FLUX SWITCHING IN MAGNETIC CIRCUITS

Prepared for:
JET PROPULSION LABORATORY 4800 OAK GROVE DRIVE
PASADENA, CALIFORNIA 91103

CONTRACT 951383 UNDER NAS7-100
(Extension of work under Contracts
950095 under NASw-6 and
950943 under NAS7-100)

By: D. NITZAN
v. W. HESTERMAN
E. K. VAN DE RIET

SRI Project 5670

Approved: D. R. BROWN, MANAGER
COMPUTER TECHNIQUES LABORATORY
J. D. NOE, EXECUTIVE DIRECTOR

ENGINEERING SCIENCES AND INDUSTRIAL DEVELOPMENT
This work was performed for the Jet Propulsion Laboratory, California Institute of Technology, sponsored by the National Aeronautics and Space Administration under Contract NAS7-100.

preceding page blank not filmed.

ABSTRACT

The total $\dot{\phi}(t)$ waveform of a square-loop core switched by an MMF $F(t)$ having a short rise time T_{r} and amplitude F_{D} is composed of elastic $\dot{\phi}(t)$ and inelastic $\dot{\phi}(t)$. The elastic $\dot{\phi}(t), \dot{\phi}_{\epsilon}(t)$, has two components: a high-amplitude spike, $\dot{\phi}_{\epsilon}(t)$, due to rotation of magnetization, followed by a low-amplitude tail, $\phi_{\epsilon}(t)$, due to domain-wall motion. When a 1200-0e transverse field was superimposed, $\dot{\phi}_{\epsilon v}(t)$ disappeared. Each $\dot{\phi}_{\epsilon}$ component is described by a second-order differential equation of the form $\phi_{\epsilon}+\delta \dot{\phi}_{\epsilon}+\eta \ddot{\phi}_{\epsilon}=\epsilon F$, where δ, η, and ϵ are coefficients; the initial conditions are $\phi_{\epsilon}=0$ and $\dot{\phi}_{\epsilon}=0$. For $\dot{\phi}_{\epsilon}$, this equation results directly by considering the stiffness, the viscous damping, and the mass of an average domain wall. For $\dot{\phi}_{\epsilon_{r}}$, the solution of this equation for a step $F(t)$ is shown to be equivalent to the component of $\dot{\phi}$ along the applied field which is obtained by solving Landau-Lifshitz or Gilbert equation for a small angle of rotation and low viscous damping. A good fit is obtained between the computed $\dot{\phi}_{\epsilon_{r}}(t)+\dot{\phi}_{\epsilon_{\nu}}(t)+\dot{\phi}_{a_{i} r}(t)$ and the experimental $\dot{\phi}_{\epsilon}(t)$ of a thin ferrite core of nominal composition $\left[\mathrm{Mg}_{0.32} \mathrm{Zn}_{0.10} \mathrm{Mn}_{0.58}\right]^{++}\left[\mathrm{Mn}_{0.52} \mathrm{Fe}_{1.48}\right]^{+++} 0_{4}$ in the range $F_{c} \leq F_{D} \leq 44 F_{c}$, where $F_{c}=0.9$ At is the coercive MMF. The values $\delta_{r}=0.28 \mathrm{~ns}$, $\eta_{r}=0.08 \mathrm{~ns}^{2}$ (underdamped with $490 \mathrm{Mc} / \mathrm{s}$ oscillations), and $\epsilon_{r}=0.14$. ($1-0.005 F_{D}$) nH/t ${ }^{2}$ were used to compute $\dot{\phi}_{\epsilon_{r}}$, and the values $\delta_{v}=4 \mathrm{~ns}$, $\eta_{\psi}=2 \mathrm{~ns}^{2}$ (overdamped), and $\epsilon_{\psi}=0.266\left(1-0.008 F_{D}\right) n H / t^{2}$ were used to compute $\dot{\phi}_{\epsilon v}$. Comparing $\dot{\phi}_{\epsilon r}(t)$ with the solution of the Gilbert equation yields the damping constant $\alpha=0.57$ and the anisotropy constant $K_{1} \approx-3.6 \cdot 10^{4} \mathrm{ergs} / \mathrm{cm}^{3}$. For either component, $\phi_{\epsilon}+\delta \dot{\phi}_{\epsilon} \approx \epsilon F$ if $T_{r} \gg \eta / \delta$, e.g., if $T_{r} \gtrsim 5 \mathrm{~ns}$. We have found that δ_{r} and δ_{ψ} increase with T_{r}. For $T_{r}=65 \mathrm{~ns}, \delta_{r} \approx \delta_{w} \approx 6 \mathrm{~ns}$; hence, $\dot{\phi}_{\epsilon} \approx\left(\epsilon_{r}+\epsilon_{\psi}\right) \dot{F}=\epsilon \dot{F}$ if $T_{r} \gtrsim 60 \mathrm{~ns}$. A schematic plot of energy gradient $v s$. wall position is used to explain the qualitative difference between elastic and inelastic wall displacements. Two components of inelastic $\dot{\phi}(t)$ are distinguished: Decaying $\dot{\phi}(t), \dot{\phi}_{i}(t)$, due to minor inelastic wall displacements of essentially constant wall area, and the bell-shaped main $\dot{\phi}(t), \dot{\phi}_{m a}(t)$, due to major inelastic wall displacements (involving domain collisions) of varying wall areas.

Semiempirical models for $\dot{\phi}_{i}$ and $\dot{\phi}_{m a}$ were proposed previously:

$$
\dot{\phi}_{i}(t)=\lambda_{i}\left(F-F_{i}\right)^{\nu}{ }_{i} \exp \left[-\left(t-T_{i}\right)\left(F-F_{i}\right) / C_{i}\right],
$$

where $\lambda_{i}, F_{i}, \nu_{i}$, and C_{i} are $\dot{\phi}_{i}$-switching parameters, and

$$
\dot{\phi}_{m a}(t)=\dot{\phi}_{p}(F)\left\{1-\left[\left(2 \phi+\phi_{r}-\phi_{d}\right) /\left(\phi_{r}+\phi_{d}\right)\right]^{2}\right\},
$$

where $\dot{\phi}_{p}(F)$ is the peak of $\dot{\phi}_{m a}$ and $\phi_{d}=\phi_{d}(F)$ is the ϕ value on the static $\phi(F)$ curve. A previous two-region curve fitting for $\dot{\phi}_{p}(F)$ is extended by adding a third region for low F between the static threshold, F_{d}^{min}, and the dynamic threshold $F_{0}^{\prime \prime}$. A good agreement is obtained between computed $\dot{\phi}_{\epsilon r}(t)+\dot{\phi}_{\epsilon_{u}}(t)+\dot{\phi}_{a i r}(t)+\dot{\phi}_{i}(t)+\dot{\phi}_{m g}(t)$ and the experimental $\dot{\phi}(t)$ of the above thin ferrite core in the range $0.67 F_{c} \leq F_{D} \leq 40 F_{c}$. An approximation of $\dot{\phi}_{i}+\dot{\phi}_{m a}$ is used to compute $F(t)$ of a coredriven by rectangular and sinusoidal voltage-drive pulses. The resulting $F(t)$ waveforms have not yet been verified experimentally, but they are very similar in shape to published data on measured $F(t)$ of various core materials. Experiments on switching from a partially-set state were performed for the case where the TEST pulse, used for determining the switching properties, follows immediately the rectangular PARTIAL-SET pulse. The slope and threshold of the resulting $\dot{\phi}_{p}(F)$ and the peaking time of $\dot{\phi}(t)$ were found to be essentially the same as those obtained previously for a large separation $(50 \mu \mathrm{~s})$ between the two pulses. It is concluded that the relaxation of magnetization following the PARTIAL-SET pulse has a relatively small effect on the properties of switching from a partially set state.

A computer-aided analysis was developed for worst-case analysis and design verification of core-diodetransistor binary counter. Each stage is composed of two ferrite cores, two diodes, one transistor, one inductor, and two resistors. The two cores arelinked by three windings, and one core is also coupled to the cores of a second stage behind. The operation of each stage is divided into four modes, Modes I - IV; each of Modes II and IV occurs twice in a row. Operation fails if the supply voltage, V_{s}, is below $V_{s, m i n}$ or above $V_{s, m a x}$ because of spurious transistor turn-off in Mode III. Nonlinear models are used to describe each core, inductor, diode, and transistor in the circuit. The core model includes elastic and inelastic $\dot{\phi}$ components, as described above. The inductor model is

$$
L=L_{0} \exp \left(-i / I_{\text {con }}\right),
$$

where L_{0} and $I_{\text {con }}$ are constants. The diode model is composed of a resistance R_{d} in series with the following elements in parallel: a current source $i_{f d}=I_{s d}\left[\exp \left(V_{d} / \theta_{m d}\right)-1\right]$, where $I_{s d}$ is the saturation current, V_{d} is the voltage across the source, and $\theta_{m d}$ is a constant voltage; a leakage resistance, $R_{\ell_{d}} ;$ a diffusion capacitance

$$
C_{d d}=k_{d}\left(i_{f d}+I_{s d}\right)
$$

where k_{d} is a constant; and a junction capacitance

$$
C_{j d}=C_{j 0 d}\left[1-\left(V_{d} / V_{\varphi d}\right)\right]^{-N_{d}},
$$

where $C_{j 0 d}, V_{\varphi d}$, and N_{d} are constants. The transistor model is composed of two back-to-back diodes, each represented by a model similar to the above diode model, which are shunted by forward and reverse current sources, $\alpha_{n} i_{f e}$ and $\alpha_{i} i_{f c}$, and a base resistance, R_{b}. Measurement techniques, measured data, and computer programs for least-mean-square curve fitting of these data are provided for determination of the parameters of these models. The resulting parameter values are used in a computer analysis of the counter. The analysis is based on general equations for all the operation modes, and uses a simple predictor-corrector numerical method for solving a set of differential equations and the Newton-Raphson method for solving a set of implicit equations. The core and circuit parameters are read in by the computer, and the time variables are computed at every time increment throughout the four modes of operation. The resulting machine-plotted waveforms agree favorably with experimental oscillograms in three cases: $T=-10^{\circ} \mathrm{C}$ and $V_{s}=15 \mathrm{~V}$ (extreme low), $T=25^{\circ} \mathrm{C}$ and $V_{s}=28 \mathrm{~V}$ (nominal), and $T=85^{\circ} \mathrm{C}$ and $V_{s}=50 \mathrm{~V}$ (extreme high). In case of an operation failure, the computation terminates for the given V_{s}. Computation of $V_{s, m i n}$ is done by repeating the computation using increasing values of V_{s} until a proper four-mode operation is achieved. Computed and experimental $V_{s, m i n}$ were found to be $16.1 V$ and 15.0 V , respectively. Worst-case $V_{s, m i n}$ is computed in a similar manner by changing each parameter value by a given nonuniformity percentage in a direction to increase $V_{s, m i n}$. It was thus found that $V_{s, m i n}=16.8,18.8,19.8$, 21.3 , and 23.3 V for worst-case parameter variation of $5,10,15,20$, and 25 percent, respectively. The specified minimum supply voltage of 22.4 V requires that no parameter variation should exceed 23 percent. As a safety factor, the variation limit should be lower than 23 percent.

PRECEDING PAGE BLANK NOT FILMED. CONTENTS

ABSTRACT iii
LIST OF ILLUSTRATIONS ix
LIST OF TABLES xiii
LIST OF SYMBOLS $x \mathrm{v}$
ACKNOWLEDGMENTS $x x y i i$
PREFACE $x \mathbf{x i x}$
I INVESTIGATION OF FLUX SWITCHING 1
A. Elastic and Inelastic Flux Switching 1

1. Introduction 1
2. Domain-Wall Displacements 2
3. Rotation of Magnetization 8
4. Flux-Switching Models 15
5. Experimental Verification 26
6. Discussion 37
B. Voltage Drive 45
7. Introduction 45
8. Computation of $F(\dot{\phi}, \phi)$ 45
9. Examples of $\dot{\phi}(t)$ Drives 46
10. Computation of $F(t)$ for Given $\dot{\phi}(t)$ 48
C. Flux Switching from a Partially Set State 51
11. Introduction 51
12. Experiment 52
13. Results and Discussion 54
14. Conclusions 65
II COMPUTER-AIDED ANALYSIS OF A CORE-DIODE-TRANSISTOR BINARY COUNTER 67
A. Introduction 67
B. Binary-Counter Operation 68
15. Circuit 68
16. Modes of Operation 68
17. COUNT-State Propagation 71
18. Range of Supply Voltage 74
C. Device Models 81
19. Core Model 81
20. Inductor Model 83
21. Diode Model 85
22. Transistor Model 87
D. Determination of Parameters 90
23. Core Parameters 91
24. Inductor Parameters 108
25. Diode Parameters 109
26. Transistor Parameters 120
27. Summary 140
E. Computer Analysis 140
28. Circuit Equations 140
29. Computation Methods 144 144
30. Computer Program 150
31. Experimental and Computed Time-Variable Waveforms 161
32. Computed $V_{s, m i n}$ for Various Worst-Case Conditions 175
33. Conclusions 182
APPEND IX A 183
APPENDIX B 187
APPENDIX C 191
APPENDIX D 195
APPENDIX E 197
APPENDIX F 199
APPENDIX G 201
REFERENCES 213
INDEX 215

ILLUSTRATIONS

Fig. 1 Schematic Plot of Energy vs. Domain-Wall Position 2
Fig. 2 Schematic Plots of Energy Gradient vs. Wall Position and Elastic (Dotted Line) and Inelastic (Dashed Line) Displacements of Two Domain Walls 3
Fig. 3 Schematic Construction of Static M(H) Major Curve and Minor Loop Due to Reversible and Irreversible Displacements of a Single Domain Wall 6
Fig. 4 Relation Between a Static $M(H)$ Curve for Positive H and a Probability- Density Function of $H_{t h}$ 7
Fig. 5 Damped Precession of a Magnetization Vector Toward Alignment with the Total Field H_{t} 10
Fig. 6 Flux-Switching Experiment 16
Fig. 7 Postulated Waveforms of $\dot{\phi}_{\epsilon}(t)$ and its Components $\dot{\phi}_{\epsilon r}(t)$ and $\dot{\phi}_{\epsilon_{w}}(t)$, in Response to Applied $F(t)$ of Amplitude F_{D} and Short Rise Time T_{r} 17
Fig. 8 Superposition of Experimeptal Waveforms of $\dot{\phi}_{\epsilon}(t)$ Without a Magnet, $\dot{\phi}_{\epsilon}(t)$ with a Magnet, and $\dot{\phi}_{\text {air }}(t)$, in Response to a Step $F(t)$ of $T_{r}=0.4 \mathrm{~ns}$ and Amplitude $F_{D}=4.0 \mathrm{At}$ 18
Fig. 9 Experimental (Solid Line) and Computed (Dashed Line) $\dot{\phi}(t)$ Waveforms of Unloaded Core E-6 During the Beginning of Switching, Using $F(t)$ with $T_{r} \approx 65 \mathrm{~ns}$ and Various Values of Amplitude F_{D} 27
Fig. 10 Experimental (Solid Line) and Computed (Dashed Line) $\dot{\phi}(t)$ Waveforms of Unloaded Core E-6 During the Beginning of Switching, Using $F(t)$ with $T_{r} \approx 13 \mathrm{~ns}$ and Various Values of Amplitude F_{D} 28
Fig. 11 Cutaway View of a Coaxial Core Holder 30
Fig. 12 A Circuit for Core Switching by Bipolar Current Pulses of 0.4 ns Rise Times 31
Fig. 13 Experimental (Dotted and Solid Line) and Computed (Dashed Line) $F(t)$ and $\dot{\phi}_{E}(t)$ Waveforms of Unloaded Core E-6, Using $F(t)$ with $T_{r}=0.4 \mathrm{~ns}$ and Various Values of Amplitude F_{D} 35
Fig. 14 Experimental (Dotted and Solid Line) and Computed (Dashed Line) $\dot{\phi}(t)$ Waveforms of Unloaded Core E-6, Using $F(t)$ with $T_{r}=0.4 \mathrm{~ns}$ and Various Values of Amplitude F_{D} 38
Fig. 15 Computed $F(t)$ Waveforms of Core E-6 for Two Given $\dot{\phi}(t)$ Drives 50
Fig. 16 Pulse Sequence for Partial-Setting Experiment 53
Fig. $17 \quad \dot{\phi}_{p}(F)$ with $T_{p s}$ as a Parameter 55
Fig. 18 Plots of $F_{0}^{\prime \prime}, \lambda$, and $\nu v s$. Log $T_{p s}$ for $T_{b}=0$ and for $T_{b} \approx 50 \mu \mathrm{~s}$ 56
Fig. 19 Plot of $t_{p}^{-1}(F)$ with $T_{p s}$ as a Parameter 59
Fig. 20 Comparison of $\dot{\phi}(t)$ with a sech ${ }^{2}$ Function of Time 61
Fig. 21 Family of $\dot{\phi}(t)$ Waveforms with F as a Parameter 62
Fig. 22 Comparison of $\dot{\phi}(t)$ Waveforms for Two $T_{p s}$ Values 62
Fig. 23 Waveforms of $\dot{\phi}(t)$ for Two F Values and Two $T_{p s}$ Values 64
Fig. 24 Waveform of $\dot{\phi}(t)$ for $\phi_{p s}=+\phi_{r}$ 65
Fig. 25 First Three Stages of a Core-Diode-Transistor Binary Counter 69
Fig. 26 Drive Currents and Flux Changes in Cores 1 and 2 During Four Modes of 70
Fig. 27 Variation of $\phi_{1}\left(F_{1}\right)$ and $\phi_{2}\left(F_{2}\right)$ for V_{s} Slightly Above $V_{s, m i n}$ (Proper Operation) and for V_{s} Slightly Below $V_{s, m i n}$ (Operation Failure) 75
Fig. 28 Flow Chart Explaining The Causes of Spurious Transistor Turn-Off in 76
Fig. 29 Variations of $\phi_{1}\left(F_{1}\right)$ and $\phi_{2}\left(F_{2}\right)$ for V_{s} Slightly Below V_{s} max (Proper 79
Fig. 30 Flow Chart Explaining the Causes of Spurious Transistor Turn-Off in Node III-C as V_{s} is Raised Above $V_{s, m a x}$ 80
Fig. 31 Exponential Model for $\psi(i)$ and Incremental $L(i)$ of a Ferrimagnetic Inductor 84
Fig. 32 An Fquivalent Circuit for a pn Junction Diode 85
Fig. 33 An Equivalent Circuit for an npn Transistor 88
Fig. 34 Flux-Switching and Drive-Current Program for Measurement of a 92
Fig. 35 Semiautomatic Static- $\phi(F)$ Plotter 94
Fig. 36 Measured and Computed Static $\phi(F)$ Curves at Different Temperature Values 98
Fig. 37 Static $\phi(F)$ Parameters $v s$. Temperature 101
Fig. 38 Measured and Computed $\dot{\phi}_{p}(F)$ Curves vs. Temperature 103
Fig. $39 \dot{\phi}_{p}(F)$ Parameters vs. Temperature 106
Fig. 40 A Circuit for Measurement of the Parameters of a Nonlinear Inductor 108
Fig. 41 Experimental $i(t)$ and $\psi(t)$ Oscillograms of a Nonlinear Inductor 109
Fig. 42 Experimental and Computed Incremental Inductance vs. Current of Nonlinear Inductors 110
Fig. 43 Nonlinear-Inductor Parameters vs. Temperature 114
Fig. 44 Measured (Data Points) and Computed (Solid Curve) Forward V-I Characteristics vs. Temperature of an FD643 Diode 115
Fig. 45 Static Forward V-I Parameters vs. Temperature of an FD643 Diode 117
Fig. 46 Reverse Characteristic of an FD643 Diode 118
Fig. 47 Leakage Resistances $R \ell_{d}$ of an FD643 Diode and $R \ell_{e}$ and $R \ell_{c}$ of a 2N956 Transistor vs. Temperature 119
Fig. 48 Determination of Base-Emitter Forward Static Characteristics 122
Fig. 49 Measured and Computed Base Current vs. Base-Emitter and Base-Collector Voltages of a 2 N 956 Transistor. 124
Fig. 50 Static Forward Parameters vs. Temperature of a 2N956 Transistor 128
Fig. 51 Measured β_{n} vs. I_{c} of a 2 N956 Transistor 129
Fig. 52 Measured β_{i} vs. I_{e} of a 2 N 956 Transistor 130
Fig. 53 A Circuit for Measuring $C_{j e}$ vs. V_{e} 131
Fig. 54 Measured Junction Capacitances vs. Voltage and Temperature of a 2N956 Transistor 132

ILLUSTRATIONS

Fig. 55 Parameters of Emitter and Collector Junction Capacitances us. Temperature of a 2 N 956 Transistor 134
Fig. 56 A Measurement Circuit for Determination of Emitter Diffusion Capacitance 135
Fig. 57 Transient Waveforms of Collector Current in Response to a Small Step Change in Base Current of a 2 N 956 Transistor in the active region 138
Fig. 58 Diffusion-Capacitance Parameters k_{e} and $k_{c} v s$. Temperature of a 2N956 Transistor 139
Fig. 59 Experimental (Heavy Line) and Computed (Light Line) Current and Voltage Waveforms in Four Modes of Operation of a Core-Diode-Transistor Binary Counter at $T=-10^{\circ} \mathrm{C}$ and $V_{s}=15 \mathrm{~V}$ 162
Fig. 60 Experimental (Heavy Line) and Computed (Light Line) Current and Voltage Waveforms in Four Modes of Operation of a Core-Diode-Transistor Binary Counter at $T=25^{\circ} \mathrm{C}$ and $V_{s}=28 \mathrm{~V}$ 166
Fig. 61 Experimental (Heavy Line) and Computed (Light Line) Current and Voltage Waveforms in Four Modes of Operation of a Core-Diode-Transistor Binary Counter at $T=85^{\circ} \mathrm{C}$ and $V_{s}=50 \mathrm{~V}$ 170
Fig. 62 Variations of $\phi_{1}\left(F_{1}\right)$ and $\phi_{2}\left(F_{2}\right)$ During Four Modes of Operation of a Core-Diode-Transistor Binary Counter at $T=-10^{\circ} \mathrm{C}$ and $V_{s}=15 \mathrm{~V}$ 176
Fig. 63 Variations of $\phi_{1}\left(F_{1}\right)$ and $\phi_{2}\left(F_{2}\right)$. During Four Modes of Operation of a Core-Diode-Transistor Binary Counter at $T=25^{\circ} \mathrm{C}$ and $V_{s}=28 \mathrm{~V}$ 177
Fig. 64 Variations of $\phi_{1}\left(F_{1}\right)$ and $\phi_{2}\left(F_{2}\right)$ During Four Modes of Operation of a Core-Diode-Transistor Binary Counter at $T=85^{\circ} \mathrm{C}$ and $V_{s}=50 \mathrm{~V}$ 178
Fig. 65 The Effect of Worst-Case Parameter Variation on Computed $V_{s, m i n}$ 181

PRECEDING PAGE BLANK NOT FILMED.

TABLES

Table I Propagation of States in a Core-Diode-Transistor
Binary Counter 72
Table II(a) Specifications of the Current Driver
in the Static $\phi(F)$ Plotter 96
Table II(b) Specifications of the Flux Reference in the Static $\phi(F)$ Plotter 97
Table III evice Parameter Values (in MKS Units) vs. Temperature andthe Sign S of a Change in the Parameter Value WhichIncreases $V_{s, m i n}$ of a Core-Diode-Transistor Binary Counter 141Table IV Values or Expressions for the Terms in the GeneralValues or Expressions for the Terms in the General
Loop Equation Corresponding to Each Drive Current143

PRECEDING PAGE BLANK NOT FILMED.

LIST OF SYMBOLS

Symbol	Definition	Reference
A	Cross-sectional area of a core	
A_{w}	Area of a domain wall	p. 3
B	Flux density	
B_{ϵ}	Elastic change in B	p. 41
$C_{d c}$	Collector-base diffusion capacitance	Eq. (100), p. 89
$C_{d d}$	Diode diffusion capacitance	Eq. (87), p. 86
$C_{\text {de }}$	Emitter-base diffusion capacitance	Eq. (93), p. 88
C_{i}	Parameter in model for $\dot{\phi}_{i}(t)$	Eq. (44), p. 22
$C_{j c}$	Collector-junction capacitance	Eq. (101), p. 89
$C_{j d}$	Diode-junction capacitance	Eq. (88), p. 86
$C_{j e}$	Emitter-junction capacitance	Eq. (94), p. 88
$C_{j 0 \mathrm{c}}$	$C_{j c}$ for $V_{c}=0$	Eq. (101), p. 89
$C_{j 0 d}$	C_{j} for $V_{d}=0$	Eq. (88), p. 86
$C_{j 0 e}$	C_{j} for $V_{e}=0$	Eq. (94), p. 88
c	Abbreviation for $\left(2 \mu_{0} M_{s} A_{w}\right)^{-1}$	Fig. 2, p. 3
$d_{\text {max }}$	Maximum percentage deviation from a nominal value of a core or circuit parameter	Eq. (163), p. 150
E	Energy	
F	MMF	
F_{B}	MMF at boundary between nonlinear and linear regions of $\dot{\phi}_{p}(F)$	Eq. (48), p. 25
F_{c}	Coercive F	Fig. 6(a), p. 16

Symbol	Definition
F_{D}	Amplitude of drive MMF
F_{d}	F value on static $\phi(F)$ curve
$F_{d B}$	MMF boundary between the two nonlinear regions of $\dot{\phi}_{p}(F)$
$F_{d}^{\text {min }}$	Static-F threshold
F_{i}	MMF threshold for decaying inelastic $\dot{\phi}_{i}$
F_{z}	Initial F value under voltage drive
F_{0}	MMF threshold obtained by extrapolating linear $\dot{\phi}_{p}(F)$ to F axis
$F_{0}^{\prime \prime}$	Dynamic-F threshold
F_{0},	Asymptotic value for F_{i}
f	Frequency
f_{r}	Resonance frequency
f_{r}^{\prime}	f_{r} for μ^{\prime}
$f_{r}^{\prime \prime}$	f_{r} for $\mu^{\prime \prime}$
$f_{r r}$	f_{r} due to rotation of magnetization
$f_{r r}^{\prime}{ }_{r}$	$f_{r r}$ for μ_{r}^{\prime}
$f_{r r}^{\prime \prime}$	$f_{r r}$ for $\mu_{r}^{\prime \prime}$
$f_{r w}$	f_{r} due to wall motion
$f_{r w}^{\prime}$	$f_{r w}$ for $\mu_{r w}^{\prime}$
$f_{r w}^{\prime \prime}$	$f_{r \omega}$ for $\mu_{r \omega}^{\prime \prime}$
H	Applied magnetic field
H_{a}	Parameter in the hyperbolic model for static $B(H)$
H_{d}	Demagnetizing H

Reference

Fig. 6(a), p. 16
Eq. (48), p. 25

Fig. 4, p. 7, and p. 25
Eq. (44), p. 22
p. 46

Eq. (48), p. 25

Eq. (48), p. 25
Eq. (45), p. 23
footnote, p. 42
Fig. 5, p. 10
Eq. (82), p. 82
p. 9

Symbol	Definition	Reference
$H_{d}^{\mathrm{mm}} \mathrm{in}$	Static H threshold	Fig. 4, p. 7
H_{i}	$\begin{aligned} & H \text { threshold for decaying } \\ & \text { inelastic } \dot{B} \end{aligned}$	p. 21
H_{i}	Internal field due to anisotropy and demagnetizing fields	p. 9
H_{k}	Anisotropy H	p. 9
H_{n}, H_{q}	Parameters in the hyperbolic model for static $B(H)$	Eq. (82), p. 82
H_{t}	Total H	p. 8
$H_{t h}$	Threshold H	Fig. 2, p. 3
$H_{0 i}$	Asymptotic value of H_{i}	p. 23
h	Height of a core	
I	Current amplitude	
I_{b}	Base-current amplitude	Fig. 33, p. 88
$I_{\text {c }}$	Collector-current amplitude	Fig. 33, p. 88
$I_{C L}$	CLEAR-current amplitude	p. 74
$I_{c o n}$	Current constant (parameter in nonlinear L model)	Eq. (84), p. 83
$I D$	Inside diameter	
$I_{\text {e }}$	Emitter-current amplitude	Fig. 33, p. 88
I_{L}	Amplitude of i_{L}	Fig. 26, p. 70
I_{s}	Average value of i_{s}	Eq. (164), p. 155
$I_{s c}$	Collector-junction saturation current	Eq. (98), p. 89
$I_{s d}$	Diode saturation current	Eq. (85), p. 85
$I_{\text {se }}$	Emitter-junction saturation current	Eq. (91), p. 87
i_{b}	Base current	Fig. 33, p. 88

Symbol	Definition	Reference
$i_{\text {c }}$	Collector current	Fig. 33, p. 88
${ }^{i}{ }_{C L}$	CLEAR current	Fig. 25, p. 69
${ }^{i}{ }_{d}$	Current linking Cores 1 and 2 in series with a diode or transistor in a binary counter	Fig. 25, p. 69
i°	Emitter current	Fig. 33, p. 88
${ }^{i}{ }_{f}$	Semiconductor-junction current	e.g., $i_{f d}, \mathrm{p} .85$
$i_{f c}$	Collector-junction i_{f}	Fig. 33, p. 88
$i_{f d}$	Diode i_{f}	p. 85
$i_{f e}$	Emitter-junction i_{f}	Fig. 33, p. 88
i_{L}	Current source in a binary counter	Fig. 25, p. 69
i_{s}	Drive current in a binary counter	Fig. 25, p. 69
k	A constant proportional to diffusion capacitance	e.g., k_{d}, Eq. (87), p. 86
k_{c}	Collector k	Eq. (100), p. 89
k_{d}	Diode k	Eq. (87), p. 86
k_{e}	Emitter k	Eq. (93), p. 88
K_{1}	First-order anisotropy constant	p. 40
L	Incremental inductance	pp. 83-84
L_{0}	L at $i=0$	pp. 83-84
l	Average core length	
l_{i}	Inside l	p. 91
l 。	Outside l	p. 91
M	Magnetization	Fig. 5, p. 10
\dot{M}	$d M / d t$	

Symbol	Definition	Reference
M_{a}	Component of \mathbf{M} along the applied field	p. 10
$M_{a 0}$	Initial M_{a}	Fig. 5, p. 10
M_{r}	Remanent M	Fig. 4, p. 7
M_{s}	Saturation M	p. 10
M_{0}	Initial M	Fig. 5, p. 10
$M_{\epsilon w}$	Elastic $\triangle M$ due to wall motion	p. 7
m	m factor varying between 1 and ≈ 2	p. 86
m_{c}	Collector-junction m	Eq. (99), p. 89
m_{d}	Diode m	Eq. (85a), p. 86
$m_{\text {e }}$	Emitter-junction m	Eq. (92), p. 88
m_{w}	Domain-wall mass	Eq. (4), p. 7
$N_{C L}$	Number of turns of CLEAR winding	Fig. 5, p. 69
N_{c}	Power coefficient of $C_{j c}$ model	Eq. (101), p. 89
N_{d}	Power coefficient of $C_{j d}$ model	Eq. (88), p. 86
N_{e}	Power coefficient of $C_{j e}$ model	Eq. (94), p. 88
NV	Negligible value of $\dot{\phi}$ in computer program	Eq. (166), p. 155
n	Number of inelastic wall displacements	p. 21
$O D$	Outside diameter	
P	Parameter value	Eq. (163), p. 150
P_{n}	Nominal parameter value	Eq. (163), p. 150
p	Portion of inelastic domain displacements that are minor	p. 21
R_{b}	Base resistance	Fig. 33, p. 88

Symbol	Definition
$R_{b c}$	$R_{b}+R_{c}$
R_{c}	Collector resistance
R_{d}	Diode resistance
R_{e}	Emitter resistance
$R_{\ell c}$	Collector-junction leakage resistance
$R_{\ell_{d}}$	Diode leakage resistance
R_{ℓ}	Emitter-junction leakage resistance
r_{i}	Inside radius
r o	Outside radius
S	Sign of worst-case parameter change
S_{i}	$\dot{\phi}_{i}$ - switching coefficient
s	Laplace's complex frequency
T	Temperature
T	Duration of pulse
T_{i}	Time when $\dot{\phi}_{i}$ begins to rise
T_{r}	10\% - 90% rise time
t	Time
$V_{B C}$	Base-collector terminal voltage
$V_{B E}$	Base-emitter terminal voltage
$V_{B E}^{\prime}$	$d V_{B E} / d i_{b}$
$V_{b c}$	Base-collector junction voltage
$V_{b e}$	Base-emitter junction voltage
$V_{C E}$	Collector-emitter terminal voltage
V_{c}	Collector-junction voltage

Reference
Eq. (119), p. 126
Fig. 33, p. 88
Fig. 32, p. 85
Fig. 33 , p. 88
Fig. 33, p. 88
Fig. 32, p. 85
Fig. 33, p. 88
p. 91
p. 91

Eq. (163), p. 150
p. 22

Fig. 6(a), p. 16
Eq. (44), p. 22
Fig. 7, p. 17

Fig. 33, p. 88
Fig. 33, p. 88
Eq. (158), p. 149
Fig. 33, p. 88
Fig. 33, p. 88
Fig. 33, p. 88
Fig. 33 , p. 88

Symbol	Definition
V_{d}	Diode-junction voltage
V_{e}	Emitter-junction voltage
$V_{p n}$	Voltage across a diode
$V_{p n}^{\prime}$	$d V_{p n} / d i_{d}$
V_{s}	Supply voltage of a binary counter
$V_{s, \max }$	Maximum V_{s} above which operation fails
$V_{s, \min }$	Minimum V_{s} below which operation fails
V_{1}	Abbreviation for $\left(\phi_{s}-\phi_{r}\right) /\left[\left(l_{0}-l_{i}\right) H_{a}\right]$
V_{2}	Abbreviation for $\left[\left(\phi_{s}+\phi_{r}\right) H_{q}\right] /\left[\left(l_{o}-l_{i}\right) H_{n}\right]$
$v_{\varphi c}$	Collector-junction contact potential
$V_{\varphi d}$	Diode-junction contact potential
$V_{\varphi_{e}}$	Emitter-junction contact potential
z	Domain-wall position
α	Damping constant
$\alpha_{\text {, }}$	Reverse-injection common-base current gain of a transistor
α_{n}	Forward-injection common-base current gain of a transistor
β	Domain-wall viscous damping
βi_{i}	Inverse current gain of atransistor
β_{n}	Forward current gain of atransistor
$\beta_{n, \max }$	Maximum β_{n}

$\underline{\text { Reference }}$
Fig. 32, p. 85
Fig. 33, p. 88
Fig. 32 , p. 85
Eq. (157), p. 148
Fig. 25, p. 69
p. 78
p. 74

Eq. (82), pp. 82-83

Eq. (82), pp. 82-83

Eq. (101), p. 89

Eq. (88), p. 86
Eq. (94), p. 88
Fig. 2, p. 3
Eq. (7), p. 8
Eq. (108), p. 89

Eq. (107), p. 89

Eq. (4), p. 7
Eq. (108), p. 89
Eq. (107), p. 89
Eq. (133), p. 137

Symbol	Definition
γ	Gyromagnetic ratio
Δ_{t}	Small time increment used in computation of time variables
$\Delta \phi$	Flux change
$\Delta \phi_{i}$	Inelastic $\Delta \phi$ due to $\dot{\phi}_{i}$
$\Delta \phi_{i \infty}$	Maximum $\Delta \phi_{i}$
$\Delta \phi_{\epsilon}$	Elastic $\Delta \phi$
$\Delta \phi_{\epsilon_{r}}$	$\Delta \phi_{E}$ due to rotation of magnetization
$\Delta \phi_{\epsilon}$	$\Delta \phi_{\epsilon}$ due to domain-wall motion
δ	First-derivative coefficient in elastic-switching differential equation
δ_{r}	δ for rotation of magnetization
$\delta{ }_{*}$	δ for domain-wall motion
ϵ	Coefficient of elastic-switching drive
ϵ_{r}	ϵ for rotation of magnetization
ϵ_{w}	ϵ for domain-wall motion
ζ_{r}	Damping coefficient for $\dot{\phi}_{\epsilon_{r}}\left(\zeta_{r}<1, \zeta_{r}=1, \text { and } \zeta_{r}>1\right.$ correspond to underdamped, critically damped, and overdamped cases, respectively)
η	Second-derivative coefficient in elastic-switching differential equation
η_{r}	η for rotation of magnetization
η_{w}	η for domain-wall motion
θ	Angle of magnetization switching

Reference
Eqs. (6) and (7), p. 8
p. 145
p. 23

Eq. (46), p. 23
p. 44 ; Eq. (167), p. 155
p. 44
p. 44

Eq. (19), p. 11
Eq. (5), p. 8
Eq. (42), p. 20

Eq. (39), p. 20
Eq. (36), p. 19
Eq. (21a), p. 12

Eq. (19), p. 11
Eq. (5), p. 8
Fig. 5, p. 10

Symbol	Definition
θ_{m}	Parameter in $p-n$ junction model $\left(\theta_{m}=k T m / q\right)$
$\theta_{m c}$	Collector-junction θ_{m}
$\theta_{m d}$	Diode θ_{m}
$\theta_{m e}$	Emitter-junction θ_{m}
θ_{0}	Initial θ
λ	Constant proportional to viscous damping
λ	Coefficient proportional to $\dot{\phi}_{p}(F)$ for $F_{d B} \leq F \leq F_{B}$
λ_{d}	Coefficient proportional to $\dot{\phi}_{p}(F)$ for $F_{d}^{\text {min }} \leq F \leq F_{d B}$
λ_{i}	Coefficient proportional to $\dot{\phi}_{i}$
μ	Complex initial permeability
μ^{\prime}	Real Component of μ
$\mu^{\prime \prime}$	Imaginary component of μ
$\mu_{r(0)}$	$\mu_{(0)}$ due to rotation of magnetization
μ_{0}	Vacuum permeability $\left(\mu_{0}=4 \pi \cdot 10^{-7} H_{m}^{-1} t^{-2}\right)$
$\mu_{(0)}$	Value of $\|\mu\|$ or μ^{\prime} at zerofrequency
ν	Power coefficient of $\dot{\phi}_{p}(F)$ for $F_{d B} \leq F \leq F_{B}$
ν_{d}	Power coefficient of $\dot{\phi}_{p}(F)$ for $F_{d}^{\text {min }} \leq F \leq F_{d B}$
ν_{i}	Power coefficient of $\dot{\phi}_{i}$ model
ρ_{ρ}	Coefficient proportional to $\dot{\phi}_{p}(F)$ for $F_{B} \leq F$

Reference

p. 86

Eq. (99), p. 89
Eq. (85a), p. 86
Eq. (92), p. 88
Fig. 5, p. 10
Eq. (6), p. 8

Eq. (48), p. 25

Eq. (48), p. 25

Eq. (44), p. 22
Eq. (57), p. 41
Eq. (58), p. 41
Eq. (59), p. 42
p. 43
p. 7

Eq. (56a), p. 41
Eq. (48), p. 25

Eq. (48), p. 25

Eq. (44), p. 22
Eq. (48), p. 25

Symbol	Definition
τ	Relaxation time constant
τ_{s}	Flux-switching time
φ	Angle of magnetization precession
ϕ	Magnetic flux
$\phi_{\text {air }}$	Air (vacuum) flux
ϕ_{c}	Parameter in parabolic $\dot{\phi}(\phi)$ model for inelastic switching from a partially set state
ϕ_{d}	ϕ value on static $\phi(F)$ curve
ϕ_{d}^{\prime}	$d \phi_{d} / d F$
ϕ_{r}	Maximum residual ϕ
ϕ_{s}	Saturation ϕ
$\phi_{\epsilon_{r}}$	Elastic change in ϕ due to rotation of magnetization
$\phi_{\epsilon w}$	Elastic change in ϕ due to domain-wall motion
$\dot{\phi}$	$d \phi / d t$
$\dot{\phi}_{\text {a i }}$	$d \phi_{\text {air }} / d t$
$\dot{\phi}_{i}$	Decaying $\dot{\phi}$ due to inelastic minor wall displacements
$\dot{\phi}_{\mathrm{ine}}$	Inelastic $\dot{\phi}$
$\dot{\phi}_{i p}$	Peak $\dot{\phi}_{i}$
$\dot{\phi}_{m}$	Amplitude of $\dot{\phi}$ drive
$\dot{\phi}_{m a}$	Main inelastic $\dot{\phi}$
$\dot{\phi}_{p}$	Peak $\dot{\phi}_{m a}$
$\dot{\phi}_{\epsilon}$	Elastic $\dot{\phi}$

Reference

e.g., Eq. (73a), p. 47

Fig. 5, p. 10
p. 33

Eq. (77), p. 58

Fig. 6(a), p. 16

Eq. (156), p. 148
Fig. 6(a), p. 16
p. 44

Eq. (39), p. 20

Eq. (36), p. 19

Eq. (33), p. 15
Eq. (49), p. 33
Eq. (44), p. 22

Eq. (34), p. 15

Eq. (46), p. 23
e.g., p. 47

Eq. (47), p. 25

Eq. (48), p. 25
Eq. (35), p. 18

Symbol	Definition
$\phi_{\epsilon}{ }_{r}$	$\dot{\phi}_{\epsilon}$ due to rotation of magnetization
$\phi_{\epsilon w}$	$\dot{\phi}_{\epsilon}$ due to domain-wall motion
$\dot{\phi}_{p}^{\prime}$	$d \dot{\phi}_{p} / d F$
χ_{w}	Domain-wall susceptibility
χ_{r}	Rotational susceptibility
ω	Angular velocity
ω_{r}	ω at $\|\mu\|$ resonance
ω_{r}^{\prime}	ω at μ^{\prime} resonance
$\omega_{r}^{\prime \prime}$	ω at $\mu^{\prime \prime}$ resonance
ψ	Angle between net field and applied field
ψ	Flux linkage
$\psi_{\text {sat }}$	Saturation flux linkage of a nonlinear inductor
Ω	Angular velocity of oscillation of M

Reference

Eq. (39), p. 20
Eq. (36), p. 19
Eq. (155), p. 148
Eq. (5), p. 8
Eq. (19), p. 11

Eq. (63), p. 42
Eq. (61), p. 42
Eq. (62), p. 42
Fig. 5, p. 10
pp. 83-84
pp. 83-84

Eq. (17), p. 11

ACKNOWLEDGMENTS

Barbara B. Wheeler wrote the computer programs in Appendices $B-F$ and assisted in writing the programs in Appendices A and G.
We thank C. T. Kleiner of Autonetics, a division of North American Aviation, Inc., for his valuable remarks relative to the model and parameter measurement of a transistor.

PRECEDING PAGE BLANK NOT FILMED.

PREFACE

This report is a continuation of a series of four reports entitled "Flux Switching in Multipath Cores." The first report deals primarily with flux switching in multipath cores. In subsequent reports, however, the emphasis is shifted gradually toward understanding and modeling of flux switching in toroidal cores and the application of the resulting models to computer analyses of circuits including square-loop magnetic cores. Consequently, we have finally decided to change the report title to "Flux Switching in Magnetic Circuits."

The report is divided into two sections. The first section deals with the physics of flux switching and updates the resulting semiempirical flux-switching models. These models are verified experimentally by switching a thin ferrite core with step-MMF drives of very short rise time (less than 0.4 ns) and different amplitudes (0.6 At to 40 At). The second section employs a simplified version of these models in a computer analysis of a core-diode-transistor binary counter. Here, the emphasis is on the models of semiconductor elements as well as the ferrimagnetic elements, the measurement techniques and data processing for evaluating the parameters of these models, and the application of these models in computing the circuit behavior under nominal, extreme, and worst-case conditions.

I INVESTIGATION OF FLUX SWITCHING

A. Elastic and Inelastic Flux Switching

1. Introduction

Elastic and inelastic flux-switching models have been developed in the previous four reports ${ }^{1,2,3,4^{*}}$ of this project. A further investigation in this area has resulted in a better physical understanding of these models, improvement in the models themselves, and an experimental verification for the models using $F(t)$ pulses with very short rise time (0.4 ns).

The objectives of this section are as follows:
(1) To explain the different types of domain-wall displacement in terms of the variations of energy gradient vs. wall position, from which an elastic wall motion was shown to be described by a secondorder differential equation
(2) To show that on the basis of the Landau-Lifshitz equation or the Gilbert equation, the component of \dot{M} along the applied magnetic field, which is induced by small-angle rotation of magnetization in a medium of low viscous damping, is described by a secondorder differential equation
(3) On the basis of experimental observation and the physical mechanism of wall motion and rotation of magnetization, to present our latest semiempirical flux-switching. models for the elastic and inelastic components of $\dot{\phi}(t)$
(4) To compare oscillograms of experimental $\dot{\phi}(t)$, induced by rectangular $F(t)$ pulses of 0.4 -nanosecond rise time and variable amplitude, with computed $\dot{\phi}(t)$ waveforms.

[^0]2. Domain-Wall Displacements
a. Energy vs. Domain-Wall Position

Consider a 180° Bloch wall of area A_{w} in a ferromagnetic or ferimagnetic crystallite. The wall lies in the $x-y$ plane and separates two domains whose saturation magnetization vectors are along the $+x$ and $-x$ directions. The total energy E of the specimen varies with the wall position z because of inhomogeneities (impurities, strains, voids, lattice imperfections, etc.) in the material. ${ }^{5}$ Since these inhomogeneities vary randomly, we can only plot Evs. z schematically (see Fig. 1). We shall use the schematic plot of $E v s . z$ to explain qualitatively the mechanism of flux switching by domain-wall motion. However, let us first examine the thermodynamic considerations associated with this plot.

Following the first
law of thermodynamics,

$$
\begin{equation*}
d E=d Q+\mu_{0} H d M, \tag{1}
\end{equation*}
$$

FIG. 1 SCHEMATIC PLOT OF ENERGY vs. DOMAIN-WALL POSITION
where Q is heat ($d Q>0$ if heat is transferred into the system).
In general, E is a function of M, H, and the temperature T. However, since M, H, and T are related to each other by the equation of state of equilibrium, it is sufficient to express the change in E as

$$
\begin{equation*}
d E=\left(\frac{\partial E}{\partial T}\right)_{M} d T+\left(\frac{\partial E}{\partial M}\right)_{T} d M \tag{2}
\end{equation*}
$$

In an isothermal magnetic process, $d T=0$, and hence,

$$
\begin{equation*}
\Delta E=\int_{M_{0}}^{M_{f}}\left(\frac{\partial E}{\partial M}\right)_{T} d M \tag{3}
\end{equation*}
$$

where M_{0} and M_{f} are the initial and final values of M. Hence, the change in E in an isothermal condition can be expressed by the change in M only.

Recall, however, that M is proportional to the wall position, z. Thus, in examining the mechanism of flux switching in terms of $E v s$. z, we shall assume a constant temperature. This assumption is justified by the fact that the small amount of dissipated energy during the switching time causes a negligible change in temperature. (However, the change in temperature is not negligible for an alternate flux switching during many cycles.)

b. Elastic and Inelastic Wall Displacements

In the absence of an applied magnetic field H, the wall settles where E is minimum, i.e., where $d E / d z=0$ and $d^{2} E / d z^{2}>0$. If H is now applied along the \mp direction, a force $2 \mu_{0} M_{s} H A_{w}$ moves the wall along the $\pm z$ direction, where M_{s} is the saturation magnetization. Assuming an isothermal condition, this motion is opposed by a restoring (or stiffness) force $d E / d z$. It is convenient to examine the net effect on the wall motion by comparing the applied H with $c(d E / d z)$, where $c=1 /\left(2 \mu_{0} M_{s} A_{v}\right)$, as functions of z. Schematic plots of $c(d E / d z) v s . z$ are shown in Fig. 2 for two typical walls (in the same crystallite) whose positions at

FIG. 2 SCHEMATIC PLOTS OF ENERGY GRADIENT vs. WALL POSITION AND ELASTIC (Dotted Line) AND INELASTIC (Dashed Line) DISPLACEMENTS OF TWO DOMAIN WALLS

Points R and R^{\prime}, respectively, correspond to the remanent state $M=-M_{r}$ of the crystallite. By definition, as H is applied, a wall is displaced elastically if, upon removal of H, the restoring field $c(d E / d z)$ returns the wall to its original position; but if a new position is reached, the wall displacement is inelastic.

Suppose that the wall of Fig. 2(a) is situated at Point R. The threshold field imposed by the first energy hill is marked by $H_{t h}$. Three types of elastic wall displacement are distinguished:
(1) Due to a negative H pulse, e.g., Displacement $R-S$
(2) Due to a positive H pulse, provided that $H<H_{t h}$, e.g., Displacement $R-T$
(3) Due to a positive H pulse whose amplitude exceeds $H_{t h}$, provided that the pulse duration is short enough to prevent z from exceeding the position of maximum energy, z_{C}, at Point C, e.g., Displacement $R-U$.

If $H>H_{t h}$ and the pulse duration is not as short as in
Case (3) above, the wall overcomes its energy barrier, and its displacement is inelastic. Here, we distinguish between minor and major wall displacements. A minor inelastic wall displacement is short or local; hence, the wall area is essentially constant during the switching time. On the other hand, a wall experiencing a major inelastic displacement travels a relatively long distance and thus may collide with other walls; its area will vary during the switching time (increasing in the beginning and decreasing in the end). A minor inelastic wall displacement results from the obstruction of the wall motion by an energy hill whose $c(d E / d z)_{\text {max }}>H$ in the vicinity of the initial wall position. For example, Displacement $R-V$ in Fig. 2(a) is composed of an elastic displacement followed by minor inelastic displacement. (In order to avoid ambiguity, we might assume that the displacement is elastic if $z\left\langle z_{C}\right.$ and inelastic if $\left.z\right\rangle z_{C}$. However, because of the effect of the wall mass, the boundary value of z is smaller than z_{c}.) Upon termination of the H pulse, the wall is pulled back (elastically) to Point W, and the net Δz is the difference between the z values at Points W and R. In contrast, a major inelastic wall displacement is long because no obstructing energy hill is encountered by the wall in the vicinity of its original position. For example, the larger of the positive H pulses of

Fig. 2(a) can force another wall in the same specimen to experience a major inelastic displacement, such as Displacement $R^{\prime}-V^{\prime}$ in Fig. 2(b).

c. Reversible and Irreversible Wall Displacements

To be exact, a distinction should be made between elasticity and reversibility of a magnetic process (wall motion or rotation of magnetization). Reversibility is a thermodynamic property: a magnetic process is reversible if it is performed quasistatically (infinitely slowly) with no energy dissipation; otherwise, it is irreversible. The area enclosed between the transition path and the plot of $c(d E / d z)$ is proportional to the dissipated energy. Thus, all the elastic and inelastic wall displacements shown in Fig. 2 are irreversible. Only if H were changed quasistatically would Displacements $R-S$ and $R-T$ be reversible, because they would follow the plot $c(d E / d z)$ (which thermodynamically represents the equation of states of equilibrium at a constant temperature), and would thus involve no energy dissipation. However, if H reaches $H_{t h}$, the wall will break free and move irreversibly to a position between Points V and W, where $c(d E / d z)=H_{t h}$. Note that reversible tracking of H along $c(d E / d z)$ in the region where $d E / d z<0$ is unrealizable, because wall positioning in this region is unstable.

d. Static $M(H)$ Curves

Suppose that the magnetization M of a crystallite changes by the motion of a single wall and, hence, $\triangle M$ is proportional to $\triangle z$. In Fig. 3, the major static $M(H)$ curve of this crystallite is obtained by essentially reversible and irreversible wall displacements as H is changed by small increments in the negative and the positive directions. The two extreme stable positions of the wall, designated by $R^{(-)}$and $R^{(+)}$, correspond to the remanent values of magnetization, $-M_{r}$ and $+M_{r}$, respectively. For M between $-M_{r}$ and $M_{r}, H_{t h}$ may be smaller than $H_{t h}$ near $M=-M_{r}$. An example is shown in Fig. 3 , where a minor static $M(H)$ loop is traversed. Furthermore, if the peaks of $c(d E / d z)$ near $R^{(-)}$are higher than the following ones, the major $M(H)$ curve is re-entrant.

So far we have examined the displacements of a single 180° domain wall. Usually, however, a square-loop specimen contains many walls having different $c(d E / d z) v s . z$ plots. The features of these plots vary randomly. For example, the distribution of $H_{t h}$ may be

FIG. 3 SCHEMATIC CONSTRUCTION OF STATIC M(H) MAJOR CURVE AND MINOR LOOP DUE TO REVERSIBLE AND IRREVERSIBLE DISPLACEMENTS OF A SINGLE DOMAIN WALL
described by a probability-density function $f\left(H_{t h}\right)$ with a mean value in the neighborhood of the threshold $H_{d}^{m i n}$ of the major static $M(H)$ curve, ${ }^{6}$ as shown in Fig. 4. The length of an irreversible wall displacement is also a random variable with a similar probability-density function. Due to these random distribution functions, the static $M(H)$ curve of the specimen is smooth, as shown in Fig. 4. In addition to elastic wall displacements and elastic rotation of magnetization, this curve results from minor inelastic wall displacements in the region $0<H \lesssim H_{d}^{m i n}$ and from major and minor inelastic wall displacements in the region $H_{d}^{m i n} \leqslant H$.

We shall next examine the equation of motion for elastic wall displacements. The equations of motion for inelastic wall motion are more complicated, and are beyond the scope of this work.

FIG. 4 RELATION BETWEEN A STATIC M(H) CURVE FOR POSITIVE H AND A PROBABILITYDENSITY FUNCTION OF $H_{\text {th }}$. Major inelastic wall displacement occurs only if $\mathrm{H} \widetilde{>} \mathrm{H}_{\mathrm{d}}^{\mathrm{m}}$
e. Equation of Elastic Wall Motion
Consider a small elastic wall displacement in the z direction as a result of an applied H field. Per unit wall area, the applied force $2 \mu_{0} M_{s} H$ is opposed by three forces: by $d E / d z \approx k z$, where $k=d^{2} E / d z^{2}$ is the stiffness coefficient of a restoring force; by $\beta \dot{z}$, where β is the viscous-damping coefficient; and by $m_{\nu} \ddot{z}$, where m_{w} is the effective mass of the wall. The equation of motion of such a small wall displacement from equilibrium is ${ }^{7}$

$$
\begin{equation*}
k z+\beta \dot{z}+m_{w} \ddot{z}=2 \mu_{0} M_{s} H . \tag{4}
\end{equation*}
$$

Assuming that $E q$. (4) describes the motion of a typical wall whose properties are the average properties of all the walls moving elastically, we may replace z by $b M_{\epsilon_{w}}$, where b is a proportionality constant and $M_{\epsilon_{w}}$ is the change in M due to the elastic wall motion. Thus,

$$
\begin{equation*}
M_{\epsilon \psi}+\delta_{w} \dot{M}_{\epsilon \psi}+\eta_{w} \ddot{M}_{\epsilon w}=\lambda_{w} I \tag{5}
\end{equation*}
$$

where

$$
\begin{align*}
& \delta_{\psi}=\beta / k, \tag{5a}\\
& \eta_{\psi}=m_{w} / k, \tag{5b}
\end{align*}
$$

and

$$
\begin{equation*}
\chi_{w}=\frac{2 \mu_{0} M_{s}}{k b} . \tag{5c}
\end{equation*}
$$

3. Rotation of Magnetization ${ }^{8}$

a. Derivation of $M(t)$ Along an Applied Field from Landau-Lifshitz and Gilbert Equations

The spiral rotation of magnetization M of a crystallite (or a domain) in a total magnetic field \mathbf{H}_{t} is described by the Landau-Lifshitz equation

$$
\begin{equation*}
\dot{\mathbf{M}}=-\gamma \mathbf{M} \times \mathbf{H}_{t}-\frac{\lambda}{M_{s}^{2}}\left(\mathbf{M} \times \mathbf{M} \times \mathbf{H}_{t}\right) \tag{6}
\end{equation*}
$$

or by the Gilbert equation

$$
\begin{equation*}
\dot{\mathbf{M}}=-\chi \mathbf{M} \times \mathbf{H}_{t}+\frac{\alpha}{M_{s}}(\mathbf{M} \times \dot{\mathbf{M}}) \tag{7}
\end{equation*}
$$

where $M_{s}=\mathbf{M} \cdot \mathbf{M}$ is the saturation magnetization, γ is the gyromagnetic ratio, α is a unitless viscous damping, and $\lambda=\alpha \gamma M_{s}$ [assuming that the dissipative terms in Eqs. (6) and (7) are the same]. It can be shown by using spherical coordinates M, θ, and φ that either equation becomes a set of two differential equations,

$$
\begin{equation*}
\dot{\theta}=-\frac{1}{\tau} \sin \theta \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\dot{\varphi}=\Omega, \tag{9}
\end{equation*}
$$

where

$$
\tau= \begin{cases}M_{s} /\left(\lambda H_{t}\right) & \text { (Landau-Lifshitz) } \tag{10}\\ \left(1+\alpha^{2}\right) /\left(\alpha \gamma H_{t}\right) & \text { (Gilbert) }\end{cases}
$$

and

$$
\Omega= \begin{cases}\gamma H_{t} & \text { (Landau-Lifshitz) } \tag{11}\\ \gamma H_{t} /\left(1+\alpha^{2}\right) . & \text { (Gilbert) }\end{cases}
$$

Here, H_{t} designates the magnitude of the total field \mathbf{H}_{t} due to the internal field, \mathbf{H}_{i}, and the applied field \boldsymbol{H}.

