UNCLASSIFIED NAGA CR-83845

A 644978
THE IONIZATION OF HYDROGEN AND OF HYDROGENIC POSITIVE IONS BY ELECTRON IMPACT
M.R.H. Budge, et al

Douglas Advanced Research Laboratories
Huntington Beach, California
February 1966

Processed for . . .

DEFENSE DOCUMENTATION CENTER DEFENSE SUPPLY AGENCY

U. S. DEPARTMENT OF COMMERCE / NATIONAL BUREAU OF STANDARDS / INSTITUTE FOR APPLIED TECHNOLOGY

NOTICE TO DEFENSE DOCUMENTATION CENTER: USERS

This document is being distributed by the Clearinghouse for Federal Scientific and Technical Information, Department of Commerce, as a result of a recent agreement between the Department of Defense (DOD) and the Department of Commerce (DOC).

The Clearinghouse is distributing unclassified, unlimited documents which are or have been announced in the Technical Abstract Bulletin (TAB) of the Defense Documentation Center.

The price does not apply for registered users of the DDC services.

THEIDNIZATIDN OF HYORGGEN AND OFHYDROGENIG POSITIVENDNS

BY ELEDTRON:MMACT

MRH RUDGE
High Allitule Observatory Boulder, Coiorato

On leave from
Department of Mathemalics he Queen's University al Belfast Belfast, Northern Ireland
and
S B. SCHWARTZ
Advanced Research Laboratory Douglas Aurcrall Company, lac Huntiagton Beach, Califorma

ABSTRACT

Calculations of the ionization cross sections of hydrogen and of hydrogenic positive zons are described in which the indtial state $1 s$ eather the ground or the excited 2 s state. The farst procedures used are the Born (11) and Born-exchange approximations. These results are compared with other theoretical calculations and with experimental data. It $2 s$ seen that for the case of zonization of hydrogen from its ground state, none of the theoretical results is in good agreement with the expermental datia. A certan defect of the theory 2 s then corrected by adopting a thaxd procedure for this case, in which an angle-dependent Coulomb potential as used in the description of the final state of the e-H ionization problem. It is then found that, despite the sounder theoretical footing of thas latter calculation, no mproved agreement with experımental data is obtained except in the near threshold region.

Convenient formulae are presented which represent the best data for the zonization cross sections and the associated reaction rates for the case of an mitial Maxwellaan distribution of velocitaes.

CONTENTS

Section	Page	
1	Introduction	2
2	Theory	5
3	Numerical Procedures	15
4	Concluszons	
5	Acknowledgments	17
	References	

introduction 1
Theory 5
Numerical Procedures 15
Results 17
References 43

ILLUSTRATIONS

TABfES

Figure		Page
i	The ronazation cross section for H (1s)	34
$1 i$	The reduced lonzzation cxoss section for H 2 s	35
111	The reduced ionization cross section for $\mathrm{He}^{+} 2 \mathrm{~s}$	36
1v	Reduced ionzzation cross section for ionization from the 2 s state for various z values	37
v	Reduced ionization cross section for ionization from the ls state for various z values	38

Number		Page
I	$Q_{R}(E / X)$ for Ionazation from the ls state	27
II	$Q_{R}(5 / I)$ for Ionization from the 2 s state	22
I.f	Total Angular Momentum Contrabutions to $Q_{R}(E / I)$ for Ionization from the ls state	24
IV	Total Angular Momentum Contxabutions to $Q_{R}(E / I)$ for Ionazation from the 2 s state	26
v	Paramoters givang a fit to the cross sections	28
VI	Contrabutions to $\Omega_{R}(E / I)$ for jonazation of ground state hydrogen, using angledependent potentialis	29
VII	Parameters giving a fit to the reaction rate $0.2 \leq \alpha \leq 10.0$	33°

Considerable interest attaches to an accurate knowledge of ronization cross sections both in astrophysical work and in studies of laboratory plasmas. In some cases experimental data are avail able, in particular for the lonazation cross section of atomic hydrogen from its ground state and for He ${ }^{+}$ from its ground state. Certain species of interest, however, for example the highly ionszed aron ions such as Fe^{+14}, are not readily susceptible to experimental investagation, and this is true also of ionazation from excited states. Our main interest lies with the calculation of ionization cross sections in these cases. In thas paper however, we confine our
 sequence from the ground state and from the excated 2s state. The species considered are hydrogen, He ${ }^{+}$ and a fictatrous hydrogenic zon whth nuclear charge Z = 128 .

Three approxamations have been considered. The first of these, the Born (ix) approxamation, has been previously used by Rudge and seaton (2965) in the calculation of the lomization cross section of atomxc hydrogen from its ground state. The calculatıons presented here, have extended the use of this approximation to the other cases, and since we repeat the ground state hydrogen work also, we therefore have a ready check on the accuracy of our program. This progran, writien to encompass calcułations for an arbitrary atom or 10 with the theory expressed in terms of partaal wave expansions, gives a'typical agreement with the results of Rudge and seaton (1965)
of about 0.18, the latter results having been obtained without recourse to such expansions. To achieve this accuracy, however, has involved a yery much greater amount of computation than that undextaken by Burgess and Rudge (1963) in their paxtian wave calculations. In our second procedure, therefore, the Born-exchange approximation, we have repeated the work of Burgess and kuage (1963) on ground state He ${ }^{+}$, obtaining more accurate results, and again extended the application of thts' methoa to the other tons. We first of ali compare the results of these two approxamations,
Born (ii) and Born-exchange, with the Born (i), Bornoppenheimer and 'close-coupling' results presented by Burke and Paylor (1965). An indication of the relative mexits of the various theoretical procedures may be seen for the cases of the sonigation of H ox He ${ }^{+}$from theix ground states where experimental data are available for comparison.

For the case of $\mathrm{He}{ }^{+}$the Born-exehange calculations give excellent agreement with the expeximental data. For the case of H, however, in neither the Born-exchange approximation, in which simple functions are adopted in both the initial and funal states, nor in the approxumation of Burke and Taylor (1965), in which an improved initial state wave function is usea, does good agrement obtain. It is of interest therefore to consider the' effect of improving the description of the final state. In all calculations of ionization cross sections hitherto, this has been incorrectly treated as regarss the Coulomb potentials, and might be expected to have a significant effect on the cross section calculation. The theory showing

What asymptotic description of the final state should be employed in wonizing colilisions has been gaven by peterkop (1952) and by Ruage and Seaton (1965). We have therefore consxdered a thard approxamation which is in accord with this theory and anvestigated what effect thas has on the calculation of the zonlzation cross section for ground state hydrogen.

Theresulth of the calculations are shown in tabular and graphical form, and we present also sets of coefficients which provide fits to the cross sections and to the assoczated reaction rates.

