@ https://ntrs.nasa.gov/search.jsp?R=19670016543 2020-03-12T11:29:53+00:00Z

TAG TECHNICAL MANUAL

PRC R-939

22 January 1967

Prepared for

Jet Propulsion Laboratory

N67-25872

(ACCESSION NUMBER) (THRU) /

o(¢

FACILITY FORM 602

{PAGES)) (CODE)
W - 2) ,d g
ASA CR OR TMX OR AD NUMBER) (CH'EGORY)

PLANNING RESEARCH CORPORATION

LOS ANGELES, CALIFORNIA WASHINGTON, D.C.

This work was performed for the Jet Propulsion Laboratory,
California Institute of Technology, sponsored by the National
Aeronautics and Space Administrationunder Contract NAS7-100.

TAG TECHNICAL MANUAL

PRC-R-939

22 January 1967

Prepared for

Jet Propulsion Laboratory
Under Contract Number 951553

By

Kenneth Gillett
Daniel W. LaDage
Genevieve L. Michalski
John L. Overbey

"PLANNING RESEARCH CORPORATION
LOS ANGELES, CALIF. WASHINGTON, D.C.

This work was performed for the Jet Propulsion Laboratory,
California Institute of Technology, sponsored by the National
Aeronautics and Space Administrationunder Contract NAS7-100.

PRECEDING PAGE BLANK NOT FILMED.

ABSTRACT

The TAG Technical Ma;xual presents a detailed description of the
Transient Analysis Generator (TAG) program, which was developed at
the Jet Propulsion Laboratory of the California Institute of Technology.
This manual was written primarily for the programmer who might be
required to maintain or modify the TAG program; however, it should
also be of significant interest to the user who desires more than a su-
perficial understanding of the program. Included in the text are (1) a
description of the analytical processes employed by TAG to generate
and solve the circuit equations; (2) a brief description of the list proc-
essing techniques used to generate the equations and the FORTRAN
code for the network solution program; and (3) a detailed writeup and
flow chart of the two main routines and all the subroutines that com-

prise the TAG system.

iii

Iv.

VI.

VII.

PRECEDING PAGE BLANK NOT FILMED.

TABLE OF CONTENTS

Page
INTRODUCTIONc..... ‘e s e e e e e e e e e e 1
A, Background Summary s e o0 e 1
B. Program Capabilities 1
C. Programming and Computer System
Requirements e e e e e e e e 3
TAG PROGRAM DESCRIPTION . . vt vt v vt o s e ee e s 5
A, Equation Formulation et e e e i e e 5
B. The Solution of TAG Equations v v v v v v o v.u.. 38
TAG LIST PROCESSING00v.0v... e e e e 51
A, Definition of TAG List Properties 51
B. Basic TAG ListOperations 55
C. Examples of List Structures Found in TAG........ 56
TAG PREPROCESSOR MAIN PROGRAM 59
A, Overall Description of the TAG Preprocessor. 59
B. First Pass Writeup and Flow Chart 61
C. Second Pass Writeup and Flow Chart 78
TAG EXECUTION PROGRAM .. . i i it it ittt e eennn 123
A, General Description) 123
B. Detailed Description'ov v un... 123
C. Example Execution Program04.... 129
TAG SUBROUTINE WRITEUPS e e e s ... 133
A, Program Hierarchy 133
B. Subroutine Writeups and Flow Charts For TAG
Preprocessor et e eeee... 135
C. Subroutine Writeups and Flow Charts for TAG
Execution Program e e e e e « ..., 549
DOCUMENTATION SYMBOLS AND CONVENTIONS 613

11,

12,
13.
14,

15,

16,

17.

18,

PRECEDING PAGE BLANK NOT FILMED.

LIST OF EXHIBITS

Sample Network. . v o v o v e o v v a o v s v o 0o v aos

Trees of a Network.
Proper Treeo v v ottt ot v otenncess

Relationship Between Basis Voltages and
Branch Voltages. o « « o e s o0 o 00 0 0o o oveeeos

Tree With User Assigned Branch Reference System.

TAG Voltage Basis Reference System

Network With Ideal Transformer. . « « « « o « ¢ o «
Multiple Transformers . . . v o v e v v e v 0o s v v o
Example Circuit For Basis Voltage Elimination.

Example Network Demonstrating Generation of
Node System Equations . « o v v v v v o 0 ¢ 0 0 0 o 0.

Example Network Demonstrating Singularity of
Node System Capacitance MatriX., « . « « o v ¢ o & &

Sample Network With No Transformers

TAG Proper Tree. . v v v v o v s v oo o oo oeneos
TAG Network Equations in Partitioned Form. . .

Example Network Demonstrating Singularity of
Node System Capacitance MatriX. . v« « « o ¢ o o + .

Example Network Used in Demonstration of
Numerical Integration Techniques . « « . ¢« ¢ o . . .

General Organization of the TAG Execution Program

FORTRAN II Program Using Solve For the Solution

Of EQUAtiOns + o v o s s o o s o o s v oo asenesoeeeas

vii

11
14
16

17

23

25
35
36

40

42

47

124

594

I. INTRODUCTION

A. Background Summary
1. Label
TAG
2, Name

Transient Analysis Generator
3. Author
Mr. William J. Thomas

4, SEons or

The Jet Propulsion Laboratory of the California Institute
of Technology

5. Effective Date

2 August 1966

B. Program Capabilities

1. Field of Applicability

TAG is an electrical network analyzer which performs its

function by means of mathematical simulation.

2, Types of Simulation

TAG is primarily a transient performance simulator; how-
ever, it will perform DC steady-state analysis as a special case of tran-

sient simulation.

3. Types of Networks

TAG will provide accurate simulation of a large class of
linear and nonlinear networks that can be described by some connected

set of the allowed lumped parameter elements.

4, Standard Elements

As standard circuit elements, TAG allows only the following:
voltage sources, current sources, capacitors, conductances, reciprocal

inductances, and idealtransformer windings.

5. Element Modifications

Any of the standard element parameters (with the exception
of transformer windings) may be modified during the simulation process
as a continuous or piece-wise continuous function of time, node pair
voltage, or node pair voltage integral. Such functions are provided to
allow modeling of nonstandard devices and must be expressed in terms

of FORTRAN II arithmetic statements or closed subroutines.

6. Qutput
Both listed and plotted outputs may be generated by TAG.

Directly available for output are time, any node pair voltage, any ele-
ment value, and any of several TAG executioh control variables. In ad-
dition, any variable that may be calculated from the above list of primary
variables by FORTRAN arithmetic statement or closed subroutine is also

available for output.

1. Organization

TAG is organized into (1) a Preprocessing program, which
generates the simulation equations and imbeds them in a FORTRAN 11
solution program; and (2) an Execution program, which provides all the
subroutines and parameter values for performing the actual network sim-

ulation specified in the solution program.

8. Computational Techniques
Equation Generation: List Processing
Program Generation: List Processing
Transient Solutions: Adams -Moulton Variable

Step-Size Integration
Nonlinear DC Solution: Newton-Raphson Iteration

C. Programming and Computer System Requirements

1.

Program Language

Primary: FORTRAN 11
Secondary: FAP

Computing System

Computer: IBM 7090/7094
Programming System: FORTRAN II Mod. III
Auxiliary Storage: 4 scratch tapes or equivalent disk

file logical units

Auxiliary Hardware: SC4020 Stromberg-Carlson plotter

PRECEDING PAGE BLANK NOT FILMED.

II. TAG PROGRAM DESCRIPTION

A, Equation Formulation

1. Introduction

The TAG User's Manual describes TAG descriptors and the

connection list. Pass I of the preprocessor reads the connection list into

the computer and forms the network equations. In this section, the im-

portant steps in equation formulation will be discussed in the order in

which they are performed by the program.

2. The Connection List

We will call the connection list WLIST to conform with the

TAG internal designation., WLIST consists of a sequence of descriptors

which define the network.

2 SC0201

l
1

Il

SC0002
"
$1.0002
S$G0200
SvVoo00l

—|s

EXHIBIT 1 - SAMPLE NETWORK

Exhibit 1 has a WLIST of the following form.

WLIST = [SLOOOZ; SG0200; SC0201; SV0001; SCOOOZ]

The ordering of the descriptors on the input cards has an important
effect upon the final network equations. We shall call the ordering of
descriptors on the cards the input sequence. WLIST preserves the input

sequence of descriptors.

3. The Sorted Connection List

The algorithm for selecting a proper tree, to be described
in the next subsection, requires that WLIST be sorted into a new se-
quence. The sequence is V, C, G, L, N, and I. The new list will be
called PLIST and WLIST will be saved. PLIST for Exhibit 1 is

PLIST = [SVOOOI; SC0201; SC0002; SGO0200; SLOOOZ]

4, Selection of the Proper Tree

A tree in a network is a subset of the branches of the network
which includes all nodes but has no loops. Three possible trees of the
network of Exhibit 1 are shown in Exhibit 2.

S
L T T
[5 5

EXHIBIT 2 - TREES OF A NETWORK

A TAG proper tree is the unique tree in a network defined by the
following algorithm.

Step 1. Starting from the left in PLIST, find the first descriptor
which has zero as one of its nodes. Place this descriptor
in a new list, FLIST. Underline the descriptor in WLIST,
Underline the descriptor in PLIST only if its second node
is zero.

Step 2. Starting from the left in PLIST, find a descriptor which is
not underlined and has either node number equal to either
node number of a descriptor in FLIST. There are three
possibilities.,

a. The first node only is found in FLIST. Place the de-
scriptor in FLIST; underline it in PLIST.

b. The second node only is found in FLIST. Place the
descriptor in FLIST; underline it in both FLIST and
PLIST.

C. Both nodes are in FLIST. Underline the descriptor
in PLIST only.

Step 3. Repeat step 2 until FLIST contains a number of descriptors
equal to one less than the number of nodes.

Step 4. Sort FLIST into V, C, G, L, N, I sequence.

As an example, the proper tree for Exhibit 1 will be formed.

PLIST =|SV0001; SC0201; SC0002; SG0200; SLOOOZ]
Step 1: PLIST =|SV0001; SC0201; SC0002; SG0200; SLOOOZ]
FLIST = {SVOOOI]
Step 2: PLIST = [SV000l; SC0201; SC0002; SG0200; SLOOOZ]
FLIST = {SV0001; SCOZOI]

The proper tree is shown in Exhibit 3.

EXHIBIT 3 - PROPER TREE

5. The Voltage Basis in Networks Without Transformers

With each proper tree branch, we associate one basis (co-
ordinate) voltage. The voltages are called a basis, in the vector sense,
because they are a minimum set from which every voltage in the net-

work can be determined. The basis voltages will be named in the follow-

ing way.

V1I1(i) The basis voltage associated with the ith voltage
source in FLIST

V21(j) The basis voltage associated with the jth capacitor
in FLIST

V31l(k) The basis voltage associated with the kth conduct-
ance in FLIST

V41(1) The basis voltage associated with the 1th inductor
in FLIST

V51(m) The basis voltage associated with the mth ideal

transformer winding in FLIST
A current source may never enter FLIST and thus there is no assigned

basis voltage name.

Exhibit 4 gives the relationship between the basis voltages and the

corresponding tree branch voltages.

EXHIBIT 4 - RELATIONSHIP BETWEEN BASIS VOLTAGES AND BRANCH

VOLTAGES
Relationship
V11(i) = SVNNNP
V11(i) = -SVNNNP
V21(j) = SVNNNP
V21(j) = -SVNNNP
V31(k) = SVNNNP
V31(k) = -SVNNNP
V41(1) = SVNNNP
V41(1) = -SVNNNP
V51(m) = SVNNNP
V51(m) = ~SVNNNP

As an example, the FLIST for Exhibit 3 was

The basis voltages are then V11(1l) and V2I(1).

FLIST Entry

SVNNNP (ith V)

SVNNNP

SCNNNP (jth C)

SCNNNP

SGNNNP (kth G)

SGNNNP

SLNNNP (lth L)

SLNNNP

SNNNNP (mth N)

SNNNNP

FLIST = |SV0001; SCOZOl]

branch voltages as follows.

V11(1) = SV0001

V2Il(1l) = -SVv0201

They are related to the

The minus sign occurs because SC0201 was underlined in FLIST.

6. The Tree Branch and Voltage Basis Reference Systems

From the above discussion it is apparent that the basis voltage

reference system is different from the tree branch voltage reference system.

The second node in the descriptor is always assumed to be the positive
reference for the branch voltage. Exhibit 5 shows a tree with its user

assigned branch reference system.

EXHIBIT 5 - TREE WITH USER ASSIGNED BRANCH
REFERENCE SYSTEM

Note that the two nodes of every branch in a tree can be classified as
closest to the zero node or farthest from the zero node. In choosing

the references for the voltage basis, TAG always puts the plus sign on
the node of a branch which is farthest from the zero node. Exhibit 6
shows the tree of Exhibit 5 with the TAG voltage basis reference system

placed upon it.

10

EXHIBIT 6 - TAG VOLTAGE BASIS REFERENCE SYSTEM

Using Exhibit 3 as an example, we have the following user assigned

branch reference system

and the following TAG voltage basis reference system.

fas

7. The Initial Coordinate Transformation Matrix

Since a tree touches every node in a network, and is connected,
we can always find the value of a node voltage by summing the basis volt-
ages along the path which connects the node in question with the zero node.

Using Exhibit 3, we have as an example

V, = V21(1) + V11(1)

V11(1)

V1
Note that, because of the TAG reference system, the summations will
always have terms with positive coefficients only.

If the network has N nodes, one of which is the zero or ground
node, there are N - 1 node voltages which can be expressed as sums of
the N - 1 basis voltages. The N -1 by N - 1 matrix TC expresses
these relationships.

VN =TC*V

where VN is the node voltage vector and V is the basis voltage vector.

The matrices and vectors are defined as follows.

VNz{Vi] i=1,2,+-+, N-1
Vil
vzl
v = | v31
V4l
V51
V11 = V11(i) i=1,2,++., NV
V2l = v21(i) i=1,2,---, NC
V31 = V31(4) i=1,2,--., NG
V4l = V41(i) i=1,2,+++, NL
V51 = V51(i) i=1,2,++-, NX

12

TC:[tcij:] i=1,2,-.., N-1; j=1,2,-++, N-1

tcij = 1 if the jth basis voltage is in the path from node i to node 0. In

all other cases tcij =0.

N = the number of nodes in the network

NV = the number of voltage sources in the tree
NC = the number of capacitors in the tree

NG = the number of conductances in the tree
NL = the number of inductors in the tree

NX = the number of transformer windings in the tree

The previous example may now be expressed in matrix notation.

VN =TC %V
V1 1 01l Vv1i(l)
2 1 1]]1va21(1)
8. The Ideal Transformer Constraint Matrix

The equations of an ideal transformer require that winding
voltages be related in the following way.

njvti - nivtj =0

where n, and vy are the turns and voltage of the ith winding. The
symbols nj and Vtj represent the turns and voltage for the jth winding.
It is assumed here that a set of correct references has been assigned to
the transformer windings, If a transformer has W windings, there are
W - 1 independent voltage equations which may be written for its windings.
The number of sets of W - 1 equations for a given transformer is large.

It is convenient to choose a set of the form

v V,.
“H_oH o i=2,3,.-., W
n n.

1 i

13

Since each winding voltage may be expressed as the difference between
two node voltages, in terms of node voltages, the above equations be-

come the following

Va and Vb are the voltages of the nodes to which the first winding is
connected; v, and Vd are similar quantities for the ith winding.

a and c¢ are the positive terminals of the two windings.

EXHIBIT 7 - NETWORK WITH IDEAL TRANSFORMER

As an example, the transformer equations will be written for
Exhibit 7.

14

The winding voltages may be expressed in terms of node voltages
Vil T
Vi2 T
vt3=V0-V2=0-V = -V

and substituted into the transformer equations

nZVI-nl(V3-V2)=0

ng V1 - n, (-V2)=0
n2V1+n1V2-an3=O
n3V1+n1V2=0

If we have W ideal transformer windings in the network and T trans-
formers, there will be W - T independent transformer equations which

can be written. In TAG this number is called NRR.

NRR=W-T
In matrix notation the transformer equations are
TTR #* VN =0

The matrix TTR has NRR rows and N - 1 columns. Each row of
TTR represents one transformer voltage equation. The transformer

equations for Exhibit 7 are then

TTR * VN =0

15

The ordering of the rows of TTR is not mathematically important.
However, TAG groups them by transformer as described in the XFORM

subroutine writeup.

g

4
—
Dy g Be
5

0

EXHIBIT 8 - MULTIPLE TRANSFORMERS

As a final example, Exhibit 8 shows a network with three trans-
formers and six windings. There are then three transformer equations

and five node voltages.

N =
T=3
NRR =6 -3 =3
N =
N-1-=
TTR * VN =
rnz -n, 0 0 0ﬂ zl
2
ng, 0 -ng 0 0 Vs =0
Va
LO 0 0 (ng-ng) ng v,

16

9. Elimination of Voltages From the Basis

Since there are NRR independent transformer equations, it
is possible to express NRR node voltages in terms of the remaining
node voltages. TAG, however, expresses the transformer equations in

terms of the basis voltages

TTR ¥ VN = 0
VN=TC *V
TTR #*TC*V=TQ*V =0

and then eliminates basis voltages. Because TTR has a rank of NRR
and TC is nonsingular, TQ will have rank NRR. Thus NRR basis
voltages may be expressed as linear combinations of N - 1 - NRR re-
maining voltages.

The first step in the elimination is to apply Jordan's1 method to
the equations. We try to solve for voltages on the bottom of V and
work up until we have solved for NRR basis voltages. The process is

best illustrated by an example.

o 1 JIETIER

0

EXHIBIT 9 - EXAMPLE CIRCUIT FOR BASIS VOLTAGE ELIMINATION

1See Hildebrand, F.B., Introduction to Numerical Analysis, McGraw-
Hill, 1956, p. 429.

17

Assume the connection list for Exhibit 9 is

WLIST = {SIOOOI; SG0001; SN0001/1-1; SN0002/1-1; SN0002/2-2;
SN0003/2-1; SG0003]

The tree list is

FLIST = [sc;oom; SG0003; SNoooz]

The relationship between the node voltages and basis voltages is

VN =TC %V

v,] 1 o0 o | [v3un]
v,|=fo 1 o V31(2)
v o o 1 V51(1)
3] L 11]

There are two transformer equations.

TTR * VN =0

A
1 -1 0 1
vV, =0
0 1 -2 2
Vs
TQ is the product of TTR and TC.
_ - It 0 O
1 -1 0
TQ = TTR % TC = 0 1 0
0 1 -2
~ 1o 0 1
1 -1 0]
0 1)

18

T U T T W mm——

We now have the equations

) V31(1)
1 -1 0
TQ*F=0= V31(2)
0 1 -2
- V51(1)

[V31(1) - v31(2)

LV31(2) - 2V51(1)

In Jordan's method, we make the coefficient of a variable in some
equation +1 and then use that equation to eliminate the variable from all
of the other equations. This is repeated for each variable we wish to
eliminate. The TAG rule is that we start at the bottom of the V vector.
In our example, V51(1l) is the first candidate.

V31(1) - V31(2) =0
-.5V31(2) + V51(1) =
-V31(1) + V31(2) =0
-.5V31(2) + V51(1) =0
~V31(1) + V31(2) =0
~.5V31(1) + V51(1) =

V31(2) = +V31(1)

V51(1) = +.5 V31(1)

We can now express the NRR basis voltages in terms of the N - 1 - NRR

remaining basis voltages. In general we have

V =TL *FV

where TL has N -1 rows and N -1 -« NRR columns and FV is the

reduced basis vector. In our example, the equation is

19

V31(1) 1
v3ie)| = |1 | v3i)
V51(1) .5

Since the node voltages were expressed in terms of the basis voltages,

we may now express the node voltages in terms of the reduced set of

basis voltages.

