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Abs tract / 

The S-matrix elements for the two-channel atomic scattering system 

are not smoothly varying functions; hence some justification must be 

given for the application of the stationary phase approximation to the 

evaluation of scattering amplitudes f o r  this system. For a specific 

example, we show that the contribution to the amplitudes from the 

region of rapid variation is negligible compared to the stationary phase 

value, since the region of rapid variation is small and the phases vary 

sufficiently slowly. The semiclassical interpretation of the oscilla- 

tions in the elastic and inelastic cross sections as the interference" 

between two classical trajectories is therefore a valid one. 
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I. INTRODUCTION 
4 

a 
/ 

It has been convincingly shown' for a wide range of energies and the 

range of potentials commonly found in atomic scattering problems that the 

JWKB approximation is an excellent approximation to the S-matrix phase 

shifts. In the JWKB approximation each quantum mechanical phase shift 

6( a,E) is approximated by the equivalent classical phase shift2 J A( a , E ) .  

The one-channel scattering amp1itud.e f(8,E) is then expressed as 

2iA( 1) Pa( cose) E ' A( a, 0,E) 4 f(eE) = (2ik)" ( 2 a  + l)(e 3 
and the differential cross section as 

a(e,E) =[f(e,E)[ = $ A ( k , e , E )  l 2  + interference terms. 

The cross section contains an infinite number of interference terms of 

which usually only a few are important. 

enable us to calculate f(8,E) and hence G ( 8 , E )  explicitly, given the 

phase shifts h(A,E).  

Modern computational techniques' 

However, to obtain a physical picture of the 

scattering process, it is useful to approximate the scattering amplitude 

f(e,E) by its stationary phase value, as essentially the contribution of 

one partial wave. The attractiveness of the full semiclassical treatment-- 

JWKB approximation together with the stationary phase approximation-- 

resides in the fact that the differential cross section considered as an 

integral over all trajectories4 derives solely from the classical Newtonian. 

trajectory. Quantum mechanical effbcts only occur at infinities and dis- 

continuities of this classical cross sectionJ3 where the simple stationary 

phase approximation breaks down. 
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, I n  t h e  f u l l  semic lass ica l  treatment we w i l l  say t h a t  t he  d i f f e r e n t i a l  

cross sec t ion  der ives  from the  c l a s s i c a l  t r a j e c t o r y .  I n  more complicated 

s i t u a t i o n s ,  where the re  i s  m o r e  than one channel open f o r  s c a t t e r i n g ,  w e  can 

o f t e n  t a l k  of the  quantum mechanical i n t e r f e rence  of these  c l a s s i c a l  t e r m s .  

For i n s t ance ,  i n  He - H e  sca t t e r ing '  the  s c a t t e r i n g  amplitude can be w e l l  

approximated by a sum of two terms, one der ived from the  gerade t r a j e c t o r y ,  

t 

t h e  o t h e r  from the ungerade t r a j e c t o r y .  The o s c i l l a t i o n s  i n  t he  d i f f e r e n t i a l  

11 cross s e c t i o n  a r e  s imply  the  r e s u l t  of the in te r fe rence"  of these  two 

t r a j e c t o r i e s .  But t h i s  i s  a t r i v i a l  case of twc-channel s c a t t e r i n g ,  s ince  

t h e  two channels a r e  e f f e c t i v e l y  uncoupled. A much more i n t e r e s t i n g  

s y s t e m  i s  the i n e l a s t i c  He - H e  s c a t t e r i n g  sys t em.  Mott and Massey' + 

have argued persuasively t h a t  w e  can again analyze t h e  c ros s  sec t ions  i n  

terms of  t he  semic lass ica l  p i c tu re ,  as t h e  quantum mechanical i n t e r f e rence  

of  terms derived from c l a s s i c a l  t r a j e c t o r i e s .  I t  is  the  purpose of t h i s  

paper t o  examine whether, i n  f a c t ,  t h i s  p i c t u r e  i s  a usefu l  and r e l i a b l e  

p i c t u r e  of t h e  dynamics of t he  process.  