2. THEORY

The theory of lonzzing colliszons has been considered by Peterkop (1961, 2962) and by Rudge and Seaton (1965). Here we summaraze the arguments leading to the cross section expressions we have used.

Consider the process in whach an atom or ion, intially in a state specified by $\psi(n, \underline{r})$, is zonized by an electron whose initial momentum $2 s \underline{k}_{n}$ and whose final momentum is k , the momentum of the ejected electron beang x. Then, using atomic unats, denoting the Hamiltomian of the system by H, the total positive energy by E and the nuclear charge by 2 , an exact integral expression for the direct scattering amolıtude is given by
$f(\underline{x}, \underline{k})=-(2 \pi)^{-5 / 2} \exp 1(\Delta(\underline{x}, \underline{k})) \int y\left(\underline{\underline{r}}_{1}, \underline{\underline{r}}_{2}\right)(H-E) \Delta\left(\underline{\underline{r}}_{1}, \underline{\underline{r}}_{2}, \operatorname{urg}_{1} \underline{u r}_{2}\right.$
where

$$
\begin{equation*}
\Delta(\underline{x}, \underline{k})=\frac{2 z}{x} \ln \frac{x}{x}+\frac{2 z^{\prime}}{k} \ln \frac{k}{x} \tag{2}
\end{equation*}
$$

wath

$$
x=\sqrt{2 E}
$$

and

$$
\begin{equation*}
\frac{z}{x}+\frac{z^{\prime}}{k}=\frac{z}{x}+\frac{z}{k}-\frac{1}{|\underline{x}-\underline{k}|} \tag{3}
\end{equation*}
$$

In (1), $\psi\left(\underline{r}_{1}, \underline{r}_{2}\right)$ as the total wave function of the system and is subject to the usual boundary conditions, while $\phi\left(\underline{r}_{1}, \underline{r}_{2}\right)$ is a function having the asymptotic form

$$
\begin{equation*}
\phi\left(\underline{r}_{1}, \underline{\underline{r}}_{2}\right) \underset{\substack{\tilde{r}^{\prime}+\infty \\ \tilde{r}^{+\infty}}}{ }\left(2,-\underline{x}, \underline{\underline{x}}_{1}\right) \phi\left(z^{\prime},-\underline{\underline{k}}, \underline{\underline{r}}_{2}\right) \tag{4}
\end{equation*}
$$

where

wath.

$$
n=\frac{z}{k}
$$

Given the exact direct scattering amplitude $f(\underline{x}, \underline{k})$, the exact exchange amplitude is given by

$$
\begin{equation*}
g(\underline{x}, \underline{k})=f(\underline{k}, \underline{x}) \tag{6}
\end{equation*}
$$

Alternatively, one may interchange r_{1} and \underline{r}_{2} in one of the wave functions appearing in the integral expression (1) and again obtain the exchange scatterang amplitude. On averaging over spans, the total donization cross sectaon as then given by

$$
\begin{equation*}
Q(E)=\frac{1}{k_{n}} \int_{0}^{E / 2} k \times d\left(\frac{x^{2}}{2}\right) \int \sigma(\underline{x}, \underline{k}) d \underline{x} d \underline{\hat{k}} \tag{7}
\end{equation*}
$$

where

$$
\begin{array}{r}
\sigma(\underline{x}, \underline{k})=\left[4 \pi\left(2 q_{1}+1\right)\right]^{-1} \sum_{m_{1}}\left\{d \underline { k } _ { n } \left[|f(\underline{x}, \underline{k})|^{2}+\mid g\left(\underline{x},\left.\underline{k}\right|^{2}\right.\right.\right. \tag{8}\\
\\
\left.-\operatorname{Re}\left(f(\underline{x}, \underline{k}) g^{*}(\underline{x}, \underline{k})\right)\right\}
\end{array}
$$

with ℓ_{1}, m_{1} the angular quantum numbers of the state $\psi(n, r)$.

Expression (1) may be properly used only if the requirement (3) is satisfied, in which case the relative phase of the resulting direct and exchange scattering amplitudes is unaguely specafied. If on the other hand equation (3) is not satisfied, then there exists an essential arbitraxiness in the relative phase. We do not therefore agree with the assertion of Burke and Faylor (1965), that samply by formulating the problem in terms of singlet and triplet amplitudes the phase factor problem disappears. In thear calculations, as in the first of those described in thas paper, the condation (3) is not met, and accordangly there are two distinct approximatzons, one for the magnitude of the scattering amplitudes and another for their relatave phase. In the Born-exchange approximation we have adopted the same phase choice as Burgess and Rudge (1963), thas having been found to gave excellent agreement wath the experamental data for ionization
of ground state He^{+}. Explicitly the darect scatterang amplitude has been wrıtten as

$$
\begin{align*}
& f(\underline{x}, \underline{k})=-(2 \pi)^{-5 / 2} \int \psi\left(n, x_{1}\right) \psi\left(z-1, \underline{x}_{n}, \underline{x}_{2}\right)\left(\frac{1}{x_{12}}-\frac{\tilde{i}}{x_{2}}\right) \in\left(x_{1}-\underline{-x}-\underline{x}_{1}\right) \tag{9}\\
& s\left(z-1,-\underline{k_{k}}, \underline{E}_{2}\right) d \underline{x}_{1} d \underline{x_{2}}
\end{align*}
$$

which, using standard partial wave expansıons [e.g., Burgess and Rudge (1963], may be wratten

where

$$
\begin{align*}
u\left(t_{2}, t_{1}^{\prime}, t_{2}^{\prime}\right)=\frac{\pi}{2}\left(t_{2}-t_{1}^{\prime}-t_{2}^{\prime}\right)+\operatorname{argr}\left(t_{2}+1-\frac{z-1}{k_{n}}\right) & +\operatorname{argr}\left(t_{2}^{\prime}+1-1 \frac{z-1}{k}\right) \\
& +\operatorname{argr}\left(t_{1}^{\prime}+1-\frac{z}{k}\right) \tag{11}
\end{align*}
$$

[Percival and Seaton (1958)]
and

$$
T_{\lambda}\left(l_{1}, l_{2}, r_{1}^{\prime}, 2_{2}^{\prime} ; x, k\right)=\int_{0}^{\pi} F_{L_{2}}\left(z-1, k_{n}, r_{2}^{\prime}\right) F_{t_{2}^{\prime}}^{\prime}\left(z-\lambda, r, r_{2}\right) y_{\lambda}\left(x, \lambda_{1}^{\prime}, r_{2}\right) d r_{2}
$$

with

$$
\begin{aligned}
y_{\lambda}\left(x, t_{2}^{\prime}, r_{2}\right) & =x_{2}^{-(\lambda+1)} \int_{0}^{r_{2}} r^{\lambda} p_{n, z_{2}}(r) F_{1_{1}^{\prime}}^{\prime}(z, x, r) d r \\
& +r_{2}^{\prime} \int_{r_{2}}^{1} r^{-(\lambda+1)} p_{n, t_{1}}(x) F_{t_{1}^{\prime}}(z, y, r) d r
\end{aligned}
$$

