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THE FLUTTER OF FLEXIBLE, TOWED TENSION SHELLS

By Richard H. MacNeal
Astro Research Corporation

SUMMARY

A method of aeroelastic analysis for axisymmetric membrane
shells is developed and is applied to the flutter of a flared
tension cone decelerator attached by a cable to a massive fore-
body. The principal result is that the presence of elastic shear
stiffness in the membrane shell is important for the prevention
of flutter.

The method of analysis includes consideration of differential
stiffness due to pre-tension and of elastic stiffness. Static
pressure distribution and aerodynamic influence coefficients are
computed from Newtonian impact theory.

INTRODUCTION

Large, lightly loaded atmospheric decelerators for entry
from space into planetary atmospheres offer potential advantages
in reduced heating rates, lower temperatures, and reduction of
the decelerator weight fraction. The tension shell of flared
conical shape, references 1 and 2, is a lightly loaded decelera-
tor concept that achieves low structural weight by avoiding com-
pressive stresses in the surface of the decelerator. Compress-
ive loads are carried by a relatively stiff ring at the base of
the shell, figure 1.

The tension shell concept is r=adily adapted to a deplcyable
configuration in which the stowed volume of the decelerator is
very much less than the deployed volume. 1In the deployable
version the shell is a compliant fabric and the aft compression
ring is a pressurized, filament-wound toroid illustrated in
figure 1. A theoretical and experimental investigation of
the deployment characteristics of flexible tension cones with



pressurized rings is reported in reference 3.

The deployable tension shell can either be attached directly
to the payload or towed by a cable. Unpublished wind tunnel
experiments in the Langley 6' x 9' tunnel have revealed the
presence of flutter for the towed tension shell in both the rigid
and the flexible versions. A theoretical investigation of the
flutter of towed rigid decelerators is reported in reference 4,
where it is shown that flutter can be avoided by proper place-
ment of the center of gravity relative to the center of pressure.

The main purpose of the investigation reported here was to
examine the influence of shell flexibility on flutter in the
towed configuration. A secondary purpose was to develop a method
of analysis that could be used for the flutter analysis of any
axisymmetric decelerator system, towed or untowed, employing
tensioned membranes.

SYMBOLS

Unmodified symbols:
(n%) parameter characterizing shape of shell
a direction cosine
B damping matrix
b damping parameter
E elastic modulus
F component of force
G shear modulus
K stiffness matrix, spring constant
k reduced frequency (uR/y)

length
Lc length of cable




mass matrix

mass density (1b/in?®)

component of membrane force (1b/in)
number of circumferential waves
load

d/dt , pressure

force of constraint

base radius, also coefficient matrix for equations of
constraint

radius from axis of symmetry

distance along meridian

shell thickness

component of displacement

displacement component parallel to meridian
displacement component parallel to polar circle
free stream velocity

elastic strain energy

potential energy due to static preload
displacement component normal to surface
impedance matrix

generalized displacement

angle between meridian and plane normal to the axis of
symmetry

difference operator



m

strain

8 rotation

Y Poisson's ratio

p density of atmosphere

o) stress

P azimuth angle

w frequency, radians/sec

Subscripts:

a index referring to position along meridian midway
between mass stations

d dependent displacement component

i independent displacement component

m index referring to position along meridian at a mass
station

n indicates number of circumferential waves

s in direction of meridian

\ in direction of normal to surface

¢ in direction of polar circle

1 indicates Fourier coefficient for n = 1

DESCRIPTION OF THE PROBLEM

The results of the flutter analysis of towed rigid decelera-

tors reported in reference 4 were presented in terms of general
parameters that could be applied to any decelerator configuration.
The introduction of structural flexibility into the analysis

makes a high degree of generality impossible because the number of




parameters required to characterize a flexible shell is large.
The investigation was, accordingly, directed to the analysis of

a specific configuration, shown in figure 1, that will be wind-
tunnel tested.

The shroud of the model shown in figure 1 consists of
Dacron structural fibers oriented along meridians and imbedded
in an air-tight polyurethane sheet. The total cross-sectional
area of meridional fibers is constant along the meridian. Mem-
brane shear stiffness is provided, in an alternate design, by the
addition of light weight Dacron cloth with fibers oriented 45° to
the meridians.