VN =TC *V =TC * TL * FV

For the example, we have

-

VN

1

= TC * TL * FV

=lo 1 of]1]| v3iQ)

=1 | v3i(1)

| .5

10, The Final Voltage Basis and Coordinate Transformation Matrix

a. No Transformers in the Network

In the case of a network with no transformers, no basis

voltage elimination is required. The various lists, matrices, and con-

stants are renamed in the following way,

TR The final coordinate transformation matrix

which is equal to TC

20

vVC
Fv
FVl1l, FVv2l1, FV3l,

Fv4l, FVsl

LNV, LNC, LNG,
LNL, LNX

FS

FSl1, FS21, ¥S31,
FS41, FS51

The final voltage basis list which is equal
to FLIST
"The final voltage basis vector which is iden-
tical to V

Subvectors of FV equal to V11, V21, V31,
V41, and V51, respectively

The dimensions of the above subvectors
which are equal to NV, NC, NG, NL, and
NX, respectively

The voltage integral vector which is equal
to the integral of FV

FS =fth ar
0

The integrals of FV11, FV21, FV3l, FV4l,
and FV51, respectively.

b. Transformers in the Network

When transformers are present, the node voltages may

be expressed as linear combinations of less than N - 1 basis voltages.

As shown in subsection 9, it is TC * TL that relates the node voltages

to a reduced voltage basis vector FV . The following definitions are

made for the network with transformers.

vC

LNV, LNC, LNG,
LNL, LNX

A list of those descriptors in FLIST whose
corresponding basis voltages have not been
eliminated by the transformer constraints,
VC is in the same sequence as FLIST

The number of voltage sources, capacitors,
conductances, inductors, and transformer
winding descriptors in FVC; also the di-
mensions of FV11l, FV2l, FV31l, FV4l,
and FV51, respectively

21

¥V

Fvll, FVv2l, FV3l,
Fv4l, FV5l

TF

NRR

FS

Fsl1, ¥Fsz1, FS31,
Fs41, FS51

The voltage basis vector related to VC in
the same way that V is related to FLIST
(see subsection 7)

Subvectors of FV related to VC and the
branch voltages in the same way that V11,
v21, V31, V41, and V51 are related to
FLIST and the branch voltages

The final coordinate transformation matrix,

which is TL multiplied by TC
TF = TC * TL

TF has N -1 ro;;vsand N - NRR -1
columns

The number of nodes in the network

The number of transformer windings minus
the number of transformers

The voltage integral vector equal to the in-
tegral of FV

The integrals of FV11, FV2l, FV31, FV4l,
and FV51, respectively

11. The TAG Node Equations

In TAG, node equations are first written and then modified by

the TF matrix described above.

Kirchoff's current law is written for each node in terms of node to

ground (zero node) voltages.

Branch equations for each element type are

described in the TAG User's Manual.

22

—e-

11l

1r
D
\J

T 1 1

EXHIBIT 10 - EXAMPLE NETWORK DEMONSTRATING
GENERATION OF NODE SYSTEM EQUATIONS

The node equations for the network shown in Exhibit 10 are

WLIST = [svoooz; SC0001; SG0001; SL0001: 310001]
FLIST = [svoooz; 500001]
av, - t
SC0001 * — + SGO001 * V, + SLOOOlf V, d7 - SI0001 = 0
0
Isvoooz = -S10002

Note that no equation is written for the zero node and that the symbol L
is TAG reciprocal inductance. Also note that ideal transformers are
ignored in writing the node equations.

For an N-node network, we have the following matrix equation.

t

c L yN+tG VN+L fVNd'r-I -1 =0
n dt n n n en

0

where VN = the N - l1-element node voltage vector

C, = the N-1 by N -1 node capacitance matrix

23

G = the N-1 by N -1 node conductance matrix
L, = the N-1 by N -1 node reciprocal inductance matrix
In =the N -1 by 1 node current source vector

Ien =the N -1 by 1 currentin voltage source vector

In order to solve the equations numerically, we must manipulate

them into a standard form in which there are only first derivatives of

variables on the left and functions of the same variables on the right.

dY

T - FO)
fay_ 1 |] |
T fl(Ya""’Yk)
dYk
—a-rd Lfk(Ya’.'.’Yk)

If Cn is nonsingular and Ien is zero, then the equations may be ma-

nipulated easily into the required form.

ap _
-CIT—VN
d tap
Cna—tVN+GnVN+Lnf FaT-1 -0=0
0
ap _
E’C—_VN
dyn=-cle vN+L P +C I
dt - n n n n n

Unfortunately, Cn is often singular and Ien is not always zero. Itis
for these reasons that TAG must modify the node equations. A network

for which Cn is singular and Ien is nonzero is shown in Exhibit 11.

24

~

EXHIBIT 11 - EXAMPLE NETWORK DEMONSTRATING SINGULARITY
OF NODE SYSTEM CAPACITANCE MATRIX

WLIST = [svmoz; SC0001; SG0001; SLOOOZ]
FLIST = [svomz; scoom]
scoool o] [V [scooor o] [v 0 0
1, 1, 1
0 0 v?_ Lo 0 v, 0 SL0002 I—>.2
Isv0001
+ =0
—ISVOOOI
I I A
P, 2

The equations may be put into the correct form by making the substitution

VvV, = Vl + SV0102

2

and then adding the first two equations.

25

P, = V1 + SV0102

SCO0001 * Vl + SG0001 * Vl + SL0002 * PZ =0
ISVOOO]. = SL0002 * PZ

. 1

V]. = - SC0001 (SG0001 =* Vl + SL0002 * PZ)
ISVOOOl = SL0002 * PZ

The above is a simple example of the transformation of the node equations

carried out by TAG.

12. Transformation of the Node Equations

The TAG final equations are formed by making the following

substitutions into the node equations

VN = TF % FV
d .. d
S VN=TF * S FV
t t
f VNd'rzTF*/FVd'r
0 t 20
FS =fFVd'r
0
_d
FVD = £ FV

and then multiplying through by TF transposed.
T T T
(TF)~ C_(TF) * FVD + (TF)" G_(TF) TV + (TF)" L (TF) FS

T T,
-(TF)" I -(TF) I =0

dFs _

- FS

26

o P P

If the following substitutions are made
T
FC = (TF) Cn(TF)
_ T
FG = (TF) Gn(TF)
T
FL = (TF) Ln(TF)
FI = (TF)T 1
n
1 =(TF)T 1
e en
the equations become

FC*FVD+FG*FV+FL*FS-FI-Ie=O

13, Form of Final Matrices

Lock1 and others have shown that the matrices will always

have properties to be described below.

a, Partition Dimensions

The partition dimensions are taken from the final basis
list, VC.
LNV = the number of voltage source descriptors in VC
LNC = the number of capacitor descriptors in VC
LNG = the number of conductance descriptors in VC
LNL = the number of inductor descriptors in VC

LNX = the number of transformer winding descriptors in VC

1Lock, K., A Digital Computer Programmed Topological Method of
Coordinate Selection for Numerical Computations in an Electrical
Network, Ph.D., The«sis, Calilornia Institute of Technology, 1962.

27

Partitions of C

LNV LNC LNG LNL

FCll FClz2z 0 0 LNV
FC21 FC22 O 0 LNC
0 0 0 0 LNG
0 0 0 0 LNL

The matrix FC has the following characteristics:

o

FG =

Columns and rows with index greater than
LNV + LNC are always zero.
The FC22 submatrix, which is LNC by LNC,

is always nonsingular when it is not null.

Partitions of FG

LNV LNC LNG LNL

[FG11 FGl2 FGI3 0] LNV
FG21 FG22 TFG23 0| LNC
FG31 FG23 TFG33 0| LNG
0 0 0 ol LNL

o 0 0 0] LNX

FG has the following characteristics:

o

Columns and rows with index greater than
LNV + LNC + LNG are always zero.
FG33 , which is LNG by LNG, is nonsingular

if it is not null.

28

d. Partitions of FL

LNV LNC LNG LNL

[FL11 FL12 FLI13 FL14
FL21 FL22 FL23 FL24
FL = |FL31 FL32 FL33 FL34
FL41 FL42 FL43 FL44
0 0 0 0

- =

LNV
LNC
LNG
LNL
LNX

© O O O ©o

FL has the following characteristic:

o Matrix FL44 is nonsingular when it is not null.

e. Partitions of FV

(FVil] LNV
Fv2l LNC
FV31 LNG
FV4l LNL
| FV51 LNX

FV

I}

[Fvii)]

FVll

[FV11(LNV)

[Fvai(l) |

Fval

]

| FV21(LNC)

(FV31(1)

Fv3l :

| FV31(LNG)]

29

FV41(1)

Fv4l =

| FV41(LNL)

f. Partitions of FVD

[FVDI11]
FVD21
FVD31
FVD41
FVD5! |

FVD

=3

FVDI11(1)

FVDI11 .

_
FVD21(1)

FvD2l1

[FVD31(1)

FVD3l1 .

[FVD41(1)

FVD4l " .

[FVD51(1)
FVD51 =)

| FVD11(LNV)]

| FVD21(LNG)]

| FVD31(LNG)]

| FVD41(LNL)]

| FVD51(LNX)

LNV
LNC
LNG
LNL
LINX

-

-

30

g.

FI1

FI1l1

F121

F131

FIl41

FI51

Iy

Partitions of F1

[F111]

LNV
FI21 LNC
FI31 LNG
F141 LNL

|F151] LNX

(F111(1)]

| FI11(LNV)

[F121(1)]

| F121(LNC) |

[F131(1) |

| FI31(LNG)

[Fra1(1) |
FI41(LNL)]

(FI51(1) |

| FI51(LNX) |

31

h.

FS

FS11

FS21

FS31

FS4l

FS51

"

n

Partitions of FS

FSll1] LNV

FS2l LNC
FS31 LNG
FS41 LNL

FS51] LNX

[FS11(1)]

| FS11(LNV)]

-

FS21(1)

| FS21(LNC)]

[FS31(1) |

| FS31(LNG),

-~

FS41(1)

| FS41(LNL)

[Fs51(1) |

| FS51(LNX) |

32

way.

14,

i.

FIEll

Partitions of Ie

FIEll LNV
0 LNC
0 LNG
0 | LNL
FIE11(1)

| FIE11(LNV) |

Summary of Equation Formulation Procedure

To summarize, the TAG equations are written in the following

PLIST is formed by sorting the descriptors in the con-
nection list into V, C, G, L, N, I order. Connection
list order is maintained between descriptors of the
same type.

Descriptors corresponding to a TAG proper tree are
selected from PLIST and placed in FLIST. If the second
(positive) node of an element descriptor is closest to the
zero node, then the descriptor is underlined in FLIST.
FLIST is sorted into V, C, G, L, N, I order.

The coordinate transformation matrix, TC, is formed
from FLIST.

If no ideal transformers are present, TC is renamed
TF, the final coordinate transformation matrix. In
addition, FLIST is renamed VC.

If ideal transformers are present, the following steps
are performed.

(1) The ideal transformer constraint matrix, TTR,

is formed.

33

(2) The matrix TQ is formed by multiplying TC by
TTR.

(3) Dependent basis voltages are solved for by ap-
plying Jordan's method to TQ.

(4) From the solution in (3) above, a new matrix TL

is formed which expresses the old basis voltages

as linear combinations of a smaller set of voltages.

(5) The final coordinate transformation matrix is
formed by multiplying TL by TC.

(6) A new list, VC, is formed which consists of only
those entries in FLIST which were not associated
with dependent basis voltages (step (3), above).

Ignoring ideal transformers and voltage sources, the

node equations for the network are written. These

equations are completely specified by forming only

the Cn , Gn , Ln , and In matrices.

The final TAG equations are formed by forming

(te)T ¢ TF, (TF)’ G_ TF , (TF)T L_ TF , and

(TF)T 1_, which are named FC, FG, FL, and

F1, respectively.

The dependent variables for the equations are deter-

mined from VC. They are vectors with names FVII,

FV2l, FV3l, Fv4l, and FV51, corresponding to

V, C, G, L, and N entries in the VC list. Whenever

a descriptor is underlined in VC , the branch voltage

and dependent variable for that branch have opposite

signs.

34

15. Sample Network With No Transformers

1 SC0201 2] SGO0203 3 S1.0403 4

1

11 -I_

SV0001—" SC0200 SG0003 stmom
T SL0400

EXHIBIT 12 - SAMPLE NETWORK WITH NO TRANSFORMERS

The equations for the network of Exhibit 12 will be written using
the previously outlined procedures.

Connection list: SL0403, SL0400, SG0203, SV0001l, SC0201, SC0200,
SG0003, SI0004%*

WLIST = [SL0403; SL0400; SG0203; SV0001; SC0201; SC0200;
SG0003; SIOOO4J

PLIST = [svoom; SC0201; SC0200; SG0203; SG0003; SLO0403;
SL0400; 510004]

FLIST = [SVOOOI; SC0201; SGO0203; S1.0403

The TAG proper tree is shown in Exhibit 13. Basis references
are circled; branch references are not. Note that the basis and branch
references differ only where the corresponding descriptor is underlined
in FLIST.

35

1 2 3 4
+ + 4+
®

f
+ SC0201 é SC0203 6&0403 é)
SV0001

EXHIBIT 13 - TAG PROPER TREE

[1 o o 0]

TC =

Since there are no ideal transformers in the network, we have
TF = TC

VC = FLIST

The coefficient matrices for the node equations are

[sc0201 -SCo201 0 0]
-SC0201 SC0201 + SC0200 0 0

C =
%o 0 0 0

0 0 0 0

36

[0 o 0 0]
0 SG0203 -SG0203 0
G =
% o -sG0203 SG0203 + SG0O003 0
0 o 0 0 |
(0 0 0 0 T
0 0 0 0
L =
" o o0 sL0403 -SL.0403
|0 0 -SL0403 SL0403 + SL0400 |
0 -Isvooo1
0 0
I = I n =
R € 0
| 510004 | K]

Applying the TF matrix to the above coefficient matrices, we obtain

[SC0200 SC0200 0 o0
SC0202 SC0201 + SC0200 0 0
FC =
0 0 0 0
o 0 0 o]
[SG0003 SG0003 SG0003 0
SG0003 SG0003 SG0003 0
FG =

SG0003 SG0003 SG0203 + SG0003 0

0 0 0 0

- -

37

[S1.0400 SL.0400 SL.0400 SL0400]

SL0400 SL04C0 SL0400 S1.0400
FL =
S1.0400 S1.0400 S1.0400 S1.0400

S1.0400 S1.0400 S1.0400 S1.0400 + S1.0403
L]

i ’ i 1
S10004 ~Isv0001
S10004 0

FIl = I =
S10004 € lo
| S10004 | [0]

The dependent variable names are

[Fvi1(1) SV0001
FV21(1) -SV0201

FV = =
FV31(1) SV0203
Fva1(1)| | -sv0403]
FS11(1) FV11(1)]
Fs21(1) t | Fva1(1)

FS = = [dT
FS31(1) | FV31(1)
Fsa1(1) FV4l(l)

B. The Solution of TAG Equations

1. Introduction

The second pass of the TAG preprocessor takes the equa-
tions generated by the first pass and forms a solution program. The
TAG User's Manual describes the solution program from the user's

point of view. A more technical approach will be taken here; the steps

38

that are executed by the solution program in numerically solving the
network problem will be discussed.

2. The TAG Matrix Equation

The TAG network equations, in their most general form,

may be represented by two matrix equations.
C>5<FVD+G>"FV+L*FS=FI+Ie+It

d g5 =
3t FS = FV

Exhibit 14 shows the equations in more detailed form. Performing the

indicated multiplication, we obtain the following five sets of equations.

LNV Voltage Source Equations

FC11 * FVDI11 + FC12 * FVD21 + FGll * FVI1
+ FG12 * FV21 + FGI13 * FV31l + FL11 * FSI11
+ FLI12 % FS21 + FL13 * FS31 + FL14 * FS41 = FIl1 + FIE1l1l

The above equations may be used to determine the currents in the voltage

sources at any instant of time. TAG, however, does not evaluate them.

LNC Capacitor Equations

FC21 * FVDI11 + FC22 * FVD21 + FG21 * FV11
+ FG22 * FV21 + FG23 * FV31l + FL21 * FSl1
+ FLZ22 % FS21 + FL23 * FS31 + FL24 * FS41 = FI21

LNG Conductance Equations

FG31 * FV11 + FG32 * FV21 + FG33 * FV31 + FL31 * FS11
+ FL32 % FS21 + FL33 * FS31 + FL34 * FS41 = FI131

LNL Induc'tor Equations

FL41 * FS11 + FL42 * FS21 + FL43 * FS31 + FL44 * FS41 = Fl41

LNX Transformer Equations

O = FI51 + FITS51

TAG does not evaluate the transformer equations.

39

NYOJd AANOILILYVA NI SNOILVNDIE TYOMIEN DVL - ¥1 LIDIHXH

- -

ISAA
IPAdL

IEAd

1ZAd

TTAd
e -

© o ©o o
o O

0

WP A \umm
3

LP A A

1131 |

0

“\u.\,.m

I mE
%14
+|1e1a

1214

19Sd
1¥ySd
=|1¢S4d
12Sd

1154

111 |

433X
2204

2104

1¢Dd | +

1204

1104

[16aAT
IPAA T
T€AA T

12aA 4

:HQ.?.M

ISAT

IvAdL

12Ad

0 1448 T ev 14

0 eTd eeTd
0 y21d €214

0 Y1T14d e1Td

| (1A

r44 St
2eTd
2214

rARSKE

2204

0 2104

T€EAT | =

15asd |
17asd
1€dsd

12ds4d

:HOmm.

[§ 48 R
1¢T1d

12714

11714 |

1204

1104 |

40

W e " W Wy O SEmwT e e W s e

N - NRR -

1 Voltage Integral Equations

FSDI1 = FV1l
FSD21 = FV2l
FSD31 = FV3l
FSD41 = FV41
FSD51 = FV51

The last two equations, for FS4l and FS51, are not used by TAG. From

this point on, we will concern ourselves only with the LNC capacitor

equations, LLNG conductance equations, LNL inductance equations, and

a subset of the voltage integral equations. It will be shown that these

equations, when solved, specify every voltage in the network at every

instant of time.

The equations for Exhibit 12 are

LNC =1

SC0200 =*
+ SG0003 *
+ SG0003 =*
+ SL0400 *
+ SL.0400 °

% %

<

.
3

LNG =1

SG0003 *

FVDI11(1) + (SC0200 + SC0201) * FVD21
FV11(l) + SG0003 * FV21(1)
FV31(1) + SL0400 * FS11(1)
FS21(1) + SL0400 * FS31(1)
FS41(1) = SI0004

FV11(1) + SG0003 * FV2I(1)

+(SG0203 + SG0003) * FV31(1) + SL0400 * FS11(1)
+ SL0400 * FS21(1) + SL0400 * FS31(1)

+ SL0400 =

LNL =1

S1.0400 =
+ SL0400 =

Fs41(1) = SI0004
FS11(1) + SL0400 * FS21(1)
FS31(1) + (SL0400 + SL0403) * FS41(1)

= SI0004

FSD11(1) = FV11(1)
FSD21(1) = FV21(1)
FSD31(1) = FV31(1)

41

3. Nonconstant Parameters and Current Generators

The TAG User's Manual describes, in detail, the rules for
specifying nonconstant parameters. It is sufficient to note here that the
following parameters may depend upon voltage, voltage integral, and
time:

Capacitors

Conductances

Inductors

Current Generators

Whenever a voltage appears in the expression for a nonconstant
parameter, we use a symbol which is similar to the voltage generator
descriptor. Thus, SVXXYY represents the voltage between nodes XX

and YY , where node YY is the positive node.

