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ABSTRACT 

Several electron t ransport  mechanisms i n  amorphous sol ids  have been 

investigated.  The field-assisted nonlinear diffusion of charged particles 

i n  t h e  presence of a concentration gradient and homogeneous e l e c t r i c  f i e l d  

has been considered. An expression f o r  t he  steady-state current has been 

derived including explicitly the  effects  due t o  the  la t t ice  discreteness.  

The results of t h i s  research have been presented f o r  publication.' The 

t ranspor t  of electrons by Schottky emission from a metal i n to  an oxide has 

been treated. 

thermal oxidation of m e t a l s .  

erttture . 

This  transport  mechanism has resul ted i n  a new model for  the 

A preliminary report has appeared i n  the lit- 
2 

The ro l e  of per iodic i ty  i n  the  e lectronic  band s t ructure  of so l ids  has 

A careful examination of per iodic i ty  and Bloch's theorem is 

It i s  shown t h a t  perfect  per iodic i ty  allows the electronic  wave 

been examined. 

presented. 

function t o  be simultaneously an eigenfunction of the Hamiltonian and the  

t r ans l a t ion  operator. The periodic so l id  is treated i n  terms of tunneling. 

This investigation shows the  al lowed energy bands r e su l t  from complete trans- 

parency of the so l id  t o  electrons.  The aperiodic so l id  is  treated by calcu- 

l a t i n g  the  wave functions and determining the  d is t r ibu t ion  of allowed energy 

states byanode counting method. 

assumes square w e l l s  of f i n i t e  width with the  spacings between adjacent w e l l s  

being chosen a t  random from a Gaussian d is t r ibu t ion .  

t h a t  t he  band edges become diffuse f o r  small degrees of aper iodici ty  and t h a t  

t he  bands merge as the aperiodicity becomes large.  For la rge  per iodic i ty  t h e  

densi ty  of states approaches tha t  of the  free-electron model. 

The model employed i n  these calculations 

The r e s u l t s  indicate  
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I. Introduction 

The quantum-mechanical treatment of the motion of electrons in crys- 

talline solids has resulted in the highly successful band theory. 

theory is evoked in essentially all considerations of the electrical prop- 

erties of solids and has quantitatively correlated a large body of experi- 

mental data. 

theorem which states the relation between the perfect periodicity of the 

lattice and the electronic wave functions. This relation allows a mathe- 

matically rigorous determination of certain general properties of the elec- 

tronic wave functions; specifically, the electrons may be described by 

modulated plane waves. 

this type of solution exists fall into bands. 

free motion of the electrons through the lattice subject to the condition 

that the electrons do not respond to external forces the same as if they were 

free. 

different from the free electron mass. 

This 

The conventional development of this theory is based on Bloch's 

Further, the values of the total energy ror whicn 

Such a description implies a 

This leads to the assignment of an effective mass which is generally 

It appears that the band theory is inseparably connected to the condition 
4 

of perfect periodicity and that a band structure would not exist for a system 

which is aperiodic, i.e., disordered. Such conclusions, however, are not 

supported experimentally.3 Liquid metals are not periodic yet the electrical 

properties of liquid metals are not very different from those of the solid 

metals. 

conductors offers strong evidence since the electrical properties of a semi- 

conductor are extremely sensitive to changes in the band structure. 

The similiarity of electrical properties of molten and solid semi- 

Many 

amorphous systems exhibit semi-conducting properties. Alloys and crystalline 

solids with randomly distributed impurities are, with respect to the question 

of validity of a band theory, comparable to liquids and amorphous solids. 

Although the electrical properties of these systems indicate the existence 
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of a band s t ruc ture ,  there  i s ,  as ye t ,  no theo re t i ca l  j u s t i f i c a t i o n  for the  

appl icat ion of the present band theory t o  systems which a r e  not s t r i c t l y  

per iodic .  

The invest igat ion of disordered systems has taken t w o  approaches: 

(1) perturbation methods, (2) numerical methods. I n  t h e  perturbation ap- 

proaches, disorder  i s  assumed t o  be a perturbation on an ordered system. 

The r e s u l t s  ind ica te  t h a t  bands should exist but t h i s  i s  not conclusive s ince 

t h e  band s t ruc ture  a r i s e s  from the unperturbed (ordered) system. Further,  

it is  not c l e a r  t ha t  disorder  may be t r ea t ed  as a t r u e  perturbation i n  a l l  

cases. The numerical approach assumes extremely simple models for disordered 

sys bclub allU --J cL bl12 - - - - . - l + G n n  L C O U U A L l g  S ~ L L L U % L A L ~ ~ L  n h - - e d i n m n r .  n n r i a f i n n c  -y-------- ire s o l ~ r p d  nllmerica11-y. This 

method does not lend i t s e l f  t o  generalization and no s igni f icant  r e s u l t s  have 

I been achieved. A t  present,  it appears t h a t  the  disordered system is in t r ac t -  
~ 

able  t o  rigorous treatment. 

The present communication i s  concerned with t h e  numerical invest igat ion 
I 

s of an aperiodic l i n e a r  chain. 

