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NOTATLION AND SYMBOLS

state vector

centrcecl vector

stochastic input of white nolse type
initial value of state vector

the "allowed" or "safe" regiocn of state
space

the expected value over ;i
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the expected value over the set r , r ., ...,
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"is contained in"

"is not contained in"

damping coefficient

ensemble average

t, -t

strength of noise (chosen to be 1 in the
example)

vector function which governs systen
cost function

contribution to tetal cost from ith to
i+ 1st stage

optimal return over n stages starting with

initial state ¢
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ABSTRACT

: This report shows how one may use the first-passage
probability as a measure of performance in a stochastic
control problem. Some general background is presented
along with a mathematical formulation which lends itself
to numerical computation., To demonstrate some of the

details of computation an actual example is included.




1. Introduction

There are many problems in science and engineering
which involve the excitation of a system by some random
disturbance. The output of such a system is then a ran-
dom variable and must be treated from a statistical rather
than a deterministic standpoint. Averages, mean-squares,
and higher statistical moments may be used as yardsticks
to evaluate the response., For wide classes of problems
these measures may provide as much information as one
really needs; for other problems one would like to know

much more about the response.

The specific type of problem to be considered here
is one for which there are sufficiently large excursions
of the response to make failure an imminent possibility.
Failure will be defined simply as the first crossing of
some predefined level, or more precisely, as the entrance
of the state vector into some forbidden region of state

space for the first time in a given interval of operation.

For this type of problem the notions of average level
of response or mean-square of response do not tell very much
about how long one should expect a system to operate without
failing. It would therefore be most desirable to actually
compute the probability density of the time to first pas-
sage. Unfortunately this turns out to be a difficult problem
and only the simplest of examples have been solved analyti-

cally. In an attempt to find approximate solutions investi-
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gations have been and are being made into various computa-
tional schemes based upon Monte Carlo methods and numerical

diffusion of probability mass.[lj

It is possible to envision even more complicated prob-
lems in which some sort of feedback control is involved,
either for the explicit purpose of minimizing failure proba-
bility or for some other unrelated purpose, The question
of synthesizing a control function to provide minimum fail-
ure probability or of finding the maximum failure probability
with a given control function is then more complex because
an optimization is involved in addition to the first passage
problem., An example of the latter case may arise when a
flexible launch vehicle is subjected to a random wind field.
The resulting bending vibration may be so severe that the
vehicle will actually break up. This paper shows how dynamic
programming may be used as a computational means to attack

such problems,
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2. Dynamic Programming

Dynamic Programming 1is now a widely used tool in the
study of optimal control problems and multistage decision

processes. The method is based upon the Principle of

Optimality which states: An optimal policy has the property

that whatever the initial state and initial decisions are,
the remaining decisions must constitute an optimal policy

with regard to the state resulting from the first decision.[z:I

In order to clarify the meaning of this statement
consider the following example (see Fig. 1). Suppose it be
required to find the route from each starting point (A, B, C, D)
that gets to the finish line at minimum total cost. The cost
for each leg is indicated by the number adjacent to the leg.
At each intermediate junction one must choose to go either

straight ahead or to follow a diagonal path.

F¢'1_ 1

C

S~

Stage 1 Stage 2 Stage 3 Finish Line

One approach would be to enumerate all possible paths,
calculate the total cost for each one, and find the one with
least total cost. The obvious disadvantage in doing this is
that the number of paths increases geometrically with the

number of stages, and for large problems the situation gets



rapidly out of hand.

Consider on the other hand the following approach
justified by the principle of optimality. Starting with
stage 3 draw in the paths from each point that have mini-

mum cost. The diagram now looks as follows.

Fi1k.l

i

The other paths at the last stage are eliminated once
and for all because once we get to stage 3, no matter at
which point, the remainder of the path must be optimal.
Using the same reasoning, start at each point from stage 2
and compute the total cost for each possibility, and draw in

only the routes with lowest cost. Our decision will be to

choose

Min (5+2, 4+1) = 5
Min (4+1, 143) =4
Min (3+3, 3+2) =5
Min ( 8+2 ) = 10

The resulting new figure will be
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Note that at each stage the amount of computation is the
same, since the optimal routes along with their costs for
the remainder of the path have already been computed. This

is a simple application of the Principle of Optimality.