In (14), $p_{n, 2}(x)$ is the radal function for the bound state, while the regular Coulomb functions $F_{\ell}(z, k, r)$ satisfy

$$
\begin{equation*}
\left[\frac{d^{2}}{d r^{2}}+k^{2}+\frac{2 z}{r}-\frac{2(l+1)}{r^{2}}\right] r_{4}(z, k, z)=0 \tag{15}
\end{equation*}
$$

The e:change scattexing amplitude as gaven in the Born-exchange approximation by
$g(\underline{x}, \underline{k})=\exp : s(\underline{x}, \underline{x}) f(\underline{z}, \underline{x})$
where we choose $\delta(\underline{x}, k)$ such that in expressions for the cross section there $1 . s$ no dependence on the phase factors $\mu\left(\ell_{2}, \ell_{2}, \ell_{1}\right)$. We then obtain the result that

$$
\begin{align*}
& +\left[\sum_{\lambda} f_{X}\left(t_{1}, t_{2}, i_{2}^{\prime}, x_{1}^{\prime}, L\right) r_{\lambda}\left(t_{1}, t_{2}, i_{2}^{\prime}, i_{2}^{\prime}, k, x\right)\right] . \tag{17}\\
& \cdot\left\{\left[t_{\lambda} t_{\lambda}\left(t_{1}, t_{2}, x_{2}^{\prime}, t_{1}^{\prime}, L\right) r_{2}\left(t_{2}, t_{2}, x_{2}^{\prime}, t_{2}^{\prime}, k, x\right\}\right.\right. \\
& \left.-\langle-1)^{t_{1}+t_{2}-L_{i}}\left[I_{\lambda}\left(t_{1}, t_{2}, l_{1}^{\prime}, t_{2}^{\prime}, b\right) T_{\lambda}\left(t_{1}, t_{2}, t_{1}^{\prime}, \ell_{2}^{\prime}, x, k\right)\right]\right]
\end{align*}
$$

Equations (7) and (17) gave the ionization cross section in the Born-exchange aporoximation, while neglect of all the exchange terms leads to the Born (11) approximation. Omatting Just the interfexence term in (17) leads to the Born (2) approximation.

These approximations, though useful, axe, as has been noted, defective in that the final state is not correctly described, 1.e., equation (3) is not satısfied. We therefore consider a new approximation
in which we retain the approximation that
$\Psi\left(\underline{r}_{1}, \underline{\underline{r}}_{1}\right)=\psi\left(n, \underline{r}_{1}\right) \phi\left(z-1, \underline{k}_{n}, \underline{x}_{2}\right)$ but define $\phi\left(\underline{\underline{r}}_{1}, \underline{r}_{2}\right)$ by the equation,

$$
\begin{equation*}
\theta\left(\underline{x}_{1}, \underline{x}_{2}\right)=\phi\left(z,-\underline{x}_{1}, \underline{x}_{2}\right) \phi\left(2,--\underline{k}, \underline{r}_{2}\right) \tag{18}
\end{equation*}
$$

with

$$
z=1
$$

and

$$
\begin{align*}
& \left.z^{\prime}=x^{\prime}, \underline{x}, \underline{x}\right) \\
& =1-\frac{k}{|\underline{x}-\underline{k}|} \tag{19}
\end{align*}
$$

Thus the scattering amplitude may be written in thas approximation as

$$
f(\underline{x}, \underline{k})=-(2 x)^{-5 / 2} \operatorname{oxp} 1 \Delta(\underline{x}, \underline{k}) \int \Psi\left(\underline{\underline{r}}_{1}, \underline{r}_{2}\right) \frac{1}{r_{12}} *\left(\underline{\underline{r}}_{1}, \underline{x}_{2}\right) d \underline{x}_{1} d \underline{x}_{2}
$$

Using spherical harmonic expressions for the wave functions we then fand, after some algebra, that

In (21), $P_{q}(x)$ is a Legendre polynomial, and the radial integrals T_{λ} are defined by equations (13) and (14), wath the dafference, however, that $z-1$ is replaced by z defined by equation (19). $\alpha(\underline{x}, \underline{k})$ is a ohase factor given by

$$
\begin{equation*}
a(\underline{x}, \underline{k})=\gamma\left(t_{1}^{\prime}, \varepsilon_{2}^{\prime}, \underline{x}, \underline{k}\right)-\gamma\left(L_{1}^{\prime}, L_{2}^{\prime}, \underline{x}, \underline{k}\right) \tag{22}
\end{equation*}
$$

where
$r\left(\varepsilon_{1}^{\prime}, \ell_{2}^{\prime}, \underline{x}, \underline{k}\right)=\frac{\pi \cdot}{2}\left(l_{1}^{\prime}+\varepsilon_{2}^{\prime}\right)+\operatorname{argr}\left(l_{1}^{\prime}+1-\frac{1}{x}\right)+\operatorname{argr}\left(\varepsilon_{2}^{\prime}+1-\frac{1 z^{\prime}(\underline{x}, \underline{k})}{k}\right)$
Since the phase factors are defined an this treatment of the problem, we have the result that

$$
\begin{equation*}
\sigma_{e}(\underline{x}, \underline{k})=\sigma_{d}(\underline{k}, \underline{x}) \tag{24}
\end{equation*}
$$

while

where

$$
\begin{equation*}
s(\underline{x}, \underline{k})=\Delta(\underline{\underline{n}}, \underline{\hat{k}})-\Delta(\underline{k}, \underline{x})+Y\left(\varepsilon_{1}^{\prime}, \ell_{2}^{\prime}, \underline{\lambda}, \underline{k}\right)-\gamma\left(z_{1}^{\prime}, L_{2}^{\prime}, \underline{k}, \underline{x}\right) \tag{26}
\end{equation*}
$$

Substitution of equations (21), (24) and (25) into (7) gives the fanal expression for the cross section, whach we write

$$
\begin{equation*}
Q(E)=\int_{0}^{E / 2} d\left(\frac{x^{2}}{2}\right) \int_{-1}^{t} I(\underline{x}, \underline{k}) d(\underline{\hat{\hat{x}}} \cdot \underline{\hat{k}}) \tag{27}
\end{equation*}
$$

where

$$
\begin{align*}
I(\underline{x}, \underline{k}) & =\frac{\frac{8 \pi^{2} x x}{k_{n}}}{k^{2}(\underline{x}, \underline{k})} \\
& =I_{d}+I_{e}+I_{i n} \tag{28}
\end{align*}
$$

the three terms of (28) corresponding to those of (8). The calculation of the cross section in this approxi. mation thus involves one more numerical integration than do the Born (1,i) and Born-exchange approximations.