I n  Section 11, Bloch's theorem i s  considered and ca re fu l ly  examined. 

operator technique i s  used t o  solve t h e  well-known Kronig-Penney model (perfect  

pe r iod ic i ty ) .  

tunneling phenomena and the  resu l t s  suggest a method of a t tack  for t h e  aperiodic 

case. F ina l ly ,  i n  Section I V ,  the aperiodic l i n e a r  chain i s  t r ea t ed  using t h e  

operator technique. 

The general  approach i s  one of operator algebra.  

The 

In  Section 111, the per iodic  chain i s  t r ea t ed  i n  terms of t he  
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11. The Perfect Solid and Bloch's Theorem 

The band theory of c rys ta l l ine  so l ids  i s  based on the  r e su l t s  of Bloch's 

theorem. This theorem relates the per iodic i ty  of t he  la t t ice  t o  t h e  electronic  

wave functions. I n  order t o  ascer ta in  t h i s  connection, it i s  necessary t o  

examine Bloch's theorem i n  de t a i l .  

 place^,^ 
the  framework f o r  succeeding considerations. 

Although the proof may be found i n  many 

it i s  given here f o r  i t s  pedagogical value. Further, it establ ishes  

Operator algebra is  t h e  basis of the  proof. The two operators of in t e re s t  

are the  t rans la t ion  operator and the  Hamiltonian o r  energy operator. 

l a t i o n  operator i s  defined by: 

The trans- 

T,d @ ( X i  = v ( X f d j  . (2. i) 

I n  other  words, t he  operation of Tkd on the  wave function evaluated a t  the  

point x yields  the  value of the wave function of the  point xkd. For the 

present,  d w i l l  be taken as the l a t t i c e  parameter. Applying T N times 

y ie lds  
*d 

N 
T*d $(x) = $(x*Nd) . 

The Hamiltonian operator i s  of  the form 

If 9 i s  an eigenfunction of H,  then the  operation of H yields  the  t o t a l  energy 

of t he  electron;  

HJr(X) = E@(x) 9 (2.4) 

i . e . ,  Schroedinger's equation holds. 

Consider the operator obtained by combining Tkd and H;  

For the  case of perfect l a t t i c e  per iodici ty ,  

T ~ ~ V ( X )  = V(X*d)Tkd = V(X)T*d , 
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and 

r )  

o r  

Here [ ] denotes the  commutator of Ttd and H. 

The desired electronic  wave functions must be eigenfunctions of H; i .e . ,  

Eq. (2.4) must hold. If both sides of Eq. (2.4) are operated upon by Ttd 

the  commutation re la t ion ,  Eq.(2.7), implies 

In  other  words, the  function T $ i s  a l so  an eigenfunction of H with the  
f d  

same eigenvalue E.  Moreover, the function $ may be chosen t o  be an eigen- 

function of Tkd 5 .  . 
TfdQ = 7 (2.10) 

where At i s  the  eigenvalue. 

I n  addition t o  the  condition t h a t  the  wave function be an eigenfunction 

of H, it i s  a l so  required t h a t  $ remain f i n i t e  as x 

This condition is satisfied if the eigenvalue of T has a magnitude of unity; 

i .e . ,  X + + B  i s  equivalent t o  N - V ~  i n  Eq. (2.2) and f o r  

tends t o  in f in i ty .  

td 

N 
L i m i t  (A*) (2.11) 
N-00 

t o  remain f i n i t e  , I At\ must be unity. 

t h e  eigenvalue At as 

This r e s t r i c t i o n  suggests redefining 

7 (2.12) 
* i 0  At = e 

where 0 i s  a real quantity. 
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Further algebraic manipulation w i l l  show t h a t  the general form of the 

electronic  wave function fo r  a perfectly periodic system i s  

. 
where kd = 0 ,  and Uk(x) i s  a periodic function with period d. The electronic  

wave function as given by Eq. (2.13) i s  known as a Bloch function. Th i s  form 

i s  a d i r ec t  consequence of the l a t t i c e  periodicity.  

This derivation indicates that  the per iodic i ty  of the c rys t a l  allows 

the wave function t o  be simultaneously an eigenfunction of both the  Hamiltonian 

operator and the  t rans la t ion  operator. Further, Eq. (2.13) shows tha t  the wave 

function d i r f e r s  from c e i i  t o  c e i i  by only a phase factor. T h e  b i ~ ? d c ~ ? S m  is 

t h a t  t h e  probabi l i ty  of finding an electron within a c e l l  i s  the same i n  a l l  

c e l l s .  This follows since $*@, interpreted as t h e  probabi l i ty  density, is  

the  same at  equivalent points i n  all ce l l s .  Apparently the  electrons experi- 

ence no d i f f i c u l t y  i n  moving through the  l a t t i c e .  