In section I1 w e  examine t h e  quest ion of  how smoothly varying the  

in tegrand  must be i n  order  to apply t h e  s t a t i o n a r y  phase method t o  t h e  

eva lua t ion  of an i n t e g r a l .  I n  sec t ion  I11 w e  consider  a s p e c i f i c  two-channel 

s y s t e m  and determine the  S-matrix elements i n  a form t h a t  can r e a d i l y  be 

i n t e r p r e t e d  i n  terms of the  semic lass ica l  p i c t u r e .  These elements a r e  not  

smoothly varying and consequently w e  examine how l a r g e  the  con t r ibu t ion  

from the  region of rap id  va r i a t ion  is compared t o  t h e  s t a t i o n a r y  phase 

eva lua t ion  of  t h e  amplitude,  ignoring the  rap id  change i n  the integrand.  

W e  f i n d  f o r  a wide range of angles t h a t  t h i s  con t r ibu t ion  is small because 

t h e  region of  va r i a t ion  i s  small  and the  phases a r e  slowly varying. This 

l a t t e r  f a c t  implies  t h a t  t he  s t a t iona ry  phase value is  l a r g e .  For more 

r ap id ly  varying phases i t  is conceivable t h a t  t he  two magnitudes a r e  

comparable i n  s i z e .  
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Following Green,' we use the Stueckelberg' solution for angular 

momentum (A)much less than a 

sponding to the coincidence of classical turning points and the 

crossing point for the two-channel potentials. 

of 

this model with the Stueckelberg solution for a < , This model in 

where 1 is the angular momentum corre- 
CJ C 

For A in the neighborhood 

we solve a simple model in section IV and match, the solution for 
C 

C 

fact illustrates previous criticism * J '  of the Stueckelberg solution. 

We find that matching requires that we amend the Stueckelberg phase T 

by the addition of a phase whose magnitude depends on the details of 

the coupling potential. Further, the smoothly varying probability 

coefficients of Stueckelberg's solution turn out to be oscillatory in 

our model. 

11. THF: MULTICHANNEL S-MATRIX 

We wish to calculate the elastic and inelastic differential cross 

sections for an n-channel, two-body nonrelativistic quantum mechanical 

system. Denoting the S-matrix at total energy E and total angular momentum 

a by S .  .( a,E), where i, j = 1,. . . ,n, we determine the scattering amplitudes' 
13 

as 

For the one channel case, approximation techniques 2 ~ 3  have been evolved 

to reduce the summation to a single term, a process that essentially 

reduces the quantum mechanical calculation to a classical calculation. 

This semiclassical method involves making the following two approximations: 

when sin 8 > a-1. 

ii) The summation over a is replaced by an integral. 
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Eq. (1) then becomes 

f where 6(A,E)  i s  t h e  one-channel phase s h i f t .  

E 26(A,E) k [ ( A  + $10 + n/41. 

r e q u i r e s  a t  l eas t  t h a t  many p a r t i a l  waves c o n t r i b u t e  and t h a t  t h e  

important con t r ibu t ions  de r ive  from p a r t i a l  waves wi th  l a r g e  values of A. 

We def ine  N ( a ,E )  

The v a l i d i t y  of these  approximations 

The f i n a l  s t e p  is  provided by t h e  s t a t i o n a r y  phase approximation, 

t h e  condi t ions  for t h e  v a l i d i t y  of which w e  now examine. W e  cons ider  

for A = A o i  ( i  = 1, ..., k), then  the  s t a t i o n a r y  phase approximation states 

t h a t  

(where t h e  prime i n d i c a t e s  d i f f e r e n t i a t i o n  wi th  r e spec t  t o  A ) ,  provided 

t h a t  t h e  A O i ' s  are w e l l  separated.  

L e t  u s  cons ider  t h e  i n t e g r a l  where N (A,E) i s  such t h a t  k = 1. W e  

N ' (a ,E) ,  - 
- 

f i r s t  make t h e  t ransformat ion  y = N - (A ,E)  and, de f in ing  g(y)  

we determine 

t h e  l i m i t  yoo,  yol  being defined i n  F ig .  1, where N ( A ,  E) for a pure ly  

r e p u l s i v e  p o t e n t i a l  is  p l o t t e d .  As tends t o  i n f i n i t y ,  then N - (1 ,E)  

tends  t o  A8 and g(y)  t o  8. In  the neighborhood of  A,, w e  could approximate 