The solutions of Eqs. (8) and (9) are

$$
\begin{equation*}
\tan \left(\frac{\theta}{2}\right)=\tan \left(\frac{\theta_{0}}{2}\right) e^{-t / \tau} \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi=\varphi_{0}+\Omega t \tag{13}
\end{equation*}
$$

where θ_{0} and φ_{0} are initial values. Equations (12) and (13) define a damped precession of \mathbf{M} around \mathbf{H}_{t}, as it spirals from its initial orientation toward its final orientation.

Initially, \mathbf{M} is along the internal field, $\mathbf{H}_{i}=\mathbf{H}_{k}+\mathbf{H}_{d}$, where \mathbf{H}_{k} is the anisotropy field due to crystalline anisotropy and strain anisotropy, and \mathbf{H}_{d} is the demagnetizing field. An external field \mathbf{H} is now applied. Let the plane formed by \mathbf{H}_{i} and \mathbf{H} define the $y-z$ plane, and let the resultant total field $\mathbf{H}_{t}=\mathbf{H}_{i}+\mathbf{H}$ be along the z axis, as shown in Fig. 5. The angle between \mathbf{H}_{t} and \mathbf{M}_{0} (the initial M) is θ_{0}, and the angle between \mathbf{H}_{t} and \mathbf{H} is ψ.

Following the application of \mathbf{H}, \mathbf{M} spirals from its initial orientation along \mathbf{H}_{i} into alignment with \mathbf{H}_{t}. During the transient time, the component of $\mathbf{M}(t)$ along \mathbf{H} is sensed. Defining the direction of \mathbf{H} as the y^{\prime} axis (see Fig. 5) we wish to calculate $M_{a}(t)$, the component of $M(t)$ along the y^{\prime} axis.

TA-5670-68

FIG. 5 DAMPED PRECESSION OF A MAGNETIZATION VECTOR TOWARD ALIGNMENT WITH THE TOTAL FIELD H_{\dagger}

The components of M in the (x, y, z) coordinate system are

$$
\left.\begin{array}{l}
M_{x}=M_{s} \sin \theta \cos \varphi \tag{14}\\
M_{y}=M_{s} \sin \theta \sin \varphi \\
M_{z}=M_{s} \cos \theta .
\end{array}\right\}
$$

Since the ($x^{\prime}, y^{\prime}, z^{\prime}$) coordinate system is obtained by rotating the (x, y, z) coordinate system around the x axis by the angle $\pi / 2-\psi$, we obtain

$$
\begin{equation*}
M_{a}=M_{s}(\sin \theta \sin \varphi \sin \psi+\cos \theta \cos \psi) . \tag{15}
\end{equation*}
$$

Substitution of Eqs. (12) and (13) into Eq. (15) yields the following expression:

$$
\begin{equation*}
M_{a}(t)=M_{s} \frac{\left[1-e^{-2(t / \tau)} \tan ^{2}\left(\frac{\theta_{0}}{2}\right)\right] \cos \psi-2 e^{-(t / \tau)} \tan \left(\frac{\theta_{0}}{2}\right) \cos \left(\Omega_{t}\right) \sin \psi}{1+e^{-2(t / \tau)} \tan ^{2}\left(\frac{\theta_{0}}{2}\right)} \tag{16}
\end{equation*}
$$

b. $\frac{\text { Equations of Motion of Elastic Rotation }}{\text { of Magnetization }}$

If θ_{0} is smaller than the angle between M_{0} and the nearest hard axis, then the change in M is elastic. In ferrites, whose easy axes are along the [lll] body diagonals, the maximum value the latter may have is 54.73°. Thus, for elastic switching of a polycrystalline ferrite, the average value of θ_{0} under elastic-switching conditions is small enough to justify the assumption that $\tan ^{2}\left(\theta_{0} / 2\right) \ll 1$. Hence, Eq. (16) is reduced to the following:

$$
\begin{equation*}
M_{a}(t)=M_{s} \cos \psi-2 M_{s} \sin \psi \tan \left(\frac{\theta_{0}}{2}\right) e^{-(t / \tau)} \cos (\Omega t) . \tag{17}
\end{equation*}
$$

Differentiating Eq. (17) with respect to time, we have

$$
\begin{equation*}
\dot{M}_{a}(t)=2 M_{s} \sin \psi \tan \left(\frac{\theta_{0}}{2}\right) \sqrt{\frac{1}{\tau^{2}}+\Omega^{2}} e^{-(t / \tau)} \sin \left[\Omega_{t}+\tan ^{-1}\left(\frac{1}{\Omega \tau}\right)\right] \tag{18}
\end{equation*}
$$

Consider now the second-order differential equation

$$
\begin{equation*}
M_{a}+\delta_{r} \dot{M}_{a}+\eta_{r} \ddot{M}_{a}=\chi_{r} H+M_{a 0} \tag{19}
\end{equation*}
$$

where H is the magnitude of the applied field and $M_{a 0}$ is the initial value of M_{a}. If $H(t)$ is a step function, then the Laplace transform of Eq. (19) is

$$
\begin{equation*}
M_{a}(s)=M_{a 0} \frac{s^{2}+s \frac{\delta_{r}}{\eta_{r}}+\frac{\chi_{r} H+M_{a 0}}{M_{a 0} \eta_{r}}}{s\left[\left(s+\frac{\delta_{r}}{2 \eta_{r}}\right)^{2}+\frac{1}{\eta_{r}}-\left(\frac{\delta_{r}}{2 \eta_{r}}\right)^{2}\right]} \tag{20}
\end{equation*}
$$

The inverse function of Eq. (20) yields
where

$$
\begin{equation*}
\zeta_{r}=\frac{\delta_{r}}{2 \sqrt{\eta_{r}}} \tag{2a}
\end{equation*}
$$

Differentiating Eq. (2l) with respect to time,

$$
\begin{equation*}
\dot{M}_{a}(t)=\frac{\chi_{r} H}{\eta_{r} \sqrt{\frac{1}{\eta_{r}}-\left(\frac{\delta_{r}}{2 \eta_{r}}\right)^{2}}} e^{-\left(\delta_{r} / 2 \eta_{r}\right) t} \sin \left[\sqrt{\frac{1}{\eta_{r}}-\left(\frac{\delta_{r}}{2 \eta_{r}}\right)^{2}} t\right] \tag{22}
\end{equation*}
$$

Equations (17) and (21) are of the same form, except for the phase angle $\sin ^{-1} \zeta_{r}$ in the latter. The presence of $\sin ^{-1} \zeta_{r}$ in Eq_{q}. (21) results from assuming the initial condition $\dot{M}_{a 0}=0$ in deriving Eq. (20), which agrees with Eq. (22). In contrast, according to Eq. (18), $\dot{M}_{a 0}=2 M_{s} \sin \psi \tan \left(\theta_{0} / 2\right) / \tau$. However, if $\delta_{r} \ll 2 \sqrt{\eta_{r}}$ (low damping), then $\zeta_{r} \ll 1$, and $\sin ^{-1} \zeta_{r} \approx 0$. Under this condition, the expressions for $M_{a}(t)$ in Eqs. (17) and (21) are equivalent, and by equating the terms representing the decay time constant and the frequency of oscillation, we obtain the relations

$$
\begin{equation*}
\tau=\frac{2 \eta_{r}}{\delta_{r}} \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
\Omega=\sqrt{\frac{1}{\eta_{r}}-\left(\frac{\delta_{r}}{2 \eta_{r}}\right)^{2}} \tag{24}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\eta_{r}=\frac{1}{\frac{1}{\tau^{2}}+\Omega^{2}} \tag{25}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta_{r}=\frac{2 / \tau}{\frac{1}{\tau^{2}}+\Omega^{2}} \tag{26}
\end{equation*}
$$

Using Eqs. (23) and (24), the condition $\delta_{r} \ll 2 \sqrt{\eta_{r}}$ is equivalent to the condition $\Omega \tau \gg 1$. This is in agreement with the condition required for the expressions for $\dot{M}_{a}(t)$ in Eqs. (18) and (22) to be equivalent. Referring to Eqs. (10) and (11), the low-damping condition of $\Omega \tau \gg 1$ amounts to $\lambda \ll M_{s}$ according to the Landau-Lifshitz equation, and $\alpha \ll 1$ according to the Gilbert equation. Note that in Eqs. (10) and (11), since $\lambda=\alpha \gamma M_{s}, \Omega \tau \gg 1$ is also the condition under which the Landau-Lifshitz and Gilbert equations become equivalent.

Substituting Eqs. (10) and (11) into Eqs. (25) and (26), we obtain the following relations:

$$
\eta_{r}= \begin{cases}\frac{1}{H_{t}^{2}\left[\gamma^{2}+\left(\frac{\lambda}{M_{s}}\right)^{2}\right]} & \text { (Landau-Lifshitz) } \tag{27}\\ \frac{1+\alpha^{2}}{H_{t}^{2} \gamma^{2}} & \text { (Gilbert) }\end{cases}
$$

and

$$
\delta_{r}= \begin{cases}\frac{2\left(\lambda / M_{s}\right)}{H_{t}\left[\gamma^{2}+\left(\frac{\lambda}{M_{s}}\right)^{2}\right]} & \text { (Landau-Lifshitz) } \tag{28}\\ \frac{2 \alpha}{H_{t} \gamma} & \text { (Gilbert) }\end{cases}
$$

Usually, $H \ll H_{i}$, and so $H_{t} \approx H_{i}$.
Equating the initial and final values of M_{a} in Eqs. (16) and (21), we obtain the relations

$$
\begin{equation*}
M_{a 0}=M_{s} \cos \left(\theta_{0}+\psi\right) \tag{29}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{s} \cos \psi=M_{a 0}+\chi_{r} H . \tag{30}
\end{equation*}
$$

Substituting Eq. (29) and the trigonometric relation $H=H_{i} \sin \theta_{0} / \sin \psi$ into Eq. (30), we get

$$
\begin{equation*}
x_{r}=\frac{M_{s}}{2 H_{i}}\left[\tan \psi+\tan \left(\frac{\theta_{0}}{2}\right)\right] \sin 2 \psi . \tag{31}
\end{equation*}
$$

Since $\psi \gg \theta_{0} / 2$, Eq. (31) is reduced to

$$
\begin{equation*}
\chi_{r}=\frac{M_{s}}{H_{i}} \sin ^{2} \psi . \tag{32}
\end{equation*}
$$

We have seen that the second-order differential equation, Eq. (19), may be used to describe the component of elastic rotation of magnetization of a single crystallite (or a domain) along the applied magnetic field that causes this rotation. If we now apply Eq. (19) to every j th crystallite of volume v_{j} in a polycrystalline ferrite, the overall M_{a} is still described by Eq. (19), except that χ_{r} represents an average value:

$$
\begin{equation*}
\chi_{r}=\frac{1}{\sum_{j} v_{j}} \sum_{j} X_{j} v_{j}=\frac{1}{\sum_{j} v_{j}} \sum_{j} \frac{M_{s} v_{j} \sin ^{2} \psi_{j}}{H_{i j}} \tag{32a}
\end{equation*}
$$

4. Flux-Switching Models

a. Experiments

Consider the flux-switching experiment shown in Fig. 6(a). A thin toroidal ferrite core is switched in the negative direction (clockwise) by a CLEAR current pulse I_{c} in N_{c} turns to negative remanence $\phi=-\phi_{r}$, and then switched by a TEST current pulse I having a rise time T_{r} in a concentric, single-turn winding.* An induced voltage $N_{v} \dot{\phi}(t)$ is sensed and integrated during the switching time. Typical waveforms of $F(t)$ and $\dot{\phi}(t)$ as well as the variations of $\phi v s . F$ and $\dot{\phi} v s . \phi$ during a full switching cycle are shown in Fig. 6(b). In order to assure a reproducible remanent state of $\phi=-\phi_{r}$, the CLEAR MMF $F_{c}=-N_{c} I_{c}$ and its duration T_{c} must be large enough to switch ϕ far into negative saturation. In some cases, it is also necessary to switch ϕ into positive saturation, before switching it into negative saturation, in order to wipe out possible 360° domain walls. ${ }^{9}$

The models proposed here describe the properties of switching from $\phi=-\phi_{r}$ by means of positive or negative TEST current I. The same properties, except for a change in sign, are characteristic of switching

$$
\begin{equation*}
\dot{\phi}(t)=\dot{\phi}_{\epsilon}(t)+\dot{\phi}_{i n e l}(t) \tag{33}
\end{equation*}
$$

where $\dot{\phi}_{\epsilon}(t)$ is the elastic $\dot{\phi}(t)$, and $\dot{\phi}_{i n e l}(t)$ is the inelastic $\dot{\phi}(t)$. As discussed in Reports 3 and 4 , and as shown in Fig. 6(b),

$$
\begin{equation*}
\dot{\phi}_{\mathrm{ine} 1}(t)=\dot{\phi}_{i}(t)+\dot{\phi}_{m a}(t) \tag{34}
\end{equation*}
$$

where $\dot{\phi}_{i}(t)$ is the decaying inelastic $\dot{\phi}(t)$ component and $\dot{\phi}_{m a}(t)$ is the bell-shaped, main inelastic $\dot{\phi}(t)$ component. ${ }^{10-13}$ The smaller the values

[^1]

FIG. 6 FLUX-SWITCHING EXPERIMENT
of T_{r} and F are, the more distinguishable are the initial $\dot{\phi}(t)$ components $\dot{\phi}_{\epsilon}(t)$ and $\dot{\phi}_{i}(t)$. Masking of these components by the main $\dot{\phi}(t)$ component during the CLEAR time is due to the relatively long rise time and high amplitude of the CLEAR MMF pulse.

If the flux-switching experiment in Fig. 6 is performed without the CLEAR winding, application of repetitive $F(t)$ pulses of sufficient magnitude results in purely elastic flux switching from remanence ($\phi=\phi_{r}$) further into saturation and back ("shuttle" switching). Such an experiment was performed on a thin ferrite core using $F(t)$ pulses with very short $T_{r}(0.4 \mathrm{~ns})$. The resulting elastic $\dot{\phi}(t)$ was found ${ }^{8}$ to be composed of two components, as shown in Fig. 7: an initial $\dot{\phi}_{\epsilon}(t)$ spike, $\dot{\phi}_{\epsilon r}(t)$, of high amplitude and short duration, followed by a decaying $\dot{\phi}_{\epsilon}(t), \dot{\phi}_{\epsilon}(t)$, of relatively low peak value and long duration.

FIG. 7 POSTULATED WAVEFORMS OF. $\dot{\phi}_{\epsilon}(\dagger)$ AND ITS COMPONENTS $\phi_{\epsilon r}(t)$ AND $\phi_{\epsilon w}(t)$, IN RESPONSE TO APPLIED F(t) OF AMPLITUDE F_{D} AND SHORT RISE TIME T_{r}

Thus.

$$
\begin{equation*}
\dot{\phi}_{\epsilon}(t)=\dot{\phi}_{\epsilon_{r}}(t)+\dot{\phi}_{\epsilon w}(t) \tag{35}
\end{equation*}
$$

We shall next examine qualitatively the physical sources of the various $\dot{\phi}$ components and present a semiempirical model for each component.
b. Models for the Two Elastic $\dot{\phi}(t)$ Components

As shown in Fig. 7, an experimental elastic $\dot{\phi}(t)$ waveform induced by what is essentially a step $F(t)$ appears to be composed of two components, $\dot{\phi}_{\epsilon_{r}}(t)$ and $\dot{\phi}_{\epsilon_{w}}(t)$. The $\dot{\phi}_{\epsilon_{r}}(t)$ component is generated by elastic rotation of magnetization

FIG. 8 SUPERPOSITION OF EXPERIMENTAL WAVEFORMS OF $\phi_{\epsilon}(t)$ WITHOUT A MAGNET, $\phi_{\epsilon}(+)$ WITH A MAGNET, AND $\dot{\phi}_{\mathrm{ai}(}(\dagger)$, IN RESPONSE TO A STEP $\mathrm{F}(\mathrm{t}) \mathrm{OF} \mathrm{T}_{\mathrm{r}}=0.4 \mathrm{~ns}$ AND AMPLITUDE $F_{D}{ }^{\circ}=4.0 \mathrm{At}$
and the $\dot{\phi}_{\epsilon_{w}}(t)$ component is likely to be generated by elastic domain-wall motion. These conclusions are based on the following arguments.

First, the $\dot{\phi}_{\epsilon r}(t)$ waveform has a high peak and short duration, whereas the $\dot{\phi}_{\epsilon}(t)$ waveform has a low peak and relatively long duration. This is typical for fast switching by rotation of magnetization and relatively slow switching by domain-wall motion.

Second, when a field of 1200 Oe, produced by a permanent magnet, was superimposed transversely to the circumferentially applied field, the $\dot{\phi}_{\epsilon}(t)$ component disappeared, as shown in Fig. 8. The demagnetizing field was roughly 700 Oe , and so the net transverse field of about 500 Oe was high enough to
annihilate the domain walls, which explains why $\dot{\phi}_{\epsilon}(t)$ disappeared. For higher transverse fields, $\dot{\phi}_{\epsilon_{r}}(t)$ became narrower and lower in amplitude because of a higher Ω [see Eq. (11)] and a smaller θ_{0}. See Eq. (18).

Third, as will be shown later, it was found that the $\dot{\phi}_{\epsilon_{r}}$ component is underdamped with $490 \mathrm{Mc} / \mathrm{s}$ frequency of oscillation (which is in the microwave region) and that the $\dot{\phi}_{\epsilon_{w}}$ component is overdamped for positive switching from $\phi=\phi_{r}$, but slightly underdamped with $82 \mathrm{Mc} / \mathrm{s}$ oscillation (which is in the radio-frequency region) for positive switching from $\phi=-\phi_{r}$. It is well known ${ }^{14-17}$ from the frequency dependence of the complex initial permeability, $\mu=\mu^{\prime}-j \mu^{\prime \prime}$, that a resonance occurring in the microwave region is due to rotation of magnetization. In the radio-frequency region, on the other hand, the plot of ($\mu^{\prime}-1$) vs. frequency (called "dispersion") may or may not have a peak ${ }^{14-17}$ (resonance). Rado ${ }^{14,16}$ showed that the radio-frequency dispersion and the static initial permeability are due to domain-wall displacements. Although his conclusions are controversial, no convincing arguments that contradict his statements have yet been presented.

For simplicity, suppose that the core is thin enough to assume uniform circumferential M and applied H across it, so that $H=F / l$, where F is the applied MMF, and $M=\phi /\left(\mu_{0} A\right)$.

$$
\text { i. Wall-Motion } \dot{\phi}_{\epsilon}(t), \dot{\phi}_{\epsilon_{w}}(t)
$$

Multiplying Eq. (5) by $\mu_{0} A$ and replacing H by F / l, we
obtain

$$
\begin{equation*}
\phi_{\epsilon_{\psi}}+\delta_{\psi} \dot{\phi}_{\epsilon_{\dot{w}}}+\eta_{\psi} \ddot{\phi}_{\epsilon_{\psi}}=\epsilon_{\psi} F, \tag{36}
\end{equation*}
$$

where

$$
\begin{equation*}
\epsilon_{\psi}=\chi_{\psi} \mu_{0} A / l \tag{36a}
\end{equation*}
$$

The term $\eta_{\psi} \ddot{\phi}_{\epsilon_{\psi}}$ in Eq. (36) may be neglected if T_{r} is much larger than η_{w} / δ_{ψ} (more precisely, $2 \eta_{w} / \delta_{w}$), e.g., if $T_{r} \gtrsim 10 \eta_{\psi} / \delta_{w}$. Under this condition, Eq_{q}. (36) may be simplified to

$$
\begin{equation*}
\phi_{\epsilon_{\psi}}+\delta_{\psi} \dot{\phi}_{\epsilon_{\psi}}=\epsilon_{\psi} F \tag{37}
\end{equation*}
$$

Furthermore, if $T_{T} \gg \delta_{\psi}$, then Eq. (37) may be simplified to

$$
\begin{equation*}
\phi_{\epsilon w}=\epsilon_{w} F . \tag{38}
\end{equation*}
$$

ii. Rotational $\dot{\phi}_{\epsilon}(t), \dot{\phi}_{\epsilon r}(t)$ Multiplying Eq. (19) by $\mu_{0} A$ and replacing H by F / l, we obtain

$$
\begin{equation*}
\phi_{\epsilon_{r}}+\delta_{r} \dot{\phi}_{\epsilon_{r}}+\eta_{r} \ddot{\phi}_{\epsilon_{r}}=\epsilon_{r} F \tag{39}
\end{equation*}
$$

where

$$
\begin{equation*}
\phi_{\epsilon_{r}}=\mu_{0} A\left(M_{a}-M_{a 0}\right) \tag{39a}
\end{equation*}
$$

is the elastic change in the component of flux along the applied field, and

$$
\begin{equation*}
\epsilon_{r}=\chi_{r} \mu_{0} A / l \tag{3}
\end{equation*}
$$

If $T_{r} \gg \eta_{r} / \delta_{r}$, then

$$
\begin{equation*}
\phi_{\epsilon_{r}}+\delta_{r} \dot{\phi}_{\epsilon_{r}} \approx \epsilon_{r} F \tag{40}
\end{equation*}
$$

and if, in addition, $T_{r} \gg \delta_{r}$, then

$$
\begin{equation*}
\phi_{\epsilon_{r}} \approx \epsilon_{r} F \tag{41}
\end{equation*}
$$

$$
\text { iii. Total } \dot{\phi}_{\epsilon}(t)
$$

$$
\text { The overall elastic } \dot{\phi} \text { is } \dot{\phi}_{\epsilon}(t)=\dot{\phi}_{\epsilon_{\psi}}(t)+\dot{\phi}_{\epsilon r}(t)
$$

[See Eq: (35)]. The parameters δ, η, and ϵ corresponding to either $\dot{\phi}_{\epsilon_{\psi}}$ or $\dot{\phi}_{\epsilon_{r}}$ may depend on T_{r}, the rise time of $F(t)$.
If $T_{r} \gg \max \left(\eta_{w} / \delta_{w} ; \eta_{r} / \delta_{r}\right)$ and $\delta_{w} \approx \delta_{r} \equiv \delta$, then Eqs. (37) and (40) may be combined to describe the overall $\dot{\phi}_{\epsilon}$:

$$
\begin{equation*}
\phi_{\epsilon}+\delta \dot{\phi}_{\epsilon} \approx \epsilon F \tag{42}
\end{equation*}
$$

where $\epsilon=\epsilon_{w}+\epsilon_{r}$. Furthermore, if $T_{r} \gg \max \left(\delta_{\psi} ; \delta_{r}\right)$, then Eqs. (38) and (41) may be combined to

$$
\begin{equation*}
\phi_{\epsilon}=\epsilon F . \tag{43}
\end{equation*}
$$

c. Models for the Two Inelastic $\dot{\phi}(t)$ Components

It was shown in Report 4, pp. l-3, by means of an interrupted step- F switching experiment that $\dot{\phi}_{i}(t)$ is induced by inelastic domainwall motions. It was further suggested (Report 3, pp. 1l-12; Report 4, p. 6) that unlike the domain-wall motions generating $\dot{\phi}_{m a}(t)$, such motions involve no domain-wall collision. Although this distinction is valid, it appears that a more direct distinction between the sources of the two inelastic $\dot{\phi}$ components should be related to the length of the wall displacement because the variations of wall areas depend on this length.

As before, suppose that the core is thin enough to assume uniform M and H across it; hence, $F=l H$ and $\dot{\phi}=\mu_{0} A \dot{M}$. Upon application of a step-H drive, a finite number n of domain walls will move inelastically. A fraction p of these n walls will move locally, as in Fig. $2(a)$, and generate the $\dot{\phi}_{i}(t)$ component, while the remaining $n(1-p)$ walls will experience major displacements, as in Fig. 2(b), and generate the $\dot{\phi}_{m a}(t)$ component. The waveform of each of these inelastic $\dot{\phi}(t)$ components depends on the average velocity, the expected number, the average area, and the motion time of the corresponding walls. The first two features affect $\dot{\phi}_{i}(t)$ and $\dot{\phi}_{m a}(t)$ in a similar fashion, whereas the third and fourth features affect each $\dot{\phi}$ component differently.

i. Decaying Inelastic $\dot{\phi}(t), \dot{\phi}_{i}(t)$

The average velocity of walls moving inelastically is proportional to the excess of the applied H over an average threshold, $\bar{H}_{t h} .^{7,10}$ Denoting $\bar{H}_{t h}$ corresponding to minor wall displacements by H_{i}, ϕ_{i} is thus proportional to $\left(H-H_{i}\right)$. The magnitude of $\dot{\phi}_{i}$ also increases with the number $n p$ of the walls experiencing minor displacements. Referring to Fig. 4, n increases with H because n is proportional to $\int_{0}^{H} f\left(H_{t h}\right) d H_{t h}$. Assuming that major inelastic wall displacements can occur only if $H \gtrsim H_{d}^{m i n}, p$ is essentially unity in the region $0<H \lesssim H_{d}^{\text {min }}$.

As H increases beyond $H_{d}^{\text {min }}, p$ decreases gradually; but since n increases with H, the product $n p$ continues to increase, reaches a peak, and then decreases. For the $\dot{\phi}_{i}(t)$ model proposed here, we shall assume that H is below the value at which $n p$ reaches peak, i.e., that $n p$ increases with H. It has been found experimentally that to a good approximation $\dot{\phi}_{i}$ is proportional to $\left(H-H_{i}\right)^{\nu}{ }_{i}$, where $\nu_{i}>1$ (e.g., $\nu_{i}=1.5$). Since $\dot{\phi}_{i}$ is proportional to ($H-H_{i}$) due to the effect of wall velocity, the increase of $n p$ with H is proportional to $\left(H-H_{i}\right)^{\nu}{ }^{-1}$.

Since $\dot{\phi}_{i}(t)$ is generated by minor wall displacements, the corresponding average wall area is likely to change by a negligible amount, and so $\dot{\phi}_{i}(t)$ for a single wall displacement should be essentially rectangular. However, since the length of the minor wall displacement is a random variable and since the wall velocities are not necessarily the same, the termination times of these displacements will vary randomly among the walls. When a step H is applied, all $n p$ walls begin moving and generate $\dot{\phi}_{i} ;$ as one wall after another terminates its motion, $\dot{\phi}_{i}(t)$ decays in an exponential-like manner. The time constant τ_{i} associated with the $\dot{\phi}_{i}(t)$ decay is assumed to be inversely proportional to the average wall velocity; hence $\tau_{i}=S_{i} /\left(H-H_{i}\right)$, where S_{i} is a constant. Thus, $\dot{\phi}_{i}(t)$ generated by a step H is proportional to $\left(H-H_{i}\right)^{\nu_{i}} \exp \left[-t\left(H-H_{i}\right) / S_{i}\right]$.

Suppose now that $H(t)$ increases from zero to above H_{i}. Letting T_{i} be the time when H reaches H_{i} and replacing H by F / l, then during $t \geq T_{i}$,

$$
\begin{equation*}
\dot{\phi}_{i}(t)=\lambda_{i}\left(F-F_{i}\right)^{\nu}{ }_{i} \exp \left[-\left(t-T_{i}\right)\left(F-F_{i}\right) / C_{i}\right] \tag{44}
\end{equation*}
$$

where λ_{i} is a constant of proportionality, $F_{i}=H_{i} l$, and $C_{i}=S_{i} l$. Equation (44) holds for an arbitrary waveform of $F(t)$, provided that $F \geq F_{i}$. (During $0 \leq t \leq T_{i}, \dot{\phi}_{i}=0$.)

It can be shown from the probability-density function $f\left(H_{t h}\right)$ in Fig. 4 that as the magnitude H of a step $H(t)$ increases from zero, H_{i} increases from zero to an asymptotic value, which is denoted by $H_{0 i}$. Since $1 \gtrsim p \geq 0$ if $H \gtrsim H_{d}^{\text {min }}$, the averaging process of $H_{t h}$ results in $H_{0 i}<\bar{H}_{t h}=H_{d}^{\text {min }}$. Furthermore, since $H_{i} \leq H$ (the equality sign corresponds to $H=0$, i.e., $T_{i}=0$), H_{i} vs. H should start at the
origin with a unity slope, and gradually approach $H_{0 i}$. Letting $F_{0 i}=H_{0 i} l$, one function that satisfies this condition ${ }^{4}$ is

$$
\begin{equation*}
F_{i}=F_{0 i} \tanh \left(F / F_{0 i}\right) . \tag{45}
\end{equation*}
$$

In order to obtain a satisfactory agreement between the observed $\dot{\phi}_{i}(t)$ and the model proposed in Eq. (44), it was necessary in Report 4 (pp. 25 and 35) to use a smaller value of C_{i} for a shorter rise time T_{r} of $F(t)$, whose amplitude is F_{D}. This dependence may be partially explained by the following argument: Assuming that minor and major inelastic wall displacements are independent, the maximum flux change due to $\dot{\phi}_{i}(t), \Delta \phi_{i}(\infty)=\int_{0}^{\infty} \dot{\phi}_{i} d t$, of a given core is fixed for a given value of F_{D} (but increases asymptotically with F_{D}). If T_{r} is considerably smaller than the decay time constant τ_{i}, then $\Delta \phi_{i(\infty)} \approx \dot{\phi}_{i p}\left(0.5 T_{r}+\tau_{i}\right) \approx \dot{\phi}_{i p} \tau_{i}$, and since $\tau_{i}=C_{i} /\left(F_{D}-F_{i}\right)$,

$$
\begin{equation*}
C_{i}=\Delta \phi_{i(\infty)}\left(F_{D}-F_{i}\right) / \dot{\phi}_{i p} \tag{46}
\end{equation*}
$$

For a given value of $F_{D}, \dot{\phi}_{i p} C_{i} \approx$ constant, and since $\dot{\phi}_{i p}$ increases as T_{r} decreases, C_{i} must decrease as T_{r} decreases. Although C_{i} depends also on F_{D} [see Eq. (46)], the increase of $\dot{\phi}_{i p}$ with F_{D} is such that $\dot{\phi}_{i p} /\left(F_{D}-F_{i}\right)$ may be approximated by a constant in a wide range of F_{D}. This is evident from the plots of computed $\dot{\phi}_{i p} v s . F_{D}$ for different values of T_{r} in Fig. 14 of Report 4 (p. 40). As F_{D} or T_{r} or both decrease, $\dot{\phi}_{i p}$ vs. F_{D} becomes less linear, and hence the dependence of C_{i} on F_{D} increases.

It is proper at this point to show the significance of the $\dot{\phi}_{i}(t)$ component in connection with the signal-to-noise ratio of a coincident-current memory. Consider two essentially identical cores, one in an undisturbed ONE state ($\phi \approx \phi_{r}$) and the other in an undisturbed ZERO state $\left(\phi \approx-\phi_{r}\right)$. The difference between the $\dot{\phi}$ outputs of the two undisturbed cores, generated by a PARTIAL-READ pulse of amplitude around $F_{d}^{\mathrm{m}} \mathrm{in}$, is the maximum delta noise. Since the difference in $\dot{\phi}_{\epsilon}(t)$ between the two cores is considerably smaller than $\dot{\phi}_{i}(t)$ of the core driven away from saturation, this delta noise is essentially $\dot{\phi}_{i}(t)$. Application of a POST-WRITE DISTURB pulse decreases the delta noise appreciably by causing minor inelastic wall displacements to new stable positions
[e.g., from Point R to Point W in Fig. 2(a)]. The longer the duration of this pulse is, the larger is the number of completed minor inelastic wall displacements, and so the smaller is the following delta noise. Furthermore, previous PARTIAL-READ and PARTIAL-WRITE pulses also affect the delta noise by causing minor inelastic wall displacements in opposite directions. Since $\dot{\phi}_{i}(t)$ is due to domain-wall motion only, one could possibly describe any delta noise by incorporating the switching history into Eq. (44).
ii. Main Inelastic $\dot{\phi}(t), \dot{\phi}_{m a}(t)$

Referring to Fig. 4, the average threshold $\bar{H}_{t h}$ corresponding to major inelastic wall displacements increases from a value of $H_{d}^{\mathrm{m}}{ }^{\mathrm{n}}$ to a finite value as H increases above $H_{d}^{m i n}$. The corresponding number of walls, $n(1-p)$, increases with H from zero to a finite number because n increases and p decreases as H increases. Thus, as in the case of $\dot{\phi}_{i}(t), \dot{\phi}_{m a}(t)$ is proportional to $\left(H-\bar{H}_{t h}\right)^{\nu}$, where $\nu>1$. However, unlike $\dot{\phi}_{i}(t), \dot{\phi}_{m a}(t)$ is affected appreciably by a change in the average domain-wall area vs. time. According to Menyuk and Goodenough, ${ }^{10}$ this area increases in the early portion of switching, reaches a peak in the middle of switching (while domains collide with each other), and decreases with time toward the end of switching. The distribution function of the switching time is more complex than in the case of $\dot{\phi}_{i}(t)$ because it depends on domain collisions. Haynes ${ }^{11}$ extended Goodenough's work by calculating a model for $\dot{\phi}_{m a}(t)$ based on the assumption that the nucleation centers (where major wall displacements begin) are distributed randomly according to Poisson's distribution function. Independently, Lindsey ${ }^{12}$ calculated a model similar to Haynes', except that he assumed the domains to be cylindrical. These types of models were treated in a general way by Hilberg. ${ }^{13}$ Each of these models for $\dot{\phi}_{m a}(t)$ yields a satisfactory agreement with experimental data. However, we prefer to use the parabolic $\dot{\phi}_{m a}(\phi)$ model (see Report 4, pp. 1l-15) simply because its agreement with experimental data of many square-loop materials is the best (but not by far). According to this model, $\dot{\phi}_{m a}$ is proportional to a parabolic function of ϕ which reaches a peak in the middle of switching. Thus, qualitatively, the parabolic model has the physical features hypothesized by Menyuk and Goodenough. ${ }^{10}$

Following Eqs. (18) and (21) in Report 4,

$$
\begin{equation*}
\dot{\phi}_{m a}=\dot{\phi}_{p}(F)\left\{1-\left[\frac{2 \phi+\phi_{r}-\phi_{d}(F)}{\phi_{r}+\phi_{d}(F)}\right]^{2}\right\}, \tag{47}
\end{equation*}
$$

where $\dot{\phi}_{p}(F)$ is the peak $\dot{\phi}_{m a} v s . F$. The experimental $\dot{\phi}_{p}(F)$ curve may be fitted by the following functions:

$$
\dot{\phi}_{p}(F)= \begin{cases}0 & \text { if } 0 \leq F \leq F_{d}^{\text {in }} \\ \lambda_{d}\left(F-F_{d}^{\mathrm{min}}\right)^{\nu} & \text { if } F_{d}^{\mathrm{min}} \leq F \leq F_{d B} \\ \lambda\left(F-F_{0}^{\prime \prime}\right)^{\nu} & \text { if } F_{d B} \leq F \leq F_{B} \\ \rho_{p}\left(F-F_{0}\right) & \text { if } F_{B} \leq F\end{cases}
$$

where λ_{d}, λ, and ρ_{p} are proportionality constants, $F_{d}^{\text {min }}=H_{d}^{m i n} l, F_{0}^{\prime \prime}$, and F_{0} are threshold constants, and $F_{d B}$ and F_{B} are F-boundary constants. A model for $\phi_{d}(F)$, based on the one in Report 2, is given on pp. 82-83.

The expressions for $\dot{\phi}_{p}$ vs. F in Eq. (48) are identical with the ones given in Eq. (19) of Report 4 (p. 11), except that Eq. (48) includes an additional expression for the very low-F region, $F_{d}^{\text {min }} \leq F \leq F_{d B}$ (e.g., $F_{d B} \approx 1.1 F_{0}^{\prime \prime} \approx 1.15 F_{c}$). The excess MMF in this region is so low that the variations in threshold during the switching time become significant. The assumption in Eq. (48) that the MMF threshold for $F_{d}^{\text {min }} \leq F \leq F_{d B}$ is constant may result in an appreciable error. It is more exact to replace $F_{d}^{\text {min }}$ by $F_{d}(\phi)$, where $F_{d}(\phi)$ is the F value on the static $\phi(F)$ curve for a given ϕ. As a result, for a step $F(t)$ of amplitude F_{D} between $F_{d}^{\text {min }}$ and $F_{d B}, \dot{\phi}_{m a}(t)$ peaks earlier than predicted by Eq. (47) and $\dot{\phi}_{m a}(\phi)$ is not parabolic. Further work needs to be done in using $F_{d}(\phi)$ as a general threshold function instead of the threshold values given in Eq. (48).

It turns out that Eqs. (47) and (48) are also applicable for $F(t)$ other than a step function. For example, a good agreement with experimental data was obtained in Report 4 (pp. 91-106) for $F(t)=k t$ using the same switching parameters in a wide range of k, e.g., $100: 1$
[$\lambda, F_{0}^{\prime \prime}$ and other parameters of the same nature in Eq. (48) are smaller for ramp $F(t)$ than for step $F(t)$ by about 30 percent].

5. Experimental Verification

a. Applied $F(t)$ Pulses with $T_{r} \approx 65 \mathrm{~ns}$ and $T_{r} \approx 13 \mathrm{~ns}$

The experimental data in Report 4 (pp. 18-42) were obtained by driving Core E-6 (see Report 3, p. 23 or Report 4, p. 25), as shown in Fig. 6, with constant-amplitude $F(t)$ pulses of several values of amplitude F_{D} and two values of rise time, $T_{r} \approx 65 \mathrm{~ns}$ and $T_{r} \approx 13 \mathrm{~ns}$. (Recall that, unlike T_{r} in Report $4, T_{r}$ in this report designates the rise time of $F(t)$ from $0.1 F_{D}$ to $0.9 F_{D}$. See the footnote on p. 15 .) The computation of the $\dot{\phi}_{\epsilon}(t)$ component was based on Eq. (43), but it was concluded (Report 4, p. 35) that the short delay between the computed and the observed $\dot{\phi}_{\epsilon}(t)$ waveforms could be reduced by adding a viscous-damping term into the model, i.e., by using Eq. (42). This was subsequently done, and it was found that for $T_{r} \approx 65 \mathrm{~ns}, \delta_{w} \approx \delta_{r} \approx 6 \mathrm{~ns}$, and for $T_{r} \approx 13 \mathrm{~ns}, \delta_{w} \approx \delta_{r} \approx 3 \mathrm{~ns}$. Thus, the use of Eq. (43) instead of Eq_{q}. (42) is justified if $T_{r} \gtrsim 60 \mathrm{~ns}$.

Using Eq. (42) for the $\dot{\phi}_{\epsilon}(t)$ component, computed initial $\dot{\phi}(t)$ wave forms for $F_{D}=0.8, F_{D} \approx 1.2$, and $F_{D}=2.0$ At are compared in Fig. 9 ($T_{r}=65 \mathrm{~ns}$) and in Fig. $10\left(T_{r} \approx 13 \mathrm{~ns}\right.$) with the corresponding experimental $\dot{\phi}(t)$ waveforms [see Figs. $10(\mathrm{~b}),(\mathrm{e})$, and (g) and 11(b), (e), and (g) of Report 4, pp. 27-34]. The agreements between experimental and computed $\dot{\phi}(t)$ waveforms in Fig. 9 and especially in Fig. 10 are better than the agreements in Report 4.
b. Applied $F(t)$ Pulses with $T_{r}=0.4 \mathrm{~ns}$

The use of Eq. (42) is not justified if T_{r} is not much larger than max $\left(\eta_{w} / \delta_{w} ; \eta_{r} / \delta_{r}\right)$. Thus, in order to observe the effects of the inertial terms $\eta_{w} \ddot{\phi}_{\epsilon_{\psi}}$ and $\eta_{r} \ddot{\phi}_{\epsilon r}$ on the $\dot{\phi}(t)$ waveforms [Eqs. (36) and (39)], $F(t)$ drives with very short rise time ($T_{r} \lesssim 1 \mathrm{~ns}$) should be applied. In addition, the sensed $\dot{\phi}(t)$ must be free of ringing and distortion pickup. These conditions were achieved in the experimental setup discussed next.

FIG. 9 EXPERIMENTAL (Solid Line) AND COMPUTED (Dashed Line) $\dot{\phi}(t)$ WAVEFORMS OF UNLOADED CORE E-6 DURING THE BEGINNING OF SWITCHING, USING $F(\dagger)$ WITH $T_{r} \approx 65 \mathrm{~ns}$ AND VARIOUS VALUES OF AMPLITUDE F_{D}

FIG. 10 EXPERIMENTAL (Solid Line) AND COMPUTED (Dashed Line) $\dot{\phi}(t)$ WAVEFORMS OF UNLOADED CORE E-6 DURING THE BEGINNING OF SWITCHING, USING F(t) WITH $T_{r} \approx 13$ ns AND VARIOUS VALUES OF AMPLITUDE F_{D}

i. Experiment

The experimental measurements consisted basically of setting the core with a TEST $F(t)$ pulse having a short rise time and a variable amplitude, clearing the core with a high-amplitude pulse, and photographing the resulting $\dot{\phi}(t)$ during the setting time. The TEST pulse had a rise time T_{r} of slightly less than 0.4 ns , a fall time less than 1 ns , and a maximum amplitude of 40 A ; its duration was adjusted from less than 1 ns to almost $l \mu \mathrm{~s}$ at the lower amplitudes by changing the length of a 50Ω transmission-line cable. The CLEAR pulse used for these experiments had an amplitude of 20 A , a duration of $0.5 \mu \mathrm{~s}$, and rise and fall times of less than 1 ns.

The major difficulty in the experiment was the attainment of a fast-rise TEST pulse free of reflections or other irregularities, and the sensing of the true $\dot{\phi}(t)$, free of ringing and distortion. It was desirable that the rise time and rise shape of the TEST pulse be relatively independent of the amplitude of the TEST pulse in the entire range of amplitude (zero to 40 A). The noise problem increased because the observations were made during and immediately following the rise, and because the decaying tail of the initial spike is small compared to the main $\dot{\phi}(t)$ component.

The short-rise-time TEST pulse was generated by discharging a coaxial 50Ω transmission line into a 50Ω termination $v i a$ mercury-relay switch. The core was mounted coaxially in a section of the 50Ω transmission line, as shown in Fig. 11. The core was cleared by sending a CLEAR pulse through the same transmission line. This technique, which is described below, obviates the need for a separate CLEAR winding which would be very troublesome with regard to reflections and ringing. The $\dot{\phi}$ was sensed by a one-turn winding made of a short (1.1 cm) fine (Awg. No. 48) wire. A wire of such a small diameter (about 1.2 mil) has a very small capacitance by itself and with the central conductor of the core holder. The central conductor carried a voltage pulse of $50 \cdot F_{D}$ volts.

The circuit is shown in Fig. 12. The 20 dB high-power attenuator absorbs most of the short-duration power to protect the signal sampler, attenuates the signal for observation (at maximum output of 40 A , the voltage pulse before attenuation is 2000 V), and attenuates reflections from the signal sampler before they.reach the core. The

FIG. 11 CUTAWAY VIEW OF A COAXIAL CORE HOLDER
circuit produces a positive TEST pulse and a negative CLEAR pulse in the following way: Delay-line 1 is charged to $+V_{1}$ through the $2 \mathrm{M} \Omega$ charging resistor, R_{1}. At the same time, Delay-line 2 is charged to $-V_{2}$. Mercury-relay l is then closed by means of a solenoid exterior to the outer conductor. This initiates the TEST pulse by discharging Delay-line 1, and triggers the sampling oscilloscope. The duration of the TEST pulse is determined by the length of Delay-line 1 . After the TEST pulse is completed, but while Mercury-relay 1 is still closed, Mercury-relay 2 is closed. This discharges Delay-line 2, thereby generating a negative CLEAR pulse which passes through Mercury-relay 1 , through the core (thus clearing the core) and then to the attenuators and termination. The duration of this pulse is determined by the length of Delay-line 2. Following the CLEAR pulse, both relays open and the two delay lines recharge for the next cycle.

The primary advantage of this technique for generating bipolar pulses is that the 50Ω system need not be disturbed with extra switches in the system or an extra core winding that can cause troublesome reflections. In this way a smooth and clean rise can be achieved. The primary disadvantage of this method is that the fall of the TEST pulse is not smooth; however, by careful construction of Mercury-relay 2 ,

CORE SWITCHING BY BIPOLAR CURRENT PULSES OF 0.4 ns RISE TIMES
\%
FIG. 12
this drawback can be minimized. Furthermore, for the measurements described in this report, the fall time was of little concern.

The F and $\dot{\phi}$ signals were observed on a Hewlett-Packard Model 185A sampling oscilloscope with a Model 187 B vertical amplifier. The oscilloscope response time was 0.4 ns . The acutal 10 to 90 percent rise time, T_{r}, of the TEST pulse was calculated to be slightly less than 0.4 ns by using a Hewlett-Packard 188 A vertical amplifier with 90 ps response time. There is about a 3 ns delay between the points at which $\dot{\phi}$ and F are monitored. This delay was eliminated by shifting the horizontal position on the sampling oscilloscope. The trigger signal was obtained across a 5 -turn winding of half a ferrite core located near the center conductor at the output of Mercury-relay l(see Fig. 12). This trigger output was switched off during the CLEAR pulse to avoid undesired triggering of the sampling oscilloscope. The 100 ns delay line was required in order to trigger the oscilloscope before the $\dot{\phi}$ and F signals arrived. The mercury-relay pulser (comprising the $+V_{1}$ supply, R_{1}, Relay l contacts, Relay 1 solenoid, and the trigger core) was a modified version of the Model-961 Nanosecond Pulser, made by a Menlo Park Engineering company (now made by Huggins Laboratory, Sunnyvale, California).

The output current pulse from the mercury-relay pulsers contains a small step-up on top of the pulse (about 4 percent of the pulse amplitude) for part of the range. This is presumably due to the mechanical closure of the relay, because the initiation of the pulse is started by an arc discharge in the mercury relay capsule, prior to the mechanical closure. (The Model-961 pulser used here has a small window on the side for obtaining nanosecond light pulses from the arc discharge.) At low current amplitudes, the arc discharge never occurs. At high current amplitudes, the mechanical closure occurs after the pulse is completed. The current step-up occurs in the middle range. For the Model-961 pulser used here, with a 630 ns pulse width, this middle current-amplitude range was from 1.5 A to 3.6 A (this corresponds to the voltage range of 75 V to 180 V in the 50Ω system). This range can easily be avoided by using a 10 dB microwave attentuator ahead of the core holder. It has been noted that the time jitter in the output pulse and the exact voltage for which the step-up occurs (also the time of the step-up in the middle range) are influenced by the angle of the
mercury-relay from the vertical. A 30° angle was optimum for minimizing the middle range given above.

The high-power attentuator was a Weinschel Model 693, rated at 10 kW peak power (for microwaves). The peak pulse power used here is 80 kW ; therefore, it was necessary to limit the duration of the pulse at the maximum amplitudes. (An exact specification cannot be given, but 10 ns at 40 A was not too long.) The signal sampler used was a Microlab AB-20N. The temperature of the coaxial core holder was regulated at $30^{\circ} \mathrm{C}$.

ii. Elastic Flux Switching

The elastic flux-switching parameters were determined by fitting the sum $\left[\dot{\phi}_{\epsilon_{r}}(t)+\dot{\phi}_{\epsilon_{u}}(t)+\dot{\phi}_{a i r}(t)\right]$ to the observed $\dot{\phi}_{\epsilon}(t)$ in response to $F(t)$ drives of different values of amplitude F_{D}. The values of $\dot{\phi}_{\epsilon r}(t)$ and $\dot{\phi}_{\epsilon \psi}(t)$ were computed by numerical integration of the second-order differential equations, Eqs. (36) and (39), respectively. The $\dot{\phi}$ due to air flux was computed using the simple relation

$$
\begin{equation*}
\dot{\phi}_{\mathrm{air}}(t)=\frac{\mu_{0} A_{s w}}{l} \dot{F}, \tag{49}
\end{equation*}
$$

where $A_{s w}$ is the projection of the sense-winding area normal to the applied field $H=F / l$. The value of $\mu_{0} A_{s} / l$ was determined by dividing the peak values of the observed $\dot{F}(t)$ and $\dot{\phi}_{\text {air }}(t)$ waveforms in Fig. 8. All the computations were performed on a Burroughs B-5500 digital computer. The computer program, written in the Burroughs extended version of ALGOL-60, was similar to the one given in Appendix E of Report 4 (pp. 141-145) in which $\dot{\phi}_{i}$ and $\dot{\phi}_{m a}$ were set to zero, except for the addition of a PROCEDURE for solving second-order differential equations using the Kutta-Merson method.

We found that the same values of $\delta_{r}, \eta_{r}, \delta_{w}$, and η_{w} can be used for all F_{D} values but that the ϵ_{r} and ϵ_{w} values decrease with F_{D}. These values are given as follows:

$$
\delta_{r}=0.28 \mathrm{~ns}, \eta_{r}=0.08 \mathrm{~ns}^{2}, \epsilon_{r}=0.14\left(1-0.005 F_{D}\right) \cdot 10^{-9} \mathrm{H} / \mathrm{t}^{2} ;
$$

and

$$
\delta_{w}=4.0 \mathrm{~ns}, \quad \eta_{w}=\underline{2} .0 \mathrm{~ns}^{2}, \quad \epsilon_{w}=0.266\left(1-0.008 F_{D}\right) \cdot 10^{-9} \mathrm{H} / \mathrm{t}^{2} .
$$

Additional parameters of Core E-6 are $\phi_{r}=3.45 \mathrm{Mx}$ and $\phi_{s}=3.726 \mathrm{Mx}$.
Experimental and computed $F(t)$ and $\dot{\phi}_{\epsilon}(t)$ waveforms are compared in Fig. 13 for $F_{D}=0.9,4.0,8.0,20.0$, and 40.0 At. The oscilloscope response time was accounted for by assuming the computed $F(t)$ to rise earlier than the experimental $F(t)$ according to the relation

$$
\begin{equation*}
T_{r, o b s}=\sqrt{T_{r}^{2}+T_{r, o s c}^{2}}, \tag{50}
\end{equation*}
$$

where $T_{\text {r.obs }}$ is the observed T_{r} and $T_{r, o s c}$ is the response time of the oscilloscope. It can be seen in Fig. 13 that $T_{\text {r.obs }}=0.56 \mathrm{~ns}$ for all values of F_{D}, and since $T_{r, o s c}=0.4 \mathrm{~ns}, T_{r} \approx 0.4 \mathrm{~ns}$ for all values of F_{D}. As expected, the experimental $\dot{\phi}_{\epsilon}(t)$ waveforms lag behind the computed waveforms due to the oscilloscope response time. For the same reason, the peaks of the computed $\dot{\phi}_{\epsilon}(t)$ waveforms are intentionally higher than the observed $\dot{\phi}_{\epsilon}$ peaks. These peaks were obtained by adjusting the value of ϵ_{r} so that the ratio of the computed and the experimental $\dot{\phi}_{\epsilon}$ peaks was equal to the ratio of experimental peaks of the same $\dot{\phi}_{\epsilon}(t)$ pulse obtained by using vertical amplifiers with response times of 0.09 ns and 0.4 ns , respectively.

iii. Elastic and Inelastic Flux Switching

The elastic and inelastic flux-switching parameters were determined by fitting the sum $\left[\dot{\phi}_{\epsilon_{r}}(t)+\dot{\phi}_{\epsilon_{w}}(t)+\dot{\phi}_{\mathrm{air}}(t)+\dot{\phi}_{i}(t)+\dot{\phi}_{m a}(t)\right]$ to the observed $\dot{\phi}(t)$ waveforms in response to $F(t)$ drives of different F_{D} values. It may seem that the fitting job is very difficult because the number of the parameters involved is large. However, most of these parameter values were known a priori from the simpler cases of waveform fitting described earlier. The rotational parameters δ_{r} and η_{r} were found to have the same values as for elastic switching only, but δ_{w} and η_{w} were found to have somewhat different values. The values of the inelastic switching parameters were close to the ones used in Report 4 and in Figs. 9 and 10 . The values of all the parameters of Core E-6 at $30^{\circ} \mathrm{C}$ for switching under step $F(t)$ with $T_{r}=0.4 \mathrm{~ns}$ are listed on page 36 .

FIG. 13 EXPERIMENTAL (Dotted and Solid Line) AND COMPUTED (Dashed Line) $F(t)$ AND $\dot{\phi}_{\epsilon}(t)$ WAVEFORMS OF UNLOADED CORE E-6, USING $F(t)$ WITH $T_{r}=0.4 \mathrm{~ns}$ AND VARIOUS VALUES OF AMPLITUDE F_{D}

FIG. 13 Concluded

Parameters of Core E-6 at $T=30^{\circ} \mathrm{C}$

Dimensions: $\quad l_{i}=22.19 \mathrm{~mm} ; l_{o}=23.54 \mathrm{~mm} ; A=0.1486 \mathrm{~mm}^{2}$.
Static $\phi(F)$ parameters: $\phi_{r}=3.45 \mathrm{Mx} ; \phi_{s}=3.726 \mathrm{Mx} ; H_{a}=950 \mathrm{Atm}^{-1}$;
$H_{q}=35.0 \mathrm{Atm}^{-1} ; H_{n}=30.0 \mathrm{Atm}^{-1}$.
$\dot{\phi}_{\epsilon}$ parameters: $\quad \delta_{r}=0.28 \mathrm{~ns} ; \eta_{r}=0.08 \mathrm{~ns}^{2} ; \epsilon_{r}=0.127 \cdot 10^{-9} \mathrm{Ht}^{-2}$;
$\delta_{w}=1.8 \mathrm{~ns} ; \eta_{w}=1.2 \mathrm{~ns}^{2} ; \epsilon_{w}=0.127 \cdot 10^{-9} \mathrm{Ht}^{-2}$.
$\dot{\psi}_{i}$ parameters: $\quad F_{02}=0.55 \mathrm{At} ; \nu_{i}=1.33 ; \lambda_{i}=0.013 \Omega \mathrm{t}^{-2.33} \mathrm{~A}^{-0.33}$;
$C_{i}=0.1$ At $\mu \mathrm{s}$.
$\dot{\phi}_{m a}$ parameters: $\quad F_{d}^{\mathrm{min}}=0.781 \mathrm{At} ; \nu_{d}=2.5 ; \lambda_{d}=0.124 \Omega \mathrm{t}^{-3.5} A^{-1.5}$;
$F_{0}^{\omega \prime}=0.92 \mathrm{At} ; \nu=1.33 ; \lambda=0.069 \Omega_{t}{ }^{-2.33} A^{-0.33} ;$
$F_{0}=1.45 \mathrm{At} ; \rho_{p}=0.1132 \Omega \mathrm{t}^{-2}$;
$F_{d B}=1.078 \mathrm{At} ; F_{B}=3.12 \mathrm{At}$.

The parameters above were used to compute the total $\dot{\phi}(t)$ on a Burroughs B-5500 digital computer, where

$$
\dot{\phi}(t)=\dot{\phi}_{\epsilon_{r}}(t)+\dot{\phi}_{\epsilon_{v}}(t)+\dot{\phi}_{a i r}(t)+\dot{\phi}_{i}(t)+\dot{\phi}_{m a}(t) .
$$

The computer program was the same as given in Appendix E of Report 4 (pp. 141-145), except for the addition of the Kutta-Merson PROCEDURE for numerical solution of second-order differential equations. The computed and the experimental $\dot{\phi}(t)$ waveforms are compared in Fig. 14 for $F_{D}=0.6,0.9,1.5,4.0,8.0,20.0$, and 36.0 At . The waveforms of $F(t)$ are not shown because they are very similar to the ones shown in Fig. 13. In the cases of $F_{D}=20.0$ At and $F_{D}=40 \mathrm{At}$ it was found necessary to equate $\dot{\phi}_{i}(t)$ to zero in order to obtain a satisfactory fit between the computed $\dot{\phi}(t)$ and the experimental $\dot{\phi}(t)$.

6. Discussion

a. Elastic Switching Coefficients

We found that the values of δ_{r} and η_{r} are the same regardless of whether inelastic switching takes place. This is possible because the anisotropy field that opposes the rotation of magnetization is essentially independent of the inelastic switching. In contrast, the values of δ_{v} and η_{w} for (elastic) switching toward saturation were found to be different than for (elastic and inelastic) switching away from saturation. This is possible because the restoring forces in the two cases may be different (see Fig. 2). For the same reason, δ_{y} and η_{u} for switching from a demagnetized state $(\phi=0)$ should be the same for positive and negative switching.