Any aperiodici ty  of the  potent ia l  w i l l  produce a non-vanishing commutator 

of T,d and H. 

functions of both Tkd and H and the  wave function cannot be represented as a 

modulated plane wave. In  general, the  probabi l i ty  density integrated over a 

Consequently, the  wave function cannot be simultaneously eigen- 

u n i t  c e l l  w i l l  depend on the  ce l l .  1. ._ 
The existence of energybands f o r  a perfect  l a t t i c e  i s  not the subject of 

Bloch's theorem but may be obtained by using Bloch's theorem. 

of the  bands i s  e a s i l y  seen by example. 

i n  Fig. 1. 

mining the "Band Structure" is t o  e x p l i c i t l y  determine a representation of 

The developnent 

Consider the  poten t ia l  function shown 

The procedure f o r  deter-  Th i s  i s  the model of Kronig and Penney.' 

the t rans la t ion  operator by solving the appropriate Schroedinger equation. 

wave functions which a re  eigenfunctions of t he  t r ans l a t ion  operator a re  then 

The 

determined by finding the  transformation which diagonalizes the  t rans la t ion  

operator. The present considerations w i l l  be r e s t r i c t ed  t o  negztive energies 
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(See Fig. 1). 

procedure with the initial wave functions being slightly different. 

The development for positive energies follows an identical 

Consider the ith well and let the quantity xi be the position of the 

The well width is denoted by a and the well spacing center of this well. 

by d. In region I (See Fig. l), the wave function may be written as 

@(x) = Aisin[P(x-xi)] + Bicos[B(x-xi)] , 
where 

In region 11, the wave function may be written as 

where 

(2.14) 

The continuity of the wave function and its derivative at x = xi+a/2 yields 

the equations 

The continuity of the wave function and its derivative at x = xi+d-a/2 = ~ ~ + ~ - a / 2  

i.e., Eq. (2.14) for the i+lst well matched with Eq. (2.15) for the ith well, 

yields the two equations 

-Ai+lsin(Ba/2) + Bi+lcos (Ba/2) = Ciexp[a(d-a/2) ] + Diexp[ -a( d-a/2) ] 

B{Ai+lcos(Ba/2) + Bi+lsin(Ba/2)} = a{Ciexp[a(d-a/2)]-Djexp[-cY.(d-a/2) l }  

(2.17) 
. 
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Equations (2.16) may be used to eliminate Ci and Di from E?. (2.17). 

resulting two equations, relating Ai+l, Bi+l, Ai, and Bi constitute a 

representation of the operator T 

The 

When cast into matrix notation +a’ 

(2.18) 

the operator T+d is represented by a 2 x 2 matrix. The elements of this 

matrix are: 

A representation for T-d may be obtained froan the identity 

In order that JI be an eigenfunction of T+d, a transformation 

(2.20) 

(2.21) 

must be found such that the transformed T+d representation, 

T’ = Q-~T*~Q ( 2 . 2 2 )  
*d 

is diagonal. Such a transformation7 is assured provided the secular equation 
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i s  sa t i s f i ed .  Thus t h e  wave function is  simultaneously an eigenfunction of 

**d 
and H whenever 

CX2-82 cos 0 = cos(pa) cosh[CX(d-a)] + - s in(@a)  sinh[a(d-a)] . (2.24) 
2ag 

The f a c t  t h a t  D e t  Tkd = 1 has been used t o  obtain t h i s  equation. Since 0 

i s  a real quantity,  the  allowed energy values,contained i n  a and p ,  are 

given by the  equation 

The function cos 0 is  shown i n  Fig. 2. Those energies f o r  which Eq. (2.25) 

i s  s a t i s f i e d  are seen t o  fa l l  into bands. It i s  in te res t ing  t o  note t h a t  these 

bands develop around t h e  bound levels of an i so la ted  w e l l .  

are given by t h e  equation 

8 The bound levels 

(2.26) 

This corresponds approximately t o  t he  point cos 8 = 0 of Eq. (2.25). 

posi t ions of the bound leve ls  are shown i n  Fig. 2. 

The 

The electronic  dispersion i s  usually given by t h e  dependence of t he  energy 

on the  wave-vector of t he  Bloch functions. 

Kronig-Penney model is  shown i n  Fig. 3. 

t o  the theory of Bri l louin Zones. 

zones are a d i r ec t  consequence of perfect la t t ice  per iodici ty .  

s ince t h e  Bloch wave-vector k is essen t i a l ly  the  eigenvalue of t h e  t r ans l a t ion  

Such a representation f o r  t he  

The extension of t h i s  approach leads 

It i s  important t o  realize tha t  Bri l louin 

This follows 

operator. I n  instances where the t r ans l a t ion  operator does not commute with 

the  Hamiltonian operator, i .e.,  aperiodic systems, t h e  Bri l louin zone scheme 
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has no v a l i d i t y  and the dispersion r e l a t ion  cannot be represented by E versus 

k. I n  t h i s  event, the  density of s t a t e s  is  a convenient representation of 

t he  dispersion re la t ion .  

111. Physical In te rpre ta t ion  of Bloch's Theorem 

Bloch's Theorem as presented i n  t h e  previous sect ion provides the  nec- 

essary formalism f o r  t r ea t ing  the electrons i n  a per iodic  so l id .  It does not ,  

however, o f f e r  much i n  t h e  way of understanding of t h e  physics involved. 

purpose of t h i s  sect ion is  t o  t r e a t  t h e  per fec t  s o l i d  i n  a rather unconventional 

The 

way and t o  show t h e  intimate connection between Bloch's theorem and the  phe- 

nomenon of e lectron tunneling. 