N( 1 , E )  by a quadra t i c  (denoted by t h e  dot ted  curve i n  Fig.  1) and corre- 

spondingly w e  could approxjmate g(y) by (2NI((a,E)(y - y ~ ~ ) ) ~ / ~  i n  t h e  

- 
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neighborhood of yo,. 

the quadratic approximation for g(y) and with the range of integration 

extended from yoo to -QJ if(i) a,, is sufficiently large that there is 

little variation of the 1 y - yolj-1/2 curve over a period of 2n at yoo, 
and (ii) the maximum is not a too asymmetric or narrow peak in that the 

The integral I(') would be well approximated using - 

change in the difference between the N (A ,E)  curve and the quadratic 

approximation to that curve over a period of 2n in y is small. We know 

that as tends to infinity the quadratic approximation to g(y) and g(y) 

itself have different limits; if this difference is spread sufficiently 

thinly over each period of oscillation, then it does not give an extra 

contribution to the integral. 

tion to g(y) by g (y), then f o r  all y we must have the condition 

- 

Thus if we denote the quadratic approxima- 

q 

( W Y  + 2 m  - g(y) - gq(Y + 2w + g (YHl << 1. 
q 

f(@. In general we need to evaluate the integral I f = - 1; d~ eiN-( J , E )  - 
f I- is only approximated by f(R,,) I(')if the following conditions hold; - 

N 

i) In the neighborhood of yo, we can approximate f(y) G f(R) by 

N 1 / 2  - 
f(y) = f(J,,) + f'(~ol)~~N''(~ol,E>~- f(y) = f (J , , )  + f'(.y;o,) 

N 

[ ~ N " ( k , , , E ) ] - 1 / 2 ( y  - yo1)1/2. 
in the neighborhood of yo,, the condition f( a, , ) (N"(  a,, , E ) ) 1 / 2  

For f(y) to be slowly varying 

>> f'(l?,,> must be satisfied. 

ii) For y not in the immediate vicinity of yo,, the condition 

I f(y + 2n) - f(y)l << 1 must be satisfied. 

We will say that the function f(1) is slowly varying if these two conditions 

are satisfied. 

a,, is large and the peak is not too broad. 

For example, if f(4) = a l l 2 ,  then I ( 1 / 2 ) N  I(O)a0:/' only if 
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I f  the  phase s h i f t  6 ( a , E )  is such a s  t o  s a t i s f y  these condi t ions ,  

then  f o r  k = 1 w e  can, t o  a good approximation, determine f (8 )  a s  

W e  now examine theequestion a s  t o  whether and under what condi t ions  

w e  can apply the  s t a t iona ry  phase approximation t o  i n e l a s t i c  systems. 

For s impl i c i ty  we consider a two-channel s y s t e m .  The S-matrix is  

un i t a ry  and by v i r t u e  of  time reversa l  invariance is  symmetric i n  the 

angular  momentum bas i s .  W e  can the re fo re  represent  t h e  two-channel 

S-matrix as 

/p le ie l  

where p 1 , 2  a r e  r e a l  and p i  + p: = 1. 

funct ions  of  4 i n  the sense describ-ed, then w e  could apply the  s t a t i o n a r y  

I f  p1 and p 2  were slowly varying 

phase method d i r e c t l y  t o  t h e  phases e l Y 2  f [ ( a  + $18 + n/41 and 

a[(@, + 8,) + (2n + l>n1  f [ ( a  + 318 + n/4]. 

and p 2  a r e  not  slowly varying funct ions of  a. 

s o l u t i o n  t o  t h e  i n e l a s t i c  atomic s c a t t e r i n g  problem gives  p,  a s  an 

o s c i l l a t o r y  funct ion and pl  o s c i l l a t o r y  about a nonzero mean value.  

I n  any event t h i s  parameter izat ion of  t he  S-matrix is not  appropr ia te  

for o u r  purpose, s ince  our aim is not  necessa r i ly  to  c a l c u l a t e  cross 

sec t ions- - th i s  can be done by computer without any semic lass ica l  approxi- 

mation--but t o  der ive  a formalism t h a t  w i l l  i n t e r p r e t  the c ross  s e c t i o n s  

I n  genera l ,  however, p1 

I n  f a c t  t he  Stueckelberg' 
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, 
in terms of essentially classical quantities. We look for a parametri- 

zation of the S-matrix that has an obvious physical interpretation. 