1 2

I %

0

EXHIBIT 15 - EXAMPLE NETWORK DEMONSTRATING SINGULARITY
OF NODE SYSTEM CAPACITANCE MATRIX

In Exhibit 15, the voltage between nodes 2 and 0 is SV0002. The

diode between nodes 2 and 0 may be represented by a current generator

having the following branch equation.

S10200 = X15(e>V0002/VO ;)

42

The dependence of the current generator does not change the equation
writing procedure. When the equations are completed, we simply sub-
stitute the expression for the current generator symbol, wherever it
appears. In addition, SV0002 must be expressed as a sum of basis

voltages.
SV0002 = FV21(1) + FV31(1)

This is always possible because the basis voltages specify every other

voltage in the network.

4. Form of the Final Differential Equations

As stated previously, we wish to obtain a system of equa-

tions having the form

ay _
S =Y, 1)

where Y and f are vectors and t is time. In the case of TAG, the

final form is

Fv2l
% FSIL - gFval, FS11, FS21, FS31, FT)
FS21
Fs31

where FT is time and the other symbols have been defined in earlier
sections.

Since TAG must generate a computer program for the solution of
the equations, it recognizes a large number of different forms of the
equations. For the discussion here, we will recognize only two basic
equation forms.

Form 1: The equations are in the first TAG form if
o No element in the inductance or current generator
matrices of the LNL inductance equations is a function
of FV41l, FS41, or FV3l

o No element in the conductance, inductance, or current

generator matrices of the LNG conductance equations is

a function of FV3l

43

Form 2: The equations are in the second TAG form if they cannot be
classified as being in the first form.
When the equations are in the first form, we can solve for Fs4l
and FV31l at every instant of time by inverting FG33 and FL44 and

solving two matrix equations.
Fs4l = (]:"L44)"l % (FI41 - FL41 * FS11 - FL42 * FS21 - FL43 * FS31)

FV3l = (}?‘033)-1 % (FI31 - FG31 * FV11 - FG32 * FV31 - FL31 * FSl11
- FL32 % FS21 - FL33 % FS31 - FL34 * FS41)

In order to allow parameters to be dependent upon FV41l, we numerically
differentiate FS41.

FS4lt - FS41t - At

Fv4l = it

Thus, functions of FV41l become functions of FS41l. It is apparent that
the above equations are explicit in FS41 and FV31 if the right-hand side
of the FS41 equation is not a function of FV41, FS41, or FV3l. In ad-
dition, the FV31 equation cannot have a function of FV31 on the right-
hand side. There are a number of special cases in which FV31 and
FS41 may be solved for directly; they will not be considered here.

When the equations are in the second form, we assume that the
right-hand sides of the FS41 and FV31 equations are functions of FS541
and FV31l, We may rewrite the equations as

FS41 - (FL44)" ! % (FI41 - FL41 * FS11 - FL42 * FS21
- FL43 % FS31) =0

FV31 - (FG33)"! % (FI31 - FG31 * FV11 - FG32 * FV3l
_FL31 * FS1] - FL32 % FS21 - FL33 * FS31 - FL34 * FS21)

1
(=)

In shorthand form, we have
fl (Fs41, Fv3l) =0 (LNL equations)

f2 (FS41, FV3l) =0 (LNG equations)

For the solution of these equations, all other variables and time are
assumed constant. The FV41 variable is assumed to have been trans-

formed into a function of FS41 by numerical differentiation.

44

Although equations in the second TAG form may be linear, it will
be assumed that an iterative technique, such as the Newton-Raphson
method, is used to solve them.

Regardless of the method used to solve for FS41 and FV31, the
LNC capacitor equations can always be solved for FVD21 by inverting
FC22. Assuming FS41 and FV31 are known, we have the final differ-
ential equations.

FVD21 = (FCZ.Z)_l * (FI21 - FC21 * FVDI11 - FG21 * FV11

- FG22 * FV21 - FG23 * FV31 - FL21 * FS11
- FL22 * FS11 - FL23 * FS31 -~ FL24 * FS41)

FSDI11 = FV1l
FSD21 = FV2l
FSD31 = FV3l

In the above equations, it is assumed that FV11 is a known function of

time and that the derivative of FV11 is determined by numerical

differentiation.
FVll, - FV1l
~ t t - Aot
FVDl11 AT
5. Solution of the Equations

The equation formulation procedure results in LNL + LNG
linear or nonlinear equations and LNC + LNV + LNG + LNC first order
differential equations.

When the LNL + LNG equations are classified TAG type 1, FV3l
and FS41 are found by matrix inversion, addition, subtraction, and
multiplication. When they are type 2, we find FV31 and FS41 by the
Newton-Raphson method. Writing the equations in shorthand form,

we have

£, (FV31, FS41)

- [® =[]

where R is the vector of residuals whose values are all zero only at

£, (FV31, Fs41)

the exact solution of the set of equations.

45

The Newton-Raphson method defines a sequence of values of FV31 and
FS41 which, hopefully, converges to the solution of the equations.

FVv3il FV3l

k k-1 1

= - P R

k-1 k-1
FS41 FS4l,

k

The subscript k represents evaluation for the kth step and k -1
represents evaluation for the (k - 1)th step. The matrix P is the partial

derivative matrix defined as follows.

P=[pij] l1<i<LNL+ LNG, 1<j=<LNL + LNG

or.
_ 1
Pij = B,

An obvious necessary condition for convergence of the iteration is that
P-1 exist at the solution.
In TAG, the partial derivative matrix is computed by numerical

differentiation.

r, (vJ. + Avj) - r.l(vj)

pi' = Av.
! J

The Newton-Raphson method must be given initial guesses for
FV31 and FS41 which it will refine to the solution. The closer the ini-
tial guesses are to the solution, the more rapidly the iteration will con-
verge, in most instances.

The differential equations are in a form that allows the computa-
tion of the derivatives of FV21, FS11, FS21, and FS31 from their pre-
vious (or initial) values and the computed values of FS41 and FV31.
The numerical integration program may then extrapolate all voltages,

whose derivatives are known, to their approximate values at the next

instant of time.

46

— — — - —

5Gol102

soo1() == $G0200
5C0100

—&

EXHIBIT 16 - EXAMPLE NETWORK USED IN DEMONSTRATION
OF NUMERICAL INTEGRATION TECHNIQUES

Exhibit 16 will be used to illustrate the numerical solution of a network
problem. Instead of the sophisticated TAG integration technique, we
will use a very simple method which adequately demonstrates the pro-

cedure. The TAG equations are assumed to be

- FV21(1) * SG0102 + FV31(1) (SG0102 + SG0200)

1}
o

SI0001

SC0100 * FVD21(1l) + FV21(1) * SG0102 - FV31(1) * SG0102

Solving for FV31(1) and then FVD21(1), we obtain

1
= *
FV31(1) SGOT0Z T SGOZOO(FVZI(I) SG0102)

FVD21(1) =W011_(W(SIOOOI - FV21(1) * SG0102 + FV31(1) * SG0102)

For the solution, let

SG0102 = SG0200 = SC0100 = SI0001 =1 ,

47

The voltages will be evaluated at FT =0, .5, 1, 1.5, and 2 seconds.

The initial voltage on the capacitor is -1 volt.

FT =0
FV21(1) = -1 volt
FV31(1) =1/2(-1)= -(1/2) volts
FVD21(1) =1 - (-1) + (-(1/2)) = 1.5 volts/sec
FT =.5
FV21(l) =FVD2I(1) % .5 + (1) = .75 - 1 = - .25 volts
FV3l(l) =1/2(-.25) =~ .125 volts
FVD21(1) =1 + .25 - .125 = 1.125 volts/sec
FT =1.0

FV2l(l) =-.25 + 1.125 * .5 = .3125 volts
FV31(l) =1/2(.3125) = .1563 volts
FVD21(1) = 1 - .3125 + .1563 = .8438 volts/sec

FT =1.5

Fv2l(l) =.3125 + .5 * .8438 = .7344 volt

FV31(1) = 1/2(.7344) = .3672 volts
FVD21(l) =1 - .7344 + .3672 = .6328 volts/sec
FT =2.0

FV2l =.,7344 + .5 * .6328 = 1.0508 volts

If the equatibn for FV31(1) had been nonlinear, then the Newton-Raphson

iteration method would have been used to solve for FV31(1) at each in-

stant of time.

6. Summary of Equation Solution Technique

The TAG solution technique may be summarized as follows.

a. Substitute sums of basis voltages for all voltage sym-

bols SVXXYY which appear in nonconstant parameter

equations.

48

g.

Substitute the expression for the parameter into the

TAG equations.

Classify the FV31 and FS41 equations as type 1 or

type 2.

o If they are type 1, solve explicitly for FV31
and FS41 by matrix manipulation.

o If they are type 2, put the equations in the im-

plicit form for Newton-Raphson iteration
fl(FS41, Fv3l) = [Rl]
£5(FS41, FV31) = [RZ]
Solve the LNC capacitor equations for the derivative
of FV21 (FVD21).
Write down, directly, the equations for FS11, FS21,

and F'S31, if they appear in the above equations,

Specify one initial condition for each differential

equation.

Obtain the system solution at each instant of time by

numerical methods.

49

T — —— — N W s —— L — - —_—

PRECEDING PAGE BLANK NOT FILMED.

III. TAG LIST PROCESSING

A, Definition of TAG List Properties

1. Introduction

The basic data structuring of TAG is in the format of lists

and list structures. A listis any sequence of elements linked together

in a fixed order. A list structure is a list whose elements may them-
selves be lists. An array-list is a one-dimensional FORTRAN array
of which each element may be a list or a list structure. Input and out-
put of card images, construction and storing of special symbolic labels,
and maintenance of parameter arrays are accomplished by applying
list-manipulation techniques to these lists.

This section will contain a description of the structuring technique
used and will define some terms useful in referring to peculiar struc-
tures and their properties. Following sections will examine the basic
FORTRAN functions operating upon the lists and some of the special-

format lists that are important in TAG.
2, Definitions

The following definitions are, for the most part, common in
list-processing literature. The format of TAG lists is peculiar to TAG,
however, and therefore a hybrid set of terms has been compiled.

AVS is available space reserved in core as a list of elements
linked to each other by pointers. This simple list initially occupies
sequentially descending positions in core. AVS is maintained as a
"free storage list" whose elements are acquired by the program as they
are needed. When elements are no longer needed for computation, they

are returned to AVS,

A head cell, or head of a list, is a cell in core that has a FORTRAN

name or symbol associated with it and whose decrement contains a pointer

to the first element of a list.
A pointer is the 15-bit address of the memory cell or element to
which it points. A pointer in the head cell of a list (as used in TAG)

gives access to the first element of the list.

51

An element is one "piece" of information in a list. In TAG, it
occupies one register (cell; word) of core storage and has the follow-

ing format:

Item f Link

S,1 17,18-20, 21 35

A link is one of a class of pointers. It occupies bits 21-35 of an
element, and, in a list, is a pointer to the location in core of the next
element of the list.

An item is bits S,1-17 of an element, and constitutes the basic
nonstructural data of an element. An item may be either an atom or a
pointer (nonatomic item) to another list.

An atom is an item that may be any useful piece of nonstructural
information (data). Depending on the context and the purpose of the list,
an atom may be an integer, the BCD code for a Hollenith character, etc.

f is a flag in bits 18-20 of an element that gives supplemental in-
formation about the uses of the item and link.

Type 7 element: A flag of 7 in an element indicates that its item

is nonatomic and is a pointer to another list.

z [|
v

[ep)
o

B0} O

Type 6 element: A flag of 6 in an element indicates that the link

points to a full word of data. This word does not have the item : flag :
link structure of normal list elements, but contains whole word data.

Note that any such word must be the last word in a list. (For example,

this is useful in storing floating-point numbers in lists.)

I J
¥
[Tol [e —ve—au—0>

52

Type 5 element: A flag of 5in an element indicates that the item

portion of the word contains one decimal character of an eight-element
BCD string (used when reformatting floating-point numbers for output
in the second pass of the Preprocessor).

A list is any sequence of elements, linked in order.

Al il]

1l > I > [I__ol
16 28 10

A is head of a list whose elements are located in cells 16, 28, and
10. These elements may be referred to as "list A, " using the name
associated with the head cell which points to the list. The above list
contains several elements. Each element is linked to its successor by
a pointer in the link portion of the word. The list is terminated with
an element whose link portion contains zero. This indicates that there
are no more elements to follow. The elements of a list need not be
sequential cells in core. They are associated through their links. If
the head of a list contains zero, the list has no elements at all. Such a
list is said to be a null list.

A string, or simple list, is a list containing only atoms as items.

B| |
v
CaJol e Jol _p»Galol 1= ol o]

In the example above, A + 34 B are atoms in list B.

A list structure is a list that may have items which are not atoms:

[a_fo] H*Iﬂ e o] W*IH 0]
LI p»fc Jof o] [B _Jof pF Jof 9

+ G

53

In some of the following descriptions, lists will be represented in
a nongraphic manner according to the following format:
A simple list will be written as the sequence of atoms, separated

by semicolons, and enclosed in brackets,

o _Jo] o+ Jo[}—»p4 Jo] }»{B Jof 9

List Z in the example above may be represented as [A i+ 34 B]
If the list contains a nonatomic item, this item will be written

according to the regular pattern for lists,

¢ [|

l[a__dof o [7] }»D TJof o]

(B_fof »c Jjo| o

List C above is writtenas [A [B; C] D]

Note that the "outer" list contains three items:

(B c]
D
The second item is itself a list of two atomic items:
B

C

If the list contains peculiar flags, these may be indicated by plac-

ing them with the item of the same element, separated by a colon,

54

[A_fo] B 1] - T 0]

lc fef o x 1]

List Z above may be represented as [A ; Bl [C : 6 X”

B. Basic TAG List Operations

Five subroutines that perform basic functions on the elements of
AVS are ERASE, ERASEA, ADDLOC, BACK and NEWLOC.

ADDLOC determines the number of cells in core allocated for
lists and connects all the allocated elements into a simple list called
SPACE. Each element is linked to the next element by a pointer sfored
in the address portion of the word.

NEWLOC acquires a new element from AVS,

BACK returns an unneeded element to AVS,

ERASE restores all elements associated with a given list back
to AVS,

ERASEA restores an array list back to AVS,

Seven subroutines that operate on the lists themselves are LINK,
POPUP, DOWN, UPDWN, DOWNS, FROM and INTO.

LINK gets the link of the first element in a list (location of the 2nd
element.)

FROM extracts the item and flag, if any, from the first element
of a list.

INTO replaces the item and flag, if one is given, of the first
element of a list. The address or link portion of the element is unchanged.

POPUP performs the basic "pop up" list function: the first element
of a list is removed and its contents are saved. This element is then re-
stored to AVS,

DOWN acquires a new element from AVS and pushes it down into

a list with a specified item, flag, and link.

55

UPDWN pops up all elements of a given list and pushes them down
(in reverse order) into a new list. The elements of the list that is
"popped up" are returned to AVS.

DOWNS performs the same function as UPDWN except that DOWNS
does not destroy the list that was popped up.

C. Examples of List Structures Found in TAG

Type A: Simple string of characters.

(A 11 bts TT pf* TT Pz TT ¢ [1 0

Type B: Symbol string; like type A, but symbols represent

variable names and are separated by commas (like output from RECOVER).

(Al B3]l P4 , B X BIRCBEIELE o

Type C: Symbol list structure (like output from ELIM).

| 17] | | [|
Al [+ [7fo](B] | # [7]o | 17} o]
131 [[7]o] [[loJRI T # [7]0]
el [f7fofl |]o] , 1]o]

Type D: Two-dimensional list structure of simple sublists (used
in PRPTG and PRPTR in first pass).

56

T
ETTHETT IE T 110 BIT T B 110]

Type E: Array list (as used in LOCATA, ERASEA, SNATCH,
STASH).

1. Two-dimensional array list, I,J are two dimensions of the

array, M, of coefficients FTEM(i). 1=1,2,...100.

FTEM1] |3 _[6] Pl FTEM2]

2. Four-dimensional array list. I1,J, NN, NP are four dimen-

sions of the array, M, of coefficients FTEM(i). I=1,2,...100.

NN[o] 3 |41 —»NNd 36 [—o

INP| 6| $FTEMI] (NP| 6] -FTEM2]

17

(INPf 6| $FTEMS3)

57

PRECEDING PAGE BLANK NOT FILMED.

IV. TAG PREPROCESSOR MAIN PROGRAM

A. Overall Description of the TAG Preprocessor

1. Function

The TAG Preprocessor generates a FORTRAN source pro-
gram specifically tailored to simulate the transient or DC steady-state
behavior of a certain class of electronic circuits which can be described
to it by means of a special input language. The input language is a com-
bination of a special TAG vocabulary for describing the topology, vari-
ables, and parameters of circuits and a subset of FORTRAN code for
describing special functions needed for nonstandard component modeling,
information output, and program control. Using this language, the user
creates a Circuit Description Deck, which specifies the particular circuit
and particular analysis to be run. From the Circuit Description Deck the
Preprocessor creates the simulation equations and imbeds them in a gen-
erated simulation program.

The TAG Preprocessor is composed of two main programs, which
are themselves written in FORTRAN. The first pass program examines
only the topological properties of the network, and, by treating all branch
elements as linear, passive, and bilateral, creates a set of algebraic
and/or first-order differential equations to simulate the network. The
second pass program adds all nonlinear side constraints to these equa-
tions and generates the FORTRAN code for a program that will solve

the simulation equations and output the desired variables.

2. Organization

The Preprocessor, which is the heart of the TAG circuit
analysis concef;t, is a system of programs consisting of the 2 main .
routines and over 100 subroutines. The major manipulative technique
employed in the Preprocessor is list processing. Even in the first pass,
where many of the operations are arithmetic in nature, list processing
is used predominantly. The second pass operations, which are, for the

most part, symbol manipulative in nature, fit very well into the list

59

processing structure. Most of the subroutines of the Preprocessor are
written in FORTRAN; however, a significant number of the lower level
routines have had to be mechanized in FAP due to the limitations of
FORTRAN.

The two passes of the Preprocessor are run as separate programs
chained together through the FORTRAN Monitor System. Both programs
are stored on a special tape in precompiled binary form. The first pass
is called in by the FORTRAN Monitor System as commanded by a * LOAD
12 card provided by the user just ahead of the first card of the TAG De-
scription Deck. At the end of the first pass, the second pass is called
in through the FMS chaining feature. The equation matrices, variable
vectors, and parameter symbol lists that are generated during the first
pass are transferred to the second pass via three scratch tapes. Certain
matrix dimensions and flags calculated in the first pass are passed along
in common. At the end of the second pass, the final simulation program
is written onto the FORTRAN print and punch tapes, and control is re-
turned to the FMS in such a way as to provide an immediate compilation
of the generated program. From that point on, control is under the
FORTRAN Monitor system, and the program, if it compiles properly,

may be executed at will.

60

- " —— " L ___Jmaam L _ 4 L L L3] L I

B. First Pass Writeup and Flow Chart

1. Program Description
2, Identification
a. "Routine Label
TAG
b. Name

Preprocessor, Main Program, Pass 1.
3. Function

The first pass of the Preprocessor reads in the connection list
down to the final asterisk, selects a proper TAG tree from this list,
and generates the standard form, linear differential and algebraic,
simulation equations. If the network contains ideal transformers, the
transformer voltage constraint equations are used to reduce the number
of simulation equations. The equations, the first pass intput symbol
table, and the final reduced tree voltage vector are written onto scratch
tapes to be used by the second pass. The constants KIND, NM, NMR,
and arrays NPT and SPACE are established in Pass 1 and passed on
to Pass 2 in COMMON.