Starting finally at stage 1 the optimal paths are
obtained.

All legs which are not segments of optimal routes have been

discarded,

The precéding example is a heuristic explanation of
the Principle of Optimality, and does not touch at all on
many of the far-reaching consequences of this seemingly
simple concept. Rigorous mathematical derivations and many

applications may be found in reference [2].



3. Application of Dynamic Programming in the Discrete

Determinate Case

The same ideas which were used above may be applied to
a more general example involving a difference equation, with
decisions to be made at each stage on the selection of one
of several vectors., The total cost will be computed on the
basis of the route followed and of the values chosen for the

control vectors., The difference equation is given by

>

>, > -> > -
Xi4, = 8(Xy4, Vi) X =¢ (1)

1 o]

where ;i is the state vector at stage i, é a vector function,
and §i a control vector chosen at stage i. Expanding upon

the earlier idea of a total cost attached to a certain route,
a cost function Fn will now be defined which depends upon the

various states and the decisions made at each stage, that is

> -+ > N >
Fn = Fn(c, Xis eoees Xy 15 You Yys «oes yn_l) (2)
Lest one become confused by the seeming complexity of
the above function, it should be emphasized that Fn is simply
a means to evaluate the performance of the system in some

quantitative way.

Suppose now that Fn may be separated into a contribution

from each stage:

-> > > >
Fn = ho(c’ yo) + hl(xl’ yl) + s 0 + h
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To minimize Fn apply the same reascning that was used
in the earlier example. A systematic approach is to first

define

v. )]

> . > > -> >
fn(c) = Min [ho(c, yo) + h(x;, v,) + .e. +h (x nei

{yi} n-i "n-1?
(4)

where the notation Min means that the minimization is
{y.}
i

to be taken over all values of the set 50, ;1, o oy ;

n-1
Observe that

£, (¢) = Nin ho(c, yo) (5)
0

and may easily be found by a search over the allowed values

<>

of Yoo This is done for all values of the initial state c.

To find fz (3), use the relationship established through

the Principle of Optimality, that 1is

-+ >

r (3) = 1o [h (3, §)+ £ _ (EE, § )] (6)

(o]

Once f2 (3) has been found for all values of 3, the
above relationship may then be used to find f, ().
Continuing in this manner one finally arrives at the

solution to the problem fn (c).



4, Application of Iynamic Programming in the ILiscrete

Stochastic Case

The formulation of the preceding section applies just
as well in the stochastic case where

r.) X =¢ (7)

; _ 4(3(» >
EiXis Vi» Ty 0

i+1

and ;i is a random vector of the white noise type. The only
difference is that now the cost function’?n will depend on
the random vectors ;i’ where 1 = o, 1, ..., n-1, Since 7
1s therefore a stochastic gquantity it only makes sense to
minimize its expected value., Tefine

fn(é) = Min [Exp F ] (8)
(7,1 {F))

By the Principle of Optimality,

> . . > > -»> >, > > >
£ (c) = Min Egp (hy(cy, y 5 v ) + fo_ &le, vy, v 01 (9)

o) (o]

The computational procedure is exactly the same except
that the expectation over ?o must be taken at each stage.
The method of this section will now be applied to the first

passage problem,
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5 The First-Passage Problem

Let R be the "safe" or allowed region of state space.

. . -> > >
Define the function hi(xi’ Vi» ri) by

> > > . -> -, > -> -
hy(x4, ¥4, ry) =1 if x;eR and g(Xys Vi ri)éR
(10)
= 0 otherwise
Then
> -> > > -»> > -> >
Exp hy(xy, ¥4» T,) = [hi(xi, Yi» Tydp(ry)dry (11)

{ri}

is the probability that failure occurs in the transition
from the ith to the (i + 1)st stage given an initial state
fi and control vector §i' It is simply the sum of the
probabilities p(;i)d?i over those values of ;i which cause

;i+1 to leave R. This requirement together with the absorp-

tion condition
-+ >, > - > - -+
Xig, = 8(X05 Vi ry) = Xy if x;4 R (12)

allows failure to occur at most once in any evolution of

the system. The total probability of failure over n stages is

n-1 N >
Exp [ hy(Xy, T4 Ty) (13)
{r,}i=o

1 i
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The control problem now takes on the form of finding a
sequence of ;'s, subject to various constraints, which

minimizes (13).