The $\dot{\phi}_{\epsilon_{r}}$ component is underdamped with $\zeta_{r}=\frac{1}{2} \delta_{r} \eta_{r}^{1 / 2}=0.495=0.5$, and its frequency of oscillation is $\left(\eta_{r}^{-1}-\frac{1}{4} \delta_{r}^{2} \eta_{r}^{-2}\right)^{1 / 2} /(2 \pi)=487 \mathrm{Mc} / \mathrm{s}$. For switching toward saturation, the $\dot{\phi}_{\epsilon_{w}}$ component is overdamped with $\zeta_{w}=\frac{1}{2} \delta_{\nu} \eta_{w}^{1 / 2}=1.414$; however, for switching away from saturation, $\dot{\phi}_{\epsilon}$ is slightly underdamped with $\zeta_{w}=0.822$, and its frequency of oscillation is $\left(\eta_{w}^{-1}-\frac{1}{4} \delta_{\psi}^{2} \eta_{w}^{-2}\right)^{1 / 2} /(2 \pi)=82.5 \mathrm{Mc}_{\mathrm{c}} / \mathrm{s}$. These results are consistent with magnetic spectra (plots of the real and the imaginary components of the complex permeability $v s$. frequency) of polycrystalline ferrites, which exhibit resonance in the microwave region but may or may not exhibit resonance in the radio-frequency region. ${ }^{14-17}$

FIG. 14 EXPERIMENTAL (Dotted and Solid Line) AND COMPUTED (Dashed Line) $\dot{\phi}(t)$ WAVEFORMS OF UNLOADED CORE E-6, USING F(t)
WITH $T_{r}=0.4 \mathrm{~ns}$ AND VARIOUS VALUES OF AMPLITUDE F_{D}

FIG. 14 Continued

FIG. 14 Concluded

b. Determination of Viscous Damping and Anisotropy Constant

Following Eqs. (27) and (28),

$$
\begin{equation*}
\alpha=\frac{\delta_{r}}{\sqrt{4 \eta_{r}-\delta_{r}^{2}}} \tag{51}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{t}=H_{i}=\frac{2}{\gamma \sqrt{4 \eta_{r}-\delta_{r}^{2}}} \tag{52}
\end{equation*}
$$

Substituting $\delta_{r}=0.28 \mathrm{~ns}$ and $\eta_{r}=0.08 \mathrm{~ns}^{2}$ into Eqs. (51) and (52), we find that $\alpha=0.57$ and, since $H_{i} \gg H$ and $\gamma=1.76 \cdot 10^{7}(\mathrm{Oe}-\mathrm{s})^{-1}$, that $H_{i} \approx 232 \mathrm{Oe}$. The anisotropy constant K_{1} of materials whose easy axes are body diagonals, such as ferrites, is given by

$$
K_{1}=-\frac{3}{4} H_{k} M_{s}
$$

For Core E-6, whose nominal composition is $\left[M g_{0.32} Z n_{0.10} M n_{0.58}\right]^{++}\left[M_{0.52} \mathrm{Fe}_{1.48}\right]^{+++} 0_{4}, M_{s}=208 \mathrm{G}$, and if $H_{d} \ll H_{k}$, then $H_{i} \approx H_{k} \approx 232 \mathrm{Oe}$, and $K_{1} \approx-3.6 \cdot 10^{4} \mathrm{ergs} / \mathrm{cm}^{3}$. This value lies
between values of K_{1} for magnesium and manganese polycrystalline ferrites measured by other methods. ${ }^{16,17}$ Using the technique presented in this report, magnetic coefficients may thus be measured in the time domain, in addition to the frequency domain. ${ }^{16,17}$
c. Magnetic Spectrum

Equations (36) and (39) may be used to calculate the magnetic spectrum (the complex permeability $\mu=\mu^{\prime}-j \mu^{\prime \prime} v s$. the frequency f) due to elastic rotation of magnetization and elastic wall motion. Let us drop the corresponding subscripts r and w in the following derivation because the resulting expressions are valid for either rotation of magnetization or domain-wall motion. Dividing Eq. (36) or Eq. (39) by A and replacing F by $H l$, we obtain

$$
\begin{equation*}
B_{\epsilon}+\delta \dot{B}_{\epsilon}+\eta \ddot{B}_{\epsilon}=(\epsilon l / A) H, \tag{54}
\end{equation*}
$$

where both B_{ϵ} and H designate changes from zero values. The Laplace transform of Eq . (54) gives

$$
\begin{equation*}
\mu(s)=\frac{B_{\epsilon}(s)}{H(s)}=\frac{\epsilon l}{A} \frac{1}{1+s \delta+s^{2} \eta} . \tag{55}
\end{equation*}
$$

Letting $s \rightarrow j \omega$, where $\omega=2 \pi f$, Eq. (55) becomes

$$
\begin{equation*}
\mu(j \omega)=\mu_{(0)} \frac{1-\omega^{2} \eta-j \omega \delta}{\left(1-\omega^{2} \eta\right)^{2}+\omega^{2} \delta^{2}}, \tag{56}
\end{equation*}
$$

where

$$
\begin{equation*}
\mu_{(0)}=\epsilon l / A . \tag{56a}
\end{equation*}
$$

Following the definition

$$
\begin{equation*}
\mu=\mu^{\prime}-j \mu^{\prime \prime}, \tag{57}
\end{equation*}
$$

equating Eqs. (56) and (57) gives

$$
\mu^{\prime}=\mu_{(0)} \frac{1-\omega^{2} \eta}{\left(1-\omega^{2} \eta\right)^{2}+\omega^{2} \delta^{2}},
$$

$$
\begin{equation*}
\mu^{\prime \prime}=\mu_{(0)} \frac{\omega \delta}{\left(1-\omega^{2} \eta\right)^{2}+\omega^{2} \delta^{2}} \tag{59}
\end{equation*}
$$

and

$$
\begin{equation*}
|\mu|=\mu_{(0)} \frac{1}{\sqrt{\left(1-\omega^{2} \eta\right)^{2}+\omega^{2} \delta^{2}}} \tag{60}
\end{equation*}
$$

Note that as $\omega \rightarrow 0, \mu^{\prime} \rightarrow \mu \rightarrow \mu_{(0)}$ and $\mu^{\prime \prime} \rightarrow 0$, and that as $\omega \rightarrow \infty$, $\mu^{\prime} \rightarrow \mu^{\prime \prime} \rightarrow \mu \rightarrow 0$.

Equating $d \mu^{\prime} / d \omega, d \mu^{\prime \prime} / d \omega$, and $d|\mu| / d \omega$ to zero, we find that $\mu^{\prime}, \mu^{\prime \prime}$, and $|\mu|$ peak at the following resonance ω values, respectively:*

$$
\begin{gather*}
\omega_{r}^{\prime}=\sqrt{\frac{1}{\eta}\left(1-\delta \eta^{-1 / 2}\right)} \tag{61}\\
\omega_{r}^{\prime \prime}=\sqrt{2 \eta-\delta^{2}+\sqrt{\left(2 \eta-\delta^{2}\right)^{2}+12 \eta^{2}}} /(\eta \sqrt{6}), \tag{62}
\end{gather*}
$$

and

$$
\begin{equation*}
\omega_{r}=\sqrt{\frac{1}{\eta}\left(1-\frac{1}{2} \delta^{2} \eta^{-1}\right)} \tag{63}
\end{equation*}
$$

Examining Eqs. (61), (62), and (63), we find the following:
(1) If $\delta=0$, then $\omega_{r}^{\prime}=\omega_{r}^{\prime \prime}=\omega_{r}=\eta^{-1 / 2}$.
(2) If $\zeta<1$, where $\zeta=\frac{1}{2} \delta \eta^{-1 / 2}$, then $\omega_{r}^{\prime}<\omega_{r}<\omega_{r}^{\prime \prime}$.
(3) By equating $\omega_{r}^{\prime}, \omega_{r}$, and $\omega_{r}^{\prime \prime}$ to zero, we find that if $\zeta>0.5$, then $\mu^{\prime}(\omega)$ has no resonance peak, that if $\zeta>0.707$, then $|\mu(\omega)|$ has no resonance peak, and that $\omega_{r}^{\prime \prime}$ always has a resonance peak, unless $\eta=0$.

[^2]Substitutions of Eq. (61) into Eq. (58), Eq. (62) into Eq. (59), and Eq. (63) into Eq. (60) give the peak values of $\mu^{\prime}, \mu^{\prime \prime}$, and $|\mu|$, respectively, at resonance. Thus

$$
\begin{equation*}
\mu_{r}^{\prime}=\frac{\mu_{(0)}}{\frac{\delta}{\sqrt{\eta}}\left(2-\frac{\delta}{\sqrt{\eta}}\right)} \tag{64}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\mu_{r}\right|=\frac{\mu_{(0)}}{\frac{\delta}{\sqrt{\eta}} \sqrt{1-\left(\frac{\delta}{2 \sqrt{\eta}}\right)^{2}}} \tag{65}
\end{equation*}
$$

The rotational coefficients of Core E-6 were found to be $\delta_{r}=0.28 \mathrm{~ns}, \eta_{r}=0.08 \mathrm{~ns}^{2}$, and $\epsilon_{r}=0.14 \mathrm{nH} / \mathrm{t}^{2}$. The magnetic spectrum due to rotation of magnetization only may thus be computed by substituting these values into Eqs. (58) through (65). In so doing we find that $f_{r_{r}}^{\prime}=56.3 \mathrm{Mc} / \mathrm{s}, f_{r r}=402 \mathrm{Mc} / \mathrm{s}$, and $f_{r_{r}}^{\prime \prime}=495 \mathrm{Mc} / \mathrm{s}$. We also find that $\mu_{r r}^{\prime}$ is very slightly above $\mu_{r(0)}$ (because $\zeta_{r}=0.495$ is very close to 0.5$), \mu_{r r}^{\prime \prime}=1.07 \mu_{r(0)}$, and $\left|\mu_{r r}\right|=1.162 \mu_{r(0)}$, where $\mu_{r(0)}=\epsilon_{r} l / A=17.17 \mu_{0}=21.55 \mu H /\left(m-t^{2}\right)$. The value of $f_{r r}^{\prime}$ relative to $f_{r r}^{\prime \prime}$ is small compared with measured magnetic spectra. ${ }^{14-17}$ Referring to Eq. (61), $\delta_{r} \eta_{r}^{-1 / 2}=0.28 / \sqrt{0.08} \approx 0.99$, which is close to unity; hence, $\omega_{r r}^{\prime}$ is very sensitive to any errors in δ_{r} and η_{r}. In contrast, $\omega_{r}^{\prime \prime}$, Eq. (62), is not so sensitive to these errors. For example, a decrease in δ_{r} by 5 percent and an increase in η_{r} by 5 percent will result in the values $f_{r r}^{\prime}=157 \mathrm{Mc} / \mathrm{s}$ and $f_{r r}^{\prime \prime}=492 \mathrm{Mc} / \mathrm{s}$, which are quite reasonable. ${ }^{14-17}$

Using Eqs. (61) and (62), one may compute δ_{r} and η_{r} from the values of $f_{r r}^{\prime}$ and $f_{r r}^{\prime \prime}$ in the microwave region of measured magnetic spectrum. If there is also a resonance in the radio-frequency region; then Eqs. (61) and (62) may also be used to compute δ_{w} and η_{w} from the values of $f_{r w}^{\prime}$ and $f_{r w}^{\prime \prime}$.
d. ϕ_{r} / ϕ_{s} Ratio.

Referring to Eqs. (36) and (39), as $t \rightarrow \infty$, the total elastic flux change in response to a step $F(t)$ of amplitude F_{D} is $\left(\epsilon_{r}+\epsilon_{w}\right) F_{D}$, where $\epsilon_{r} F_{D}$ and $\epsilon_{w} F_{D}$ are the contributions due to rotation of magnetization and domain-wall motion, respectively. A drive of $F_{D}=40.0 \mathrm{At}$, which is 44.5 times larger than the coercive MMF F_{c}, is high enough to saturate the core material. By fitting the computed $\dot{\phi}_{\epsilon}(t)$ to the experimental $\dot{\phi}_{\epsilon}(t)$, we have found empirically that $\epsilon_{r} \approx 0.14\left(1-0.005 F_{D}\right) \cdot 10^{-9} \mathrm{H} / \mathrm{t}^{2}$ and $\epsilon_{w}=0.266\left(1-0.008 F_{D}\right) \cdot 10^{-9} \mathrm{H} / \mathrm{t}^{2}$. Thus, for $F_{D}=40 \mathrm{At}$, $\epsilon_{r}=0.1123 \cdot 10^{-9} \mathrm{H} / \mathrm{t}^{2}$ and $\epsilon_{v}=0.1814 \cdot 10^{-9} \mathrm{H} / \mathrm{t}^{2}$. The corresponding elastic flux changes are $\Delta \phi_{\epsilon r}=0.45 \mathrm{Mx}, \Delta \phi_{\epsilon_{w}}=0.725 \mathrm{Mx}$, and $\Delta \phi_{\epsilon}=1.175 \mathrm{Mx}$. Since $\phi_{r}=3.45 \mathrm{Mx}$, we find that the true saturation flux is $\phi_{s}=\phi_{r}+\Delta \phi_{\epsilon}=4.625 \mathrm{Mx}$, and hence $\phi_{r} / \phi_{s}=0.746$. Theoretically, in polycrystalline ferrites with no domains of reverse magnetization, $\phi_{r} / \phi_{s}=0.87$. This value is close to the value of $\left(\phi_{r}+\Delta \phi_{\epsilon}\right) / \phi_{s}=0.90$ that results from the empirical approximations for ϵ_{r} and ϵ_{w} at $F=40$ At.

In the calculation of inelastic flux switching we have assumed that $\phi_{r} / \phi_{s} \approx 0.9$ in order to obtain a good agreement between the computed and the measured static $\phi(F)$ curve for practical F values, e.g., $F \lesssim 10 F_{c}$. This approximation is invalid if F is considerably larger than $10 F_{c}$ because ϕ_{r} / ϕ_{s} may be appreciably smaller than 0.9. For example, as was shown above, $\phi_{r} / \phi_{s}=0.746$ for $F_{D}=40 \mathrm{At} \approx 44 F_{c}$. It was similarly found that $\phi_{r} / \phi_{s} \approx 0.83$ for $F_{D}=20$ At $\approx 22 F_{c}$. Since the main inelastic flux switching [see Eq. (47)] terminates when ϕ reaches ϕ_{d}, and since $\phi_{d} \rightarrow \phi_{s}$ as $F \rightarrow \infty$ (see Report 2, pp. 3-6), the flux change $\Delta \phi_{m a}=\int_{0}^{\infty} \dot{\phi}_{m a} d t$ computed from Eq. (47) will be too low if ϕ_{s} is lower than the actual value. This explains why the computed $\Delta \phi$ and the computed $\dot{\phi}(t)$ waveforms toward the end of switching for $F_{D}=20.0 \mathrm{At}$ and $F_{D}=40.0$ At in Figs. $14(f)$ and (g) are lower than the experimental ones.
e. Disappearance of $\dot{\phi}_{i}(t)$ at High F

The fact that $\dot{\phi}_{i}(t)$ had to be equated to zero in order to obtain a reasonable agreement between the computed and the experimental $\dot{\phi}(t)$ waveforms in the cases of $F_{D}=20$ At and $F_{D}=40$ At is not surprising. This behavior was predicted in the past (Report 3, p. 12 and Ref. 18, p. 224) on the basis of the interpretation of the physical mechanism of the $\dot{\phi}_{i}$ component. As F exceeds a certain value, the
contribution of $\dot{\phi}_{i}(t)$ to the total $\dot{\phi}(t)$ starts to diminish because the decrease in the portion p of the minor wall displacements outweighs the increase in the total number n of inelastic wall displacements. If F is high enough, the contribution of $\dot{\phi}_{i}(t)$ becomes negligible compared with $\dot{\phi}_{m a}(t)$. It appears from the results of Fig. 14 that $\dot{\phi}_{i}(t)$ of Core E-6 becomes negligible if $F>20 F_{c}$.
B. Voltage Drive

1. Introduction

Computation of flux switching has so far been based on evaluation of $\dot{\phi}$ for given values of F and ϕ. In this way, the voltage induced across a core winding is computed as a function of the driving current(s). However, in many applications, a core is driven by a voltage source rather than a current source, and there is a need to compute the corresponding net magnetizing current. The same switching models used so far are applicable in this case of voltage drive. In other words, the models used for computation of $\dot{\phi}(F, \phi)$ are also applicable for computation of $F(\dot{\phi}, \phi)$ [or $\phi(F, \dot{\phi})$ for that matter]. This is so because the functional relationship among the three variables F, $\dot{\phi}$, and ϕ is the same regardless of which variable is solved for. Thus, if two of these variables are given, we can solve for the third one.

2. Computation of $F(\dot{\phi}, \phi)$

As an illustration, let us consider the approximation for the total inelastic $\dot{\phi}$ given in Eq. (22) of Report 4, p. 14:

$$
\begin{equation*}
\dot{\phi}=\dot{\phi}_{p}(F)\left\{1-\left[\frac{2 \phi+\phi_{s}-\phi_{d}(F)}{\phi_{s}+\phi_{d}(F)}\right]^{2}\right\} \tag{66}
\end{equation*}
$$

where

$$
\dot{\phi}_{p}(F)= \begin{cases}0 & \text { if } 0 \leq F \leq F_{0}^{\prime \prime} \tag{67}\\ \lambda\left(F-F_{0}^{\prime \prime}\right)^{\nu} & \text { if } F_{0}^{\prime \prime} \leq F \leq F_{B} \\ \rho_{p}\left(F-F_{0}\right) & \text { if } F_{B} \leq F\end{cases}
$$

For given $\dot{\phi}$ and ϕ, Eq. (66) is an implicit equation in F. We shall use the Newton-Raphson iterative method to solve for F transcendentally. At each j th iteration, F will be corrected according to

$$
\begin{equation*}
F_{j}=F_{j-1}-\frac{g\left(F_{j}\right)}{g^{\prime}\left(F_{j}\right)} \tag{68}
\end{equation*}
$$

where, following Eq. (66),

$$
\begin{equation*}
g(F)=\dot{\phi}_{p}(F)\left\{1-\left[\frac{2 \phi+\phi_{s}-\phi_{d}(F)}{\phi_{s}+\phi_{d}(F)}\right]^{2}\right\}-\dot{\phi} \tag{69}
\end{equation*}
$$

and $g^{\prime}(F)=d g(F) / d F$. Differentiation of Eq. (69) with respect to F gives

$$
\begin{align*}
g^{\prime}(F)= & \dot{\phi}_{p}^{\prime}(F)\left\{1-\left[\frac{2 \phi+\phi_{s}-\phi_{d}(F)}{\phi_{s}+\phi_{d}(F)}\right]^{2}\right\} \\
& +\frac{4 \dot{\phi}_{p}(F) \phi_{d}^{\prime}(F)}{\left[\phi_{s}+\phi_{d}(F)\right]^{3}}\left(\phi+\phi_{s}\right)\left[2 \phi+\phi_{s}-\phi_{d}(F)\right] \tag{70}
\end{align*}
$$

where $\dot{\phi}_{p}^{\prime}(F)=d \dot{\phi}_{p}(F) / d F$ and $\phi_{d}^{\prime}(F)=d \phi_{d}(F) / d F$. The expressions for $\dot{\phi}_{p}^{\prime}(F)$ and $\phi_{d}^{\prime}(F)$ are given in Report 3, pp. 19-20. See also p. 148.

The time increment, Δ_{t}, is chosen to be a small fraction of the switching time, $\tau_{s} ; e . g ., \Delta t=0.002 \tau_{s}$. Thus, for a given waveform of the $\dot{\phi}(t)$ drive, we need to estimate τ_{s}.

For given initial values of $\dot{\phi}$ and ϕ, the initial value of F, F_{z}, may be solved for explicitly using Eq. (66). This solution will depend on the waveform of $\dot{\phi}(t)$.
3. Examples of $\dot{\phi}(t)$ Drives

Rectangular and sinusoidal $\dot{\phi}(t)$ drive pulses of width T and amplitude $\dot{\phi}_{m}$ are considered as examples. Assuming that initially $\phi=-\phi_{r}$ and finally $\phi=\phi_{r}, \phi(t), \tau_{s}$, and the initial F are calculated for each case as follows.
a. Rectangular $\dot{\phi}(t)$

A rectangular $\dot{\phi}(t)$ pulse is defined as

$$
\dot{\phi}(t)=\left\{\begin{array}{ll}
\dot{\phi}_{m} & \text { if } 0<t<T \tag{7la}\\
0 & \text { otherwise }
\end{array} .\right.
$$

Hence,

$$
\begin{equation*}
\phi(t)=-\phi_{r}+\dot{\phi}_{m} t \tag{72a}
\end{equation*}
$$

Since the core may reach saturation at $t<T$,

$$
\tau_{s}= \begin{cases}2 \phi_{r} / \dot{\phi}_{m} & \text { if } \dot{\phi}_{m} \geq 2 \phi_{r} / T \tag{73a}\\ T & \text { otherwise }\end{cases}
$$

Initially $\phi=-\phi_{r}$, and as $\dot{\phi}$ jumps from zero to $\dot{\phi}_{m}, F$ jumps from zero to a value high enough to assume that $\phi_{d}(F) \approx \phi_{s}$. The initial value of $\dot{\phi}_{p}(F)$ in Eq. (66) is, therefore, $\dot{\phi}_{p}=\dot{\phi}_{m} /\left[1-\left(\phi_{r} / \phi_{s}\right)^{2}\right]$. Equating this value to each of the expressions for $\dot{\phi}_{p}(F)$ in Eq . (67), the initial value of F is found to be

$$
F_{z}= \begin{cases}F_{0}^{\prime \prime}+\left\{\frac{\dot{\phi}_{m}}{\lambda\left[1-\left(\phi_{r} / \phi_{s}\right)^{2}\right]}\right\}^{\frac{1}{2}} & \text { if } 0<\dot{\phi}_{m} \leq \rho_{p}\left(F_{B}-F_{0}\right)\left[1-\left(\phi_{r} / \phi_{s}\right)^{2}\right] \tag{74a}\\ F_{0}+\frac{\dot{\phi}_{m}}{\rho_{p}\left[1-\left(\phi_{r} / \phi_{s}\right)^{2}\right]} & \text { otherwise. }\end{cases}
$$

b. Sinusoidal $\dot{\phi}(t)$

A sinusoidal $\dot{\phi}(t)$ pulse is defined as

$$
\dot{\phi}(t)= \begin{cases}\dot{\phi}_{m} \sin (\omega t) & \text { if } 0 \leq t \leq T \tag{71b}\\ 0 & \text { otherwise }\end{cases}
$$

where $\omega=\pi / T$. Time integration of Eq. (71b) gives

$$
\begin{equation*}
\psi(t)=-\phi_{r}+\frac{\dot{\phi}_{m}}{\omega}(1-\cos \omega t) \tag{72b}
\end{equation*}
$$

Since the core may saturate at $t<T$,

$$
\tau_{s}= \begin{cases}\frac{1}{\omega} \cos ^{-1}\left[1-\left(2 \phi_{r} \omega / \dot{\phi}_{m}\right)\right] & \text { if } \dot{\phi}_{m}>\phi_{r} \omega \tag{73b}\\ T & \text { otherwise }\end{cases}
$$

Initially, $\phi=-\phi_{r}$ and $\dot{\phi}=0$. Following Eqs. (66) and (67), the initial value of F is simply

$$
\begin{equation*}
F_{z}=F_{0}^{\prime \prime} . \tag{74b}
\end{equation*}
$$

4. Computation of $F(t)$ for Given $\dot{\phi}(t)$

a. Computer Program

A computer program for computation of $F(t)$ for a given $\dot{\phi}(t)$ waveform was written on the basis of Eqs. (66) through (74). The program was written in the Burroughs extended version of ALGOL-60, and is given in Appendix A for the case of sinusoidal $\dot{\phi}(t)$. The outline of this program is given as follows:
(1) Declare global identifiers of core parameters, circuit parameters, time variables, miscellaneous, input-output lists and formats, and PROCEDUREs.
(2) Read in the core parameters.
(3) For a given $\dot{\phi}(t)$ drive:
(a) Declare $\dot{\phi}(t)$ and $\phi(t)$ PROCEDUREs, Eqs. (71) and (72).
(b) Set $\dot{\phi}_{m}$ and T values; compute $\omega=\pi / T$ if $\dot{\phi}(t)=\dot{\phi}_{m} \sin \left(\omega_{t}\right)$.
(c) Compute τ_{s} and F_{z}, Eqs. (73) and (74).
(4) Set $\Delta_{t}=0.002 \tau_{s}$.
(5) Print the core parameters, the $\dot{\phi}(t)$ parameters, and output heading.
(6) Set and print the initial conditions of the time variables.
(7) For every Δ_{t} during flux-switching time, compute the following:
$t=t_{-1}+\Delta_{t} ; \dot{\phi}[$ call $\dot{\phi}(t)$ PROCEDURE $] ;$
ϕ [call $\phi(t)$ PROCEDURE]; Approximate F,
$A F=2 F_{-1}+F_{-2} ; F\left[\right.$ call MMF $\left(\dot{\phi}, \phi, A F, \phi_{d}\right)$ PROCEDURE $] ;$
reset F_{-2} to F_{-1} and F_{-1} to F.
Flux switching terminates ($\dot{\phi}=0$) if $\phi>p_{d}$ or $F>5 F_{0}^{\prime \prime}$.
(8) Print output ($t, \dot{\phi}, \phi, F, \phi_{d}$, and the number of iterations) every, say, $10 t h \triangle t$.

The outline of the PROCEDURE MMF ($\dot{\phi}, \phi, A F, \phi_{d}$) which is called in Step (7), is as follows:
(a) Set F to Approximate $F, A F$.
(b) Compute the following in a loop until convergence is achieved: ϕ_{d} and ϕ_{d}^{\prime} [Report 3, Eqs. (30) through (35)]; $\dot{\phi}_{p}$ and $\dot{\phi}_{p}^{\prime}$ [Report 3, Eqs. (36) through (39)]; $g(F)$ [Eq. (69)]; $g^{\prime}(F)[E q .(70)] ; F[E q .(68)]$. Repeat the loop if $\left|\mathrm{g}(F) / \mathrm{g}^{\prime}(F)\right|>|0.0001 F|$.
b. Results

Computed $F(t)$ waveforms for rectangular and sinusoidal $\dot{\phi}(t)$ drive pulses, both of amplitude $\dot{\phi}_{m}=0.05 \mathrm{~V} / \mathrm{t}$ and of maximum duration $T=3.0 \mu \mathrm{~s}$, are shown in Fig. 15. The assumed core was Core E-6, and the core parameters for inelastic switching used in the computation included $\phi_{r}, \phi_{s}, H_{a}, H_{q}, H_{n}, \lambda, F_{0}^{\prime \prime}, \nu, \rho_{p}, F_{0}$, and F_{B}. The values of these parameters are given on p. 36 .

c. Discussion

The computed $F(t)$ waveforms in Fig. 15 are very similar in shape to typical experimental $F(t)$ corresponding to rectangular and sinusoidal $\dot{\phi}(t)$ drives. However, it would be more convincing to compare these computed results with $F(t)$ waveforms observed on Core E-6 itself. Because of other commitments, such an experimental verification was deferred to the future.

An additional computer program was written for computation of flux switching in a core driven by a voltage source in series with a

FIG. 15 COMPUTED $F(t)$ WAVEFORMS OF CORE E-6 FOR TWO GIVEN $\dot{\phi}(t)$ DRIVES

variable internal resistance, R_{i}. This drive is an intermediate case between voltage and current sources. Here, again, the switching models were found to be valid.

C. Flux Switching From a Partially Set State

1. Introduction

The properties of flux switching from a partially demagnetized state (i.e., one where the initial flux level is not $\pm \phi_{r}$) are historydependent: they depend not only upon the initial flux level, but also upon how that flux level was attained. Considerable data have been obtained ${ }^{3,19,20}$ for the special case in which the core is partially demagnetized by a rectangular PARTIAL-SET current pulse of amplitude $F_{p s}$ and duration $T_{p s}$. These data clearly demonstrate that there are several very significant effects [e.g., reduction of the threshold and slope of the $\dot{\phi}_{p}(F)$ curves, and anomalous variation of the peaking time, $\left.t_{p}\right]$ that have not yet been satisfactorily explained on the basis of the physics of magnetization reversal. Most of these data were taken with a large time duration, T_{b} (relative to the relaxation of the magnetization, e.g., $\gg 1 \mu s)$, between the PARTIAL-SET pulse and the subsequent TEST pulse used to determine the resulting switching properties.

The limited data for $T_{b} \ll 1 \mu s$ indicated, but did not conclusively prove, that the anomalous partial-setting effects result from the partial setting itself and not from the cessation of switching (e.g., relaxation effects) during the T_{b} period. It is the primary purpose of this section to demonstrate that, indeed, the anomalous effects of partial setting exist also for $T_{b}=0$. In the previous experiments a small T_{b} was achieved by bringing the two pulses together. This required that the rise of the TEST pulse be adjusted to match the fall of the PARTIALSET pulse, which is a troublesome task. Another difficulty was the measurement of the partially set flux level, $\phi_{p s}$. The value of $\phi_{p s}$ was measured for large T_{b}, after which T_{b} was reduced to zero without adjusting the PARTIAL-SET pulse to keep $\phi_{p s}$ precisely constant. Thus it could not be determined how much of the effect of reducing T_{b} to zero was due to the small increase in $\phi_{p s}$, and how much was due to the elimination of the T_{b} period. The experiments to be described here achieved a $T_{b}=0$ condition by superimposing a shorter positive or negative pulse on top of the latter part of a longer pulse. The value
of F of the TEST pulse is thus the algebraic sum of these two pulse amplitudes, and $T_{p s}$ is the time duration between the beginnings of these two pulses. In addition, the value of $\phi_{p s}$ was measured at the beginning of the TEST pulse to eliminate the ambiguity in $\phi_{p s}$. A secondary purpose of these experiments was to include measurements of peaking time, t_{p}. It was noted in Refs. 3, 19, and 20 that t_{p} was affected in an anomalous manner by partial setting. However, only very limited information was obtained on how t_{p} varied with F and $T_{p s}$; furthermore, this information was limited to $T_{b} \gg 1 \mu \mathrm{~s}$ only.

No attempt will be made here to develop switching models to describe these experimental results because there are still too many unresolved problems. Instead, the experimental data will be given in a form which can be readily used for any future attempts at modeling.

2. Experiment

The experiments were performed on the same polycrystalline ferrite core that had been studied for $T_{b} \gg 1 \mu \mathrm{~s}$ so that direct comparisons could be made. It was desirable to use a thin-ring core ($O D / I D \approx 1$) so that complicating geometric effects would not be introduced. Core E-6 (see p. 36) was thus chosen. Since only one core was tested, the results cannot be considered to be general, but only a measure of one possible set of partial-setting effects.

The experiments consisted of clearing the core to a reproducible reference state, $-\phi_{r}$, and then applying the two superimposed pulses which make up the PARTIAL-SET pulse and the TEST pulse. See Fig. 16. A particular partially set flux level $\phi_{p s}$ was established by adjusting $F_{p s}$ for the desired $T_{p s}$ value. Then, with $\phi_{p s}, F_{p s}$, and $T_{p s}$ held fixed, $F^{p s}$ was varied and $\dot{\phi}_{p}$ and t_{p} were measured for each F value. Oscillograms of $\dot{\phi}(t)$ were taken for several F values. These measurements were then repeated for different $T_{p s}$ and $F_{p s}$ values. Only one $\phi_{p s}$ value was studied, $\phi_{p s}=-0.46 \phi_{r}$. This corresponds to the value used for much of the data of Ref. 19 ($T_{b} \gg 1 \mu \mathrm{~s}$) to be used for comparison. Three $T_{p s}$ values were studied, $0.5 \mu \mathrm{~s}, 1.0 \mu \mathrm{~s}$, and $10 \mu \mathrm{~s}$. For much smaller $T_{p s}$ values, $\dot{\phi}_{p}$ and t_{p} could not be determined because t_{p} became very small or nonexistent and the tail of the initial spike increased somewhat (see Fig. 6, p. 16, Ref. 19), thus obscuring the peak in $\dot{\phi}(t)$.

FIG. 16 PULSE SEQUENCE FOR PARTIAL-SETTING EXPERIMENT

The core was mounted coaxially in a section of 50Ω transmission line so that pulses with short rise times could be applied. The core holder used was the same as that described on $p .85$ of Report 3 except that the four-conductor one-turn winding was changed to a ten-conductor one-turn winding, and the number of turns of the sense winding was increased from five to ten. The integrator used for flux measurement was that described on pp. 86 and 87 of Report 3. The integrated $\dot{\phi}(t)$ waveform was observed on the oscilloscope and the flux change produced by the PARTIAL-SET pulse was measured using a voltage reference and a chopper.

The oscilloscope had a response time of 15 ns . The response of the oscilloscope was checked for overshoot and rise time by using a mercury relay pulser with a rise time less than 1 ns. The horizontal calibration factors for each horizontal scale of the oscilloscope were determined with a time-mark generator. The negative CLEAR pulses were supplied from a vacuum-tube pulser having a 0.1μ s rise time. The positive CLEAR pulse and the PARTIAL-SET pulse were supplied from transistor pulsers
having 50 ns rise times. The TEST pulse was made up by adding or subtracting a pulse with a 15 ns rise time to the latter part of the PARTIAL-SET pulse (see Fig. 16).
3. Results and Discussion
a. $\underline{\dot{\phi}_{p}(F)}$

The $\dot{\phi}_{p}(F)$ curves with $T_{p s}$ as a parameter are given in Fig. 17. The curve for no partial setting is included for reference. These $\dot{\phi}_{p}(F)$ curves are very similar to the ones previously obtained for $T_{b} \gg 1 \mu \mathrm{~s} .{ }^{19}$ The two major effects of partial setting seen in Fig. 17 are the reduction in both λ and $F_{0}^{\prime \prime}$, i.e., the reduction in the slopes and thresholds of the $\dot{f}_{p}(F)$ curves. The reduction in λ tends to decrease the switching speed, and therefore to decrease $\dot{\phi}_{p}$, whereas the reduction in $F_{0}^{\prime \prime}$ tends to increase $\dot{\phi}_{p}$. Since $T_{b}=0$ for these curves, $\dot{\phi}_{\rho}$ is unchanged for $F=F_{p s}$ because this corresponds to the no-partial-setting case. Therefore, each $\dot{\phi}_{p}(F)$ curve must cross the no-partial-setting curve at $F=F_{p s}$. This is not the case for $T_{b}>0$.

It can be seen in Fig. 17 that λ and ν are not much affected by changes in $T_{p s}$, whereas $F_{0}^{\prime \prime}$ is significantly reduced as $T_{p s}$ is decreased. This was also the case for $T_{b} \gg 1 \mu \mathrm{~s}$, as shown in Ref. 19. One curve ($T_{p s}=1.0 \mu \mathrm{~s}$) for $T_{b}=50 \mu \mathrm{~s}$ is included in Fig. 17 to clearly illustrate the effect of reducing T_{b} to zero. (The general effect is nearly the same for $T_{p s}=0.5 \mu$ s and $10 \mu \mathrm{~s}$.) In every region of F where data points were taken, $\dot{\phi}_{p}$ was increased by reducing T_{b} to zero. This means that the major effect of reducing T_{b} to zero (with $\phi_{p s}$ held constant) is to increase λ and not to decrease $F_{0}^{\prime \prime}$. This clarifies the uncertainty expressed on p. 124 of Report 3 where it was stated that reducing T_{b}, with $\phi_{p s}$ actually maintained constant, must result in either a reduction of $F_{0}^{\prime \prime}$, or an increase in λ, or both. Apparently, the reduction in $F_{0}^{\prime \prime}$ when T_{b} is reduced (see p. 122 of Report 3) is due to the small decrease in $\phi_{p s}$. The values of $F_{0}^{\prime \prime}, \lambda$, and v are plotted $v s . T_{p s}$ in Fig. 18. Corresponding values from Ref. 19 for $T_{b}=50 \mu$ s are also included for comparison. Note that λ and ν are more nearly constant for $T_{b}=0$ than for $T_{b}=50 \mu \mathrm{~s}$. Thus, the curvature in λ and $\nu v s . T_{p s}$ for $T_{b}=50 \mu$ s must be due mostly to relaxation effects following the PARTIAL-SET pulse. Figure 18 shows that λ for $T_{b}=0$ is consistently above the values for $T_{b}=50 \mu \mathrm{~s}$, whereas $F_{0}^{\prime \prime}$ is

FIG. $17 \begin{aligned} & \dot{\phi}_{p}(F) \text { WITH } T_{p s} \text { AS A PARAMETER } \\ & \left(\phi_{p s}=-0.46 \phi_{r} ; T_{b}=0 ; \text { Core E-6) }\right.\end{aligned}$

FIG. 18 PLOTS OF $F_{0}^{\prime \prime}, \lambda$, AND ν vs. Log $T_{p s}$ FOR $T_{b}=0$ AND FOR $T_{b} \approx 50 \mu \mathrm{~s}$ ($\phi_{\text {ps }}=-0.46 \phi_{r} ;$ Core E-6)
not much different for the two extreme values of T_{b}. The value of $F_{0}^{\prime \prime}$ at $T_{p s}=0.5 \mu \mathrm{~s}$ has large error bars because the $\dot{\phi}_{p}(F)$ data points could not be taken to very low F values. The difference indicated in $F_{0}^{\prime \prime}$ at $T_{p s}=0.5 \mu \mathrm{~s}$, which is comparable to the error bars, results in the two $\dot{\phi}_{p}(F)$ curves for $T_{p s}=0.5 \mu$ s crossing below any data points, e.g., at about $F \approx 0.9 \mathrm{At}$.

Shahan and Gutwin ${ }^{2 l}$ studied the effects of T_{b} on the threshold of the $\phi(F)$ curve of a copper-manganese ferrite. Their results showed a large asymptotic decrease in threshold as T_{b} was reduced to 10 ns. This apparent disagreement in the effect of T_{b} may be due to the difference between the types of measured threshold [the threshold of the static $\phi(F)$ curves $v s$. the threshold of the $\dot{\phi}_{p}(F)$ curves]. The fact that different ferrite materials were used may also have contributed to this apparent disagreement. Further investigation is needed on this point. It is not surprising that the large differences in $F_{0}^{\prime \prime}, \lambda$, and ν occur for small values of $T_{p s}$ because these values correspond to large $F_{p s}$ values which are generally associated with the generation of many domain walls. The large number of domain walls will probably have a large relaxation effect following the PARTIAL-SET pulse. If $T_{b}=0$, then these relaxation effects cannot occur.

The major conclusion to be drawn from these results is that for $T_{b}=0$, just as for $T_{b} \gg 1 \mu s$, large effects are produced by partial setting. Thus, the source of these effects cannot be explained by any kind of relaxation occurring after the PARTIAL-SET pulse. One might have attributed these partial-setting effects to the relaxation of noncoherent switching to a different configuration at the termination of the PARTIAL-SET pulse. The above results rule out this explanation. The explanation for these partial setting effects is not likely to be associated with rotational switching anyway, since these effects occur at very low H values for which switching is generally assumed to be by domain-wall motion.
b. $\quad t_{p}^{-1}(F)$

The measurement of t_{p} has been included because the data of Refs. 3,19 , and 20 shows that t_{p} varied drastically with $T_{p s}$, even though F and $\phi_{p s}$ were kept constant. However, these references included only limited data on the variations of t_{p}, and for $T_{b} \gg 1 \mu \mathrm{~s}$ only.

Curves of $t_{p}^{-1}(F)$ with $T_{p s}$ as a parameter and $T_{b}=0$ are shown in Fig. 19. The no-partial-setting curve is included for comparison. In order to interpret these curves with reference to the parabolic model, consider Eqs. (66) and (67). If these equations are solved for a step $F(t)$, one obtains for $F_{0}^{\prime \prime} \leq F \leq F_{B}$

$$
\begin{equation*}
\dot{\phi}(t)=\lambda\left(F-F_{0}^{\prime \prime}\right)^{\nu} \operatorname{sech}^{2}\left\{\frac{2 \lambda\left(F-F_{0}^{\prime \prime}\right)^{\nu} t}{\left(\phi_{s}+\phi_{d}\right)}-\tanh ^{-1}\left[\frac{-2 \phi_{p s}-\phi_{s}+\phi_{d}}{\phi_{s}+\phi_{d}}\right]\right\} . \tag{75}
\end{equation*}
$$

From this equation we can obtain $t_{p}^{-1}(F)$ by equating the argument of the sech to zero:

$$
\begin{equation*}
t_{p}^{-1}=\frac{\lambda\left(F-F_{0}^{\prime \prime}\right)^{\nu}}{\frac{1}{2}\left(\phi_{s}+\phi_{d}\right) \tanh ^{-1}\left[\frac{-2 \phi_{p s}-\phi_{s}+\phi_{d}}{\phi_{s}+\phi_{d}}\right]} \tag{76}
\end{equation*}
$$

We see from Eq. (76) that $t_{p}^{-1}(F)$ is proportional to $\dot{\phi}_{p}(F)$ by a factor equal to the reciprocal of the denominator. For $F \gtrsim 1.5 F_{0}^{\prime \prime}, \phi_{d}$ is roughly constant (i.e., independent of F). Thus, for $F \gtrsim 1.5 F_{0}^{\prime \prime}$ and a constant $\phi_{p s}$, the denominator of Eq . (76) is roughly constant. As $T_{p s}$ is decreased, the numerator of $E q$. (76) varies in the same way as $\dot{\phi}_{p}(F)$, i.e., the slope is nearly constant and the threshold decreases. Roughly, these are the effects observed in Fig. 19; however, the slope is not as constant as for the $\dot{\phi}_{p}(F)$ curves (see Fig. 17), and the threshold decreases as $T_{p s}$ increases far more for $t_{p}^{-1}(F)$ than for $\dot{\phi}_{p}(F)$. This demonstrates that this switching model is no longer valid for switching from a partially set state. One possible solution to consider is the introduction of a new parameter, ϕ_{c}, into the model, as was done in Refs. 19 and 20. Equation (93) on p. 95 of Report 3 gives $\dot{\phi}(t)$ for this modified parabolic model. Solution of this equation for $t_{p}^{-1}(F)$ gives

$$
\begin{equation*}
t_{p}^{-1}=\frac{\lambda\left(F-F_{0}^{\prime \prime}\right)^{\nu}}{\left[\phi_{c}+\frac{1}{2}\left(\phi_{s}+\phi_{d}\right)\right] \tanh ^{-1}\left[\frac{-2 \phi_{p s}-2 \phi_{c}-\phi_{s}+\phi_{d}}{2 \phi_{c}+\phi_{s}+\phi_{d}}\right]} \tag{77}
\end{equation*}
$$

FIG. 19 PLOT OF $t_{p}^{-1}(F)$ WITH $T_{p s}$ AS A PARAMETER $\left(\phi_{p s}=-0.46^{p}{ }_{\phi}{ }^{i} T_{b}=0 ;\right.$ Core $\left.E-6\right)$

If this modified model describes $t_{p}^{-1}(F)$ of Fig. 19 properly, then ϕ_{c} should be a function of $T_{p s}$, because $T_{p s}$ does not appear in Eq. (77). More investigation needs to be done before it can be determined whether the ϕ_{c} modification is valid for the modeling of switching from a partially set state, or whether some other modification will be necessary.
c. Waveforms of $\dot{\phi}(t)$

The shape of the $\dot{\phi}(t)$ waveform has been compared to a sech ${ }^{2}$ function of time in order to determine whether the basic part of the parabolic model, the parabolic function $\eta(\phi)$, is valid for positive switching from a partially set state. Comparisons made in Report 3 (p. 96) and in Ref. 19 (p. 17) for $T_{b} \gg 1 \mu \mathrm{~s}$ indicated that the parabolic $\eta(\phi)$ was still valid for positive F [i.e., $\dot{\phi}(t)$ has the shape of a sech ${ }^{2}$ function of time for a step- F drive]. This was now repeated for $T_{b}=0$. It was found that the $\dot{\phi}(t)$ is still sech^{2} in shape. Two comparisons are shown in Fig. 20, one for $F=2$ At and $T_{p s}=10 \mu \mathrm{~s}$ and the other for $F=3 \mathrm{At}$ and $T_{p s}=0.5 \mu \mathrm{~s}$. Since the shapes of the $\dot{\phi}(t)$ waveforms are in good agreement with a sech ${ }^{2}$ function of time, it might be possible to modify the parabolic model so that it can describe switching from a partially set state.

A general idea of the kind of waveforms obtained for switching from a partially set state can be obtained from the family of curves in Fig. 21. The left part of this oscillogram shows $\dot{\phi}(t)$ during the PARTIAL-SET pulse. The remaining curves show $\dot{\phi}(t)$ during the TEST pulse for various F values of the TEST pulse. The area of the left part of $\dot{\phi}(t)$ corresponds to $\Delta \phi_{p s}$ which is constant ($\Delta \phi_{p s}=0.54 \phi_{r}$) for this oscillogram. Note that for low F values the peak becomes obscured. It is for this reason that the curves in Figs. 17 and 19 are truncated at the low-F end.

A comparison of two $\dot{\phi}(t)$ curves for different $T_{p s}$ values is shown in Fig. 22 for fixed values of F and $\phi_{p s}$. The results are very similar to Fig. $34(a)$, p. 100 in Report 3 and Fig. 6, p. 16, in Ref. 19, both taken with $T_{b} \gg 1 \mu \mathrm{~s}$. The switching for $T_{p s}=0.5 \mu \mathrm{~s}$ is nearly undisturbed by the TEST pulse because F is nearly equal to $F_{p s}$. Note that $\dot{\phi}(t)$ for $T_{p s}=10 \mu$ s is very low during the PARTIAL-SET pulse because $F_{p s}$ is so low (only the last part of this switching is included

$$
\begin{aligned}
T_{p s} & =10 \mu \mathrm{~s} \\
F_{p s} & =1.02 \mathrm{At} \\
& =2.0 \Delta t
\end{aligned}
$$

$T_{p s}=0.5 \mu \mathrm{~s}$
$F_{p s}=2.02 \Delta t$
$F=3.0 \Delta t$

FIG. 20 COMPARISON OF $\dot{\phi}(\dagger)$ WITH A sech 2 FUNCTION OF TIME $\left(\phi_{p s}=-0.46 \phi_{r} ;\right.$ Core $\left.E-6\right)$

FIG. 21 FAMILY OF $\dot{\phi}(t)$ WAVEFORMS WITH F AS A PARAMETER $\left(\phi_{\mathrm{ps}}=-0.46 \phi_{\mathrm{r}} ; \mathrm{T}_{\mathrm{ps}}=1.0 \mu \mathrm{~s} ; \mathrm{F}_{\mathrm{ps}}=2.02 \mathrm{At} ;\right.$ Core $\mathrm{E}-6$; in order of decreasing $\dot{\phi}_{p^{\prime}}^{r^{\prime}} F^{p s}=2.22,1.84,1^{s} .70,1.59,1.47,1.33,0.95$, and 0.35 At)

FIG. 22 COMPARISON OF $\dot{\phi}(\dagger)$ WAVEFORMS FOR TWO $T_{p s}$ VALUES $\left(F=2.00 A t ; \phi_{p s}=-0.46 \phi_{r} ;\right.$ Core $\left.E-6\right)$
in the figure). The important result of this figure is that even though F and $\phi_{p s}$ are constant, $\dot{\phi}_{p}$ and t_{p} change significantly as $T_{p s}$ varies. Similar comparisons for higher and lower F values are given in Fig. 23. The curves are not superimposed in this figure but are shown side-by-side for easy comparison. Note that for $F=1.2$ At and $T_{p s}=0.5 \mu \mathrm{~s}$ no $\dot{\phi}_{p}$ is obtained during either the PARTIAL-SET or the TEST pulses, whereas for $F=1.2$ At and $T_{p s}=10 \mu$ s a peak in $\dot{\phi}$ is obtained during both pulses. A peak is obtained during the PARTIAL-SET pulse for $T_{p s}=10 \mu \mathrm{~s}$ even though $\phi_{p s}<0$ because $F_{p s}$ is low enough to result in a ϕ_{d} considerably less than ϕ_{s}. This corresponds to a parabolic $\dot{\phi}(\phi)$ with a peak at $\phi<0$. Notice that t_{p} is much smaller for $T_{p s}=0.5 \mu \mathrm{~s}$ than for $10 \mu \mathrm{~s}$ for both $F=3.0$ At and $F=1.2$ At $\left[\right.$ For $F=1.2$ At and $T_{p s}=0.5 \mu \mathrm{~s}$, $\dot{\phi}_{p}$ does not appear toexist; however, t_{p} must certainlybe less than the $1.8 \mu \mathrm{~s}$ value observed at $\left.T_{p s}=10 \mu \mathrm{~s}.\right]$ This is consistent with the curves of Fig. 19, where the $T_{p s}=0.5 \mu$ curve is well above the $10 \mu \mathrm{~s}$ curve.

All of the data discussed so far havebeen for $\phi_{p s}=-0.46 \phi_{r}$. One exception to this will now be given. It was observed during the course of the experiments that if $T_{p s}$ is increased to allow complete switching to occur during the PARTIAL-SET pulse, additional switching can still be obtained during the TEST pulse if $F>F_{p s}$. This is shown in Fig. 24, where $F_{p s}=2.0$ At and $F=3.9$ At. This additional switching during the TEST pulse is not surprising if it is recalled that ϕ_{d} is an increasing function of F even if F is well above the F threshold (see Fig. 12, p. 37 of Report 3). The interesting factor in this oscillogram is the shape of the $\dot{\phi}(t)$ during the TEST pulse. It is very similar to the initial spike and decaying tail obtained for switching from $\phi=-\phi_{r}$ for F below the threshold [see Fig. $10(b), p .27$, Report 4]. In the situation of Fig. 24 no domain-wall collisions are likely to occur during the TEST pulse because most of the ferrite grains are already switched. Thus we can expect to have a certain number of domain walls moving at first, and then, as some of these terminate because of energy hills with steep slopes or because of completion of local switching, the number of moving walls gradually decreases. This accounts for the decreasing $\dot{\phi}$ in a manner very similar to the explanation given on pp. ll and 12 of Report 3 for switching from $-\phi_{r}$. Thus, that physical explanation is substantiated.

values and two $T_{p s}$ values

FIG. 24 WAVEFORM OF $\dot{\phi}(t)$ FOR $\phi_{p s} \approx+\phi_{r}$ ($F_{p s}=2.0 \mathrm{At} ; F=3.9 \mathrm{At} ;$ Core $E-6$)

4. Conclusions

The major conclusion to be drawn from these partial-setting experiments is that the physical mechanisms which are responsible for the observed effects of partial setting do not originate from any relaxation effects following the PARTIAL-SET pulse. The values of F_{0}^{n}, λ, and ν for $T_{b}=0$ are nearly the same as for $T_{b} \gg 1 \mu \mathrm{~s}$, if $T_{p s} \gtrsim 1 \mu \mathrm{~s}$. Below $T_{p s}=1 \mu s$, the effect of varying T_{b} becomes significant. The peaking time t_{p} is very sensitive to the changes in $T_{p s}$. This variation in t_{p} cannot be accounted for in the present form of the parabolic model. More investigation needs to be done before the switching from partially set states can be described by switching models. However, considerable data are given which should be useful for future work in developing appropriate models for switching from partially set states and for explaining the physical mechanisms that are responsible for the effects of partial setting.

II COMPUTER-AIDED ANALYSIS OF A CORE-DIODE-TRANSISTOR BINARY COUNTER

A. Introduction

The operation of core-diode-transistor binary counter, to be employed in a future Jet Propulsion Laboratory spacecraft, was described in Report 4 (pp. 49-56). The first of four modes of operation was analyzed numerically (Report 4, pp. 56-61), and the computation was performed on a digital computer (Report 4, pp. 61-68; 153-166). The results were then compared with experimental waveforms of the currents and voltages involved in the circuit (Report 4, pp. 65-66).

As pointed out in Report 4, the flux switching in Modes II, III, and IV is slower than the flux switching in Mode I by about a factor of four. To a very rough approximation, Modes II-IV may then be analyzed manually by assuming that the net MMF of each core follows its static $\phi(F)$ curve (see Report 4, p. 56). However, the error involved in such an approximation is considerably larger than the error involved in a computer analysis that takes into account the nonlinearities of the circuit elements. The success or failure of the binary counter's performance is determined by its transient behavior, i.e., by the waveforms of the time variable. Determination of such waveforms requires the accuracy of a computer analysis.

In order to ensure that there will be no circuit failure within the specified temperature range $\left(-10^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ and supply-voltage range $(28 \pm 5.6 \mathrm{~V})$, worst-case analysis of the circuit is required. This requirement stems from the fact that although it is impractical to intentionally build a circuit using components with worst parameter values, the probability that this will actually happen is nonzero. Thus, the objectives in this section are twofold:
(1) To extend the computer analysis of Mode I to all four modes of operation
(2) To perform a worst-case analysis of the binary counter for design verification.

The circuit operation was described in Report 4. However, for the convenience of the reader and since the description in Report 4 is incomplete, we shall describe this operation by referring to the first three stages of the binary counter, before extending the computer analysis to all the modes of operation.
B. Binary-Counter Operation

1. Circuit

The circuit diagram of the first three stages of a core-diodetransistor binary counter is shown in Fig. 25. (This circuit diagram and the boundaries between adjacent stages are slightly different from the ones given in Report 4, Fig. 17.) Each stage is composed of Resistances R_{1} and R_{2} (R_{3} and R_{4} are inherent winding resistances), Inductor L, Diodes d_{1} and d_{2}, an npn Transistor T, and Cores 1 and 2 . A subscript in parentheses attached to each component designates the corresponding stage number. The unpaired Core D, Diode $d_{1(0)}$, Transistor $T_{(0)}$, Resistance $R_{1}(0)$, and Inductor $L_{(0)}$ are part of a monostable COUNT-input driver (most of which is not shown in Fig. 25), which feeds the input signal to the first stage of the binary counter.

The supply voltage, V_{s}, is applied in parallel to all stages and to the monostable input circuit. Referring to Stage (2) as a typical stage, the MMF drives applied to Core 1 are $N_{s 1} i_{s}, N_{B 1} i_{d}, N_{c 1}{ }^{i}{ }_{c}$, and $-N_{C L}{ }^{i}{ }_{C L}$, and the MMF drives applied to Core 2 are $N_{s 2} i_{s},-N_{B 2} i_{d}$, and $-N_{c 2} i_{c}$. Currents i_{L} and i_{s} rise rapidly to peak values and then decay nearly exponentially; Currents i_{c} and $i_{C L}$ rise nearly exponentially from zero.

2. Modes of Operation

The circuit behavior may be examined by dividing the operation of each counter stage during a complete cycle into four modes, Modes I-IV. In every stage, except Stage (1), Modes II and IV occur twice in a row. The drive currents and the inelastic flux changes during the four modes of normal operation of each stage are shown in Fig. 26, and are summarized briefly as follows by refering to Stage (2). (A more detailed description is given in Sec. II-B-3, pp. 71-73.)

FIG. 25 FIRST THREE STAGES OF A CORE-DIODE-TRANSISTOR BINARY COUNTER

FIG. 26 DRIVE CURRENTS AND FLUX CHANGES IN CORES 1 AND 2 DURING FOUR MODES OF NORMAL OPERATION

Mode I--As Transistor $T_{(1)}$ turns off, Current i_{L} builds up to a peak value I_{L}, from which it decays essentially exponentially. The portion i_{s} of i_{L} sets Cores 1 and 2 simultaneously.

Mode 1 - 1 - The exponentially rising and falling current $i_{C L}$ clears Core 1. The induced current i_{d} may unset Core 2 by a small amount of $\Delta \phi$.

Mode II-2 (not shown in Fig. 26) -Same as Mode II-1. If clearing of Core 1 during Mode II-1 is complete, Mode II-2 has no effect.

Mode III-Four submodes are distinguished:
A-Cores 1 and 2 are both switched positively by i_{s} (as in
Mode I), while Transistor $T_{(2)}$ is cut off, until ϕ_{2} approaches saturation, and the base current, induced by $N_{B 1} \dot{\phi}_{1}-N_{B 2} \dot{\phi}_{2}$, switches the transistor via the active region into saturation.
B —The base current due to $N_{B 1} \dot{\phi}_{1}-N_{B 2} \dot{\phi}_{2}$ maintains Transistor $T_{(2)}$ in saturation, and Core 1 is set by the drives due to both i_{s} and i_{c} while Core 2 remains in saturation.
C-As ϕ_{1} approaches positive saturation, ϕ_{2} departs from positive saturation and there is a drop in $N_{B 1} \dot{\phi}_{1}-N_{B 2} \dot{\phi}_{2}$. For low V_{s} within the range of operation, the base current may become negative ($i_{d}>0$); as a result, Transistor $T_{(2)}$ may
shift from the saturation region (emitter and collector forward-biased) to the active region (emitter forwardbiased; collector reverse-biased).
D-The excess of $N_{c 2} i_{c}$ over $N_{s 2} i_{s}$ is large enough to clear Core 2. The induced positive base current keeps Transistor $T_{(2)}$ in the saturation region. As ϕ_{2} approaches negative saturation, Transistor $T_{(2)}$ switches from saturation to the active region and from there to the cutoff region. [While Transistor $T_{(2)}$ is being cut off, i_{L} corresponding to the following stage rises to its peak value and begins to set Cores $l_{(3)}$ and $2(3)$.]

Mode $I V-1$-The exponentially rising and falling $i_{C L}$ clears Core 1. Core 2 remains in negative saturation.

Mode IV-2 (Not shown in Fig. 26) -Same as Mode IV-1. If clearing of Core 1 during Mode IV-1 is complete, Mode IV-2 has no effect.