111. PARAMFTERIZATION OF TKE S-MATRIX 

We restrict our considerations to the inelastic atomic scattering 

problem where the diabatic channel potentials V,, and V,, are both 

repulsive and the coupling potential V,, is only different from 

zero in a small neighborhood of the crossing point of the two channel 

potentials. We first introduce notation to simplify the discussion: 

i) p,(r) (p,(r)) is the classical radial momentum in channel 1 

(channel 2) .  

ii) pf(r) (p;(r)) is the classical radial momentum for  free motion 

in channel 1 (channel 2). 

iii) rtl (rt,) is the classical turning point An channel 1 (channel 2). 

iV> rtl) (rt:) is the turning point for  free motion in channel 1 

(channel 2). 

denotes the maximum of rc and rtl,t2. 

C 
vi) xi , 2  = Lt,, t2 p,,,(r) dr or zero if rtl,t2 2 rc. 
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x) v (r is the radial velocity at r = r . 
R c  C 

If we are to take the Mott and Massey semiclassical picture of the inelastic 

process seriously, we would expect the differential cross sections to 

' 1  involve interference'' between the possible classical trajectories, and 

we would expect the phases 
- 
b I l 2  5 X1,2 to occur naturally in the 

S- ma t rix . 

Let us first look at the eigenphase parameterization of the S-matrix. 

Any symmetric unitary matrix (S) can be diagonalized by a real orthogonal 

matrix. This can be seen most simply by writing S as exp(2iA) where 

A is a real symmetric matrix. 

A also diagonalizes S.. For the two-channel case we can parameterize the 

U and D matrices as follows: 

The real orthogonal matrix that diagonalizes 

and 
2i6A 2i6+ 

(8) 
2i6B sin2€ - e  cos2c + e sin E coss(e /2i6A 

2i6B 
s =  / =  

2i6A - e  2ibB) l e  2 i 6 ~  sin2E + e 
\ 
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I n  t h e  weak coupling l i m i t ,  S1, and S,, a r e  the  S,, and S,, elements 

f o r  t he  uncoupled problem t o  lowest order  i n  the  coupling cons tan t .  

- 
S 1 2 ,  t o  lowest order ,  involves the phases 6 = 3, + x1 , 6 = 6, + x,, 
whereas the  semic lass ica l  p i c tu re  would requi re  phases %(zl + 3,) + x1 
and j ( 6 1  + 6,) + x,, s ince  these a r e  the  c l a s s i c a l  phases f o r  the  

A B 

- - 

c l a s s i c a l  t r a j e c t o r i e s .  There i s ,  however, a parameter izat ion t h a t  

involves  these  l a t t e r  phases : 

i(5,+5,) 2ix1- .2ixZ-,.,, , sincp coscp e [e 
[cos2cpe2iX1 + sin2cpe Z i X , ]  e 2i3,  

s =( 2i3,  )9) 
sincp coscp e 

Whatever t he  r e a l  funct ions 3, , z,, xl,  x, , cp may be, t he  S-matrix of 

(9) is  un i t a ry .  The so lu t ion  tha t  Stueckelberg obtained f o r  the  t w o -  

channel atomic s c a t t e r i n g  process was expressed i n  t h e  form of (9)  with 

t h e  funct ions 3l , x,, .  X I ,  x,, cp given e x p l i c i t l y  a t  t h e  head of t h i s  

s ec t ion .  The su rp r i s ing  f ea tu re  of t h i s  s o l u t i o n  i s  t h a t  the  cos2cp, 

sin2cp funct ions a r e  not  o s c i l l a t o r y .  The form of  these  funct ions i s  

given i n  Fig.  2. The s o l u t i o n  is  only claimed t o  be v a l i d  f o r  a no t  

close t o  a . has been 

given by Nykhovskii e t  a1 . l '  T h i s  so lu t ion  smooths out  the discont in-  

u i t i e s  of Stueckelberg 's  so lu t ion ,  but t h e  sincp cosy and s in2?  func t ions  

s t i l l  f a l l  rap id ly  t o  zero  f o r  k? > hC. 

