions. 

The system sham i n  Fig. (4) w f f l  be used t o  i l l u s t r a t e  t h i s  algorithm. The 

input-output relationship f o r  this  system i s  

The correct weight vector i s  co l  (lTr 17). Assume an input sequence such as 
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. 

N 1 0  1 2  3 4 5 6 7 8 

x[NT]lo 1 1 1 -4 2 -1 0 -1 

Table 1 lists the results a t  each i terat ion.  

This sequence converges t o  the correct  weight vector. 

The sequence of weight vectors 

i s  plot ted i n  Fig. ( 5 ) .  

The weight vector e r ror  i s  the difference between the correct weight vector and 

the $-machine weight vector. The sequence of weight vector e r rors  i s  also 

plot ted i n  Fig. ( 5 ) .  

Wi+l -&, is  the projection of the weight vector error,  si, on the input vector 

Xi. The weight vector e r ror  

w i l l  remain the same, if two successive input vectors are l inear  dependent. The 

input vectors f o r  i = 2, 3 and f o r  i = 5, 6 are examples of this. 

The difference between two successive weight vectors, 

Therefore the weight vector e r ro r  cannot increase. 

Convergence 

Consider the system of Fig. (6). The output of the system i s  corrupted by 

additive noise N. Ex i s  the weight vector whose components are the kernels of 

Eq. (26). Equation (26) can be writ ten as: 

For systems that are approximated by Eq. (26) the truncated terms of their  

Volerra representations are combined With the additive noise N. Therefore Ni 

is the additive noise corresponding t o  zi. 

The $ -machine learns the mean of the noise along with the &ea@ state 

value of the process. Thus, the noise Ni has zero mean but otherwise a rb i t ra ry  
t 

character is t ics .  

T 
Y i  = 5 

Then, 

F + N i  -i 
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Now the convergence properties of the system i n  Fig. (4) w i l l  be studied. 

Let Ei be the weight vector error .  

-1 E. = %  - -1 W. ( 3 3 )  

Define convergence of the learning machine as the norm of 

as i increases without bound. From Eqs. ( 2 8 ) ,  ( 2 9 ) ,  ( 3 2 )  and ( 3 3 )  

E. approaching zero 
-1 

a Ni a E -i+l -1 jIEiII -1 - =E.-- F. FIT Ei - - F. II Eiil -= 
Let 

ana 
i 

a N  
b .  =- 

II-FiIl  
Then 

E = Ai Ei - bi Ei -i+l 

Taking the norm of E gives -i+l 

F T Ai E .  =zi T Ei - - a 
iI  x i  I \  -i -1 F.T F F E 

-1 -i -i -i 
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. 

Separating the terms containing N gives i 

( 3 6 )  
L e t  

where 0 L- c .  6 1  since O <  a <  2. L e t  
1 

Then 

Note that 

i 

j =1 
OGT ( l - c j ) s  1 since 0 6  c i s  1 

Consider the case where Ni = 0 for all i. 

Eliminate the poss ib i l i ty  t ha t  

and c equaling one implies immediate convergence, IIE. I ! =  0. Thus, one has 

ci 

i -1+1 

ever equals one because it is quite improbable 

only t o  consider c less than one. Then a necessary and suff ic ient  condition i 

f o r  convergence of the limit of Eq. (41) t o  zero as i increases is tha t  the sum 

of the ci diverges. 

c j = c o  

j =1 
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Therefore, the i n p t  vector must probe the input vector space so that an 

inf in i ty  of ci are nonzero. Also, the ci cannot approach zero too quickly. 

Thus, the sequence of Fits must probe i t s  vector space i n  all directions 

in f in i t l y  often i n  the t ra ining sequence. 

must probe i t s  vector space i n  both magnitude and direction. 