A very important aspect of quantum mechanics is  tha t  it predic t s  t h a t  

particles of energy E w i l l  penetrate a po ten t i a l  b a r r i e r  V(x) where E-V(x) 

i s  l o c a l l y  n e g a t i ~ e . ~  

corresponds t o  p a r t i c l e s  appearing on the  other  side of the  b a r r i e r  without 

T h i s  s i t ua t ion  is  without c l a s s i c a l  analogue and 

"going over t h e  top"; i . e . ,  they tunnel  through. 

over a po ten t i a l  well; the  electrons a re  re f lec ted  when c l a s s i c a l l y  no r e f l ec t ion  

An analogous s i tua t ion  occurs 

should occur. These e f f ec t s  a r e  a d i r e c t  consequence of t he  wave nature of 

matter and a r e  operative phenomena i n  e lectron t ranspor t  i n  so l ids .  

The connection of Bloch's theorem and t h e  tunnel  e f f ec t  i s  best seen by 

considering an electron i n  a given w e l l  and ca lcu la t ing  t h e  probabi l i ty  of 

t h i s  e lectron tunneling through t h e  b a r r i e r s  between the  wells and appearing 

i n  another well .  It i s  supposed tha t  an electron i n  the  zeroth w e l l  i s  

t r ave l ing  t o  the  r i g h t  and incident on the  b a r r i e r  system formed by t h e  

succeeding atoms. The electron wave function is  calculated i n  the  Nth wel l  

and t h e  r a t i o  of the  transmitted e lec t ron  flux t o  t h e  incident  e lectron f l u x  

then gives the  transmission coef f ic ien t  f o r  the  intervening b a r r i e r  system. 

The transmission coef f ic ien t  thus calculated i n  a measure of the  ease with 
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I -  

which the  electron moves through the l a t t i c e .  Th i s  s i t ua t ion  i s  shown 

diagramatically i n  Fig. 4. 

The wave function i n  the  zeroth well i s  considered t o  be composed of 

(1) plane wave moving t o  t h e  r igh t ,  the  incident wave, (2) a two par ts :  

plane wave moving t o  t h e  l e f t ,  the  re f lec ted  wave. 

be wr i t ten  as 

The wave function may 

The wave function i n  Nth c e l l  i s  composed of only a transmitted wave moving 

t o  t h e  r igh t .  Thus 

with (3.2) 
1 

B = O  
N 

The transmitted wave may be re la ted  t o  the  incident wave by using t h e  

t r ans l a t ion  operator. If it i s  assumed t h a t  t he  w e l l s  a re  per fec t ly  periodic 

with a spacing d,  then 

Note t h a t  the  operator T i d  performs the  same function as Tkd i n  t h e  previous 

sect ion.  

d i f f e ren t  and consequently t h e  representation of Tkd is d i f f e ren t .  

e x p l i c i t l y  denoted by t h e  prime. 

t h e  Tkd representation by noting the  r e l a t ion  between the  amplitudes Ai, B i ,  

However, i n  t h e  present treatment t h e  wave functions a re  s l i g h t l y  

This i s  
1 

1 

The T,d representation may be re la ted  t o  
1 1 

Ai, and Bi: 
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= &  Q =  

7 

becomes 

i -i 

1 1 
i 

(3 4) 

The T+d matrix, Eq. (2.19), transforms according to the similarity transformation - 

Ttd = Q-’-T*~Q . (3.5) 

Evaluation of Eq. (3.5) using the transformation as defined by Eq. (3.4) 

yields 

2 
(TI ) = {(a-ip)2 exp[a(d-a)] - (a+@) exp[-a(d-a)]) 
-d _I _I 

It is easily shown that the remaining elements of Tld are related to those 

of Eq. (3.6) by 

The transmission coefficient, defined by 

(3.9) 

since it is assumed that B& = 0; i.e., there is no electron traveling to the 

left in well N. 

The evaluation of the Nth power of the operator Tld as given by Eqs. (3.6) 
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and (3.7) will then yield the transmission coefficient. 

most easily performed by using a theorem from matrix algebra known as the 

idempotent theorem." 

matrix A. 

be written as 

This evaluation is 

Suppose that f(A) is any polynominal function of the 

Then, for the case of a 2 x 2 matrix, this matrix function may 

f(Q - f(Q 
A 

h2f(Xl) - Xlf(h2) 
f(A) = I2 - 

12 - X1 12 - X1 
provided 

hl # X* * 

(3.10) 

Here X1 and X, are the eigenvalues of the matrix A,  I2 is the 2 x 2 identity 

matrix and f(X) is the scalar obtained by evaluating the function f(A) with 

the eigenvalues X and X replacing the matrix A. Using this theorem, the 

transmission coefficient becomes 

- 

1 2 

The eigenvalues of the A matrix are given by the equation 

Using the identities 

Det(Tld) = 1 

and 

Eq. (3.12) becomes 

(3.13) 
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Equation (3.14) is  a quadratic equation with real coeff ic ients .  

of algebraic equations indicates e i ther  both roots are real o r  a re  complex 

and conjugate. 

two complex roots therefore have a magnitude of unity. 