As before, the n-stage cost function, dependent on

the initial condition E, is given by

n-1
-»> . . > - >
fn(c) = Eln Expizo hi(xi’ Vi ri) (14)
{yi}{ri}
It is the minimum probability of system failure over n stages.
For n = 1,
A <> > ->

n hép ho(c, y s ro) (15)
o (¢]

The Principle of Optimality yields the recurrence relation-

ship

> > -> >, >
%xp [ho(c’ Ioo ro) + fn-

[¢] [¢]

o]
<=

1

(8¢, ¥, * 01 (16)
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6. Case of No Control

To set the ground for an actual example of the method,
consider the case of no control., Assume without loss of
generaiity that § is identically zero. Then the cost
function

- N1 .

£.(S) ={§X?1§o hy(X;, 0, Ty) (17)
i

gives the failure probability over n stages, and

-+> > ->
£, (e) = Exp ho(c, 0, r))

r
(o)

(18)
The recurrence relationship is

£.(3) = Exp [h (¢, o, T ) + £, (&(c, o, T 1] (19)
o}

Equations (17), (18), and (19) are identical with (14), (15),
and (16) except for the choice of §i = 5 and the omission of
the minimization. So in the special case of no control, the
analysis simply yields the first passage probabilities. The
meaning of Equation (19) may be made clear by considering
separately each of the two terms appearing on the right hand

side:

<>

f (c)

n

O >, > >
Exp [1,(, o, r)l + Exp (£, ,Lele, o, v )]
o o

£,(8) + faF p(F ) £, | [E(E, o, T )]

(20)
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The first term represents the probability of failure
during the first stage of the process. The second term
amounts to finding the probability that Fo will assume a
certain value, multiplying by the probability of failure
over the last n-1 stages given that ?o assumes this value,
and integrating over all the values which ?o may assume.
The second term is therefore the probability of failure
over the last n-1 stages of the process given that the

system has not failed during the first stage.
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AN EXAMPLE

THE SYSTEM

Since so few first-passage-time problems have been
solved analytically, it is difficult to find reliable solu-
tions to use for the sake of comparison. It was finally
decided to conéider the problem of the Brownian motion of
a particle in a viscous medium. For those more concerned
with mechanical systehs, it should be pointed out that this
is precisely the same problem as a mass-damper system subject

to white-noise excitation as shown in Figure 5 below.

m —v-kéﬁ)

F%%.S

77 7 7772?7277 7

-
Following the notation of Wang and Uhlenbeck), the equation of

motion will be

m(g%) + bv = K(t) (21)
where m = mass
v = velocity
b = coefficient of damping

and K(t) is the fluctuating force of which the average value
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is zero and which has a practically white spectrum.

Then equation (21) may be written in the form

(%%) + Bx = Q(t) (22)

The spectral density of Q(t) is taken to be 4D and Q(t)

is assumed to be Gaussian with zero mean. Thus,
{ate) = 0 (23)

Raglt,=t,) = (Q(t)Q(t,)) = 2Ds(t -t,) (24)
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DISCRETE REPRESENTATION OF SYSTEM

The differential equation of motion may be considered
in terms of the discrete approximation

X -
it17 %4

" + Bxy = Q(ti) (25)

This means that it is necessary to find a discrete approxima-

tion to the random function Q(t) as well.
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DISCRETE APPROXIMATION TO WHITE NOISE

Following Cook6, consider the random function composed
of statistically independent square pulses with a Gaussian

amplitude distribution

@

The auto correlation function of this time series is

Rgq(t) = o3[l - %;|] 5 |l <ty
(26)
=0 N S
Recalling our original assumption on Q(t)
RQQ(T) = 2Ds(1) T =t -t, (27)

and noting that
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t =+0 [ 1l - ‘i_'lj
Y o

- = §(1)
tO
1 - | =

2D lim t, , ]

to+o § ] = o [ 1 - Ile]
[¢]

We conclude that for small to

2D

- 2
™ = 0
t, Q

For an evaluation of this assumption, see Figure

Appendix, reprinted from Cook's dissertation[6].

