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Introduction

This paper presents a new technique for determining an input-output model of
a system with finite settling time. This technique grew out of a realization
thaet the problem of system identification is closely related to the problem of
pattern recognition.l’2 Therefore, before the mathematical relationships are
given, an explaenation of the concept of the technique is presented.

Consider a finite settling time system. The relevant input past of such a
system can be represented by a set of N uniformly spaced samples, such as those
obtained at the taps of a lossless delay line. The set of sample time points
forms an orthogonal set of coordinates, such that the input past is a vector in
this coordinate system. The output of the'system is a scalar function of the
input vector. The system performs a transformation of the input vector to the
scalar output value. This transformation can be viewed as a hypersurface in an
N + 1 dimensional space. The projection of the tip of the input vector to the
hypersurface is the value of the system output. For a linear system the hyper-
surface is a hyperplane, the system output being a linear combination of the
input sample values. System identification is the determination of the trans-
formation hypersurface.

Pattern recognition is closely related to system identification. A pattern
is characterized by a set of pattern features, such that the pattern can be viewed

as a point in an N dimensional feature space. Each pattern belongs to a specific



. category. The problem is to sort the patterns into their proper cetegories. This
is done by observing & training set of patterns, where the correct category for
each pattern is known. After observing the training set, the pattern recognizer
mist correctly categorize test patterns whose correct category is unknown.
Pattern recognition is usually performed by determining a set of surfaces,
or discriminant functions, which separate the training set into their correct
categories. These surfaces are determined by first assuming a general form for
the surfaces and then iteratively adjusting these surfaces after observing each
member of the training set. This is called "nonparametric" training.3
The analogy between Pattern Recognition and System Identification is clear.
Both require the determination of a hypersurface. If the input date to the system
is viewed as a sequence of patterns, then the well developed techniques of
pattern recognition can be applied. A general form is assumed for the system
transformation and the error-correcting training algorithms are used to determine
the specific hypersurfece. Note that it is the viewpoint which is important, as
this viewpoint naturally leads to the use of techniques from a seemingly unrelated

field.

Volterra Series Representationh

Consider the linear system of Fig. (1). The output y(t) is given by the

convolution integral

y(t) =/mh(‘r) x(t -7) ar (1)
Clearly,

o) =] [ "hr) Lo - m) ar |« [TJpr) | e awp [x(0)] (2)
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n(t) |at < oo (3)

then a bounded input to the system produces a bounded output. Such a system is
called "stable". The systems that will be considered here are those systems
which are called “stable".

Next, examine the nonlinear system of Fig. (2). Since
2 | b
z(t) = y7(¢) (%)

the output of the system 1s given by

i(6) = [Tmiry) Lo - 1) amy [Tryr,) o - ) a4y

- f“f”hl(q-l) BT,) x(t - 1) Ht - T,) a7 ot (5)

If a two dimensional kernel h2(11, ?é) is defined as

b Ty, 1) = By B(15) | ()
then
2(t) =f°cf°°h2(1fl, 1) Wt - T)) =t -T) a7 a1y (7)

The two dimensional kernel hE(Ti’ 1&) is called a "regular homogeneous"
functional of second degree. This kernel is "realizable" if

by (175 T5) = © for either T; or T, < 0 (8)

and "stable" if

fmfw'he('""l’ ""2)| aT) T, < <o (9)
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Those functionals with realizable kernels are called volterra kernels.
Kernels of this type play an important role in the analysis5’6 and synthesis7’8
of nonlinear systems.

Next, consider the case where the nonlinear block is an arbitrary continuous

function.
2(t) = £ [:y(t)] (10)
The function f(y) can be approximated® by a finite sequence of polynomials
N
_ i
(y) 2 f¥) = ) ey (11)
i=1

Consequently zN(t) can be expressed as

(8] = oy * oy [m(r) Ke-T) a4 8 [7f Ty, ) He-T) w(t=Tp)ary et

AR AT )

+l!.l. e o o o o o

+ aNf”... f“’ By(T e Ty) H(6-T)) oo H(t=T) 4T; .e ATy

(12)
or
N
2 (t) = Z o f”...f”hi(Tl, ooy 1) KT eew (8-Ty) T .. Ty
i=1 ~ oo - oo
(13)
where
i
by (Tyseees 13) = J{'Il hy(T) (14)

*
The Welerstrass theorem assures that a sequence of polynomials exist which con-
verge everywhere to f(y). For bounded functions, this implies convergence in

the mean. Thus, discontimuous nonlinearities are excluded.