The theory 

Further, t h e  roots must be reciprocals of each other and t h e  

For real  roots 

and f o r  imaginary roots  

I -  

Consider t h e  case of real  roots. By d i r ec t  subs t i tu t ion  of Eq. (3.15) 

i n t o  Eq. (3.11) it can be shown t h a t  

f o r  la rge  values of N. 

than uni ty  and becomes vanishingly small as N becomes large.  

p re ta t ion  i s  t h a t  t h e  electron does not move readi ly  through the  l a t t i c e ,  

s ince t h e  probabi l i ty  of finding t h e  electron monotonically decreases w i t h  

Thus the  transmission coeff ic ient  i s  always less 

The in te r -  I -  

distance from t h e  o r ig ina l  w e l l ,  i . e . ,  TNL+ 0 as N a - .  



-19 - 

Consider the case of complex roots. By substituting Eq. (3.16) into 

Eq. (3.11) the transmission coefficient becomes 

where 0 is defined by 

O < Q  <n . (3 -19) i0 X1 = e 

Note the restriction that 8 be in the first or second quadrant follows from 

the conjugate relation between 11 and X2. 

equation 

From the last of Eq. (3.16) the 

COS 8 - c ~ s ( p a )  cosh[c~(d-a)]  + - 2 - 8 2  sin(6a) sinh[afd-a)] . (3.20) a 

results. Algebraic manipulation of Eqs. (3.18) and (3 .20)  yields the expression 

This equation shows that the transmission coefficient becomes unity wherever 

, n = 1 , 2 ,  . . . N - 1  . (3.22) nn @ = -  
N 

The special case 0 = 0 is easily shown to yield a transmission coefficient 

less than unity. Hence, the N-1 values of 0 given by Eq. (3.22) yield all 

the unit transmiss ion peaks. 

The transmission coefficient as given by Eq. (3.21) is readily evaluated 

The evaluation obtained for N=6 is shown in Fig. 5. numerically. 

are in accord with the predictions of the above derivation: 

eigenvalues of T are real the transmission coefficient is small, and in the 

range where the eigenvalues are complex there are N - l = 5  unit transmission peaks. 

The results 

whenever the 
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The most noteworthy aspect of t he  above approach i s  t h a t  electrons with 

energies (contained i n  QI and f3) sat isfying Eqs. (3.20) and (3.22) are essen- 

t i a l l y  free. 

b a r r i e r  system is inef fec t ive  i n  blocking the  electrons and the  c rys t a l  i s  

I n  other words, a unit transmission coeff ic ient  implies t h a t  t he  

completely transparent t o  the  electrons.  

dicted by Bloch's Theorem as contained i n  the  statement t h a t  t he  electron 

may be described by a modulated plane wave. 

This i s  essent ia l ly  the  result pre- 

Indeed, t h e  re la t ion  between the  

energies of the uni t  transmission peaks and the  eigenvalues 8 i s  iden t i ca l  

w i t h  that  of t he  Kronig-Penney model 

Further,  there  i s  a one-to-one correspondence between the  values of 0 f o r  the  

(Compare E q s .  (2.24) and (3.20)).  

two cases provided the appropriate boutdaq cond5tlons zrc iqosec? or? the 

Kronig-Penney model. 

This treatment clearly indicates the way i n  which t h e  bands of a crystal 

are generated: 

of u n i t  transmission peaks increases. 

As more and more atoms are  added t o  t h e  c rys t a l ,  the  number 

As N tends t o  i n f i n i t y ,  the  density of 

un i t  transmission peaks becomes quasi-continuous and a band of allowed energies 

is  formed. It should be noted that  the  energy range f o r  which the eigenvalues 

of t h e  T '  operator are complex does not depend on the  number of w e l l s .  

sequently, t h e  band width is  independent of t h e  number of wells, i n  agreement 

with the Kronig-Penney result. 

Con- 

The perfect  per iodic i ty  of t h e  l a t t i c e  i n  the  tunnel treatment i s  'used 

If the  la t t ice  w e r e  aperiodic,  t h i s  equation at  only one point ,  Eq. (3.9).  

would be replaced by 

' .  
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I n  other  words, t he  t rans la t ion  operator T' depends upon the  c e l l  index and 

t h e  r e s u l t  of t he  N t ranslat ions produces a product of N 2 x 2 matrices and 

t h i s  may not be wri t ten as the  Nth p o w e r  of a s ing le  2 x 2 matrix. 

t he  reduction of t he  matrix product cannot be performed using t h e  idempotent 

theorem. This however, does not rule out t he  existence of uni t  transmission 

coef f ic ien ts  and consequently, energies f o r  which the  crystal i s  transparent.  

The argument presented above must be interpreted with reservation. 

Obviously 

A t  

present ,  it appears t o  be an acceptable p lausabi l i ty  argument f o r  t he  existence 

of bands i n  aperiodic systems but is by no means def in i t ive .  Perhaps the  

grea tes t  merit l i e s  i n  the  physical in te rpre ta t ion  given t o  e lectronic  motion 

i n  Sol ids .  &SO, t'nis approach iiiliiliiiieea th2 dk of pri&kity: It is 

hopedthat t h i s  understanding will eventually be benef ic ia l  i n  t h e  development 

of a rigorous aperiodic band theory. 