If folding mechanics and static strength were the only con-
siderations in the structural design of the shroud, the design
with meridional fibers only would be preferable to shroud designs
with fibers in two or three directions. The design with meri-
dional fibers only provides maximum compliance in folding, and
exhibits minimum structural weight. The only reason for consider-
ing designs with other fiber orientations is that flutter might
thereby be suppressed.

The pressure sphere and the solenoid valve shown in figure 1
are required for inflation of the aft toroidal ring. These items
of equipment were considered to be rigidly attached to the nose
piece in the analysis. The aft toroidal ring was also considered
to be rigid, in comparison with the cable and the flexible shroud.

Analysis of the model in figure 1 as a rigid decelerator on
a flexible cable, using the method of reference 4, shows that the
configuration is free from flutter for any length of cable in a
Newtonian flow. Thus the presence of flutter in Newtonian flow,
if detected in the present analysis, can be directly attributed
to the effects of flexibility in the decelerator itself.

It is important that the same aerodynamic theory be used to
calculate the static pressure distribution and the aerodynamic
influence coefficients for perturbation motions. The reason is
that the static pressure distribution determines the stiffening
effects of pre-tension, and an inconsistency would result in the
dynamic analysis if static loads and dynamic influence coeffi-
cients were computed from different theories. The static pressure
distribution also determines, and must be consistent with, the
shape of the shroud.

Newtonian impact theory has been used in the analysis,



primarily because its basic simplicity ensures the consistent
treatment of static and dynamic pressure distributions. This

may be regarded as a serious defect in the analysis because it

is known that Newtonian impact theory does not accurately pre-
dict the pressure distribution on tension shell shapes, at least
up to Mach 7, reference 5 . There is also evidence, reference 6,
that the presence of the cable significantly alters the pressure
distribution over the surface of the decelerator. The investiga-
tion and use of more advanced aerodynamic theories is a logical
extension of the present study.

The problem solved in the present study was the flutter of
the model shown in figure 1 for oscillations in a plane while
connected to a massive body by a flexible cable. The length of
the cable and the shear stiffness of the shroud were varied dur-
ing the analysis. The method of analysis is described below.

METHOD OF ANALYSIS

The method of analysis was tailored to an available digital
computer program, SADSAM IV, developed by the MacNeal-Schwendler
Corporation. A brief account of the operating features of the
program is important for an understanding of the approach taken.

SADSAM IV is a program of modest capacity (50 independent
degrees of freedom) for the solution of structural dynamic prob-
lems (eigenvalue extraction, transient analysis and frequency
response analysis) by the lumped element approach. A significant
feature of the program is the employment of equations of con-
straint between dependent and independent displacement components.
The general matrix equation solved by the program can be written
as follows:

i s
l . b RT u P,w
iiy “id | i i i
——p——t === |- _.__&
T
| h =
Xdi' de: Ra ﬁ us Py (1)
___l._..__l..___-_ -——— —_——
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L : J




where

u, are independent components of displacement

u are dependent components of displacement

da

qc are forces of constraint

The impedance matrix X.li consists of mass, damping and
stiffness components

5 :
e = . ..Pp +  a

Xll Mllp * Bllp Kll, (2)

and similarly for Xid , Xdi , and de . The elements of

matrices Ri and Rd are the coefficients of the equations of

constraint.

The stiffness matrix Kii is assembled (in part) £from the

properties of simple springs connected between pairs of displace-
ment components. In addition the user can specify matrix elements
to be inserted directly into Kii , a feature that is used for

the generation of aerodynamic force coefficients and other uncon-
servative effects. B'i and Mii are assembled in similar

. i
fashion.

The coefficients of the equations of constraint, Ri and

Rd in equation (1), are specified by the user to express rigid

body properties of the elements of the structure and to express
coordinate transformations. They may also be used, as in the
present example, to express strains and rotations in terms of
displacements.

The decelerator system that was analyzed consists of four
parts as shown in figure 2. A sindle connection, representing
lateral translation, is shown between the cable and the nose
piece. The membrane shell has three connections, representing
three orthogonal components of translation, to the nose piece and
to the aft ring. Lumped element models were derived for each of
the four parts and interconnected to form the complete system.