The s o l u t i o n  of the equat ions f o r  a c lose  t o  a 
C C 

This is  a l s o  borne out  by t h e  

model solved i n  s e c t i o n  I V  and by the  empirical  i n e l a s t i c  d i f f e r e n t i a l  

cross sect ion."  
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We will examine the Stueckelberg solution with the following values 

for the potentials and parameters of the system: 
0 

i) V,, = lo4 exp ( - r )  r-' A - , .  

ii) V,, = (20.4 x l o 4 )  exp (-4r) r-l i-,. 
0 

iii) V12(r = 500 A-" 

k, Z? k, = 200 A - l .  

C 
0 

iv) 
0 

v) rc = 1 A .  

For J? in the region of .$ we match Stueckelberg's solution with the solution 

of the model of section IV. This matching necessitates changing the phase 

in the S-matrix from x2 - x1 to X2 - X1 + Ti. 

C 

We first examine the elastic differential cross section and to simplify 

(2R,, + 1) z k: [o," asinel. I - l  

VI; d2N,,( R , E ,  8) I d .e2 

The smoothness of the functions cos2cp, sin2cp is determined in relation to 

the phases N,,, N,, and w8 plot phase N,, in Fig. 2 for various values 

of 8. 

the stationary phase method would allow us to write the elastic differ- 

ential cross section as6 

If indeed the functions were smooth as defined in Section I, then 
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with upper and lower envelopes given by 

For our  s p e c i f i c  s y s t e m  the phases 6, , 
and t h e  cos2CpJ sin2Cp funct ions a re  r ap id ly  varying i n  t h e  range 

180 < < 200. Before we can j u s t i f y  the  u s e  of the  s t a t iona ry  phase 

6, a r e  monotonically increas ing  

approximation, w e  must  i n d i c a t e  why the  con t r ibu t ion  t o  the  amplitude 

from t h i s  region i s  unimportant. F i r s t  l e t  u s  consider those angles  

8 > 8 

8 = 0.40 corresponding t o  a, , Y 100. 

and sin2cp a r e  slowly varying func t ions .  

t he  con t r ibu t ion  from t h e  range 180 < a < 200 t o  the s t a t i o n a r y  phase 

value is e s s e n t i a l l y  proport ional  t o  n-l ( A i )  [N; I( a, , E) 1' /'. 

where 8 ( -.15) corresponds t o  a, ,  = a . Consider f o r  example 
C C C 

For t h i s  value of both cos2y 

The r a t i o  of  the magnitude of 

Ai is an 

e s t ima te  of the w i d t h  of t h e  region i n  

r a p i d l y  varying and n is the  number of  o s c i l l a t i o n s  of  t he  phase N,,  i n  

t h a t  i n t e r v a l .  Since for our  system N i i  is  s m a l l  (of the  order  

where cos2y and sin'y a r e  

then f o r  n = 1 the  co r rec t ion  t o  the  s t a t i o n a r y  phase value from the  

reg ion  180 C k, < 200 is about seven per  cent .  A s  8 decreases  toward 8 

then N i i  becomes smaller  together  wi th  n.  

estimate the co r rec t ion  to  the  s t a t iona ry  phase value,  s i n c e  i n  the  

i n t e r v a l  180 C a < 200 the  phase i s . e s s e n t i a l l y  cons tan t .  

is  about 20 per  cent .  To with in  10 per  cent  t h e  s t a t i o n a r y  phase approxi- 

mation i s  a good approximation for angles  g r e a t e r  than 8 - 0 . 2 5  

C J  

Close t o  8 w e  can e a s i l y  
C 

The co r rec t ion  

11 



From equation (11) we can understand the circumstances under which 

, 

1 ’  

+ the upper envelope O l 1  can rise above the one-channel elastic cross 

section 0:. 

are slowly varying and their sum is close to unity ( a l 2  is less than a , , ) .  

For Q,, to rise above 0: for these angles, 0: must be greater than 0:. 

A s  8 approaches 8 the sum cos2cp( a, , E )  + sin2cp( a, 2 ,  E) becomes markedly 

different from unity and for oI1  to rise above 0: for these angles Qf 

must again be greater than 0:. The phenomenon does not occur f o r  our 

potentials. If the phenomenon does occur, it is an indication of a 

significant difference in the shape of the two channel potentials in the 

crossing region. 