Therefore, the sequence of' 3 ' s  

Consider the case where the noise Ni i s  nonzero and assume t h a t  condition 

(42) i s  sat isf ied.  If Ni does not approach zero as i increases the e r ror  

vector norm cannot approach zero. - 
L e t  11 Ei ( 1  be the conditional expected value of the e r ror  norm given the 

sequence of I&'s. only di depends on Ni i n  Eq. (39). The conditional ex- 

pected value of di i s  

This exists assuming Fi # 0 and that N:, the variance of the noise, exists. 

Taking the conditional expected value of Eq. (39) gives 

- 
The %-machine is  converging if IIEill decreases as i increases otherwise 

it i s  diverging. Assume that is bounded fo r  a l l  i and that there are only 

a f i n i t e  number of ci l e s s  than a preset posit ive constant. 

- -  

fo r  N - 1  values of i. 
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.- 
A bound on \\Ei\)  i s  found by operating on Eq. (45). 

Taking the  l i m i t  as 1 3  - 
This is a very conservative bound. 

of the noise fo r  stationary noise characterist ics.  

decrease as 

However, it is  proportional t o  the variance 

Therefore the e r ror  norm w i l l  

i increases i f  the noise variance is  not too large,  

Tests - 
The ident i f icat ion method was studied by s w a t i o n  on an IBM 360 Model 50. 

All noise signals were generated by pseudo-random number generators. 

system shown i n  Fig. (7)  was  used i n  t e s t s  of the  ident i f icat ion procedure. 

input, x(t), used w a s  correlated guassian noise passed through a sampler and a 

zero order hold. 

sampling interval.  

The cubic 

The 

The 9 -machine was trained t o  the average output over the 

The sampling interval  used f o r  aJJ. t e s t s  was 1 sec. 

Polynomial terms of greater than th i rd  order are not needed f o r  the  system 

shown in Fig. (7). 

input. 

noise w a s  assumed t o  have zero mean. 

This system also has a n u l l  steady state output f o r  a nu l l  

"he settling tFme of the system was approximated as 10 sec. The additive 

Thus, the  weight vector has 285 components. 
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The correct weight vector, &, w a s  determined by using special  input sequences. 

These input sequences were chosen so  that the corresponding F. 's  w a d  form a 

l inear ly  independent set .  The corresponding outputs of the system were used t o  

form the following equations. 

Y i  - W T F .  -4 -1 

-1 

i = 1, 285 

These equations were solved f o r  &. 
Two types of t e s t s  were made. In  the f i r s t  type the$-machine w a s  t ra ined 

t o  the average output over the sampling interval  of the cubic system. In  the 

second type the $-machine w a s  trained t o  the output of the system shown i n  Fig. (6).  

The L used W ~ G  the one f o r  the cubic system. The Ni was sampled uncorrelated 

gaussian noise with zero mean. Only the variance of the input w a s  varied i n  both 

t e s t s .  Variances of ten, one, and one-tenth were used. The input noise had zero 

mean and exponential correlation, = 0.707. 

The following er ror  measures were used. 
e 

The normalized weight e r ror  w a s  used 

t o  judge the extent of convergence of the $-machine. The normalized weight error 

i s  given by 

The R.M.S. error between system output and $-machine oiltput 

the performance of the &-machine as a model for the system. 

i s  given by 

16 

was used t o  i l l u s t r a t e  

This e r ror  measure 



I 

I' 

Graphs of the normalized weight e r ror  verses the number of i t e ra t ions  are 

i n  Fig. (8) f o r  the cases where the input variance w a s  ten. The ident i f icat ion 

procedure diverged f o r  the second type of t e s t  when additive uncorrelated noise 

with a variance of f i f t y  was used. 

f i rs t  type of t e s t  where the additive noise was correlated and had a variance of 

176. 

i f  the noise i s  correlated. 

However, t h i s  procedure convergedfor the 

Thus, the ident i f icat ion procedure can withstand greater noise variances, 

The results from 1000 i te ra t ions  are i n  Tables 2-4. i s  an approximate 
- h i  exponential convergence rate. An exponential function, e , w a s  f i t t e d  t o  the 

curve of normalized weight e r ror  verses the number of i t e ra t ions  f o r  the last  

for ty  i te ra t ions .  

the ident i f icat ion procedure did not obtain any s ignif icant  amount of convergence. 