IV. Aperiodic Linear Chain 

Attention is  now directed t o  the aperiodic l i n e a r  chain. A very simple 

model w i l l  be considered and discussed i n  d e t a i l .  Although t h e  extension 

of t he  results is not evident it i s  hoped t h a t  the  understanding of' t he  one- 

dimensional model w i l l  be  beneficial  i n  developing more realist ic models. 

There have been several pertinent investigations u t i l i z i n g  numerical 

techniques reported i n  t h e  l i t e r a tu re :  of particular in t e re s t  are reports  

of James and Ginzbargy Landauer and Helland'' and Makinson and Roberts.13 

James and Ginzbargll t r ea t ed  the  cases of one-dimensional disordered a l l o y  and 

impurity semi-conductor. 

of a c r y s t a l  with regular ly  spaced impurit ies becomes smeared out as t h e  d is -  

t r i b u t i o n  of impurities become random. Landauer and Helland'' t r ea t ed  the  

disordered chain by considering a se r i e s  of iden t i ca l  wells separated by a 

random well-to-well spacing and found t h a t  disorder narrowed t h e  forbidden 

They found tha t  the  sharply defined impurity band 
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gaps and a disappearance of the  forbidden band f o r  large degrees of disorder. 

However, Allen and Shockle9  4 have suggested tha t  the pecular i t ies  of t he  del ta-  

w e l l  model may make it unsuitable for  band calculations.  

Accordingly, t he  present investigation attempts t o  unify and extend these 

calculat ions by considering s t a t i s t i c a l l y  acceptable aperiodic chains composed 

of square w e l l s .  The spacings between the  wells are chosen at random from a 

Gaussian d is t r ibu t ion .  The band structure i s  determined by calculat ing the  

wave functions using t h e  t ranslat ion operator and determining density of allowed 

electronic  states using a node counting method. 

The model f o r  the aperiodic l inear  chain is  essent ia l ly  t h a t  of GubanoS-5 

which assumes a Gaussian dis t r ibut ion of l a t t i ce  spacings. 

of choosing a spacing between x and x + dx i s  given by f ( x )  dx, where 

The probabi l i ty  

f ( d )  = (2n)40-’ exp[-(d-do) 2 2  /2a 1 (4.1) 

Here u i s  the variance which is assumed t o  be a measure of aperiodicity,  and 

d is t h e  mean spacing. 
0 

The physical propert ies  of the chains may be calculated from the dis-  

16 t r i bu t ion  of spacings. By using the cen t r a l  l i m i t  theorem of statist ics,  

it i s  found t h a t  t h e  probabi l i ty  of an N + 1 particle chain having a t o t a l  

length between L and L + dL i s  F(L)dL, where 

F(L) = (2rrpJ)40-l exp[-(L-Ndo)2/2Nu2] 

and 
N 

L = F d i  . 
i=l 

Accordingly, the  average or most probable length of a N + 1 atom chain i s  

+@ 

L =J,L F(L)dL = Ndo . (4.3) 



This implies tha t  t he  m e a n  density of particles of t he  aperiodic chain i s  the  

same as t h e  corresponding periodic chain. This agrees with the  observation 

t h a t  the p a r t i c l e  density of a solid form of a substance (periodic) i s  very 

near ly  equal t o  t h a t  of the l iqu id  form (aperiodic).  I n  other  words melting 

does not produce a marked density change. 

The order may be investigated by determining the  d is t r ibu t ion  of particles 

r e l a t i v e  t o  a given pa r t i c l e .  L e t  the  function p ( x )  denote the  probabi l i ty  of 

f inding a particle a distance x from a given particle. This i s  equivalent t o  

t h e  probabi l i ty  of finding a chain of length x composed of any number of pa r t i c l e s .  

From Eq. (4.2), it follows t h a t  

N = l  

The evaluation of t h i s  function f o r  two values of u with do = 4 52 is  shown i n  

Fig. 6. For s m a l l  values of x, the p a r t i c l e s  a re  most probably at perfect l a t t i ce  

sites. Consequently, t h e  l a t t i c e  exhibi ts  short-range order. On the  other  hand, 

when x becomes l a rge  the  probabili ty approaches a constant indicat ing t h a t  par- 

t i c les  are equally probable at any point.  Thus, there  i s  no s t a t i s t i c a l  r e l a t ion  

between t h e  posi t ion of the  par t ic les  and consequently, no long-range order. 

This agrees with the  r e s u l t s  of x-ray d i f f rac t ion  experiments which show t h a t  

l i qu ids  and amorphous so l ids  exhibit a degree of short-range order but no long- 

range order. 