For angles not close to 8 cos2cp( A, 1 ,  E) and sin2cp( 6,  2 , E )  
C’ 

+ 

C 
+ 

Both from the form of cos2y and from obvious physical considerations, 

the effect of decreasing the potential V 1 2 ,  increasing the difference in 

slopes of the channel potentials at r or increasing the energy is to 

lower the magnitude of the correction term relative to the stationary 

phase value. 

C 

Similarly we can examine the inelastic differential cross section 

and again we introduce additional notation. We define the following 

A o 1 ( A o 2 )  is the solution of t,-e equation 0 = & 60, (8  = 

- 1  jd2N01(Ao1’E) j 
! d a2 

1 d2N02da2 
(21,,+1) = [Q; 2sinOlk;. 

1-l (2&,+1) = [Qg 2sinelk;. 

d a ( 5 0 2 )  

The stationary phase approximation to the inelastic differential cross 

section 0 , , ( 8 , E >  is simply 

0, 2(  8 , E )  = sin2cp( a,, ,E) cos2y( L o , ,  E)oi + sin2y( R O 2 ,  E) cos2y( a,, , E) (0;) 

- 2sincp(io1 , E )  sincp(aO2,E) coscp(~~, ,E) coscp(~,,,~)(a;!1/2 

c~s(No,(~~,,E) - N02(102,Ej) ( :L2) 

I *  with the upper and lower envelopes given by 
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These results were again also determined by Green.' 

cosine functions and the phases, we match the Stueckelberg solution 

with the solution from the model in section I V  in the transition region. 

The stationary phase approximation is a good approximation for  angles in 

excess of 0.25, and hence we can analyze the oscillations in the inelastic 

cross section by means of E q .  (12). However, the simple stationary phase 

approximation is of no use in inferring parameters of the system from 

the behavior of the initial steep slope of the inelastic cross section. 

For the sine and 

IV . A TWCb CHANNEL MODEL 

We study a particular model for two-channel atomic scattering that 

can be solved explici'tly using the JXXB solutions for the uncoupled channels 

and that contains the salient features of the physical scattering system. 

We introduce this model to gain some insight into the behavior of the 

solutions for a in the neighborhood of 

to compare this model solution with the Stueckelberg solution for a << A 

since there has been much discussion as to the correctness of that 

and for R > 1 . Also we wish 
C C 

C' 

solution. In 1935 0. K .  Rice' published a severe criticism of Stueckelberg's 

method and the whole question has again been raised in the detailed work 

. of Thorson.' There are two major criticisms. The first is that 

Stueckelberg's method fails for this problem. In Kemble's language12 

there does not exist a good path round the singularities of the JWKB 
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approximation t o  enable U S  to  match so lu t ions  f o r  d i f f e r e n t  ranges of  

t h e  va r i ab le  r .  I n  f a c t  Thorson has argued t h a t  t he  c o n s t r a i n t s  on 

t h i s  path a r e  so severe a s  to make i t s  ex is tence  un l ike ly .  Fur ther ,  i f  

such a pa th  e x i s t s ,  then the matching condi t ions a r e  too  few i n  number 

t o  uniquely determine the  so lu t ion .  Stueckelberg 's  so lu t ion  ignores 

t h i s  a r b i t r a r y  phase, giving i t  a value zero.  

W e  consider  a two-channel p o t e n t i a l  problem i n  which the  coupling 

p o t e n t i a l  V 1 2 ( r )  is  a d e l t a  function i n t e r a c t i o n  of s t r eng th  A a t  r a d i a l  

d i s t a n c e  r = r . The Schroedinger equat ions a r e  
C 

- For s i m p l i c i t y  w e  suppose tha t  k, - k ,  = k.  L e t  us denote the s o l u t i o n  

to  t h e  uncoupled equat ion f o r  channel 1 , 2  with the co r rec t  boundary 

condi t ion  a t  r = 0 by $ 1 2 , 2 0  and t h e  so lu t ion  f o r  t he  uncoupled channel 

1 , 2  t h a t  has a behavior a t  i n f i n i t y  of 

by $ l l , 2 , 1 ( $ 1 2 , 2 2 ) .  