If f(y) is analytic in a given region, then f(y) can be expanded in a

power series

£(y) = Z by ¥ (15)
and
z(t) = Z b, fm...f“’ hi(frl,..., fri) x(t-'rl)...x(t-'ri') 417 .. ATy (16)
i=1 i -0

Since the power series (15) will converge for all

|y(t)|< £

the functional power series will converge for all

£
|«(e) | < — (x7)
[ |pen | ar
- OO
Systems which can be represented by & functional power series with a nonzero
radius of convergence are called "analytic systems" J Although the limit of (13)
and expression (16) are the same in the region of convergence of the functional
power series,expression (16) is restricted in its range of validity.
If the system was time varying, then Eq. (13) would be extended to the more

general expression

N
z(t) = Z ai[“’...f“’ By(ty Tyeee Ty) %(T7) ooe #(T) 415,007 (18)
i1 e Jeeo

The systems which will be investigated are the class of nonlinear systems
whose output depends to an arbitrarily small extent on the remote past. In other
words, finite settling time systems. W:I.enerlO showed that any nonlinear system
with finite settling time could be characterized by a linear network which charac-

terized the input past, followed by a zero memory nonlinearity. Dr. Wiener used a



Laguerre network to produce an orthogonal representation of the input past, then
followed this network with a set of Hermite polynomials which represented the
zero memory nonlinearity. This cascade of two operations is essentially a specific
form of the functional approach of volterra. In this case the values of the
functionals depend on the values of a real function over a finite interval. The
functions are continuous and square integreble over a finite interval. This
approach was also studled by Cameron and Martin.u

Consider the case where the representation of the input past consists of a

set of sample values. Thus
X(t) = input vector = col Ecl(t) xg(t) xn(t)]
xi(t) = x(t - (1-1)T)

T = sampling interval

nT = settling time of system (19)
Furthermore, the input will be assumed to be piecewise constant
x(t) = x; (1-1)T=t<1T || = X (20)

This type of input is inherent in a digital computer controlled system.

Under these assumptions, Eq. (13) becomeslz

N n n
ST
zN(t) = ; 4‘ .« o e Z Hklmki(t) xkl xki (21)
= }L_L—l k1=l
where
0 t < nT

M M
flﬁT fk . hi(t, Tyees 1-1) dfy...d1; W€t < (m+1)T

Hkl...ki(t) = 1
(ktl)r  (yel)T
e 2 n, (%, 'rl...'ri) am...dT (ml)T < t

(22)




m = max ik]., }{E,ooo,ki}
(ki+l)T for k< m
M=
t for k:l =m

If Eq. (21) is expanded, taking into sccount the symmetry of the kernels,

then the form of the transformation surface is seen.

n n n n n n
z(t) = Z B(6) x, + z Z B (6) % x, + z Z z B, o (8) % % %,
J=1 i=1 §=1 i=1l j=i k=j
n n
+......+z...Zﬂi...q(t)xi...xq (23)
i=1 q=
\_../Y—s._,/'

N sums

Note that 4f N =1 (linear system) the transformation surface is a hyper-
blane, for N = 2 a quadric surface, or in general, an Nth order polynomial type

surface.

& Learning Machinel3

The term " $ learning machine" refers to the generic form of a pattern
recognition device. The general block diagram of this device is shown in Fig. (3).
The first operation is a transformation of the input vector (pattern) X into a
vector F in §_ space. Vector F 1is a set of linearly independent functions
fi(z). The coordinates in § space are & set of functions which span the space.

Specific examples of P functions are: (X has d dimensions)

1. Linear functions fi(-x-) = X i=1, ...4d

i

2. Quadric functions £,(X) has the form X xgm

K, R = 1,000,d and n,m=0 and 1



3. 1Pl order polynomial functions: fi(}_{) has the form

Oy

1 "2 . o for
™ Es

Ky By eeey k=1, .0n, d and N, Ny, see, B =0 and 1

If the original vector X was defined in a d dimensional space, the vector

F(X) = ifl(')'()’ f2(_}§), coey fM(z)} is defined in an M dimensional space where

d +r
M= ( )- 1 r = order of polynomial (2k)
T

The second operation is a linear summation of the functions fi(_}_(). The

function
3® =) w5y (25)
i=1

represents a hyperplane in é space, and an rth

order polynomial surface in the
original X space.