3. COUNT-State Propagation

The propagation of the counter states as COUNT inputs are fed in is described next by referring to Fig. 25 and to Table I and disregarding Submodes III-A and III-C. Initially, all cores are in a CLEAR state ($\phi=-\phi_{r}$).

The first COUNT input sets Core D, and Transistor $T_{(0)}$ is turned on; Current $i_{C L}$ builds up and helps the input current to set Core D (blockingoscillator action). Upon termination of Core-D switching, Transistor $T_{(0)}$ turns off, Diode $d_{2(1)}$ becomes unblocked, and the energy stored in Inductor $L_{(0)}$ is dissipated in switching Cores $1_{(1)}$ and $2_{(1)}$ to the SET states [Mode $\mathrm{I}_{(1)}$], and in Resistances $R_{1(0)}$ and $R_{2(1)}$. A CLEAK pulse from the driver circuit clears Core D and Core $1_{(1)}$ [Mode II (1)].

A second COUNT results in Mode III (1) $^{(1)}$ switching. Since Core $2_{(1)}$ is already in a SET state, following the turning off of Transistor $T_{(0)}$, only Core $l_{(1)}$ is set. As a result, $T_{\text {ransistor }} T_{(1)}$ is turned on and is held on by the induced voltage $N_{B 1} \dot{\phi}_{1}(1)$, while the collector current builds up exponentially. Upon termination of Core $1_{(1)}$ switching, the net MMF of Core $2(1)$ is of sufficient magnitude to clear Core $2(1)$, and Transistor $T_{(1)}$ is further kept on by $N_{B 2} \dot{\phi}_{2(1)}$. Upon termination of Core $2(1)$ switching, Transistor $T_{(1)}$ turns off, Diode $d_{2(2)}$ becomes unblocked, and Cores $1_{(2)}$ and $2_{(2)}$ are set $\left[M o d e ~ I_{(2)}\right]$. Cores D and $1_{(1)}$ are then cleared by the driver [Mode IV(1)].
Table I

A third COUNT input results in the same switching as the first COUNT, except that in addition, while Core D is being set, Core $l_{(2)}$ is being cleared by the exponentially rising current $i_{C L}$ [Mode II-1(2)].

A fourth COUNT results in a similar switching following the second COUNT. The exponentially rising Current $i_{C L}$ constitutes a CLEAR MMF on Core $l_{(2)}$. Hence, in addition to Mode II following the third COUNT, Stage (2) experiences a second Mode II following the fourth COUNT. These modes are designated by $I I-1$ and $I I-2$, respectively (see Sec. I-B-2, p. 70). If the flux switching is completed during Mode II-1, then Mode II-2 has no effect. However, if $\Delta \phi_{1}$ during Mode II-1 is time-limited ($i_{C L}$ does not last long enough to complete the flux switching), then Core 1 is cleared further during Mode II-2. When Transistor $T_{(0)}$ is cut off, Transistor $T_{(1)}$ is turned on, and Stage (1) experiences Mode III of operation. Then, when Transistor $T_{(1)}$ is cut off, Transistor $T_{(2)}$ is turned on, and Stage (2) experiences Mode III of operation. Finally, when Transistor $T_{(2)}$ is cut off, Diode $d_{2(3)}$ becomes unblocked, and Stage (3) experiences Mode I of operation $\left[\right.$ Cores $1_{(3)}$ and $2_{(3)}$ are set].

A fifth COUNT causes a flux switching similar to that caused by the third COUNT, excepi thai Stage (2) experiences Mode IV-1 instead of Mode II-1 of operation.

The flux switching following the sixth COUNT is similar to the one following the fourth COUNT, except that Stage (2) experiences Modes IV-2 and I instead of Modes II-2 and III, and Stage (3) experiences Mode II-1 while Transistor $T_{(1)}$ is on instead of Mode I after Transistor $T_{\text {(l) }}$ turns off.

The changes in the flux states following the seventh and eighth COUNTs are similar in nature to the ones described above, and are shown in Table I.

Note in Table I that every COUNT is represented by the final flux states of Cores 2 .

It can be seen from Fig. 25 and Table I that every stage except Stage (1) experiences two Modes II and two Modes IV of operation. The duration of each of these modes is determined by the on-time of the transistor of the stage before the previous one. It is desired to have the same on-time for all stages.

4. Range of Supply Voltage

$$
\text { a. Minimum } V_{s}
$$

Operation fails when the supply voltage drops below a certain minimum value, $V_{s, m i n}$. Such a failure occurs when the transistor turns off during Submode III-C, as a result of which Core 2 cannot be cleared. The net effect is that the normal cyclic operation (which is composed of Modes I-IV) collapses into a spurious cyclic operation (which is composed of Mode Il and Submode III-B) in which only Core 1 is switched while Core 2 remains in positive saturation. This effect is shown in Fig. 27 by sketching the variations of $\phi_{1}\left(F_{1}\right)$ and $\phi_{2}\left(F_{2}\right)$ superimposed on the static $\phi(F)$ loops for V_{s} slightly above $V_{s, m i n}$ and for V_{s} slightly below $V_{s, m i n}$. Note that, since V_{s} is low, the clearing of Core 1 in Fig. 27(a) during Modes II-1 and IV-1 is incomplete and consequently a substantial clearing is continued during Modes II-2 and IV -2.

The causes of the spurious transistor turnoff in Mode III-C are summarized in a flow chart in Fig. 28, using the terms "low" and "high" relative to the values of the corresponding quantities before V_{s} is lowered. A low V_{s} results in a low V_{s} / R_{1}, which is approximately equal to $I_{L}, I_{C L}$, and I_{c}, the peak values of $i_{L}, i_{C L}$, and i_{c}, respectively. The effects of low $I_{L}, I_{C L}$, and I_{c} are explained as follows.

A low I_{L} results ina low i_{L}, whichinturn results $\frac{i n}{T_{I}}$ a low i_{s}, and hence in a low F_{2} during Mode I. The excess charge-turns $\int_{0}^{T_{I}}\left(F_{2 I}-F_{0}\right) d t$ is thus small, and hence $\Delta \phi_{2 I}$ (the flux change of Core 2 during Mode I) is small (see Report 2, p. 18). Consequently, the initial ϕ_{2} in Mode III is low, and $\Delta \phi_{2}$ during Submode III-A (while both Core 1 and Core 2 are switching simultaneously, as in Mode I, keeping the transistor off) is large.

A low $I_{C L}$ results in a low $i_{C L}$ and, hence, in a low $\left|F_{1}\right|$ during the composite Mode II (Modes II-1 and II-2). Consequently, the excess of charge -turns \int_{0}^{T} II $\left(\left|F_{11 I}\right|-F_{0}\right) d t$ is small and the total $\Delta \phi_{1}$ clearing during the composite Mode II is small. As a result, the initial ϕ_{1} in Mode III is high. This factor together with a larger $\Delta \phi_{2 I I I-A}$ yield a small $\Delta \phi_{1}$ during Submode III-B. Since $\dot{\phi}_{\text {III IA }}$ is essentially fixed by Diode d_{1}, a small $\triangle \phi_{\text {1III-B }}$ results in a short duration of Submode III-B, and i_{c} is not given enough time to build up. This factor, together with a low I_{c}, yields a low i_{c} during Submode III-C. Furthermore, a short $T_{\text {III-B }}$ does not give i_{s} a

r8-5670-12
FIG. 28 FLOW CHART EXPLAINING THE CAUSES OF SPURIOUS TRANSISTOR TURN-OFF IN MODE III-C AS V_{s} IS LOWERED BELOW $V_{s, m i n}$
chance to decay lo a low value. Both a low $i_{\text {cIII-C }}$ and a high $i_{s I I I-C}$ yield a low $\left|F_{2}\right|_{\text {III-C }}$, and consequently $\left|\dot{\phi}_{2}\right|$ during Submode III-C is low. With low $\dot{\phi}_{1}$ and low $\left|\dot{\phi}_{2}\right|\left(\dot{\phi}_{1}>0\right.$ and $\left.\dot{\phi}_{2}<0\right)$, the positive $N_{B 1} \dot{\phi}_{1}-N_{B 2} \dot{\phi}_{2}$ becomes smaller than the voltage across the base-emitter storage charge, and the base current becomes negative. Consequently, the base-collector storage charge is decreased: While this charge is positive, the transistor stays saturated, but when the charge becomes negative, the transistor enters the active region. For V_{s} slightly above $V_{s, m i n}$, the transistor remains in the active region for only a short time before $\left|\dot{\phi}_{2}\right|$ increases and i_{b} becomes positive again and resaturates the transistor. However, if $V_{s}<V_{s, m i n}$, the collectorbase voltage continues to grow, and $\left|\dot{\phi}_{2}\right|$ drops as i_{c} drops to zero, and the transistor turns off.

It is evident from the discussion above that as V_{s} is lowered below $V_{s, m i n}$, several factors may cause an operation failure in a rather intricate way. Referring to Fig. 28, the failure may result primarily because $N_{C L} I_{C L}$ is too low to clear Core 1 by a sufficient amount during the composite Mode II. In this case, the sum

$$
\left|\Delta \phi_{1 \text { II }}\right|=\left|\Delta \phi_{1 \text { II-1 }}\right|+\left|\Delta \phi_{1 \text { II-2 }}\right|
$$

could be considerably smaller than shown in Fig. 27(b); in the extreme case, as $\left|\triangle \phi_{\text {III }}\right| \rightarrow 0, T_{\text {III-B }} \rightarrow 0$, the transistor never turns on, and no flux switching takes place.

A contribution to a failure may also stem from using a fastswitching transistor whose diffusion and junction capacitances are too small. In this case, $\left|\Delta \phi_{1 I I}\right|$ may be essentially complete, but the base charge during Submode III-C is too small to prevent the transistor turning off as the base current becomes negative (for a limited time). It appears from this argument that a slow-switching transistor (which costs less than a fast-switching transistor) is preferred. On the other hand, if the transistor switches too slowly, the long turn-off time at the end of Submode III-D causes I_{L} to be low, and following the explanation for operation failure given previously (see Fig. 28) , $V_{s, m i n}$ increases. We conclude, therefore, that for a given circuit there is an optimum transistor switching speed.
b. Maximum V_{s}

As shown in Fig. 26, under normal operation conditions, Core 2 is unset slightly during Mode II-1, while Core 1 is switched by the CLEAR drive $N_{C L} i_{C L}$ (see Fig. 25). Such flux unsetting occurs while $N_{B 2} i_{d}$ exceeds the threshold of Core 2. The higher V_{s} is, the higher are $i_{C L}$ and i_{d}, and hence the larger is the $\left|\Delta \phi_{2 I I-I}\right|$ unsetting. Since clearing of Core 1 during Mode II-1 is complete, $\Delta \phi_{1}=0$ during Mode II-2 and there is no $\Delta \phi_{2}$ unsetting during Mode II-2.

If V_{s} is raised above a critical value $V_{s, m a x}$, operation failure will occur due to excessive $\left|\Delta \phi_{2 I-1}\right|$ unsetting. In Fig. 29(a), the $\left|\Delta \phi_{2 \mathrm{II}-1}\right|$ unsetting is appreciable, but a proper four-mode cyclic operation is still maintained. However, a slight increase in V_{s} to above $V_{s, m a x}$ causes the transistor to turn off during Submode III-C. As a result, the four-mode operation collapses into a two-mode operation: Mode II followed by Submodes III-A and III-B.

The causes of the operation failure as V_{s} is raised above $V_{s, m a x}$ are shown in a flow chart in Fig. 30. As with the case of $V_{s}<V_{s, m i n}$ (Fig. 28), a low initial $\phi_{\text {2III }}$ is a factor in turning the transistor off spuriously. However, the initial $\phi_{\text {2III }}$ is too low for $V_{s}>V_{s, m a x}$ because of an excessive $\Delta \phi_{2}$ unsetting in Mode II, whereas for $V_{s}<V_{s, m i n}$ the initial $\phi_{2 I I}$ is too low because of insufficient $\Delta \phi_{2}$ setting in Mode I.

The effect of the magnitude of i_{s} on the transistor turn-off is also different in the two extreme values for V_{s} : If $V_{s}<V_{s, m i n}, i_{s}$ is low and consequently $\Delta \phi_{2}$-setting in Mode I is too low. On the other hand, if $V_{s}>V_{s, m a x}, i_{s}$ is high and the resulting $\left|F_{2}\right|$ in Submode III-C is too low.

c. Conclusions

During Submode III-C of a proper four-mode operation, the function of keeping the transistor in the saturation region or the active region is transferred from Core lo Core 2 , while both cores are near positive saturation. If $\left|\dot{\phi}_{2}\right|$ during Submode III-C is too small, Core 2 fails to prevent the transistor from turning off. As a result, Core 2 is not cleared during Mode III (Submode III-J does not exist), and the fourmode operation collapses into a spurious two-mode operation. Such a failure occurs because the setting current i_{s} and clearing current ${ }^{i} C L$ are either too small $\left(V_{s}<V_{s, m i n}\right)$ or too large $\left(V_{s}>V_{s, m a x}\right)$. The causes

FIG. 30 FLOW CHART EXPLAINING THE CAUSES OF SPURIOUS TRANSISTOR TURN-OFF IN MODE III-C AS V_{s} IS RAISED ABOVE $V_{s, m a x}$
and effects of spurious transistor turn-off are shown in Figs. 28 and 27(b) for $V_{s}<V_{s, m i n}$, and in Figs. 30 and 29(b) for $V_{s}>V_{s, m a x}$.

In order to assure a proper binary-counter operation throughout the specified ranges of temperature and supply voltage, it is necessary to analyze this circuit under worst-case conditions of parameter values because of component nonuniformity. Such an analysis must be quantitative; i.e., the analysis should be able to compute $V_{s, m i n}$ and $V_{s, m a x}$ for given worst-case parameter values. It is evident from the above given qualitative explanations for the transistor turn-off that several factors affect this failure in a complex way. These factors can be accounted for quantitatively in computation of $V_{s, m i n}$ and $V_{s, m a x}$ by developing a computeraided transient analysis. Such an analysis must be based on mathematical models for both the static and dynamic properties of every circuit component throughout the specified temperature range. Our next topics are these component models, the techniques of measuring their parameters, and the resulting parameter values $v s$. temperature.

C. Device Models

In Fig. 25, the cores, the inductors, the diodes, and the transistors are nonlinear devices. Mathematical models that describe the static and dynamic behavior of these devices are needed for the computer analysis of the binary counter. These models are described next.

1. Core Mode 1

The total $\dot{\phi}$ of a core is

$$
\begin{equation*}
\dot{\phi}=\dot{\phi}_{\epsilon}+\dot{\phi}_{\mathrm{inel}} \tag{78}
\end{equation*}
$$

where $\dot{\phi}_{\epsilon}$ and $\dot{\phi}_{\text {inel }}$ are the elastic and inelastic components of $\dot{\phi}$, respectively. Since the rise of $F(t)$ is slow enough to neglect the viscous damping, following Eq. (43),

$$
\begin{equation*}
\dot{\phi}_{\epsilon}=\epsilon \dot{F} \text {, } \tag{79}
\end{equation*}
$$

where $\epsilon=d \phi_{d} / d F$. Extending E_{q}. (34) of Report 1 (p. 23) to positive as well as negative F, and ignoring the term due to air flux, we get

$$
\begin{equation*}
t=\frac{\phi_{s}-\dot{\psi}_{r}}{\left(l_{o}-l_{i}\right) H_{a}}\left[|F|\left(\frac{1}{|F|+H_{a} l_{o}}-\frac{1}{|F|+H_{a} l_{i}}\right)+\ln \left(\frac{|F|+H_{a} l_{o}}{|F|+H_{a} l_{i}}\right)\right] \tag{79a}
\end{equation*}
$$

Although $\dot{\phi}_{\text {inel }}=\dot{\phi}_{i}+\dot{\phi}_{m a}$, it was shown in Report 4 (p. 14) that to a good approximation,

$$
\begin{equation*}
\dot{\phi}_{\mathrm{ine} 1}=\dot{\phi}_{p}(F)\left\{1-\left[\frac{2 \phi+\phi_{s}-\phi_{d}(F)}{\phi_{s}+\phi_{d}(F)}\right]^{2}\right\} \tag{80}
\end{equation*}
$$

Following Eq. (48), four-region analytical expressions for $\dot{\phi}_{p}(F)$ are based on the curve fitting of experimental $\dot{\phi}_{p} v s$. step- F amplitude:

The three-region analytical expressions for $\phi_{d}(F)$ are based on Eqs. (12) - (18) in Report 2:

$$
\phi_{d}(F)= \begin{cases}V_{1} F \ln \left(\frac{F-H_{a} l_{o}}{F-H_{a} l_{i}}\right)-\phi_{r} & \text { if } F \leq F_{d}^{\mathrm{min}} \tag{82}\\ V_{2}\left[\frac{F}{H_{d}^{\mathrm{min}}}-l_{i}+F\left(\frac{1}{H_{n}}-\frac{1}{H_{q}}\right) \ln \left(\frac{1-\frac{H_{n}}{H_{d}^{\mathrm{min}}}}{H_{n} l_{i}}\right.\right. \\ \left.\left.1-\frac{F}{F}\right)\right]-\phi_{r} & \text { if } F_{d}^{\mathrm{min}} \leq F \leq H_{d}^{\mathrm{min}} l_{o} \\ V_{2}\left[l_{o}-l_{i}+F\left(\frac{1}{H_{n}}-\frac{1}{H_{q}}\right) \ln \left(\frac{F-H_{n} l_{o}}{F-H_{n} l_{i}}\right)\right]-\phi_{r} & \text { if } H_{d}^{\mathrm{min}} l_{o} \leq F\end{cases}
$$

where

$$
\begin{align*}
V_{1} & =\frac{\phi_{s}-\phi_{r}}{\left(l_{o}-l_{i}\right) H_{a}}, \tag{82a}\\
V_{2} & =\frac{\left(\phi_{s}+\phi_{r}\right) H_{q}}{\left(l_{o}-l_{i}\right) H_{n}}, \tag{82b}\\
F_{d}^{\mathrm{min}} & =H_{d}^{\mathrm{min}} l_{i}, \tag{82c}\\
H_{d}^{\mathrm{min}} & =\frac{1}{4}\left[H_{s}-\sqrt{H_{s}^{2}-8\left(1+\frac{\phi_{r}}{\phi_{s}}\right) H_{a} H_{q}}\right], \tag{82d}
\end{align*}
$$

and

$$
\begin{equation*}
H_{s}=H_{a}+H_{q}+H_{n}+\frac{\phi_{r}}{\phi_{s}}\left(H_{a}+H_{q}-H_{n}\right) . \tag{82e}
\end{equation*}
$$

Thus, sixteen parameters are needed for this core model: l_{i}, l_{0}, $\phi_{r}, \phi_{s}, H_{g}, H_{q}, H_{n}, \lambda_{d}, \nu_{d}, F_{d B}, F_{0}^{\prime \prime}, \lambda, \nu, F_{B}, F_{0}$, and ρ_{p}.
2. Inductor Model

The inductor used in this circuit includes a ferrimagnetic material; thus, the inductance decreases nonlinearly with the current. The experimental flux linkage $\psi v s . i$ may be fit by the exponential function

$$
\begin{equation*}
\psi=\psi_{s a t}\left(1-e^{-i / I_{c o n}}\right) \tag{83}
\end{equation*}
$$

where $\psi_{\text {sat }}$ and $I_{c o n}$ are two parameters, one describing the saturation flux linkage and the other the rate of rise of ψ with i, as shown in Fig. 31.

Differentiation of E_{q}. (83) with respect to i gives

$$
\begin{equation*}
L=L_{0} e^{-i / I_{c o n}} \tag{84}
\end{equation*}
$$

where

$$
\begin{equation*}
L_{0}=\frac{\psi_{s a t}}{I_{c o n}} \tag{84a}
\end{equation*}
$$

Thus, L is described by two parameters, L_{0} (initial inductance) and $I_{\text {con }}$.

FIG. 31 EXPONENTIAL MODEL FOR $\psi(i)$ AND INCREMENTAL L(i) OF A FERRIMAGNETIC INDUCTOR

Alternatively, the nonlinear $\psi(i)$ curve might be described by a polynomial of a suitable degree. However, unlike the exponential function of Eq. (83), its application beyond the region of the experimental data may be erroneous, e.g., it may yield a negative inductance. For this reason, we have chosen not to use a polynomial fit.

The winding capacitance of the inductor is not included in our model because the high-frequency components of the voltage across the inductor in this application are negligible.

3. Diode Model

An equivalent circuit for a $p-n$ junction diode ${ }^{22,23}$ is shown in Fig. 32. It is composed of static and dynamic components.

FIG. 32 AN EQUIVALENT CIRCUIT FOR A pn JUNCTION DIODE
a. Static Properties

The current generator $i_{f d}$ represents the static currents due to minority-carrier diffusion and minority-carrier recombination in the junction. On the basis of the relationship between the junction voltage V_{d} of an ideal diode and the excess concentration of the minority carriers, it can be shown ${ }^{23}$ that

$$
\begin{equation*}
i_{f d}=I_{s d}\left(e^{V_{d} / \theta_{m d}}-1\right) \tag{85}
\end{equation*}
$$

where $I_{s d}$ is the saturation current of the diode, and

$$
\begin{equation*}
\theta_{m d}=\frac{k T}{q} m_{d}=0.86 \cdot 10^{-4} T m_{d} \tag{85a}
\end{equation*}
$$

In Eq. (85 a), k is Boltzman's constant ($k=1.381 \cdot 10^{-23} \mathrm{~J} /{ }^{\circ} \mathrm{K}$), q is the charge of an electron $\left(q=1.602 \cdot 10^{-19} \mathrm{C}\right), T$ is the absolute temperature, and m_{d} is the diode m factor, which varies between] and 2. (The diffusioncurrent component is governed by $m_{d}=1$; the current component due to recombination in the junction space-charge layer is governed by $m_{d} \approx 2$. The overall m_{d} is thus between 1 and approximately 2.)

The shunt resistance $R_{\ell_{d}}$ represents the surface leakage resistance. Its magnitude is several megohms, and may be neglected when the diode is forward biased. The converse is true for the series resistance R_{d} : Its magnitude is of the order of one ohm and it should not be neglected when the diode is forward-biased. Using Eq. (85), the forward static $V-I$ characteristic of a diode is thus described by the equation

$$
\begin{equation*}
V_{p n}=I R_{d}+\theta_{m d} \ln \left(1+\frac{I}{I_{s d}}\right) . \tag{86}
\end{equation*}
$$

b. Dynamic Properties

In a transient condition, capacitive components are added to the equivalent circuit representing the static properties of the diode. The total capacitance is the sum of a diffusion capacitance, $C_{d d}$, and a junction capacitance, $C_{j d} .^{23}$ The diffusion capacitance is associated with the minority-carrier currents, which are injected into the neutral regions that sandwich the space-charge layer; ${ }^{22}$ it is approximately proportional to the steady-state current of an ideal diode:

$$
\begin{equation*}
C_{d d}=k_{d}\left(i_{f d}+I_{s d}\right)=k_{d} I_{s d} e^{v_{d} / \theta_{m d}} . \tag{87}
\end{equation*}
$$

The junction capacitance is associated with the majority-carrier displacement currents due to the changes in the dipole layer of the space charge that straddes the metallurgical junction; ${ }^{22}$ it is a function of the junction voltage V_{d} :

$$
C_{j d}=C_{j 0 d}\left[1-\left(V_{d} / V_{\varphi d}\right)\right]^{-N_{d}}
$$

where $C_{j 0 d}$ is the junction capacitance for $V_{d}=0, V_{\varphi_{d}}$ is the contact potential (typically, less than 1 volt), and N_{d} is a power coefficient lying between $1 / 3$ (graded junction) and $1 / 2$ (abrupt junction). ${ }^{22}$

Keferring to Fig. 32 , the relations between the voltage across a diode and the current through it are

$$
\begin{equation*}
V_{p n}=i R_{d}+V_{d} \tag{89}
\end{equation*}
$$

and

$$
\begin{equation*}
i=i_{f d}+\frac{V_{d}}{R_{\ell d}}+\left(C_{d d}+C_{j d}\right) \dot{V}_{d} \tag{90}
\end{equation*}
$$

Thus, the diode model in Fig. 32 is described by eight parameters: $I_{s d}, \theta_{m d}\left(\right.$ or $\left.m_{d}\right), R_{d}, R_{\ell d}, k_{d}, C_{j 0 d}, V_{\varphi d}$, and N_{d}.

4. Transistor Model

An equivalent circuit for an $n p n$ transistor ${ }^{22-24}$ is shown in Fig. 33. It may be regarded as the equivalent circuits of two back-to-back diodes plus forward-injected and reverse-injected current sources, $\alpha_{n} i_{f e}$ and $\alpha_{i} i_{f c}$. The parameters α_{n} and α_{i} (sometimes denoted by α_{F} and α_{R}) are the forward-injection and reverse-injection common-base short-circuit current gains, respectively. In addition, there is a base resistance, R_{b}, between the junction of the diodes and the base terminal.

The relations between the emitter voltage and emitter current are similar to those of a diode, Eqs. (85) through (90), except for the addition of the reverse-injection current $\alpha_{i} i_{f c}$. The collector voltage and collector current are also related in a similar way to those of a diode. For future reference, these relations are given as follows: voltages, currents, resistances, and capacitances are defined in Fig. 33 ; the baseemitter and base-collector parameters corresponding to those of a diode are designated by the subscripts e and c, respectively, instead of the subscript d.

Base-Emitter Equations:

$$
\begin{equation*}
i_{f e}=I_{s e}\left(e^{v} / \theta_{m e}-1\right) \tag{91}
\end{equation*}
$$

FIG. 33 AN EQUIVALENT CIRCUIT FOR AN npn TRANSISTOR
where

$$
\begin{align*}
\theta_{m e} & =0.86 \cdot 10^{-4} T_{m e} \tag{92}\\
C_{d e} & =k_{e}\left(i_{f e}+I_{s e}\right)=k_{e} I_{s e} e^{V_{e} / \theta_{m e}}, \tag{93}\\
C_{j e} & =\frac{C_{j 0 e}}{\left(1-\frac{V_{e}}{V_{\varphi e}}\right)^{N_{e}}} \tag{94}\\
V_{b e} & =i_{e} R_{e}+V_{e} \tag{95}\\
i_{e} & =i_{f e}-\alpha_{i} i_{f c}+\frac{V_{e}}{R_{l_{e}}}+\left(C_{d e}+C_{j e}\right) \dot{V_{e}} \tag{96}
\end{align*}
$$

and

$$
\begin{equation*}
V_{B E}=V_{b e}+i_{b} R_{b} \tag{97}
\end{equation*}
$$

Base-Collector Equations:

$$
\begin{equation*}
i_{f c}=I_{s c}\left(e^{v_{c} / \theta_{m c}}-1\right) \tag{98}
\end{equation*}
$$

where

$$
\begin{align*}
\theta_{m c} & =0.86 \cdot 10^{-4} T_{m} \tag{99}\\
C_{d c} & =k_{c}\left(i_{f c}+I_{s c}\right)=k_{c} I_{s c} e^{V_{c} / \theta_{m c}}, \tag{100}\\
C_{j c} & =\frac{C_{j 0 c}}{\left(1-\frac{V_{c}}{V_{\varphi c}}\right)^{N_{c}}}, \tag{101}\\
V_{b c} & =-i_{c} R_{c}+V_{c}, \tag{102}\\
-i_{c} & =i_{f c}-\alpha_{n} i_{f e}+\frac{V_{c}}{R_{\ell_{c}}}+\left(C_{d c}+C_{j c}\right) V_{c}, \tag{103}
\end{align*}
$$

and

$$
\begin{equation*}
V_{B C}=V_{b c}+i_{b} R_{b} . \tag{104}
\end{equation*}
$$

By inspection of Fig. 33,

$$
\begin{equation*}
i_{b}=i_{e}-i_{c} \tag{105}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{C E}=V_{b e}-V_{b c}=i_{e} R_{e}+V_{e}+i_{c} R_{c}-V_{c} . \tag{106}
\end{equation*}
$$

The common-base parameters α_{n} and α_{i} are related to the corresponding common-emitter parameters by

$$
\begin{equation*}
\alpha_{n}=\frac{\beta_{n}}{1+\beta_{n}} \tag{107}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha_{i}=\frac{\beta_{i}}{1+\beta_{i}} \tag{108}
\end{equation*}
$$

where β_{n} and β_{i} (also known as $h_{f e n}$ and $h_{f e i}$) are the common-emitter short-circuit current gains due to forward and reverse injections, respectively. Both β_{n} and β_{i} vary with the collector or emitter current. Since no models for calculation of β_{n} and β_{i} are available at the present time, these will be computed by interpolation of measured data.

Under a static condition, $\dot{V}_{e}=\dot{V}_{c}=0$, and so Eqs. (91), (96), (98), and (103) can be simplified. Ignoring the negligible leakage currents $V_{e} / R_{\ell_{e}}$ and $V_{c} / R_{\ell_{c}}$, and using capital letters to designate a static state, the simplified equations are known as the Ebers-Moll model: $:^{22,23}$

$$
\begin{align*}
& I_{e}=I_{s e}\left(e^{v_{e} / \theta_{m e}}-1\right)-\alpha_{i} I_{s c}\left(e^{v_{c} / \theta_{m c}}-1\right) \tag{109}\\
& I_{c}=\alpha_{n} I_{s e}\left(e^{v_{e} / \theta_{m e}}-1\right)-I_{s c}\left(e^{v_{c} / \theta_{m c}}-1\right) \tag{110}
\end{align*}
$$

The transistor model of Fig. 33 is described by nineteen parameters: $I_{s e}, \theta_{m e}\left(\begin{array}{ll}m_{e}\end{array}\right), R_{e}, R_{\ell_{e}} k_{e}, C_{j 0 e}, V_{\varphi e}, N_{e}, I_{s c}, \theta_{m c}\left(\right.$ or $\left.m_{c}\right), R_{c}, R_{\ell_{c}}$, $k_{c}, C_{j 0 c}, V_{\varphi c}, N_{c}, R_{b}, \alpha_{n}$, and α_{i}. As we shall see, α_{n} and α_{i} are computed from experimental data of $\beta_{n} v s . I_{c}$ and $\beta_{i} v s . I_{e}$, respectively, using Eqs. (107) and (108).

D. Determination of Parameters

Each of the device models described previously includes a number of parameters. There are sixteen parameters in the core model, two parameters in the inductor model, eight parameters in the diode model, and nineteen parameters in the transistor model. Except for the static parameters of a diode and a transistor, these parameters cannot be measured at the present time by standard, commercially available equipment to the necessary accuracy and over the range required.

In this part of the report we wish to describe the procedure for determining the parameters of each model. Such a procedure involves the following steps: setting up the measurement equipment and housing the tested device in an insulated enclosure whose temperature is regulated automatically at $T \pm 0.5^{\circ} \mathrm{C}$; obtaining the experimental data and transferring these data to punched cards; and computing the parameters on a digital computer by curve fitting based on least-mean-square error. Hepeating this procedure at various temperatures results in the plots of these parameters vs. temperature.

1. Core Parameters

Determination of the core parameters is based on measurements of the dimensions, the static $\phi(F)$ curve, and the $\dot{\phi}_{p}(F)$ curve. The measurements were performed on three Lockheed l00SCl ferrite cores ($O D=100 \mathrm{mils}$; $I D=70 \mathrm{mils} ; h=30 \mathrm{mils})$, referred to as Cores, A, B, and C. Cores A and B were used as Cores 1 and 2 of the second stage of the binary counter, Fig. 25.
a. Dimension Parameters

The parameters l_{i} and l_{0} are in general the short and long lengths of a leg in a multipath core. In the case of a toroidal core, $l_{i}=2 \pi r_{i}$ and $l_{o}=2 \pi r_{o}$, where r_{i} and r_{0} are the inside and outside radii of the toroid, respectively. Due to the possible tapering of a core, r_{i} and r_{0} were measured on both sides and averaged. There is no need to measure the core thickness for the core model because it is accounted for in measuring the flux capacity of the core.

b. Static Core Parameters

i. Experiment

The main problem in the measurement of the static $\phi(F)$ curve is the integrator decay. In addition, it is economically desirable to have an automatic or semiautomatic means for such a measurement. An equipment that essentially overcomes these problems was built by personnel of the Magnetics Group of Stanford Research Institute, and is presented briefly as follows.

The principle of operation is that of setting the core with a very long SET pulse and clearing the core with a large-amplitude, short-duration CLEAR pulse. The long SET pulse allows the core to switch very slowly for the low F values so that essentially static properties are obtained. The flux change is measured at the time of clearing, which is relatively fast, because this permits easy integration of $\dot{\phi}$. A positive CLEAR pulse and another negative CLEAK pulse are also included to assure adequate clearing (see pp. 83 and 84 of Report 3). Figure 34(a) shows the paths of operation in the $\phi(F)$ plane. The pulse sequence is shown in Fig. 34(b).

(a) $\phi(F)$ PATHS

(b) CURRENT-DRIVER OUTPUT

T8-5670-51

FIG. 34 FLUX-SWITCHING AND DRIVE-CURRENT PROGRAM FOR MEASUREMENT OF A STATIC $\phi(F)$ CURVE

A block diagram for the static $\phi(F)$ plotter is shown in Fig. 35(a). The pulse sequence is generated in the logic blocks at the top of the figure. The current driver converts these pulses into the current-pulse program shown in Fig. 34(b). The amplitudes of the SET and CLEAR pulses are controlled by the output voltages of the power supplies at the left of Fig. 35(a). The $N \dot{\phi}$ output of the core being tested is integrated and then nulled in the flux reference. The oscilloscope with an external amplifier is used for null detection. The dc output voltage of the flux reference, which is proportional to the time integral of $N \dot{\phi}$ for a null condition, drives the Y-axis of the plotter. The X-axis of the plotter is driven by the voltage across a 1Ω current-monitor resistance in the current driver. This voltage is the same as the waveform shown in Fig. 34(b), except that the positive CLEAR pulse is absent. The repetition rate is very low, e.g., about 60 pps , so that the duty factor of the SET pulse is nearly unity (≈ 0.997). Therefore, by low-pass filtering, a dc voltage is obtained which is very nearly equal to the amplitude of the SET pulse (the minus CLEAR pulses are also removed by the filtering).

The flux reference was described on pp. 137-141 of Report 2, except for the dc output-voltage circuit. The source of this dc voltage is a mercury-battery voltage reference which is ganged to the null controls of the flux reference (by two ten-position switches and one one-turn potentiometer). This voltage reference is calibrated to give a choice of either $10 \mathrm{mV} / \mathrm{Mx}$ or $5 \mathrm{mV} / \mathrm{Mx}_{\mathrm{x}}$, so that the ϕ-axis scale of the $\phi(F)$ plot can be labeled directly in maxwells with a convenient scale factor (e.g., 1 , 2 , or 5 maxwells/division).

The output stage of the current driver is shown in
Fig. 35(b); it is unconventional for two reasons: (1) the average dc output current of the SET pulse is large (up to 3.4A), and (2) reverse current spikes and spikes in excess of the SET pulse amplitude had to be avoided. The problem of the high magnitude of the current was solved by having the current turned off by turning the transistor on. Since the off time of the current was small, the problem of dissipation in the collector was negligible. This technique also solved the problem of reverse current spikes on the output-current waveforms. In the case of turning on the SET current (turning off the transistor), a small spike in the CLEAR direction is obtained because of the input pulse feeding through the collector capacitance to the output, but this is in the CLEAR

FIG. 35 SEMIAUTOMATIC STATIC- $\phi(F)$ PLOTTER
direction and the core has just been cleared anyway, so the spike does no harm. In turning off the SET current (turning on the transistor), two effects prevent any significant spike from appearing on the SET current before it turns off: (1) the transistor has a lower collector capacitance because the voltage on it is high, and (2) the diode in the collector circuit blocks the signal which comes through the collector capacitance.

The step-by-step instructions to the operator of the static $\phi(F)$ plotter are as follows:
(1) Wire and mount the core in the temperaturecontrolled oven.
(2) Determine the plotter ϕ and F scale factors by traversing through the $\phi(F)$ curve.
(3) Adjust $I_{\text {SET }}$ equal to $I_{\text {CLEAR }}$.
(4) Null the flux reference and divide the readings on the dials (arbitrary units) by two.
(5) Set the flux reference dials to these new values. This setting corresponds to $\phi=0$ and is used to locate the origin on the graph paper.
(6) Set $I_{\text {SET }}$ to zero and adjust the zero- X and zero-Y positions ($I_{\text {SET }}=0 ; \phi=0$) of the plotter at the desired point (e.g., intersection of left edge of graph paper and a grid line half way between top and bottom of sheet).
(7) Set $I_{\text {SET }}=0$ and null the flux reference. Plot this point by depressing a foot pedal. This point corresponds to $-\phi_{r}$.
(8) Increase $I_{\text {SET }}$ to the next desired value and null the flux reference. Plot this point. The value of the MMF, F, applied to the core is $I_{\text {SET }}$ times the number of turns of the SET winding (typically two).
(9) Repeat Step (8) for as many points as desired between $I_{\text {SET }}=0$ and the maximum $I_{\text {SET }}$ available (3.4 A for the equipment being described).
(10) Label the ϕ axis in maxwells, using the $\mathrm{mV} / \mathrm{Mx}$ calibration factor of the flux reference, the Y-axis gain of the plotter, and the number of sense turns. Also label the F axis using the X-axis gain of the plotter, the number of turns in the SET winding, and the 1.00Ω value of the monitor resistance.
(11) From the resulting $\phi(F)$ plot determine the absolute value of ϕ_{r} as read at the $-\phi_{r}$ point. Using this value, mark the $+\phi_{r}$ point on the graph sheet.
(12) Set the flux reference dials on zero, and adjust the Y-axis zero position control to position the plotter pen at the $+\phi_{r}$ point. This prepares the plotter for plotting the elastic $\phi(F)$ curve in positive saturation [the top of the $\phi(F)$ curve].
(13) Remove all the CLEAR pulses from the pulse program. This can be accomplished by opening $S_{w i t c h e s ~} S_{w_{1}}$ and $S_{w_{2}}$ in Fig. $35($ a).
(14) Set $I=0$, null the flux reference, and mark the point. This puts a data point at $+\phi_{r}$.
(15) Increase I to the next desired value, null the flux reference and mark the point.
(16) Repeat Step (15) for as many values of I as desired.

The specifications of the static $\phi(F)$ plotter are given
in Table II.
Table II (a)
SPECIFICATIONS OF THE CURRENT DRIVER IN THE STATIC $\phi(F)$ PLOTTER

CURRENT DRIVER					
	Maximum Pulse Amplitude (amperes)	Pulse Duration	Rise Time	Fall Time	
SET	3.4	$16.7 \mathrm{~ms}(@ 60 \mathrm{pps})$	$5 \mu \mathrm{~s}$	$0.5 \mu \mathrm{~s}$	
SET OFF-	--	$50 \mu \mathrm{~s}$			
DURATION		$10 \mu \mathrm{~s}$			
-CLEAR(1)	3.4	$10 \mu \mathrm{~s}$			
-CLEAR(2)	3.4	$10 \mu \mathrm{~s}$			
+CLEAR	3.4				

Table II(b)
SPECIFICATIONS OF THE FLUX REFERENCE IN THE STATIC $\phi(F)$ PLOTTER

	FLUX REFERENCE
Maximum Flux Capacity:	40 units $=120$ maxwell-turns
Resolution:	0.03 units $=0.1$ maxwell-turns
Calibration Factor:	3.60 maxwells/unit
Integration Time Constant:	$50 \mu \mathrm{~s}$
de Output Calibration Factor:	$10 \mathrm{mV} /$ maxwell or $5 \mathrm{mV} /$ maxwell
Reference Core Oven Temperature:	$55^{\circ} \mathrm{C}$

ii. Measured Data

Measured data of the static $\phi(F)$ curves of Cores A, B, and C at $T=-10^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}, 55^{\circ} \mathrm{C}$, and $85^{\circ} \mathrm{C}$ are shown in Fig. 36. The cores appear to be quite uniform. As F reaches the threshold value $F_{d}^{m i n}, \phi$ is unstable and jumps to around $-\phi_{r} / 3$.

The computed static $\phi(F)$ curves of Core A are drawn as solid lines, and will be discussed later.

The experimental data of the static $\phi(F)$ curve of each core at each temperature were read on an OSCAR Model $N-2$ machine. The output of this machine was a deck of punched cards for each core at a given temperature. Each card contained the ϕ and F coordinates of one point on the static $\phi(F)$ curve. The cards in each deck were divided into two groups: the first group included the data in the positive-saturation region (for computation of H_{a}), and the second group included the data in the nonsaturation region (for computation of H_{q} and H_{n}). The data at negative saturation for $0<F<F_{d}^{m i n}$ were ignored because they included the inelastic $\Delta \phi_{i}$ (see Sec. I-A-4-c-i, p. 21).

iii. Computation

The value of ϕ_{r} is readily available from the experimental static $\phi(F)$ curve, $\phi_{d}(F)$. We assume that $\phi_{s} / \phi_{r}=1 . l$ because such a ratio has been found to yield a good agreement between computed and measured static $\phi(F)$ curves for $F \lesssim 10 F_{c}$. Thus, the only static $\phi(F)$ parameters that need to be computed are H_{a}, H_{q}, and H_{n}.

A computer program for computation of H_{a}, H_{q}, and H_{n} from measured static $\phi(F)$ data is given in Appendix B. The program is based

FIG. 36 MEASURED AND COMPUTED STATIC $\phi(F)$ CURVES AT DIFFERENT TEMPERATURE VALUES. Core Type - Lockheed 100SCl.

FIG. 36 Concluded
on curve fitting by minimization of \sum error ${ }^{2}$, where the error is the difference between ϕ_{d} computed from Eqs. (82)-(82e) and the measured ϕ_{d} for a given F value used in the experiment. The experimental data in the positive-saturation region are first used to compute the optimum value of H_{a}. The rest of the experimental data (excluding the points at negative saturation for $0 \leq F \leq F_{d}^{\mathrm{m}}{ }^{\mathrm{n}}$) are then used to compute the optimum values of H_{q} and H_{n}. The resulting values of H_{a}, H_{q}, and H_{n} are then used to compute $\phi_{d} v s$. the values of F used in the experiment.

The computer printout includes the values of the parameters determined at each iteration and a table of F, experimental ϕ_{d}, computed ϕ_{d}, and the percentage error $\left[1-\left(\phi_{d, c o m p} / \phi_{d, e x p}\right)\right] \cdot 100$.

iv. Results

Computed static $\phi(F)$ curves for Core A, which lie between the curves of the other two cores, are compared with measured static $\phi(F)$ data at $T=-10^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}, 55^{\circ} \mathrm{C}$, and $85^{\circ} \mathrm{C}$ in Fig. 36 . It can be seen that except in the region $F_{d}^{\text {min }} \leq F<F_{c}$, the agreement is quite satisfactory.

In Fig. 37, the parameters $\phi_{r}, \phi_{s}, H_{a}, H_{q}$, and H_{n} of Cores A, B, and C are plotted $v s$. temperature. Except for H_{a}, the uniformity of these parameters among the three tested cores is very good. The nonuniformity of H_{a} indicates that the elastic switching properties of these cores differ from each other both in magnitude and in their change with temperature. Part of this nonuniformity stems from differences in air flux due to variations in winding configuration.

As pointed out in Report 4 (p. 111), the squareness of the static $\phi(F)$ curve may be measured by the ratio H_{q} / H_{n} : the smaller H_{q} / H_{n} is, the sharper is the $\phi(F)$ wing, and so the more square is the $\phi(F)$ curve. The ratio H_{q} / H_{n} is around 1.16 throughout the temperature range. This is in agreement with the results of Core $K-l$ (which is of the same type as Cores A, B, and C) in Report 4, Fig. 39.
c. Dynamic Core Parameters

i. Experiment

The dynamic parameters are obtained from the measurement of the $\dot{\phi}_{p}(F)$ curve. The experiment and measurement procedure were described in detail in Report 2, pp. 151-152 and in Report 3, p. 83.

(a) CORE A re-560.3s

TC-5670-54
Core Typ
FIG. 37 STATIC $\phi(F)$ PARAMETERS vs. TEMPERATURE.

Basically, the core is first cleared by a negative CLEAR pulse, a positive CLEAR pulse, and a negative CLEAR pulse. After clearing, the core is set by a positive SET pulse of short rise time and constant amplitude F, and the peak of the main $\dot{\phi}, \dot{\phi}_{p}$, is recorded.

Three different current pulsers were used in this experiment:
(1) The negative CLEAK pulse was generated by paralleling six vacuum-tube current drivers (Digital Equipment Corp., Model 50), and had a $0.1 \mu \mathrm{~s}$ rise time, a $30 \mu \mathrm{~s}$ width, and a 5 A amplitude; it was applied to a two-turn winding.
(2) The positive CIEAR pulse was generated by paralleling four transistor current drivers (Digital Equipment Corp., Model 62), and had a $0.1 \mu \mathrm{~s}$ rise time, a $35 \mu \mathrm{~s}$ width, and a 2 A amplitude; it was applied to a two-turn winding.
(3) The SET pulse was generated by a vacuum-tube driver (Hewlett-Packard, Model 214A), and had a 20 ns rise time, a $500 \mu \mathrm{~s}$ width, and a variable amplitude; it was applied to a two-turn winding.
ii. Measured Data

Measured $\dot{\phi}_{p}(F)$ data for Cores A and B at $T=-10^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}$, $55^{\circ} \mathrm{C}$, and $85^{\circ} \mathrm{C}$ are shown in Fig. 38. The uniformity of these curves is good. The solid-line curves are computed $\dot{\phi}_{p}(F)$ curves of Core A, which will be discussed later.

The measured data weretransferred to punched cards, each card containing one ($\dot{\phi}_{p} ; F$) point.
iii. Computation

We have seen in Sec. I-A-4-c-ii, p. 25, that the curve fitting of $\dot{\phi}_{p}(F)$ for $F \geq F_{d}^{\text {min }}$ is divided into three regions: Region I, $F_{d}^{\text {min }} \leq F \leq F_{d B}$; Region II, $F_{d B} \leq F \leq F_{B}$; and Region III, $F_{B} \leq F$. Nine parameters are used in Eqs. (81): $\lambda_{d}, \nu_{d}, F_{d B}, \lambda, F_{0}^{\prime \prime}, \nu, F_{B}, \rho_{p}$, and F_{0}. However, in order to achieve a continuity of $\dot{\phi}_{p}(F)$, four constraints are imposed on these parameters by equating $\dot{\phi}_{p}$ and $\dot{\phi}_{p}^{\prime}=d \dot{\phi}_{p} / d F$ at the boundary $F=F_{d B}$ between Regions I and II and at the boundary $F=F_{B}$ between Regions II and III. Therefore, only five parameters need to be determined. These were chosen to be $F_{d B}, \lambda, F_{0}^{\prime \prime}, \nu$, and $F_{\dot{B}}$.

FIG. 38 MEASURED AND COMPUTED $\dot{\phi}_{p}(F)$ CURVES vs. TEMPERATURE. Core Type - Lockheed 100SC1.

(b) SEMILOG SCALE

FIG. 38 Concluded

A computer program for determination of $F_{d B}, \lambda, F_{0}^{\prime \prime} \nu$, and F_{B} frommeasured $\dot{\phi}_{p}(F)$ data is given in Appendix C. The program is based on least-mean-square curve fitting of Eqs. (81) tothemeasured data. Initially, the parameter values are guessed. The data of Region II are then used to compute $\lambda, F_{0}^{\prime \prime}$, and ν, and the data of Region III are used tocompute F_{B}. If the new value of F_{B} requires data transfer between the two regions, the above computation is repeated until no such transfer is necessary. A similar procedure was first attemptedindetermination of $F_{d B}$. This attempt failed $\left(F_{d B}\right.$ was toolarge) because of the inadequacy of Region I curve fitting. Since Regions II and III are much more important thanRegion I, this procedure was given up and it was assumed that $F_{d B}=1.1 F_{0}^{\prime \prime}$. Such an assumption is tolerable because the value of $F_{d B}$ is not crucial at all (similarly, the value of F_{B} is not crucial). However, the values of λ_{d} and ν_{d} were based on the constraints $\dot{\phi}_{p(I)}=\dot{\phi}_{p(I I)}$ and $\dot{\phi}_{p(I)}^{\prime}=\dot{\phi}_{p(I I)}^{\prime}$ at $F=F_{d B}$.

The resulting values of the parameters are used to compute $\dot{\phi}_{p} v s$. the F values used in the experiment. The computer output includes the values of the parameters determined at each iteration, and also a table of $F, \dot{\phi}_{p, \text { exp }}, \dot{\phi}_{p, c o m p}$, and the percentage error $\left[1-\left(\dot{\phi}_{p, \mathrm{comp}} / \dot{\phi}_{p, \mathrm{exp}}\right)\right] \cdot 100$.
iv. Results

A comparison between computed and experimental $\dot{\phi}_{p}(F)$ of Core A at $T=-10^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}, 55^{\circ} \mathrm{C}$, and $85^{\circ} \mathrm{C}$ is made in Fig. 38(a). The computed $\dot{\phi}_{p}(F)$ curve of Core B is not shown because it is too close to that of Core A to be distinguishable graphically.

The linear scale in Fig. $38(a)$ prohibits a meaningful resolution for the experimental and the computed $\dot{\phi}_{p}(F)$ at low F values. In order to increase this resolution, the experimental $\dot{\phi}_{p}(F)$ of Cores A and B and the computed $\dot{\phi}_{p}(F)$ of Core A are redrawn in Fig. 38(b) using a semilog scale.

The threshold parameters $F_{d}^{\text {min }}, F_{0}^{\prime \prime}, F_{d B}, F_{0}$, and F_{B} of Cores A and B are plotted $v s$. temperature in Fig. 39(a). Except for the plot of F_{B}, these plots are close to each other. The rest of the dynamic parameters of Cores A and B are plotted $v s$. temperature in Fig. 39(b). These plots are very close for ν_{d} and ρ_{p}, are close enough for ν and λ, but have a very poor uniformity for λ_{d}.

FIG. $39 \dot{\phi}_{p}(F)$ PARAMETERS vs. TEMPERATURE. Core Type - Lockheed 100 SCl.

(b) PARAMETERS $\nu_{d}, \lambda_{d}, \nu, \lambda$, AND ρ_{p}

FIG. 39 Concluded

2. Inductor Parameters

Inductors $L_{(0)}, L_{(1)}$, and $L_{(2)}$ (see Fig. 25) were tested in order to determine their parameters.

a. Experiment

The circuit for measuring the parameters of Inductor L is shown in Fig. 40. A one-ohm resistance R_{1} was added in series with L for measurement of the current i through L. The flux linkage $\psi=\int V_{L} d t$, where V_{L} is the voltage across L, was measured by means of the $R_{2}-C$ integrator.

FIG. 40 A CIRCUIT FOR MEASUREMENT OF THE PARAMETERS OF A NONLINEAR INDUCTOR

Using a dual-trace oscilloscope (Tektronix Model 541 with Type CA plug-in unit), the waveforms $i(t)$ and $\psi(t)$ were superimposed and and photographed. Such oscillograms were obtained for each of the three inductors at $T=-10^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}, 55^{\circ} \mathrm{C}$, and $85^{\circ} \mathrm{C}$.
b. Measured Data

Typical $i(t)$ and $\psi(t)$ oscillograms [for Inductor $L_{(1)}$ at $\left.T=25^{\circ} \mathrm{C}\right]$ are shown in Fig. 41.

The values of $i(t)$ and $\psi(t)$ were read from each oscillogram at fixed time intervals on an OSCAK Model-J Machine. The data were punched on cards.

c. Computation

Appendix D gives a computer program for least-mean-square curve fitting of Eq. (83) to the experimental $\psi v s$. i. Each data point was corrected for the voltage across the one-ohm measuring resistance and for the integrator decay. The computer output includes the values of $\psi_{s a t}$, $I_{c o n}$, and L_{0} determined at each iteration, and a table containing the experimental and computed ψ and the incremental inductance

$$
\begin{equation*}
L=\frac{\Delta \psi}{\Delta i} \tag{111}
\end{equation*}
$$

d. Results

Machine-plotted results of measured and computed incremental inductance $L v s$. current i for Inductors $L_{(0)}, L_{(1)}$, and $L_{(2)}$ at $T=-10^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}, 55^{\circ} \mathrm{C}$, and $85^{\circ} \mathrm{C}$ are shown in Fig. 42. The dispersion of the experimental data is primarily due to inaccuracy in data reading.

FIG. 41 EXPERIMENTAL $i(t)$ AND $\psi(\dagger)$ OSCILLOGRAMS OF A NONLINEAR INDUCTOR. i scale $=0.1 \mathrm{~A} /$ major div.; ψ scale $=10.26 \mathrm{~V} \mu \mathrm{~s} / \mathrm{major}$ div.; \dagger scale $=0.5 \mu \mathrm{~s} / \mathrm{maj}$ or div.

Plots of the parameters $\psi_{\text {sat }}$,
L_{0}, and $I_{\text {con }} v s$. temperature for the three tested inductors are shown in Fig. 43. Whereas $\psi_{\text {sat }}$ and $I_{\text {con }}$ drop slightly with temperature, L_{0} remains essentially constant as the temperature varies.

3. Diode Parameters

a. Forward Static Parameters

i. Experiment

The forward voltage-current characteristics of a diode are determined simply by measuring the current through and the voltage across the conducting diode. Pulses, rather than direct current, must be applied in order to prevent the generation of excessive heat at the high current levels.

FIG. 42 EXPERIMENTAL AND COMPUTED INCREMENTAL INDUCTANCE vs. CURRENT OF NONLINEAR INDUCTORS

FIG. 42 Continued

FIG. 42 Continued

FIG. 42 Concluded

FIG. 43 NONLINEAR-INDUCTOR PARAMETERS vs. TEMPERATURE

ii. Measured Data

Measured forward $V-I$ characteristics of the diode FD643 [Diode $d_{1(2)}$ in Fig. 25] are shown in Fig. 44(a) for $T=-10^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}$, $55^{\circ} \mathrm{C}$, and $85^{\circ} \mathrm{C}$. Since the resolution for low values of current is low, the data are redrawn in Fig. $44(\mathrm{~b})$ on a semilog scale. The solid lines in both parts of Fig. 44 are computed forward $V-I$ characteristics, and will be discussed later.

(a) LINEAR SCALE

(b) SEMILOG SCALE

FIG. 44 MEASURED (Data Points) AND COMPUTED (Solid Curve) FORWARD V-I CHARACTERISTICS vs. TEMPERATURE OF AN FD643 DIODE

The measured data were punched on cards. Almost identical results were obtained for Diode $d_{2(2)}$ of Fig. 25.

iii. Computation

Appendix E gives a computer program for least-mean-square curve fitting of Eq. (86) to the measured forward V vs. I data. The computer output includes the parameter values determined at each iteration and a table containing I, experimental V, computed V, and the percentage error $\left[1-\left(V_{\text {comp }} / V_{\text {exp }}\right)\right] \cdot 100$.
iv. Results

Computed forward V vs. I of the tested diode [FD643 type; Diode $d_{1(2)}$ in Fig. 25] are plotted on linear and semilog scale in Fig. 44 for four temperature values: $-10^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}, 55^{\circ} \mathrm{C}$, and $85^{\circ} \mathrm{C}$. The agreement between the computed and measured V for given I values is within one percent.

Static forward $V-I$ parameters are plotted vs. temperature in Fig. 4.5. From the average plot of $\theta_{m d}$ vs. T and from Eq. (85a) it is found that on the average, $m_{d}=1.86$.

b. Reverse Static Parameter

i. Experiment

The leakage current $V / R_{\ell_{d}}$ was measured by varying a reversebiased V and measuring I with a picoammeter (Keithley, Model 410).
ii. Measured Data

A typical reverse $V-I$ characteristic of Diode $d_{1(2)}$ at $T=25^{\circ} \mathrm{C}$ is shown in Fig. 46.
iii. Results

From the slope of the reverse $V-I$ characteristic of
Diode $d_{1(2)}$ in Fig. 46 it is concluded that $R_{\ell_{d}}=6.05 \cdot 10^{9} \Omega$ at $T=25^{\circ} \mathrm{C}$. Values of $R_{\ell_{d}}$ at $T=-10^{\circ} \mathrm{C}$ and $T=85^{\circ} \mathrm{C}$ were obtained in a similar way. A plot of $R_{\ell_{d}}$ vs. temperature using a semilog scale is a straight line, as shown in Fig. 47. Similar plots for $R_{\ell_{e}}$ and $R_{\ell_{c}}$ of a transistor will be discussed later.

FIG. 45 STATIC FORWARD V-I PARAMETERS vs. TEMPERATURE OF AN FD643 DIODE

FIG. 46 REVERSE CHARACTERISTIC OF AN FD643 DIODE

FIG. 47 LEAKAGE RESISTANCES $R_{l_{d}}$ OF AN FD643 DIODE AND $R_{l_{e}}$ AND $R_{l_{c}}$ OF A 2N956 TRANSISTOR vs. TEMPERATURE
i. Experiment

The experiment for measuring the junction-capacitance $C_{j d}$ $v s . \quad$ reverse-bias voltage V, and the diffusion-capacitance coefficient, k_{d}, is the same as the one for base-emitter or base-collector junction of a transistor; it is described in Sec. II-D-4-b, p. 127.

ii. Measured Data

Measured $C_{j d} v s$. reverse-biased V could not be fit to Eq. (88). The value of $C_{j 0 d}$ was approximately 1.5 pF . As $C_{j d}$ is decreased be low 1 pF , the stray capacitance is of the same order of magnitude as $C_{j d}$. This may explain why Eq. (88) could not be fit to the experimental data.