On neglecting the effects of exchange, we retain only the term I_{d} to qive a non-exchange cross section, whach we label Q_{d}.

3. NUMERTCAI PROCEDURES

The Coulomb functions were generated by a power series near the oragin to the first inflection point and thereafter by numerscal inteqration with a step length in x of $\frac{2^{-8} n}{2^{2}}$, where n is the princzpal guantum number, The routane was written generally for the case in whach the Coulomb potential was modified by a short-range potential, in which case the normalization cannot be fixed a prions by means of the power series. The method of Stromsten described by seaton and Peach (1962) was therefore adopted.

The functions $y_{\lambda}(x, r, x)$ were generated by numerical integration using simpson's rule wath a step length in r of $\frac{2^{-5} n}{z^{n}}$. The final cuadrature in the calculation
 Simpson's rule, but, due to the long taxl of the integral, an acceleration procedure was devased which has previously been described (Rudge and schwaxtz 1965). Sampson's rule was found for these integrals to be more accurate than hagher-ordex Neyton-Cotes Formulae.

The Racah and Clebsch-Goxdon coefficients needed in the calculation were genexated in the program. A.ll summations were carried through to convergence except for that on L_{t}, which was terminated when sufficient values had been obtamed to make an accurate extrapolation possible. It shoula perhaps be mentioned that in using a Gauss scheme to evaluate the anoulax integration in (27), care had to be exercised in deciding the convergence of the q summation of
equation (25) due to the explicit occurrence of the Legendre polynomial in that sum. Due to the large amount of computation involved in evaluating the expression (27), the number of Gauss points in the angular integration was restricted to four. This should not, however, involve any substantial error.

4. RESOLTS

Ne express all our results as reduced cross sections defined by

$$
Q_{R}(E / I)=\frac{1}{n}\left(\frac{I}{I_{H}}\right)^{2} Q(E / I)
$$

where
$I=$ the ionszation potentiaz
$I_{H}=$ the ionization potential of hydrogen
$Q(E / x)=$ the anization cross section in unxts of πa_{o}^{2}
$n=$ the effective number of electrons (one in thas case)

In table I we show resuats for the reduced cross sections for ionization from the ls state of the varzous hyarogenic zons in the Born (ai) and Bornm exchange approximations. In the case of hydrogen there have been a number of experimental measurements Trite and Brackmann (1958), Boyd and Boksenberq (1960) Rothe et al. (1962) and HcGovan and Faneman (1965)]. We are indebted to the lattex authors for making their data available to us, prior to publication. The 'experamental' data with which we compare oux results were obtazned by taking what we believe to be a reasonable interpolation amongst all these measurements. For He ${ }^{+}$the data are those of Dolder, Harrison and Phonemann (1961). Table IT shows the results for
zonazation from the $2 s$ state, and in tables III and IV are shown the contributions to the varıous cross sections arising from andividual values of the total angular momentum. We found it convenient to fit our results to an expression of the form

$$
\begin{equation*}
Q_{R}(E / I)=\frac{\ln (E / I)}{E / I}\left[A_{0}+\frac{A_{1}}{E / I}+\frac{A_{2}}{(E / I)^{2}}\right] \tag{29}
\end{equation*}
$$

The parameters A_{0}, A_{1} and A_{2} are displayed in table V. For H ls, and He^{+}ls the coefficients were obtaaned from the experimental data, while an other cases the Born-exchange results were fitted. Expression (29) has the virtue of having the correct functional form both at threshold and at very high energies. We have also fitted the reaction rate defined by

$$
K=\int_{0}^{\infty} v Q(E) \phi(v) d v
$$

where $\phi(v)$ is the Maxwell distribution. Defining $u=T / k T$ with $k=$ Boltzmann's constant and T the absolute temperature, we write

$$
10^{8} \mathrm{~K}=\mathrm{n}\left(\frac{I_{H}}{I}\right)^{3 / 2} e^{-\alpha} \sum_{m=0}^{5} K_{m} \alpha^{m} \mathrm{~cm}^{3}-\sec ^{-1}
$$

The coefficsents K_{m} are displayed in table VII and give a fit accurate to about 5 z in the range $\alpha=0.2$ to 20.0 .

In Eigure (i) we display the varıous theoretical results for the ionization of the ls state of H
compared with the experimental results. The data are not new in thas case; the Born (1) and Born (21) curves have been taken from the work of Rudge and Seaton (1965), and our present Born results agree with those data to better than 0.18. The B.e. results are those presently calculated, and the closecoupling and B.O. results are those of Burke and Taylor.

For the case of II^{+}ls, it is clear from table I that the Born-exchange results are in excellent accord with the experimental data. A comparison of this result with the close-couplang results of Burke and Taylor (1965) has been previously given (Rudge and Schwartz 1965).

In figure (11) we compare the various theoretical
 see that both the Born-exchange and close-coupling results preaict that the effect of exchange is to ancrease the cross section in this case in contrast to the ls ionization results. In the low-energy region there is a substantial difference between the theoretical results, however. Figure (111) shows the results for $\mathrm{He}^{+} 2 \mathrm{~s}$. In facure (IV) we show the behavior of the zondzation cross section from the 2 s state in the Born (1.i) and Bori-exchange approximations. The behavior of the two approximations as regards scalıng is seen to differ in contrast to the case of ionization from the is state, where the results of both approximations increase with increasing z. Figure (iv), showing the scaling in the 2s case, may be compared with figure (v), which shows the scaling for the ls case, where the hydrogen curve

Table. I. $\Omega_{R}(E / \overline{1})$ for lonization from the $1 s$ state

E/T	$\begin{gathered} z=1, \\ \operatorname{Born}(22) \end{gathered}$	$\begin{gathered} z=2 \\ \text { Yorn(2i) } \end{gathered}$	$\begin{aligned} & z=328, \\ & \operatorname{Bom}(x \dot{5}) \end{aligned}$	$z=13.4$.	$z=2 \mathrm{~B} . e$.	2 m 12 s B.e.	Ewperifintal	$z \approx 2$ Exverxmental
1.2 .25	-	0.215	- +**ー	---***	0.213	---*-	0.12	019
1.25	-----	0.392	0.466	-----m	0366	1 477	0.21	0.33
1.50	0.465	0.566^{*}	$0.74{ }^{\text {\% }}$	0.476	0.53\%*	0.720	0.35	$0.53 *$
2.25	0.876	I. 002	1.074	0.804	0.834	0.975	0.60	081
3.0	0.997	2.072	1.119	0.889	0.896	1.002	0.69	0.89
4.0	0.996	1.035). 0684	0.883	0.881	0.952	0.72	0.87
5.0	0.939	0.962		0.836	, 0.832	-*---	072	0.83