In the transformed space, or ¢ space, the separating surface $(X) is
adjustable by an iterative error correcting algorithm. Consequently the use of a
transformation to a nonlinear space considerably eases the conceptual and com-
putational difficulties in achieving a given separating hypersurface in the
original linear space. The general procedure is quite similar to that of multiple

regression,l3 where a least squares fit to a given surface is achieved.

Equivalence of Volterra Series and § Mschine

The equivalence between a volterra series expansion for a nonlinear system i
and & ¥ learning machine will now be demonstrated. The case that will be con-

sidered is the time invariant expansion (13).
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zN(t)=ZH X, +Zn: ZH x.x+zn: i

j: i=1 J= i=1

+ oo

M=

15k *1 %5

| il

<.
(%

w
]
[

n
+ z . o e Z Hi...q Xy e Xy (26)

This represénts an N order polynomial hypersurface in X space. On the
other hand, this is exactly the same type of surface implemented by an Nth order

§ machine

d d
i(x)=z ZZ .xx+...+

j=1
(27)
Therefore, the techniques used in determining the separating surfaces for
pattern recognition can be directly applied to the problem of determining the
transformation surface for nonlinear systems. This is indeed a useful analogy,

as the techniques for pattern recognition are well developed.

Training Procedure

The training procedure uses an error-correcting algorithm to train the
E -machine. This algorithm iteratively adjusts the weight vector of the linear
portion of the § -machine based upon the normal operating record of the system.l1+

The algorithm uses the following nomenclature:

y; = output of the system at the ith jteration.

X = input vector to the system at the 1th iteration.

z, = §(X) = output of ¥ -machine at the i'P iteration.
W = weight vector of §_—mach1ne at the 1th iteration.

KX) = col [l(x), e fM(X):I



F, = KX,;) = output of $ -processor at the ith iteration
|| Ey|l = E;T Fy (squered Buclidian norm).

o = convergence factor of algorithm.
The sequences of steps used with the algorithm is as follows:

1. Set the initlal weight vector. A zero weight vector is adequate.

2. Determine vy and 31.

3. Generate _ll‘i and Z.
Z, =W, « F, =W,  F (28)
i =~ =i -1 =i

4k, Calculate new weight vector using the following error=-correcting

algorithm,3s 1% »
yi - Zi)
R N

where O0<La K2,

5. Repeat starting with step 2.

This procedure generates a sequences of Ei's whose components will con-
verge to the kernels of the Volterra representation of the system under certain
conditions.

The system shown in Fig. (4) will be used to illustrate this algorithm. The

input-output relationship for this system is

y [¥r] = 17 x [ve] + 17 x [(¥-2)7] (30)
= (17, 17) [ x [¥T]
x [(N-1)1]

The correct weight vector is col (17, 17). Assume an input sequence such as

10




N~ o 1 2 3 4 5 6 T 8

x[NT]Olll-uz-l 0 -1

Table 1 lists the results at each iteration. The sequence of welght vectors
is plotted in Fig. (5). This sequence converges to the correct weight vector.
The weight vector error is the difference between the correct weight vector and
the f-mmchine welght vector. The sequence of weight vector errors is also
plotted in Fig. (5). The difference between two successive weight vectors,

Hi+l -_Ei, is the projection of the weight vector error, Ei’ on the input vector
51' Therefore the weight vector error cannot increase. The weight vector error

will remasin the same, if two successive input vectors are linear dependent. The

input vectors for i =2, 3 and for i =5, 6 are examples of this.

Convergence
Consider the system of Fig. (6). The output of the system is corrupted by

additive noise N. Hx is the weight vector whose components are the kernels of

Eqg. (26). Equation (26) can be written as:

zy(t) = By « KX) =¥, KX) (31)

For systems that are approximated by Eq. (26) the truncated terms of their
Volerra representations are combined with the additive noise N. Therefore Ni
is the additive noise corresponding to Zye

The },-machine learns the mean of the noise along with the steady state
value of the process. Thus, the noise Ni has zero mean but otherwise arbitrary

characteristics. Then,

yi=H*T§ + N (32)

i i

11



Now the convergence properties of the system in Fig. (4) will be studied.

Let Ei be the weight vector error.
..E.:j_ =Wy - Hj_

Define convergence of the learning machine as the norm of -Ei

as 1 increases without bound.