4, Programming System
FORTRAN II

5. Usage
a. Calling Sequence

The first pass routine of the TAG Preprocessor is loaded
from tape in precompiled form by the FORTRAN Monitor. The FORTRAN
Monitor control card, * LOAD 12, is placed just ahead of the TAG Cir-

cuit Description Deck to initiate the load operation.

b. Entry Conditions

The TAG Circuit Description Deck has been written on a
standard FORTRAN input tape.

61

The FORTRAN Monitor reads the Preprocessor Main Program for
Pass | from tape into the computer memory and turns control of the com-

puter over to it.

c. Exit Conditions

Scratch tape, NTAPE1, contains the final cut-set equation
matrices for the capacitive, resistive, inductive and current source
topologies stored in that order in a list-type format. Scratch tape,
NTAPE2, contains the partially transformed node basis equation ma-
trices for the capacitive, resistive, inductive, and current source top-
ologies stored in that order in a list-type format. Scratch tape, NTAPE3,
contains, in order, the final tree voltage basis to node voltage basis trans-
formation matrix, TF; the input symbol table for Pass 1, which contains
the names of each branch element (except transformer elements) plus
the initial conditions voltages for all capacitors; and the final tree volt-

age vector corresponding to VC. In COMMON is stored:

KIND = 1 (for no inductors)

KIND = 2 (for inductors)

NM = Maximum number of nodes less 1
NMR = Number of variables in vector VC
NPT(NE) = Number of elements of type NE in VC
SPACE = Total available memory cells for lists
d. Error Exits

If a member of the final tree voltage vector does not match
at least one branch in the connection list, WLIST, a DUMP is called
and control is returned to the FORTRAN Monitor system.

6. Definition of Identifiers

SPACE is the total memory space allocated for list structures.
WLIST is a type D list representation of the TAG connection list.
Each branch descriptor is represented by a sublist of 3 or 5 elements.
Descriptor ordering is unchanged. All items of the branch descriptors
are represented by binary integers. The element type characters are
replaced by the following integers: V=1; C=2;G=3; L=4;N=5;
I = 6. Node numbers, transformer turns, and transformer numbers

are converted directly to binary, The members of each descriptor

62

P P Y Y i aafems otbe— _ ontiinmn [N e

P ——

L -_— ——

sublist are in general denoted by NE, NN, NP, NTRN, NNTR, and
are placed in the order shown.

NE is the integer that represents the element type classification
for a particular branch, and is assigned according to the rules given
under WLIST above.

NN is the number of the first or negative node of a descriptor.

NP is the number of the second or positive node of a descriptor.

NTRN is the transformer core number of a descriptor.

NNTR is the number of turns on a transformer winding of a
descriptor.

PLIST is a modified copy of WLIST used as input to the TREE
subroutine., In PLIST, the branch descriptor sublists are reordered
by element type into a V, C, G, L, N, I sequence. Input ordering
within the element types is maintained.

XLIST is the tree branch list generated by the TREE subroutine.
This is a two-dimensional type D list containing the descriptors of the
branches whose node pair voltages will be used to form a voltage basis
for the network. The order of PLIST is not maintained in XLIST.

KIND is an inductor flag which equals 1 if there are no inductors
in the circuit and 2 if there are inductors in the circuit.

FLIST is a copy of XLIST reorderedintoa V, C, G, L, N, I
sequence.,

NM is the maximum node number of the network which also equals
the total number of nodes less one, or the total number of tree branches
or network equations with all transformer windings treated as open
circuits,

NPT is an array in common which stores the number of each
type of element that makes up the TAG tree by the following rule:
NPT(NE) = the number of type NE elements in thé tree.

TC is a two-dimensional type E list representation of the voltage
coordinate transformation matrix. TC has NM rows and NM columns.
Entries in TC are either +1 or 0. Each row in TC represents a path,
in the tree, from some node to the zero node. Rows and row numbers

correspond directly to nodes and node numbers.

63

TTR is a two-dimensional type E list representation of the trans-
former voltage constraint matrix. TTR has NM columns and NRR rows.
Each row of TTR represents one transformer voltage constraint equation
expressed in terms of node voltages. The columns of TTR are in one-to-
one correspondence with the nodes.

NRR is the total number of transformer constraint equations which
is equal to the total number of transformer windings less the total num-
ber of transformers.

TQ is always equivalent to TTR * TC , by which it is formed.

TQ is an NRR x NM matrix represented as a two-dimensional type E
list. Each row of TQ represents a transformer constraint equation
expressed in terms of tree voltage variables. The columns of TQ are
in one-to-one correspondence with the tree branch node pair voltages.

TL is a two-dimensional type E list representation which ex-
presses all of the unconstrained tree voltage variables in terms of a
smaller independent set of tree voltage variables. TL is NM x NMR.

NMR is the number of independent tree voltage variables under
the transformer constraint equations. NMR = NM-NRR.

XS is a four -dimensional type E list representation of either the
node basis or tree basis current equations.

TF is the final coordinate transformation matrix having NM rows
and NMR columns. TF expresses all of the node voltages as linear
combinations of the reduced set of tree voltages. TF = TC * TL.

TFT is the transpose of TF,

XF is a four-dimensional type E list representation of a matrix
which temporarily stores the partial transformations of the XS matrices.
XF = XS % TF.

XZ is a four-dimensional list representation of a matrix which
expresses the final tree branch voltage vector. XZ has +1 or -1
entries only.

INSTP is an input symbol table for the Pass 1 circuit parameters
and is represented as a four-dimensional type E list having +1 entries
only. The table contains all the descriptors in WLIST in addition to a

voltage source descriptor to initialize each capacitor voltage.

64

—_—m || Thpmme | e s T g W 0 W WS s iy ..

7. Method

The first pass of the Preprocessor operates on the connection

list only, and produces the linear differential and algebraic simula-

tion equations in matrix format. These equations are passed from

the first to the second pass stored on tape in a special list format.

The following series of steps describes the first pass operations.

a’
b.

Initialize DIMENSION, and COMMON required variables.
Set up scratch tapes, NTAPE1l, NTAPE2, and NTAPE3
and rewind each.

Set up the storage area, SPACE, to be available for list
structures (subroutine ADDLOC).

Write on the output tape, "CIRCUIT DESCRIPTION. "

Set the inductor element flag KIND to 1.

Read in connection list, remove punctuation and excess
characters, convert BCD to binary, and store a descriptor
at a time in the two-dimensional type D list, WLIST.

Set NM equal to the maximum node number.

Set NT to equal the total number of branch descriptors.
Write on output tape a copy of the original connection list
(subroutine GOBLE).

Write on output tape, "NUMBER OF NODES IS {(NM > "

Erase PLIST and FLIST.)

Reorder WLIST in INLGCV sequence and place the result
in FLIST. Maintain WLIST intact. Set KIND to 2 if in-
ductive descriptors appear in WLIST.

Reverse order of FLIST and place result in PLIST.
PLIST is then in VCGLNI sequence, while, within the
same element type, the order of WLIST is maintained.
Erase FLIST.

Choose a proper TAG tree from PLIST and place the re-
sult in XLLIST. Erase PLIST (subroutine TREE).
Reorder the elements of XLIST into VCGLNI sequence and
place the resultant list in FLIST, Count the number of

65

each element type in FLIST and store in NPT such that
NPT(NE) equals the number of type NE elements in FLIST.
Erase XLIST,

Form TC, the tree to node system change of basis matrix,
from FLIST such that VN = TC * VT. VN is the node
voltage vector and VT is the tree voltage vector (subroutine
COTRN).

Form TTR, the ideal transformer node voltage constraint
matrix, from WLIST such that TTR * VN = 0. Set NRR to
equal number of transformer constraint equations or the
number of rows in TTR (subroutine XFORM).

If NRR equals zero, there are ﬁo transformers in the cir-
cuit and the process continues at step o. If NRR is greater
than zero, there are transformers in the circuit and the
process must jump to step r.

Change the name of FLIST to VC, which is the name of the
final tree voltage vector.

Change the name of TC to TF, which is the name of the

final tree to node system change of basis matrix.

Set NMR, the final number of simulation equations, to equal
NM, the total number of nodes less 1. Proceed to step w.
Form TQ, the transformer tree voltage constraint matrix,
by TQ = TRR * TC (subroutine MULTS).

Solve TQ for a set of NRR dependent tree voltages in terms
of NMR = NM - NRR independent tree voltages by Jordan
elimination. Priority for dependence is greatest at the
bottom of the tree branch list, FLIST (subroutine BAKELM).
From TQ form TL, the matrix which transforms the final
independent set of tree voltages, VC, to the original list of
tree voltages, VT, such that VT = TL * VC. Form VC from
FLIST. Recalculate NPT(NE) to conform to the constituents
of VC. Calculate NMR, the final number of simulation equa-
tions, from NM-NRR (subroutine STRIK).

Calculate TF, the final tree to node system change of

basis matrix, from TF = TC * TL (subroutine MULTS).

66

W

aa.
bb.

CccC.

Erase TTR, TQ, FLIST, TC, TL.

The node system current equilibrium equation matrices
(CN, GN, LN, and IN) are formed for each element type
C, G, L, and I appearing in WLIST. Each matrix is
temporarily formed in four-dimensional type E list format
in XS and written onto NTAPE1 in the order given above.
Immediately following the I matrix, an END OF FILE

is written onto NTAPE] and NTAPEI is rewound (sub-
routine PARAM).

In sequential order, each of the node system current
equilibrium equation matrices, CN, GN, and LN is read
from NTAPEI1, temporarily stored in XS, and postmulti-
plied by the final tree to node system change of basis
matrix, TF. The result of each multiplication is tem-
porarily stored in XF and then written onto NTAPE2. This
performs the first half of the node to tree system change
of basis operation on the CN, GN, and LN matrices. The
operation is XF = XS * TF (subroutine MULTS plus others).
Transfer IN, the node system current source equilibrium
equations, directly from NTAPEIl to NTAPE2. Rewind
NTAPEIl and NTAPEZ2, Erase XS.

Transpose the matrix TF to TFT (subroutine TRANS).
Write TF onto NTAPE3., Erase TF.

In sequential order, each of the partially transformed
matrices, CN * TF, GN * TF, LN * TF, and IN is read
from NTAPEZ2 into XF and premultiplied by TFT. The
result of each multiplication is temporarily stored in XS
and written onto NTAPEl. Thus the following tree basis
eéiuilibrium current equation matrices are formed:
CT=TFT*CN* TF, GT = TFT *GN * TF, LT = TFT *
LN * TF, IT = TFT * IN (subroutine MULTS and others).
Erase XS and XF.

Write END OF FILE on NTAPE1 and rewind NTAPE! and
NTAPE2. Erase TFT and XZ.

67

dd.

ee.

ff.

gg-
hh.

ii.

i

kk.

11.

VC, a two-dimensional type D list, is transformed into 2
four-dimensional type E representation of a node pair voltage
vector, XZ. XZ has the following structure XZ(I, 1, NN, NP)
= Data. I is the index of the particular branch descriptor in
VC whose terminating nodes are NN and NP. NN and NP

are forced to conform to the order displayed by the corres-
ponding descriptor in WLIST rather than VC. If the node
order in VC is reversed to that in WLIST, Data is set to -1.
Otherwise Data is set to +1. If a descriptor if found in VC
which does not correspond to a descriptor in WLIST, a dump
is called and control is returned to the FORTRAN Monitor
System.

WLIST, a two-dimensional type D descriptor list, is trans-
formed into a four-dimensional type E list representation
of a descriptor list called INSTP. INSTP is stripped of all
transformer winding descriptors, and voltage source de-
scriptors are added to correspond to the initial condition
voltage across each capacitor. The data entry for each filled
position of INSTP is made according to INSTP(NE, 1, NN, NP)
= 1.

Erase WLIST.

Write INSTP onto NTAPE3 immediately following TF.

Write XZ onto NTAPE3 immediately following INSTP.

Write END OF FILE on NTAPE3 and rewind.

Erase INSTP and XZ.

Write on output tape the status of AVS, COUNT, and MAX
(subroutine STATUS).

Call in the second pass Main routine from tape (subroutine
CHIN).

8. Other Subroutines Used

ADDLOC, BAKELM, CHIN, COTRN, DUMP, ERASEA, ERASE,

EXIT, FREWND, GOBLE, MATFT, MATOT, MULTS, PARAM, PRPTG,

PRPTR, STASH, STATUS, STRIK, TRANS, TREE, UPDWN, XFORM.

68

9.

Using Subroutines

None.

69

CALL
Sysed

v

13 = NTA?EI}

19> NTAPERQ
1S <> Nfﬂ_{’__ﬁ__:s

y

KEWIrp _
NTAPE |
NMTAMEs |

PMTAPES

CALL APDLAC (sp,at‘z)/.s‘aao)
AddLac

N
\

AltocAaTe '

AVAILABLE
SPAcCe
(Avs)
!

chALL GohE(wixsT MM, wr)

—
KEAD To *\
ForRm .wus'r,

Fny WM wrj
T

PRIZMT

MAX NOSE
MimBEL

70

/—Me\ |
£

RASE }
\ fLrsT /

v

| S(~vFIX)

| |
Y ,

(MFIx)>NEL

Al

v

(oezsT) 3(KX)

| KD

<t

L .
PRPTR

GET NE, A,

MP NTRNNNTA

’
NF FRoM X /

y

(NPT(rEL) >
(wEIrx2) .

\/ .

\F &PT

FO/'/’I héw L((
(Fl[.»‘f) s T
N"NA/ ~MP,
/"f,\//,\///'(‘a

.
MDD
=
yeés

G !
@No g2 >®

Yes

yes

B
l NEL + - NEL

. |

i

V.
=12

C 71

PoOPLF fjfg/

PUSH Downwn
IS e PLIET
(F(/_sr PR

—

fro s
-/

T X_I&T prpg)
. s, et

,; | > NES I
e [‘“E"‘—3-‘
Iﬁ—‘—— _— e _?

v

e
¥

IOQ(NPVN&))}
Cx/,rs r)_y(x)l N

10 B~ F

[

GeT NEINN,
NP, NTRAN,
NAtT R NF
FRom X

Fodm FLIST
wITH NE,NN,
NPJ wrey,
Nﬁl'flo

V

(K77 (we L)))

(NMPILrEL))

:
CALL coTRM{FLIST TC, MM,

coRM TTR
From wilIsT

NES t/! DNES

(1e(2es7)> .
(TFE(TItsT)

(NM)-a (rlmg) .

9
!
V <AL mut 15/772’7c)7c711vzz‘/v,/n? ~m)

TTR x T¢ : l
>7& ;

/ \EResEA
ERASE
N OARRAY-LisT/
N TIR

s
A}

CALe BAKELM(TG, NRE, pMa))

\BAK _e,fr\
TRANS Fo M

MR cots,. oF
TQ '~70 Unir
\ ve€crons

e

. V Au (16,7¢,Fe157, v mpT, paa, MM amE)
/ \37R 1K\
KIrvd Te FRrom
TEANS For me p
TQ. Fravp
.. re.

EKRAasSE \

ARRRAY-CisT

g

/\ ELASE

| W

Cace muers(re T2, 7F wm, m_fq, ¥MmR)

/

K MuLTs |
TC » 74 o
>7rF

73

/ - \ELaseA’

 ERA S E
AXLAY-L15T
3 7¢

T

1 CALL rrgam((XS WIIST NTATE
_PARAM\

FoRm Nobp¢e

BASIS EQUATIEN,

WLIsy —>XS§

write XS
DNTAPLE,

]

\/

cace 7
AL mATET xS, NTATE)

.&_ Cact muer SRS TF XFE ymrm NoX)
S—
VLTS

XS % TF
> XF

-l
——

cpce maradr(xF nraree)

\A 7o T\

waire XF

SdNrArEl

\ELAseA
EfASE

ALLAY-Lis T
X F

€6 SEA
ERASE ¢
ALRAY-L1sT T
\ XS
N
210
VO
j: ’f z N T+ > I
N
AN .
yes
Y A maTFET{xs NTAPE))
\Q,q 7FT

£epp Nooc
BASrs EGi. FEoMm
NIAPrE!. FORMAT,
ST48m BY 177,

D XS

TA ¢ PAssS 1

(rz’i’

CAcL 71,4»/5(75 IFT,NI),NMR)

TRas S FOR M
TF., STASH
- TFT

 Ncace marer(rr N7pPES)
@ﬁrdr

wprrTre TF

DNTAPES

- \Eeasen

ERNnSE
ARRAY ~L 1S T
TF

i

N/* > ;7;/_;! (1))
(Wma&)dpee)),

(M2(3)), (M3(9)),
! = (wa(s)).

.
fg“\%

(8RS8 EQU. Flo
CNTAPE S For

£4ie mULrs

74

\MATFT

LEAD Mo de

STA48M By 2TYJC

.. KF

TFT KF x5 NME um wE|(2))

MUL‘YS \EgasEA.
FTx XF ERASE
ﬂllﬁ? CIsT
S xs

CAle maTdT (Xs NTAPLEI)

\a»vd? Flpseﬂ\
WweR)T7T€é XS nﬁcf
7ﬁ/7‘ﬁﬁ£; ' 4 RR w us

) Y
{ 2> 1

cALe mA757V(xF NTAPEL) No

L~

wprITE
EPF->
PIsPE]

LEWIMD
NTAFE ’,
NTAPE2

ELASC
AREAYLIST

FTFT

\ £ 245 £4\
" Etace)
ARLAL-LIST

X2 /
e

o

]
-

"

Ger NE MM
rP,NTE I,
MNTR ME
Feom x|}

S

TAG Fass 1

T41 X '

TS TN
PRETR
GerT IUEP’

A//Vr‘; /«/)’/” f/]lt/‘,’.";

MNTRF, NFP,

N\s7as A

STaAsH

S0
&

67

¥

]

yes f

=

Pante

wo !

|

XA NuLL

e L

-—Y_‘;rﬁ =4\

5745;4

X 2(1) I, &, w2):

=ZFTEM

X1

Pl
Us

Notl®

/’i TN
T (335} £ASE
A—“‘ N/sf THNSTP

[
l{w;ls) (x/)]

\
= N
NF’ NIEN, pMrIT
NE FRoM

_STAsA\
STAS ~
INSTF’(IJ 1, M09, MP)

.-‘j .

y
/ \3745H SH\
STASM
(Tost P(A/E) I)Nnjﬂ/,,\
__ =/ /

FRLORR

@4} VS —

3q0)g———— Jf

! ? ,vo;
y ~~~-»—»---«L\-@ X/ Mot i

A

~ 2

a7
lvrrre
JIHSTP~

\

twerz€ X2

TP MTARE S /

Pt |

U RITE ESF
CTRNTAFPER

fewenpy |77 TR
NMTIPE 3

L D\ﬂc:cﬁ/»c ‘s T

TAGC Pass

\ELAsEA
FLALE

TS rp

e

v
\é€as £a\

£ S £
PREAS L 151
X2

\S7370s
PLRIrT sr,4ru.»>
oF AVS ’

(cdopr 7 12 ,r/
—_— lv—,

.

CALL CHTIA
(cate-rm
FASS 3)°

C 77

C. Second Pass Writeup and Flow Chart

1. Program Desérigtion
2. Identification
a. Routine Label
TAG
b. Name

Preprocessor, Main program, Pass 2,
3. Function

The second pass of the Preprocessor takes the equations gen-
erated in the first pass, classifies them as linear or nonlinear, and
imbeds them in the proper places in a FORTRAN simulation program.
To this program it adds all nonlinear relationships and the output and
control scquence specified in the part of the TAG Description Deck
which follows the conncction list. This program is written out on the
FORTRAN System print and punch tapes. Itis immediately compiled
by the FORTRAN Compiler and may be immediately executed if desired.