An estimate of t he  degree of order may be obtained from Eq. (4.2). An 

N + 1 atom chain i s  assumed t o  be ordered whenever t h e  N + lSt particle i s  

located within one half  of a mean la t t ice  spacing of t he  corresponding posi t ion 

i n a  perfect l a t t i c e ,  i . e . ,  whenever 
N 

or (4.5) 



c1 

io7 
n 
X 
W 

Q 

108 

-25 - 

1 0 
do = 4 A  
6 Po8i 

0 

PERFECT LATTICE POINTS 

IO 20 30 40 50 

Figure 6. Density function f o r  aperiodic chain. , 
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The left hand side of Eq. (4.5), averaged Over the distribution of Eq. (4.2), 

becomes 

(496) 2 2 
+m 

(L-Nd0)* = 9, (L-Nd,) F(L)dL = Nu . 

Hence, the chain is ordered whenever 

d 

The degree of order N is defined for the case of the equality in Eq. (4.7). 

If a disordered chain is considered, N >E, the above result is interpreted 

as a statement that the largest sequence of ordered particles contains 5 
particles and that no longer sequences are ordered. 

The wave functions for the aperiodic chain may be calculated using the 

translation operator. For the chain, indexed as shown in Fig. 7 and for 

E < 0, the wave function may be written as: 

.$(x) = Aisin[B(x-xi)] + BiCOS[B(X-Xi)] 

in Region I, and 

$(x) = Ciexp[a(x-xi)] + Diexp[d:(x-xi)j 

in Region 11. 

Proceeding as in the Kronig-Penney derivation, the matrix equation 

(4.8) 

Ai+ 1 (biiJ = T+di+l i") (4.9) 

may be used to calculate the wave function in any well in terms of the wave 

function in some arbitrary well. Here T+d is given by Eq. (2.19) with d 
i+ 1 

replaced by d Eq. (4.9) is suitable for evaluation of the density of 
i+l' 

states using the tunnel approach. 

significant results a large number of wells must be considered. 

However, in order to obtain statistically 

Consequently, 
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each band will contain a large number of unit transmission 

resolution of individual peaks is extremely difficult. Th 

overcome by using a node counting technique. 

peaks and the 

s difficulty is 

The node counting method is based on a well-known theorem of quantum 

mechanics;17 the pth eigenfunction of the Hamiltonian for a one-dimensional 

problem contains p-1 nodes within the domain of x. 

number of nodes in the wave function over M cells for the energy E. 

to the above theorem, there are then NM(E) allowed states with energy less 

than E. The integrated density of states becomes 

Let NM(E) denote the 

According 

G(E) = Limit (N~(E)/M) 
M-OQ 

and is related to the density of states by 

or  

(4.10) 

(4.11) 

Thus, the average number of nodes per cell is a direct measure of the integrated 

density of states. This method is the one used in the investigations mentioned 

earlier. 9-11 

Since the wave function in the entire cell is required, the representation 

Of the T+di+l operator given by Eq. (4.9) may be written as 

(4.12) 

The amplitudes become 



and 
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where 

The number of nodes N (E)  i s  obtained by calculat ing the  wave function M 
for  M consecutive wells and determining t h e  solutions t o  t h e  equation 

q(x) = 0 . (4.15) 

Ins ide  t h e  ith w e l l ,  t h e  wave function is  given by t h e  first of Eq. (4.8).  

The nodes occur a t  t h e  points  

x-x. 1 = g-1 t a n - ’ ( - ~ ~ / ~ ~ )  

subject t o  the  r e s t r i c t i o n  t h a t  

-a/2 < (x-xi) < a/2 . 

(4.16) 

(4.17) 
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Thus, the number of nodes i n  the  ith w e l l  may be expressed i n  the following 

N = O  

(4.18) 

@i = tm-l(-B./Ai) , 
1 

and is  r e s t r i c t ed  t o  the  first or  fourth quadrant. 

t he  in teger  part. 

The symbol I p  denotes 

Between the  i t n  and i + lSt wells, the wave function i s  given by the  

second of Eqs. (4.8).  The solution t o  Eq. (4.15) i n  t h i s  region yields  

x-xi = (ZD)-I Ln(-Di/Ci) ( 4.19) 

Clearly, there  i s  only one node possible and t h i s  node occurs whenever 

and 
a/2 < (x-xi) < di+l - a/2 . (4.20) 

The following procedure i s  employed i n  numerically evaluating the  number 

of nodes $(E):  

(e. g. , A = 1 and B = 0). Then, the  amplitudes C and D1 a re  calculated 

using t h e  Q matrix and the  number of nodes i n  the  f i rs t  w e l l  calculated using 

Eqs. (4.18) and (4.20). Final ly ,  the amplitudes and B are determined using 

the  R matrix and the  above procedure repeated. The t o t a l  number of nodes after- 

The wave function i s  a r b i t r a r i l y  chosen i n  the  f irst  w e l l  

1 1 1 

2 

t r e a t i n g  M c e l l s  gives the quantity NFI(E).  
.A 

Extensive numerical investigation showed t h a t  t he  number of c e l l s  counted 

must be su f f i c i en t ly  la rge  t o  assure a good statist ical  sample of t h e  la t t i ce  
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* 

spacing d is t r ibu t ion .  

s a t i s f i e d  t h i s  requirement. Further, t h i s  number i s  considerably la rger  than 

the  l a rges t  degree of order (See Eq. (4.7)) considered and consequently, t he  

shor t  range order i s  breached many t i m e s  i n  t he  sample. 