The diffusion-capacitance constant k_{d} was not measured; the reason is given below.

iii. Results

The value of $C_{j d}$ was found to be of the order of 1 pF . Inclusion of such a low value of capacitance in the diode model may do more harm than good. If $V_{d}<0$ and $C_{j d}$ is very small, then $\dot{V}_{d}[E q$. (90)] may become spuriously high and cause a computational divergence. On the other hand, if convergence is reached, $C_{j d}$ is too small to have any appreciable effect. For these reasons it was decided to neglect $C_{j d}$ in the model. For simplicity and since the diode capacitance is not crucial to the circuit operation, it was decided to neglect the diffusion capacitance $C_{d d}$ as well.

4. Transistor Parameters

The static and dynamic parameters of Transistor $T_{(2)}$ in Fig. 25 (Fairchild, npn transistor Type 2 N 956) were determined at $T=-10^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}$, and $85^{\circ} \mathrm{C}$. The experiments and the computation procedures for determination of these parameters are described next.
i. Experiment

The static parameters are $I_{s e}, \theta_{m e}, R_{e}, \beta_{i}$, and $R_{\ell e}$ for the base-emitter junction, and $I_{s c}, \theta_{m c}, R_{c}, \beta_{n}$, and $R_{\ell_{c}}$ for the basecollector junction; the base resistance, R_{b}, is common to both. By reverse biasing one junction, the other junction may be tested as a diode. The measurement associated with determination of the parameters I_{s}, θ_{m}, R, and β of each junction may be obtained by forward biasing that junction; however, the current injected into the reverse-biased junction must be accounted for. For measurement of the leakage resistances $R_{\ell_{e}}$ and $R_{\ell_{c}}$, both junctions are reverse-biased. Let us examine the relations between voltages and currents in each case separately.

Active-Region Experiment-A measurement circuit for a transistor in the active region (emitter forward-biased, collector reverse-biased) is shown in Fig. 48(a). Capital letters designate dc values. The base-emitter junction is forward-biased by a voltage pulse of about $100 \mu \mathrm{~s}$ width and variable amplitude V_{p}. The use of a pulse, rather than a direct voltage, is to prevent the generation of excessive heat, which will change the parameter values (see the effect of temperature on the static parameters of a diode, Fig. 45). The base-collector junction is reverse-biased by a dc or pulse source, whose amplitude V_{r} is high enough to keep the collector reversebiased, yet low enough to avoid excessive heating. External resistances R_{B} and R_{r} serve to measure I_{b} and I_{c}, respectively.

Since the transistor is in a static state of the active region, the equivalent circuit of Fig. 33 is simplified to the one shown in Fig. 48(b). ${ }^{23,24}$ Following Eq. (91), and since $I_{e}=I_{b}+I_{c}$,

$$
\begin{equation*}
V_{B E}=I_{b} R_{b}+\left(I_{b}+I_{c}\right) R_{e}+\theta_{m e} \ln \left(1+\frac{I_{b}+I_{c}}{I_{s e}}\right) . \tag{112}
\end{equation*}
$$

Also,

$$
\begin{equation*}
\beta_{n}=\frac{I_{c}}{I_{b}} \tag{113}
\end{equation*}
$$

(a) MEASUREMENT CIRCUIT

(b) EQUIVALENT CIRCUIT OF AN NPN TRANSISTOR

IN THE ACTIVE REGION TA-5670-61
FIG. 48 DETERMINATION OF BASE-EMITTER FORWARD STATIC

Inverse-Region Experiment-The measurement circuit is
similar to the one in Fig. 48(a), except that the functions of the emitter and collector are interchanged: R_{r} is in series with the emitter, the emitter is reverse-biased by V_{r}, and the collector is forward-biased by the voltage pulse of amplitude V_{p}. The transistor is in a static state of the inverse region. The equivalent circuit is identical with the one in Fig. 48(b), except that $I_{c}=-I_{f c}$ and $I_{e}=-\alpha_{i} I_{f c}$. Following Eq. (98), and since $I_{f c}=-I_{c}=I_{b}-I_{e}$,

$$
\begin{equation*}
V_{B C}=I_{b} R_{b}+\left(I_{b}-I_{e}\right) R_{c}+\theta_{m c} \ln \left(1+\frac{I_{b}-I_{e}}{I_{s c}}\right) \tag{114}
\end{equation*}
$$

It is likely that $I_{b} R_{b} \gg\left|I_{e}\right| R_{c} ;$ if this is the case, then

$$
\begin{equation*}
V_{B C}=I_{b}\left(R_{b}+R_{c}\right)+\theta_{m c} \ln \left(1+\frac{I_{b}-I_{e}}{I_{s c}}\right) . \tag{115}
\end{equation*}
$$

Also,

$$
\begin{equation*}
\beta_{i}=\frac{I_{e}}{I_{b}} \tag{116}
\end{equation*}
$$

Cutoff-Region Experiment-In order to determine the leakage resistance R_{ℓ}, the collector is reverse-biased by, say, 2 volts, and the emitter is reverse-biased by a direct voltage whose amplitude V is varied, and the reverse current and V are measured. Care must be taken to prevent a thermal runaway. This measurement is repeated with the emitter and collector interchanging function in order to determine $R_{\ell_{c}}$.

ii. Data Measurement

 V_{r} was adjusted to keep $V_{C B}=2$ volts. Varying the amplitude V_{p} of the voltage pulse, the voltages $V_{p}, V_{B E}$, and $V_{C E}$ were measured. Given V_{p}, $V_{r}, V_{B E}, V_{C E}, R_{B}$, and R_{r}, the base and collector currents can be determined from the relations

$$
\begin{equation*}
I_{b}=\frac{V_{p}-V_{B E}}{R_{B}} \tag{117}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{c}=\frac{V_{r}-V_{C E}}{R_{r}} \tag{118}
\end{equation*}
$$

The data of $V_{B E} v s . I_{b}$ and I_{c} will be curve-fitted by Eq. (112) in order to determine $R_{b}, R_{e}, \theta_{m e}$, and $I_{s e}$. The data of I_{b} and I_{c} will also be used to determine $\beta_{n} v s . I_{c}$, Eq. (113).

$$
\text { Measured } I_{b} \text { vs. } V_{B E} \text { at } T=-10^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C} \text {, and } 85^{\circ} \mathrm{C} \text { are shown }
$$ in Fig. 49(a) using a linear scale, and in Fig. 49(b) using a semilog scale. The computed solid lines will be discussed later.

FIG. 49 MEASURED AND COMPUTED BASE CURRENT vs. BASE-EMITTER AND BASE-COLLECTOR VOLTAGES OF A 2 N956 TRANSISTOR
$V_{B C}\left(I_{b}, I_{e}\right)$ Data-The above experiment for determination of $V_{B E}\left(I_{b}, I_{c}\right)$ was repeated, except that the functions of the emitter and collector were interchanged. The data of $V_{B C} v s . I_{b}$ and I_{e} will be curve-fitted by Eq. (115) in order to determine $R_{b}+R_{c}, \theta_{m c}$, and $I_{s, c}$. In addition, α_{i} vs. I_{e} will be obtained from these data and Eq. (116).

Measured I_{b} vs. $V_{B C}$ at $T=-10^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}$, and $85^{\circ} \mathrm{C}$ are shown in Fig. 49(a) using a linear scale, and in Fig. 49(b) using a semilog scale. The computed solid line will be discussed later.

iii. Computation

It is desired to determine the static forward parameters by least-mean-square fitting of Eq. (112) to the measured $V_{B E}\left(I_{b}, I_{c}\right)$ data, and Eq. (114) to the measured $V_{B C}\left(I_{b}, I_{e}\right)$ data. We have encountered a difficulty with this method: Since $I_{b} R_{b} \gg\left|I_{e}\right| R_{c}$, Eq. (114) is reduced to Eq_{q}. (115), and the latter may be used to solve for the sum

$$
\begin{equation*}
R_{b c}=R_{b}+R_{c}, \tag{119}
\end{equation*}
$$

rather than for R_{b} and R_{c} individually. If the value of R_{b} obtained by fitting Eq. (112) to the measured $V_{B E}\left(I_{b}, I_{c}\right)$ data is smaller than $R_{b c}$, then all is well. However, because of fitting error, this was not the case. This difficulty was overcome by assuming that either $R_{e}=0$ (Case a) or $R_{c}=0$ (Case b), and computing the parameters in the following order:
(1) By least-mean-square fitting of Eq. (115) to the $V_{B C}\left(I_{b}, I_{e}\right)$ data, optimum values of $R_{b c}, \theta_{m c}$, and $I_{s c}$ are determined.
(2) Assuming that $R_{e}=0$ (Case $\left.a\right)$, the values of $R_{b}, \theta_{\text {me }}$, and ${ }^{e} I_{s e}$ are determined by least-mean-square fitting of Eq . (112) to the $V_{B E}\left(I_{b}, I_{c}\right)$ data.
(3) If $R_{b} \leq R_{b c}$, then the values of $R_{b}, \theta_{m e}$, and $I_{\text {se }}$ computed in Step (2) are accepted, and the computation is terminated. Other wise, it is assumed that $R_{c}=0$ and $R_{b}=R_{b c}$ (Case b), and the values of R_{e}, $\theta_{m e}$, and $I_{s e}$ are recomputed by least-meansquare fitting of Eq. (112) to the $V_{B E}\left(I_{b}, I_{c}\right)$ data.

On the basis of these steps, a computer program for determination of $\theta_{m e}$, $I_{s e}, R_{e}, \theta_{m c}, I_{s c}, R_{c}$, and R_{b} from the measured $V_{B C}\left(I_{b}, I_{e}\right)$ and $V_{B E}\left(I_{b}, I_{c}\right)$ data was written, and is given in Appendix F.

The computer output first lists $R_{b c}, \theta_{m c}$, and $I_{s c}$ at each iteration, and a table containing I_{e}, I_{b}, β_{i}, experimental $V_{B C}$, computed $V_{B C}$, and the percentage error $\left[1-\left(V_{B C, c o m p} / V_{B C, \text { exp }}\right)\right] \cdot 100$. This is followed by listing $R_{b}, R_{e}, \theta_{m e}$, and $I_{s e}$ at each iteration, and a table containing I_{c}, I_{b}, β_{n}, experimental $V_{B E}$, computed $V_{B E}$, and the percentage error $\left[1-\left(V_{B E, \text { comp }} / V_{B E, \text { exp }}\right)\right] \cdot 100$.

iv. Results

Machine-plotted experimental and computed $I_{b} v s . V_{B E}$ and $V_{B C}$ at $T=-10^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}$, and $85^{\circ} \mathrm{C}$ are compared with measured data in Fig. 49. The agreement for $I_{b} v s . V_{B C}$ is better than for $I_{b} v s . V_{B E}$, probably because the effect of I_{c} in the latter is more appreciable than the effect of I_{e} in the former. The computation resulted in $R_{c}=0$ (Case b).

The effect of temperature on the forward static parameters of the transistor are shown in Fig. 50.

Plots of measured β_{n} vs. I_{c} and β_{i} vs. I_{e} are shown in Figs. 51 and 52 , respectively, for $T=-10^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}$, and $85^{\circ} \mathrm{C}$.

From the slopes of reverse $V(I)$ data, it was found that $R_{\ell_{c}}=3.23 \cdot 10^{6}, 3.0 \cdot 10^{5}$, and $5.48 \cdot 10^{3}$ megohms and $R_{\ell_{e}}=1.43 \cdot 10^{6}$, $2.0 \cdot 10^{5}$, and $5.0 \cdot 10^{3}$ megohms for $T=-10^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}$, and $85^{\circ} \mathrm{C}$, respectively (see Fig. 47).

b. Dynamic Parameters

The dynamic parameters are those required to calculate the base-emitter and base-collector diffusion capacitances, $C_{d e}$ and $C_{d c}$, and the junction capacitances, $C_{j e}$ and $C_{j c}$. Referring to Eqs. (93), (94), (100), and (101), these parameters are $k_{e}, C_{j 0 e}, V_{\varphi_{e}}, N_{e}, k_{c}, C_{j 0 c}, V_{\varphi_{c}}$, and N_{c}.

Consider first the base-emitter capacitances. Since $C_{d e}$ and $C_{j e}$ are in parallel (see Fig. 33), one capacitance can be measured directly only if the other is negligible. Fortunately, each of these conditions can be achieved quite simply. If the emitter junction is

FIG. 51 MEASURED β_{n} vs. I_{c} OF A 2 N 956 TRANSISTOR

FIG. 52 MEASURED β_{i} vs. i_{e} OF A 2N956 TRANSISTOR
reverse biased ($V_{e}<0$), then, following Eq. (93), $C_{d e}$ is negligible. On the other hand, if the emitter junction is forward biased ($V_{e}>0$), then $C_{j e} \ll C_{d e}$ because the total emitter current is dominated by injected minority-carrier currents ${ }^{22,23}$ (see p. 86). The base-emitter dynamic parameters are thus determined in the following sequence: First, the emitter is reverse biased (cutoff region), and $C_{j e}$ is measured vs. V_{e}. Second, the measured $C_{j e}\left(V_{e}\right)$ data are used to determine the values of $C_{j 0 e}, V_{\varphi_{e}}$, and N_{e}. Third, the emitter is forward biased (active region) at a fixed, positive value of V_{e}, and the transient waveform of $i_{c}(t)$ in response to a small step change in base current is recorded. Fourth, k_{e} is computed on the basis of the effect of the emitter-base capacitance on the time constant of $i_{c}(t)$.

Similar conditions and a similar method hold for the measurements of $C_{j c}$ and $C_{d c}$.
i. Measurement of Reverse-Biased $C_{j e}\left(V_{e}\right)$ and $C_{j c}\left(V_{c}\right)$

The circuit used for measuring $C_{j e} v s . V_{e}$ is shown in Fig. 53. The collector was kept reversebiased by a voltage source of amplitude $V_{r}=2$ volts. The emitter was kept reverse-biased by a voltage
source of variable amplitude V. The three 1 -megohm resistors were added for isolation of the transistor from the biasing voltage sources.

While V was varied, the base-emitter capacitance was measured directly with a capacitance meter (Tektronix Inc., Type 130 L-C Meter). The peak-to-peak signal voltage of the capacitance should be as Low as possible. Since $V \approx V_{e}$ and $C_{j e} \gg C_{d e}$, the measured data obtained are essentially $C_{j e} v s . V_{e}$.

FIG. 53 A CIRCUIT FOR MEASURING

$$
C_{i e} \text { vs. } V_{e}
$$

The measurement of $C_{j c}$ vs. V_{c} was performed in the same maner as above, except that functions of the collector and emitter were interchanged.

Measured data of $C_{j e} v s . V_{e}$ and $C_{j c}$ vs. V_{c} are plotted in Fig. 54 for $T=-10^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}$, and $85^{\circ} \mathrm{C}$.
ii. Determination of the parameters of $C_{j e}$ and $C_{j c}$

A computer program for least-mean-square curve fitting of Eqs. (94) and (101) to the measured data has not been written yet. Consequently, the parameters of $C_{j e}$ and $C_{j c}$ were determined manually.

Determination of $C_{j 0 e}, V_{\varphi e}$, and N_{e} is described first.
The measured $C_{j e} v s . V_{e}$ data at each temperature in Fig. 54 were extrapolated to the $V_{e}=0$ axis in order to obtain $C_{j 0 e}$. The accuracy of such

FIG. 54 MEASURED JUNCTION CAPACITANCES vs. VOLTAGE AND TEMPERATURE OF A 2N956 TRANSISTOR
an extrapolation suffers from the nonlinearity of $C_{j e} v s . V_{e}$. This drawback may be overcome in two ways: first, by using a capacitance meter with a low peak-to-peak signal voltage (e.g., 0.1 volt), thus obtaining reliable data close to the $V_{e}=0$ axis, and second, by iterative determination of $C_{j 0 e}, V_{\varphi e}$, and N_{e} and a linear extrapolation of $\left(1 / C_{j e}\right)^{1 / N_{e}} v s . V_{e}{ }^{23}$

The values of $V_{\varphi e}$ and N_{e} were determined next. Physically, $V_{\varphi e}$ increases linearly with temperature $T .{ }^{22}$ However, for simplicity, $V_{\varphi e}$ was assumed to be invariant with T. After trying several values of $V_{\varphi e}$ below 1 volt, it was found that reasonable N_{e} values (between $1 / 3$ and $1 / 2$) were obtained for all temperatures if $V_{\varphi e}=0.6$ volt.

A similar procedure was used to determine $C_{j 0 c}, V_{\varphi_{c}}$, and N_{c} from the measured $C_{j c} v s . V_{c}$ data. A value of $V_{\varphi_{c}}=0.7$ volt was found to yield reasonable N_{c} values for all temperatures.

The resulting values of $C_{j 0_{e}}, V_{\varphi_{e}}, N_{e}, C_{j 0_{c}}, V_{\varphi_{c}}$, and N_{c} $v s$. temperature are quite linear, as shown in Fig. 55. The inaccuracy of these results is mainly due to the assumption that $V_{\varphi_{e}}$ and $V_{\varphi_{c}}$ do not vary with T. An alternative way to determine these parameters, which is physically more rigorous, is to assume that N_{e} and N_{c} are invariant with T, and to obtain linear increases of $V_{\varphi_{e}}$ and $V_{\varphi_{c}}$ with T.
iii. Measurement of $i_{c}(t)$ and $i_{e}(t)$ time constants

The circuit for measuring the $i_{c}(t)$ time constant is considered first and is shown in Fig. 56(a). The collector was reversebiased by a direct voltage of amplitude $V_{r}=3$ volts. A rectangular bias base current, I_{b}, was generated by a voltage-pulse source in series with a high resistance, $R_{B}=10 \mathrm{k} \Omega$. The transistor was thus in the active region. The bias voltage was adjusted so that I_{c} was equal to the value for which β_{n} is maximum (i.e., $I_{c} \approx 40 \mathrm{~mA}$, Fig. 51). A rectangular current pulse of amplitude ΔI_{b} much smaller than I_{b} was superimposed in the middle of the bias basecurrent pulse. The waveforms of the bias and the incremental base currents and the waveform of the resulting collector current are shown in Fig. 56(b). The effective time constant τ_{c} associated with the response of $i_{c}(t)$ to ΔI_{b} was measured. This was repeated at three temperature values: $-10^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}$, and $85^{\circ} \mathrm{C}$.

Measurements of τ_{e} associated with the response of $i_{e}(t)$ to ΔI_{b} were performed in the same manner as descrihed ahove, except that the emitter and the collector interchanged functions.

FIG. 55 PARAMETERS OF EMITTER AND COLLECTOR JUNCTION CAPACITANCES vs. TEMPERATURE OF A 2N956 TRANSISTOR
iv. Computation of k_{e} and k_{c}

Computation of k_{e} is discussed first. The equivalent circuit of the measurement circuit in Fig. 56(a) is shown in Fig. 56(c). Those elements in Fig. 33 which have a negligible effect on the transistor behavior in the active region have been omitted in Fig. 56(c).

By inspection of Fig. $56(\mathrm{c})$, the emitter and collector currents are

$$
\begin{equation*}
i_{e}=i_{f e}+\left(C_{d e}+C_{j e}\right) \dot{V}_{e} \tag{120}
\end{equation*}
$$

and

$$
\begin{equation*}
i_{c}=\alpha_{n} i_{f e}-C_{j c} \dot{V}_{c} \tag{121}
\end{equation*}
$$

where

$$
\begin{equation*}
i_{f e}=I_{s e}\left(e^{v_{e} / \theta_{m e}}-1\right) \tag{122}
\end{equation*}
$$

(a) MEASUREMENT CIRCUIT

(b) BASE AND COLLECTOR CURRENT WAVEFORMS

FIG. 56 A MEASUREMENT CIRCUIT FOR DETERMINATION OF EMITTER DIFFUSION CAPACITANCE

Differentiating Eq. (122) with respect to time and substituting

$$
I_{s e} e^{V e / \theta_{m e}}=C_{d e} / k_{e}
$$

from Eq. (93) gives

$$
\begin{equation*}
\dot{V}_{e}=\frac{\theta_{m e} k_{e}}{C_{d e}} \frac{d i_{f e}}{d t} \tag{123}
\end{equation*}
$$

Substituting Eq. (123) into Eq. (120) gives

$$
\begin{equation*}
i_{e}=i_{f e}+\left(1+\frac{C_{j e}}{C_{d e}}\right) \theta_{m e} k_{e} \frac{d i_{f e}}{d t} \tag{124}
\end{equation*}
$$

Since the emitter junction is forward biased ($V_{e}>0$), the emitter current is dominated by the minority-carrier currents that are injected across the space-charge layer into the neutral emitter and base regions, ${ }^{22}$ and we may assume that $C_{j e} \ll C_{d e}$ (see pp. 127 and 130). The larger V_{e} is, the more justified is this assumption. Thus, Eq. (124) may be simplified to

$$
\begin{equation*}
i_{e} \approx i_{f e}+k_{e} \theta_{m e} \frac{d i_{f e}}{d t} . \tag{125}
\end{equation*}
$$

Substitution of Eqs. (121) and (125) into $i_{b}=i_{e}-i_{c}$ gives

$$
\begin{equation*}
i_{b}=\left(1-\alpha_{n}\right) i_{f e}+k_{e} \theta_{m e} \frac{d i_{f e}}{d t}+C_{j c} \dot{V}_{c} \tag{126}
\end{equation*}
$$

By inspection of Fig. 56(a),

$$
\begin{equation*}
V_{c}=i_{c} R_{r}-V_{r}+\Delta V_{b}-R_{T} \Delta I_{b} \tag{127}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\dot{V}_{c}=R_{r} \frac{d i_{c}}{d t} \tag{128}
\end{equation*}
$$

and Eq. (121) becomes

$$
\begin{equation*}
i_{f e}=\frac{1}{\alpha_{n}}\left(i_{c}+R_{r} C_{j c} \frac{d i_{c}}{d t}\right) \tag{129}
\end{equation*}
$$

Substitution of $\dot{V}_{c}\left[E q\right.$. (128)], $i_{f e}$ [Eq. (129)], and $d i_{f e} / d t$ from Eq. (129) into Eq. (126) yields a solution of $i_{c}(t)$ which is too complex to be correlated with the experimental $i_{c}(t)$ waveform. Furthermore, R_{r} may be made very small by using a current probe in order to ohserve the $i_{c}(t)$ waveform. Hence, the effect of the component $C_{j}{ }_{c} \dot{V}_{c}$ on $i_{f e}$ may be neglected, and we may substitute $i_{f e} \approx i_{c} / \alpha_{n}$ and $d i_{f e} / d t \approx\left(d i_{c} / d t\right) / \alpha_{n}$ into Eq. (126). By the additional substitution of Eq. (128), Eq. (126) is reduced to

$$
\begin{equation*}
i_{b}=\frac{1-\alpha_{n}}{\alpha_{n}} i_{c}+\left(\frac{k_{e} \theta_{m e}}{\alpha_{n}}+R_{r} C_{j c}\right) \frac{d i_{c}}{d t} . \tag{130}
\end{equation*}
$$

Initially (when the step ΔI_{b} is applied), $i_{b}=I_{b}$, and so $i_{c}(0)=\beta_{n} I_{b}$, where $\beta_{n}=\alpha_{n} /\left(1-\alpha_{n}\right)$. The solution of Eq . (130) is, therefore,

$$
\begin{equation*}
i_{c}=\beta_{n} I_{b}+\beta_{n} \Delta I_{b}\left(1-e^{-t / \tau_{c}}\right) \tag{131}
\end{equation*}
$$

where

$$
\begin{equation*}
\tau_{c}=\beta_{n}\left(\frac{k_{e} \theta_{m e}}{\alpha_{n}}+R_{r} C_{j c}\right) . \tag{132}
\end{equation*}
$$

Referring to Fig. 56(b), τ_{c} was determined experimentally at the I_{c} value for which β_{n} is maximum. Hence,

$$
\alpha_{n}=\beta_{n, \max } /\left(\beta_{n, \max }+1\right)=1
$$

and

$$
\begin{equation*}
k_{e}=\left(\frac{\tau_{c}}{\beta_{n, \max }}-R_{r} C_{j c}\right) \frac{1}{\theta_{m e}} \tag{133}
\end{equation*}
$$

Oscillograms of $i_{c}(t)$ transient waveforms in response to ΔI_{b} at $T=-10^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}$, and $85^{\circ} \mathrm{C}$ are shown in Fig. 57 . These waveforms are not exactly exponential, since Eq. (131) is only an approximation. At $T=-10^{\circ} \mathrm{C}$, for example, $\tau_{c}=0.1 \mu_{\mathrm{s}}, \beta_{n, \max }=76.5, \theta_{m e}=0.0459 \mathrm{~V}$, and

(a) $\mathrm{T}=-10^{\circ} \mathrm{C}$

(b) $\mathrm{T}=25^{\circ} \mathrm{C}$

(c) $T=85^{\circ} \mathrm{C}$

T0-5670-66
FIG. 57 TRANSIENT WAVEFORMS OF COLLECTOR CURRENT IN RESPONSE TO A SMALL STEP CHANGE IN BASE CURRENT OF A 2N956 TRANSISTOR IN THE ACTIVE REGION. $I_{c}=40 \mathrm{~mA} ; \Delta I_{c}=3 \mathrm{~mA}$; $R_{r} \approx 0$; time scale $=0.1 \mu \mathrm{~s} /$ major div.; i_{c} scale $=1 \mathrm{~mA} / \mathrm{major} \mathrm{div}$.
$C_{j 0 e}=54 \mathrm{pF}$; hence, following Eq. (133), $k_{e} \approx 28.5{ }_{\mathrm{n}} \mathrm{F} / \mathrm{A}$. Similarly, it was found that $k_{e}=19.3$ and $13.9 \mathrm{nF} / \mathrm{A}$ for $T=25^{\circ} \mathrm{C}$ and $85^{\circ} \mathrm{C}$, respectively.

Determination of k_{c} was obtained in the same way as that of k_{e}, except that emitter and collector functions were interchanged.

Resulting values of k_{e} and $k_{c} v s$. temperature are shown in Fig. 58. In the absence of more than three points for each case, the dashed lines should be considered as rough guesses only. However, it may be concluded from these data that for this 2 N 956 transistor, k_{c} is about $6,000\left(\right.$ at $\left.T=-10^{\circ} \mathrm{C}\right)$ to $12,000\left(\right.$ at $T=85^{\circ} \mathrm{C}$) times larger than k_{e}, and that an increase in temperature causes k_{e} todecrease much more than k_{c}.

FIG. 58 DIFFUSION-CAPACITANCE PARAMETERS k_{e} AND k_{c} vs. TEMPERATURE
OF A $2 N 956$ TRANSISTOR

5. Summary

The experiments, the data measurement, and the computation methods associated with determination of the parameter values of the various devices in the binary counter have been described in the preceding sections. The resulting parameter values of the cores, resistors, inductors, diode, and transistor at $T=-10^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}$, and $85^{\circ} \mathrm{C}$ are summarized in Table III. (Cores 1 and 2 were referred to as Cores A and B, respectively, in Sec. II-D-1.) These values will be used in the computer analysis, which is our next topic. The sign-S column will be discussed later.

E. Computer Analysis

The development of a computer program for analyzing the four modes of operation of the binary counter will now be described. This program is an extension of the computer analysis of Mode I only in Report 4. The computed results will be compared with experimental data in each of the four modes of operation, under three conditions: $T=25^{\circ} \mathrm{C}$ and $V_{s}=28$ volts (nominal), $T=-10^{\circ} \mathrm{C}$ and $V_{s}=15$ volts (extreme low), and $T=85^{\circ} \mathrm{C}$ and $V_{s}=50$ volts (extreme high).

1. Circuit Equations

The basic circuit equations for Mode I of operation were derived in Report 4, pp. 56-61. These equations will now be extended into a general form, and thus be applicable in any mode of operation. We shall derive these circuit equations for the second stage of the binary counter. For this reason, the time variables of the second stage only are designated in Fig. 25, p. 69.

By inspection of Fig. 25, the net MMFs acting on Cores 1 and 2 are

$$
\begin{equation*}
F_{1}=N_{s 1} i_{s}+N_{B 1} i_{d}+N_{c 1} i_{c}-N_{C L} i_{C L} \tag{134}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{2}=N_{s 2} i_{s}-N_{B 2} i_{d}-N_{c 2} i_{c} \tag{135}
\end{equation*}
$$

Table III
DEVICE PARAMETER vALUES (IN MKS UNITS) vs. TEMPERATURE AND THE SIGN S of a Change in the parameter value which increases $V_{s, m i n}$ OF A CORE-DIODE-TRANSISTOR BINARY COUNTER

DEVICE		Parameter value			S
		$T=-10^{\circ} \mathrm{C}$	$T=25^{\circ} \mathrm{C}$	$T=85^{\circ} \mathrm{C}$	
Core 1	$l_{i 1}$	$5.59 \cdot 10^{-3}$	$5.59 \cdot 10^{-3}$	$5.59 \cdot 10^{-3}$	+
	$l_{\text {ol }}$	$7.98 \cdot 10^{-3}$	$7.98 \cdot 10^{-3}$	$7.98 \cdot 10^{-3}$	+
	$\phi_{r 1}$	$7.47 \cdot 10^{-8}$	$6.52 \cdot 10^{-8}$	$5.065 \cdot 10^{-8}$	-
	$\phi_{s 1}$	$8.217 \cdot 10^{-8}$	$7.17 \cdot 10^{-8}$	$5.5715 \cdot 10^{-8}$	-
	$H_{a l}$	405.096	306.885	101.516	+
	$H_{q 1}$	52.094	40.809	21.718	+
	$H_{n 1}$	44.847	36.003	18.839	+
	$\lambda_{d 1}$	7.7657	11.4541	10.6233	-
	${ }^{2}{ }_{d 1}$	3.8851	3.7095	3.1159	-
	$F_{d B 1}$	0.5000	0.3917	0.2168	+
	$F_{01}^{\prime \prime}$	0.4348	0.3406	0.1885	+
	λ_{1}	0.5618	0.6023	0.6196	-
	ν_{1}	1.2689	1.2667	1.2583	-
	$F_{B 1}$	1.1261	0.8701	0.7660	+
	F_{01}	0.5813	0.4521	0.3071	+
	$\rho_{p l}$	0.6455	0.6439	0.6765	-
Core 2	$l_{i 2}$	$5.59 \cdot 10^{-3}$	$5.59 \cdot 10^{-3}$	$5.59 \cdot 10^{-3}$	+
	l_{02}	$7.98 \cdot 10^{-3}$	$7.98 \cdot 10^{-3}$	$7.98 \cdot 10^{-3}$	+
	$\phi_{r 2}$	$7.525 \cdot 10^{-8}$	$6.555 \cdot 10^{-8}$	$5.095 \cdot 10^{-8}$	-
	$\phi_{s 2}$	$8.2775 \cdot 10^{-8}$	$7.2105 \cdot 10^{-8}$	$5.6045 \cdot 10^{-8}$	-
	$\mathrm{H}_{\mathrm{a} 2}$	509.094	422.415	127.337	+
	$H_{q 2}$	51.302	39.986	21.157	+
	$H_{n 2}$	43.118	34.642	17.817	+
	$\lambda_{d 2}$	29.64	20.62	17.95	-
	$v_{d 2}$	4.70	4.05	3.41	-
	$F_{d B 2}$	0.4691	0.3714	0.2228	+
	$F_{02}^{\prime \prime}$	0.4079	0.3230	0. 1937	+
	λ_{2}	0.6148	0.6594	0.630 I	-
	ν_{2}	1. 4762	1. 4223	1. 2312	-
	$F_{B 2}$	0.8883	0.7474	0.8254	+
	F_{02}	0.5629	0.4490	0.3124	+
	$\rho_{p 2}$	0.6401	0.6531	0.6976	-
Windings	$N_{s 1}$	11	11	11	+
	$N_{s} 2$	12	12	12	-
	$N_{B 1}$	16	16	16	-
	$N_{B 2}$	20	20	20	-
	$N_{c 1}$	12	12	12	+
	$N_{c 2}$	12	12	12	-
	$N_{C L}$	5	5	5	-

Table III (Concluded)

DEVICE	Parameter value			S
	$T=-10^{\circ} \mathrm{C}$	$r=25^{\circ} \mathrm{C}$	$T=85^{\circ} \mathrm{C}$	
Resistors	104.75	104.3	105.75	0
	104.75	104.3	105.75	0
	105.0	104.7	106.3	0
	206.4	205.3	208. 1	-
	0.293	0.340	0.420	0
	0.457	0.530	0.655	+
Inductors $L_{0(0)}$	$0.3260 \cdot 10^{-3}$	$0.3311 \cdot 10^{-3}$	$0.3190 \cdot 10^{-3}$	0
$I_{\text {con (} 0 \text {) }}$	0.1451	0.1340	$0.1224-10^{-3}$	0
$L_{0(1)}^{\text {con(0) }}$	$0.3529 \cdot 10^{-3}$	$0.3655 \cdot 10^{-3}$	$0.3469 \cdot 10^{-3}$	0
$I_{\text {con (1) }}$	0.1607	0.1419	0.1331	0
$L_{0(2)}^{\text {con(1) }}$	$0.3442 \cdot 10^{-3}$	$0.3614 \cdot 10^{-3}$	$0.3362 \cdot 10^{-3}$	0
$I_{\text {con(2) }}$	0. 1469	0.1356	0.1292	0
Diode	$0.1307 \cdot 10^{-9}$	$9.7465 \cdot 10^{-9}$	$242.2 \cdot 10^{-9}$	+
	0.0420	0.0502	0.0553	-
	$200 \cdot 10^{9}$	$6.05 \cdot 10^{9}$	$0.0125 \cdot 10^{9}$	-
	0.382	0.360	0.415	-
Transistor	$1.01 \cdot 10^{-9}$	$54.01 \cdot 10^{-9}$	$3317.78 \cdot 10^{-9}$	-
	0.0459	0.0543	0.0659	+
	$54.0 \cdot 10^{-12}$	$57.0 \cdot 10^{-12}$	$62.0 \cdot 10^{-12}$	-
	0.6	0.6	0.6	+
	0.334	0.351	0.364	+
	$28.446 \cdot 10^{-9}$	$19.343 \cdot 10^{-9}$	$13.888 \cdot 10^{-9}$	-
	$1430 \cdot 10^{9}$	$200 \cdot 10^{9}$	$5.0 \cdot 10^{9}$	-
	0.429	0.430	0.450	+
	$0.0183 \cdot 10^{-9}$	2. $1964 \cdot 10^{-9}$	$237.6442 \cdot 10^{-9}$	+
	0.0375	0.0450	0.0531	-
	$62.0 \cdot 10^{-12}$	$65.0 \cdot 10^{-12}$	$70.0 \cdot 10^{-12}$	-
	0.7	0.7	0.7	-
	0.442	0.452	0.475	+
	$1.729 \cdot 10^{-4}$	$1.543 \cdot 10^{-4}$	$1.706 \cdot 10^{-4}$	-
	$3230 \cdot 10^{9}$	$300 \cdot 10^{9}$	$5.48 \cdot 10^{9}$	-
	0.000	0.000	0.000	+
	0.490	0.527	0.652	+

The core model to be applied is expressed in Eqs. (78) through (82). Following Eq. (78), the ϕ of each core is composed of an elastic component $\dot{\phi}_{\epsilon}$, and an inelastic component $\dot{\phi}_{\text {inel }}$; thus,

$$
\begin{align*}
& \dot{\phi}_{1}=\dot{\phi}_{\varepsilon 1}+\dot{\phi}_{\mathrm{inel}_{1}}\left(F_{1}, \phi_{1}\right) \tag{136}\\
& \dot{\phi}_{2}=\dot{\phi}_{\epsilon 2}+\dot{\phi}_{\mathrm{inel}}\left(F_{2}, \phi_{2}\right) \tag{137}
\end{align*}
$$

where, following Eq. (79), $\dot{\phi}_{\epsilon 1}=\epsilon \dot{F}_{1}$ and $\dot{\phi}_{\epsilon 2}=\epsilon \dot{F}_{2}$, and where $\dot{\phi}_{\text {inel }}\left(F_{1}, \phi_{1}\right)$ and $\dot{\phi}_{\text {inel }}\left(F_{2}, \phi_{2}\right)$ are each evaluated by the use of Eqs. (80) through (82).

By inspection of the loops containing inductors in Fig. 25, each of the drive currents $i_{L}, i_{C L}$, and i_{c} may be described by a general loop equation,

$$
\begin{equation*}
V=N \dot{\phi}+R_{1} i+L \frac{d i}{d t}+V_{L} \tag{138}
\end{equation*}
$$

in which $i, V, N \dot{\phi}, R_{1}, L$, and V_{L} corresponding to each drive current are given in Table IV. Since the voltage across Diode $d_{2}(2)$ is much smaller than any other term in the corresponding loop equation, it need not be exact and is approximated by $i_{L} R_{d}+0.6$ volt. For the same reason, the sum of the voltages across Core D and the collector and emitter of Transistor $T_{(0)}$ is approximated by 1.0 volt. These approximations will simplify the computer analysis without damaging the accuracy of the computed results.

Table IV
VALUES OR EXPRESSIONS FOR THE TERMS IN THE GENERAL LOOP EQUATION CORRESPONDING TO EACH DRIVE CURRENT

	V	$N \dot{\phi}$	R_{1}	L	v_{L}
i_{L}	0	$N_{s 1} \dot{\phi}_{1}+N_{s 2} \dot{\phi}_{2}$	$R_{1(1)}+R_{d}$	$L_{(1)}$	$0.6+i_{s} R_{3}$
$i_{C L}$	V_{s}	$-N_{C L} \dot{\phi}_{1}$	$R_{1(0)}$	$L_{(0)}$	1.0
i_{c}	V_{s}	$N_{c 1} \dot{\phi}_{1}-N_{c 2} \dot{\phi}_{2}$	$R_{1(2)}$	$L_{(2)}$	$V_{C E}$

The values of $L_{(0)}, L_{(1)}$, and $L_{(2)}$, which are to be used in Eq. (138), are determined as functions of $i_{C L}, i_{L}$, and i_{c}, respectively, by using the nonlinear inductor model, Eq. (84).

There are two more loop equations associated with the second stage, which apply to all four modes of operation:

$$
\begin{equation*}
f=N_{B 2} \dot{\phi}_{2}-N_{B 1} \dot{\phi}_{1}-V_{p n}-i_{d} R_{4}=0 \tag{139}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{g}=N_{s 2} \dot{\phi}_{2}+N_{s 1} \dot{\phi}_{1}+i_{s} R_{3}-R_{2}\left(i_{L}-i_{s}\right)=0 . \tag{140}
\end{equation*}
$$

The voltage $V_{p n}$ appears across Diode $d_{1(2)}$ in parallel with the base and emitter of Transistor $T_{(2)}$. In Modes I, II, and IV, and in the beginning of Mode III, $V_{p n}>0$, and so the transistor is cut of f while the diode is conducting; hence, $V_{p n}$ is evaluated by ignoring the transistor and considering the forward characteristics of the diode [Eqs. (85) through (90)]. On the other hand, in Mode III (except in the beginning), $V_{p n}<0$, and so the diode is reverse-biased while the transistor is either in the active region or in saturation; hence, $V_{p n}$ is evaluated by ignoring the diode and considering the transistor model [Eqs. (91) through (108)].

Equations (134) through (140) plus the core, inductor, diode, and transistor models [Eqs. (79) through (108)] will be used to obtain the numerical solution of all the time variables. This solution employs a simple predictor-corrector integration method and the Newton-Raphson method for the transcendental solution of Eqs. (139) and (140). The applications of both methods are discussed next.

2. Computation Methods

a. A Simple Predictor-Corrector Integration Method

In the circuit analysis above, eight variables have been expressed in a differential form: ϕ_{1} and $\phi_{2}[E q .(80)] ; i_{L}, i_{C L}$, and i_{c} [Eq. (138) and Table IV]; V_{d} [Eq. (90)]; V_{e} [Eq. (96)]; and V_{c} [Eq. (103)]. The differential equation describing each of these time variables is nonlinear, and will therefore be solved numerically. It was concluded in Report 4 (pp. 68-70) that for this circuit, the results obtained by using a simple predictor-corrector integration method (Report 4, p. 61) are
essentially identical with the results obtained by using the more sophis ticated Runge-Kutta and Adams methods (Report 4, p. 67). Following this conclusion, we shall use the former.

Letting y stand for $\phi_{1}, \phi_{2}, i_{L}, i_{c L}, i_{c}, V_{d}, V_{e}$, and V_{c} at time t, assume that $y_{(-2)}, y_{(-1)}$, and $\dot{y}_{(-1)}$ are known, where the subscripts (-2) and (-1) indicate values at times $(t-2 \Delta t)$ and $(t-\Delta t)$, respectively, and Δt is a short time increment. First, y is predicted from the integration formula

$$
\begin{equation*}
y=y_{(-2)}+2 \Delta t \dot{y}_{(-1)} \tag{141}
\end{equation*}
$$

A correction for y is then obtained, using the differential equation

$$
\begin{equation*}
\dot{y}=f(y) \tag{142}
\end{equation*}
$$

and the integration formula

$$
\begin{equation*}
y=y_{(-1)}+0.5 \Delta t\left[\dot{y}+\dot{y}_{(-1)}\right] . \tag{143}
\end{equation*}
$$

The various time variables depend on one another. Therefore, after Eq. (141) is applied to each variable, the iterative computation of these variables should be performed sequentially in a loop, until a general convergence is achieved. Within each computation cycle of this major loop, one may be tempted to iterate Eqs. (142) and (143) in a minor loop until convergence is achieved for one variable, before proceeding to do the same for another. Compared with the method of computation where no minor-loop convergence of one variable at a time is allowed, this method is not only more costly, but may also result in a wrong convergence of an individual variable. Such a danger exists if the values of the other variables are not close to their true values. In conclusion, following the application of E_{q}. (141) to all variables, Eqs. (142) and (143) will be applied to each variable only once within each computation cycle. The computation cycle will be repeated until convergence is reached for the entire system of time variables.

In order to achieve convergence, $\Delta t \dot{y}$ should be much smaller than y; hence, Δ_{t} should be much smaller than $|y / f(y)|$. It turns out that a reasonable value of Δt (from the point of view of computation
cost) satisfies this condition for all variables, except V_{d}. Substituting

$$
\begin{equation*}
\dot{V}_{d}=\frac{i-I_{s d} e^{v_{d} / \theta_{m d}}}{C_{d d}+C_{j d}}, \tag{144}
\end{equation*}
$$

where $C_{d d}$ and $C_{j d}$ are expressed in Eqs. (87) and (88) as functions of V_{d}. Hence, Δ_{t} should be much smaller than $\left(C_{d d}+C_{j d}\right) V_{d} /\left|i-I_{s d} e^{v_{d} / \theta_{m d}}\right|$. The total capacitance $\left(C_{d d}+C_{j d}\right)$ of a d_{1} diode used in this binary-counter circuit was found to be very small (around 1 pF). Consequently, the Δt required to achieve convergence is small enough to increase the cost of computation appreciably. Since such a small capacitance has a negligible effect on V_{d} and i_{d} and since $i_{d} \gg V_{d} / R_{\ell_{d}}$, Eqs. (89) and (90), when applied to a d_{1} diode, are reduced to

$$
\begin{equation*}
V_{p n}=i_{d} R_{d}+\theta_{m d} \ln \left(1+\frac{i_{d}}{I_{s d}}\right) \tag{145}
\end{equation*}
$$

As expected, Eq. (145) is essentially identical with Eq. (86), which describes the static $V-I$ characteristic of a diode. In conclusion, the value of $V_{p n}$ in Eq. (139) will be computed from Eq. (145) in Modes I, II, and IV and in the beginning of Mode III, whereas in Mode III (except the beginning), $V_{p n}$ will be computed by applying Eqs. (142) and (143) to the dynamic model of the transistor, Eqs. (91) through (108).

b. Newton-Raphson Method for Transcendental Solution of Currents

As described above, each of the integrable time variables (ϕ_{1}, $\phi_{2}, i_{L}, i_{C L}, i_{c}, V_{d}, V_{e}$, and V_{c}) is predicted initially by using Eq. (141), and then corrected by applying Eqs. (142) and (143) once in every cycle of computation. Substituting these values into Eqs. (134) through (138), Eqs. (139) and (140) become two transcendental equations with currents i_{d} and i_{s} as unknowns. These will be solved by the use of Newton-Raphson method of successive approximation. ${ }^{25}$ At the end of each computation cycle, corrections δi_{d} and δi_{s} are added to the values of i_{d} and i_{s}, respectively, of the previous computation cycle (see Report 4, p. 60), where

$$
\begin{equation*}
\delta i_{d}=\frac{1}{D}\left(-f \frac{\partial g}{\partial i_{s}}+g \frac{\partial f}{\partial i_{s}}\right) \tag{146}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta i_{s}=\frac{1}{D}\left(f \frac{\partial g}{\partial i_{d}}-g \frac{\partial f}{\partial i_{d}}\right) \tag{147}
\end{equation*}
$$

and where

$$
\begin{equation*}
D=\left(\frac{\partial f}{\partial i_{d}}\right)\left(\frac{\partial g}{\partial i_{s}}\right)-\left(\frac{\partial f}{\partial i_{s}}\right)\left(\frac{\partial g}{\partial i_{d}}\right) \tag{148}
\end{equation*}
$$

If f (or g) is oscillatory, the correction for i_{d} (or i_{s}) is $0.5 \delta i_{d}$ (or $\left.0.5 \delta i_{s}\right)$.

> Differentiation of Eqs. (134) through (137), (139), and (140) with respect to i_{d} and i_{s} gives

$$
\begin{align*}
& \frac{\partial f}{\partial i_{d}}=-\left(N_{B 2}^{2} \dot{\phi}_{2}^{\prime}+N_{B 1}^{2} \dot{\phi}_{1}^{\prime}+R_{4}+V_{p n}^{\prime}\right) \tag{149}\\
& \frac{\partial g}{\partial i_{s}}=N_{s 2}^{2} \dot{\phi}_{2}^{\prime}+N_{s 1}^{2} \dot{\phi}_{1}^{\prime}+R_{2}+R_{3} \tag{150}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{\partial f}{\partial i_{s}}=-\frac{\partial \mathrm{g}}{\partial i_{d}}=N_{s 2} N_{B 2} \dot{\phi}_{2}^{\prime}-N_{s 1} N_{B 1} \dot{\phi}_{1}^{\prime} \tag{151}
\end{equation*}
$$

where $\dot{\phi}_{1}^{\prime}=d \dot{\phi}_{1} / d F_{1}, \dot{\phi}_{2}^{\prime}=d \dot{\phi}_{2} / d F_{2}$, and $V_{p n}^{\prime}=d V_{p n} / d i_{d}$.
Let us consider $\dot{\phi}_{1}^{\prime}$ and $\dot{\phi}_{2}^{\prime}$ first. Following Eq. (78),

$$
\begin{equation*}
\dot{\phi}^{\prime}=\dot{\phi}_{\epsilon}^{\prime}+\dot{\phi}_{\mathrm{ine} 1}^{\prime} \tag{152}
\end{equation*}
$$

where $\dot{\phi}_{\epsilon}^{\prime}=d \dot{\phi}_{\epsilon} / d F$ and $\dot{\phi}_{\text {inel }^{\prime}}=d \dot{\phi}_{\text {inel }} / d F$. Approximating \dot{F} by $\left[F-F_{(-1)}\right] / \Delta t$, the derivative of Eq. (79) with respect to F becomes

$$
\begin{equation*}
\dot{\phi}_{\epsilon}^{\prime} \approx \frac{\epsilon}{\Delta_{t}} \tag{153}
\end{equation*}
$$

where $\epsilon=\epsilon(F)$ [Eq. (79a)]. Differentiating Eq. (80) with respect to F, we get

$$
\begin{equation*}
\dot{\phi}_{\text {inel }}^{\prime}=\left[1-\left(\frac{2 \phi+\phi_{s}-\phi_{d}}{\phi_{s}+\phi_{d}}\right)^{2}\right] \dot{\phi}_{p}^{\prime}+4 \dot{\phi}_{p} \frac{\left(2 \phi+\phi_{s}-\phi_{d}\right)\left(\phi+\phi_{s}\right)}{\left(\phi_{s}+\phi_{d}\right)^{3}} \phi_{d}^{\prime} \tag{154}
\end{equation*}
$$

where $\dot{\phi}_{p}^{\prime}=d \dot{\phi}_{p} / d F$ and $\phi_{d}^{\prime}=d \phi_{d} / d F$; thus, following Eq. (81),

$$
\dot{\phi}_{p}^{\prime}=\left\{\begin{array}{lll}
0 & \text { if } & 0 \leq F \leq F_{d}^{\mathrm{min}} \tag{155}\\
\lambda_{d} \nu_{d}\left(F-F_{d}^{\mathrm{min}}\right)^{\nu} d_{d}^{-1} & \text { if } & F_{d}^{\mathrm{min}} \leq F \leq F_{d B} \\
\lambda \nu\left(F-F_{0}^{\prime \prime}\right)^{\nu-1} & \text { if } & F_{d B} \leq F \leq F_{B} \\
\rho_{p} & \text { if } & F_{B} \leq F
\end{array}\right.
$$

and, following Eq. (82),

$$
\begin{align*}
& {\left[V_{1}\left[\ln \left(\frac{F-H_{a} l_{o}}{F-H_{a} l_{i}}\right)+F\left(\frac{1}{F-H_{a} l_{o}}-\frac{1}{F-H_{a} l_{i}}\right)\right]\right.} \\
& \text { if } F \leq F_{d}^{m i n} \\
& \phi_{d}^{\prime}=\left\{V_{2}\left\{\frac{1}{H_{d}^{\mathrm{min}}}+\left(\frac{1}{H_{n}}-\frac{1}{H_{q}}\right)\left[\ln \left(\frac{F\left(1-\frac{H_{n}}{H_{d}^{\mathrm{min}}}\right)}{F-H_{n} l_{i}}\right)-\frac{H_{n} l_{i}}{F-H_{n} l_{i}}\right]\right\} \quad \text { if } \quad F_{d}^{\mathrm{min}} \leq F \leq H_{d}^{\mathrm{min}} l_{o}\right. \\
& {\left[V_{2}\left(\frac{1}{H_{n}}-\frac{1}{H_{q}}\right)\left[\ln \left(\frac{F-H_{n} l_{o}}{F-H_{n} l_{i}}\right)+F \frac{H_{n}\left(l_{o}-l_{i}\right)}{\left(F-H_{n} l_{o}\right)\left(F-H_{n} l_{i}\right)}\right] \quad \text { if } H_{d}^{\mathrm{min}} l_{o} \leq F \quad .\right.} \tag{156}
\end{align*}
$$

The expressions for $V_{p n}^{\prime}$ are considered next. As explained previously, in Modes I, II, and IV and in the beginning of Mode III, $V_{p n}$ is expressed by Eq. (145), and so its derivative with respect to i_{d} is simply

$$
\begin{equation*}
V_{p n}^{\prime} \equiv \frac{d V_{p n}}{d i_{d}}=R_{d}+\frac{\theta_{m d}}{i_{d}+I_{s d}} \tag{157}
\end{equation*}
$$

During Mode III (except the beginning) determination of $V_{p n}$, and thus also of $V_{p n}^{\prime}$, is more complex. Differentiating the combination of Eqs. (95) and (97) with respect to i_{b}, and substituting $i_{b}=i_{e}-i_{c}$, we get

$$
\begin{equation*}
V_{B E}^{\prime} \equiv \frac{d V_{B E}}{d i_{b}}=V_{p n}^{\prime}=R_{b}+\frac{1+R_{e} \frac{d i_{e}}{d V_{e}}}{\frac{d i_{e}}{d V_{e}}-\frac{d i_{e}}{d V_{e}}} . \tag{158}
\end{equation*}
$$

Note that $V_{p n}^{\prime}=V_{B E}^{\prime}$ because $V_{B E}=-V_{p n}$ and $i_{b}=-i_{d}$. The expression for $d i_{e} / d V_{e}$ is derived by substituting Eqs. (91), (93), (94), and (98) into Eq. (96) and differentiating the latter with respect to V_{e}. Substituting the approximations

$$
\frac{d \dot{V}_{e}}{d V_{e}}=\frac{\ddot{V}_{e}}{\dot{V}_{e}}=\frac{1}{\Delta t}\left[1-\frac{\dot{V}_{e(-1)}}{\dot{V}_{e}}\right]
$$

and

$$
\frac{d V_{c}}{d V_{e}}=\frac{\Delta V_{c}}{\Delta V_{e}}=\frac{V_{c}-V_{c(-1)}}{V_{e}-V_{e(-1)}}
$$

into the resulting expression for $d i{ }_{e} / d V_{e}$, the latter becomes

$$
\begin{equation*}
\frac{d i_{e}}{d V_{e}} \approx i_{e}^{\prime}-\frac{\alpha_{i} I_{s c} e^{V_{c} / \theta_{m c}}}{\theta_{m c}}\left[\frac{V_{c}-V_{c(-1)}}{V_{e}-V_{e}(-1)}\right] \tag{159}
\end{equation*}
$$

where

$$
\begin{equation*}
i_{e}^{\prime}=\frac{I_{s e} e^{V_{e} / \theta_{m e}}}{\theta_{m e}}+\frac{1}{R_{\ell e}}+\frac{\left(C_{d e}+C_{j e}\right)}{\Delta t}\left[1-\frac{\dot{V}_{e(-1)}}{\dot{V}_{e}}\right]+\dot{V}_{e}\left(\frac{k_{e} I_{s e} e^{V_{e} / \theta_{m e}}}{\theta_{m e}}+\frac{N_{e} C_{j_{e}}}{V_{\varphi e}-V_{e}}\right) . \tag{160}
\end{equation*}
$$

Applying similar substitution, differentiation, and approximation to the collector junction, Eqs. (98) through (104) and Eq. (91), result in

$$
\begin{equation*}
\frac{d i_{c}}{d V_{e}}=\frac{\alpha_{n} I_{s e} e^{V_{e} / \theta_{m e}}}{\theta_{m e}}-i_{c}^{\prime} \frac{V_{c}-V_{c(-1)}}{V_{e}-V_{e(-1)}} \tag{161}
\end{equation*}
$$

where

$$
\begin{equation*}
i_{c}^{\prime}=\frac{I_{s c} e^{V_{c} / \theta_{m c}}}{\theta_{m c}}+\frac{1}{R_{\ell c}}+\frac{C_{d c}+C_{j c}}{\Delta t}\left[1-\frac{\dot{V}_{c(-1)}}{\dot{V}_{c}}\right]+\dot{V}_{c}\left(\frac{k_{c} I_{s c} e^{V_{c} / \theta_{m c}}}{\theta_{m c}}+\frac{N_{c} C_{j c}}{V_{\Psi_{c}}-V_{c}}\right) . \tag{162}
\end{equation*}
$$

3. Computer Program

The development of a computer program for analyzing the four modes of operation of the core-diode-transistor binary counter was based on the circuit equations in Sec. E-l and on the computation methods in Sec. E-2. The program is given in Appendix G. We shall first describe the features of this program, then outline its organization, and finally outline the computation steps at each time increment.

a. Program Features

The core and circuit parameters are read in from a deck of input-data cards which corresponds to a fixed temperature and a specific performance feature. Card decks for different temperature values differ from each other primarily in having different nominal parameter values (see Table III). Usually, evaluation of a specific performance feature is the main objective of the computer analysis. For example, the performance feature may be the minimum supply voltage $V_{s, m i n}$, the maximum supply voltage $V_{s, m a x}$, the maximum operation speed, etc. In the program shown in Appendix $G, V_{s, m i n}$ is the performance feature. This choice is based on the experimental observation that $V_{s, m i n}$ is determined by a failure in circuit performance (see Fig. 27), whereas $V_{s, m a x}$ is determined by $V_{C E}$ exceeding the specified $V_{C E, \text { max }}$ of the transistor, rather than by operation failure (see Fig. 29).

Each of the input-data cards corresponds to a single parameter, and includes the following: the nominal value P_{n} at the given temperature; the maximum percentage deviation from the nominal value $d_{\text {max }}$ (due to manufacturing nonuniformity, aging, etc.); and the sign S of a change in the parameter value which causes a specific circuit-performance feature to become worse. The value P of each parameter to be used in the analysis is then computed from the relation

$$
\begin{equation*}
P=P_{n}\left(1+S \frac{d_{\mathrm{max}}}{100}\right) \tag{163}
\end{equation*}
$$

Since every parameter is assigned its worst value, a worst-case analysis is thus likely to be achieved. Only a slight change in the computer program will be required in future if a different method guaranteeing a worst-case analysis is developed. The values of $P_{n}, d_{\text {max }}$, and S are printed out at the outset of the computation.