4. Programming System

FORTRAN II

5. Usage

a. Calling Sequence

The precompiled binary form of the second pass main pro-
gram is loaded from tape under control of the FORTRAN Monitor Sys-

tem through a chaining operation.

b. Entry Conditions

Variables preset in COMMON by Pass 1.
KIND = The inductor flag; equals 1 if there are no inductors
in the circuit and 2 if there are inductors in the

circuit

78

PP 4 WhR Wy $wWmy U W W Uy vy U P wmmm8" 2 w—m—mm"

NM = The total number of circuit nodes less 1.

NMR = The total number of simulation equations and
therefore the total number of independent voltage
variables

NPT = The tree voltage vector partition array which stores
the number of each type of element that appears in
the tree. NPT(NE) is equal to the number of NE
type elements in the tree.

SPACE = The memory space available for list structures

Matrices generated in the first pass are stored on scratch tape.

Scratch tape, NTAPEIl, contains the final cut-set equationmatrices
for the capacitive, resistive, inductive, and current source topologies
stored in that order in a list-type format.

Scratch tape, NTAPE2, contains the partially transformed node
basis equation matrices for the capacitive, resistive, inductive, and
current source topologies stored in that order in a list-type format.
Scratch tape, NTAPE3, contains, in order, the final tree voltage to
node voltage basis transformation matrix, TF; the input symbol table
for Pass 1 with the names of each branch element (except transformer
elements) plus the initial conditions voltages for all capacitors; and the
final tree voltage vector corresponding to VC.

SWSW is a sense switch which may be set to delete the second pass.

c. Exit Conditions

The FORTRAN code for the TAG simulation program which
was generated by the second pass is output on the FORTRAN System
print tape and punch tape. Control is then returned to the FORTRAN
Monitor System in such a way as to allow immediate compilation and

execution of the generated program.

d. Error Exits

(1) If sense switch, SWSW, is less than or equal to 0,
exit is made at the beginning of the second pass.

(2) If dependent variable stop functions are included in a
DC steady-state problem, the message "DEPENDENT VARIABLE STATE-
MENTS HAVE NO MEANING IN A DC PROBLEM!' is printed and an exit

is made. 79

Definition of Identifiers

NTAPE1
NTAPE2
NTAPE3
INTAPE
NFRM
IEQ
EQST
EQSTI1
EQSTZ2
IBLNK
ICHC
FRM
ICMA
WRT
IXFR
IHFR
IFXED
IFLED
RESTZ2

REST
INLST

TC
KELST(8)

IC1
ISTOP
INLIN
RSUT
KE
IPR
RIN

Three scratch tapes holding circuit matrices gen-

erated by Pass 1.

Holds tape number of input tape. Holds next
number to be assigned to FORMAT statements
BCD equals sign

Temp. lists used to hold parts of equation

statements

BCD blank

BCD "C"

BCD list "FORMAT (IH"

BCD comma

BCD list "WRITE OUTPUT TAPE 6,"

BCD "X"

BCD "H"

BCD list '"'=,15)"

BCD list "=,E16.8)"

BCD list "FT, FSTEP, FEPSL, FEPSL1, FEPSLZ,
FEPSL3, LDBGOl, LMAX, LTYPE, FOUT, FEBL4"
List used for holding symbols

List used for holding symbols

Matrix list used to hold matrices input from tape
Holds for each I, the number of statements of class
KE = 1.

Flag to indicate comment card

Statement number of first executable input statement.
Nonlinear flag

Used to hold the contents of RIN for examination
Statement-type indicator

Print switch

Holds list input as a card image

80

T T W U U U W O O S T s s e

IS

1C

AA
KDUMY
LSTMK
WRT
ITEMX
ITEM
NHC
ELE2
NCHL
IFX
KINDSV
KDIF
IL

KEL

Method

Holds statement number of card input
Continuation-card indicator

Dummy variable

Dummy variable

List holding dep. stop function names

Holds the contents of RIN for output

Holds next link of RIN

Holds next item of RIN

Used for counting number of characters in a statement
Temp. list

Holds number of characters in a FORMAT line.
BCD temporary storage

Holds saved value of KIND

Used to sum the matrix dimensions LNV, LNC, etc.

Temporary index for DO-loops

(Paragraph numbers indicate approximate statement locations)

400,

603,

Initialize

Read statements from input program. Each statement is
sent to SUBST ror variable substitutions. SUBST will ex-
amine for nonlinearities, and if any exist will set INLIN = 1.
If any dependent-stop-function variables exist, they will be
collected in list LSTMK. The statement will be classified
as to type, and KE set to this type number. Each revised
statement is written out on INTAPE along with its associ-
ated KE-value. If KE = 2 and the statement is nonlinear
or if KE> 2 and the statement is not nonlinear, then a
"WRITE OUTPUT TAPE'" statement is set up incorporating
the variable on the left side of the statement.

Read NTAPE1 into XS and mark the items with flags from
XFG, as set by subroutine SUBST. (The flag indicates in
which one of four sets the variable is to be output.). After
XS has been marked, it is written onto NTAPEZ2,

81

604.

605.

608.

609.
610.

650.

658.

Output ''DIMENSION'' statements
Output: LNV = NPT(1)

LNC = NPT(2)
LNG = NPT(3)
LNL = NPT(4)

Read NTAPE3 into INSTP.
If this is a transient problem, output:
FSTEP = 1.E-11

FEPSL2 = 5.E-6
FEPSL3 = 5.E-4
FEPSL4 = 1.E-16
LTYPE = 4

If this is a nonlinear DC problem, output:
FEPSL = 5.E-6

FEPSLI = 5.E-6
LDBGOI = 51
LMAX =50

Output: GO TO 6000
Read the statements from INTAPE and write out those
which have KE = 0. If the statement is ''INPUT, "' output
the ""CALL INPUT" statement. If the statement is ''"ZERO, "'
output the ""CALL ZEROX'' statements.
Output the '"CALL ZEROX'' statements with statement
number 6000.
Output the '"CALL INPUT'' statement.
output: 6100 CONTINUE
LALGFT =1
If transient problem, output:
LINT =0
LCNT =1
FTL = FT
FTO = FT
FHC = FSTEP
Read NTAPE3 into XS and output all statements of the form
FV- . =X*SV. -

82

Ty $z_y 9w Wy ey

660.

680.

685.

788.

789.

722.

Read INTAPE, and write out all statements which have
KE = 3,
Read NTAPEZ into XS, and for each variable flagged as
= 0, output:
FC..=X.SC.. f{ile 1
Read successive files of NTAPE2 and similarly output:
FG..=X*SG.. file 2
FL..=X*%SL-. file 3

FI ..=X*SI-- file 4
Output "CALL INV" statements through INVST.
Output:

CALL RSTOP (FSTOP, FT, FHC)
If there are dependent stop variables, output:

6200 IF (LCNT-3) 6202, 6201, 6395 and go to 788.
If this is a transient problem, output:

6200 IF (LCNT-3) 6202, 6201, 6201 and go to 788.
Else output:

IF(LALGFT-1) 6202, 6202, 6200

6200 CONTINUE

6201 CALL STOP (FOUT, LINT)

6202 CONTINUE

and go to 789.
Output:
6201 CALL STOP (FOUT, LINT)
6202 CONTINUE

Read the statements on INTAPE and output all statements

which have KE = 4. Then output all which have KE = 5.
Read NTAPEZ2 into XS, and for flag = 1, and each file,
output statements of form: '

FC-++= X*SC.. file 1

FG..= X*SG.. file 2

FL..= X*SL.. file 3

FI.. = X*SI.. f{ile 4

1

83

T T AT W W W U W Ey e T e e e

838.

7840,

7852,

PRECEDING PAGE BLANK NOT FILMED

Output "CALL INV'" statements through INVST. If this is
a DC problem and there exist any dependent-STOP-vari-
ables, write out
"DEPENDENT VARIABLE STATEMENTS HAVE NO

MEANING IN A DC PROBLEM, " and then exit. Else
if there are no dependent stop functions and this is a DC
problem, go to 840.
Output:

GO TO (6395,6390), LALGFT
If there are no dependent stop functions, go to 7860, else
output:

6390 IF (LINT) 6391,6391,6393

6391 FSTOP = FSTOP - FTL

CALL ROUT(0)

6393 FSTOP = FSTOP - FT GO TO 6425

6395 LEOS =1

6400 CONTINUE

LCNT = LCNT - 3

Read statements from INTAPE and output those with KE = 8
Read NTAPE2, and for variables with flag = 2, output
the statements:

FC..=X*8C.. for file 1

FG- - =X*5G. . file 2

FL..=X*SL- - file 3

FI .- =X*5I.. file 4
Output the "CALL INV" statements.
Output:

GO TO (6422, 6420), LALGFT
6;120 IF (LEOS) 6421,6421,6422
6421 CALL ROUT(0)
6422 FSTOP = 0.
6425 FT1
FT2

85

7860.

6300

FHB(l) = FSTEP

FHB(2) = 1.E-5

FHB(3) = FEPSL4

FHB(4) = .5

FHB(5) = FEPSL2

FHB(6) = FEPSL3

LNH(1) = contents of KDIF
LNH(2) = LNH(1)

LNH(5) = 5

CALL FMARK(**--
FT=FTL + FT1

LEOS =0

IF (LCNT -2) 6300, 6400, c(ISTOP)
CONTINUE

Go to 840.

Output:

6390
6392

6395

IF (LINT) 6392,6392,6395
FSTOP = FSTOP - FTL
CALL ROUT(0)

FSTOP = FSTOP - FT
FTI1 = 0.

FT2 =0,

FTL =FT

FHB(1l) = FSTEP

FHB(2) = 1.E-5

FHB(3) = FEPSL4
FHB(4) = .5

FHB(5) = FEPSL2
FHB(6) = FEPSL3
LNH(1) = contents of KDIF
LNH(2) = LNH(2)

LNH(5) = 5

CALL FMARK (---)

FT =FTL + FT1

86

840,

- 823,

824,

825,

827.

IF (LCNT-2) 6300, 6300, c(ISTOP)
6300 CONTINUE
If nonlinear solution, output:
DIMENSION FVR, FVP, FPT
LCNV =0

6090 CALL SHFTO (FVP, FV31l, FV4l, LNG, LNL)

6310 CONTINUE

CALL SHFIN (FVP, FV3l, FV41l, LLNG, LNL)
Read INTAPE and output all statements which have KE = 6., Read
NTAPEZ into XS and output statements for variables with flag = 3.

FC..= X*S8C-.. file 1
FG. . .=X*5G" * file 2
FL..=X*SL- - file 3
FI..=X*SI.. file 4

Output "CALL INV" statements.
Output matrix manipulations through EQFS41. If LNL = 0,
go to 827.
Output:
FDLT =FT - FTO
IF (FDLT) 7007, 7007,7005
If LNL > 1, go to 825,
Output:
7005 FV41 = (FS41 - FSO41)/FDLT
7007 FSO41 = FS41
Go to 827.
Output:
7005 DO 7006 L. = 1, LNL
7006 FV41(L) = (FS41(L) - FSO41(L))/FDLT
7007 DO 7008 LL = 1, LNL
7008 FSO41(L) = FS41(L)
Output '""CAL INV'' statements.
Output matrix manipulations through EQF V31,
If not nonlinear, output:
LALGFT = 2
Then go to 835.
87

821.

835.

7837.

831.

Else output:
Go to (7005, 7010), LALGFT
7005 LALGFT = 2
Go to 6090
7010 CALL SHFDI (FVR,FV31,FV41,FVP, LNG, LNL)
IF (LCNV-1) 7015, 7020, 6000
7015 CALL ROOT (FVR,FVP,FPT,FEPSL,FEPSLI,
LMAX,LNG + LNL, LCNV, LDBGO1)
Go to 6310
If this is not a transient problem, go to 850. If not non-
linear, go to 835, else continue.
Output:
7020 CONTINUE
If LNV = 0 or LNC = 0, Go to 837, Else continue.
If LNL = 0, output:
FDLT = FT - FTO
Output:
IF (FDLT) 7030,7030, 7025
If LNV < 1, output:
7025 FVDIl
7030 FVQll
and go to 7837.

1l

(FV11 - FVOLl1)/FDLT
FVI1l

H

Else output:
7025 DO 7026 L =1,LNV
7026 FVDI11l(L) = (FV11(L) - FVO011(L))/FDLT
7030 DO 7031 L =1, LNV
7031 FVOIl1l(L) = FVI11(L)
Output:
FTO=FT
Output ""CALL INV" statements.
Output matrix equations through EQFV2l.
If (ISIS) €1 and KIND = 1, go to 886, else continue.
If LNV =<1, output:
FSD11 = FVl1l

88

882.

883.

886.

850.

870.

Else output:
DO 7040 L = 1, LNV
FSDI11(L) = FV11(L)
If LNC =1, output:
FSD21 = FVv2l
Else output:
DO 7042 L = 1, LNC
7042 FSD21(L) = FV21(L)
If LNG < 1, output:
FSD31 = FV3l
Else output:
DO 7014 L. = 1, LNG
7044 FSD31(L) = FV31(L)
Output: 4
CALL ROUT(0)
and go to 870.
Output:
7020 FT = FSTOP
GO TO1
where I is the contents of ISTOP.
Output:
END(1,0,0,0,0,0,1,0,0,0,0,0,0,0,0)
Erase all lists, write end-of-files on output tape, and

terminate,

89

TAG PASS IL
v

12> (NTAPET)
14> (NTAPE?)
15-> (NTAPE3)

{

REWIND TAPE 16
3> (INTAPE)
REVV/IND (INTAPE)

7999 -> (NF RM)

O—(EasT)
0 > (EQAST 1)
O > (ERsT 2)

PUT BLANCH
CHARALTER
IN ITBLNK

PUT \”pmwa‘r
(IH"IN FEM

PUT 7y
M T.CA4

, SYABL -
PLUT T "weErTE
CUTPIT TAVE
byt 1t bt

j el ":f’)
‘N IFXED

PUT "= Eib.8)"
/N TFIED

PUSe (20T 2,7,
INTO KEST

)

Y .
\zorm

ABSGE# (PEST)
INTO IMEST //

/

\A:Arpf‘

FEAD NTAPE S |
INTO TC

;

FERSE KELLT
AV RAY

91

XE3 (1) THRO 6K
JF8(T)

N->(1C)
! > ‘Taow)
O-r(1sT0P)

G2(INLIN,
{—> (1319)

{ > (KE)
-1 (1rR)

READ CARD
INTO TN

FlTE ouT ezr,v\

ON INTAPE

T

N
QQ
Q

-
7/

T AAESSAGE!
THE £RoVE
f"WT!MEN*'
trc, e N

chnﬂ

SugsT

MODIEY EQuUA.
N RIN

15
(rssw)=1

93

FOPY

\ UP2YY

P (gsuT
AND PUSH

WRITE (,(’_",V)
ON THiAPE

N\

)

INTE B /

DRYNS
poPYP RSUT
AND PUSH

INTC RIMN

SPUS PCH \

OUTFUT (211V) \

INTO INTAPE

e
950)

(/VF,C’,H) */
= (VFeM)

oS

FArve WRiTE
MO FUsH
INTO RITA

R

\ 0L

CONVERT
NFERM 70 EED
AND pPySH

—t oA)
FPycH 204

\ £2 P
Pur (TEM

(RSUT) mvTO
ITEMX

PopUP RSuUT
INTO TTEM

OUTPUT (eIN)
INTO INTAPE

Poryr Cean
AVD pUSH
WTe RIN

PyusH r-xmmr-
LOATROL
YT BIN

INTD PIN

—

95

PysH
COMMA INTD

RIN

! = (nve Ll_\)
(EdS_T) -?(CFZI;;;)

LINK [ELE 2
> (Lee2) /
/ .

s0 - (NCH)
—> (NCNL>

CQNVERT
NCHL T¢ BCD
AND PUSH
INTY RIN

PUSH COMMA
NTD PIN

CANUVERT
NCH TO BOL
ALD FUSH
INTO RITN

PrsH !
INTO BLA

= e€an?”
AND PUT AT
HEAD ~F
o1 M

96

INTO FPIN

PusH (TEX Ep)
NTD EIA/

(NTATE

READ nrAPEY?
INTO XS; wrire]
XS on MTAREZ

oUTPUT RSUT
on 70 NTAPE)

WeiTE £gF
ON INTAPE §
REW/ND /ATAPE

PRINT "THERE

WAS v : (Ts18) -
STATEMENT

N
AUMBER (&%)

97

WRITE guT
DIMENSION
STATEMEN T,

OUTPUT !
LAV =NPT()

oUTPUT ;
LA = /VPT(z)

oyrpPuT
LNG =nPT(3)

ourPuT
LNL=NPT (4)

IMLIST

READ
NMTAPE 3
INTO INSTP

98

(NPT‘(Z)) —>
(KDTF)
18
()l s
o
Wo

=

(KDIF)+ wPT
(1)) ¢ mPT (2) +
(NPT (3)) —>
(KDIF)

bos v

PUTPLT :
FSTEP=1.E -1

fuorpur.
FEPSLZ S.£ -4

gurpur:
FEPSL3=5.E -4

99

LbBGO | = &5/

{67

FEANCH
EN (KED)

READ INTAPE™ RIN = OTHER

INTE BTN

9NG NPT,
WrITE 0T
bl re kgt X
CTATEMEN

WRITE oUT
rz N

SYMEFLS Frgm
IMSTR, Ay LsT

100

&

\/

|
T

REWIND
INTAPE

2ERY X
JuTPuT 2455
~rr
CALL ZETIX
STATERIEII TS

oUTPUT
CALL INPUVT

STMTS.

guTPIT
L1000 (ENTINY

=

V'

(KivDg v
—> (K1/D)

TAT :
gurrPuT
FTlL=FT

{

STAT
CUTFUT™ B
Frd=FT >

¥

RZAD NTAPE 3
INTE X§ AMD

SUTPUT FV.=
XSV,
STATE MENTY
REWIND NTAPE3
LS PCHE
LurPuT
RIN
7
214 - ’
2afe)
| (KeLsT(xe)) -1
| > (KetsT (k&)
‘l
i Mo _
YeS

READ FEFAN
INTAPE INTY
RIN

102

- -
T ST T GEE G S T = ==

REWIND INTAPE
0> (IEN)

READ MTAPEZ
INT XS AnD
JuUrPUT,

[7RTEY € TAY

READ pTAPE 2
INTZ X8 ArD
PUTPUT:

FI' o= X' SI:

REW/ND MTAFE 2

103

quTPUT:
cALL INV (ENC)
CALL INV(ENG)
ALL INV (EAiL)

CHLL RSTE™
(F8-8F, E7,
FHC)

gurPyr: IF
(LALGFT-1)

6202 6202,
6200

pUTPUT
6200 C(PLTINVE

guTPLT ;
€201 LRLL STHF
(FOLT; LINT)

PUTPUT : 6200
Ie (Lc,vr-a)
6202,6201,
201

JUTPUT: b200
IF (Lc/vr-a)

6202, 201,
6395

guTPyT:
t20) ChLL STYP
(FAUT,LINT)

gUrreT:
©202 AN LE

104

Fi5
787

4 > (kez)

"“”‘D’%"/'

\-—* ERASE z

A lkeesry =

(KSLST((;’)) -

.._j/

- (I—:/v)

K’:V.//‘\/D IATAPE]

READ yi#pz 2
INTS XS AnD
ZLTPUT

FCor=X-SCo,s

v

I\ Syarce \
READ wTAPE 2
,/bl',j XS AVD
LvrouT

FG. =S5
R
S‘//‘/ vu,;

/«?EAD N”TAP:..
INTZ XS AND
SLTEUT

Flonz=X 'S0

R:—'\D /‘\/ *\r:
INTE XS AND
FUTFUT
Efv =Y 8T.