*yalues for $\mathrm{E} / \mathrm{I}=1.51525$
and the Ile curves are expermental (the latter
coinciding with Born-exchange results) and the unper curve is for $z=128$.
In table $V x$ we show results of calculations of the ionization cross section of hydrogen from 1 ts ground
 Lable, H_{1} is the Gauss weight for the energy $3 n t e q r a$. . tion and H_{2} is that for the angular antegration. equation (1.9), the former being used in calculations of the direct scattering amplitude and the latter in calculations of the exchange scattering

 angle between the scattered and ejected electrons.
 rature was used at all energies, and to avold
cepetition we display the abscissae $\hat{\hat{x}} \cdot \underline{\hat{k}}$ and the veights H_{2} for only the first entry $2 n$ the table, correspondang entries being $2 d e n t a c a l$ for the other cases.

$\begin{aligned} & \text { g} \\ & \text { 留 } \end{aligned}$	$\begin{gathered} \dot{0} \\ \underset{\sim}{\infty} \\ \underset{N}{\infty} \\ \underset{\sim}{n} \end{gathered}$	
	$\dot{0}$ n N N	
$\begin{aligned} & \text { N } \\ & \text { g } \\ & \text { gu } \\ & \text { EI } \end{aligned}$		
	$\stackrel{H}{4}$	$\stackrel{N}{N}$

Table III. Total Angular Momentum Contributions to $\mathrm{Q}_{\mathrm{R}}(E / I)$ for Ionlzation fxom the ls state

E/E	\pm	H(B1)	He^{+}(BI2)*	$\mathrm{z}=128$ (8i2)	H(B.e.)	He^{+}(B.e.)*	z=128(B.e.)
1.50	0	6.059,-2	7.415,-2	5.880,-2	4.929,-2	6.629,-2	5.143,-2
	1	1.605,-1	1.451,-1	1.026,-1	1.939,-1	2.482,-1	9.668,-2
	2	1.312,-1	2.090,-1	2.221, -1	1.318,-1	1.740,-1	2.100,-1
	3	6.813,-2	1.339,-1	1.856,-1	6.166,-2	1.073,-1	2.851,-1
	4	2.861,-2	6.382,-2	1.022,-1	2.486,-2	5.125,-2	1.037,-1
	5	1.062,-2	2.587,-2	4.556,-2	9.195,-3	2.126,-2	4.602,-2
	6	3.636,-3	9.463,-3	1.778,-2	3.194,-3	8.022,-3	3.781,-2
	7	1.180,-3	3.233,-3	6.345,-3	1.058, -3	2.829,-3	6.320,-3
	8	3.'694,-4	1.055,-3	2.128, -3	3.385,-4	9.503,-4	2.108,-3
2.25	0	7.150,-2	7.366,-2	6.346,-2	5.765,-2	6.144;-2	5.157,-2
	1	1.799,-1	1.495,-1	1.155,-1	1.873,-1	1.342,-1	9.891,-2
	2	2.142,-1	2.353,-1	2.280,-1	2.990,-1	1.880,-1	1.998,-1
	3	'2.701,-1	2.122,-1	2.388,-1	1.489,-1	1.686,-1	2.160,-1
	4	1.095,-1	1.460,-1	1.796,-1	9.432,-2	1.191,-1	1.682,-1
	5	6.282,-2	8.711,-2	1. $331,-1$	5.454,-2	7.361,-2	1.083,-1
	6	3.372,-2	4.794,-2	6.447,-2	2.981,-2	4.192,-2	6.253,-2
	7	1.740,-2	2.513,-2	3.462,-2	- $1.572,-2$	2.266,-2	3.386,-2
	8	18.769,-3	2.280,-2	1.794,-2	8.092,-3	1.185,-2	1.764,-2
	9	4.368,-3	6.421,-3	9.099,-3	4.107,-3	6.065,-3	8.991,-3
	10	2.167,-3	3.197,-3	4.567,-3	2.070,-3	3.069, -3	4.527,-3

Table III. Total. Angular Momentum Contributions to Tp (E/I) for Ionization from the is state (Cont.)

E/I	L	13(311)	$\mathrm{He}^{+}(322) *$	$2=128$ (P_{12})	H(B.e.)	He ${ }^{\text {+ }}$ (B e.)*	$z=128$ (B.e)
3.0	0	5.980,-2	5.911,-2	5.289,-2	4.811,-2	4.781,-2	4.195,-2
	1	1.495,-1	1.248,-1	1.007,-1	1.435,-1	1.055,-1	8.294,-2
	2	$1992,-1$	1.994,-1	1.883,-1	1.788,-1	1.582,-1	1.596,-1
	3	1.875,-1	2.066,-1	2.155,-1	$1.627{ }_{5}-1$	1.655,-1	3.887,-1
	4	2.440,-1	1.674,-1	1.867,-1	1.245,-1	1.382,-1	1 695,-1
	5	9.840,-2	1.181,-1	i. 370,-1	8 603,-2	$1010,-1$	1.282,-1
	6	6.285,-2	7.691,-2	9.148,-2	5.595,-2	6.792,-2	8.746,-2
	7	3.861,-2	4.782,-2	5.781,-2	3.507,-2	4.346,-2	5.608,-2
	8	2.322,-2	2.893,-2	3.541,-2	2.150,-2	2.697,-2	3 469,-2
	9	.1. 383,-2	1.734,-2	2.133,-2	1.303,-2	1.645,-2	2.105,-2
	20	8.217,-3	1.033,-2	1.277,-2	7.859,-3	9.946,-3	.1.265,-2
40	0	4.458,-2	4.324,-2	3.976,-2	3.594,-2	3.433.-2	3 192,-2
	1	1.125,-1	9.539,-2	7.975,-2	1.018,-1	7.785,-2	6.440,-2
	2	1.584, - ${ }^{\text {2 }}$	1.523,-1	1.427,-1	1.389,-1	1. $210,-1$	1.187,-1
	3	2.669,-3	1.723,-1	1.725,-1	1.442,-1	$1394,-1$	1.483,-1
	4	1.455,-1	1.569,-1	1.651,-1	1.263,-1	1.310,-1	1.472,-1
	5	1.130,-1	1.250,-1	1.359,-1	9 944,-2	1.078,-1	1 251,-1
	6	8.169,-2	9,195,-2	1 019,-1	7.319.-2	8.171,-2	- 9.619,-2
	7	5.667, $\mathbf{2}^{*}$	6.446,-2	7.234,-2	5.172,-2	5.879,-2	6.955,-2
	8	3.842,-2	4.397,-2	4.976,-2	3.568,-2	4.200,-2	4.847,-2
	9	2.577,-2	2.960,-2	3.367,-2	$2.431 r^{-2}$	2.810,-2	3.309,-2
	10	1.723,-2	1.984,-2	2 263,-2	1. $649,-2$	1.911,-2	2.239,-2

Table III. Total Angular Nomentum Contributions to $Q_{p}(E / I)$ for Ionization from the ls state (Cont.)