The lumped element model for the cable is very simple and
therefore serves as a good introduction to the modeling technique.
The model is developed in figure 3 where it is seen that the
effect of tensile preload on lateral displacement of a cable
element may be represented by a simple spring restraining rela-
tive lateral translation between the ends of the element. The
complete model is obtained by interconnecting the springs and
lumped masses for several elements.

In order to discuss the representation of the membrane shell
it is first necessary to introduce the coordinate geometry and
the degrees of freedom used in the analysis. Figure 4 shows the
components of displacement and rotation defined at a point on the
surface of the shell. The components of displacement can be ex-
panded in terms of Fourier coefficients with respect to the
azimuth coordinate, ¢ ,

u, = uSo + E: u n-coanP + z: u_ -sinn®

n=1 n=1 ="
ucp = ﬁw + z: ucp .sinn® + E: ﬁw . cosn® > (3)

o} n n

n=1 n=1

o ® Y,
wo=wo+ Z w_.cosn® + Z w_.sinn®

n=1 n=1

For any linear, homogeneous problem the motions correspond-
ing to different values of n are uncoupled. Furthermore the
motions corregsponding to barred and unbarred Fourier coefficients
are uncoupled. 1In the present problem we are concerned with the
lateral motions of the shell as a whole which are represented by
the terms corresponding to n = 1. Thus we specialize to the
case

us = usl-cosw
ucp = uwl.sinw (4)
w = W .COs®P

1




The choice of unbarred coefficients indicates that ® = 0
is selected as a plane of symmetry. Every other response quant-
ity of interest, such as an applied force or a strain, can be
similarly represented as a sine or cosine function of ¢ , the
choice being dictated by consideration of symmetry.

In the analysis the Fourier coefficients, us . ucp and
1 1

w were selected as independent degrees of freedom. The general-

ized prartirbation aerodynamic forces acting on them are derived
in Appendix A from Newtonian impact theory. The results are
expressed below as theé components of generalized force acting on
a strip of slant length, As .

ow
AF = - ﬂpvz'coszﬁ(f—l + u 'éﬁ) rAs (5)
sy \Bs S1 asl
AF =~ mipVeecos®B |~ w + u_ «sinBlAs (6)
P1 1 ®1
ow 3B 2w
AF = =TIpVe{ sin2B —t 4y e==| 4+ —L.cosB
w1 ds s 9Js
t (7)
~le + € .coszﬁ} ris
=31 1

The term in equation (7) proportional to the sum of membrane
strains (€ + € represents the change in aerodynamic force due
Sl cpl
to the increase in area of a surface element. The term was not
actually included in the calculation. The term proportional to
Wl in equation (7) is represented by a viscous damper in the

computer program. The other aerodynamic terms are incorporated
in the computer solution by means of the direct input feature for
matrix I(ii mentioned earlier.

Lumped springs and masses to represent the structural proper-
ties of the shell were derived by an energy method. The potential
energy of the structure consists of a part due to elastic strain
and a part due to static preload. The latter part results in a
"differential stiffness" matrix similar to that for a beam-column
or a rotating propeller blade. Expressions for the elastic strain
energy, the potential energy due to static preloag, and the kinetic

9



energy are derived in Appendix B. The results are expressed below
for a strip of slant length As 1in terms of strains and rota-
tions.

Elastic Strain Energy

E 2
TtrAs _9p ( - 2) 2 2
= —— c > + 1 E € + G€
AV 2 | Bss|®s tTV E__ 9 V1 e s
1

Potential Energy due to Static Preload

TrAs 1 auw °
= — 62 - . 2 8= —
AVs > Ncp s, + Flu, U cosB + NS © + ( s )
1 1 1 J
(%)
Kinetic Energy
TmrAS| « o e .
AT = > 2t U + wi (10)

Two simplifying assumptions were used in the calculations,
namely that Ecpcp and Ncp were zero. These assumptions are

justified if the shell contains very little fiber to carry circum-
ferential load.