_ ¥
REWIND NTAPI]
Z > (P‘L)

Y STIWTS

curPuT
"7-* (uqu b2 9_95

Ay,; 37347'[‘ o LALGET

NE A EAING TA A

D¢, Fztzr oA

Jurzer
250 ConTvLE

SureyT !
OJ/J F/ Y 7—\
’/, o’*]l 2

,
PoTREUT
AT e -
LT =Ll VTY

106

(KesT(cg)) -/

> (xsL5T(E))

107

7590

READ INTAF: 2
INTY XS ArD

INTY XS AVD
gt T
F& e =¥ Shy

SvMcED
READ ATAPER
INTD 15 AAD
LUTRUT

Fru=XsL v

QEAD NTAPE 2.
INTO X5 AsD
ourTeuT

FI..zY-SI-

¥

R&ANND
NTAPE Z

2> (L)

e TF (6422,
b2 D) LALGFT

guTFuT
6420 IF/2005)
&421, 6721,

£3:2

\ sraT
Zorpur
L4 CALL

#8uT (o)

/

\sar
gursuT
6422 28TOP =

(IL)+/
-> (1)

108

gurpur
&925 Fri=

gurpur
FHB(3)=
FEPSL4

pUTRPUT
FHE (o) =
FEPSL R

F".

symee”

70 Bcp AnD
Pusw 7v/758
EESI

-

109

/ \pposr\
GUrFUT [chLL
FMARK wirItH
SYMBoLS FRem
LSTMk

GurrPUT
FT=FTL+FTI

bureuT
LEﬂS =0

REST: TE (1enT,
~2) 6325, 640

COMVERT

ISTPP 70 BCD
AND PUSH
INTY BT

oUTAUT !
£390 IF(cINT)
6392,6392,

R

SurPuT
639> FSTPP=
FSTP-FTL

pUTPUT
caLL
RFUT (D)

FurimuT
&5 rsTies
TSP

gurruT
Frio = FT"

PPN —

110

furpuT
FHB(1)=

OuT:?u'?‘.
F)‘/S {é) =
FEPSLS

PUSH zuTy
RZST .

LAMH () =

T T B O .
e W W .

CENVERT
KOIF T¢ BCD
AND PUT TN
REST

gurpuT
FTsFTL +
ETI

SympgL
PusH InmT g
ResT rr
(Len-2)
6300. 1300,

c@nveERT
I38ToP 7D BCL
AND FuT 1N

pureT
keST

gureuT
6300,
COVTINVE

FuTPUT
DIMENSIFN
FVR, FVP FPT

guTPUT

goreT
609c caLL
SHFETE £10,

/

/
/ @uUTPCT
\ #2108
\awf: Aot

\

3
aTwein,
‘e

112

g w Uy = W' ==

T ——— b - - - -

/
READ cpep
FROM ZvTAPE
NP RIv

quTPUT
Rrn

(Ke(sT (cx)) -/
-> ((EL\‘T\ [

)

113~

READ NMTAPE 2
AND AT LT

FCXogC .

READ ATAPE?
AND guvrPUT
FG“:—)(06,

RUAD MTAPE 2
AND PUT PLT
FL.o=X-QL

FEAD ATAPE ;
AND &t o
Fre.=x-gz"

REWIND
MTAPE 2.

G T
chLL TNV
STAITT

114

dOTELT
EVLT = FT—

f?’ﬂ

ey anfiems $— ok

QUT PUT
7005 O 700l
= 5 eay

QUTPUT
7008 FS 54

7007 FEL7l =
5

115

QuTPLUT
G@ 73 (7205 72:12)
LALBFT

durruT
C¢ 7TE 6o

durPuT
y= (LCN'/-/)
7015, 7020,
600_‘_:3

v
\ STAT
CTPUT

7015 CALL
REFrETC.

cuTPUT
GE 74
&30

116

MPT(1) OF NO

NPT (2)

QUTPLT
ZF(FDLT)
T, 703,
71025

NO

702/

ouTELT
7026 FV O/
L) =77,

QTR
7020 LG

L=hIN Y/

P o
7031 Fvay
(1)<ryi (&)

dbw L
7030 FV@Pr =
F Vv

2OIC FIDII=
£TC.

117

BRANCH
oN (NPT (1)

SUTPUT
cALL INV
eTmTe

PUTPUT
Fspin = Fyvil

704D FSDI
(L) = Fuil(L)

118

BRANCH ﬁp/
(nPT ()

21

gorPur
FSD2l =FV2i

durPuT
Jo42. FSD2 1
Lj=Fv2i(L)

BRANCH
on (WPT (3)

PUTPT
7044 FSD3I(L)
SFV3IY)

119

durPuT
CRLL. ROUT

(o)

sUTPUT
7020 FT=
FSTEP

PUSH INTY
REST !

cgove PT ISTY
7P BCD AND
T IV PEST

120

T T e U S e e W o B

S oUTPLT
\ FAMD ///0, ////‘

\

————

[\ ERASE.
S INLST rPUT
RIN RSUT
EQST xs(7)

Erdcp

/XS."-.) x<(s)
¥Ysfz) Xz //'
('_7) I STF

\Eraras

¢ PRIVT \

\ AVS wFO. -

[_______ 7

WEITE 3 EoF
ON TAPE 16

FINISH

121

T .4 —— T Wy T Wy (___J - o e -y v . Ty L

PRECEDING PAGE BLANK NOT FILMED.

V. TAG EXECUTION PROGRAM

A, General Description
1. Function

The function of the Execution Program is to compute the net-
work simulation and generate the performance data as specified by the
user in the TAG Description Deck. The circuit simulation program gen-
erated in FORTRAN by the Preprocessor constitutes the main instruc-
tion sequence of the Execution Program. The remainder of the program
is in the form of precoded and precompiled subroutines that provide the
actual computational algorithms used.

The Execution Program reads in the parameter data listed in the
Data Deck that pertains to the particular network under investigation.
These parameter values are then substituted into the proper matrix co-
efficient expressions and special function statements. The matrices
and special functions are used in evaluating the network simulation
equations, As the simulation progresses, the network variables spec-
ified for output by the user are automatically printed and/or plotted at
the specified intervals. The process continues until the specified simu-
lation for each set of input data has been generated. The job then ter-
minates, but the Execution Program may be saved for the purpose of
creating further simulations of the particular topology for which the

solution program was generated.

2, Organization

The general organization of the Execution Program is illus-
trated in Exhibit 17.

B. Detailed Description

The following is a detailed description of the steps performed by

the Execution Program.

123 -

Initialize
Program

1

Input Next Exit on
Parameter
Data List No More Data

> Return to
FMS System

1*

Select Next
Output State
To Be Printed

!

Generate Simu-~
lation to Next
Output State

'

Print and Plot
Output Variables|

Is
Simulation
Complete

Yes

EXHIBIT 17 - GENERAL ORGANIZATION OF THE TAG
EXECUTION PROGRAM

124

T ey e e e W YRS T Wy U Wwm Ui S S W O w-wmwmw ..

Program Initialization

a. DIMENSION all computational matrices.
b. DIMENSION and COMMON variables as required by

FMARK, the transient solution integration routine.

C. Assign values to the matrix partition constants.

d. If required, initialize all transient analysis control
constants,

e. If required, initialize all nonlinear DC analysis con-

trol constants.

f. Transfer to step 3. a.

g. DIMENSION all arrays defined by the user and COMMON

all variables as specified by the user.

Output Sequence and Termination Control

a. Print out all variables as specified by the user and
perform all FORTRAN instructions included by the
user as part of the output sequence. Plot output
variables as specified by the user.

b. Determine whether the current simulation is complete,
If it is complete, transfer to step 3.a, If it is not

complete, transfer to step 4.b.

Establishing Initial Values for Computational Arrays

a. Set all computational arrays to zero.

b. Input all required parameter values and control con-
stants from the next data list. If there is no next
data list, the job is terminated.

c. Initialize certain integration control variables.

d. Initialize the computational voltage vector. This will
set capacitor voltages to initial condition values.

e. Evaluate all special function statements whose values

are constant,

f. Evaluate all constant valued matrix coefficients.
g. Where required, invert the matrices completed by
step 3.f.

125

Select Next Point for Output Sequence Execution

Qe

b'

For first pass, set output time stop to zero to ensure

the output of initial condition state.

For the initial pass and all subsequent dependent vari-
able stops, transfer is immediately made to step 5.a.

For all time stops, the next time stop is selected and

the present time stop is examined to determine whether

the integrator will require resetting before the simu-

lation is continued.

Evaluation of All Equation Coefficients That Are Discontinu-

ous in Time

a.

Evaluate all special function statements whose values
change at time stops only (UTF and ULF).

Evaluate all matrix coefficients whose values are de-
pendent only on the functions evaluated in step 5.a.
Where required, invert the matrices completed by
step 5.b.

Control the Reentry Into FMARK From Print Stops, Time

Stops, and Dependent Stops (Transient Only)

Update the local time-stop available for FMARK.
Reentry into FMARK from a print stop is accom-
plished without resetting the integrator.

Reentry into FMARK from a time stop is accom-
plished by resetting the integrator from the top
without evaluating the end-of-step box.

Reentry into FMARK from a dependent stop is ac-
complished by resetting the integrator from the top
after evaluating the dependent stop variables in the

end-of-step box.

End-of-Step Box for FMARK Integration Routine (Transient

Only)

a.
b.

Evaluate all special dependent stop functions.

Evaluate all matrix coefficients that change value at

dependent variable stops only.

126

e e T ST Uy U U U W WS W s e W e wee

c. Where required, invert the matrices completed by

step 7.b.

8. Set Up Initial_ and Reset Entry for FMARK (Transient Only)

a. Reset local time and stop time variable to zero.

b. Reset FMARK control variables to zero.

c. CALL FMARK. The integration routine, FMARK,
is entered through the top only for initialization or

resetting after a time or dependent stop.

9. FMARK Integration and Exit Control (Transient Only)

The rest of the program is primarily concerned with calcu-
lating the derivatives required by FMARK to determine all the voltages
in the network at each step in simulated time. This part of the program
is therefore called the derivative box. For the Adams-Moulton inte-
gration mode, the derivatives must be evaluated twice for each time
step; for the Runge-Kutta mode the derivatives must be evaluated four
times per step. After each evaluation, FMARK is entered through a
special input that does not reset the integrator. At the end of each in-
tegration step, the end-of-step box, step 7, is completely evaluated
and FMARK is reentered again without being reset.

When a print stop, a time stop, or a dependent stop occurs, exit
is made from the internal integration loop to the beginning of the output
sequence, step 2.a. If the simulation is continued, FMARK is reset
upon reentry from a time stop or a dependent stop and is not reset upon

reentry from a print stop.

10. Evaluation of Algebraic Portion of Simulation Equations

a. If the problem contains a nonlinear DC steady-state
portion, the extra computational arrays required by
the Newton-Raphson process are dimensioned and
loaded with the required data.

b. Evaluate all special functions whose values change
continuously with time or network state.

C. Evaluate all matrix coefficients whose values depend

on the functions evaluated in step 10.b,

127

11,

12,

Where required, invert the matrices completed by

step 10.c.

Evaluate the terminal flux of all all-inductance cut-sets.
Evaluate the voltage of all all-inductance cut-sets by
numerically differentiating their terminal flux.
Evaluate terminal voltage of all all-conductance cut-
sets and all-conductance-inductance cut-sets.

If the algebraic equations are nonlinear, setup Newton-
Raphson subroutines for evaluating the residual vector
and the next solution estimate. Establish the iteration
logic to return to step 10.a, if the solution is not com-
plete, and to continue on if the solution is complete.

If the circuit is purely DC, a correct solution will
route the process to the beginning of the Output Se-
quence, step 2.a; otherwise the process will be

routed to step 11l.a.

Evaluation of First-Order Derivatives for Capacitive Cut-

Set Voltages and All Cut-Set Fluxes If Required

Q.

Evaluate the first derivative of every voltage source
by numerical differentiation.

Evaluate the first derivatives of every capacitive tree
branch voltage.

Evaluate the first derivative of every tree branch flux.
These are the tree branch voltages.

Return to FMARK through the entry that does not re-

set the integration process.

END Program

128

L s L o o aaaan U VNN Wi W T h O T @ s T =W

C.

30

8000

8001

8002

8003

60
61

65
62

Example Execution Program

TRANSIENT ANALYSIS GENERATOR {We.JoTHOMAS-JPL)

DIMUNSTUN FHBUA)Y JLNHIO) yFMIS(104)

CUMMON FMISoFVOZL o SULLyFSURL oFSUBL o FVZL4FSLLaFS2LeFS319FT24FTL1 LN
LHyFHIB

DIMENSTUN FCMOMY (2B174)

COMMCN FCMUMY

LNV=1

LNC=1

LNG=1

LNL=C

FSTEP=1.t~-11

FEPSLZ=5.E~6

FEPSL3=5.E-4

FEPSL4~ L.E-16

LTYPE=4

GO Tu «000

DIMINSTUN BEL{LOC) s LF2(100) 4BF3(10u)B8F4(100) ,LFESLI100),8F6(100)
TIME=F]

WRITL OUTPUT TAPE 648000, TIME

FURMAT (1HOy 45X, SHT IME=,E16.8)

VIN=#FV11 '

WRITE OUTPUT TAPL 6,8001,VIN

FORMAT (lH ,46X44HVIN=,F16.8)

VOUT=+t v21

WRITE GUTPUT TAPL 6,80024VOUT

FORMAL (1H 445X,5HV0UT=4L16.08)

CIN=(~-i-v3l)asGnlue

WRITE DUTPUL TAPE 64,BUU3,CIN

FURKMAT (1H 446X,4HCIN=,E16.8)

K=1

IFIFT-UCLNE)6Y,60 460

CALL SLUPLUFT VINGUBF Ly LOO ke IHVIN VULTS y4Hi1 IME)

CALL SLUPE(FT VOUT 8F24100,K, LOHVOUT VULTS,4HTINL)

CALL SULUPEIFTC1NsBF34 100K sBHLIN AMPS 4HT I ME)

LF(M) e 965064

TF{FI -1 UNEYTMAL) O Jadg02

CONT INGE

CALL 11PUT (6HST0203,510205, CHSLOZ203,SLU20 3, 6HSLUUUI,5GUU03,,6HSGUL
lOZ,thth.bHSCLUUS,SLOUO),&HSVUOO5.Sv0003.uHSVULUl,bVUUUL,AHFI.&l.
ZOHESTE Y G FSTUP yHEEPSL o b EPSL g OHFLPSL L FEPSL] y&HELZPSE 2, FLPSLY , 6H) EPS
3L3.[!PHL3.0HFEP5L4,ILP5L4,4HFUUI'FUUI,hHLUhuOl'LDU}UI.QHLMAX.LMAx,
GHHLIYEY yLTYPE " HLLUNT yLLCNT p 6HLALGE T yLALGF 1 3 SHSTUP L, STUP L sHVST Ok,
SVSTPP.-hVthH.VhIbH,«hVLUN,VLOH.3HVIH.VIH.1HV)L,V1[,$HVIN.VIN.%HVO

'OUT.VUUI.%HLFZ.Brz.)hufj,bfd.5HHF4'hFQ.THhFU,Hth)HIFb.LFé,JHUFI.UF

64

b3
6U00

TLyahUC 0 yBOUME g 1K 3K g BHUINCIMg LHM gy My 4HTMAG 3 IMAG, OHY S LEND)
CALL SLUPE(FTaVINJUEA3 LO0 Ky IHVIN VOLTS y4HTIME)
CALL SCUPELEFT ¢VUUT ¢ EFS 3 100Ky LOHVUUT VULYS ,4HTIME)
CALL SLUPELFT LI bEGy LO04Ke BHC AN AMPS,4HT [ME)
LF{k=2)6200,6000G46000
CALL ZUtHUX(FSLLs1)

CALL 21 FUK(FSZ21,1)
CALL 2V WOX(FS3141)
CALL LFKOX(HV31,y1)
CALL £ RUX(FEG3541)
CALL 2V wUXEFT31,1)
CALL ZEROX(rG3),1)

129

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
FT=(
CALL

6100 CUNI

LEROX(FVLL,1)
ILKOX(FG3Z,41)
Lt ROX{EV21,41)
Zi- RUX(FL31,1)
ILRUXIFL32,1)
ZEROX(FL3S, 1)
2EROX(FCLlL,1)
ZERUX(HTLL 1)
Lt ROXUFC12,41)
ZLROX(FGLL 1)
ZLROX(FG1241)
LERUX{FGL3,41)
2 KUXIFLLL,1)
ZEROX(ELLZ2,414)
LEROX(FLL3,1)
2LRUXIFVDZ1,1)
LEROX{FC2741)
FRUX{FI2141)
ILROX(FG21,41)
IERUX(FG22 41)
2E RUX(FG23,4 1)
JERUXIFL2L,1)
LERUX{FL2Z,4 1)
LERUX(FL23,1)
ZEROUX(ESDLL, 1)
ZERUX{FSD21,1)
LLKOX(FSD31,1)
LLRUX(FC2141)
LEROX(FVULL,1)
IEROX{FVOLi,41)

TRANSIENT ANALYSIS GENERATOR (wW.J.THOMAS-JPL)

INPUT (6HST10203,S10203,6HSL0U203,SLO203+E6HSGU0U3,560003,6HLGO0L
lOZ.thlUZ.beCUUOi.5L0005'6HSVUOOJ'SV0003'hH5V0001.SVOOOI,/H?T'FI.
25HN STEP yFSTEP ySHFEPSLy FEPSL g 6HFEPSLL FEPSLL,6HFLPSL 2, FLPSLZ,,6HEEPS
JLi.rlPongbHrFPSLQ'FthLk.QHPUUI,FUU]'6HLDH001.LUHh01.QHLHAX.LMAX,
4SHLIYPL oLTYPE ¢SHLLCNT) LLCNT g HLALGFT yLALGFT 3 SHSTOP Ly STUP Ly 5HVSTUP,
SVSTHP S LVHIGHVE TGH s GHVLOW, VLU 3HVTH o VIH 3HVTL ,VIL 3 3HVIN, VINy4aHVU
6UT VUL s BHLE2,8F 2, 4HBF 3, BF 34 3HEF 4y BF4 4 3HBFS bF 5, 3HkE6.BF6y SHBF 1 4bF
71040 DUNE gDUNE g THK 9K ¢ BHCINGCINg LHM s My 4HTHMAG » TMAG »6HS $ SEND)

INUL

LALGFI-1
LINI=C
tCni=1
FTL=t1
FTL=FI1
FHU-FSTEHP

FV1t

FV21=

Fvil

=+LVOUUL
+5vVOU0 3
=45V0102

FC2/=4¢50000U 3

G2,

FGAs=

=45 L0003
+5G010V2

FLI1=¢5L02C3

bL1Z
FLL3

==5L020u3

=450 0203

FL21=-5L0203

130

L e e T S Y U W s s L A L L

FL22=45L0203
FL23==-5L0203
FL31=45L0203
FL32=-5L0203
FL33=+45L0203
FI111=-510203
FI121=45]10203
FI131=-510203
FCI22=t./FC22

T FGI33=1./FG33

CALL ROYTUP (FSIUPFT4FHC)
6200 IF(LCNI-3)6202462014639%
6201 CALL STOPIFUUT,LINT)
6202 COUNTINLE

GO TO (039546390))LALGFT
6390 IF(LINI)6391,6391,6393
6391 FSTUP=t STOP-FTL

CALL RUUT(O)
6393 FSTUP=FSTOP-FT

G0 TU b425

6395 LEULS=

1}

6400 CONTINUL
LLCNT=LUNT-3
CALL VMUD(I#FVLL) (+FV21)4STUPL,VSTUP,VHIGH VLUW,VIH,VTL,LLCNT,LAL
16FT,1)
6O TU{6422,6420)LALGFT
6420 IF(LEGY)642),6421,6422
6421 CALL ROUT(U)
6422 FSTUP=D.,
6425 FT1=0.
FT2=0.
FTL=FF