The r m s  e r ror  did not decrease significantly i n  these cases. Thus, the input 

mst not be t o  small. The amount of decrease i n  r m s  e r ror  is well correlated 

w i t h  the amount of convergence. 

a constant weight vector after a large i n i t i a l  error.  

are all the same order of magnitude for  the cases where the convergence was good. 

In  the cases where the variance of the input w a s  one-tenth, 

The cases that did not converge seem t o  approach 

The convergence r a t e s  

Conclusions 

This paper has presented a new method f o r  system identification. Based upon 

the relaxation technique used i n  pat tern recognition, t h i s  method of ident i f icat ion 

produces the hypersurface of the input-output transformation. 

the  describing hypersMace is  equivalent t o  a vol terra  series representation of 

the system and that the  ident i f icat ion technique produces the kernels of the 

vol t  erra representat ion. 

It is  shown that 

17 



The relaxation (or  error-correcting) technique will converge to the correct 

Any final error in solution, even when the measurements are corrupted by noise. 

the weight vectors (constants of the hypersurface) is shown to be bounded by a 

constant which is directly proportional to the variance of the measurement noise. 

In addition, experimental results have shown that the range of acceptable noise 

variance under which the system will converge can be greatly increased if the 

noise is correlated. 

support these conclusions. 
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Ty-pe of test 

Variance of 
additive noise 

1 IJ&.)oI I 

x x  1000 

* 
Divergent case 

F i r s t  

.176 

.2152 

.a01 

-07w 

.3810 

1.687 

2 E u  

Input Noise Variance = 1.0 

Second 

0.0 

2569 

-0306 

.a25 

3229 

1.858 

Second 

.01 

.2625 

9 0396 

.a76 

3532 

1.106 

Second 

-05 

.3012 

01352 

.1625 

.8107 

-1.45 

Second 

.1 

3749 

,2668 

.2900 

1.529 

* 

Second 

-5  

1.201 

1.331 

1.384 

7.505 

* 
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. 
* 

TABU 4 

Input Noise Variance = 0.1 

Type of test F i r s t  

Variance of 
additive noise ,000176 

e(1, 40) .00036 

e(960, 40) ,00034 

e( l ,  1000) .00050 

' ' ~ 1 0 0 0 ~ ~  -9571 

Ax 1000 1 9  557 

Second Second Second Second 

0.0 .001 .005 . 01 

.00043 .00173 ,00820 ,01634 

.00038 .00161 .00809 .01622 

.00057 .00159 .00756 .01512 

-9492 -9725 1.276 1.901 

.188 - -352 * * 

* 
Divergent case 
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FIGURE 6 

CUBIC SYSTEM 
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‘rThe aeronautical and space activities of the Uvited States shall be 
conducted so as to contribute . . . to the expandon of buman knowl- 
edge of phenomena in the atmosphere and .spat% The Administration 
sbdl provide for the widest practicable ana’ appropriate dissemination 
of information concerning its activities and the results thereof.” 

-NATIONAL AERONAUTICS AND SPACE &I OF 1958 
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importance as a contribution to existing knowledge. 

TECHNICAL MEMORANDUMS: Information receiving limited distribu- 
tion because of preliminary data, security classification, or other reasons. 
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existing knowledge. 
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activities. Publications include conference proceedings, monographs, data 
compilations, handbooks, sourcebooks, and special bibliographies. 

TECHNOLOGY UTILIZATION PUBLICATIONS: Information on tech- 
nology used by NASA that may be of particular interest in commercial and other 
non-aerospace applications. Publications include Tech Briefs, Technology 
Utilization Reports and Notes, and Technology Surveys. 

Details on the availability of these publications may be obtained from: 

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION 

N AT1 0 N A L AE R 0 N A U T I CS A N D SPA C E A D M I N I ST R AT IO N 
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