The strains and rotations appearing in the above equations are
related to displacements by the following formulas

aus
3
e -—t-u-2 (11)
€ = ;(u + u ecosB — w .sinB (12)
Cp ry @ S 1
1 1 1 u
u s
. r._a.i_w;) Y (13)
s® ds| r r
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1
S = =1 e S1i
s . [ W + Uy, 51nB] | (14)

1 1
ow
2] = o —_ .28
© N u 3s (15).
1 S 1

It will be noted that the strain and potential energy for-
mulas are expressed in the form

N =

AV = Z -Ki(yi)"’ (16)
1

where Y is a generalized displacement quantity related to the

actual components of displacement by a linear operator. Hence
Ki represents a spring restraining Y, and it is represented as

such in the computer program. The relationship between each Y,

and the components of displacement is regarded as an equation of
constraint. Differential operators occuring in the equations of
constraint are replaced by finite difference operators. For
example, in the term proportional to 8;1 in equation (9),

ow 3B 1| |1 88 \
y.=—8 =—*4+qu E=-2ly -w |+ 1280, + u
i P. ds s 9s As | m+3 m 2 93s| s s
1 1 m+ 3 m
(17)

where the indices m and mtl refer to adjacent stations along
the meridian of the shell.

The module that represents the mechanical properties of a
section of shell consists of the springs, Ki , the equations of

constraint and the mass coefficients indicated by equation (10).
A diagram representing the module is shown in figure 5. Formulas
for the values of the elements in the module are contained in
Appendix C.

It will be noted in figure 5 that some springs are connected

11




at stations (K; , K, , and Ks) and some springs are connected
between stations (K1 , Ks , K& , and Kv). A spring connected
between stations contains a derivative with respect to distance
along the meridian in its equation of constraint, while a spring
connected at a station does not. In the calculation all of the
springs located at stations were null due to the assumption that

E and N are zero.
oty ®

The complete lumped element model for the membrane shell is
tormed oy jolining the modules for individual sections together and
specifying the aerodynamic force coefficients. The models to
represent the nose piece and the rigid aft ring consist of lumped
rnasses and the equations of constraint required to form the re-
lationships between their motions and the components of dis-
placement at the connection points with the other parts of the
system. The nose piece also includes a spring to represent the
effect of axial pre-tension between the cable attachment point
and the point of connection to the membrane shell.

A diagram showing the detailed model for the complete system
is shown in figure 6. The model includes the mechanical sprirgs
and masses discussed above, viscous dampers that simulate aero-
dynamic damping, and the direct input aerodynamic stiffness terms.

Once the model has been completed and its properties coded
into the computer program, the eigenvalues and eigenvectors that
describe the aerodynamically damped modes of the system are com-
puted by a subroutine.

RESULTS OF NUMERICAL CALCULATION

The method described above was applied to the flexible ten-
sion shell decelerator shown in figure 1. The model used for
the numerical calculations included eight cable segments and .
eight membrane shell segments (see fig. 6). Since the shell is
flexible, the exact equilibrium shape of the shroud depends on
the static aerodynamic pressure distribution. Shell shapes for
Newtonian flow with zero stress in the circumferential direction
are defined in reference 2, in terms of a parameter (A®) that
depends on the ratio of shell height to base radius. For tﬁe'
present example a value A? = 1.4 , was selected. The meridion-
al force coefficient is given by

N = DERZ (18)
s 2(A®)r
12




where R 1is the base radius. Ncp is zero.

In order to permit scaling of the results to other shells,
the parameters describing the decelerator are expressed in dimen-
sionless form. The values of pertinent parameters used in the
analysis are listed in Table I.

The aerodynamic mass parameter determines the magnitude of
the aerodynamic damping. It probably has a negligible effect on
flutter criteria. The value shown in Table I is representative
of operation of the model in a wind tunnel at Mach 4 and 2000 psf
dynamic pressure.

The meridional strain parameter determines the relative mag-
nitude of elastic stiffness compared to the stiffening effects of
perturbation aerodynamic forces and static preload. The value
selected is representative of the fiber used in the shroud of the
model.