After setting the core and circuit parameters, the initial values of the time variables in Mode I must be established before running the computation through the four modes of operation. These initial values are zero for all time variables, except for ϕ_{1} and ϕ_{2} and for the fact that $V_{C E}=-V_{c}=V_{s}$. Referring to Fig. 25, $N_{C L}$ is considerably smaller than $N_{c 2}$ because $N_{C L}$ is limited by flux unsetting during Mode II (see Fig. 29), whereas no such limitation is imposed on $N_{c 2}$. In fact, referring to Table III, $N_{c 2}=12$ and $N_{C L}=5$. As a result of this condition, the MMF pulse $N_{c 2} i_{c}$ is capable of switching Core 2 to essentially negative saturation for $V_{s} \geq V_{s, m i n}$; incontrast, the MMF pulse $N_{C L}{ }^{i}{ }_{C L}$ is not large enough to switch Corel to negative saturationif V_{s} is around $V_{s, m i n}$. Consequently, whereas the initial value of ϕ_{2}, ϕ_{201}, may be assumed to be $-\phi_{r}$, the initial value of ϕ_{1}, ϕ_{101}, must be computed. Referring to Fig. 27, if the composite duration of the $i_{C L}$ pulses during Modes II-1 and II-2 were longenough to complete switching toa point on the static $\phi_{d}(F)$ curve of Corel, then ϕ_{10} I could be evaluated transcendentally by using Eq. (82). This, however, is not the case for two reasons: First, the lower the value of V_{s} is, the lower is the amplitude of $i_{C L}$, and so the longer is the required pulse duration for complete switching. Second, as explainedinFig. 28, lowering V_{s} causes the duration of Submode III-B, $T_{\text {III-B }}$, toshorten, andas a result the duration of the i_{c} pulse becomes shorter. Fortunately, exact determination of ϕ_{101} for any value of V_{s} can be achieved quite simply by adding a computation run through preliminary Modes IV-1 and IV-2, to be referred to as Modes 0-1 and 0-2, before the computation of Modes I-IV is begun. Assuming that initially (beginning of the preliminary Mode 0-1) $\phi_{1}=\phi_{r}$ and $\phi_{2}=-\phi_{r}$, the time variables during Mode $0-1$ and Mode $0-2$ are computed; the final values of ϕ_{1} and ϕ_{2}, then, serve as the initial values, ϕ_{101} and ϕ_{201}, of Mode I.

After establishing the initial conditions of Mode I, computation of the time variables vs. time proceeds along Modes I, II-1, II-2, III, IV-1, and IV-2. The final ϕ_{1} and ϕ_{2} values of one mode become the initial ϕ_{1} and ϕ_{2} values of the following mode. The time increment Δ_{t} is not constant, but rather dependent on the convergence conditions. Generally, Δt
in Modes II and IV is longer than Δt in Mode I, and the later is longer than Δ_{t} in Mode III. Furthermore, Δ_{t} within a given mode may be changed according to the convergence condition.

At each time increment Δt, the time variables are solved for by applying the computation methods of Eqs. (141) through (162) to the basic circuit equations, Eqs. (134) through (140), and the device models, Eqs. (79) through (108). This numerical solution is carried out within a PROCEDURE called INCHEMENT, which may be regarded as the heart of the entire program.

The main program includes the instructions for reading in the input-data cards and setting the value of V_{s}. It also includes the framework for the computation in each mode, in which instructions are given for establishing the initial conditions, establishing Δt, calling PKOCEDURE INCREMENT, printing circuit-failure messages, and switching to the next mode.

The value of $V_{s, m i n}$ for a given temperature and performance feature is determined by the computer in the following manner: a low value of V_{s} is set, and the computation for successive modes is performed. If there is a failure in Mode III because the transistor either turns off in Submode III-C or does not turn on at all, the computation with the assumed V_{s} terminates, V_{s} is increased by ΔV_{s}, and a new computation is performed from the beginning. This computation is repeated until the transistor stays on properly during Mode III, in which case the computation in Modes IV-1 and IV-2 is completed; the corresponding V_{s} value is regarded as $V_{s, m i n}$. A similar algorithm can be built into the program in order to compute $V_{s, m a x}$.

b. Program Outline

The computer-analysis program of the core-diode-transistor binary counter is given in Appendix G. The outline of this program is as follows:

(1) Declare

(A) the global identifiers
(B) the lists:

LIST2 (temperature, V_{s}, I_{L}, and T_{r})
LIST3 (time variables).
(C) the formats:

FMT2 (for LIST2);
FMT3 (for LIST3);
FMT4 (heading for output time variables);
FMT5 ("Mode");
FLAG1 ("s surious transistor turn-on");
FLAG2 (" spurious transistor turn-off");
FLAG3 (" Maximum collector-emitter voltage exceeded") ;

FLAG4 ("No transistor turn-on in Mode 3").
(2) Declare the PROCEDUREs whose names and functions are as follows:

TRANSFER (N, A, B)
Transfer the values of N identifiers from Array A to Array B.

PRINTOUT

Print output variables (LIST3) every $n t h \Delta t$.
At the end of a page, print computation time, skip page, and print output heading (FMT4). Fill PLOT arrays with the values of time variables and time, each multiplied by its own scale factor, every mth Δt (m differs among modes).

PRINTHEAD

On a new page print Mode number, output heading (FMT4), and initial values of output variables (LIST3).

INTERPOL (POINTS, ICC, BET, COEF)
Compute the coefficients of a third-degree polynomial for every four experimental points of $\beta_{n} v s . I_{c}$ (or $\beta_{i} v s . I_{e}$), which are to be used in the interpolation of β_{n} $\left(\right.$ or $\left.\beta_{i}\right)$.

BETA (IC, P, COEF, ICC, BET, POINTS)
Interpolate β_{n} for given I_{c} (or β_{i} for given I_{e}).

Compute $\dot{\phi}_{\epsilon}=\epsilon\left[F-F_{(-1)}\right] / \Delta t$ and $\dot{\phi}_{\epsilon}^{\prime}=\epsilon / \Delta t$.
PHIDOT (F, PHI, LI, LO, PHIR, PHIS, HA, HQ, HTH, HN,
LAMBDAD, NUD, FDB, FOPP, LAMBDA, NU, FB, FO, ROP,
F12, F23, V1, V2, PHIDOTPRIME)
For given F and ϕ (both of arbitrary sign), compute $\phi_{d}\left[\mathrm{Eq}\right.$. (82)]; $\phi_{d}^{\prime}[\mathrm{Eq} .(156)] ;$
$\dot{\phi}_{p}[E q .(81)] ; \dot{\phi}_{p}^{\prime}\left[\right.$ Eq. (155)]; $\dot{\phi}_{\text {inel }}$ [Eq. (80)];
${ }^{p}{ }^{p}{ }^{\prime} \dot{\phi}_{\text {ine }}^{\prime}$ [Eq. $\left.(154)\right]$. If $\phi \geq \phi_{d}^{\text {ine }}$, then
$\dot{\phi}_{\text {inel }} \stackrel{i n e l}{=} 0$ and $\dot{\phi}_{\text {inel }}^{\prime}=0$.
I (V, VL, II, IMI, IDOTM1, NPHIDOT, R1, LO, ICON, IDOT)
For a loop that includes a nonlinear inductance, compute once (no iteration) L [Eq. (84)]; $d i / d t[E q .(138)]$; and $i[E q$. (143)]. i cannot be negative.

V (I, VJ, VM1, VDOTM1, IS, THETAM, CJO, VCPOT, N, K, RL, CJ, CD, ISF, VDOT, IPR)

For given current i and voltage V of a baseemitter (or base-collector) junction, compute $I_{s} e^{V / \theta_{m}} ; C_{j}\left[\mathrm{Eq}\right.$. (94) or Eq. (101)]; C_{d} [Éq. (93) or Eq. (100)]; $\dot{V}\left[\begin{array}{c}\text { [Eq. (96) or } \\ \text { or } \\ V / \theta_{m}\end{array}\right.$ Eq. (103)]. Correct $V\left[E q\right.$. (143)] and $I_{s} e^{V / \theta_{m}}$ and compute i^{\prime} [Eq. (160) or Eq. (162)].

INCREMENT*

Compute every time variable y and its derivative \dot{y} at a given time increment from the values of $y_{(-1)}, \dot{y}_{(-1)}$, and $y_{(-2)}$ and the circuit equations [Eqs. (134) through (140)] by applying the device models [Eqs. (79) through (108)], the predictorcorrector integration method [Eqs. (141) through (143)], and the Newton-Raphson iterative method [Eqs. (146) through (151)].
(3) Proceed with the MAIN PROGRAM:
(A) Read in the deck of input-data cards corresponding to given temperature and performance feature. (Each card contains the data for one parameter:

[^3]nominal value, maximum percentage deviation, and worst-case differential sign.) Compute the worst-case parameter value $[E q$. (163)].
(B) Print the above data in a table, and verify by listing the corresponding global parameters and their values.
(C) Compute the following auxiliary parameters for each of the two cores: H_{s} [Eq. (82 e)]; $H^{\text {min }}$ $[\mathrm{Eq} .(82 \mathrm{~d})] ; F_{d}^{\mathrm{min}}[\mathrm{Eq} .(82 \mathrm{c})] ; F_{23}=H_{d}^{\text {min }}{ }^{d} l_{o}$; $V_{1}[\mathrm{Eq} .(82 \mathrm{a})]^{d} ; V_{2}[\mathrm{Eq} .(82 \mathrm{~b})] ;$ and ϵ $[\mathrm{Eq} .(79 \mathrm{a})]$.
(D) For each specified value of V_{s}, perform the following all-mode computation:

1. Determine T_{r}, I_{L}, and the maximum slope of $i_{L}(t)$.
2. Compute average values for i_{s} and $\dot{\phi}_{1}$ in Mode I, using the relations (see Report 4, p. 62)

$$
\begin{equation*}
I_{s}=\left(\frac{V_{s}}{R_{1}}\right) \frac{R_{2}}{R_{2}+0.6 \rho_{p 1}\left(N_{s 1}^{2}+N_{s 2}^{2}\right)} \tag{164}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{\phi}_{12}=\left|\frac{0.6 \rho_{p 1} N_{B 2}\left[\left(N_{s 1} N_{B 2}+N_{s 2} N_{B 1}\right) I_{s}-\left(N_{B 1}+N_{B 2}\right) F_{0}^{\prime \prime}\right]-0.7 N_{B 1}}{N_{B 1}^{2}+N_{B 2}^{2}}\right| \tag{165}
\end{equation*}
$$

Establish a"negligible value"

$$
\begin{equation*}
N V=0.001 \bar{\phi}_{12} \tag{166}
\end{equation*}
$$

for $\dot{\phi}_{1}$ and $\dot{\phi}_{2}$.
3. Establish and print the values of the time variables after the completion of each of the modes:
(i) Subtract $\Delta \phi_{\epsilon}\left(F_{1}\right)$ from ϕ_{1} and $\Delta \phi_{\epsilon 2}\left(\bar{F}_{2}\right)$ from ϕ_{2}, where, following Eqs. (79a) and (82a) [see Eq. (30) in Report 1 (p. 19)],

$$
\begin{equation*}
\Delta \phi_{\epsilon}=F V_{1} \ln \left(\frac{H_{a} l_{o}+|F|}{H_{a} l_{i}+|F|}\right) \tag{167}
\end{equation*}
$$

Make sure that final $\left|\phi_{1}\right| \leq \phi_{r l}$ and final $\left|\phi_{2}\right| \leq \phi_{r 2}$.
(ii) Set $V_{C E}=-V_{c}=V_{s}$.
(iii) Set all other variables to zero.
4. Perform the computation steps outlined next for each mode of operation in the following order: Mode 0 (repeated twice); Mode I; Mode II (repeated twice), Mode III; Mode IV (repeated twice):

Mode 0

(i) Set the initial flux levels $\phi_{1}=\phi_{r}$ and $\phi_{2}=-\phi_{r}$ for Mode 0-1 only.
(ii) Compute approximate switching time, $\tau_{s}=2 \phi_{r 1} N_{B 1} / 0.7$.
(iii) Set $\Delta_{t}=\tau_{s} / 150$.
(iv) Call PRINTHEAD PROCEDURE.
(v) For every Δt until termination:

Set $t=t_{(-1)}+\Delta t$.
Call INCREMENT PROCEDURE.
Call PRINTOUT PROCEDURE.
(vi) Terminate Mode 0 when $\dot{\phi}_{1}$ and $\dot{\phi}_{2}$ are negligible (i.e.. $\left|\dot{\phi}_{1}\right|<N V$ and $\left.\mid \dot{\phi}_{2}!<N V\right)$ for $30 \Delta t$'s or if $\dot{\phi}_{1}$ and $\dot{\phi}_{2}$ are negligible at least once and $\phi_{1}<-0.1 \phi_{r 1}$.

Mode I

(i) Compute approximate switching time, $\tau_{s}=2 \phi_{r 1} \overline{\dot{\phi}}_{12}$.
(ii) Call PRINTHEAD PROCEDURE.
(iii) For every Δt until termination:
Set $\Delta t=\left\{\begin{array}{cl}\tau_{s} / 300 & \text { if } t<T_{r} \\ \tau_{s} / 60 & \text { if } t \geq T_{r} \quad \text { and } \\ & \left|\dot{\phi}_{1}\right|,\left|\dot{\phi}_{2}\right|>20 N V \\ \tau_{s} / 30 & \text { otherwise } .\end{array}\right.$

Set $t=t(-1)+\Delta_{t}$.

Call InCREMENT PROCEDURE.

If $V_{C E}>V_{C E, \text { max }}$ print Flag3.
Call PRINTOUT PROCEDURE.
If $V_{C E}<1.0$ volt, print FLAGI.
(iv) Terminate Mode I when $\dot{\phi}_{1}$ and $\dot{\phi}_{2}$ are negligible for $30 \Delta t$'s or at least once and $\phi_{1}>-0.9 \phi_{r 1}$.

Mode II
(i) Compute approximate switching time,
$\tau_{s}=2 \phi_{r 1} N_{B 1} / 0.7$.
(ii) Set $\Delta t=\tau_{s} / 150$.
(iii) Call PRINTHEAD PROCEDURE.
(iv) For every Δt until termination:

Set $t=t_{(-1)}+\Delta t$
Call INCREMENT PROCEDURE.
Call PRINTOUT PROCEDURE.
(v) Terminate Mode II when $\dot{\phi}_{1}$ and $\dot{\phi}_{2}$ are negligible for $30 \Delta t$'s or at least once and $\phi_{1}<-0.1 \phi_{r 1}$.

Mode III
(i) Compute approximate switching time, $\tau_{s}=2 \phi_{r 1} / \overline{\dot{\phi}}_{12}$
(ii) Call PROCEDURE INTERPOL twice, once for $\beta_{n} v s . I_{c}$ and once for β_{i} vs. I_{e}.
(iii) Call PRINTHEAD PROCEDURE.
(iv) For every Δt until termination:

Set $\Delta t=\left\{\begin{array}{lll}\tau_{s} / 300 & \text { if } t<2 T_{r} \text { or } \\ & \left(\phi_{1}>\phi_{r 1} \text { and } \phi_{2}>0.8 \phi_{r 2}\right) \text { or } \\ & \left(\phi_{1}>\phi_{r 1} \text { and } \phi_{2}<-\phi_{r 2}\right) \\ \tau_{s} / 100 & \text { otherwise. }\end{array}\right.$
Decrease Δt by a factor of, say, 2.5 , if convergence may fail.

Set $t=t_{(-1)}+\Delta t$.

Determine the time T_{v} when the transistor is on and the diode is off, e.g., when $V_{p n}<-0.1$ volt. While the transistor is on ($t \geq T_{v}$), call PROCEDURE BETA twice, once for $\beta_{n} v s . i_{c}$, and once for β_{i} vs. i_{e}; Compute $\alpha_{n}=\beta_{n} /\left(1+\beta_{n}\right)$ and $\alpha_{i}=\beta_{i} /\left(1^{n}+\beta_{i}^{n}\right)$.

Call INCREMENT PROCEIDURE.

If $\phi_{2}>0<\phi_{1}$ and $V_{C E}>5 V_{s}$, then the operation fails due to transistor turn-off; print FLAG2 and terminate the computation for the given V_{s} value.

Call PRINTOUT PROCEDURE.
(v) Terminate Mode III when ($\dot{\phi}_{1}$ and $\dot{\phi}_{2}$ are negligible for $30 \Delta t$'s or at least once and $\phi_{1}>0>\phi_{2}$) or $\left(\phi_{1}>\phi_{r 1}\right.$ and $\left.\phi_{2}<-1.2 \phi_{r 2}\right)$ or $\left(\phi_{1} \geq \phi_{r 1}\right.$ and $\phi_{2}<-\phi_{r 2}$ and $\left.V_{C E}>V_{s}\right)$ or $\left(i_{c} \leq 1 \mathrm{~mA}\right.$ and $\left.\phi_{1}>0>\phi_{2}\right)$.
If there is no transistor turn-on in Mode III, print FLAG4 and terminate the computation for the given V_{s} value.

Mode IV

(i) Compute approximate switching time,
$\tau_{s}=2 \phi_{r 1} N_{B 1} / 0.7$.
(ii) Set $\Delta_{t}=\tau_{s} / 150$
(iii) Call PRINTHEAD PROCEDURE.
(iv) For every Δ_{t} until termination:

Set $t=t_{(-1)}+\Delta t$
Call INCREMENT PROCEDURE.
Call PRINTOUT PROCEDURE.
(v) Terminate Mode IV when $\dot{\phi}_{1}$ and $\dot{\phi}_{2}$ are negligible for $30 \Delta t$'s or at least once and $\phi_{1}<-0.1 \phi_{r 1}$.
(E) Repeat the above all-mode computation in Step (D) until four modes are executed without failure.

c. Outline for PROCEDURE INCREMENT

As explained previously, the heart of the computer program is the INCFEMENT PROCEDURE, where the computation of the time variables is carried out at each time increment, $\triangle t$. The outline of this PROCEDURE is as follows:
(A) Lower the Δt index of the time variables:

1. Set $y_{(-2)}, y_{(-1)}$, and $\dot{y}_{(-1)}$ [Eqs. (141)
through (143)] equal to the values of
$y_{(-1)}, y$, and \dot{y}, respectively, of the previous Δt, where $y=\phi_{1}, \phi_{2}, i_{L}$ (in every mode); $i_{c I}$ (in Modes 0 , II, and IV);
i_{c}, V_{e}, V_{c} (in Mode III, transistor on).
2. Set $y_{(-2)}$ equal to previous $y_{(-1)}$ for $y=i_{d}$ and i_{s} and set $y_{(-1)}$ equal to previous y for $y=i_{d}, i_{s}, F_{1}$, and F_{2}.
(B) GUESS :
3. Using Eq. (141), predict the values of $y=\phi_{1}, \phi_{2}$ (in every mode) ; $i_{C L}$ (in Modes 0, II, and IV); i_{c}, V_{e}, V_{c} (in Mode III, transistor on $)$; i_{L} (in every mode except if $t \leq T_{r}$ in Mode I or III, in which case compute i_{L} from experimental i_{L} vs. t).
4. Using the approximation $y \approx 2 y_{(-1)}-y_{(-2)}$, predict the values of $y=i_{d}$ and i_{s}.
(C) LOOP:

In each computation cycle, compute the following:

1. $F_{1}[\mathrm{Eq} .(134)]$ and $F_{2}[\mathrm{Eq}$. (135)].
2. $\dot{\phi}_{i n \mathrm{nel}}$ and $\dot{\phi}_{\epsilon 1}$ by evaluation $\epsilon\left(F_{1}\right)$

PHIDOT and PHIDOTE for Core 1 ;
$\dot{\phi}_{1}=\dot{\phi}_{\text {ine1,1 }}+\dot{\phi}_{\epsilon 1} ;$ and
$\dot{\phi}_{1}^{\prime}=\dot{\phi}_{\text {inel,l }}^{\prime}+\dot{\phi}_{\epsilon 1}^{\prime} \quad$.
3. $\begin{aligned} \dot{\phi}_{\text {inel }} & \text { and } \dot{\phi}_{\epsilon 2}, \text { by evaluating } \epsilon\left(F_{2}\right) \\ & {[\operatorname{Eq} .(79 a)] \text { and calling PROCEDUREs } }\end{aligned}$

PHIDOT and PHIDOTE for Core 2;
$\dot{\phi}_{2}=\dot{\phi}_{\text {ine1,2 }}+\dot{\phi}_{\epsilon 2} ;$ and
$\dot{\phi}_{2}^{\prime}=\dot{\phi}_{\text {inel }, 2}^{\prime}+\dot{\phi}_{\epsilon 2}^{\prime}$
4. i_{L} (unless $t \leq T_{r}$ in Mode I or III), by calling PROCEDURE I [Eq. (138) and Table IV].
5. $i_{C L}$ (in Modes 0, II, and IV), by calling PROCEDURE I [Eq. (138) and Table IV]
(if $t>4.6 \mu \mathrm{~s}$, then $V_{s}=0$)
6. i_{c} (if the Lransistor is on in Mode III),
by calling PROCEDURE I [Eq. (138) and
Table IV].
7. ϕ_{1} and ϕ_{2}, Eq. (143).
8. Unless the transistor is on in Mode III:
$V_{p n}$ [Eq. (145)] and $V_{p n}^{\prime}$ [Eq. (157)]
assuming ideal reverse-bias characteristics.
If the transistor is on in Mode III:
(i) $i_{b}=-i_{d}$ and $i_{e}=i_{b}+i_{c}$.
(ii) V_{e}, by calling PROCEDURE V for the emitter junction.
(iii) V_{c}, by calling PROCEDURE V for the collector junction.
(iv) $V_{B E}$ [Eqs. (95) and (97)].
(v) $V_{C E}[E q .(106)]$.
(vi) $d i_{e} / d^{V}$ [Eq. (159)].
(vii) $d i_{c} / d V_{e}[E q .(161)]$.
(viii) $V_{B E}^{\prime}\left[\mathrm{Eq}_{\mathrm{q}} .(158)\right]$.
(ix) $V_{p n}=-V_{B E}$ and $V_{p n}^{\prime}=V_{B E}^{\prime}$
9. f and g [Eqs. (139) and (140)].
10. $\partial f / \partial i_{d}[E q .(149)] ; \partial g / \partial i_{s}[E q . ~(150)] ;$
$\partial f / \partial i_{s}\left[\mathrm{Eq}_{\mathrm{q}} .(151)\right] ; \partial_{\mathrm{g}} / \partial i_{d}=-\partial f / \partial i_{s} ;$
D [Eq. (148)].
11. $\delta i_{d}[\mathrm{Eq} .(146)] ; \delta i_{s}[\mathrm{Eq} .(147)]$.
12. Add δi_{d} to i_{d} of previous computation cycle, but if the sign of f has changed, add only $0.5 \delta i_{d}$; add δi_{s} to i_{s} of previous computation cycle, but if the sign of g has changed, add only $0.5 \delta i_{s}$.
(D) If $\left|\delta i_{d}\right|>0.0001\left|i_{d}\right|$ or $\left|\delta i_{s}\right|>0.0001\left|i_{s}\right|$, perform the computation cycle under (C) again, provided no more than 19 cycles have been computed.
(E) If $\left|\dot{\phi}_{1}\right|<N V$ and $\left|\dot{\phi}_{2}\right|<N V$ and $t>\tau_{s} / 2$, then $\dot{\phi}_{1}$ ϕ_{2} are regarded as negligible (no switching).

4. Experimental and Computed Time-Variable Waveforms

a. Results

The three-stage binary counter (Fig. 25) was run experimentally under a nominal condition of $T=25^{\circ} \mathrm{C}$ and $V_{s}=28 \mathrm{~V}$, and under two extreme conditions: $T=-10^{\circ} \mathrm{C}$ and $V_{s}=15 \mathrm{~V}$ (it was found that at $T=-10^{\circ} \mathrm{C}$, $\left.V_{s, \min }=14.9 \mathrm{~V}\right)$ and $T=85^{\circ} \mathrm{C}$ and $V_{s}=50 \mathrm{~V}\left(V_{s, \text { max }}\right.$ was not reached; the value of $V_{s}=50 \mathrm{~V}$ was limited by the specification of maximum collectoremitter voltage). In each run, oscillograms of the following time variables were photographed:

Mode I: $\quad i_{L}, i_{s}, \dot{\phi}_{1}, \dot{\phi}_{2}, V_{p n}$, and i_{d}
Mode II-1: $i_{C L}, i_{s}, \dot{\phi}_{1}, \dot{\phi}_{2}, V_{p n}$, and i_{d}
Mode III: $\quad i_{L}, i_{s}, \dot{\phi}_{1}, \dot{\phi}_{2}, V_{p n}, i_{d}, V_{C E}$, and i_{c} Mode IV-1: $\quad i_{C L}, i_{s}, \dot{\phi}_{1}, \dot{\phi}_{2}, V_{p n}$, and i_{d}.

For each of the above cases, a computer program was run on a Burroughs B-5500 digital computer, using the core and circuit parameters in Table III and the scale factors of the recorded oscillograms. The computed results, first written on a magnetic tape, were plotted on a CalComp Model 570 plotter.

The above-listed experimental oscillograms and the corresponding computed waveforms are compared in Figs. 59, 60, and 61 for the cases of $T=-10^{\circ} \mathrm{C}$ and $V_{s}=15 \mathrm{~V}, T=25^{\circ} \mathrm{C}$ and $V_{s}=28 \mathrm{~V}$, and $T=85^{\circ} \mathrm{C}$ and $V_{s}=50 \mathrm{~V}$, respectively. In the case of $T=-10^{\circ} \mathrm{C}$ and $V_{s}=15 \mathrm{~V}$, the computation could not be completed in the four modes of operation because of a transistor turn-off in Submode III-C. (Proper operation was computed for $T=-10^{\circ} \mathrm{C}$ at $V_{s}=16.1 \mathrm{~V}$, as we shall see later.) In order to be able to compare the experimental and computed waveforms for $T=-10^{\circ} \mathrm{C}$ and $V_{s}=15 \mathrm{~V}$, the initial value of ϕ_{2} in Mode $0-1$ was raised from $-\phi_{r 2}$ to $-0.8 \phi_{r 2}$. Amarker designating $t=0$ was photographed together with each oscillogram in Figs. 59, 60, and 61. In each oscillogram, one of the two arrows designating the vertical scale touches the abscissa (time axis).

(a) Mode I

FIG. 59 EXPERIMENTAL (Heavy Line) AND COMPUTED (Light Line) CURRENT AND VOLTAGE WAVEFORMS IN FOUR MODES OF OPERATION OF A CORE-DIODE-TRANSISTOR BINARY COUNTER AT $T=-10^{\circ} \mathrm{C}$ AND $V_{\mathrm{s}}=15 \mathrm{~V}$

(b) Mode II

FIG. 59 Continued

(c) Mode III

FIG. 59 Continued

TD-5670-83
(d) Mode IV

FIG. 59 Concluded

(a) Mode 1

FIG. 60 EXPERIMENTAL (Heavy Line) AND COMPUTED (Light Line) CURRENT AND VOLTAGE WAVEFORMS IN FOUR MODES OF OPERATION OF A CORE-DIODE-TRANSISTOR BINARY COUNTER AT $\mathrm{T}=25^{\circ} \mathrm{C}$ AND $\mathrm{V}_{\mathrm{s}}=28 \mathrm{~V}$

FIG. 60 Continued

(c) Mode III

FIG. 60 Continued

(d) Mode IV

FIG. 60 Concluded

(a) Mode 1

FIG. 61 EXPERIMENTAL (Heavy Line) AND COMPUTED (Light Line) CURRENT AND VOLTAGE WAVEFORMS IN FOUR MODES OF OPERATION OF A CORE-DIODE-TRANSISTOR BINARY COUNTER AT $\mathrm{T}=85^{\circ} \mathrm{C}$ AND $\mathrm{V}_{\mathrm{s}}=50 \mathrm{~V}$

FIG. 61 Continued

(c) Mode III

FIG. 61 Concluded
i. Comparing Experimental and Computed Results

In general, the agreement between the computed and the experimental waveforms of the time variables in Figs. 59, 60, and 61 is satisfactory. The main sources of disagreement are as follows:
(1) A difference between the temperature at which the oscillograms were recorded and the temperature at which the device parameters were measured
(2) Measurement errors
(3) Inaccuracy in the device models
(4) Computational errors.

Let us compare the computed and the experimental waveforms in each of Figs. 59,60 , and 61 separately.

Figure $59\left(T=-10^{\circ} \mathrm{C} ; V_{s}=15 \mathrm{~V}\right)$-The disagreements in $i_{d}(t)$ during Modes I, II, and IV are most noticeable. These are the result of the forward characteristic of the diode (see Fig. 44): If $V_{p n}$ is below the "knee," an error in $V_{p n}$ results in a magnified error in i_{d}. For example, at $T=-10^{\circ} \mathrm{C}, V_{p n}=0.6,0.7$, and 0.8 V correspond to $i_{d}=0.2,2$, and 20 mA , respectively [see Fig. 44(b)]. An error of 14.3 percent in $V_{p n}$ is thus magnified to an error of 900 percent in i_{d}.

The disagreement of $\dot{\phi}_{1}(t)$ during $1 \mu \mathrm{~s} \lesssim t \lesssim 2 \mu \mathrm{~s}$ in Mode III stems from the inaccuracy in the initial value of ϕ_{1} and from the inadequacy of our flux-switching model for switching from a partially set state. (Since V_{s} is low, $\Delta \phi_{1}$ during Modes II-1 and II-2 is too small to clear Core 1 close to $-\phi_{r}$, as is shown in Figs. 27 and 28.) As a result of this disagreement in $\dot{\phi}_{1}(t)$, there is also a disagreement in $\dot{\phi}_{2}(t)$ during $1 \mu \mathrm{~s} \lesssim t \lesssim 2 \mu \mathrm{~s}$ in Mode III. Consequently, the dip in the experimental $V_{p n}$ does not appear in the computed $V_{p n}$.

Figure $60\left(T=25^{\circ} \mathrm{C} ; V_{s}=28 \mathrm{~V}\right)$-The agreement is much better than in Fig. 59. From the viewpoint of applying this computer-aided analysis to compute $V_{s, m i n}$, this is unfortunate: one would prefer a better agreement for the low values of V_{s}.

Note that the good agreement for the waveforms of $i_{C L}$ in Modes II-1 and IV-1 and i_{c} in Mode III is due to the nonlinearity of the
inductor model $[\mathrm{Eq} .(84)]$. For V_{s} values around 15 V , this nonlinearity is insignificant because $i_{C L}$ and i_{c} are low enough to assume that $L \approx L_{0}$. However, for $V_{s} \gtrsim 28 \mathrm{~V}$, this nonlinearity is very effective.

Figure $61\left(T=85^{\circ} \mathrm{C} ; V_{s}=50 \mathrm{~V}\right)$-The agreement is, in general, not as good as in Fig. 60, but better than in Fig. 59.

The main disagreement occurs during Mode IV for $\dot{\phi}_{1}(t)$ and $i_{s}(t)$. This is caused by the error in the loading current of the clamping diode. The causes of this error are not adequately understood.
ii. All-Mode Variations of $\phi_{1}\left(F_{1}\right)$ and $\phi_{2}\left(F_{2}\right)$

Machine-plotted variations of $\phi_{1}\left(F_{1}\right)$ and $\phi_{2}\left(F_{2}\right)$ during all modes of operation, which were computed by the same computer run that computed the waveforms of the time variables, are shown in Figs. 62, 63, and 64 for the cases of $T=-10^{\circ} \mathrm{C}$ and $V_{s}=15 \mathrm{~V}, T=25^{\circ} \mathrm{C}$ and $V_{s}=28 \mathrm{~V}$, and $T=85^{\circ} \mathrm{C}$ and $V_{s}=50 \mathrm{~V}$, respectively. Static $\phi(F)$ loops (dashed lines) have been added manually in each case. Since the computed $\phi_{2}\left(F_{2}\right)$ loop for the case of $T=-10^{\circ} \mathrm{C}$ and $V_{s}=15 \mathrm{~V}$ does not close due to the incorrect initial condition of $\phi_{2}=-0.8 \phi_{r 2}$ in Mode I, a dashed line, similar to the one computed for $V_{s}=16.1 V$, is added in Fig. 62 in order to indicate how the loop would appear had the computed $V_{s, m i n}$ been equal to or less than 15 V .

The variations of $\phi_{1}\left(F_{1}\right)$ and $\phi_{2}\left(F_{2}\right)$ are very important in understanding the operation of the binary counter and the causes of its failures. For detailed explanation of this behavior, see Sec. II-B and compare Figs. 62 through 64 with Figs. 27 through 30.

5. Computed $V_{s, m i n}$ for Various Worst-Case Conditions

Although it is not feasible in practice to build a test circuit with worst-case components, the probability of worst-case occurrence is not zero. Consequently, the main function of the computer-aided analysis is to compute the range of supply voltage using worst-case parameter values. Since the specified maximum allowable $V_{C E}$ voltage (50 V) was found to be below $V_{s, m a x}$, the analysis is limited to computation of $V_{s, m i n}$, below which the circuit fails to operate properly. (Only a minor change is needed in order to compute $V_{s, m a x}$.)

The level of confidence in this type of worst-case analysis is based on the agreement between the computed and the experimental waveforms of

FIG. 62 VARIATIONS OF $\phi_{1}\left(F_{1}\right)$ AND $\phi_{2}\left(F_{2}\right)$ DURING FOUR MODES OF OPERATION OF A CORE-DIODE-TRANSISTOR BINARY COUNTER AT $T=-10^{\circ} \mathrm{C}$ AND $V_{s}=15 \mathrm{~V}$

FIG. 63 VARIATIONS OF $\phi_{1}\left(F_{1}\right)$ AND $\phi_{2}\left(F_{2}\right)$ DURING FOUR MODES OF OPERATION OF A CORE-DIODE-TRANSISTOR BINARY COUNTER AT $T=25^{\circ} \mathrm{C}$ AND $\mathrm{V}_{\mathrm{s}}=28 \mathrm{~V}$

FIG. 64 VARIATIONS OF $\phi_{1}\left(F_{1}\right)$ AND $\phi_{2}\left(F_{2}\right)$ DURING FOUR MODES OF OPERATION OF A CORE-DIODE-TRANSISTOR BINARY COUNTER AT $T=85^{\circ} \mathrm{C}$ AND $\mathrm{V}_{\mathrm{s}}=50 \mathrm{~V}$
the time variables, Figs. 59 through 61, and on the agreement between the computed and the measured $V_{s, m i n}$, to be discussed next.
a. Computed $V_{s, m i n} v s$. Measured $V_{s, m i n}$

Using the actual core and circuit parameter values at $T=-10^{\circ} \mathrm{C}$, the computer program in Appendix G was run with V_{s} values starting from 13 V and increasing in steps of one volt until a proper four-mode operation was achieved. The results of computation showed that for $V_{s}=13 \mathrm{~V}$, the operation fails because the transistor does not turn on in Mode III, and that for $V_{s}=14,15$, and 16 V , the operation fails because the transistor turns off spuriously in Submode III-C. A proper operation was computed for $V_{s}=17 \mathrm{~V}$. A further search between $V_{s}=16 \mathrm{~V}$ and $V_{s}=17 \mathrm{~V}$ resulted in a proper operation for $V_{s}=16.1 \mathrm{~V}$. Limiting the accuracy to $0.1 V$, we conclude that the result of computation is $V_{s, m i n}=16.1 \mathrm{~V}$. In comparison, it was found experimentally that at $T=-10^{\circ} \mathrm{C}, V_{s, m i n}=15.0 \mathrm{~V}$ (the transistor turned of f spuriously at $V_{s}=14.9 \mathrm{~V}$). For pessimistic design criteria, this result is fortunate because it is safer to obtain a computed $V_{s, m i n}$ higher than the measured $V_{s, m i n}$ than vice versa.

In the computer runs described so far, the maximum percentage deviation from the nominal parameter value, $d_{\text {max }}$, was set to zero. The results of computation with values of $d_{\text {max }}$ larger than zero are described next.
b. Computed Worst-Case $V_{s, m i n} v s . d_{\text {max }}$

The program in Appendix G was run on a Burroughs B5500 digital computer in order to compute $V_{s, m i n} v s . d_{\text {max }}$ at $T=-10^{\circ} \mathrm{C}$. The value P of each core and circuit parameter was determined by using Eq. (163):

$$
P=P_{n}\left(1+S \frac{d_{\max }}{100}\right)
$$

where P_{n} is the nominal parameter value and S is the sign of a change in P which increases $V_{s, m i n}$ (in case P has no effect on $V_{s, m i n}, S=0$). Tabulation of S for each parameter is given in Table III. For each $d_{\text {max }}$ value, a search for $V_{s, m i n}$ was made in a way similar to the one described above in computing $V_{s, m i n}$ for $d_{\text {max }}=0$.

Using the values $d_{\text {max }}=5,10,15,20$ and 25 percent, the results of computation were found to be $V_{s, m i n}=16.8,18.8,19.8,21.3$ and 23.3 V , respectively. These results, and the result of $V_{s, m i n}=16.1 \mathrm{~V}$ for $d_{\text {max }}=0$, are plotted in Fig. 65.
c. Discussion
i. $\underline{v s, m i n}^{V_{s} . d_{\text {max }}}$

The plot of computed $V_{s, m i n} v s . d_{\text {max }}$ in Fig. 65 has an inflection point near $d_{\text {max }}=7.5$ percent. In view of the complexity of the composite effect of the core and circuit parameters on the transistor turn-off, this result is possible.

The specification of the supply voltage is $V_{s}=28 \pm 5.6 \mathrm{~V}$. As shown in Fig. 65, the specified minimum supply voltage of 22.4 V intersects $V_{s, m i n}$ at $d_{\text {max }}=23$ percent. Hence, in order to assure proper operation within the specified range of V_{s}, the worst-case variation of parameters should not exceed 23 percent. Considering a safety factor, this parameter variation should be limited to a lower value than 23 percent.

ii. $\underline{\text { Sign } S}$

The sign S of each of several parameters in Table III was determined experimentally by changing the parameter value and observing the effect of this change on $V_{s, m i n}$. Such a test was performed for any parameter whose value can be changed by simply inserting in series or in parallel a similar component, e.g., a resistor, an inductor, a diode, a winding, etc.

The sign S of each of the rest of the parameters could be found by simulating a parameter change on the computer and observing its effect on $V_{s, m i n}$. This was not done because of the lack of sufficient funds. Instead, these signs were postulated on the basis of our understanding of the circuit operation and the causes of spurious transistor turn-off in Mode III (see Figs. 27 and 28). It is possible, therefore, that a few of these signs are erroneous.
iii. Flux Changes at $V_{s}=V_{s, \text { min }}$

The computed flux changes at $V_{s}=V_{s, m i n}$ were examined by inspecting the computer output (time variables $v s . t$) for all $d_{m a x}$ values.

FIG. 65 THE EFFECT OF WORST-CASE PARAMETER VARIATION ON COMPUTED $V_{s, m i n}$

It was found that for all the values of $d_{\text {max }}$ (and, hence, also of ϕ_{r}), the initial value of ϕ_{2} is equal to $(0.46 \pm 0.04) \phi_{r}$ in Mode III (and also in Mode II, since $\Delta \phi_{\text {2II }^{\prime}} \approx 0$) and is equal to $-\phi_{r}$ in Mode I (and also in Mode IV, since $\left.\Delta \phi_{2 I V} \approx 0\right)$. No such correlation at $V_{s}=V_{s, m i n}$ was found for the initial values of ϕ_{1}, except for the initial value $\phi_{1}=\phi_{r}$ in Mode IV.

It was also found that the final values of ϕ_{1} and ϕ_{2} in Mode IV-2 were equal to the initial values of ϕ_{1} and ϕ_{2}, respectively, in Mode I, as they should be. This validates the use of Modes $0-1$ and $0-2$ in computing the initial values of ϕ_{1} and ϕ_{2} in Mode I.

6. Conclusions

It is concluded from the agreement between the computed and experimental results (waveforms of time variables and $V_{s, m i n}$ for $d_{m a x}=0$) that the results of the computer analysis are reliable. Thus, on the basis of the computed $V_{s, m i n} v s . d_{\text {max }}$, it is concluded that the binary counter stages will operate properly within the specification of $V_{s}=28 \pm 5.6$ volts if no parameter variation exceeds 23 percent. As a safety factor, the parameter variation should be limited to a smaller value. These conclusions are based on the analysis of the second stage only. Since the effects of variations of V_{s} and the core and circuit parameters on this stage are the same as the effects on any other stage [except Stage (1)], these conclusions hold for the entire binary counter, except for Stage (1) and the driver of the binary counter (see Fig. 25).

COMPUTER PROGRAM FOR A VOLTAGE DRIVE

```
VOLTAGE DRIVE.
    BEGIN REAL LI, LO, PHIR. PHIS, HA, HQ. HN, LAMBDA, FOPP, NU, ROP, FO, 0000000
    FB, V1, V2, F12, F23, PHIDOTMAX, T, OMEGA, PSI, ALPH, BETA, TAUS, 0000001
    DELT. AF, PHIDPRIME, PHIDOTP, PHIDOTPPRIME, FM2, FM1, FZ, F, PHID, 0000002
    CAPT. PHIDOTC. PHIC:
    INTEGER LINES, COUNT:
    INTEGER CT:
    LABEL STARTCORE, QUIT:
    ALPHA CORENAME, TD1, TD2, TD3. TD4. TD5:
    FILE FACT (3, 10), LP 4 (3, 15):
    FORMAT COREPARAMETERS ("CORE ". X4, "LI=",0000008
```



```
    F9.4, /. "HN=", F9.4, X4, "LAMBDA=" F7.4, X4, "FOPP=", F7.40 X4, 0000011
    "NU=", F7.4, X4, "ROP=", F7.4, X4, "F0=", F7.4, X4, "FB=", F7.4 / / / 0000012
    ). CKTPARAMETERS (5 A6, X5, "PHIDOTMAX = ", F8.4, X5, "CAPT = ". F9.3 0000013
    / /), FMO (5 F20.6, I6), OUTPUTHEADING (X13, "Y", X19, "PHIDOT", X14, "0000014
HI", X17, "F", X19, "PHID", X7, "CT" /): 0000015
    REAL PROCEDURE ARCCOS (X1):
    VALUE X1;
    0 0 0 0 0 1 6
    VALUE X1; 0000017
    REAL X1:
    BEGIN REAL PIC. MC, X. T, Z. PI2:
    LABEL L1;
    IF ABS (X1) < 10-6 THEN
    BEGIN ARCCOS * X1 + 1.57079632679;
        GO TO L1
    END:
    PIC + O&
    MC + 1%
    Z * SIGN (XI)
    X+ABS (X1):
    IF X > 0.92387953231 THEN
    BEGIN X + SQRT ((1 - X) / 2):
        PIC + 1.57079632679:
        MC * - 2
    END ELSE
    BEGIN IF X > 0.70710678119 THEN
        BEGIN X + 2 X (X * 2) - 11
        PIC + 0.785398163397!
        MC * 0.5
        END:
    END:
    T + X * 2:
    ARCCOS + (10.364541120348-4.22649415434 /T < B.66648256098 - 0000040
    6.1228848016 / (T - 3.2316720226 - 0.312873861283 (T (T)
    | (T - 3.2316720226 - 0.312873861283 / (T - 0000042
    1.63902626905-0.0268477822258/(T-1.16535753774))))) XMC X X 0000043
    + PIC) < Z + 1.57079632679; 0000044
    L1:
END ARCCOS (X1):
REAL PROCEDURE MMF (PHIDOT, PHI, AF, PHID): 0000047
VALUE PHIDOT. PHI, AF:
REAL PHIDOT, PHI, PHID, AF:
BEGIN REAL G% GPR. F. P1, P2:
    LABEL LOOP;
    F * AF:
    CT + O:
    LOOP: CT + CT + 18
    COMMENT: COMPUTE PHID AND PHIDPRIME VS. F;
    IF F S F12 THEN
        0000048
    BEGIN FI2 THEN 0, 0000056
    BEGIN PHID + VI < F < LN ((F - HA < LO) / (F - HA XLI)) - PHIR: 0000057
```

```
    PHIDPRIME + V1 }\times(LN((F-HA\timesLO) / (F-HA < LI)) + F 人 (1 / 0000058
        (F = HA x LO)-1/ (F - HA XLI))) 0000059
        END:
        IF F12 < F AND F \leq F23 THEN 0000061
        BEGIN PHID + V2 X (F/HQ - LI + F < (1/ /HN - 1 / HQ) < LN (l1 - 0000062
        HN / HQ) / (1 - HN x LI / F))) = PHIR| 0000063
        PHIDPRIME * V2 x (1/HQ + (1/HN - 1/ HQ) x (LN (F x (1 - HN 0000064
        /HQ)/(F - HN < LI)) = HN < LI / (F-HN < LI))) 0 0000065
    END:
    IF F23 < F THEN
    BEGIN PHID + V2 x (LO - LI + F x (1/ /HN - 1/ HQ) < LN ((F - HN }
        LO) / (F - HN x LI)I) - PHIR:
        PHIDPRIME + V2 x (1 / HN - 1/HQ) > (LN ((F - HN < LO) / (F - 0000070
        HN\timesLI)) +F\timesHN\times(LO - LI) / ((F - HN \times LO) > (F - HN XLI) 0000071
        ))
    END:
    COMMENT: COMPUTE PHIDOTP AND PHIDOTPPRIME VS. F:
    IF F & FOPP THEN
    BEGIN PHIDOTP * OI
        PHIDOTPPRIME * 0
    END:
    IF FOPP < F AND F \ FB THEN
    BEGIN PHIDOTP + LAMBDA X (F - FOPP) * NU:
        PHIDOTPPRIME + LAMBDA }\timesNU\times(F-FOPP) * (NU - 1)
    END:
    IF FB < F THEN
    BEGIN PHIDOTP + ROP x (F - FO):
        PHIDOTPPRIME * ROP
    END:
    P1 + 2 x PHI + PHIS - PHIDI
    P2 + PHIS + PHIDI
    G + PHIDOTP x (1.0 - (P1 / P2) * 2) - PHIDOT:
    GPR + PHIDOTPPRIME x (1.0 - (P1 /P2) * 2) + 4 x PHIDOTP x 0000090
    PHIOPRIME }\times\mathrm{ P1 x (PHI + PHIS) / (P2 * 3) % 0000091
    F + F-G GPR:
    IF ABS (G / GPR) > ABS (.0001 x F) AND CT < 20 THEN GO TO LOOP: 0000093
    MMF * FI
END MMF:
STARTCORE: READ (FACT, /. CORENAME, LI, LO, PHIR, PHIS, HA, HQ, HN,
LAMBDA, FOPP, NU, ROP, FO, FB) [QUIT]I
    0000097
V1 + (PHIS - PHIR) / ((LO - LI) x HA)% 0000098
V2 + (PHIS + PHIR) x HQ / ((LO - LI) x HN): 0000099
F12 * HO x LI:
F23 + HQ x LO&
0000100
0000101
BEGIN LABEL SWITCHING:
    COMMENT INSERT VOLTAGE DRIVE PACKAGE HEREI 0000103
    COMMENT PHIDOT = PHIDOTMAXXSIN(OMEGAXT): 0000104
    REAL PROCEDURE PHIDOT (T): 0000105
    VALUE TI EDURE PHIDOT (TJI
    VALUE T:
    REAL TI
    BEGIN REAL PHDT:
        IF T S CAPT THEN PHDT * PHIDOTMAX X SIN (OMEGA X T) ELSE PHDT * 0000109
        0.0: 0000110
    PHIDOT + PHDT' 00001111
    END PHIDOT: 0000112
    REAL PROCEDURE PHI (T): 0000113
    value T:
    REAL T:
    BEGIN REAL PH:
    0000115
        0000116
        IF T S CAPT THEN PH + - PHIR + PHIDOTMAX x 11.0 - COS (OMEGA x 0000117
        TI) / OMEGA ELSE PH + PHI (CAPT): 0000118
        PHI + PH: 0000119
END PHI: 0000120
TD1 + SIN": 0000121
TD2 + "USOIDAN: 0000122
```

```
    T03 * "L VOLT";
    TO4 * "AGE DR'N
    0000123
    TD5 *IVE N' 0000124
    TD5 * "IVE "; 0000125
    FOR PHIDOTMAX * .05 DO FOR CAPT + 3. x D-6 DO 0000126
    BEGIN OMEGA + 3.14159 / CAPT:
        IF PHIDOTMAX S PHIR x OMEGA THEN TAUS + CAPT ELSE TAUS & ARCCOS 0000127
        (1.0 - 2 x PHIR x OMEGA / PHIDOTMAX) / OMEGA,
        FZ + 1.01 x FOPP; OMEGA / OHIDOTMAX) / OMEGA% 0000129
        COMMENT END OF PACKAGE: 0000130
        DELT + 0.002 x TAUS:
        0000131
        0000132
        WRITE (LP [PAGE]): 0000133
        WRITE (LP, CKTPARAMETERS. TD1. TD2, TD3. TD4, TD5, PHIDOTMAX, 0000134
        CAPT x Q6);
        0000135
        WRITE (LP, COREPARAMETERS, CORENAME, LI x 03, LO x D3. PHIR x 0000136
        D8, PHIS X D8, HA, HQ, HN, LAMBDA. FOPP, NU. ROP, FO, FBI: 0000137
        WRITE (LP, OUTPUTHEADING):
        T+0.01
        COUNT + OB
        PHID + PHIC * - PHIR:
        FM2 + FM1 + F + FZ:
        WRITE (LP, FMO, T x 06, PHIDOTC, PHIC x D8, F, PHID x D8): 0000142
        LINES - 11!
        0000138
        0000139
        0000144
        SWITCHING: T + T + DELT: 0000145
        COUNT + COUNT + 11 0000146
        PHIDOTC * PHIDOT (T): 0000147
        PHIC + PHI (T):
        AF + 2 x FM1 - FM2:
        F + MMF (PHIDOTC. PHIC AF PHIDII 0000149
        FM2 + FM1: 0000150
        FM1 + FI
        IF PHIC > PHID OR F > 5 x FOPP THEN PHIDOTC + 0.0:
        IF COUNT MOD 10 = O OR PHIDOTC = 0.0 THEN
        BEGIN IF INES MOD 50 = O THEN = 0.0 THEN 0000154
        BEGIN WRITE (LP [PAGEJ): }000015
            LINES + LINES + 2i 0000157
                0000156
            WRITE (LP, OUTPUTHEADING): 0000158
        END:
        WND: WTE (LP, FMO, T x ه6, PHIDOTC, PHIC x &8, F, PHID x D8, CT 0000159
        ):
        0000161
        LINES + LINES + 1% 0000162
    END: 0000163
    IF PHIDOTC }\ddagger0.0 THEN GO TO SWITCHING: 0000164
    END: 0000165
END:
0000165
GO TO STARTCORE:
0000167
QUIT: END.
0000167
```


PRECEDING PAGE BLANK NOT FILMED.