(28)

(29)

(30)

(3) in the
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NUMERICAL EVALUATION OF fn(c)

Start with the equation
£ (c) = [ p(r)n(c, o, r)dr + L:fn_ﬁg(c, o, r) p(r)dr (31)

Now form a set of grid points to store the value of the state
variable. Note that if ¢ ¢ R, the first integral above is
zero by the definition of h., The second integral is also

zero since, by the definition of g and h, if ¢ ¢ R then

£f,(c) = j_:p(r)h(c, o, r)dr = 0
£,(c) = 0 + f_£ (c)p(rlar = 0 (32)
fn-l(c) =0

Hence, it is not necessary to extend the grid to those

values for which ¢ £ R.

Since fn_l(c) has only been computed for values of c
lying on a grid of points and one is now required to
comput e fn_l(g(c, o, r)), it would be convenient if g would
fall exactly on the same grid polnts as ¢ so that no inter-
polation would be necessary. The assumption is therefore
AX

' AX
made that fn_l(c) is constant for x - =< ¢ <X +5=

The second integral may then be approximated by
ry + Ar/2

m
13, Tney (%4 fri i Ar/zp(r )dr (33)
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where Xy denotes the value of x at the i th grid location and
%_is found by inverting X = g(c, o, %)

Since r is assumed to have a Gaussian distribution, integrals
b

of the type Ia

p{(r)dr may be numerically evaluated from

a polynomial approximation of the error function.

In the usual theory of the Brownlan motion based upon
the ordinary diffusion equation %% = 23;; a few first-passage-
time problems have been considered and solved by Smoluchowski
and others. Wang and Uhlenbeck5 state that the method of
Smoluchowski can also be used for a one-dimensional Gaussian
Markov process x(t) and that one can show that the probability

density w(c, t)dt of the first-passage time to reach x = 0

starting from c¢ is given by

1 02
w(c, t)dt = c(%% /2 exp (:%%— z2)dz (34)

_ _1
where z = e~ B¢ (1-e 28t) /2

In the graphs which follow, the distribution function
labeled (D) was obtained from the above equation by numericaliy
integrating w(c, t)dt‘for various values of ¢ and for B = .5,
It should be mentioned that the normalizing condition on the
probability distribution requires a normalizing constant of

-1 if ¢ > 0.
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EXTENSION OF RESULTS

The method outlined in this paper lends itself quite
easily to some important generalizations. Note that in the
example treated, the region R was chosen so that results
could be compared with the solution given by Wang and Uhlen-
beck. Yet any region in state space might just as well have

been chosen without significant complications.

Another possibility would be to introduce time-varying
coefficients into the system equation and again nc serious

difficulties would arise.

One might also consider the case of non-white noise.
Since most noise can be thought of as the result of filtering
white noise (if necessary through a time-varying filter),
one has only to increase the dimensionality of the system.
This offers no real conceptual difficulty although certain
computational problems may arise., For example, as the system
dimensionality increases, it finally becanes impossible to
store a sufficliently accurate set of values of the return
function on a grid of points in the core memory. One nust

then resort to one of a variety of special techniques.

Of these special techniques the most useful is probably
a polynomial approximation scheme in which the cost function
is represented by a polynomial in the components of the

state vector., Not only is core storage tremendously reduced
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but in addition the actual number of computations is cut
down, and it may even be possible to perform some of the
necessary integrations analytically. The details of this

method are discussed by Bellman in reference 2.
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APPENDIX

The graph which follows represents the normalized
power-spectrum of approximate white noise obtained by Cook6.

It is based upon the auto-correlation function given in

the text in the section on white noise.

Calculations to obtain the first passage probabilities

were done on the CDC-6600 computer at New York University.
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