FHB(L)-FSTEP
FHol2)=1.E-5
FHLU 3)=FEPSLA
FHB(4)=.5
FHBS)=FEPSLZ
FHBlO)=HEPSLS
LNhtL)=4
LNHEZ2)-LNH(L)

LNH{Y)=9
CALL FMAKK(LCNT gFbHE 909 LTYPL g1yl g2sFHC 33 4FT 1 yFSTUOP 4, STUPL,0,0)
FT=F TL+FTL

LEuS=

¥

. IF(LUNI=-2)6300,6400, 30
6300 LUNTINUE
CEV3L=FGI33s{FI31-FGI1aFVLI1-FG32#FV21-FL31eFS11-FL32¢FS21-FL33#FS31)

CALL
CALL
CALL
CALL
CALL
CALL
LALL
CALL
CALL

MULTAFL33,8S314FTEMLylplsl)
MULTEFL324FS213FTEMZy1,41,1)
PSUMUFTEM JFTEML FTEMI4141)
PULTOFL3L,FSLLFTEM2y101ls))
PYUMIETEMZ yFTEMLoFTEMLy1,1)
PULTUEG32,HV21 4FTEM2y19141)
PSUMIFTEMZ FTEML FTEMLs1,1)
MULTIFG3Y o FVLL oFTEMZyl 9l 1)
POUMIFTEM2 o FTEML FTEMLyl,1)

TRANSIENT ANALYSIS GLNERATUR (WeJ.THUMAS-JPL)

131

CALL
CALL

MSUMIFI314FTEML FTEML,1,1)
MULTUFGI334FTEML,FV3lyl,ele1)

LALGFT=2

FOLT=

F1-FTO

IF(FDLT) TU30, 7030,7025
7025 FYL1Ll=(FV1l-Fvull)/HuLT
7030 FVUll=FvVll .
FTO=FT
CHVD21=FLI22¢ (F121-FGZL1oFVI1-FG22#FV21-FG238FV31-FL21&FS11-FL22#FS21-FL2
C3eFS31-+C212FVDLY)

CALL

CALL

MILTUFC214FVUY L, FTEML,1y151)
FULTUFL23,FS3) 3FTEM2,14141)
PSUMIFTEM2 ,FTEML,FTEML,1,41)
HULT("LZZQ“SZI.FTEMZ’l' l'l.)
PLYUMIFTEM? s FTEML FTEMLs L 41)
MULT(FL2LsFS1LyFTEM2y1,1,1)
PSUMIETEM? yFTEML FTEMLy1,1)
MULTIFG23,FV31,FTEM2,141,1)
PSUMIFTEM2 s FTLMLFTEMLy141)
MULT(FG22,FV213FTEM291491,1)
PSUMIFTEMZ o FTEMY o8 TEML, L4 1)
MULT(FG2L,FVL]L ,FTEM2419141)
PSUMIFTEM? yFTUMLyFTEMI o 1,41)
MOUMIFIZL,FTEML FYEMLy1,1)

TRANSIENT ANALYSIS GENERATOR (W.J.THOMAS-JPL)

MULTUFCE2Z23FTEML, FVU21y19141)
FSO1t1=l V11
FSD21=tvZl
FSL31l=1 V3l

rYUT (V)

ENDLL U 90909090yl e0y0sUsU0U40U040)

25C 35141

MAX LT74T7 CUUNI 931

132

VI. TAG SUBROUTINE WRITEUPS

A, Program Hierarchy

T ST W Gl D W U WS WSy U T U wwem w»»e

Hierarchy Subroutine Hierarchy Subroutine
Level Name Pass Level Name Pass

2 ADDLOC 1 2 3 ELIM 2
7 AFTER 1 2 2 EQFS41 2
6 AFTLK 1 2 2 EQFV2l1 2
8 BACK 1 2 2 EQFV3l 2
2 BAKELM | 6 ERASE 1 2
4 BCB 2 3 ERASEA 1 2
6 BCD 2 4 EXCPT 2
4 BCL 2 4 EXTRX 2
6 BND2 2 3 FISH 1
5 CHLNE 1 2 3 FLAG 1
3 COMBN 4 FLTCON
5 COPY 5 FOUTPT
2 COTRN 5 FRACT
4 DBPCHC 5 FRFL
4 DBPCH 8 FROM
4 DBPFH 2 GOBLE
4 DIFA 5 HEAD
2 DIMEN 5 HEADC
5 DONBD 3 HOLBK
7 DOWN 5 IDNTP
4 DOWNS 5 INFL
2 DPDST 2 INPUTX

Hierarchy
Level

Subroutine
Name

Hierarchy

Subroutine
Name

INSRT
INTLST
INTO
INVST
INZERO
LEVMRK
LINK
LNECH
LNKT
LOCAT
LOCATA
MATFT
MATOT
MRKLST
MU LTS
NEWLOC
NLINDM
NUMB
PAGEHD
PARAM
PARTS
POPUP

PRPTG

[S -

W

PRPTR
PUSPCH
READCH
RECOVR
SEGMNT
SET
SNATCH
STASH
STAT
STATC
STATUS
STRIK
SUBST
SYMBL
SYMCH
SYMCRD
SYMTP
TRANS
TREE
UPDWN
WRTEQ
XFORM

ZEROX

T T D BB B B e B B o BT ===

B. Subroutine Writeups and Flow Charts for TAG Preprocessor

Program Description

1. Identification
a. Routine Label
ADDLOC
b. Name

Allocate available space (AVS).
2. Function

Space is reserved in core as a list of elements linked to each other

by a pointer in the link position of the word.

3. = Programming System
FAP

4. Usage
a. Calling Sequence

CALL ADDLOC (A,I)

b. Entry Conditions

A = Head of AVS
I = Number of cells to be allocated as elements in AVS
c. Exit Conditions

a(AD90) = Head of AVS with pointer to current available
element

a(AD91) = Pointer to last element in AVS

d. Error Exits

None.

5. Definition of Identifiers

AVS = Available space list from which elements for all list struc-

tures are taken

135

IN90 = A location containing the address AD93, a pointer to the

last available element in AVS
6. Method

A list, headed by A, is formed of I elements, which occupy sequen=-
tially descending positions in core. Each element is linked to its succes=-
sor by a pointer in the link portion (bits 21-35) of the word. The list is

terminated with an element whose link contains zero.,

7. Other Subroutines Used

None.

8. Using Subroutines

Main Program for Pass 1 of TAG Preprocessor.

Main Program for Pass 2 of TAG Preprocessor.

136

T T Tl O oEew

CALL AHpL A //}) J)

. ,‘ \‘23_

@m0y 5t109,)

a/fN?a)-\ /pp.?/)

1 NO. OF cCeuts

d/r> ><£5§ -~ 1M APAILABLE SPACE
3
A-—-?é}c) lj"”‘-‘ss SE HeAl

el P oF Avs

7 ,,ur/»w_lac Aars

T ITT @

I C
_'(Ac)—e((w’cz)) } 4

e TIETIT T ﬂ£7u.c,AD
v |

) .
(Ac) >(pey) : :
) - | ’ |
() /—>{A<)i 12;:7““
i | ¥ ARAyS
‘. . NO
v
/

v cs () v =5, w?/‘
(£ =3 -_‘r\y ——a] éd('\ /ol»vf'e(TO LS rj’
_ \ LL v Ars | -

137

Program Description

1. Identification

a. Routine Label

AFTER

b. Name

Insert an element AFTER the first element.
2. Function

This subroutine inserts a new element into a list immediately fol-

lowing the first element of that list.

3. Programming System
FAP

4. Usage
a. Calling Sequence

CALL AFTER (A, B, C)

b. Fntry Conditions

A Head of a list

d(B) = Item of new element

d(C) = Flag of new clement

o Exit Conditions

List A contains a new clement with d(B) as its item and

d(C) as its flag. The first element in list Aislinked to this new clement.

d. Error Exits

None."’

5. Definition of Identificrs

d(AF90) = Pointer to new clement to be inscrted

138

6. Method

A new element is acquired using NEWLOC. If list A is null, a new
]_.ist is started that contains this one eclement, with a link of zero. If list
A is not null, its first element is linked to the new element. The link
formerly in the first element becomes the link in the new element, thus
maintaining the list connections. The item and flag (if any) given in

d(B) and d(C) is pushed down into the element by INTO.

7. Other Subroutines Used

INTO, NEWLOC

8. Using Subroutines

AFTLK, COPY, DONBD, MRKLST, SUBST, SYMBL.

AFTER
<¢‘r‘ NEwLDLN
PoI~nTER To

“%"’)'?4 #<1)

IST CeemanT
v LisT 4

V.

E{/qz-'.o,-a 1//;)

STALr NEw

L1 A

(v"(l ?‘C/))—?/L[/ 4e z))

move Lisr J
OF 187 &Lemzm

To Y LLEMENT

ﬂ[(?/"h/ 7/(L4':/)
!L/NK I2-24

i elemenr ToO
MEww CLeeNY

- - 4

)

v

B3 F (o

(

!’B-% AND

' AREuME T
oF CAlL Trm7Td
! 3TATE MenTS

st e e g e

|

X

N

A

F8o

=N

. . .
‘ “__I/\/T‘ -\ 123 .
: T o 4
ITem w8 L wmo “Cluw LJes
. B AN z
LD MNew , CALLY
eLemevyr - -

.

cAace INT (/41-7: 5)

140

FLAG 1w fad ——9
\iﬁw 242 “"‘Nl‘

r—; -

1

cAatl AFTER (A, 8<)

CcALL INTS(AFI0 8,8)

/ _I_';’Id
/17£M 12 /3)

?"

‘f*Fz.o

C~93«'b

L oARFuma T

Tl sm Calt INTH

STa 7~.r\r1£~f

JRU —d

Program Description

1. Identification

Routine Label

AFTLK

2. Function

This subroutine inserts a new element immediately after the first
element of a list and resets the head of the list to point to this new ele-

ment. If the inserted element is the only entry in the list, its location

is saved in a flag word.

3. Programming System
FORTRAN II

4. Usage
a. Calling Sequence

CALL AFTLK (A, B, G, F)

b. Entry Conditions
A = Head of a list
d(B) = Item of the new element
d(G) = Flag of the new element
F = Flag word

c. Exit Conditions

If list A was null, a first element is inserted into A with
d(B) as its item and d(G) as its flag. If A was not null, a new element,
with d(B) as its item and d(G) as its flag, is inserted between the first
and second elements of A. In either case, A is reset to point to this new

element. If the inserted element is the first and only entry in the list,

its location is saved in F.

d. Error Exits

None.

141

Definition of Identifiers

None.

Method

a. If list A was not null:

(1)

(2)
(3)
(4)

A new element with d(B) as its item and d(G) as its
flag is inserted immediately after the first element.

The first element is linked to the new element.

The head cell of list Ais set to point tothe new element.

The new element is linked to the element which was

formerly the second element.

b. If list A was null:;

(1)

(2)
(3)

A new element is inserted with d(B) as its item,
d(G) as its flag, and a link of zero, creating a list of
just one element.

The head cell of list A is set to point to this element.

Location of the single element in A is saved in the flag
word F'.

Other Subroutines Used

AFTLK, LNKT

Using Subroutines

ELIM, INSRT, MATFT, MRKLST, PRPTG, STASH.

142

<AF“K) cace AFTLR(A, B G F)

IsST etemenmy
N ST A

ReseT A To

PotmnT ToO 2ZAND
eLement 1F ANY]
seT Fz 4 IF A
MAS TusT o
ctLemerT |

(RErvenw

v 143

coct aFTeR (A B, &)

CALL LNE T(A}A)F)

Program Description

1. Identification
a. Routine Label
BACK
b. Name

Restore an element BACK to AVS.
2. Function

Restores an element back to available space (AVS), thendecreases

number of elements used by one.

3. Programming System
FAP

4. Usage
a. Calling Scquence

CALL BACK (I)

b. Entry Conditions

d(I) = The decrement of location I holds pointer to element

which is to be restored.

c. Exit Conditions

(1) Element pointed to by d(I) restored to AVS.
(2) Pointer to next available clement in AVS resect to re-
stored pointer.

(3) COUNT decrecased by one.

d. Error Exits

If pointer to last element in AVS = 0, or if location I = 0,
CALL DUMP is executed and return is made to the FORTRAN monitor

system.

144

Definition of Identifiers

a(AD91) = Pointer to last element in AVS

COUNT = Number of elements used from AVS

MAX = Max count of elements used from AVS, maintained for
printout by subroutine STATUS

Metho_({

a. If (AD91) = 0, the subroutine ADDLOC has not yet been exe-

cuted to reserve space in AVS, and an error return is made.

b. If d(I) = 0, there is no element to be restored and an error
return is made.

c. If (AD91) # 0, and d(I) # 0, COUNT and MAX are updated
and the element pointed to by d(I) is restored to AVS.

d. Pointer to next available element in AVS is reset to the ele-‘

ment just restored.

Other Subroutines Used

None.

Using Subroutines

ERASE, POPUP.

145

B¢ K cace sack(T)

ADPD)= fPermvre
a() ! ? CALL Do p
Te LAST QLemerr s

/v AYS,

(JUNTLJ Y R
’cd.uvr)

I

Pa//vrcn ro
cLemenr ?‘o :
B¢ A& srocea-‘

K/I)-—B;.,//;()

1
i

CALL DumP
A MDD
RETvR N

To
SYs7Em

(A9n).
—>Ldcq)
Yy
N o— ((AM:))«
“546)'3 -‘(/437/:*‘”—-4\— Resroce
Clemenmr TO
e e Ars

R —

y

(RO SR

|
'“4‘75)“?/4(_;4
Reser AVS ' .
kal&lfd,(7o
LLamM2ayr TusT

R T2 D TO
Ars

146 ——

Program Description

1. Identification
a. Routine Label
BAKELM
b. Name

Perform Jordan elimination on each row of a matrix.
2. Function

BAKELM transforms TQ, the NRR x NM tree voltage based trans-
former constraint matrix, to a form in which each row, I, intersects
a column whose Ith element is unity and whose other elements are all
zero. Each row of the transformed TQ matrix is a solution for one of
the NRR coordinate variables in the unconstrained tree voltage vector,
VT , as a linear combination of the NM - NRR remaining coordinate
variables of VT. By this process VT is divided into NM - NRR inde-
pendent coordinate variables, VTI, and NRR dependent coordinate var-
iables, VTD, The transformation is applied to TQ so that priority for
membership in the dependent variable subvector, VTD, is given to the

coordinate variables at the bottom of VT,

3. Programming System
FORTRAN II

4. Usage
a. Calling Sequence

CALL BAKELM (TQ, NRR, NM)

b. Entry Conditions

TQ The NRR x NM tree voltage based transformer con-

straint matrix calculated by the product TRR * TC

such that TQ * VT = 0,

NRR = The number of transformer constraint equations that
is equal to the total number of transformer windings

less the total number of transformers.

147

NM = The number of coordinate variables in the uncon-
strained tree voltage vector VT that is equal to the

number of nodes less one.

C. Exit Conditions

TQ = An equivalent NRR x NM transformer constraint
matrix in which NRR of the columns have been
transformed into the NRR members of the NRR
dimensioned identity matrix. Thus NRR of the
tree voltage variables are essentially solved in
terms of the NM - NRR remaining variables. The
transformed columns are chosen whenever possible

from the right-hand side of TQ.

d. Error Exits

If NRR of the tree voltage variables cannot be solved for,
a dump is called and control is returned to the FORTRAN Monitor.

5. Definition of Identifiers

J = The row search index
I

FTEM, FTEMIl, FTEM2, FTEMS3 are used as temporary vari=

able names for the elements of TQ being operated upon.

The column search index

L and K are used as search indices for various operations. NR

is used to keep track of the number of pivot columns already found.

6. Method

BAKELM uses Jordan elimination to transform the NRR x NM
TQ matrix to a form that solves for NRR coordinate variables of the
unconstrained tree voltage vector, VT, in terms of the remaining
NM - NRR variables. In this process, priority for membership in
the set of NRR dependent coordinate variables is given to the bottom
of the tree voltage vector, VT, by choosing pivot columns starting
from the right-hand side of TQ, and pivot rows from the bottom., The

148

usual result of this process is to produce a transformed TQ matrix of
the form [TQ': U'], where TQ is an NRR x NM - NRR submatrix,
which expresses the dependent coordinate voltages, as a linear function
of the reduced set of independent coordinate variables; and U' is a
permuted NRR x NRR identity matrix which expresses the fact that the
rows of TQ' will not solve for the dependent variables in the same order
as they appear in VT. For some nondegenerate transformer connections,
it will not be possible to select the bottom NRR coordinate variables to
be dependent. In such cases the columns of TQ' and U' may be inter-
woven. The following algorithm defines the process as mechanized in
BAKELM.,

a. Set NR, the elimination control index, to 0 (NR = NRR ter-
minates the process).

b. Set I, the pivot column search index, to NM,

c. Set J, the pivot row search index, to NRR,

d. Starting at row J, search up column I for the first non-zero
element. When found, stop the search so that J is the row number and
I the column number at which this possible pivot element is located.
Store value of element JI in FTEM and go to step e. If the search
reaches the top of column I (J = 0) without finding a non-zero element
in an unpivoted row, I is decreased by one; and if I > 0 return is made
to step c. If I = 0 a dump is taken and control is returned to the FOR-
TRAN Monitor.

e, If I = NM, I is the first column searched and element JI
has to be a proper pivot element. The next step taken is g.

f. If I # NM, search all elements of row J to the right of col-
umn I, If they are all zero, element JI is a proper pivot element and
the next step is g. If they are not all zero, row J has already been
pivoted on and element JI may not be used as a pivot. In this case,
the next step is to add one to J and return to step d.

g. Add one to NR and set K, the pivot row normalization index,
to 1,

h. Starting at column 1, replace every element of row J by its
initial value divided by the value of the pivot element, JI, stored in
FTEM, Thus EJK(NEW) = EJK(OLD)/EJI)OLD) for K=1, 2, ---NM,

149

i. Set L, the row elimination index, to 1. Starting at the top
of the column I, search down until the first non-zero element is located
at LI, and store its value in FTEM. Starting at the left, replace each
element of row L by its value decreased by the product of the corres-
ponding element in row J, and the element initially located at LI, whose
value is stored in FTEM,

Thus ELK(NEW) = ELK(OLD) - EJK(NEW) * ELI(OLD) for K =
1, 2, ---NM. This process is continued until L =J - 1, at which time
all the elements of column I will be reduced to zero except element
JI which will be +1.

Je If NR is less than NRR, I is decreased by one. If I equals
zero, a dump is taken and control is returned to the FORTRAN monitor.
If I is greater than zero, the process returns to step c. If NR = NRR,

a return is made to the main program.

7. Other Subroutines Used

DIFA, DUMP, SNATCH, STASH.

8. Using Subroutines

Main Program for Pass 1 of TAG Preprocessor.

150

s
.

< AAKELM ’ et 5ﬂxezm(7Q'N/:/<)/v/4)

S

o—~>(N£) 3

(wmy=>(1)

!