E / I	L	1: B_{2})	$\mathrm{He}{ }^{+}\left(\mathrm{B}_{21}\right)$ *	$2=128(822)$	H(B.e.)	He^{T} (B.e.)*	$2=128$ (B.e.)
5.0	0	3.372,-2	3.248,-2	-------	2.733,-2	2.578, 2	-------
	1	8 622,-2	7.421,-2	--------	7.581, -2	5 981,-2	-.-n----
	2	1.244,-1	1.180,-1	-------*	1.078,-1	9.427,-2	---.---
	3	1.391,-1	1.395,-1	-.-*-*-	1 200,-1	1.139,-1	-0-*-**
	4	2.307,-1	1.359,-1	-n-*--	1.139,-1	1.144,-1	-------
	5	2.097,-1	1.168,-1	-------"	9.706,-2	1.013,-1	------*
	6	8.565,-2	9.256,-2	\cdots	7.710,-2	8.256,-2	-------
	7	6.396,-2	6.979,-2.		5.857,-2	6 376,-2	
	8	4.655,-2	5.110,-2		4.332,-2	4.765,-2	-------
	9	3.344,-2	3.684,-2		3.157,-2	3.494,-2	
	10	2.392,-2	2.640,-2	- ---**	2.287,-2	2.538,-2	
	11	1.713,-2	1.892,-2	------*	1 655,-2	1.839,-2	-------
	12	1.233,-2	$1.362,-2$	-------	1, 202,-2	1.335,-2	-------

*Values for $E / I=1.51525$.

Table It *. Totai Angular tomentum Contributions to Ag (It/T) for Ionization from the is state

E/E	I.		$3=2\left(B_{23}\right)$	$\mathrm{Z}=\mathrm{l} 28$ (8.a)	$\mathrm{Z}=1$ (n,e)	2=2(b.e)	$\mathrm{z}=12 \mathrm{~g}$ (R.e.)
1.50	0	3.964,-2	2 196,-2	1.315,-2	3.270,-2	1.883, -2	1,131,-2
	1	4.709,-2	8.622,-2	6.614, m 2	5.073,.-2	8.992, -2	7.190,-2
	2	9,609,-2	9.999,-2	1.379,-1	2.607,-1	9. $524,-2$	1.119,-1
	3	1.171,-1	1.210,-1	9.959,-72	2 029,-1	2.308.-11	1.100,-1
	4	9.373,-2	2.213, -1	1.488, -1.	i. 500 , - 1	$1.615 . \mathrm{ml}$	$\geq 395,-1$
	5 '	5.947:2	9.144, -2	1.209,-1	8. 480.2	1,054, 21	1.264, - 1
	6	3.162,-2	6.075,-2	\% 159, - ${ }^{\text {c }}$	4.026. -2	6.075,-2	
	7	3.468, - 2	3.481,-2	5, $252,-2$	1. $599,-2$	3.100,-2	5 626,-2
	8	6. $146_{2}=3$	1.742,-2	$3.053,-2$	6.601,-3	1.455, ${ }^{2}$	3 291,-2
2.25	0	4.313:-2	2.812.-2	1.7105.-2	3.517,-2	2.260, -2	1.369,-2
	1	8 122,-2	9.376,-2	$7676,-2$	8.004,-2	8.553.22	7 340,-2
	2	9.895,-2	1.215,-1	1.26*, - 1	1.469,-1	1.094, -1	1.117,-1
	3	1.372,-2	1.296,-1	1.295,-1	2,250,-3	1.839, -1	1.188,-1
	4	1.732,-1	1.541,-1	1.564, m -	2.228,-1	1. 9000.12	$1392,-1$
	5	1.270\% -2	1.411,		1.672,-1	1.484, - 2	3.395,-1
	6	8, $270 .-2$	$1067{ }^{-1}$	4.313,-2	2.073, 1	1.005 0 - ${ }^{\text {2 }}$	1.185, - 1
	7	5.317,-2	7.275,-2	9.290, -2	6.282,-2	$6.343,-2$	8. $788,-2$
	8	3,182,-2	4.608,-2	6. $103 .-2$.	3.473.-2	3.835,-2	5.936,-2
	9	1.800,-2	$2748,-2$	$3792,-2$	1 $847,-2$	2.240, -2	3.741,-2
	10	9.747, -3	$1559, \sim 2$	2.244, 2	9 575,-3	1,270,-2	2.230,-2.

Tabie XV. Total Angular Momentum Contributions to $Q_{R}(F / T)$ for Ionization from the $2 s$ state (Cont.)