_ o T
Hj_+l—Ei+ ”-—F-]_“ (H* E +N -Ei F)
aN
[0 T
E. =5, - F. P,
=i+l =i “El“ ~i =i —i “ i” —1
Let
a T
A, =1 - F. F,
1 HEY =1 =1
and
a N
b, = Fi
1 E
Then
Big =8 By -0y By
Taking the norm of -Ei +1 gives
T, 2 T
NEiaall=E; Ay By -20b WA B+ b I EL1)
2 2a T T T
A" =1 - F. F
St s iE a5
=T = M F F.T
WE N =24
T T (0] T T
F.7 A, =P, B, -~ F.°F, F.” E
=i "i=1 =i =i “Eln =i =i =i =i
= (1-a) F E,

12

(33)

approaching zero

From Egs. (28), (29), (32) and (33)

(34)

(35)




Separating the terms containing Ni gives

' of 2-a 293
W Eivrl) = {l "—jﬁ—E)_(T EE,) }ﬂgi\“ T 1], (o n; + 2(a-1) F," E))

(36)
Let
ol 2= T 2
ERN A NEATR 1)
where 0 £ cy £1 since 0<a< 2. Let
(o7 N
d; = HF m (a N + 2(a=1) F l) (38)
Then
W Eiea = (l'ci) NE N * %
i-1 i
cT (1-c,)|| By || * Z a4 AT (1-ey) + 4 (39)
=1 k=j+1
Note that
Oé_‘ﬁ (l—cj) £1 since 0<c; <1 (ko)
Consider the case where Ni = 0 for all i.
|\E 1+1\l“{T (1-c, )“El“ since 4G =0 (k1)

Eliminate the possibility that c; ever equals one because it is quite improbable

and ¢y equaling one implies immediate convergence, HEi+l“ = O.

only to consider ci less than one. Then a necessary and sufficient condition

Thus, one has

for convergence of the limit of Eq. (41) to zero as i increases is that the sum

of the ¢, diverges.

¢, = (42)

o

Cu
]
[l

13



Therefore, the input vector must probe the input vector space so that an
infinity of ¢, are nonzero. Also, the s cannot approach zero too quickly.

By Egs. (37) and (42)

Z 1l| “E - (43)

Thus, the sequence of F 's must probe its vector space in all directlons

i
infinitly often in the training sequence. Therefore, the sequence of X;'s
mist probe its vector space in both megnitude and direction.

Consider the case where the noise Ni is nonzero and assume that condition
(42) is satisfied. If Ni does not approach zero as 1 increases the error

vector norm cannot approach zero.

Let |,E ‘ be the conditional expected value of the error norm given the
sequence of Ei's. Only di depends on Ni in Eqg. (39). The conditional ex~
pected value of di is

2

- S (k)
1R ¢

This exists assuming Ei # O and that Nie, the variance of the nolse, exists.

Taking the conditional expected value of Eq. (39) gives

— I | 11 _ 1 -
“-E-1+1”=‘;El (1-cy) || By ¢ ng % I;E‘;l (Lmep) + 4y (45)

The f-qmachine is converging if ]‘E | decreases as 1 increases otherwise

it is diverging. Assume that di

& finite number of cy less than a preset positive constant.

is bounded for all 1 and that there are only

a<a ., all i 0Oce, <¢ (46)

for N-1 values of 1.

14




A bound on “E \ is found by operating on Eg. (45).

1

i1 ~
i mudT (10) By Ty [ % D, L (1)
! o
T (1) il S
. l-c, E {l+ a + N-1 + -€
iJLl 1 “—l“ max .:L N-1 ; k=‘j|+l (1-¢)

i - _ i-N ;
SSRGS EVECR LRI

Taking the limit as 1y e

lE o I S Suny [N + %J (47)

This is a very conservative bound. However, it is proportional to the variance
of the noise for stationary nolse characteristics. Therefore the error norm will

decrease as 1 increases if the nolse variance is not too large.

Tests
The identification method was studied by simulation on an IBM 360 Model 50.
All nolse signals were generated by pseudo-random number generators. The cubic
system shown in Fig. (7) was used in tests of the identification procedure. The
input, x(t), used was correlated guassian noise passed through a sampler and a
zero order hold. The ¢ -machine was trained to the average output over the
sampling interval. The sampling interval used for all tests was 1 sec.
Polynomial terms of greater than third order are not needed for the system
shown in Fig. (7). This system also has & null steady state output for a null
input. The settling time of the system was approximated as 10 sec. The additive

noise was assumed to have zero mean. Thus, the weight vector has 285 components.