Two values of the ratio of the shear modulus to the meridion-
al elastic modulus were investigated. The wvalue G/Ess = 0 cor-

responds to a shroud in which meridional fibers are held in place
by a complaint matrix. The wvalue G/Ess = 0.1 corresponds to a

shroud with some helically wound fibers as well as meridional fibers.

The length of the cable was varied parametrically since it
was known from previous work on the flutter of rigid decelerators,
reference 5, that cable length is an important parameter for
flutter.

The results of the analysis are the frequency and damping of
the aerodynamically damped vibration modes and the corresponding
mode shapes. Damping and frequency are expressed as the real and
imaginary parts of the eigenvalue

A=a + 1w = g(b + ik) (12)

. . WR .
The dimensionless parameter k = ?7 is the conventional

reduced frequency, or Strouhal number, used to express the results
of flutter analysis.

The damping and frequency obtained for the four lowest modes

13



of the decelerator are presented as root locus plots in

figures 7a aud 7:. The varied parameter is the ratio of cable
length to decelerator base radius. The model with shear stiff-
ness is seen to be stable in all modes for all cable lengths,
while the model without shear stiffness becomes slightly unstable
in its second mode for a small range of cable lengths,

9.5 < "¢/ < 12 . The flutter is associated with the coalescence
of the frequencies of the secoerd and third modes.

A tendency for the root of a mode to track the root of the
next lower mode at a larger cable length is evident in figure 7.
The tendenc¢y occurs because the impedances that two cables pre-
sent to the decelerator at a given frequency are the same it the
numoer of half-wavelengths along the cables differ by an integer,
(see reference 5).

Mode shapes are plotted in figures 8 to 11 for the first
four modes with Yc/R = 6 . The first four modes are primarily
combinations of the following deformations

- rigid translation of the decelerator

- rigid rotation of the decelerator

- shearing distortion of the shroud near the nose piece
- cable whipping with 1/2 to 3/4 wavelength.

Shearing distortion of the shroud is quite prominent in the
second mode of the decelerator without elastic shear stiffness,
and in the third mode of the decelerator with elastic shear
stiffness.

The second mode of the decelerator without elastic shear
stiffness is plotted in figure 12, for a cable length in the
flutter region. The only prominent difference from the stable
condition (Yc/R = 6) is that rigid pitching ~f the decelerator
is absent.

The mode shape for the sixth mode of the decelerator without
elastic shear stiffness is shown in figure 13. Normal displace-
ments (w) in the plane ® = 0 , as well as tangential displace-
ments (uw) for ® = /2 , are plotted. This mode, which was

relatively heavily damped, is the lowest that includes large
rotation of the aft ring relative to the shroud. The addition of

14




elastic shear stiffness had very little effect on the frequency
or damping.

CONCLUDING DISCUSSION

The analysis described above shows that the effects of flex-
ibility can produce flutter in a towed decelerator that would be
stable if it were rigid. The type of flutter that was detected
is characterized by the coalescence of the frequencies of a pair
of modes, and by the presence of shearing distortion in the shell.
The flutter was eliminated by the addition of elastic shearing
stiffness to the shell.

One of the reasons that shear flexibility is significant for
the model studied is that the radius of the shell at the attach-
ment to the nose piece is small. The mode shapes (figures 8 to 12)
show that all of the shear deformation occurs within a short
distance of the nose piece. The effect of shear flexibility can,
therefore, be reduced by increasing the size of the nose piece.

It is unlikely that the quantitative results of the analysis
will be supported by wind tunnel tests due to the use of Newtonian
flow theory in the analysis. Further analytical effort on the
problem should include a consideration of more advanced aerody-
namic theories.

The method of analysis developed during the investigation is
applicable to the aeroelastic analysis of any axisymmetric decel-
erator system, towed or untowed, employing tensioned membranes.
It can, for example, be used to study the panel flutter of an
untowed tension shell used as a reentry decelerator. The appli-
cation of Newtonian impact theory is a less serious assumption
for this example due to the high Mach number at peak deceleration
and the absence of flow disturbances produced by a tow cable.

Astro Research Corporation
Santa Barbara, California, October 18, 1966.
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APPENDIX A.