It was found t h a t  counting t h e  nodes i n  1000 c e l l s  

The above derivation i s  applicable f o r  energies E < 0. The derivation 

fo r  E > 0 follows an analogous procedure and w i l l  not be given. The results 

d i f f e r  i n  the expressions f o r  t h e  Q and R operators and i n  the  solution for 

the  nodes. 

The numerical evaluation of the integrated densi ty  of states f o r  the  

aperiodic chain has been performed. I n  a l l  calculations,  t he  chain parameters 

were taken as do = 4 8, a = 2 2, and V o  = io ev w i c k  u t'ne vari&ie par&ieter. 

The calculat ion f o r  u = 0 results i n  the  periodic case and provides a check 

on t h e  method since t h i s  case may be determined analyt ical ly .  The r e su l t s  

are shown i n  Fig. 8; these compare wel l  with those of the  Kronig-Penney model. 

The in te rpre ta t ion  of the integrated density as a function of energy i s  

derived from Eq.  (4 .11) .  The f l a t  regions i n  Fig. 8 correspond t o  the fo r -  

bidden energy bands since the  slope vanishes and consequently g(E) 

The non-zero slope regions correspond t o  allowed bands. 

shown i n  Fig. 8 contain 3 allowed energy bands. 

pa r t  of G(E) plus 1 gives the  band index) l i e s  e n t i r e l y  i n  the  negative energy 

range and corresponds t o  t i g h t l y  bound electrons.  

narrow compared t o  the forbidden region between the  f i r s t  and second bands and 

t o  the  width of higher bands. 

energy range and correspond t o  nearly-free electrons.  

0 .  

Thus, the  r e su l t s  

The first band ( the  integer  

The band i s  seen t o  be qui te  

The second and t h i r d  bands a re  i n  the pos i t ive  

The ef fec t  of aper iodici ty  on t he  f i r s t  band i s  shown i n  Fig. 9 .  These 

curves a re  f o r  u = 0 ,  0.2,  0.4,  0.6, and 0.8 A corresponding t o  variances of 

0 ,  5 ,  10, 15, and 20% of the  mean l a t t i c e  spacing respectively.  

0 

It i s  seen 
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t h a t  t h e  aper iodici ty  affects  only the  band edges w i t h  the center  of t he  

band remaining unaffected. The greater the  aperiodici ty ,  t he  more d i f fuse  

are t h e  band edges. Further, t he  bands seem t o  be smeared equally at both 

the  upper and lower edges. Since the tightly-bound band i s  separated from 

t h e  next higher band by a very large band gap, the  narrowing of t h e  gap by 

t h e  smearing of t he  band edges i s  not appreciable. 

The second and t h i r d  bands are qui te  wide but separated by a r e l a t ive ly  

small gap. I n  t h i s  case the  region of t he  forbidden band i s  of primary in- 

t e r e s t .  Fig. 10 shows the  r e su l t s  of aper iodici ty  on t h i s  gap. The values 

of t he  parameters are t h e  same as those i n  Fig. 9. Again, t h e  aperiodici ty  

is seer, to affect oii;3- b1lC ~--;l UCwlU G u g c u .  Fsr c 0.2 8 the hERd edge!: aTe - - 7  

spread by a s m a l l  amount but a def in i te  forbidden region remains. 

f o r  (5 = 0.4 a the  spread i s  suf f ic ien t  t o  populate t h e  e n t i r e  forbidden region 

with levels; the  densi ty  of s t a t e s  i s  s m a l l  but  nonetheless non-vanishing. 

F ina l ly ,  f o r  u 30.6 8 a l l  t races  of the  forbidden band vanish and t h e  density 

of states i s  approximately uniform throughout the  energy range considered. 

However, 

The present r e su l t s  a re  i n  qua l i ta t ive  agreement with those of Makinson 

and Roberts'' and Landaver and Helland,13 and must be considered a ver i f i -  

cat ion of t h e i r  work. 
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I .  

V. Summary 

The investigations presented in this communication have been very 

beneficial in understanding aperiodic systems. An understanding of the 

role of periodicity in the conventional development of the band structure 

has been achieved. It was seen that Bloch functions are a direct consequence 

of periodicity and are eigenfunctions of the translation operator. 

considerations indicated that this situation results from the condition of 

transparency. This second approach minimized the role of periodicity and 

indicated that transparency is expected in the aperiodic case. Clearly, 

Bloch functions are not applicable for the aperiodic case. 

treatment of the aperiodic Kronig-Penney model served to solidify these in- 

sights. 

The tunnel 

The numerical 

Present plans are to continue the numerical evaluation of the aperiodic 

Kronig-Penney model. Further, it is planned to investigate the various per- 

turbation approaches to the problem of aperiodicity. 

A paper is being prepared for publication’* on the tunneling of electrons 

through thin oxide films. 

in the theory of the thermal oxidation of metals. 

transport by Schottky emission from the metal into the oxide will be continued. 

Further, an investigation into the role of space-charge on the transport of 

electrons has been initiated. 

This transport mechanism is of particular interest 

The investigation of electron 
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