COMPUTER PROGRAMFOR STATIC, (F) PARAMETERS

STATIC PHI(F) PARAMETERS.
BEGIN FILE IN BCR $(2,10):$
FILE OUT BP 4 (2, 15): 0000000
INTEGER N: 0000001
LABEL DONE, AGAIN: 0000002
AGAIN: READ (BCR. /. N) [DONE]: 0000003
BEGIN REAL PHIS. PHIR, LO. LI, HA. HALO. HALI, LL, LOHALO. LIHALI, 0000004
LNHA, DIFTERM, ETERM, FN. FNPR, INITHA, ERR, 0000005 REAL HQ, HN, L, HN2, DR, DR2, DRH, LNH, FLI, FLO, LNF, FI, SOE, 0000006 INTEGER I, S1, S2, S3. S4, CTS, TEMP: FLI, FLO. LNF, FI, SQE: 0000007
ALPHA CORE; 0000008

ARRAY F, FNQ. PHID, PHIDNQ, PHI, PHIDO, E [0 : N], PHIQ [0:Ne 0
 LABEL QUIT, ITERB, ALL, ITER82; 0000011 LABEL SECOND: 0000012
FORMAT NEWT (4 E15.6. X20. 13). CORENAME (X25, "CALCULATION OF HA 0000013
 X9, "PHIS", X14, "PHIR", X17. "LO", X16, "LI", X11." "EST. HA", XIO 0000015 - "EST. HN", X9, "EST. HQ" /i, FMTB (/1//, /, "DATA INDEX", HA", X10 0000016 "F", X15, "PHID", X11, "CALC. PHID", X14, "ERROR", INDEX", X7, 0000017 /. $\mathrm{X7}$, "HA", X12, "FN", X12, "FNPR", X12, "ERROR" /), FMTC $1 / / / 10000018$ FMTD (///, X6. "HN", X10, "HQ", X9, "CTS" /), X27, "CTS" /), 0000019
". X13. "PHI" /), DATA (2 E18.6, 2 F17.6. 3 FTS" /), FMTE (/ / /. X10, "F0000020

NDS. I/O TIME =", F6.3. "SECONDS"), SOLN2 (" "RUN TIME =". F6.3. "SECOOOO0022
FOUND ARE HN=". F11.6. $\times 5$. "HQ=", F11.61. SOLN X20. "THE BEST VALUES 0000023
VALUE OF HA IS ". Fil.6):
COMMENT: LINEARSYSTEM II, B5500 VERSION, $5 / 19 / 65: 0000025$
DEFINE LP = BP
0000026
COMMENT GLOBAL ARRAYSI

ARRAY PS. SCALES. RES. DXS [0: 17]:	0000028
0000029	

PROCEDURE DECOMPOSE (N, A):
VALUE N: 0000030
INTEGER N: 0000031
ARRAY A [0, 0]: 0000032
COMMENT SUBSCRIPTS FROM 1 TO N: 0000033
COMMENT USES GLOBAL ARRAYS PS AND SCALES: 0000034
COMMENT DECOMPOSES A INTO TRIANGULAR L AND U SO THAT LXU = A. STORE00000035
S L-I AND U OVER A. PS IS PIVOT VECTOR: AND U SO THAT LXU = A. STORE00000036
BEGIN INTEGER I. J. M. PIV: 0000037

REAL SCALE, PIVOT, SIZE, MULT:	0000038
0000039	

FORMAT FMTI2A (/, "*** SINGULAR MATRIX ***", /): 0000039
PROCED
PROCEDURE ELIM (J1, J2, MULT, AI, AM); ***" 1) 0000040
VALUE J1, J2, MULT: 0000041
INTEGER J1: J2: 0000042
REAL MULT: 0000043
REAL ARRAY AI, AM [0]:
COMMENT DOES ONE ROW"S WORTH OF GAUSSIAN ELIMINATION: 0000045
BEGIN INTEGER J: 0000046 FOR $\rfloor+J_{1}$ STEP 1 UNTIL J2 DO AI [J] + AI [J]-MULT \times AM [J 0000047 J! 1 UNTL J2 DO AI [J]. AI [U]-MULT \times AM[J
END ELIM: 0000048
COMMELM 0000049
COMMENT FIND SCALE FACTORS AND INITIALIZE PIVOT VECTOR: 0000050
$\begin{array}{ll}\text { FOR I + } 1 \text { STEP } 1 \text { UNTIL N DO } & 0000051 \\ \text { BEGIN PS } & 0000052\end{array}$
BEGIN PS[I] 1 I: 0000052
SCALE + 0 :
FOR \downarrow + 1 STEP \& UNTIL N DO IF ABS (A [I, J]) $>$ SCALE THEN 0000054
SCALE + ABS (A [I. J]): 0000055
IF SCALE = 0 THEN WRITE (LP, FMTI2A): 0000056
SCALES [I] + 1/SCALE: 0000057

```
    COMMENT GAUSSIAN ELIMINATION WITH PARTIAL PIVOTINGI
    0000060
    BEGIN PIVOT + O&
    FOR I & M STEP 1 UNTIL N DO
    BEGIN SIZE * ABS (A [PS [I], M]) x SCALES [PS [I]J; 0000064
        IF SIZE > PIVOT THEN 0000065
        BEGIN PIVOT + SIZE: 0000066
            PIV + I 0000067
        END: 0000068
    END:
    IF PIV & M THEN
    BEGIN J + PS [M]I
        PS [M] + PS [PIV]: 0000072
        PS[PIV] + J 0000073
        END: 0000074
        PIVOT & A [PS [M]. M]I
        IF PIVOT = 0 THEN WRITE (LP, FMTI2A): 0000076
        FORI +M + 1 STEP 1 UNTIL N DO 0000077
        BEGIN A [PS [I], M] + MULT + A [PS [I], M] / PIVOT: 0000078
        IF MULT }\ddagger0\mathrm{ THEN ELIM (M + 10 N, MULT. A [PS [I], *]. A [ 0000079
        PS [M], *]): 0000080
        END I: 0000081
        END Mi 0000082
END DECOMPOSE: 0000083
PROCEDURE SOLVE (N, LU. B. X): 0000084
VALUE N: 0000085
INTEGER N: 0000086
REAL ARRAY LU [O, O]: 0000087
REAL ARRAY B. X[O]: 0000088
COMMENT GLOBAL ARRAY PS; 0000089
COMMENT SOLVES AX = B USING LU FROM DECOMPOSE: 0000090
BEGIN INTEGER I:
    REAL PROCEDURE DOTPROD (J1, J2, X, Y): 0000092
    VALUE J1, J2;
    INTEGER J1. J2:
    REAL ARRAY X, Y [O]: 0000095
    BEGIN INTEGER Ji 0000096
        REAL SUM: 0000097
        SUM + 0i 0000098
        FOR J + J1 STEP 1 UNTIL J2 DO SUM + SUM + X[J] x Y [J]: 0000099
        DOTPROD + SUM: 0000100
    END DOTPROD: 0000101
    FOR I + 1 STEP 1 UNTIL N DO X[I] + B [PS[I]] - DOTPROD [1. I 0000102
    - 1, LU[PS[I], #], X): 0000103
    FOR I + N STEP - I UNTIL 1 DO X[I] + (X[I] - DOTPROD II + 1, 0000104
    N, LU [PS [I], *]. X)) / LU [PS [I], I]; 0000105
END SOLVE:
0000106
PROCEDURE FIT (N. M. Y, X. B, SQE, E. COV, SINGULAR): 0000107
VALUE N, MO X, Yi 0000108
INTEGER N, M%
REAL SQE:
0000109
0000110
ARRAY Y[O], X[0, O], B[O], E[0], COV [O, O]& 0000111
LABEL SINGULAR: 0000112
BEGIN COMMENT LEAST SQUARE SOLUTION OF Y = XXB + E, IF X[M,NJ HAS R0000113
    ANK M. M = NUMBER OF VARIABLES N = OBSERVATIONS; 0000114
    INTEGER I, J. K. L; 0000115
    REAL S8 0000116
    ARRAY A, XY [O : M], XT [O : M| O : N]: 0000117
    REAL PROCEDURE PRODUCT (X, Y, N): 0000118
    VALUE X, Y, NI 0000119
    INTEGER N
    ARRAY X, Y [0]: 0000121
    0000120
    BEGIN REAL SI
    0000122
```

```
            INTEGER J: 0000123
            S +0.0: }\begin{array}{ll}{0000123}\\{0000124}
            FOR J + 1 STEP 1 UNTIL N DO S + S + X[J] < Y [J]: 0000125
            PRODUCT + S%
                0000125
    END PRODUCT:
    FOR I + 1 STEP 1 UNTIL M DO FOR J + 1 STEP 1 UNTIL N DO XT [I 0000127
    J] + X[J. []:
    FOR K + 1 STEP & UNTIL M DO FOR \
    K] & COV[K,J] + PRODUCT (XT [K, 1 STEP 1 UNTIL K DO COV [J, 0000130
    KOR KCOV[K, J] & PRODUCT (XT [K, *], XT [J. *], N): 0000131
    FOR K * 1 STEP 1 UNTIL M DO XY [K] & PRODUCT (XT [K, *], Y, N): 0000132
    DECOMPOSE (M, COV): NL NO, O
    SOLVE (M, COV, XY, B):
    FOR J + 1 STEP 1 UNTIL N DO E [J] Y [J] PRODUCT [X[J0 0000134
    FOR J * 1 STEP 1 UNTIL NDO E[J] & Y[J] - PRODUCT (X [J.*|] 0000135
    B, M):
    FORK + 1 STEP 1 UNTIL M DO XY [K] P PRODUCT (XT [K, *] E,NID 0000136
```



```
    SOLVE (MP COV: XY, A): 0000138
    FOR J & 1 STEP 1 UNTIL M DO B[J] + B[J] + A[J]: 0000139
    SQE + 0.08
    FOR J + 1 STEP 1 UNTIL N DO
    BEGINE [J] E [J]-PRODUCT [X[J 0000141
    SQE + SQE + E[J] * 2% 0000142
    END:
END FIT;
0000144
0000145
S2 - 80:
READ (BCR, /. CORE, TEMP):
READ (BCR, /, PHIS, PHIR, LO, LI, HA):
FOR I + 1 STEP 1 WHILE I < S2 DO
BEGIN READ (BCR, /, F[I]. PHID [I]):
    IF F[I] = 0 THEN S2 + I%
    F[I] + F F[I] < 2 < 0-4:
PHID[I]* - PHID [I] < 5 < 0-11: }
PHIO[I]* - PHID [I] < 5 < O-11% 00000153
FOR I * 1 STEP & UNTIL N DO
BEGIN READ (BCR, /. FNQ [I]. PHIDNQ [I]) [ALL]&
    FNQ[I] +2\timesFNQ[I] x D-4; 000 [I]) [ALL]; 0000156
    PHIDNQ [I] + PHIDNQ[I] < 5 < 0-11:
END:
ALL:N+I-1%
HQ + FNQ [1]/LI:
HN *. 85 x HQ:
CTS + 0:
WRITE (BP [DBL], CORENAME, CORE, TEMP):
WRITE (BP, FMTA):
WRITE (BP, DATA, PHIS, PHIR, LO, LI, HA, HN, HQ): 0000165
LL + (PHIS - PHIR) (LO - LI): 
L + (PHIS + PHIR)/(LO - LI);
S1+1:
S1+N:
```



```
FOR I + 1 STEP 1 WHILE FNQ [I]< FNQ [I] x LO/LI DO S3 & I: 
IF S2 < 1 THEN GO TO SECOND: 0000172
ITER8: FN* O& % 0000173
losin
FNPR + O: 
IF CTS = 20 THEN 0000176
BEGIN CTS + O:
BEGIN CTS + O: 
END: TO ITER82: 0000179
CTS + CTS + 1% 0000180
FORI + S1 STEP I UNTIL S2 DO 
FORI + SI STEP 1 UNTIL S2 DO 
    HALI & F[I][I] HA XA X LO: 00: 0000183
    HALI + F[I] - HA X LI:
    LIHALI * LI/ HALI:
    LNHA + LN (HALO/ HALI):
0000146
0000147
0000148
0000149
0000150
0000151
0000152
FOR I * 1 STEP & UNTIL N DO 0000154
BEGIN READ (BCR, /. FNQ [I]. PHIDNQ [I]) [ALL]) 0000155
    PHIDNQ [I] + PHIDNQ [I] < 5 0 0-11: 0000157
END: 0000158
0000159
|
0000161
WRITE (BP, FMTA): PHIS, PHIR, LO, LI, HA, HN, HQ): 0, 0000165
ERR O O 
0000176
0000182
0000183
    LOHALO + LO / HALO: 0000185
0000186
0000187
```

```
    DIFTERM + LIHALI - LOHALO - LNHA / HA:
    0000188
    ETERM + F[I] X (LL X F[I] X LNHA / HA - PHIR - PHID[I]): 0000189
    FN + FN + ETERM x DIFTERM:
    FNPR + FNPR + ETERM x (LIHALI * 2 - LOHALO * 2 - DIFTERM / HA)
    + LL x F[I] * 2 x DIFTERM * 2 / HA:
    ERR + ERR + (LL XF[I] < LNHA / HA - PHIR - PHID [I]) * 2I
    PHI [I] - LL x F [I] x LNHA / HA - PHIR;
    END SUMFN:
    HA + HA - FN / FNPR:
    ERR * SQRT (ERR):
    WRITE (BP, NEWT, HA, FN, FNPR, ERR, CTS):
    IF ABS (FN / FNPR) > .001 x ABS (HA) THEN GO TO ITERB! 0000199
    WRITE (BP [DBL], SOLN. HA):
    WRITE (BP, FMTB):
    FOR I & 1 STEP 1 UNTIL S2 DO WRITE (BP, DATC, I, F [I], PHID [I], 0000202
    PHI [I], 100.0 x (PHID [I] - PHI [I]) / PHID [I]): 0000203
    SECOND: WRITE (BP, FMTD):
    CTS - 0%
    ITER82: CTS + CTS + 1%
    FOR I & I STEP I UNTIL S4 DO IF FNQ [I] S HQ x LO THEN S3 + I% 0000207
    OR & 1 /HN - 1 / HQ: 0000208
    HN2 * HN x HN: 0000209
    DR2 + 1/HQ - 2/ HN: 0000210
    DRH + 1 - HN / HQ: 0000211
    FOR I + 1 STEP 1 UNTIL S4 DO 0000212
    BEGIN FI * FNQ [I];
    FLI + FI - HN X LI: 0000214
    FLO + FI - HN X LO: 0000215
    IF I S S3 THEN 0000216
    BEGINLNH + LN (DRH / (1 - HN XLI / FI))% 0000217
        PHIDO[I] * - < < HQ x (FI / HQ - LI +FI < DR < LNH) / HN + 0000218
        PHIR + PHIDNQ [I]I 0000219
        PHIQ[I| 1] + L X (FI / HQ - LI + FI x LNH / HN) / HN: 0000220
        PHIQ[I, 2] + L < HQ < (LI + FI < (- 1 / HQ + DR2 < LNH - 11 0000221
        FI - HQ xLI) / FLI) / HQI) / HN2: 0000222
    END:
    IF S3 < I AND I S S4 THEN
    BEGIN LNF + LN (FLO / FLI):
        PHIDO[I] + - L x HQ x (LO - LI + FI x DR x LNF) / HN + PHIR 0000226
        * PHIDNQ [I]O 
        + PHIDNQ [I]:
        PHIQ[I. 1] + L x (LO - LI + FI x LNF / HN) / HN:
        PHIQ[I. 2] +L\timesHQ < (lLI - LO) < (1 +FI * 2 < DRH/ (FLI
        \timesFLO)\ + FI x DR2 x LNF) / HN2I
    END:
    END:
    FIT (S4, 2, PHIDO, PHIQ. DPH, SQE, E, COV, QUIT):
    HQ + HQ + DPH[1]:
    HN + HN + DPH[2];
    WRITE (BP, DATB, HN, HQ, CTS):
    IF (ABS (DPH [1])>.001 < HQ OR ABS (DPH [2]) > .001 < HN) AND
    CTS < 20 THEN GO TO ITER82:
    DR + 1 / HN = 1/HQ:
    FOR I * 1 STEP 1 UNTIL S4 DO
    BEGIN FI * FNQ [I]:
    IF I S S3 THEN PHI [I] - L x HQ x PFI / HQ - LI + FI x DR < LN ( }000024
    (1 - HN / HQ)/ (1 - HN XLI / FI))) / HN - PHIR ELSE PHI[I] & 0000243
```



```
    LI)|/HN - PHIR: 0000245
    END:
    WRITE (BP, SOLN2, HN: HQ):
    WRITE (BP, FMTB):
    FOR I & I STEP I UNTIL N DO WRITE (BP, DATC, I, FNQ [I], PHIDNG [I
    ]. PHI [I], 100.0 x (PHIDNQ [I] - PHI [I])/ PHIDNQ[I]):
    QUIT: WRITE (BP, TIMER. TIME (2) / 60, TIME (3)/60): 0000251
    WRITE (BP [PAGE])II 0000252
END:
GO TO AGAIN:
DONE: END.
```


COMPUTER PROGRAM FOR $\dot{f}_{p}(F)$ PARAMETERS

```
PHIDOTP(F) PARAMETERS.
    BEGIN REAL DIFF, LAMBDA, FOPP, NU, DIFFNU, SQE, FO, ROP, A, L, AA, FF 0000000
    , LL; 0000001
    BOOLEAN B12, B23, B3:
    REAL T, T1. T2,G.GPR.FB,W, BB, P, NUD,FDB, LAMBDAD.FD.FB2,FB1
    ;
    REAL AF, HA, HQ, HN. PHIR, PHIS, LI. HS, HTH:
    INTEGER CT, N, I, M% M1, Q, QI, IQ, TEMP:
    ALPHA CORE, REGION:
    ARRAY F, PHIDOTP, NPHIDOTP, Y DELPH E[0:50], [0:3], X[0: [0, [0000
    ARM F. PHIDOTP, NPHIDOTP, Y, DELPH, E [0 : 50]. B [0 ; 3], X[0 : 0000008
    50, 0 : 3]. COV [0: 3, 0 : 3]:
    LABEL LOOP, SING, DONE:
    LABEL TOP, GROUP, EXIT, LAST:
    LABEL AGAIN. EOF:
    FORMAT FMT (7 F10.4, I10, X4, A6), F1 (X24, "F", X15, "EXP. PHIDOTP", 0000013
    X9, "CALC. PHIDOTP", X11, "DEL PHIDOTP" /), F2 (X13, F16.4. 3 F22.6. " 0000014
%"), F3 (" LAMBDAD", X6, "NUD", X7, "FDB", X5, "LAMBDA", X6 "FOPP", 0000015
    X6, "NU", X8, "FB", X11, "CT", X5, "REGION" /), F4 (X32, "DETERMINATION0000016
    OF PHIDOTP VS. F PARAMETERS OF CORE ". A6 / /). F6 ///// X49, "C O M P0000017
    UT ATI O N"//. PARAM (// XI7, "MAIN INELASTIC SWITCHING PARAMETER0000018
S OF CORE ". AG" " TEMPERATURE =". I4, " (CENTIGRADE)"// X39, "(L = 0000019
",F7.4," MM A = ",F7.4, "SQ.MM)",// X50, "LAMBDAD= ", 0000020
```



```
    ". F7.4 %, X50. "LAMBDA = ", F7.4. % X50. "FOPP = ",F7.4. /. X50, "0000022
```



```
    1. X50, "FO = ", F7.4//1).F7 (//// X26, "ME A SURED D D A T0000024
    A AND COMPUTED ", "RESULTSN"/1: 0000025
    FORMAT TIMER ("PROCESS TIME =", F8.4." I/O TIME =", F8.4)I 0000026
    FILE CRB (2, 10):
    FILE LP 4 (2, 15): 0000028
        0000027
    ARRAY PS, SCALES, RES, DXS [0 : 3]% 0000029
```

```
PROCEDURE s
    DECOMPOSE (N,A),
    SOLVE (N,LU,B,X), and
    FIT (N,M,Y,X,B,SQE, E, COV,SINGULAR),
APPENDIX B
```

 AGAIN: READ (CRB, /, CORE, TEMP, N. L, A. FDB, NU, FOPP, FB, AF, HA, 0000134
 HQ. HN, PHIR. PHIS. LI) [EOF]:
 0000135
 READ (CRB, /FOR I + 1 STEP 1 UNTIL N DO [F [I]. PHIDOTP [I]]): 0000136
 FOR I * 1 STEP 1 UNTIL N DO 0000137
 BEGIN F[I] \(+2.06 \times F[I]:\)
 0000138
 PHIDOTP [I] + PHIDOTP [I] / 21 0000139
 END:
 WRITE (LP, F4, CORE):
 WRITE (LP, F6):
 \(H S\) + HA + HQ + HN + PHIR \(\times(H A+H Q-H N) / P H I S:\)
 0000140
 0000141
 0000142
 0000143
 HTH + (HS - SQRT (HS * 2-8 \(\times(1+\) PHIR / PHIS) \(\times H A \times H Q) / 480000144\)
 \(F D+H T H \times L I ;\)
 $F D B+F D B \times(1+A F \times(T E M P-25)):$
0000145
$F D B+F D B \times(1+A F \times(T E M P-25)): 0000146$
FOPP + FOPP $\times(1+A F \times(T E M P-25)) 1$
0000147
LAMBDA $+3000.0 \times A /(L * N U)!\quad 0000148$
CTMDA $3000.0 \times$ A $/$ (L *NUJ
CT + O :
0000149
WRITE (LP, F3):
0000150
WRITE (LP, FMT, LAMBDAD, NUD, FDB, LAMBDA, FOPP, NU, FB, CT): 0000151
GROUP: FOR I + 1 STEP 1 WHILE F [I] \leq FDB AND I $\leq N D O$ Q + II 0000152
$\begin{array}{ll}\text { IF } Q=1 \text { THEN } Q+0 i & 0000153\end{array}$
Q1- $Q+11$
0000154
FOR I * Q1 STEP 1 WHILE F[I]S FB AND I SNDOM M I! 0000155

```
IF Q = N THEN M * N:
IF M1 =M + I THEN GO TO LASTI 0000157
M1 +M + 1: 0000158
REGION + " II ";
WRITE (LP):
LOOP: CT + CT + 1;
FOR I + Q1 STEP 1 UNTIL M DO
BEGIN 1Q + I - Q:
    IF F[I] - FOPP > 0 THEN
    BEGIN DIFF * F[I] - FOPPI
        DIFFNU * DIFF * NU&
        W [1Q]:(PHIDOTP [I] - LAMBDA x DIFFNU) x W:
        X[IQ, 1] - DIFFNU X W:
X[IQ, 2] - - LAMBDA x NU x DIFF * (NU - 1.0) x W1 0000170
        X[IQ, 3] + LAMBDA }\times\mathrm{ LN (DIFF) }\times\mathrm{ DIFFNU x Wi
        END ELSE X[IQ, 1] + X[IQ, 2] + X[IQ, 3] + 0.0:
END:
FIT (M - Q, 3, Y, X, B, SQE, E, COV, SING):
LAMBDA + LAMBDA + B [1];
FOPP + FOPP + B [2]:
NU + NU + B[3]:
FDB + 1.15 x FOPP;
FDB * 1.15 x FOPP!
IF CT }250\mathrm{ THEN GO TO EXITI
IF ABS (B [1])>.001 x ABS (LAMBDA) OR ABS (B [2]) >.001 x ABS (
FOPP) OR ABS (B [3])>.001 x ABS (NU) THEN GO TO LOOP ELSE GO TO
DONE:
SING: WRITE (LP, < "COV IS SINGULAR" >):
DONE: IF BJ THEN GO TO GROUP:
REGION + " III*!
WRITE (LP):
B23 + FALSE: 0000188
BR2 + FB1: 0000189
FB1 + FBI
TOP:CT + CT + 11
T + LAMBDA x (FB - FOPP) * NU:
T1*LAMBDA x NU > (FB - FOPP) * (NU - 1.0): 0000193
T2 - LAMBDA x NU x (NU - 1.0) x (FB - FOPP)* (NU - 2.0): 0000194
G * GPR * 0.0i
FORI - M1 STEP 1 UNTIL N DO
```



```
GPR +GPR + (T2 X (F[I]-FB)*2-TI < (F[I]-FB) - T + 0000199
    PHIDOTP [I]) x W:
END:
IF GPR = 0 THEN
BEGIN B3 + TRUE:
    GO TO GROUP:
END;
FB + FB - G / GPR:
WRITE (LP, FMT, LAMBDAD, NUD, FDB, LAMBDA, FOPP, NU, FB, CT, REGION):
IF FB S FOPP THEN
BEGIN FB + (FB +G / GPR + FOPP) / 2% 00000209
BEGIN FB + (FB +G/GPR + FOPP) / 2t 00000209
ENO:
IF CT }250\mathrm{ THEN GO TO EXITI
IF ABS (G/GPR)>.001 x FB THEN GO TO TOP: 0000213
IF ABS (FB - FB2) < D-5 THEN N
IF ABS (FB - FB2) < D-5 THEN 0000214
BEGIN CT * 50:
    FB + (FB + FB1) / 2i
END:
GO TO GROUP:
LAST: EXIT: REGION +" I "; 0000219
WRITE (LP):
0000156
0000158
0000159
0000160
0000161
0000162
0000163
0 0 0 0 1 6 4
0000165
0000166
W 1.0! 0000167
Y[IQ] + (PHIDOTP [I] - LAMBDA x DIFFNU) x W% 0000168
X[IQ, 1] * DIFFNU X Wi 0000169
0000170
0000171
0000172
0000173
0000174
0000175
0000176
0000176
0000177
0000178
FOPP) OR ABS (B [3])>.001 }\times\mathrm{ ABS (NU) THEN GO TO LOOP ELSE GO TO 0000182
```

```
REGION + " IIIN& 0000186
WRITE (LP): 0000187
0000189
0000190
0000191
T L LAMBDA X (FB - FOPP) * NU: 0000192
0000195
BEGIN W + 1.0:
0000200
0000201
0000202
0000203
0000204
0000205
0000206
0000211
0000212
0000215
0000216
0000220
```

```
CT + CT + 1; 0000221
AA +LN (LAMBDA) + NU \times LN (FDB - FOPP): 0000222
BB + LN (FDB - FD): 0000223
T1 + 0.08
T2+0.0:
FOR I & 1 STEP 1 UNTIL Q DO
0000224
BEGIN LL + LN (F [I] - FD) - BB; 0000227
    P + LN (PHIDOTP [I]) - AAI
    T1 + T1 + LL x Pi
    T2 +T2 + LL > LL;
END:
NUD + T1 / T2:
LAMBDAD * LAMBDA x (FDB - FOPP) * NU / ((FDB - FD) * NUD):
WRITE (LP, FMT, LAMBDAD, NUD, FDB, LAMBDA, FOPP, NU, FB, CT. REGION): 0000234
WRITE (LP [PAGE]):
IF M < N THEN
0000235
0000236
BEGIN FO + (FB x (NU - 1.0) + FOPP) / NU& 0000237
    ROP * LAMBDA x NU }\times(FB - FOPP) * (NU - 1.01) 0000238
END ELSE FO * ROP * D20:
0000239
WRITE (LP, PARAM, CORE, TEMP, L x D3, A x D6, LAMBDAD, FD, NUD, FDB, 0000240
LAMBDA, FOPP, NU, FB, ROP, FO): 0000241
FOR I * 1 STEP 1 UNTIL Q DO NPHIDOTP [I] * LAMBDAD x (F [I] - FD) * 0000242
NUD:
FOR I * Q1 STEP 1 UNTIL M DO NPHIDOTP [I] & LAMBDA x (F [I] - FOPP) * 0000244
NU:
FOR I * M1 STEP 1 UNTIL N DO NPHIDOTP [I] * ROP x (F [I] - FO): 0000246
FOR I * M1 STEP 1 UNTIL N DO NPHIDOTP [I] * ROP x (F [I] - FO): 0000246
FOR I * 1 STEP 1 UNTIL N DO DELPH[I] + (1.0 - PHIDOTP [I] / NPHIDOTP 00002447
[I]) }\times100.0
WRITE (LP, F7):
0000248
0000249
WRITE (LP, F1):
0000250
FOR I * 1 STEP 1 UNTIL N DO WRITE (LP, F2, F [I], PHIDOTP [I]. 0000251
NPHIDOTP [I], DELPH [I]): 0000252
WRITE (LP [DBL]):
M1 + O: 0000254
0000253
LAMBDAD + NUD * 0.08 0000255
B3 + FALSE: 0000256
WRITE (LP, TIMER, TIME (2) / 60. TIME (3)/ 60): 0000257
WRITE (LP [PAGEJ):
GO TO AGAIN: 0000259
0000258
EOF: END.
0000260
```

```
NONLINEAR INDUCTOR PARAMETERS.
    BEGIN REAL A, B, EIB, SQE: 0000000
    INTEGER TEMP, N: K. CT: 00000001
    ALPHA CORE: 0000002
    ARRAY PSI, I, PSS, E, PSIC, LE, LC [0 : 50], COV [0: 2, 0: 2], DPS [ 00000003
    0 : 50, 0: 2], DE [0: 2]:
    ARRAY PSIN, INN, DI, DPSI [0 : 50]!
LABEL MORE, LOOP, EXIT, EOF:
    FORMAT F1 (X10, 3 E20.5. I10). F2 (9 E12.3, F11.2, "%"), F3 ("CORE:", 0000007
A6, "TEMP=", I5 / / / X24, "PSISAT", X15, "ISAT", X16, "LO", X11, 0000008
"CT" //, F4 (X5, "RAW I", X7, "RAW PSI", X5, "DEL I", X7, "DEL PSI", 0000009
X5, "I", X11, "PSI EXP", X4, "PSI CALC", X5, "L EXP", X7, "LLCALC", 0000010
X6. "L ERROR" /\, TIMER (/ / "PROCESS TIME =", F9.2" " I/0 TIME =", 0000011
    F9.2):
    FILE CR "UFO" (1, 10). LP 4 (2. 15):
ARRAY PS, SCALES, RES, DXS [0 : 4]i 0000014
        0000003
0000005
0000006
0000012
0000013
```

```
PROCEDLREs
```

PROCEDLREs
DECOMPOSE (N,A),
DECOMPOSE (N,A),
SOLVE (N,LU,B,X), and
SOLVE (N,LU,B,X), and
FIT (N,M,Y,X,B,SQE,E,COV,SINGLLAR),
FIT (N,M,Y,X,B,SQE,E,COV,SINGLLAR),
APPENDIX B

```
APPENDIX B
```

```
PSIN[0] + INN[0] + 0.0:
```

PSIN[0] + INN[0] + 0.0:
PSI[0]+I[0]+0.0: 0000120
PSI[0]+I[0]+0.0: 0000120
0000119
0000119
MORE: READ (CR, /, N, CORE, TEMP) [EOF]: 0000121
MORE: READ (CR, /, N, CORE, TEMP) [EOF]: 0000121
WRITE (LP, F3, CORE, TEMP): 0000122
WRITE (LP, F3, CORE, TEMP): 0000122
FOR K * 1 STEP 1 UNTIL N DO READ (CR, /, I [K], PSI [K]): 0000123
FOR K * 1 STEP 1 UNTIL N DO READ (CR, /, I [K], PSI [K]): 0000123
FOR K * 1 STEP 1 UNTIL N DO 0000124
FOR K * 1 STEP 1 UNTIL N DO 0000124
BEGIN INN [K] + (I [K] - 100) x 0-3i 0000125
BEGIN INN [K] + (I [K] - 100) x 0-3i 0000125
PSIN[K] + ((10.26 + .005 x K) x PSI [K] - 14 x K x INN[K]) x D-8 0000126
PSIN[K] + ((10.26 + .005 x K) x PSI [K] - 14 x K x INN[K]) x D-8 0000126
i
i
DI[K] + I [K] - I [K - 1];
DI[K] + I [K] - I [K - 1];
DPSI [K] + PSI [K] - PSI [K - 1]:
DPSI [K] + PSI [K] - PSI [K - 1]:
ENO:
ENO:
A + (PSIN[2]- PSIN [1]) / (INN [2] - INN [1]):
A + (PSIN[2]- PSIN [1]) / (INN [2] - INN [1]):
B * INN[N]/2!
B * INN[N]/2!
CT + O\&
CT + O\&
LOOP: CT + CT + 1;
LOOP: CT + CT + 1;
FOR K + 1 STEP 1 UNTIL N DO 0000135
FOR K + 1 STEP 1 UNTIL N DO 0000135
BEGIN EIB + EXP (- INN [K]/ BI: 0000136
BEGIN EIB + EXP (- INN [K]/ BI: 0000136
DPS[K, 1] + 1.0 - EIB; 0000137
DPS[K, 1] + 1.0 - EIB; 0000137
DPS[K, 2] - A X EIB x INN[K] / (B * 2): % 0000138
DPS[K, 2] - A X EIB x INN[K] / (B * 2): % 0000138
PSS[K] + PSIN[K]-A x (1.0 - EIB): 0000139
PSS[K] + PSIN[K]-A x (1.0 - EIB): 0000139
END:
END:
FIT (N, 2, PSS, DPS, DE, SQE,E, COV, EXIT): 0000140
FIT (N, 2, PSS, DPS, DE, SQE,E, COV, EXIT): 0000140
A * A + DE[1]: 0000142
A * A + DE[1]: 0000142
B+B + DE[2]i 0000143
B+B + DE[2]i 0000143
WRITE (LP,F1, A, B, A / B, CT): 0000144
WRITE (LP,F1, A, B, A / B, CT): 0000144
IF (ABS (DE [1])>.001 × ABS (A) OR ABS (DE [2])>.001 x ABS (B)) 0000145
IF (ABS (DE [1])>.001 × ABS (A) OR ABS (DE [2])>.001 x ABS (B)) 0000145
AND CT < 20 THEN GO TO LOOP:
AND CT < 20 THEN GO TO LOOP:
WRITE (LP [DBL]): 0000147
WRITE (LP [DBL]): 0000147
WRITE (LP, F4):
WRITE (LP, F4):
0000148
0000148
FOR K + 1 STEP 1 UNTIL N DO PSIC[K] + A x (1.0 - EXP (-INN[K] / B) 0000149
FOR K + 1 STEP 1 UNTIL N DO PSIC[K] + A x (1.0 - EXP (-INN[K] / B) 0000149
):
):
0000150
0000150
FOR K + 1 STEP 1 UNTIL N DO WRITE (LP, F2, I [K], PSI [K], DI [K], 0, 0000151
FOR K + 1 STEP 1 UNTIL N DO WRITE (LP, F2, I [K], PSI [K], DI [K], 0, 0000151
DPSI [K], INN[K]. PSIN[K]. PSIC[K], LE [K] \& (PSIN[K] - PSIN[[K - 0000152

```
DPSI [K], INN[K]. PSIN[K]. PSIC[K], LE [K] & (PSIN[K] - PSIN[[K - 0000152
```

```
1])/ (INN[K] - INN[K - 1]). LC [K] * (PSIC[K] - PSIC[K - 1]) / (0000153
INN [K] - INN[K - 1]), IF LE[K] # O THEN 100 x (LC[K] - LE [K]) / 0000154
LE[K] ELSE 100.0): 0000155
EXIT: WRITE (LPP, TIMER. TIME (2) / 60, TIME (3) / 60):
0000156
WRITE (LP [PAGE]):
0000157
GO TO MORE:
0000158
EOF: END. 0000159
```

```
DIODE PARAMETERS.
    BEGIN REAL EK, IO, RD, IJ, L, SQE: 0000000
    INTEGER J, CT, N. TEMP; 00000001
    ARRAY I. Y, E,V[0: 20], X[0: 20, 0: 4], B[0: 4], COV[0: 4, 00000002
    0:4]:
    ALPHA ID:
    FILE CR MPGANDEN (2, 10), LP 4 (3, 15)
    MORMAT FMT (X15, "RD", X18, "EK", X18, "ION9", X10, "CT" /): 0000005
    FORMAT IDENT (/ / / X34. "DIODE:". A6, X10, "TEMP =", I4, " (CENTIGRAD0000007
E)" / / / "PARAMETERS", X4. "RD =", F8.5, " OHM", X4, "EK =", F8.6." V00000008
LT", X4, "IO =", F8.6, " D-9 AMP"):
0000009
    FORMAT F1 (3 E20.5, I10), F2 (// / X14, "I(AMP)", X14, "EXP,V", X13, "C0000010
ALC. V", X13, "ERROR" /), F3 (3 F20.5, F17.2, "%"). F5 ("PROCESSOR TIME 0000011
=".F6.2." I/O TIME =*'F6.2):
    LABEL EOF, SING, MORE, LOOP:
    0000012
    0000013
    ARRAY PS, SCALES, RES, DXS [0 : 4]: 0000014
```

```
PROCEDURES
    DECOMPOSE (N,A),
    SOLVE (N,LU,B,X), and
    FIT (N,M,Y,X,B,SQE, E, COV,SINGULAR),
APPENDIX B
```

```
MORE: READ (CR, /. N. RD, EK, IO. TEMP, ID) [EOF]: 0000119
FOR J & 1 STEP 1 UNTIL N DO READ (CR. /, I [J], V [J]): 0000120
CT - 0:
FOR J * 1 STEP 1 UNTIL N DO I [J] & I [J] x 0-3:
WRITE (LP, FMT):
WRITE (LP, F1, RD, EK, IO x @6, CT): 0000124
WRITE (LP, F1, RD, EK, IO x @6, CT): 0000124
FOR J +1 STEP 1 UNTIL NDO X[J. 1] + I [J]: 0000125
LOOP: CT + CT + 1: 0000126
FOR J + 1 STEP 1 UNTIL N DO 0000127
BEGIN IJ.I [J]:
            L+LN(1.0+IJ / IO): 0000128
            Y[J] V [J] - RD x IJ - EK x L: 0000130
            Y[J] V V [J]-RD xIJ - EK x L: 
            M[J, 2]+L; 位 (IJ/(IO\times(IO+IU)): 
    END:
    FIT (N, 3, Y, X, B, SQE, E, COV, SING): 0000133
    RD + RD + B[1];
    EK+ED + B[1]; 位 (2]: 0000135
    IO +IO + B[3]&
    IF EK < O THEN EK + (EK - B [2]) / 2: 0000138
IFIO s O THEN IO * (IO - B [3]) / 2:
    WRITE (LP, F1, RD, EK, IO x R9, CT):
0000127
    0000135
    0000137
    0000139
    IF (ABS (B [1]) > 001 x ABS (RD) OR ABS (B [2]) > 0001 x ABS (EK) OR
    ABS (B [3])>.001 }\times\mathrm{ ABS (IO)) AND CT < 20 THEN GO TO LOOP: 0000142
    WRITE (LP, IDENT, ID, TEMP, RD, EK, IO x D9): 0000143
    WRITE (LP, F2): 0000144
    FOR J + 1 STEP 1 UNTIL NDO Y[J] + I[J] < RD + EK < LN (1 + (I [J]) 0000145
    / 101:
    FOR J + 1 STEP 1 UNTIL N DO IF V [J] = O THEN WRITE (LP, F3. I [J], V
    LCP.FS. I [J], V 0000147
    [J]; Y[J]) ELSE WRITE (LP, F3, I [J], V [J], Y [J], 100 x (V [J] - Y 00000148
    [J]) / V [J]):
    WRITE (LP, F5, TIME (2) / 60, TIME (3) / 60):
    SING: WRITE (LP [PAGE]):
    GO TO MORE:
    EOF: END.
    0000121
    0000122
    0000123
    0000125
    0000128
    0 0 0 0 1 2 9
    0000130
    0000132
    0000133
    0000134
    0000136
    0000138
    0000140
    0 0 0 0 1 4 1
    0000142
    0000146
    0000147
    0000149
    0000150
    0000151
    0000152
    0000153
```

```
TRANSISTOR PARAMETERS.
    BEGIN REAL IJ, ICJ. L, RBC, THETAM, ISC, RB, SQE, VC. M, RS; 00000000
    INTEGER K, J, N, CT, TEMP. D, SCT: 00000001
    ALPHA WHICH, ID:
    ARRAY I, IC, V, Y, E[0: 20], X[0: 20, 0: 4], COV[0:4, 0:4],
    B[0 : 4]:
    LABEL MORE, EOF, SING, LOOP, CASEB:
    FILE LP 4 (3, 15), CR "RADIO" (2, 10):
    0000002
    0000003
    0000004
    LIST L10 (RBC, THETAM, ISC x Q9, CT). L11 (RBC, O, THETAM, ISC x Q9, 0000007
    CT). L12 (RB, RBC. THETAM, ISC }\times\mathrm{ N . CT + SCT), L2O (RBC, THETAM, ISC
    x D9). L21 (RBC. 0, THETAM, ISC x D9), L22 (RB, RBC, 0, THETAM, ISC }
    D9), L30 ((ICJ + IC [J]), (IJ + I [J]), ICJ / IJ, V [J], (VC + IJ x
    RBC + THETAM x LN (1.0 + (IJ + ICJ) / ISC)). (IF V [J] = 0 THEN 100.0
    ELSE 100.0 x (V[J] - VC) / V [J])). L32 ((ICJ * IC[J]), (IJ & I[J]
    ).ICJ/IJ.V [J]. (VC + IJ < RB + IIJ + ICJ) }\times\mathrm{ RBC + THETAM }\times\mathrm{ LN (
    1.0 + (IJ + ICJ) / ISC)), (IF V [J] = 0 THEN 100.0 ELSE 100.0 x (V [J
    ] - VC) / V [J])):
    SWITCH LIST L1 + L10, L11, L12%
    SWITCH LIST L2 * L20, L21, L22:
    SWITCH LIST L3 + L30, L30, L32:
    SWITCH FORMAT F1 * (X37, "REVERSE CHARACTERISTICS OF TRANSISTOR ", A6 0000019
    / / X47. "TEMPERATURE = ", I3, " DEG. C" / /). (X37. "FORWARD CHARACTER0000020
ISTICS OF TRANSISTOR ", AG / / X47, "TEMPERATURE = ", I3, " DEG. C" / 0000021
    1):
    SWITCH FORMAT F2 & (X13, "RBC", X17, "THETAMC", X13, "ISCDO", X15, 0000023
    "CT" /), (X13, "RB", X18, "RE", X18, "THETAME", X13, "ISED9", X15, 0000024
    "CT" /). (X13, "RB", X18, "RE", X18, "THETAME", X13, "ISED9", X15, 0000025
    "CT" /): 0000026
    SWITCH FORMAT F3 + (/ / / X55, "RBC = ", F9.5, " OHM" / X51, "THETAMC =00000027
    ".F8.5," VOLT" / X55, "ISC= ", F12.5," D-9 AMP"// / / X15. "IE" 0000028
    * X18, "IB", X18, "BETAI", X12, "EXP, VBC", X11, "CALC, VBC", X14, "ERR0000029
OR" /). (/ / / X56. "RB = ". F9.5. "OHM" / X56. "RE = ", F9.5, " OHM" 0000030
    / X51, "THETAME = ", F8.5," VOLT" / X55, "ISE = ", F12.5," D-9 AMP" 0000031
    // / / X15, "IC", X18, "IB", X18, "BETAN", X12, "EXP. VBE", X11, "CALC0000032
. VBE", X14, "ERROR" /), (/ / / X56. "RB = ", F9.5, "OHM" / X56" "RE = 0000033
",F9.5. "OHM" / X56. "RC = ", F9.5. " OHM" / X51. "THETAME = ". F8.5 0000034
```



```
8", X18, "BETAN", X12. "EXP. VBE", X11, "CALC. VBE", X14, "ERROR" /): 0000036
    SWITCH FORMAT F4 + (3 E20.6. I17). (4 E20.6. II7). (4 E20.6. I17): 0000037
    FORMAT F5 (5 F20.8. F19.2. "%"):
    0000038
    ARRAY PS, SCALES, RES, DXS [0: 4];
0000039
```

```
PROCEDIIRES
```

PROCEDIIRES
DECOMPOSE (N,A),
DECOMPOSE (N,A),
SOLVE (N,LL,B,X), and
SOLVE (N,LL,B,X), and
FIT (N,M,Y,X,B,SQF,E,COV,SINGULAR),
FIT (N,M,Y,X,B,SQF,E,COV,SINGULAR),
APPENDIX B
APPENDIX B
M+2.0; 0000144
MORE: READ (CR, /. N. RBC, ISC, ID, TEMP, WHICH) [EOF]% 0000145
IF WHICH = "R" THEN K \& ELSE K * 1; 0000146
D + 3;
0000147
RB + 0.0:
WRITE (LP, FI [K], ID, TEMP):
WRITE (LP, F2[K]):

```

```

FOR J + 1 STEP 1 UNTIL N DO READ (CR, /, V [J], I [J], IC [J]);
0000151
FOR J * 1 STEP 1 UNTIL N DO I [J] + I [J] x D-3: 0000152
FOR J * 1 STEP 1 UNTIL N DO IC [J] + IC[J] x @-3: 0000153

```
```

CASEB: CT + OI 0000154
THETAM * 0.86 < M x (273 + TEMP) \times D-4; 0000155
IF K S 1 THEN FOR J + 1 STEP 1 UNTIL N DO X[J, 1] \& I [J] ELSE FOR J 0000156
+1 STEP 1 UNTIL NDO X[J. 1] + I[J] + IC [J]; 0000157
LOOP: CT + CT + 1%
FOR J * 1 STEP 1 UNTIL N DO
BEGIN IJ.I [J]:
ICJ + IC [J]:
L+LN (1.0 + (IJ + ICJ) / ISC); 0000162
X[J. 2]+-THETAM X (IJ + ICJ) / (ISC x (ISC + IJ + ICJ)): 0000163
IF D > 2 THEN X[J, 3] + L! 0000164
Y[J] + V [J] - RBC x IJ - THETAM x L: 0000165
IF K > 1 THEN Y [J] \& Y [J] - RBC x ICJ - RB x IJ! 0000166
END:
FIT (N, D, Y, X, B, SQE, E, COV, SING):
RBC * RBC + B[1];
ISC + ISC + B[2];
IF ISC < O THEN ISC * (ISC - B [2]) / 21
THETAM - THETAM + B [3]:
WRITE (LP, F4 [K], L1 [K]):
IF (ABS (B [1]) > 0.001 x ABS (RBC) OR ABS (B [2]) > 0.001 x ABS (ISC
| OR (IF D>2 THEN ABS (B [3])>0.001 > ABS (THETAM) ELSE FALSE))
AND CT < 20 THEN GO TO LOOP:
IF K = 1 AND RS }\leq\mathrm{ RBC THEN
BEGIN K + 2:
RB + RSI
SCT + CT:
GO TO CASEBI
END:
WRITE (LP, F3 [K], L2 [K]):
FOR J + 1 STEP 1 UNTIL N DO WRITE (LP, F5, L3 [K]): 0000184
IFK = O THEN RS + RBC, 0000185
SING: WRITE (LP [PAGE])\ 0000186
GO TO MORE:
0000187
EOF: END.
0000188

```

BINARY COUNTER, USING SIMPLE INTEGRATION METHOD TO COMPUTE CURRENTS 0000000 AND VOLTAGES VS. TIME AND VSMIN FOR NOMINAL AND WORST-CASE CONDITIONS. 0000001 BEGIN COMMENT * * * * * IMPORTANT * * * DO NOT CHANGE THIS DECLARATIONOOOOOO2 * * *

REAL LII, LO1, PHIR1, PHIS1, HA1, HO1, HN1, 0000003
HQ2, HN2, LAMBDAD2, NUD2, FD
0000006
ROP2, NS1, NS2, NB1, NB2, NC1, NC2, NCL, R10, R11, R12, R2, R3, R4 0000007
NDOO, ICONO, LOI, ICON1, LO2, ICON2, ISD. THETAMD, CJOD, VCPOTD. 0000008
ND, KD. RLD, RO, VCPOTC, NC, KC, CJOE, VCPOTE, NE, KE, RLE, RE, ISC, 0000009
THETAMC, CJOC, VCPOTC, NC, KC, RLC, RC, RB; 0000010
COMMENT * * * * * * DO NOT CHANGE THE DECLARATION ABOVE * * * * * *0000011
!
0000012
ARRAY ALP, DELTEMP, D1, U. D2, G [0 : 40 ]
0000013
REAL IL, ILM1, ILM2, ILDOT, ILDOTM1, IC, ICM1, ICM2, ICDOT, 0000014
ICDOTM1, ICL, ICLM1, ICLM2, ICLDOT, ICLDOTM1, IS, ISM1, ISM2, ID, 0000015
IDM1, IDM2, IB, IE, F1, F1M1, F2, F2M1, PHI1, PHIIM1, PHIIM2, 0000016
PHIDOT1, PHIDOT1M1, PHIDOTPR1, PHI2, PHI2M1, PHI2M2, PHIDOT2, 0000017
PHIDOT2M1, PHIDOTPR2, PHIDOTE1, PHIDOTEPR1, PHIDOTMA1, PHIDOTMAPR1 - PHIDOTE2, PHIDOTEPR2, PHIDOTMA2, PHIDOTMAPR2, VD, VDM1, VDM2, 0000018

IDPR, VDDOT, VDDOTM1, VPN, VPNPR. ISFD, VE, VEM1, VEM2, IEPR,
VEDOT, VEDOTM1, VBE, VBEPR, ISFE, DIEDVE, VC, VCM1, VCM2, ICPR, VCDOT, VCDOTM1, VCE, ISFC, DICDVE;

0000019
0000020
REAL HS1, HTH1, F121, F231, V11, V21, EPS1, HS2, HTH2, F122, F232,
V12, V22, EPS2, T, TAUS, DELT, TR, T1, T2, T3, T4, PHIIF1, PHIF2,
PHILF3, PHIIF4, PHI2F1, PHI2F2, PHI2F3, PHI2F4;
0000022
0000023

REAL CJD, CDD, CJE, CDE, CJC, CDC. BETAI, BETAN, ALPHAI, ALPHAN:
REAL FJ, FJMI, GJ, GJM1, FPRID, GPRIS, FPRIS, GPRID, D, DELID,
DELIS, S, CONFAC, CAPIS, CAPIL, TAUC, TV, TIN, VS, PHIDOTIZ, NV, Q
- SL, TSL. TEMP;

INTEGER NP, IP, NA, IA:
BOOLEAN TRANS, NOSW, FAILURE, BOOL:
0000024
0000025
0000026
0000027

REAL ARRAY ICN, BETN, IEI, BETI [0 : 30], NCOEF, ICOEF [0 : 3, \(0: 0000032\)
30 JI
ARRAY VAL, NONU, WCVAL [0 : 100];
ALPHA ARRAY GROUP1, GROUP2, NAME
INTEGER ARRAY SDIFF [0. NAM2, WCSIGN [0 : 100]: 0000036
FILE OWT \(4(2,15)\), CR "MARS" \((2,10):\)
LIST LIST2 (TEMP, VS, CAPIL, TR \(\times\) 106):
LIST LIST3 (T \(\times\) @6, IL, IC, ICL, IS, F1, PHII \(\times\) D8, PHIDOT1, F2, 0000040 0000037
0000038

0000041
LABEL SWITCHINGO, SWITCHING1, SWITCHING2, SWITCHING3, SWITCHING4, 0000042
MODEO, MODE1, MODE2, MODE3, MODE4, EXITO, EXIT1, EXIT2, EXIT3, 000043
EXIT4, MODES, MODE, MEADMORE MODE EXITO, EXIT1, EXIT2, EXIT3, EXIT4, MODES, EXIT, READMORE, EOF:
FORMAT FMT2 (X10, "TEMP (DEGREES C) =", F5.1, XB, "VS(VOLTS)=", F5. 1 000043 0000044 © X8, "CAPIL(AMP)=", F6.3, X8, "TR(MICROSECOND)=". F6.3 /); 0000045 FORMAT FMT3 ( 6 F6.3. 2 FB.4, F6.3. 3 F8.4. 2 F7.3. 2 FB.4, I3. I4) 0000046 ! FORMAT FMT4 (" TM, X4, "IL", X4, "IC", X4, "ICL", X3, "IS", X4, "F00000048 1", X4, "PHI1", X3, "PHIDOT1", X2, "F2", X4, "PHI2", X3, "PHIDOT2", X3 0000050 , "ID". X6. "VPN". X4, "VCE", X4, "PHIDTE1". X1, "PHIDTE2", X1, "CTS0000051
" "). HEAD (X45, "OUTPUT: MINIMUM SUPPLY VOLTAGE" / / X45, "TEMPERATURE0000052
 FF1 ("DEVICES PARAMETER NOMINAL VALUE AT TE", I3," "DEG.C ", "0000054
ONUNIFORMITY WORST-CASE DIFFERENTIAL SIGN WORST-CASE VALUE"'), DATA 0000055 (/ 24 (A6, A4, X1, A6, A2, X5, E18.4, X14, F6.2, "X", X19, A1, X18 0000056
 0000058
FORMAT FLAG1 ("SPURIOUS TRANSISTOR TURN-ON."): 0000059
FORMAT FLAG2 ("SPURIOUS TRANSISTOR TURN-OFF"):
```

FORMAT FLAG3 ("MAXIMUM COLLECTOR-EMITTER VOLTAGE EXCEEDED"):
0000061
0000062
FORMAT FLAG4 ("NO TRANSISTOR TURN-ON IN MODE 3"),ME =N, F8.4)! 0000063
FORMAT TIMER ("PROCESS TIME =",F8.4." I/O TIME =", F8.4)! 0000063
BOOLEAN NEWVS:
DEFINE LP = OWT H:
STREAM PROCEDURE TRANSFER (N. A, B): 0000066
VALUE NB 00000068
0000067
BEGIN LOCAL T:
SI + LOC N:
DI + LOC T:
DI + DI + 1% 0000071
DS + 7 CHRI 0000072
SI + A! 0000073
DI + Bi 0000074
T IDS \& 32 WDS: 0000075
DS * 32 WDS): 0000076
DS + N WDS
0000077
0000078
END TRANSFER:
PROCEDURE PRINTOUT: 0000079
IF COUNT MOD 10 = 0 THEN
0000081
BEGIN IF LINES MOD 50 = 0 THEN 0000082
BEGIN WRITE (OWT. TIMER. TIME (2) / 60. TIME (3) / 60): 0000083
WRITE (OWT [PAGE]):
WRITE (OWT, FMT4))
END:
WRITE (OWT, FMT3, LIST3): 0000087
LINES * LINES + 1; 0000088
CF + O:
END:
END PRINTOUT:
PROCEDURE PRINTHEAD; 0}0000009
BEGIN WRITE (OWT [PAGE]): 0000093
IF NEWVS THEN WRITE (OWT, FMT2, LIST2): 0000094
WRITE (OWT. FMT5, MODE): 0000095
WRITE (OWT. FMT4): 0000096
WRITE (OWT, FMT3. LIST3): 0000097
LINES + 11:
END PRINTHEAD:
PROCEDURE INTERPOL (POINTS, ICC, BET, COEF): 0000100
ARRAY COEF [O, O], ICC, BET [O]I 0000101
INTEGER POINTS:
BEGIN INTEGER J, K, L!
REAL ARRAY C [0: 3, 0: 3];
0000103
FOR L: = STEP, UNTIL POINTS DO 0000105
FOR L: = 1 STEP 1 UNTIL POINTS DO
FOR K: = 1. 2, 3 DO FOR J: = K STEP 1 UNTIL 3 DO C [J, K] : :
= (C[J.K-1]-C[J-1,K-1])/ (ICC[J + L - 1]-ICC 0000108
FOR J: = 0, 1, 2, 3 DO COEF [J,L]: = C[J, J] 0000110
END
END INTERPOL:
REAL PROCEDURE BETA (IC, P, COEF, ICC, BET, POINTS): 0000113
INTEGER P, POINTS: 0000114
ARRAY COEF [O, O], ICC, BET [O]: 0000115
REAL IC:
BEGIN INTEGER \
REAL B:
LABEL EX, PX;
IF IC > ICC [POINTS] THEN 0000120
BEGIN B: = BET [POINTS]:
0000121

```
```

 GO TO EX
 0 0 0 0 1 2 2
 END:
 IF IC < ICC [1] THEN
 BEGIN B * BET [1]:
 GO TO EX:
 END:
 PX: IF IC > ICC [P + 1] THEN
 BEGIN P: = P + 1;
 GO TO PX
 END:
 IF IC < ICC [P] THEN 0000132
 BEGIN P: = P - 11 0000133
 GO TO PX
 END: 0000135
 0000134
 B: = COEF [3, P]; 0000136
 FOR J: = 3. 2, 1 DO B: = B x (IC - ICC[J + P - 2]) + COEF[J - 0000137
 1. P]! 0000138
 EX: BETA: = Bi 0000139
 END BETA: 0000140
REAL PROCEDURE PHIDOTE (F, FM1, EPS, PHIDOTEPR): 0000141
VALUE F, FMI, EPS; 0000142
REAL F, FMI, PHIDOTEPR. EPS: 0000143
BEGIN PHIDOTEPR + EPS / DELT: 0000144
PHIDOTE * (F - FMI) x PHIDOTEPR; 0000145
END PHIDOTE; 0000146
REAL PROCEDURE PHIDOT IF, PHI, LI, LO, PHIR, PHIS, HA, HQ, HTH, HN 0000147

- LAMBDAD, NUD. FDB, FOPP. LAMBDA, NU. FB. FO. ROP, F12. F23. V1. }000014
V2. PHIDOTPRIME): 0000149
VALUE F, PHI, LI, LO, PHIR, PHIS, HA, HQ, HTH. HN, LAMBDAD, NUD, 0000150
FDB. FOPP, LAMBDA, NU. FB, FO, ROP, F12. F23. V1. V2; 0000151
REAL F, PHI, LI, LO, PHIR, PHIS, HA, HQ. HTH. HN, LAMBDAD, NUD, 0000152
FDB, FOPP, LAMBDA, NU. FB, FO, ROP, F12, F23, V1, V2, PHIDOTPRIME: 0000153
BEGIN REAL PHIDPRIME, PHID, PHIDOTP, PHIDOTPPRIME, SI 0000154
S + SIGN (F): 0000155
F*S x Fi 0000156
PHI + S x PHI:
IF F S F12 THEN 0000158
0000157
BEGIN PHID + VI x F x LN ((F - HA x LO) / (F - HA X LI)) - PHIR 0000159
; PHID 0000160
PHIDPRIME + V1 }\times(LN((F-HA\timesLO) / (F - HA < LI)) + F 人 (0000161
1/(F - HA x LO) - 1 / (F - HA x LI)))
END:
IF F12 < F AND F S F23 THEN
BEGIN PHID + V2 x (F / HTH - LI + F > (1 / HN - 1 / HQ) < LN (l
1-HN / HTH) / (1 - HN x LI / F))) - PHIR;
PHIDPRIME + V2 * (1 / HTH + (1 / HN - 1 / HQ) x (LN (F x (1
- HN / HTH) /(F-HN < LI)) = HN < LI / (F-HN < LI)))
END:
IF F23 < F THEN
BEGIN PHID + V2 x (LO - LI + F < (1/ /HN - 1/ HQ) < LN (IF -
HN x LO) / (F - HN x LI))) - PHIR:
PHIDPRIME + V2 }\times(1/HN-1/HQ)\times(LN ((F - HN < LO) / (F
-HN x LI)) + F x HN x (LO - LI) / ((F - HN > LO) > (F - HN
* LI)))
END:
IF O < F < FI2 THEN PHIDOTP * PHIDOTPPRIME + 0.0% 0000177
IF\#< < FI2 THEN PHIDOTP * PHIDOTPPRIME 0.0.
IF F12 < F < FDB THEN
BEGIN PHIDOTP * LAMBDAD x (F - F12) * NUD:
PHIDOTPPRIME * LAMBDAD }\times\mathrm{ NUD }\times(F-F12)*(NUD - 1.0): 000018
END:
IF FDB < F < FB THEN
BEGIN PHIDOTP + LAMBDA x (F - FOPP) * NU:
PHIDOTPPRIME + LAMBDA x NU x (F - FOPP) * (NU - 1) 0000184
END: 0000185

```
```

 IF FB < F THEN
 BEGIN PHIDOTP + ROP X (F - FO): 0000187
 PHIDOTPPRIME & ROP
 END:
 IF PHI < PHID THEN
 BEGIN PHIDOT + S x (PHIDOTP x (1 - ((2 x PHI + PHIS - PHID) / (0000191
 PHIS + PHID)) * 2)): 0000192
 PHIDOTPRIME + (1 - ((2 x PHI + PHIS - PHID) / (PHIS + PHID)) 0000193
 * 2) x PHIDOTPPRIME + 4 x PHIDOTP x (2 x PHI + PHIS - PHID) 0000194
 x (PHI + PHIS) x PHIDPRIME / (PHIS + PHID) * 38 0000195
 END ELSE PHIDOT * PHIDOTPRIME * O:
 END PHIDOT:
REAL PROCEDURE I (V, VL, II. IMI, IDOTMI, NPHIDOT, R1, LO, ICON.
IDOT::
VALUE V, VL, II, IMI, IDOTM1, NPHIDOT, RI, LO, ICON%
REAL V, VL, II, IM1, IDOTMI, NPHIDOT, RI, LO, ICON. IDOT:
BEGIN REAL L:
L + LO x EXP (- II / ICON):
IDOT + (V - NPHIDOT - RI x II - VL) / L;

```

```

 IF II & O THEN IDOT + II + O:
 I * II:
 END I:
REAL PROCEDURE V II, VJ, VMI, VDOTM1, IS, THETAM, CJO, VCPOT, N. K , RL, CJ, CD. ISF, VDOT, IPRII
VALUE I, VJ, VMI, VDOTMI, IS, THETAM, CJO, VCPOT, N, K, RLI
REAL I, VJ, VM1, VDOTM1, IS, THETAM, CJO. VCPOT, N, K, RL, CJ, CD,
ISF, VDOT. IPRI
BEGIN ISF + IS x EXP (VJ / THETAM):
IF VJ > VCPOT THEN VJ * .9999 x VCPOT:
CJ + CJO / ((1 - VJ / VCPOT) * N):
CD + K N ISF + CJ:
VDOT + (I - ISF + IS - VJ / RL) / CDI
VJ + VM1 + 0.5 x DELT }\times\mathrm{ (VDOTM1 + VDOT):
ISF * IS x EXP (VJ / THETAM):
IF VOOT \& 0 THEN IPR + ISF / THETAM + 1/ RL + CD > (1 - VDOTMI
/ VDOT) / DELT + VDOT > (K x ISF / THETAM + N x CJ / (VCPOT -
VJ)) ELSE IPR + ISF / THETAM + 1 / RL:
V * VJ\&
END V:

PROCEDURE INCREMENT:	$\begin{aligned} & 0000226 \\ & 0000227 \end{aligned}$
BEGIN LABEL GUESS, LOOPI	0000228
CTS + 01	0000229
PHI1M2 + PHIIM1:	0000230
PHIIMI + PHI 11	0000231
PHIDOTIM1 + PHIDOTI:	0000232
PHI2M2 * PHI2M1:	0000233
PHI2M1 * PHI2:	0000234
PHIDOT2M1 * PHIDOT2:	0000235
ILM2 + ILM1:	0000236
ILM1 + IL ${ }^{\text {a }}$	0000237
ILDOTM1 * ILDOT:	0000238
IDM2 + IDM1	0000239
IDM1 * ID:	0000240
ISM2 * ISM1:	0000241
ISM1 + IS:	0000242
F1M1 + F1:	0000243
F2M1 F2\% IF MODE 2 OR MODE $=4$ OR MODE $=0$ THEN	0000244
BEGIN ICLM2 + ICLM1: 4 OR MODE $=0$ THEN	0000245
ICLM1 * ICL:	0000246
ICLDOTM1 + ICLDOT	0000247
END	0000248

```
\begin{tabular}{|c|c|c|}
\hline & IF TRANS THEN & 0000249 \\
\hline & BEGIN ICM2 - ICM1: & 0000250 \\
\hline & ICM1 + IC: & 0000251 \\
\hline & ICDOTM1 * ICDOT: & 0000252 \\
\hline & VEM2 - VEM1: & 0000253 \\
\hline & VEM1 + VE: & 0000254 \\
\hline & VEDOTM1 * VEDOT: & 0000255 \\
\hline & VCM2 * VCM1: & 0000256 \\
\hline & VCM1 + VC: & 0000257 \\
\hline & VCDOTM1 * VCDOT: & 0000258 \\
\hline & END: & 0000259 \\
\hline & GUESS: PHI 1 + PHI1M2 + \(2.0 \times\) DELT \(\times\) PHIDOTIM1\% & 0000260 \\
\hline & PHI 2 + PHI2M2 + 2.0 \(\times\) DELT \(\times\) PHIDOT2M1: & 0000261 \\
\hline & IF T > TR OR MODE \(=2\) OR MODE \(=4\) OR MODE \(=0\) THEN IL + ILM2 + & 0000262 \\
\hline & \(2 \times\) DELT \(\times\) ILDOTM1 ELSE IL + IF \(T \leq T S L\) THEN SL \(\times\) T ELSE CAPIL & 0000263 \\
\hline & \(\times(1.0-1.89 \times(1.0-T / T R) * 2.61)\) \% & 0000264 \\
\hline & ID + 2.0 \(\times\) IDM1 - IDM2: & 0000265 \\
\hline & IS + 2.0 0 ISM1 - ISM2: & 0000266 \\
\hline & IF MODE \(=2\) OR MODE \(=4\) OR MODE \(=0\) THEN ICL + ICLM2 \(+2.0 \times\) & 0000267 \\
\hline & DELT \(\times\) ICLDOTM1: & 0000268 \\
\hline & IF TRANS THEN & 0000269 \\
\hline & BEGIN IC * ICM2 + 2.0 \(\times\) DELT \(\times\) ICDOTM1: & 0000270 \\
\hline & VE + VEM2 + \(2.0 \times\) DELT \(\times\) VEDOTM1: & 0000271 \\
\hline & VC + VCM2 + \(2.0 \times\) DELT \(\times\) VCDOTM1: & 0000272 \\
\hline & END: & 0000273 \\
\hline & LOOP: FJM1 + FJ; & 0000274 \\
\hline & GJM1 + GJ: & 0000275 \\
\hline & CTS + CTS + 11 & 0000276 \\
\hline & 1 + NS1 \(\times 15+N B 1 \times I D+N C 1 \times I C-N C L \times I C L ;\) & 0000277 \\
\hline & F2 + NS2 \(\times\) IS - NB2 \(\times\) ID - NC2 \(\times\) IC: & 0000278 \\
\hline & PHIDOTMA1 * PHIDOT (F1, PHII, LII, LOI, PHIR1, PHIS1, HA1, HQ1, & 0000279 \\
\hline & HTH1. HN1, LAMBDAD1, NUD1, FDB1, FOPP1. LAMBDA1. NU1, FB1, F01, & 0000280 \\
\hline & ROP1. F121, F231, V11, V21, PHIDOTMAPR1): & 0000281 \\
\hline & EPS \(1+V 11 \times(A B S ~(F 1) \times(1.0 /(A B S ~(F 1)+\) HA1 \(\times\) L01) - \(1.0 /\) & 0000282 \\
\hline &  & 0000283 \\
\hline & + HA1 \(\times\) LII)) & 0000284 \\
\hline & PHIDOTE1 * PHIDOTE (F1, FiM1, EPS1, PHIDOTEPR1): & 0000285 \\
\hline & PHIDOT1 * PHIDOTMA1 + PHIDOTE1: & 0000286 \\
\hline & PHIDOTPR1 + PHIDOTMAPR1 + PHIDOTEPR1: & 0000287 \\
\hline & PHIDOTMA2 * PHIDOT (F2. PHI2, LI2, LO2. PHIR2, PHIS2, HA2, HQ2, & 0000288 \\
\hline & HTH2, HN2, LAMBDAD2, NUD2, FDB2, FOPP2, LAMBDA2. NU2, FB2, F02, & 0000289 \\
\hline & ROP2. F122. F232, V12, V22, PHIDOTMAPR2): & 0000290 \\
\hline &  & 0000291 \\
\hline & ABS (F2) + HA2 \(\times\) LI2) ) + LN ( (ABS (F2) + HA2 \(\times\) L02) / (ABS (F2) & 0000292 \\
\hline & + HAZ \(\times\) LI2)) & 0000293 \\
\hline & PHIDOTE2 * PHIDOTE (F2, F2M1. EPS2. PHIDOTEPR2): & 0000294 \\
\hline & PHIDOT2 + PHIDOTMA2 + PHIDOTE2: & 0000295 \\
\hline & PHIDOTPR2 + PHIDOTMAPR2 + PHIDOTEPR2: & 0000296 \\
\hline & IF \(T>\) TR OR MODE \(=2\) OR MODE \(=4\) OR MODE \(=0\) THEN IL 1 10, & 0000297 \\
\hline & IS \(\times\) R3 + 0.6. IL. ILM1. ILDOTM1. NSI \(\times\) PHIDOT1 + NS2 \(\times\) PHIDOT2 & 0000298 \\
\hline & , R11 + RD, LO1. ICON1, ILDOT): & 0000299 \\
\hline & IF MODE \(=2\) OR MODE \(=4\) OR MODE \(=0\) THEN IF T \(\leqslant 4.60-6\) THEN ICL & 0000300 \\
\hline & I (VS. 1.0. ICL. ICLM1. ICLDOTM1. - NCL \(\times\) PHIDOT1. R10, LOO. & \[
0000301
\] \\
\hline & ICONO, ICLDOT) ELSE ICL + I (0, 3.0, ICL. ICLM1, ICLDOTM1, - & 0000302 \\
\hline & NCL \(\times\) PHIDOTI. R10, LOO, ICONO, ICLDOT): & 0000303 \\
\hline & IF TRANS THEN IC * I (VS, VCE, IC. ICM1, ICDOTM1, NC1 \(\times\) PHIDOTI & \[
0000304
\] \\
\hline & - NC2 \(\times\) PHIDOT2. R12. LO2. ICON2. ICDOT): & 0000305 \\
\hline & PHI 1 + PHI 1 M1 + \(0.5 \times\) DELT \(\times(\) PHIDOT1M1 + PHIDOT1) \(:\) & 0000306 \\
\hline & PHI 2 + PHI2M1 + 0.5 \(\times\) DELT \(\times(\) PHIDOT2M1 + PHIDOT2): & 0000307 \\
\hline & IF MODE \(\ddagger 3\) OR NOT TRANS THEN & 0000308 \\
\hline & BEGIN IF ID 20 THEN & 0000309 \\
\hline & BEGIN VPN + ID \(\times\) RD + THETAMD \(\times\) LN (1 + ID / ISD): & 0000310 \\
\hline & VPNPR + RD + THETAMD / (ISD + ID): & 0000311 \\
\hline & END ELSE & 0000312 \\
\hline & BEGIN ID + 0 : & 0000313 \\
\hline & VPN + NB2 \(\times\) PHIDOT2 - NBI \(\times\) PHIDOT \(1:\) & 0000314 \\
\hline
\end{tabular}
```

 VPNPR + 08
 END:
 END ELSE
 BEGIN IB + - ID
IE +IB +IC,
VE + V (IE + ALPHAI x (ISFC - ISC), VE, VEM1. VEDOTM1, ISE, 0000320
THETAME, CJOE, VCPOTE, NE, KE, RLE, CJE, CDE, ISFE, VEDOT,
IEPRI!
VC + V (- IC + ALPHAN x (ISFE - ISE), VC, VCM1, VCDOTM1, ISC
, THETAMC, CJOC, VCPOTC, NC. KC. RLC. CJC, CDC, ISFC, VCDOT.
ICPR):
VBE + IB }\timesRB + VE + IE \times RE;
VCE + IE \times RE + VE - VC + IC x RCI
IF VE = VEM1 THEN
BEGIN WRITE (LPP, < "VE = VEM1" >):
DIEDVE + IEPR - ALPHAI x ISFC / THETAMC: 0000330
DICDVE + ALPHAN x ISFE / THETAME - ICPR; 0000331
END ELSE
END ELSE
VEM1) x THETAMC): NLPHAI * ISFC x (VC NCMI) (NVE 0000334
VEM1) x THETAMC): ISFE / THETAME - ICPR x (VC - VCMI) / (0000335
VE - VEM1):
END:
ENO:' DIEDVE \& DICDVE THEN VBEPR + RB + (1 + RE x DIEDVE) / (0000338
IF OIEDVE FIEDVE - DICDVE) ELSE VBEPR * RB; * O + RE * DIEDVE) (0000339
VPN * - VBEI
VPNPR * VBEPR;
END:
FJ + NB2 x PHIDOT2 - NB1 x PHIDOT1 - VPN - ID x R4: 0000343
GJ + NS2 x PHIDOT2 + NS1 x PHIDOT1 + IS \timesR3 -R2 x (IL - IS): 0000344
FPRID + - (NB2 * 2 x PHIDOTPR2 + NB1 * 2 x PHIDOTPR1 + R4 + 0000345
VPNPR):
GPRIS + NS2 * 2 x PHIDOTPR2 + NS1 * 2 x PHIOOTPR1 + R2 + R3%
IF FJ = 0 THEN FPRIS + 0 ELSE FPRIS + NS2 x NB2 x PHIDOTPR2 -
NS1 x NB1 x PHIDOTPR1:
GPRID + - FPRIS:
D + FPRID x GPRIS - FPRIS x GPRID\
IF D \& O THEN
BEGIN DELID (- FJ x GPRIS + GJ X FPRIS) / Di 0000353
DELIS + (FJ x GPRID - GJ x FPRID) / Di 0000354
END ELSE DELID * DELIS + OI
ID + ID + DELID:
IS + IS + DELIS:
IF SIGN (FJ) \# SIGN (FJM1) THEN ID + ID - 0.5 x DELID:
IF SIGN (GJ) \# SIGN (GJMI) THEN IS + IS - 0.5 x DELIS:
IF (ABS (DELID) > 0.0001 x ABS (ID) OR ABS (DELIS) > 0.0001 < 0000360
ABS (IS)) AND CTS < 20 THEN GO TO LOOP:
IF CTS = 20 THEN CF +CF + 1%
IF ABS (PHIDOT2) < NV > ABS (PHIDOT1) AND \& > TAUS / 2 THEN
BEGIN CNV * 1:
NOSW - TRUE:
END ELSE
BEGIN CNV + O\&
NOSW + FALSEI
END:
END INCREMENT:

```


















```

 0000315
 0000316
0 0 0 0 3 1 7
0000318
0000319
0000321
0000322
0000323
0000324
0000325
0000326
0000327
0000328
0000332
0000336
0000337
0000338
0000340
0000341
0000342
0000343
0000344
0000345
0000346
0000347
0000348
0000349
0000351
0000352
END ELSE DELID + DELIS + O1 0000355
END ELSE DELID* DELIS + Oi 0000356
0000357
0000358
IF SIGN (FJ) f SIGN (FUMMI) THEN IS + IS - 0.5 x DELIS: 0000359
S)) AND CTS < 20 THEN GO TO LOOP:
0362
0000364
0000365
0000366
0366
0000367
0000368
0000369
0000370

```
```

 GROUP2 [INS1] + " GS "% 0000380
 GROUP1 [IR10] * "RESIST": 0000381
 GROUP2 [IR10] + " ORS "; 0000382
 GROUP1 [ILOO] + "INDUCT"; 0000383
 GROUP2 [ILOO] + " ORS "m: 0000384
 GROUP1 [IISD] + "DIODE "; 0000385
 GROUP1 [IISE] * "TRANSI";
 GROUP2 [IISE] + " STOR";
 FILL NAME [*] WITH "LII ". "LO1 ", "PHIRI ", "PHISI n, "HAI
    ```

```

 "LAMBDA", "NU1 n, "FB1 N. "FO1 ", "ROP1 "NNLI2 n, "LO2 0000389
 ", "PHIR2 ", "PHIS2 ", "HA2 ". "HQ2 ", "HN2 ", "LAMBDA", "NUD2 0000391
 ". "FDB2 ", "FOPP2 ", "LAMBDA", "NU2 ", "FB2 ", "F02 ", ", N0000392
"ROP2 ". "NS1 ", "NS2 ". "NB1 ", "NB2 ", "NC1 ", "NC2 0000393
", "NCL ", "R10 N, "R11 ", "R12 N, "R2 N, "R3 ", "R4 0000394
", "LOO ", "ICONO ", "LO1 ", "ICON1 ", "LO2 m, "ICON2 ". 0, 0000395
"ISD m, "THETAM", "CJOD ", "VCPOTD", "ND N, "KD ", "RLD
*, "RD ", NISE ", "THETAMN, "CJOE N" "VCPOTEN, WNE "MKE NRD 0000396
* "RLE ", "RE ", "ISC N, "THETAM", "COC NE", "NE ", "KE 0000397

```

```

 NAM2 [7] * "D1", 0000399
 NAM2[11]**1 "/ 0000400
 NAM2 [23] + "D2N: 0000402
 NAM2 [27] * "2 "; 0000403
 NAM2 [52] * "D "', 0000404
 NAM2[60] +"E "I 0
 NAM2 [68] + "C "; 0000406
 END X:
 COMMENT: INITIALIZE CORE PARAMETERS.I
 READMORE: READ (CR, /. TEMP) [EOF]:
 BEGIN REAL PSEUDO:
 LABEL DUMPLABEL;
 DUMP LP (LII, LO1, PHIR1, PHISI, HA1, HQ1, HN1, LAMBDAD1. NUDI,
 FOB1, FOPP1, LAMBDA1, NU1, FB1. F01. ROP1, LI2, LO2. PHIR2,
 PHIS2, HA2, HQ2, HN2, LAMBDAD2, NUD2, FDB2, FOPP2, LAMBDA2, NU2
 , FB2, F02, ROP2, NS1, NS2. NB1, NB2, NC1, NC2, NCL, R10. R11,
 R12, R2, R3, R4, LO0, ICONO, LO1, ICON1, L02. ICON2, ISD,
 THETAMD, CJOD, VCPOTD, ND, KD, RLD, RD, ISE, THETAME, CJOE,
 VCPOTE, NE, KE, RLE, RE, ISC, THETAMC, CJOC, VCPOTC, NC, KC,
 RLC, RC, RB, BETN, ICN, BETI, IEI) DUMPLABEL: 1;
 FOR J + O STEP 1 UNTIL 75 DO READ (CR./. VAL [J]. NONU [J].
 SDIFF [J]):
 FOR J + O STEP 1 UNTIL 75 DO IF SDIFF[J] = 1 THEN WCSIGN[J] + "00000422
 * ELSE
 IF SDIFF[J]= 0 THEN WCSIGN[J] + "on ELSE WCSIGN[J] + N=N!
 FOR J * O STEP 1 UNTIL 75 DO NONU [J] & 5 x NONU [J];
 FOR J + O STEP 1 UNTIL 75 DO WCVAL [J] & VAL [J] x (1 + SDIFF [
 J] x NONU [J]/ 100):
 WRITE (LP, HEAD, TEMP):
 WRITE (LP, FFI, TEMP)!
 WRITE [LP, DATA, FOR J + O STEP 1 UNTIL IROPI DO [GROUP1 [J],
 GROUP2[J], NAME [J], NAM2 [J], VAL [J], NONU [J], WCSIGN [J],
 WCVAL [J]]):
 WRITE (LPP, DATA, FOR J + ILI2 STEP 1 UNTIL IROP2 DO [GROUP1 [J]
 - GROUP2 [J], NAME [J], NAM2[J], VAL[J]. NONU [J], WCSIGN [J]
 -WCVAL [J]]):
 WRITE ILP, DATA, FOR J + INS1 STEP 1 UNTIL INCL DO [GROUP1 [J],
 GROUP2[J], NAME [J], NAM2 [J], VAL [J], NONU [J], WCSIGN [J],
 WCVAL [J]]):
 WRITE (LP [PAGE]):
 WRITE (LP, FF2):
 WRITE (LP, FFI, TEMP):
 WRITE [LP, DATA, FOR J + IR10 STEP 1 UNTIL IR4 DO [GROUPI [J], 0000441
 GROUP2 [J], NAME [J], NAM2 [J], VAL [J], NONU [J], WCSIGN [J], 0000442
 WCVAL [J]]):
 WRITE \LP, DATA, FOR J + ILOO STEP 1 UNTIL IISAT2 DO [GROUPI [J
]. GROUP2 [J]. NAME [J]. NAM2 [J]. VAL [J]. NONU [J], WCSIGN[J
    ```
```

]. WCVAL [J]]):
 WRITE (LP [PAGE]):
 WRITE (LP, FFR):
 WRITE (LP, FFI, TEMP):
 WRITE (LP, DATA, FOR J + IISD STEP 1 UNTIL IRD DO [GROUPI [J],
 GROUP2[J], NAME [J], NAM2 [J], VAL [J], NONU [J], WCSIGN[J],
 WCVAL [J]]):
 WRITE (LP, DATA, FOR J + IISE STEP 1 UNTIL IRB DO [GROUPI [J],
 GROUP2 [J], NAME [J], NAM2 [J], VAL [J]. NONU [J], WCSIGN [J],
 WCVAL [J]]):
 WRITE (LP [PAGE]):
 TRANSFER (76. WCVAL, LII):
 WRITE (LP [PAGE]):
 READ (CR, / NP, FOR J + O STEP 1 UNTIL NP + 1 DO[ICN [J].
 BETN [J]]):
 READ (CR, /, IP, FOR J + O STEP 1 UNTIL IP + 1 DO[IEI [J],
 BETI [J]]):
 FOR J + O STEP 1 UNTIL NP + 1 DO ICN[J] + ICN[J] < @-3I
 FOR J + O STEP 1 UNTIL IP + I DO IEI [J] + IEI [J] x 0-3:
 OUMPLABEL:HS1 + HA1 + HQ1 + HN1 + PHIRI \times (HA1 + HQ1 - HN1) /
 PHIS1:
 HS2 * HA2 + HQ2 + HN2 + PHIR2 x (HA2 + HQ2 - HN2) / PHIS2:
 HTH1 * (HS1 - SQRT (HS1 * 2 - 8 < HA1 \times HQ1 < (1 + PHIR1)
 PHIS1))) / 4%
 HTH2 + (HS2 - SQRT (HS2 * 2 - 8 < HA2 < HQ2 < (1 + PHIR2 /
 PHIS2))) / 4%
 F121 * HTHI x LII%
 F122 * HTH2 x LI2:
 F231 + HTH1 x LO1'
 F232 * HTH2 x LO2:
 V11 + (PHIS1 - PHIR1) / ((LO1 - LII) x HA1):
 V12 * (PHIS2 - PHIR2) / ((LO2 - LI2) x HA2):
 V21 + (PHIS1 + PHIR1) x HQ1 / ((LO1 - LII) x HN1):
 V22 * (PHIS2 + PHIR2) x HQ2 / ((LO2 - LI2) x HN2):
 RLE + RLE x RLO / (RLE + RLD);
 END PSEUDO:
FOR VS + 23.2 STEP 0.1 UNTIL 23.5 DO
BEGIN COMMENT -10 DEGREES:
BOOL + TRUE:
CONFAC + 2.50:
TRANS + FAILURE + FALSEI
TR + (0.11 + 0.0023077 x (VS - 28.0)) > D-6i 0000487
CAPIL + 0.152 - 0.004 < (28.0 - VS): 0000488
CAPIL + 0.152-0.004 < (28.0 - VS): 0000489
TSL + 0.545454 x TR:
CAPIS * VS / R11 * R2 / (R2 + 0.6 * ROP1 * (NS1 * 2 + NS2 * 2)) 0000491

```

```

 PHIDOT12 * ABS (NB2 }\times0.6\times\mathrm{ ROP1 }\times((NS1 \times NB2 + NS2 \times NB1) >
 CAPIS - (NB1 + NB2) < FOPP1) - NB1 < 0.7) / (NB1 * 2 + NB2 * 2)
 %
 NV + 0.001 x PHIDOT121
 NEWVS * TRUE:
 MODES: IF MODE }\ddagger0\mathrm{ AND NOT NEWVS THEN PRINTOUT:
PHI1 + PHII - F1 < V11 x LN ((HA1 \times LO1 + ABS (F1)) / (HA1 x
LI1 + ABS (Fi))):
IF ABS (PHII) > PHIRI THEN PHII + PHIR1 x SIGN (PHII):
PHI2 - PHI2 - F2 x V12 x LN ((HA2 x LO2 + ABS (F2))/ (HA2 x
LI2 + ABS (F2))):
IF ABS (PHI2) > PHIR2 THEN PHI2 + PHIR2 x SIGN (PHI2):
VCE * VS:
VC - VS;
IL + ILMI + ILM2 + ILDOT + ILDOTM1 + IC + ICM1 + ICM2 + ICDOT *
ICOOTM1 * 0.08
ICL * ICLM1 * ICLM2 * ICLDOT * ICLDOTM1 + IS * ISM1 * ISM2 * ID

* IDM1 + IDM2 + 0.01
IB+IE+F1+F1M1 +F2 +F2M1 + 0.0:

```

0000446 0000447 0000448 0000449 0000450 0000451 0000452 0000453 0000454 0000455 0000456 0000457 0000458 0000459 0000460 0000461 0000462 0000463 0000464 0000465 0000466 0000467 0000468 0000469 0000470 0000471 0000472 0000473 0000474 0000475 0000476 0000477 0000478 0000479 0000480 0000481 0000482 0000483 0000484 0000485 0000486 0000487 0000488 0000489 0000491 0000492 0000493 0000494 0000495 0000496 0000497 0000498 0000499 0000500 0000501 0000502 0000503 0000504 0000505 0000506 0000507 0000508 0000509 0000510 0000511
```

PHIDOT1 * PHIDOTIM1 * PHIDOTPR1 + 0.01 0000512
PHIDOT2 + PHIDOT2M1 + PHIDOTPR2 + 0.0% 0000513
PHIDOTE1 * PHIDOTEPR1 * PHIDOTMA1 + PHIDOTMAPR1 * 0.0: 0000514
PHIDOTE2 * PHIDOTEPR2 + PHIDOTMA2 + PHIDOTMAPR2 * 0.0% 0000515
VD + VDM1 * VDM2 + IDPR * VDDOT * VDDOTM1 + VPN + VPNPR * ISFD 0000516
+0.0%
VE * VEM1 + VEM2 + IEPR + VEDOT * VEDOTM1 * VBE * VBEPR + ISFE

* DIEDVE + 0.0;
VCM1 + VCM2 + ICPR + VCDOT + VCDOTMI + ISFC + DICDVE * 0,0:
NCM2 ICPR * 0000520
FJ + FJMI + GJ + GJMI + FPRID + GPRIS + FPRIS + GPRID + D * 0000521
DELID + DELIS * DELT * 0.0i
T+1020:
WRITE (OWT [DBL], FMT3, LIST3):
WRITE (OWT, TIMER, TIME (2) 60, TTME (3) / 60):
WRITE (OWT. TIMER, TIME (2) / 60, TIME (3) / 60): 0000525
CTS + CF + COUNT * CNVS + CNV + 0i 0000526
TRANS * FALSE:
T* 0.01
IF NEWVS THEN GO TO MODEO:
IF BOOL THEN
BEGIN BOOL + FALSE:
IF MODE OLO 0000531
IF MODE = O THEN GO TO MODEO ELSE IF MODE = 2 THEN GO TO 0000532
MODE2 ELSE IF MODE = 4 THEN GO TO MODE4: 0000533
END:
BOOL + TRUEI - 0000534
IF MODE = O THEN GO TO MODE1: 0000536
IF MODE = 1 THEN GO TO MODE2: 0000537
IF MODE = 2 THEN GO TO MODE3: 0000538
IF MODE = 3 THEN GO TO MODE4: 0000539
IF MODE = 4 THEN
BEGIN PHIIF4 * PHIII
PHI2F4 * PHI2:
GO TO EOF:
END:
MODEO: MODE * O;
IF BOOL THEN
BEGIN PHII * PHIRI:
PHI2 + - PHIR2:
END:
PHIIM2 * PHIIM1 + PHII:
PHI2M2 * PHI2MI * PHI2%
TAUS + > XPHIR1 x NB1, 0.7: 0000551
TAUS + 2 X PHIR1 X NB1 / 0.7: 0000552
PRINTHEAD:
NEWVS * FALSE:
SWITCHINGO: T + T + DELT: 0000555
COUNT + COUNT + 1; DELT }000055
COUNT + COUNT + 1i
CNVS + CNVS + CNV: 0000559
PRINTOUT: }000056
IF NOT NOSW AND (CNVS \leq 30 OR PHII < - 0.1 x PHIRI) THEN GO TO 0000561
SWITCHINGO:
0000562
GO TO MODES: 0000563
MODE1: MODE + 1' 0000564
TAUS + 2 x PHIR1 / PHIDOT12: 0000565
PRINTHEAD:
SWITCHING1: IF T < TR THEN DELT + TAUS / 300 ELSE IF MAX (ABS (}000056
LSE IF MAX (ABS I 0000567
PHIDOTMA1). ABS (PHIDOTMA2)) > 20 x NV THEN DELT * TAUS / 60 0000568
ELSE DELT + TAUS / 30:
DELT + DELT / CONFAC;
T + T + DELT
0000569
0000570
TOUT + DELT: 0000571
COUNT + COUNT + 1% 0000572
INCREMENT: 0000573
IF VCE > 60 THEN WRITE (LP, FLAG3): 0000573
CNVS + CNVS + CNVI 0000575
PRINTOUT:
IF VCE < 1.0 THEN WRITE (OWT. FLAG1): 0000576
0000576

```
```

IF NOSW AND (CNVS > 30 OR PHII > - 0.9 x PHIR1) THEN
BEGIN T1 + T:
GO TO MODES:
END ELSE GO TO SWITCHING1:
MODE2: MODE + 2;
PHIIM2 * PHIIM1 * PHIIFI * PHII\&
PHI2M2 * PHI2M1 + PHI2F1 * PHI2:
TAUS + 2.0 x PHIR1 x NB1 / 0.71
DELT + TAUS / 150:
PRINTHEAD:
SWITCHING2: T + T + DELT:
COUNT + COUNT + 1%
INCREMENT:
CNVS + CNVS + CNV:
PRINTOUT:
IF NOSW AND (CNVS > 30 OR PHI1 < - 0.1 x PHIR1) THEN
BEGIN T2 + T:
GO TO MODES:
END ELSE GO TO SWITCHING2:
MODE3: MODE + 3%
PHIIM2 * PHIIMI + PHIIF2 * PHII:
PHI2M2 * PHI2M1 * PHI2F2 - PHI2:
TAUS + 2 x PHIR1 / PHIDOTI2\&
NA + 1%
IA+1;
INTERPOL (NP. ICN. BETN, NCOEF):
INTERPOL (IP, IEI, BETI, ICOEF): 0000604
PRINTHEAD
SWITCHING3: IF T < 2 x TR OR (PHII > PHIRI AND PHI2 > 0.8 x 0000606
PHIR2) OR (PHII > PHIR2 AND PHI2 < - PHIR2) THEN DELT * TAUS / 0000607
300 ELSE DELT + TAUS / 100: 0000608
OELT * DELT / CONFAC: 0000609
T + T + DELT: 0000610
COUNT + COUNT + 1: 0000611
IF VPN < - 0.1 AND NOT TRANS THEN 0000612
BEGIN TRANS * TRUE: 0000613
TV + T: 0000614
WRITE (LP, < "TV=", F10.6 >, TV x W6): 0000615
END:
IF TRANS THEN
BEGIN BETAN + BETA (IC, NA, NCOEF, ICN, BETN, NP):
BETAI * BETA (IE, IA, ICOEF, IEI, BETI, IP)! 0000619
ALPHAI - BETAI / (1 + BETAI): 0000620
ALPHAN * BETAN / (1 + BETAN): 0000621
ENDI 0000622
INCREMENT:
CNVS + CNVS + CNV\&
IF PHI2 > 0 < PHII AND VCE > 5 x VS THEN 0000625
BEGIN FAILURE + TRUEI 0000626
WRITE (OWT, FLAG2): 0000627
GO TO EXIT: 0000628
END:
PRINTOUT: 0000630
0000629
IF (NOSW AND (CNVS > 30 OR PHII > 0 AND PHI2 < 0)) OR (PHII > 0000631
PHIR1 AND PHI2 < - 1.20 x PHIR2) OR (PHII Z PHIR1 AND PHI2 < - 0000632
PHIR2 AND VCE > VS) OR (IC S 0.001 ANO PHII > 0 > PHI2) THEN 0000633
BEGIN T3 * T:
IF NOT TRANS THEN
BEGIN WRITE (LP, FLAG4): 0000636
GO TO EXIT:
END ELSE GO TO MODES:
END ELSE GO TO SWITCHING3%
0000638
0000639
MODE4: MODE + 4:
0000640
PHI1M2 * PHIIM1 + PHIIF3 * PHIII 0000641
PHI2M2 + PHI2M1 * PHI2F3 * PHI2:
0000642
0000643

```
DELT * TAUS / 150: 0000644
PRINTHEAD: ..... 0000645
SWITCHING4: \(T+T+\) DELT: ..... 0000646COUNT + COUNT + 11INCREMENT:CNVS + CNVS + CNV:0000647 0000649PRINTOUT:0000650
IF NOSW AND (CNVS > 30 OR PHII < - 0.1 x PHIR1) THEN ..... 0000651BEGIN T4 + T:0000652GO TO MODES0000653
END ELSE GO TO SWITCHING4: ..... 0000654
EXIT: ..... 0000655
END: ..... 0000656
EOF: WRITE (LPP, < 2 F20.2 >. TIME (2) / 60. TIME (3) / 60): ..... 0000657END.0000658

\section*{REFERENCES}
1. D. Nitzan, "Flux Switching in Multipath Cores," Report l, for Jet Propulsion Laboratory, Contract 950095 under NASw- 6 , SRI Project 3696 , Stanford Research Institute, Menlo Park, California (November 1961).
2. D. Nitzan and V. W. Hesterman, "Flux Switching in Multipath Cores," Report 2, for Jet Propulsion Laboratory, Contract 950095 under NASw-6, SRI project 3696, Stanford Research Institute, Menlo Park, California (November 1962).
3. D. Nitzan and V. W. Hesterman, "Flux Switching in Multipath Cores," Report 3, for Jet Propulsion Laboratory, Contract 950095 under NASw-6 SRI Project 3696, Stanford Research Institute, Menlo Park, California (June l964).
4. D. Nitzan and V. W. Hesterman, "Flux Switching in Multipath Cores," Report 4, for Jet Propulsion Laboratory, Contract 950943 under NAS7-100, SRI Project 5094, Stanford Research Institute, Menlo Park, California (July 1965).
5. L. Néel, "Principles of a New General Theory of Coercive Force" Ann. Univ. Grenoble, Vol. 22, pp. 299-343 (1946). (English translation, ATS - 57H12F.)
6. J. E. Knowles, "A Further Explanation of the Shape of the Hysteresis Loop of 'Square Loop' Ferrites," Proc. Phys. Soc. (GB), Vol. 77, pp. 225-229 (February 1961).
7. C. Kittel and J. K. Galt, "Ferromagnetic Domain Theory," Solid State Physics, Vol. III, pp. 437-565 (Academic Press, New York, N.Y. 1956).
8. D. Nitzan and V. W. Hesterman, "Elastic Flux-Switching Properties of a Thin Ferrite Core," J. Appl. Phys., Vol. 37 (to be published March 1967).
9. F. C. Hewitt and W. M. Overn, "History Effect of Time-Limited Excitation," J. Appl. Phys., Vol. 34 , pp. 1117-il18 (April 1963).
10. N. Menyuk and J. B. Goodenough, "Magnetic Materials for Digital Computer Components, I--A Theory of Flux Reversal in Polycrystalline Ferromagnetics," J. Appl. Phys., Vol. 26, pp. 8-18 (January 1955).
11. M. K. Haynes, "Model for Nonlinear Flux Reversals of Square-Loop Polycrystalline Magnetic Cores," J. Appl. Phys., Vol. 29, pp. 472-474 (March 1958).
12. C. H. Lindsey, "The Square-Loop Ferrite Core as a Circuit-Element," Proc. IEE (London), Vol. 106C, pp. 117-124 (September 1959).
13. W. Hilberg, "A Contribution to the Theory of Magnetic Reversal in Ferrites, II WallShifting Model Taking into Account Non-Homogeneities and Anisotropies," Frequenz, Vol. 18, pp. 186-202 (June 1964). (English translation, FSTC 381-T6470.)
14. G. T. Rado, R. W. Wright, and W. H. Emerson, "Ferromagnetism at Very High Frequencies, III - Two Mechanisms of Dispersion in a Ferrite," Phys. Rev., Vol. 80.2, pp. 273-280 (October 1950).
15. J. Smit and H. P. J. Wijn, Ferrites, Ch.l4 (John Wiley \& Sons, Inc., New York, N.Y., 1959).
16. G. T. Rado, V.J. Folen, and W. H. Emerson, "Effect of Magnetocrystalline Anisotropy on the Magnetic Spectra of Mg-Fe Ferrites," Proc. IEE (London), Vol. 104, pp. 198-205 (October 1956).
17. S. E. Harrison, C. J. Kriessman, and S. R. Pollack, "Magnetic Spectra of Manganese Ferrites," Phys.. Rev., Vol. 110.4, pp. 844-849 (May 1958).
18. D. Nitzan, "Computation of Flux Switching in Magnetic Circuits," IEEE Trans. on Magnetics, Vol. MAG-1, pp. 222-234 (September 1965).
19. V. W. Hesterman, "Flux-Switching Properties of a Partially Set Core," Tech. Report 5, Contract Nonr \(2712(00)\), SRI Project 2697 , Stanford Research Institute, Menlo Park,
California (November 1963\()\).
20. V. W. Hesterman, "Switching Properties of a Partially Set Square-Loop Ferrite Core," IEEE Trans. on Magnetics, Vol. MAG-1, pp. 309-314 (December 1960).
21. V. T. Shahan and O. A. Gutwin, "Threshold Properties of Partially Switched Ferrite Cores," J. Appl. Phys. Vol. 33, Supplement, pp. 1049-1050 (March 1962).
22. P. E. Gray, D. DeWitt, A. R. Boothroyd, and J. F. Gibbons, Physical Electronics and Circuit Models of Transistors (John Wiley \& Sons, Inc., New York, N.Y., 1964).
23. C. L. Searle, A. R. Boothroyd, E. J. Angelo, Jr., P. E. Gray \({ }_{s}\) and D. O. Pederson, Elementary Circuit Properties of Transistors (John Wiley \& Sons, Inc., New York, N.Y., 1964).
24. W. Hochwald and C. T. Kleiner, "Digital Simulation of Nonlinear Electromagnetic Circuits," IEEE Trans. on Magnetics, Vol'. MAG-2, pp. 532-539 (September 1966).
25. J. B. Scarborough, Numerical Mathematical Analysis, Ch. 9 (John Hopkins Press, Baltimore, Md., 1950).

\section*{INDEX}

Active-region of transistor, experiment, 121
Air flux, 18, 33
Analysis of binary counter, \(140,143-161\)
worst case, \(175,179-182\)
Anisotropy constant, 40
```

Beta vs. I_{c} of a transistor:
inverse, 127, 130
normal, 127, 129
Binary counter, core-diode-transistor:
circuit, 68-69
computer analysis, $140,143-211$
circuit equations, $140,143-144$
computation methods, $144-150$
computer program, 150-161, 201-211
modes of operation, 68, 70-71
plots of $\phi_{1}\left(F_{1}\right)$ and $\phi_{2}\left(F_{2}\right), 175-178$
$T=-10^{\circ} \mathrm{C} ; V_{s}=15 \mathrm{~V}, 176$
$T=25^{\circ} \mathrm{C} ; V_{s}=28 \mathrm{~V}, 177$
$T=85^{\circ} \mathrm{C} ; V_{s}^{s}=50 \mathrm{~V}, 178$
propagation of COUNT states, 71-73
table of core and circuit parameters, 141-142
$V_{s, \max }$ factors, 78-80
flow chart, 80
$V_{s, m i n}$ factors, 74-77
flow chart, 76
waveforms of flux and drive currents, 68, 70
waveforms of time variables, exp. vs. comp, 161-175
discussion, 174-175
$T=-10^{\circ} \mathrm{C} ; \quad V_{s}=15 \mathrm{~V}, 162-165$
$T=25^{\circ} \mathrm{C} ; V_{s}=28 \mathrm{~V}, 160-169$
$T=85^{\circ} \mathrm{C} ; V_{s}^{s}=50 \mathrm{~V}, 170-173$
worst-case $V_{s, m i n}, 175,179-182$
computation method, 152,179
conclusions, 182
for $d_{\text {max }}=0,179$
initial ϕ_{1} and ϕ_{2} at each mode, 180,182
sign S determination, 180
$V_{s, \text { min }}$ vs. $d_{\text {max }}, 179-181$

```
    Capacitance, diode model, 86-87, 120
    Capacitances, transistor model:
    diffusion, 88-89, 133-139
    junction, 88-89, 130-134
Circuit, binary counter, 68-69
Circuit parameters, binary counter, table of, 141-142
diffusion, 88-89, 133-139
Junction, \(88-89,130-134\)
Circuit, binary counter, \(68-69\)
Circuit parameters, binary counter, table of, 141-142

\section*{CLEAR MMF:}
binary counter, 68-73
flux-switching experiment, 15-17
Coaxial transmission line-See Transmission line
Collector-base equations in transistor model, 89
Complex permeability, 19, 41-43
Computation of:
binary-counter analysis, \(140,143-161\)
binary-counter, worst case, \(175,179-182\)
core parameters, dynamic, 102,105
core parameters, static, 97, 100
diode parameters, 116
\(F(t)\) for voltage drive, 47-49
inductor parameters, 109
transistor parameters, diffusion capacitances, 134, 136-139
transistor parameters, junction
capacitances, 131, 133
transistor parameters, static, 126-127
Computer program:
binary counter, 150-161, 201-211
diode parameters, 116, 197
inductor parameters, 109, 195
static \(\phi(F)\) parameters, 97, 100, 187-190
transistor parameters, 127, 199-200
voltage drive, 48-49, 183-185
\(\dot{\phi}_{p}(F)\) parameters, 105, 191-193
Constant:
anisotropy, 40
viscous, 40
Core parameters:
E-6, 36
Lockheed 100SC1, 141
Core holder, 53
Core model, 8l-83
elastic, flux switching, 81-82
inelastic flux switching, 82
parameters, 83
static \(\phi(F), 82-83\)
Core-model parameters, 91-107
dimensions, 91
dynamic, \(\dot{\phi}_{p}(F), 100-107\)
computation, 102, 105
discussion, 105
measurement, 100,102
results, exp. vs. comp., 102-105
temperature effect on, 105-107
static \(\phi(F), 91-100\)
computation, 97, 100
discussion, 100
measurement, 91-97
results, exp vs. comp., 97-99
temperature effect on, 100-101
Core parameters, table of, 141
COLNT, propagation of in a binary counter, 71-73
Counter, binary-see binary counter, core-diodetransistor

Cut-off region of transistor, experiment, 123

Damped precession of magnetization, 9-10
Damping coefficient \(\zeta\) :
definition, 12
rotational, 37
wall motion, 37
Damping, viscous-See Viscous damping
Decaying inelastic flux-switching component, 21-24
disappearance in high \(F, 44-45\)
effect in partial-set switching, 63
Delay line in mercury-relay pulser, 30-32
Delta noise, 23-24
Demagnetized state, 51
Dimensions of core, 91, 141
Diode model, 85-87
dynamic characteristics, 86-87
parameters, 87
static characteristics, 85-86
Diode-model parameters, 109, 114-120
dynamic, 120
static, forward, 109, 114-116
computation, 116 measurement, 109
results, exp. vs. comp., 114-11.6
temperature effect on, 116-117
static, reverse, 116, 118-119
measurement, 116 temperature effect on, 116, 119
Disappearance of \(\dot{\phi}\) component:
\(\phi_{i}\) in high \(F, 44-45\)
\(\dot{\phi}_{\epsilon w}^{i}\) in high transverse field, 18
Dispersion of magnetic spectrum, 19
Displacement, wall_See Domain-wall displacement
Distribution of \(H_{t h}, 6-7\)
Domain-wall displacement:
effect on partial-set switching, 57,63
elastic, 4
equation of motion, 7-8
inelastic, 4
irreversible, 5
reversible, 5
Domain-wall motion:
disappearance in high transverse field, 18-19
elastic, 4, 19-20
equation, 7-8
irreversible, 5
mass, ?
reversible, 5
stiffness, 7
types, 4-5
viscous damping, 7
Domain-wall position, effect on: energy, 2
energy gradient, 3
Duration:
between pulses, 5l, 52
of pulses, 51

Dynamic properties of:
core, 100-107
diode, 120
transistor, 127-139

Fbers-Moll model, 90
Flastic flux-switching model:
components, evidence for, 18-19
experimental verification, 33-36
rotational component, 20
total, 20-21
wall-motion component, 19-20
Elastic switching parameters, 33-34
Elastic wall displacement:
condition, 4
definition, 4
equation of motion, 7-8
Emitter-base equations in transistor modél 87-88
Energy gradient \(v s\). wall position, 3
Energy vs. wall position, 2, 63
Fquation of motion of elastic wall
displacement, 7-8
Experiment:
diode static parameters, 109, 116
flux switching, 15-18, 26, 29-33
flux switching from partially set states, 51, 53
inductor parameters, 108
static \(\phi(F)\) parameters, 91-97
transistor parameters:
dynamic, 130-131, 133, 135
static, 121-123
\(\dot{\phi}_{p}(F)\) parameters, 100, 102
Fxperimental verification for flux-switching models:
\(T_{r}=65 \mathrm{~ns}, 26-27\)
\(T_{r}=13 \mathrm{~ns}, 26,28\)
\(T_{r}=0.4 \mathrm{~ns}, 33-40\)
relastic \(\dot{\phi}\) only, 33-36.
elastic and inelastic \(\phi, 34-40\)

Fall time of PARTIAL-SET pulse, 51
Ferrite:
copper-manganese, 57
dispersion of magnetization, 11,44
grains, 63
magnesium-manganese-zinc, 40
Failure of binary counter operation, 74-81
\(V_{s, \text { max }}, 78-80\)
\(V_{s, m i n}, 74-77\)
Flow chart for spurious transistor turn-off:
\(V_{s, \text { max }}, 80\)
\(V_{s, \min }^{s, m a x}, 76\)
Flux, air-See Air flux

Flux-switching experiment:
from partially-set states, 51, 53
general, 15-18
with short \(T_{r}, 26,29-33\)
Flux-switching experimental results-See
Experimental verification for flux-switching models
Flux switching from partially switched state, 51-66
Flux-switching model, 81-83
elastic, 81,82
inelastic, 82
parameters, 83
static \(\phi(F)\), 82-83
Flux-switching model components:
elastic, 18-21
rotational, 20
total, 20-21
wall-motion, 19-20
inelastic, 21-28
decaying \(\dot{\phi}_{i}, 21-24\)
main \(\dot{\phi}_{m a}, 24-28\)
Flux-switching parameters:
core E-6, 36
core \(100 \mathrm{SCl}, 141\)
Forward characteristics of:
diode, 109, 114-116
transistor, 121-127

Gilbert equation:
coefficients, 12-14
in rectangular coordinates, 8
in spherical coordinates, 9
solution for M along applied \(\mathrm{H}, 10-11\)
Grains, ferrite, 63

History effect on flux switching, 51
Holder, core, 53

INCREMENT PROCEDURE, 152, 154, 159-161
Inductor model, 83-85
parameters, 8
Inductor-model parameters, 108-114
computation, 109
measurement, 108
results, exp. vs. comp., 108-113
temperature effect on, 109, 114
Inelastic flux-switching model:
decaying \(\dot{\phi}_{i}\) component, 21-24
experimental verification, \(26-28,34-40\)
main \(\dot{\phi}_{m a}\) component, \(24-28\)
Inelastic wall displacement, 4
Inertial terms in \(\dot{\phi}_{\epsilon}\) model:
rotation of magnetization, 11, 20
wall motion, 7, 19

Inverse-region of transistor, experiment, 122-123
Irreversible wall displacement, 5

Landau-Lifshitz equation:
coefficients, 12-14
in rectangular coordinates, 8
in spherical coordinates, 9
solution for M along applied \(\mathrm{H}, 10-11\)
Listing of computer programs:
binary counter, core-diode-transistor, 201-211
diode parameters, 197
inductor parameters, 195
static \(\phi(F)\) parameters, 187-190
transistor parameters, 199-200
voltage drive, 183-185
\(\dot{\phi}_{p}(F)\) parameters, 191-193

Magnetic spectrum, 41-43
Magnetization:
damped precession, 9-10
remanent, 5
rotation, 8-15
Main inelastic flux-switching component, 24-28
Maximum supply voltage of binary counter, 78-80
Measurement of parameters:
core model:.
dynamic, \(\phi_{p}(F), 100,102\) static \(\phi(F)\), 91-97
diode model, static, 121-123
inductor model, 108
transistor model: diffusion capacitances, 133,135 junction capacitances, 130-131 static, 121-123
Mercury-relay pulser, 29-33, 53
Minimum supply voltage of binary counter, 74-77
MMF vs. \(\dot{\phi}\) and \(\phi\), iterative computation of, 45-46
Model of:
core, 81.83
elastic flux switching, 81-82
inelastic flux switching, 82
parameters, 83
static \(\phi(F)\) curve, 82-83
diode, 85-87
dynamic characteristic, 86-87
parameters, 87
static characteristic, 85-86
inductor, nonlinear, 83-85
parameters, 83
transistor, 87-90
parameters, 90
static and dynamic, 87-89
static (Ebers-Moll), 90
Models for flux-switching components:
elastic:
experimental verification, 33-36
rotational, 20
total, 20-21
wall motion, 19-20

Models for flux-switching components: continued inelastic: . decaying \(\phi_{i}, 21-24\)
experimental verification, \(26 \cdot 28,34-37\) main \(\dot{\phi}_{m a}, 24-28,52,58,60,65\)
Modes of operation, binary counter, 68, 70-71
Modification of parabolic model, 58, 60
Mounting, core, 53

Newton-Raphson method, 140-150
Noise, delta-See Delta noise
Nonuniformity of parameters, 150-151, 179-182

Operation, binary counter 68-73
Oscillograms of waveforms-See Waveforms of
Oscilloscope:
overshoot, 53
response time, \(32,34,53\)
Outline of computer programs:
binary counter, INCREMENT PROCEDURE, 159-161
binary counter, main, 152-158
voltage drive, 48-49

Parabolic model for \(\dot{\phi}(\phi), 24-25,58,60,63,65,82\)
Parameter determination for:
core model, 91-107
dimensions, 91
dynamic \(\dot{\phi}_{p}(F), 100-107\)
static \(\phi(F), 91-100\)
diode model, 109, 114-120 dynamic, 120 static, forward, 109, 114-116
static, reverse, 116, 118-119
inductor model, 108-114
transistor model, 120-139
dynamic, 127-139
static, 121-127
Parameter determination method, 90
Parameters of binary-counter device model, table of, 141-142
Parameters of Core E-6, 33-34, 36
Parameters of model of:
Core, 83
diode, 87
inductor, 83
transistor, 90
Parameter nonuniformity, 150-151, 179-182
PARTIAL-SET pulse, 51-65
Partial setting effects, 51-52, 54, 57, 65
Partially set flux switching, 5l-66
Peak \(\dot{\phi}\) vs. \(F\) :
determination, 100-107
model, 86-87

Peak of \(\dot{\phi}(t), 52,60,63\)
Peaking time of \(\dot{\phi}(t), 51,52,65\)
Permeability:
complex, 19, 41-43
resonance, 42-43
Precession of magnetization, damped, 9-10
Predictor-corrector method, 145
Program, binary counter:
features, 150-152
initial conditions, 151
listing, 201-211
modes, 151-1.52
outline, 152-161
Program, voltage drive:
listing, 183-185
outline, 48-49
Propagation of COUNT states in a binary
counter, 71-73
Pulse, current, 26-36, 51-52, 54
Pulser, mercury-relay, 29-33, 53

Rectangular voltage drive, 47, 49-50
\(F(t)\) waveform, computed, 50
Re-entrant \(M(H)\) loop, 5-6
Relaxation effects, 51, 54, 57, 65
Relaxation of magnetization, 51-52
Remanent magnetization, 5
Resonance:
frequency, 42-43
\(\mu\) value, 43
Response time of oscilloscope, 32, 34, 53
Reverse characteristics of: diode, 116, 118-119 transistor, 119, 127
Reversible wall displacement, 5
Rise time, effect on \(C_{i}, 23\)
Rise time effect on \(\dot{\phi}_{\epsilon}\) differential equation, 19-21
```

Rise-time in flux-switching experiment:
$T_{r}=65 \mathrm{~ns}, 26-27$
$T_{r}=13 \mathrm{~ns}, 26,28$
$T_{r}=0.4 \mathrm{~ns}, 18,26,29-33$

```

Rise time of oscilloscope, \(32,34,53\)
Rotation of magnetization, component along
applied field vs. \(t\) :
Landau-Lifshitz or Gilbert eq., 10-11
relationship among coefficients, 12-14 second-order diff. eq., l1-12
Rotation of magnetization, equation of motion, 8-15 Gilbert equation, 8
in spherical coordinates, 8-9
Landau-Lifshitz equation, 8
Rotation of magnetization, model for, 20

Second-order differential equation for elastic \(\dot{\phi}\) :
domain-wall motion, 7, 19
rotation of magnetization, 11,20
Sense winding, 29-30, 53
Short-rise time experiment, 26 , 29-33
Shuttle switching, 17
Sinusoidal voltage drive, 47-50
\(F(t)\) waveform, computed, 50
Slope of:
energy hill, 3-5, 63
\(\dot{\phi}_{p}(F), 51,54,58\)
Spectrum, magnetic-See Magnetic spectrum
Spurious transistor turn-off in binary counter, 74-81
\(V_{s, \text { max }}\), 78-80
\(V_{s, m i n}^{s, m a x}, 74-77\)
Squareness ratio \(\phi_{r} / \phi_{s}, 44\)
States of COLNT in a binary counter, 71-73
Static \(M(H), 5-7\)
Static \(\phi(F)\) :
computation, 97, 100
discussion, 100 ,
measurement, 91-97
results, exp. vs. comp., 97-99
temperature effect on, 100-101
Susceptibility:
rotational, 14-15
wall-motion, 8
Switching-See Flux switching
Switching parameters-See Flux-switching parameters

Table of core and circuit parameters of binary counter, 14l-142
Table of COLNT propagation in binary counter, 72
Temperature effect on:
core static parameters \(\phi(F), 100-101\)
core \(\dot{\phi}_{p}(F)\) parameters, 105-107
diode parameters, 116-117, 119
inductor parameters, 109,114
transistor capacitance parameters, 133-134, 139
transistor static parameters, 127-130
TEST pulse, 29-32, 51-63
Thermodynamics:
first law, 2
of magnetization, 2-3
Thin core, 36, 52
Threshold of:
H, 4-6
static \(\phi(F), 57,63,82-83\)
\(\dot{\phi}_{. i}, 21-23\)
\(\phi_{p}(F), 25,51,54,57-58,82\)
Time duration \(T_{b}, 51\)

Transistor model, 87-90
parameters, 90
static and dynamic, 87-89
static (Ebers-Moll), 90
Transistor-model parameters, 120-139
diffusion capacitances, 133-139 computation, 134, 136-139 measurement, 133, 135 oscillograms of \(i_{c}(t)\), 137-138 results, exp. vs. comp., 139 temperature effects on, 139
junction capacitances, 130-134 computation, 131, 133 measurement, 130-131 results, exp. vs. comp., 131-133 temperature effect on, 133-134
static parameters, 121-127 computation, 126-127 measurement, 121-123 results, exp. vs. comp., 123-127 \(R \ell_{e} ; R \ell_{c}, 119,127\) temperature effect on, 127-130 \(\begin{array}{lll}\beta_{i} \text { vs. } I_{c}^{c}, & 127,130 \\ \beta_{n} \text { vs. } I_{c}, & 127, & 129\end{array}\)
Transistor turn-off, spurious, in binary
counter, 74-81
\[
\begin{aligned}
& V_{s, m a x}, 78-80 \\
& V_{s, \min }^{s}, 74-77
\end{aligned}
\]

Transmission line, 29-33, 53
Transverse field effect on \(\dot{\phi}_{\epsilon_{w}}, 18-19\)
Turns of binary-counter winding, 141

Variation in core and circuit parameters, effect on \(V_{s, \min }, 175,179-182\)
Viscous damping:
constant, 8, 40
rotation of magnetization, 8
wall motion, 7
Voltage drive, 45-51
computer program, 48-49
F. ( \(t\) ) waveforms for rectangular and sinusoidal \(\phi(t), 50\)
iterative computation of \(F(\dot{\phi}, \phi), 45-46\)
rectangular \(\dot{\phi}(t), 47,49-50\)
sinusoidal \(\dot{\phi}(t), 47-50\)
Voltage reference, 53
\(V_{s, \text { max }}\) in a binary counter, 78-80
\(V_{s, \text { min }}\) in a binary counter: computed, worst case, 175, 179-182
factors, 74-77

Wall of domain-See Domain wall
Waveforms of:
current and flux linkage of nonlinear inductor, 109
drive currents and flux in binary counter, 70
\(i_{c}(t)\) in response to \(\Delta i_{b}, 138\)
\(F(t)\) for rectangular and sinusoidal \(\dot{\phi}(t), 50\)
```

Waveforms of: continued
$F(t)$ and $\dot{\phi}(t)$ in flux-switching experiment, 16
$F(t)$ and $\dot{\phi}_{\epsilon}(t)$ in saturation, $T_{r}=0.4 \mathrm{~ns}, 35-36$
time variables of a binary counter:
$T=-10^{\circ} \mathrm{C} ; V_{s}=15 \mathrm{~V}, 162-165$
$T=25^{\circ} \mathrm{C} ; V_{s}=28 \mathrm{~V}, 166-169$
$T=85^{\circ} \mathrm{C} ; V_{s}=50 \mathrm{~V}, 170-173$
$\dot{\phi}(t)$ in the beginning of switching:
$T_{r}=65 \mathrm{~ns}, 27$
$T_{r}=13 \mathrm{~ns}, 28$
$T_{\mathrm{r}}=0.4 \mathrm{~ns}, 38-40$
$\dot{\phi}(t)$ for two F values and two $T_{p s}$ values, 64
$\phi(t)$ for two $T_{p s}$ values, 62
$\dot{\phi}(t)$ for $\phi_{p s} \approx \phi_{r}, 65$
$\phi(t)$ with F as a parameter, 62
$\dot{\phi}_{\epsilon}(t)$ components, 17
$\phi_{\epsilon}(t)$ without and with magnet transverse field, 18
Windings:
binary counter, 69, 141
core, 53
Worst-case analysis of binary counter, 175, 179-182
computation method, 152, 179
conclusions, 182
$d_{\text {max }}=0,179$
initial ϕ_{1} and ϕ_{2} in each mode for
$V_{s}=V_{s, \min }, 180,182$
sign S determination, 180
$V_{s, \text { min }} v s . d_{\text {max }}, 179-181$

```

\title{
Regional Offices and Laboratories
}

\author{
Southern California Laboratories 820 Mission Street South Pasadena, California 91031
}

Washington Office 1000 Connecticut Avenue, N.W. Washington, D.C. 20036

New York Office
270 Park Avenue
New York, New York 10017
Detroit Office
1025 East Maple Road
Birmingham, Michigan 48011
Chicago Office
103 S. Stone Avenue
La Grange, illinois 60525
Huntsville, Alabama
4810 Bradford Drive, N.W.
Huntsville, Alabama 35805
European Office
Pelikanstrasse 37
Zurich 1, Switzerland
Japan Office
Nomura Securities Building
1-1 Nihonbashidori, Chuo-ku
Tokyo, Japan

\section*{Retained Representatives}

Toronto, Ontario, Canada
Cyril A. Ing
86 Overlea Boulevard
Toronto 17, Ontario, Canada
Milan, Italy
Lorenzo Franceschini
Via Macedonio Melloni, 49
Milan, Italy```


[^0]:    * References are listed at the end of this report.

[^1]:    * Unlike $T_{r}$ in Report 4 (defined as twice the time it takes a current pulse to reach half of its amplitude), $T_{r}$ in this report designates the time for a current to rise from 10 percent to 90 percent of its amplitude.

[^2]:    ${ }^{*}$ The subscript $r$ in $\omega_{r}^{\prime}, \omega_{r}^{\prime \prime}$, and $\omega_{r}$ denotes resonance, not rotation. Thus, $\omega_{r r}^{\prime}$, $\omega_{r r}^{\prime \prime}$, and $\omega_{r r}$ are resonance $\omega^{\prime}$ s due to rotation of magnetization, whereas $\omega_{r w}^{\prime}, \omega_{r w}^{\prime \prime}$, and $\omega_{r w}$ are resonance $\omega^{\prime}$ s due to wall motion. Similar subscripts will be used to denote the frequency $f=\omega /(2 \pi)$ at resonance.

[^3]:    * The computation steps are outlined in Sec. II-E-3-c, p. 159.