AERODYNAMIC FORCE COEFFICIENTS

The aerodynamic pressure acts normal to a solid surface in
Newtonian flow and its magnitude is given by

p = pv; A(1)

where p 1is the density and Vp is the component of flow normal

to the surface in the free stream.

Consider an element of a surface of revolution shown in
Figure 4. The velocity normal to the surface is, considering
terms to first order in the motions

V = V-cos
P

B — ecp) - w A(2)

(See list of symbols for definitions.)

Substitute Equation A(2) into Equation A(l) and expand

p=2p0 Vzocosz(B - Gw) -2Vw.cos |B — 9@) + W A(3)
Now, considering 9cp << B
cos(B - em) = cosB + ewosinB A(4)
2 - 8 = cos®B + 6 .sin2B A(5)
cos (B cp) o
correct to first order in 6cp . Substitute into Equation A(3)
and keep terms to first order in 6 and w .

%
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APPENDIX A. - Continued
p = p{V3.cos®B + V‘ensin(ZB)-ecp — 2Vw.cosB A(6)

The direction cosines of the normal to the deflected surface
in the us ' ucp and w directions are, to first order in the

motions,

a =0 )
S ®
= 9 5
acp < A(7)
a =1
W y,
The components of pressure in the u, ucp and w
directions are, to first order in the motions
= = . 2 ‘e
P ap =+ pVe. cos® B 0 A(8)
Py = 8P = pVa'coszB-Ss A(9)
= = 2, 2 2, g1 .0 — Wil
P, a_p p<V cos®B + V°.sin2B o 2Vw cos?} A(10)

The element of area on which the pressure acts is

da = rdeds A(11)

= . + €
1 + bs)(l ®

The strains es and €cp are included to account for an increase

in area due to stretching.

17



APPENDIX A.

The rotations 0 and 8
S ©

follows

u
1l ow _9@ .
O = T » == .
< . B®'+ - sinB A(1l2)
ow 9B
B =—- = - .
Vo] os us ads A(13)
so that Equations A(8), and A(9) become
ow 0B
- - 2, 2| W .
Py pV<e cos B[Bs + u Bs] A(l4)
and
1 ow *
=— pV=. 2gl=eem .51
Py p cos®B r 3 p” sinB A(15)
The displacements are assumed to depend on the azimuth angle
® 1in the following manner (see eqn. 4 of text).
u = u_ -.cos® A(le6)
S S
u_-sin A(l7
u@ = Py ® (17)
W = w-cos® A(18)
1
Regarding u . ucp , and w , as generalized coordinates,
1 1
the corresponding generalized forces are
- . A(l9
Fsl chosw psdA (19)
A

18
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are related to displacements as




APPENDIX A. - Continued

le = Jﬂsinw-pwdA A(20)
le = jrcoswopwdA » A(21)
A

The calculation of aerodynamic coefficients is completed by
substituting previously derived expressions for the components
of pressure and for dA into these equations and integrating
over the surface of a strip of slant length As . In the calcu-
lation only the terms of first order in the motions are retained.
As a result the strains, Gs and €$ , are retained only in

Equation A(21).

The results of the calculation are

ow
3
= " TI 2- 2 —']“-I- '—E
AFS1 pV< e cos® B Py usl s A(22)
AF = — mpVescos®Bl — w + Uy ~S1nB A(23)
®1 1
ow 2
—_— = 2 3 -—-L . .
Ale = TPV~ {sin2B Y + uSl Bs + —>.cosB

A(24)

€ + € cos®B ) rAs
S3 ©,

19




APPENDIX B.

ENERGY EXPRESSIONS

Elastic Strain Energy of an Orthotropic
Membrane of Revolution

The components of membrane strain in the coordinate system
depicted in Figure 4 are

. _ —s _ 3B
a . - . 1
. 1 uCp . u cosB wesinpB 5 (2)
P r oY r
u du
> — .-a— —59 ;._S-
s - T RslT y+ r 3¢ B(3)

The stress-strain relationships for an orthotropic membrane

are

/ o) E | OW €

s ss s® | s

I

o - | B 0] €

(%o = Fse Tee {cp ) B (4)
e =

Oscp 0 0 | G €scp

\ i | ) \ /

A i E E . where i
lternatively we may replace s by /Ess 0 VoW vy 1s
an effective Poisson's ratio. The strain energy per unit area is

N =

oV =
e

€ € . d
[os < + Gmem + oscp S@]t rde s. B(5)




APPENDIX B.

where t

- Continued

is the thickness of the membrane.