15



The correct weight vector, W,, was determined by using special input sequences.
These input sequences were chosen so that the corresponding _Ei's would form a
linearly independent set. The corresponding outputs of the system were used to

form the following equations.
F. i=1, 285

These equations were solved for Wee
Two types of tests were made. In the first type the §—machine was trained
to the average output over the sampling interval of the cubic system. In the
second type the $-machine was trained to the output of the system shown in Fig. (6).
The W, used was the one for the cubic system. The Ni was sampled uncorrelated
gaussian noise with zero mean. Only the variance of the input was varied in both
tests. Variances of ten, one, and one-tenth were used. The input noise had zero
mean and exponential correlation, €= 0.707.
The following error measures weré used. The normalized weight error was used

to judge the extent of convergence of the $-machine. The normalized weight error

is given by

EM

lIEi Il =

The R.M.S. error between system ocutput and § -machine output was used to illustrate
the performance of the ;E’—-machine as a model for the system. This error measure

is given by

JtN
e(j, N) = %Z (yi - Zi)2
i=J

16




Graphs of the normalized weight error verses the number of iterations are
in Fig. (8) for the cases where the input variance was ten. The identification
procedure diverged for the second Type of test when additive uncorrelated noise
with a variance of fifty was used. However, this procedure convergeifor the
first type of test where the additive noise was correlated and had a variance of
176. Thus, the identification procedure can withstand greater noise variances,
if the noise is correlated.

The results from 1000 iterations are in Tables 2-k. A is an approximate
exponential convergence rate. An exponential function, e-‘Ai, was fitted to the
curve of normalized weight error verses the number of iterations for the last
forty iterations. In the cases where the variance of the input was one-tenth,
the identification procedure did not obtain any significant amount of convergence.
The rms error did not decrease significantly in these cases. Thus, the input
must not be to small. The amount of decrease in rms error is well correlated
with the amount of convergence. The cases that did not converge seem to approach
a constant weight vector after a large initial error. The convergence rates

are all the same order of magnitude for the cases where the convergence was good.

Conclusions

This paper has presented a new method for system identification. Based upon
the relaxation technique used in pattern recognition, this method of identification
produces the hypersurface of the input-output transformation. It is shown that
the describing hypersurface is equivalent to a volterra series representation of
the system and that the identification technique produces the kernels of the

volterra representation.

17



The relaxation (or error-correcting) technique will converge to the correct

solution, even when the measurements are corrupted by noise. Any final error in

the weight vectors (constants of the hypersurface) is shown to be bounded by a

constant which is directly proportional to the variance of the measurement noise.

In addition, experimental results have shown that the range of acceptable noise

variance under which the system will converge can be greatly increased if the

noise is correlated. Both theoretical and experimental results are presented to

support these conclusions.
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Type of test

Variance of
additive noise

e(1, L40)
e(960, L0)

e(1, 1000)

HE, ool !

A x 1000

*
Divergent case

First

176

2152

. 0201

.3810

1.687

TABLE 3

Input Noise Variance = 1.0

Second

0.0

.2569
.0306

.0825

3229

1.858

Second

. 01

.2625
.0396

.0876

3532

1.106

22

Second

.1352

.1625

"lo)'I'S

Second

3749
.2668

.2900

1.529

Second

)

1.201
1.331

1.384

T.505




TABLE 4

Input Noilse Variance = 0.1

Type of test First Second Second Second Second
e o e .000176 0.0 .001 .005 .01
e(1, 40) .00036 .00043 .00173 .00820 0163k
e(960, L40) .0003k4 .00038 .00161 .00809 .01622
e(1, 1000) .00050 .00057 .00159 .00756 .01512
1B g0l .95T1 .9kg2 .9725 1.276 1.901

A x 1000 1.557 .188 -.352 * *

*
Divergent case

23
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“The aeronautical and space activities of the United States shall be
conducted so as to contribute . . . to the expam?on of buaman knowl-
edge of phenomena in the atmoprere and spacé:: The Administration

« hall provide for the widest practicable and appropriate du.remmatton
of. mformatxon concerning its activities and the results thereof.”

LT —NATIONAL Aanon.suncs AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered
important, complete, and a lastmg contnbunon to existing knowledge.

TECHNICAL NOTES: Informatlon Jess broad in scope but nevertheless of
importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distribu-
tion because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Scientific and technical information generated
under 2 NASA contract or grant and considered an important contribution to
existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign
language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA
activities, Publications include conference proceedings, monographs, data
compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION PUBLICATIONS: Information on tech-
nology used by NASA that may be of particular interest in commercial and other
non-aerospace applications. Publications include Tech Briefs, Technology
Utilization Reports and Notes, and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
- Washington, D.C. 20546