I +i[kr-ll/Z( a+l)]  -i[kr-n/2( R + 1 ) ]  
e [e 

The boundary condi t ions  a t  r = r a r e  a s  follows: c 

I t  fs s t ra ight forward  t o  evaluate  the  S-matrix elements and we s t a t e  the  

r e s u l t  of  t h a t  ca l cu la t i cn :  

c 1 
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where 

All wave functions are to be evaluated at r = r . The prime on the 

wave functions indicates differentiation with respect to r .  These 

matrix elements can be greatly simplified by using the fact that the 

C 

Wronskian of any two solutions of our differential equation is a 

constant function of the variable r.  We thus evaluate the Wronskians 

at r = 03. For example, - $,AQ,,> = (+i)e -i(6,+x1) in the 

notation of section 111. For << kr we find, using the JWKB solutions 

for uncoupled channels, that 

C 

where A, = A (pl(rc)p2(rc~,:,-1/2. 

functions rather than sine cosine functions. 

using the JWKB solutions for uncoupled channels, that 

For - a, the solutions are Airy 

For a << kr, we find, 

i( XZ'X1) 

i( x1+x2-n/2) 
Si, = (+)e 216, 1 - A$sin(xl +n/4) sin( x2+n/4) e 

1 + A$sin( x1 +ll/4) sin( x2+n/4) e 

(20) 

The numerical results for the sys.tem of section I11 are plotted in F i g .  2. 

We find, in particular, that the cos2cp and sin'cp functions are rapidly 

varying in the neighborhood of a . 
falls from unity to 0.5  and rises again to unity. Undmbtedly this 

In the range 180 < a < 200, cos2Cp 
C 

violent functional behavior is accentuated by our choice of the delta 



. function coupling potential. However, a more realistic potential is 

still likely to give violent variation, since (1) the delta function 

solution joins the Stueckelberg solution smoothly at = 180, (ii) for 

strong enough coupling cos2cp is likely to fall to 0 . 5 ,  and (iii) as 

is increased cos2cp rises to unity when the tail of the Airy function 

starts to overlap the region where the coupling potential is nonzero. 

The smaller this region, the more rapidly cos2cp rises to unity. The 

delta function model also indicates that the phase x2 - x1 should be 
adjusted, in this case to x2 - XI + TT. 

In the region of validity of the Stueckelberg's solution we find 

from Eq. ( 2 0 )  that cos'cp = 1 - A: (1 - sin 2x1) and hence cos2y is an 

oscillatory function, not a smoothly varying function as Stueckelberg ' 

found. It therefore.seems that essential assumptions have been made 

about the details of the coupling interaction in the Stueckelberg 

model to render the solution so simple. 

V. SUMMARY 

We have examined the concept of smoothly varying functions in 

relation to the stationary phase approximation for evaluating scattering 

amplitudes. The S-matrix elements for the two-channel atomic scattering 

problem vary violently in the small region of interaction between the 

t w o  channels. However, in spite of this rapid variation the contribution 

to the amplitude from this region is below ten/ for a wide range of 
per cent 

angles, because the region of rapid change is small and the second 

derivative of the phase at the secondary phase point is small. We 
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model 
i n d i c a t e  for  a s p e c i f i c l a t  what ang le  beyond t h e  c r i t i c a l  angle ,  i n d i c a t i n g  

the onse t  of i n e l a s t i c i t y ,  t h e  s t a t i o n a r y  phase approximation becomes a 

good approximation. The i n t e r p r e t a t i o n  of t h e  o s c i l l a t i o n s  i n  t h e  

e l a s t i c  and i n e l a s t i c  c ros s  sec t ions  as the  " in te r fe rence"  of c l a s s i c a l  

t r a j e c t o r i e s  i s  a v a l i d  p i c t u r e ,  a t  l e a s t  fo r  t h e  types of p o t e n t i a l  w e  

cons ide r  and provided t h a t  t h e  Stueckelberg s o l u t i o n  i s  a c o r r e c t  s o l u t i o n .  
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Figure  Captions: 

F ig .  l a  The func t ion  N ( R , E , 8 )  - 
l b  The func t ion  I g ( y ) l - '  
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Fig.  2 Phase s h i f t  N,, and probab i l i t y  c o e f f i c i e n t s  cos2cp, sin2cp 

for t h e  system of s e c t i o n  I11 
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