Substituting from Equation B(4) into Equation B(5)

Express the strains in
for a plane of symmetry at

€
s®

Then,

of strain, Equations B(1l),

Sa

©y

€
sy

The strain energy

[E «€2 4+ 2E €
SS S s® s

of a strip of slant length As

€2 + G€2
p P s®

€ + E

trded B(6
o i‘rcps (6)

terms of sine and cosine components

® =0

= € . cos®P B(7)
S1

= Gwl-cosw B(8)

= € .sj_ncp B(g)
st

substituting these relationships into the definition

B(2), and B(3),
~ oy o 2B B(10)
1 ds
u e.cosB — w esinB
4y ==L 1 B(11)
r
g, u
—_1|. _S1 B(12)
r r

is obtained
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APPENDIX B. - Continued

by substituting Equations B(7), B(8), and B(9) into Equation B(6)
and integrating with respect to ¢ . The result is

a Ttris 2 2 2
V = ==—=|E € + 2E € € + E_ € + G¢€ B(13
e 2 [ ss s1 s® s1 ¢ PP Py sfpl} (13)

It is convenient to express Ave as a sum of squares. Using

= E i
Escp v E o oo the result is
TtrAs Eg@ 2
= E_le + € + (1L - V)E €2 + Ggé?
AV 2 |Fss| s TV E 9 (17 V) By, P,

B(14)

Potential Energy of a Membrane of Revolution
Due to Static Preload

Consider a small element of a membrane, shown below, in static
equilibrium under tensions NS and N

¢

rd®«N 6
T s

e T
ds'N_ <+ —> ds-N P e /-} ds

| o b—xap —|
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APPENDIX B. - Continued

In order to calculate the work done by preload, consider a virtual
motion in which the preload forces NS and Ncp remain attached

to the element, move with it, and rerain fixed in magnitude and
direction, when the element is moved c¢r distorted. The forces
will, consequently, remain in equilibrium with the applied external
loads. It is necessary to consider only second order terms in
computing the motions.

The basis of the calculation is as follows: If a rigid bar
of length 4 subjected to end load p is rotated thru an angle
0 ,the work done against the load p is

Vq = 4P(l — cosB) = %'&PGQ B(15)

VS is the increase in potential energy of the bar. Consider

next a bar that is rotated about two perpendicular axes as shown
below

23



APPENDIX B. - Continued
The work done against the end load P 1is
\Y =PL(1— a ) B(16)
S z

where az is the direction cosine of the rotated bar in the

Zz - direction. Now
a® + a° + a° =1 B(17)

so that

B(18)
gl(aa_i_ae)
2 X Y
correct to third order in ax and ay .
Also
a® = 67 B(19)
X Y
a® = 0° B(20)
% X

correct to second order in GX and Gy .
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APPENDIX B. -~ Continued

Hence

1
Vs =5 PL

8’;+ 8;) B(21)

correct to second order in ex and Gy .

In order to apply the above theory to a membrane, it is con-
venient to regard the membrane as composed of rigid bars that are
free to rotate in all directions as shown below.

Ns-rd$ N .rd®p

s
i L
Ncp' ds e — N _.ds

] ®

©,

R I

N . rd® N .rdoy
s s

The out-of-plane rotations of bars @ and @ are Gs and

9cp respectively. The in-plane rotations of bars @ and @

include contributions from the shear strain as well as from the
rigid body rotation Gw as shown below.
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APPENDIX B. - Continued

- L

\\\r " >—:F\\4‘\\e .
\ 1/7>.€SC(J F__
\ GWC- a\

The in-plane rotations of bars (O and (@ are respectively

1
3] = — —-e€
1i ew 2 s B(22)
9 . =0 + t.e B(23)
2i w 2 s

The potential energy density per unit area is, using
Equation B(21),

'rdcpds{N [82 +
¥l s

8V =
s

N I




APPENDIX B. - Continued

Expressions for the rotations and shear strain in terms of
displacements are presented in Reference 1. They are

u du
> - cl ._CP -]—'n-—§
“so T T'3s\T ) Y B (25)
_law o
es = 30 + 7 sinB B(26)
_-ow 28
ecp = s v 3. B(27)
s . \
. _ 1 (ru@) _ aus 5(28)
w 2r ds L1ve)