E/I	L	$2=1$ (B2. 2)	z=2 (B2a)	2=128 (Bx2)	$z=2$ (Be.)	$\mathrm{z}=2$ (8.c.)	2=128(B.e.)
3.0	0	3.495,-2	2.574,-2	3.685,-2	2.854: $=2$	2.050,-2	2.326, -2
	\geq	7.508, -2	7.781, -2	$6.632 .-2$	7.045.-2	6.729,-2	6.005.-2
	2	8,960,-2	1.054:-2	¥.047,-1	1.159,-1	9.352,-2	$9.084,-2$
	3	1.151,-1	1. $117 .-1$	$1.061, \mathrm{ml}$	1.740,-1	1.335, -1	1.007,-1
	4	1.346, -1	1. $340,-1$	1.310,-1	1.971,-1	1.555,-1	1.150,-2
	5	1.275, -1	1. $400,-1$	1.460.-1	1.737,-1	1.445,-1	1.237.-1
	6	1.026x-1	1.205,-1	1.362,-1	1.296,-1	1.137,-1	1.173,-1
	7	$7.436,-2$	9.118,-2	. $1.084,-1$	8.735,-2	8.084,-2	9.692,-2
	8	5.027,-2	6.362,-2	7.797,-2	5.537,-2	5.431,-2	7.2.12,-2
	9	3.237\%-2	4.204,-2	5.271, ${ }^{2}$	3.379,-2	3.524,-2	4.992,-2
	10	2.003, -2	2, $670,-2$	$3415,-2$	2,013.-2	2,232,-2	3.267, -2
4.0	0		2.058,-2	1.475. -2	-**---	1.634, -2	1.160,-2
	1		5.780,-2	$5088,-2$		$4 \mathrm{B61,-2}$	4.466,-2
	2	-	8.066,-2	7.803,-22		7.106,-2	6.764,-2
	3	+".	8.756,-2	8.406,-2	-	9.302,-2	7.744,-2
	4	-*	1.033.-1	1.002,-2	-----	1.125,-1	8.809,-2
	5	**	1.164,-1	1.152, -1	------	1.183,-1	9.778,-2'
	6.		1.132,-1	1.188,-1		1.077,-1	1.008,-1
	7	*	9.649\%-2	1.067, 1	-------	$8.750,-2$	9.264,-2
	8	**	7.47\% -2	$8.566,-2$	-ッハ**	$6.573,-2$	7.561, -2
	-9	+	5.427,-2	6.368, 42	--- -	4.692,-2	5.845,-2
	10	-	3.759,-2	4.492,-2	--- --	3.242, -2	4.213,-2
	11		2.540,-2	$3068 .-2$		2. $190,-2$	2.920,-2
	12	-->..........	1.677,-2	2.045,-2		1,459,-2	1 971,-2

Table VI. Contributions to $Q_{R}(E / X)$ for lonazation of ground state
hydrogen, using angle-dependent potentials

E / I	x	H_{1}	$\hat{\underline{x}} \cdot \hat{\underline{\mathbf{k}}}$	H_{2}	$z^{\prime}(\underline{x}, \underline{k})$	$z^{\prime}(\underline{k}, \underline{x})$	$\mathrm{I}_{\text {d }}$	$\mathrm{I}_{\mathbf{d}}+\mathrm{I}_{e}$	I
1.05	0.111803	0.025	-0.861136	0.347855	0.344553	0.621577	1.276	2.561	1.707
			-0.339981	0.652145	0.238814	0.560529	1.576	2.995	2.456
			0.339981	0.652145	-0.031006	0.404748	0.337	2.600	2.506
			0.861136	0.347855	-0.717567	8.36209,-3	$=(6,-9)$	3.72,-1	3.72,-1
					$\int I(\underline{x}, \underline{\underline{k}}) d(\underline{\hat{x}} \cdot \underline{\hat{k}})$		1.69	4.67	3.96
	*		$Q_{d}=0.042$		$Q_{Q}+Q_{e}=0.12$			$Q=0.10$	
			$\mathrm{Q}_{\mathrm{B}_{2} \mathrm{i}}=0.026$		$\mathrm{Q}_{\mathrm{Be}}=0.034$		$Q_{\exp }=0.05$		

Table VIf. Contributzons to $Q_{R}(E / L)$ for sonzzatzon of ground state thy̆rogen, using angle-dependent potentials (Cont.)

E/L	x	H_{1}	$z^{\prime}(\underline{x}, \underline{k})$	$2{ }^{\prime}(\underline{(x, x)}$	I_{d}	$\mathrm{I}_{\mathrm{d}}+\mathrm{I}_{\mathrm{e}}$	I
1.25	0.162529	0.0625	0.235310	0.737158	1.278	2.150	1.884
			0.139931	0.704374	1.316	2.263	1.559
			-0.063332	0.634507	0.824	2.227	2.040
			-0.378609	0.526139	0.101	2.257	2.452
			$\int I(\underline{x}, \underline{k}) \mathrm{a}(\underline{\underline{\hat{x}}} \cdot \underline{\underline{\underline{x}}}$	(${ }^{\text {) }}$	1.87	4.46	3.86
	0.313982	0.0625	0.426535	0.537272	0.996	1.875	1.407
			0.325761	0.455958	1.215	2.287	1.883
			0.047586	0.231499	1.006	2.434	2.558
			-0.955955	-0.578256	4.54,-5	4.44,-4	4.89,-4
			$f(\underline{x}, \underline{k})(\underline{\underline{x}} \cdot \underline{\hat{k}}$	($=$	1.79	3.73	3.39
			$\mathrm{O}_{\mathrm{d}}=0.23$	$Q_{a}+Q_{e}=0$.	$\mathrm{Q}=$	45	$=0.21$

Table VI. Contributions to $Q_{R}(E / I)$ for zonzzation of ground state hydrogen, using angle-dependent ootentials (Cont.)

E/J	x	H_{1}	$z^{\prime}(\underline{\sim}, \underline{k})$	$z^{\prime}(\underline{k}, \underline{x})$	${ }^{\text {I }} \mathrm{d}$	$I_{\text {d }}+I_{e}$	I
1.50	0.229850	0.125	0.235310	0.737158	1131	1.635	2.230
			0.139931	0.704374	1.200	1.793	2.370
			-0.063332	0.634507	1.057	2.903	2.797
			-0.378609	0.526139	0.368	1.596	1.293
			$\int I(\underline{x}, \underline{\underline{k}}) \mathrm{d}(\underline{\underline{x}}$	$=$	1.99	3.53	3.91
	0.444037	0.125	0.426535	0.537272	0.721	1.298	0.865
			0.325761	0.455958	0.913	1.661	1.152
			0.047586	0.231499	0.943	1.951	1.590
			-0.955955	$\cdots 0.578256$	3.3,-3	1.2,-2	1.2,-2
			$\int I(\underline{y}, \underline{k}) d(\underline{x}$	$=$	1.46	2.81	2.10
	-		$?^{2}=0.43$	$0 d^{+2} e^{=0}$	\bigcirc	5	=0.36

E/I	x * H_{2}	$z^{\prime}(\underline{m}+\mathrm{s})$		$\mathrm{I}^{\text {d }}$	$I_{2}{ }^{+I_{e}}$	7
2.25	$0.265403,0.173611$	0378167	0.799170	0.931	1.076	1.349
		0.096815	0.779270	1.019	1. 207	1.561
		-0.057887	0.741486	1. 194	1.437	1.838
		0.251 .27	0.694264	1.09\%	1.397	1.521
				2.15	2.59	3.21
	0.559027	0.344533	0.621577	0.424	0.572	0.432
		0.238824	0.560529	0.594	0.842	0.647
		-0.031006	0.404748	0.789	1.149	1.042
		-0.71.7567	0.008362	0.266	0,527	0.626
		$\int_{i}^{\prime}(\underline{x}, \underline{\underline{y}}) d(\underline{\underline{x}}+\hat{\underline{z}})$		1.14	1.68	1.47
	0.7445890 .273611	0.452447	0.511042	0244	0.442	0.271
		0.355123	0.424132	0.403	0.736	0.431
		0.083390	0.182478	0.566	1.048	0.614
		-0.963206	-0.753119	5,2,-22	0.101	6.2,-2
		$\int I(\underline{x} \times \underline{y}) d(\underline{x}$	c) $=$	0.73	1.35	0.80
		$Q_{\mathrm{d}}=0.72$	$Q_{d}^{+} e^{+1}$. $2 \times$		$=0.60$