From these expressions, it can be shown by straightforward
substitution that

1 1 Bus]
8 — Z.c = =lu . - == B(29
w 5 €0 r[ucp cosB 30 (29)
and
3u
1, . 2
St 2°%0 7 T3 B(30)

With these expressions the potential energy density becomes

: du 2 ou,..\ =2
_ 1 2 , Ll_s _ 2 2
6Vs = 2.rdcpds<Ncp|ies + 2\ 30 ucp cosB :l+ NS[GCP + 3o ) ]
B(31)

Express the rotations and displacements in terms of sine and
cosine components for a plane of symmetry at @ = 0



APPENDIX B. - Continued

8 =0 _ e.sin®

S Si \
8 =8 .cos®
P ®1 > B(32)
us = usl-cos®
/
ucp = u¢1-51n¢

The desired expression for potential energy of a strip of
slant length As is obtained by substituting these expressions
into Equation B(31) and integrating with respect to ¢ . The
result is

3u 2
TrAs 1 ° —2 ]
A = e—— 62 4 == + . 8+
/\VS > N@[ < ra(usl ucpl cosB ]+ Ns[ 0 s
B(33)
Kinetic Energy of a Membrane of Revolution
The kinetic energy density is
8T = Tom | &2 + 42 + ﬁﬁ) ' B(34)
2 s P
Express u, ucp , and w in terms of sine and cosine

components of the azimuth angle as before. The kinetic energy of
a strip of slant length As 1is

AT = ‘"°mrAs[l'1szl + &fpl + w‘?} B(35)

where m 1is the mass per unit area.
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APPENDIX C.
FORMULAS FOR ELEMENTS IN THE MODULE

REPRESENTING A SECTION OF MEMBRANE SHELL

Formulas for the elements are presented with reference to
Figure 5 , the diagram for the module.

Masses

=]
I
=}
il
3
Il

TmrAs
m

Viscous Damper

B = 2UpV-.cosB-rAs
1 m
Springs
K = TtrAs E
1 a ss
= TtrAs (1 - Z)E
Kg m v pep
=T
K3 trAsaG
= TxrAs N
K4 m @
= TrAs N
K5 m @
K = TrAs N
6 a s
T
K ==5N

7 As s
a



where:

where:

APPENDIX C. - Continued

Constraint Zquations

a =
1
a =
3
a =3
4
A% EQQ
a = a = e=——
5 8 2r E
a ss
= € =Dbw + bu + b
y2 @ 2 m 4 S, 6
— sin
b = T B
2 m




where:

where:

APPENDIX (.

- Continued

_ cosB

sin
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APPENDIX C. - Continued

L
i
H I~

u + u$ocosB)

where:

where:

129
t =t =73%s
Direct Input Aerodynamic Force Coefficients

The perturbation aerodynamic forces at the mth station,
excluding the viscous damper term simulated by B and the terms
1

proportional to strains, are:
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u. | I
AF \ A 0 0O A A ( u \
sS,m 11l I 14l 15 S,
N —--1-—1—‘—]—'—|—'_ Uy
AF &:-*ﬂmﬁrlm oOja |a o] o ﬁ‘WJ‘—$
®,m m m a2 23 I m
] __Ld_L =
AF a lolola !a W
o w.m 3l l | 34] 35 |\ M-1 )

The A's are the coefficients of a stiffness matrix [Kij]

such th=t
[K. ] = TpVer As [A. ]
ij m m| ij

where

A = coszﬁ'éﬁ
11 ds

A ="—A =(COSQQ/2AS
la 15 m

A =(cosgﬂ-sinﬁ/r
22 n

A = ~(coszB)/r
1 23 m
1 A = 51n28'§§
I a1 3
A =-a = (sinéB)/ms
34 35 m
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Figure 5. — Module for a Section of Membrane Shell
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