Table VII. Parameters givang a fit to the reaction rate $0.2 \leq a \leq 10.0$

Atom	Inztual state	K_{0}	K_{1}	h_{2}	${ }_{3}$	K_{4}	${ }^{\text {A }}$
H	$1 s$	3.621	-2.063	8.036,-1	$-1.681 .4$	1.700,-2	$-6.455,-4$
\#	2 s	3.457	1.821	-1.638	4.840, - 1	$-5.836_{r}-2$	$2450,-3$
He^{+}	45	4.052	-1.320	2.641, $=1$	-1.816.-2	$7.438,-4$	9 548, -5
Hi^{+}	2 s	3.273	3.085	-9.794.-1	2.81.4, -1	-3.360.-2	$2,405,-3$
$z=128$	15	4.013	-2.186,-1	-3.474,-1	1.338, 1	-1.769:-2	7.767, 4
$2=128$	25	3.275	$8.003,-1$	-8.262,-1.	2.439,-1	-2.943,-2	1. $238,-3$

Figure (i). The ionlzation cross section for H (ls)

Figure (ii), The reduced ionization cross section for H 2 s

Figure (1,11). The reduced ionization cross section for He^{+}2s

5. CONCLUSIONS

We have considered a number of approximations in the theory of zonlzing collisions and applaed these to the calculation of ionization cross sections for hydrogenac systems. Besides the interest in hydrogenic systems themselves, we have done so with a vzew to establishıng which approximation might be best surted to the more difficult case of the ionzzation of complex atoms or ions by electron impact.

In comparang results for ionization from the ground state, it is seen that the Born-exchange results give the most satisfactory agreement with the experamental data. The agreement is particularly striking for the case of He^{+}but less good for the case of hydrogen.

For hydrogen the effect of not treating the final state correctly as regards the Coulomb potentials might be thought to be a more severe limitation than for the case of a positive ion. Examination of the results in table VI, however, shows that the approximation adopted for the fanal state, although correct in its asymptotic behavior, does not lead to a cross section giving better agreement with experiment. It is notable that the exchange contrabution in this approximation appears to be greatly overestimated, this being due to the fact that $z^{\prime}(\underline{k}, \underline{x})>z^{\prime}(\underline{x}, \underline{k})$. If one compares Ω_{d} with the Born (il) approximation, then it is seen that Q_{d} is indeed an improvement over the Born (ii) approximation. The situation would therefore seem to be that taking proper account of the Coulomb forces improves the calculation of $f(\underline{x}, \underline{k})$
where k>x. In this region $2 t 15$ a good approximation to adopt the asymptotic (angle-dependent) Coulomb potential. Where $k<x$, however, this is no longer the case. Thus whale $f(\underline{x}, \underline{k})$ may be well determined for $k>x$, it is not a good approxamation to write $g(\underline{x}, \underline{k})=f(\underline{k}, \underline{x})$, since the success of this procedure relies on knowing $f(\underline{x}, \underline{k})$ well for all \underline{x} and \underline{k}. In the near-threshold region, however, the results using the angle-dependent potential are in accord with the theoretical threshold law derived by Rudge and Seaton (2965), while the Born (21) and Born-exchange results are not. It should be mentioned, however, that there is an unresolved conflict between this theory and the experimental results of McGowan and Fineman (1965).

In the Born-exchange approximation the relative phase of the direct and exchange scattering amplitudes could be chosen at will. While theoretically inferior, therefore, it nevertheless yields more useful information about the cross section in those curcumstances where the phase choice leads to compensation of errors. Just what those circumstances are is not clear. When one considers the results for ionization for the 2 s state, it is seen that over the entire range in the case of hydrogen and over a part of the range for positive ions the effect of exchange increases the cross section. Also it appears that at hagh energies, as a result of exchange, the more haghly lonized ions have a smaller cross section for lonization than the less highly ionized rons, in contrast to the situation for the ground state. This could be due to a weakness of the Born-exchange approximation, but there is no experimental information from which a conclusion can be drawn.

The satuation therefore $2 s$ not ideal, but we would nevertheless conclude that for haghly ionized systems no substantial error should accrue for the case of the Born-exchange approximation, while the theoretically more sophastıcated approximation which we have examıned does not justify its added labor in terms of enhanced accuracy.

It is a pleasure to thank the director of the High Altitude Observatory, Boulder, Colorado, for the hospitality extended to one of us (M.R.H.R.) during the completion of thas work. We are also greatly indebted to the Natıonal Center for Atmospheric Research in Boulder for therr generous provision of computing facriities. We should like to acknowledge the support gaven to one of us (S.B.S.) by the Goddard Space Flight Center, NASA, Greenbelt, Maryland, under contract NAS5-3419 (which was administered by the Martin Co., Denver).

Boyd, R. I. F. and Boksenberg, A., 1960, Proc. 4th Int. Conf. on Ionization Phenomena in Gases, Vol. 1, p. 529.

Burgess, A. and Ruàgè, M. R. H., 1963, Proc. Roy. Soc. A, 273, 372-86.

Burke, P. G. and Taylor, A. J., 1965, Proc. Roy. Soc. A, 287, 105-122.

Dolder, K. T., Harrison, M. F. A. and Thonemann, P. C., 1961, Proc. Roy. Soc. A, 264, 367-78.

McGowan, J. W. and Fineman, M. A., 1965, Proc. 4 th Int. Conf, on Atomic Collisions (Quebec).

Percival, I. C. and Seaton, M. J., 1957, Proc. Camb. Phil. Soc., 53, 654-662.

Peterkop, R. K., 1961, Proc. Phys. Soc. 77, 1220-1222.
Peterkop, R. K., 1962, Optics and Spectra, 13, 87-89.
Rothe, E. W., Marıno, L. L., Neynaber, R. U., and
Trujillo, S. M., 1962, Phys. Rev. 125, 582-83.
Rudge, M. R. H. and Schwartz, S. B., 1965, Proc. Phys. Soc. 86, 773-776.

Rudge, M. R. H. and Seaton, M. T., 1965, Proc. Roy. Soc. A, 283, 262-290.

Seaton, M. J. and Peach, G., 1962, Proc. Phys. Soc., 79, 1296-1297.