O

SMATC H
79(7,2,0,0) =
FTem

Ao

(1-wm)< o

.151

K+ 19K

- Kk

r(NJ(+1) g

{
r’ v

/ N\ SNATCAHN
SNATCH
79(3,k,0,2)*

FTEM

\
(1‘775/'7//l F 7’5’))‘

""__,(F75MI) '

*

ETasHN
STAS H
79(J, &9 0)=
F7&r1
i

K={(rm)z - [_K-H = K ‘] l(ngm I~)¥(;,'5M)
- : 2(frEMR)]

Jes

[FreM3-Fremz|
N2 SE-7

Jes _)

\?W"TC 0. >0 e
SMATCH No - .__._(_{__72%./’4_324'

B> \FTEN\‘f >

7Q(L,I,0 a) -
fff;»; \\E}

y

LF Tem ’),(Ffem)

=2 (FTEMY)

7
StasH
TQ(LJKI 2 2)=
\"__f_TB M3

_quaké}ééﬁk>

153

cAacl
duomP

Program De scription

1. Identification
a. Routine Label
BCB
b. Name

Convert a BCD number to an integer.
2. Function

This subroutine performs a BCD-to-binary conversion. The

converted number is placed in the lower part of the accumulator.

3. Programming System
FAP

4. Usage
a. Calling Sequence

CALL BCB (ERROR)

b. Entry Conditions

BCD number in the accumulator.

c. Exit Conditions

Converted number in lower accumulator as a binary integer,

Contents of the MQ are not destroyed.

d. Error Exits

Error exit is taken if any illegal character is encountered

during the conversion.

5. Definition of Identifiers

ERROR = Contains location of the character in error

BC85 = A table of binary equivalents for a BCD number. Used
with convert instruction CAQ.

154

6. Method

The contents of the MQ (on entry to the routine) are saved in BC92,
The BCD number in the accumulator is placed in the MQ, then the ac-
cumulator is cleared to zero, in preparation for use of these registers
with a CAQ instruction. A table lookup in BC85 is performed for each
character to be converted. If an illegal character is encountered, an
error exit is taken with the location of the character in ERROR., If all
characters were legal, low accumulator will contain the converted

number,

7. Other Subroutines Used

None.

8. Using Subroutines

STATC

155 -

Vo

CovveRrT B
MUMBerl IN
7o B/NARY
IMTESCL USIVE
THELE FIas ‘
7 b

{ ‘[/
S 1ET INTEGER:
20 Zopsre R

ALLu/ waret, A4 75’/&

Y

(E»c 12)> Q)

ERRI
Rerusn

N

caLL EBC g(E_nr_cb

Bep MumBrz To

ComvenrRTED 18 M

e L=74808 wWITH

n

BIpog ! ERUIVALE emMTS
0F BLf MUMBER .
vsesr wTH CcoNERT

INSTRG £T 10 CAQ)/IL

NIRWAL
RETUEN

156

2)

e <

ALcyumvLl

PERY B <8

Program Description

1., Identification
a. Routine Label
BCD
b. Name

Convert an integer to a BCD character.
2. Function

An integer, right adjusted in the accumulator, is converted to a
six-character BCD number (right adjusted with leading blanks). The
least significant digit is at the top of the list,

3. Programming System

FAP

4, Usage

a. Calling Sequence

CALL BCD

b. Entry Conditions

The accumulator contains the integer, right adjusted, to be

converted.

C. Exit Conditions

Six-character BCD number in the accumulator, right ad-

justed, with leading blanks,

d. Error Exits

None.

5. Definition of Identifiers

BC90 = Local variable used to accumulate BCD characters during

the conversion.

157

BC92 = Integer in accumulator, right adjusted, to be converted.

BC93 = A table of six entries, with BCD blank characters (0 to
5 blanks).

BC94 = A table of six entries, each a shift operation, used to

right-adjust the converted number in the accumulator.

6. Method

Each of the BCD characters in the accumulator is converted to a
binary integer with leading blanks, The converted number is right

adjusted in the accumulator,

7. Other Subroutines Used

None.

8. Using Subroutines

BCL, HEAD, HEADC.

158

BCD)

o = (8c90)

<

BTy = TARZ
PR/ T te s T2
Ao

)

Rz

L ST

(5549‘4‘)_
(LJC»;) —‘,'(“‘.C)

|

|

(o) (6c)=
@<

|

6> (14 \
Q"}C)é—?(mg)}.
. IRS—
|
M) —7(5(4,7)"
__.;..,___ L
_ | o (s<)
T [, m30/19))
Aemgmor 2 (o)
- _ — —
_ RIGHT ADJ. Bcoz = 7A5Le
(AC) Accpeo/ Ve aF BCS
To(Bcaay)- BlANKS To
- - -t - (LEc+) Frel Iar LES2INE
BLAmis
(,*c,)u(s?éa)->‘,
- (&(‘79) i
(ades)- 1 ~(d Ve

)&~ 7

FProgram Description

1. Identification

a. Routine Label

BCL
b. Name

Convert an integer to BCD and push characters down into a
list.
2, Function
An integer is converted to BCD and the characters are split up

and pushed down into a list as individual elements. Blanks (leading

zeros) are removed.

3. Programming System
FAP

4. Usage
a. Calling Sequence

CALL BCL (I, A)

b. Entry Conditions

I = Binary integer

c. Exit Conditions

The integer in I is converted to BCD. List A is created with
each character of the BCD number pushed down into the list as an indi-

vidual element.

d. Error Exits
None.
5. Definition of Identificrs ’

BC92 = A table of six entries, each a shift operation, used to
right-adjust each character in the accumulator, after

conversion from binary to BCD

160

6. Method

The binary to BCD conversion is performed as follows:

a. The integer in I is placed in the accumulator and converted
to a six-character BCD number by the subroutine BCD., The BCD char-
acters will be right adjusted (with leading blanks) in the accumulator.

b. Each of the six characters is placed in the item of an ele-
ment and pushed down into list A by the subroutine DOWN,

7. Other Subroutines Used

BCD

8. Using Subroutines

COMBN, DIMEN, DPDST, INPUTX, NLINDM, PARTS, SYMCRD,
WRTEQ, XEROX, Main Program for Pass 2 of TAG Preprocessor.

161

BC L

t A 94(5{@)_
i

(1) 2a(Ac)

B
/o\eeb
/Caﬂvﬂl‘r
INTCGEeR I N

\ save s a(Ac)
S8 i and

‘ (,4()-:@:%)

| o (aen]

)

|
\

v

(Bcas) =lac) ’

Y
Bc12: Takisr | prenr—-aiivst
i
(AC)/’[(SR IETS
T¢ (Bcar+4) —

rF G EMTR.iES

Cuzh A SHIET | e gr2)
aop g T1a T ‘
LY

o

! (Ac)Yn 0900117005

- (',4 <)11

.

= e PN

XA BCL(.Z}}))

i

R .,l(L,ch)-' I—){tdcz)l

Tvcs

i

e e — b . d/—'
T ({ Bc3o

: FPUSH New

! CLEMNEMT Dow M
Lot LIST A

! L wirH L(8c93)

! AL /TEM

|
dr)woesn)

|

1

162

Program Description

1-

Identification

a. Routine Label

BND?2
Function

This subroutine decomposes an integer into a units digit and a

tens digit,

3'

4.

Programming System

FAP

Usage
a. Calling Sequence

CALL BND2 (I, J, K)

b. Entry Conditions

I = Binary integer

C. Exit Conditions

J = Units digit of integer I

K = Tens digit of integer I

d. Error Exits

None,

Definition of Identifiers

None.
Method

The units and tens digits of integer I are extracted as follows:
a. I is placed in the MQ,

b. AC is cleared to zero.

c. I is shifted into the address portion of AC,

163 -

d. AC, MQ are divided by 10,
(1) The remainder is shifted into the decrement of AC and

then stored into the decrement of J, as the units digit

of L.
e. The AC is cleared to zero.
f. AC and integral part of quotient in MQ (from division in

step d) are divided by 10,

(1) The remainder is shifted into the decrement of AC
and then stored into the decrement of K, as the tens
digit of I,

7. Other Subroutines Used

None.

8. Using Subroutines

DONBD

164

BrDA cace ernd2 (I, K)

!
y !
(1)~ (m@h

Y.
i ' |

O%Cf?c)

v
RICAT SHIFT 1
me 1® 8118

L{(T})row 1~
a(mg

<t

EAQMQ%Ojémq
geEMmMAIuDER
-2 AL

v

LeFT SHIET
AC 18 BaTS

i
|

v -
‘ UMITS Q11T o Ff INTEZCER

J(AC)'?QJ(T)i i T = (7))

i
'

V4

o> AC ll

1 -

((6c, 7] >mg
Eemsdoppeg =
AC

|

LRFT Sp)=>T
AC 182 3178

i

v

dlpe)>a(k) ——> RETUR M)

Tewns d1ctr oF '
torecepg 120 I —34((/<)

S

PO

148

Program Description

1. Identification

a. Routine Label

CHLNE

b. Name

Insert a character into an array.
2. Function

This subroutiné inserts a BCD character into a given character

position of a Hollerith array.

3. Programming System
FAP

4. Usage
a. Calling Sequence

CALL CHLNE (A, I, J)

b. Entry Conditions

A = An array of Hollerith characters
I = A character position in the array

J = A word that contains a BCD character

c. Exit Conditions

A BCD character, as an integer in J, is inserted into char-

acter position I of the array A. The rest of A is unchanged.

d. Error Exits

None.

5. Definition of Identifiers

. CH90 = This cecll contains the BCD character in J as an integer

(right-adjusted in the decrement portion).

166

CH92 = A table with six entries, each a shift operation.
6. Method '

Each time the subroutine is entered, the BCD character in J is
shifted into the decrement of CH90 as an integer, right-adjusted (CH92

determines the appropriate shift). The contents of CH90 arec then
"OR-ED" into the Ith position of the Hollerith array A.

7. Other Subroutines Used

None.

8. Using Subroutines

DBPCHC, DBPCH, DBPFH, GOBLE, INPUTX, MATOT, PUSPCH.

167

b

e

a%(ﬂcﬂ

v
- E”‘/”g%}%/my)‘;

RemprIn o283

(4¢)
——

: 1
@c) e (mg) :

|

1

L&'(J c) ‘%f(«)l

L
Voo
(cocl) e a(ac)]

: ->(A i /)___

[
V

-

(10) e(77)

CALL CHLNME (/)) 7 J

(A) A (cH90)
—>((z de 1)) *

CompPLeemT OF
(A¢) U((L &u))_a
(A<D

! Qoo 77000000
- = (a0)
AIGHT - Ap3vSTED

Accodirz Teo
"('Ld.:‘.)“

(Ac) > (cHg0)

RIGHT-43Jus7£D | 5¢€
g R
AcCoRPirig To

cHa2
i\ {L_f“_cz).__.___J

?

r

) [é'd() ")(Z- dc R) i--—-—— —\"“—\'Cﬂn 0000770<'amr]

L= (ac)y . !

168

Program Description

1. Identification
a. Routine Label
COMBN
2, Function

The abstract quantity descriptors SYNIN2 are transformed into
a linear combination of existing data items which will compute the quan-

tities in terms of existing transforms.

3. Programming System
FORTRAN II

4. Usage
a. Calling Sequence

CALL COMBN (RIN, T, N, ROUT, NPT, NCB, 1V34,
ISSW, ISIS)

b. Entry Conditions

RIN = A simple list containing, in order, the
characters representing the sequence of
descriptors

T = A four-dimensional matrix represented in

list~structure form

N = The number of nodes

NPT = The array containing npt dimension
information

ISSwW = A switch

ISSwW = 1 if processing a nonlinear statement

ISSW = 2 if processing a standard statement

169

c. Exit Conditions

ROUT = A simple list which contains the character
string representing the appropriate
transformation

NCB = The number of combined data values in
ROUT

IV34 = An indicator computed from ISSW and RIN

ISIS = An indicator computed from RIN

d. Error Exits

None.

5. Definition of Identifiers

Constants: BCD character strings

Type Name Value
Integer IBRKL (
Integer IBRKR)
Integer 1SS S
Integer IPLUS +
Integer F F
Integer IMINUS -
Integer ITYPE(1) v
Integer ITYPE(2) S
List Zero [+;0;. ;0]
List PNTST [.;%]

Variables:
KN = Character counter used to maintain position

when popping up RIN

KS = Indicator of sign of abstract variable
LTYPE = Holds second character of abstract variable
10 = Holds first node number

IT = Holds second node number

NSP = Computed index

170

NSIJ

Computed index

TEM = List used for construction of the output string
TEMX

ITEM

H

List used to hold second node numbers temporarily

Used to hold character most recently popped out
of RIN

SI(2,100) = Holds numerical values as they are computed

from the abstract variable

6. Method

a. RIN contains a linear combination of abstract variables, each

of which has six characters:

Chl =S
Ch2 = (LTYPE)
Ch3 First node-number
Ch4
Ch5 Second node-number
Ché
ExamEIe:
SV0304

RIN may contain any linear combination of these.

Examgle:
SV0304 + SV0302 - SV0102

b. For each variable + SYNIN2, the list T is searched,
using SNATCH, for any non-zero data. This is done for all 0<i<N,

and the data is computed this way:
X(i) =+ (T(N2,i, 0, 0) - T (N1, i, 0, 0))

c. For any X(i) that is non-zero, an entry is pushed into
TEM which has the following format:

+ Z * Fyjl(k)

171

where Z = the BCD representation of X(i), as a
floating-point number
y = the character <V > if the second charac-
ter of the abstract variable wasa V;

otherwise y is the character <S>

jand k BCD representations of integers computed

in the following manner:

given X(i) # 0, J is such that

j-1 J
2. NPT (m)<i< Y, NPT(m) NPT (o) =0
m=20 m=20
J
and K=1i- Z NPT (m)
m=20

This means that j will indicate the submatrix (V,C,G...) where i
occurs, and k will be the index within that submatrix.

d. TEM is popped up and pushed down into ROUT; then exit.
ROUT will then have the transformed combination, with the sign and
high-order digits of the floating-point number at the top of the list.

e. . If TEM is null, then either RIN was null or no non-zero
X(i) could be found. A comment "ZERO HAS BEEN PLACED IN THE
STATEMENT BELOW" will be printea, and the contents of list ZERO
pushed into ROUT.

f. NCB will contain the number of entries
+ Z * Fyjl(K)

inserted in ROUT.
ISIS will be set = 2 if y was not a V;unchanged otherwise.
IV34 will be set = 1 under these conditions:
(1) c(ISSW) <1
j=4
or (2) c(ISSW) <1
i=3
yisaV

172

7. Other Subroutines Used

BCL, DIFA, DOWN, DOWNS, DUMP, ERASE, FLTCON, POPUP,
SNATCH, SYMBL, UPDWN,

8. Using Subroutines

SUBST

173

SET UP
CPINSTANTS

INTO ITEM

PgpuP RIN

NO

174

PgruP. RIN

INTE ITEM

Pgpyr RIAN
INTE ITEM

(I1EM) -m’LT'VPE)
! = (vvs)

2 —> (MVs)
2 7 (rsre)

F

RprPup RIN
IwvTe
I7eM

ITEM —7(1'/)

¥

POPUP RIN
INTE ITTEM

) ¥ o +
(ZTEM) > (14)

Por, r RI AN
INTE ZTEM

PgouP RIAN
INTO ITEM

42

(12) % 10 +
(ZTEM) > (IT)

\

(SI(A/vs,_z»
- (sum)
‘{Y) > ()(M)

0> (sum)

(Suad) + x
—> (sum)

(sum) -
(szr(wvs, r))

~NO

(I) +/ -
(1)

yes

176

100

o -*(ISUM)

!

PEPUP NEXT
TWO ELEMENTS
OF RIN & PUSH
THEM TIWN
ZNTp TEMX . ADD
THE 2 JTTEMS S
PvT THE Sum
Iy ISuM

0%({—%)_
|
A

Porl 2 R/
SefT¢PE >00LT 1 Iren)

T T T

Fogk myro Szm FusH A PLvs
a4 pintvs SvLA S5 /0T BT

FPrPvep 7o
Tens of
TEMX &
Fush Bk
Dowanrs t N7
£r4)

(U

177

— e llaT

7 '?OJys)
/> ()

b

Grloys,z))> &)

Aostt TF !
NTO lfé'/Vl

PusH LPUS# SV e
”V“ //Jro ffM
7€Em

)

PO towEsT
P SvcH 7HAT

(z) f;i)’/@;’f()

|

ser
rp
wsp)= £.(w7rti))

L J=/

73

Dvarp

178

?

PosSpt Z 2 Do
T 0 I7ErA

\

pOSﬁl /// 1
T HIATO TE M

]

1 Y
.@)"(/JSP)’,‘(/’J,DT(IP)) (Z)f'/"?&)
> (WszVv) _

Fus i)
u(7" ,
S V272 -0 e %, | !
N ' | B PosH zZzeo
e e e e W7o resn
lonwys/ERT A
wsz) 70 i
Bco g Py \
S \wTo TEL T T T T O-%(mggj
ER S ‘
IP0S | , | ProijT STA el SnT |
“NY JuTo ' BERO Log FEE
7Em L mlar il s | PEARED 10 ST R TEISAT
4 , BELy/
.' - N - ot -
T es/cei s

TEM 120TO;

EPIT/

179 . ~
BETUEA

Program Description

1. Identification
a. Routine Il.abel
COPY
b. Name

Copy a list and append a second list to the copied list.
2. Function

A copy is made of the list IN and to this copy is appended the list
IOUTF. IOUTF is reset as the head of this new list, and IOUTL points

to the last element of the copied portion of the new list,

3. Programming System
FORTRAN II

4. Usage
a. Calling Sequence

CALL COPY (IN, IOUTF, IOUTL)

b. Entry Conditions

IN = Head of the list to be copied
IOUTF = Head of the list which is appended to the copy of IN
c. Exit Conditions

(1) If IOUTF is null, IOUTF is set to point to the first ele-
ment of the copied portion of IN, and IOUTL is set to
point to to the last element of the copy of IH.

(2) If IOUTF is not null, IOUTF is appended to the copy
of IN, and IOUTF and IOUTL are sct as described in .
step (1) above.

d. Error Exits

None.

180

5. Definition of Identifiers

IOUT = A local variable which is the head cell of the copied por-
tion of list IN

-

6. Method

The list IN is copied, one element at a time, into a new list IQUT.

When all of the elements of IN have been copied, a test is made to
determine if IOUTF (the list to be appended to IOUT) is null,

a. If IOUTF is null, set IOUTF and IOUTL as described in
step c.

b. If IOUTF is not null, append list IOUTF to list IOUT and
Proceed at step c.

c. Set IOUTF to point to the first element of IOUT and IOUTL

to point to the last element of IOUT. Then exit from the routine,

7. Other Subroutines Used

AFTER, FROM, LINK, SET.

8. Using Subroutines

DIMEN, EXCPT, INPUTX, POWER, RAISE, RECOVR, SUBST,
WRTEQ, ZEROX, Main Program for Pass 2 of TAG Preprocessor,

181

o 7(2¢u

:Vgg‘ru!:f") L @w)s (2ws)

?\

Q’é:/?')—ﬁ.
(Idw‘l'f') .
(Tdu7 %) =D - /N
“(xdore)
e g e s
(jdu f.S) =
(TdvT)

TINS MULL

VAN I\
cAtLt .szr(Iéu?x)l‘uff) _.F_gj‘.ft_.-., _L__I.’_’f__
e ' GeT (TE€N AnNd LrvKe oF

FLAG FLrM 1;1 tST e:cmcuf

ccarent : '~z zluT_S

\ 57 l{r(/vr) . __3{1(_‘,01')

AL LTFLE
,a'; TER _L "N I3 \-‘

NSGRT ELEMEN '

IuTe ZSUTS o Link oF

wirn IcmT AS /) ‘7\ 18T ELzmenNT

1Ter), TFLS ASS N T A -
Foas. / \ s (Ins)

I Q‘d oT)
| Eery)

| N

AL ¢ A;r:t/’.turs ch-ﬂ' rree)

182

Program Description

1. Identification
a. Routine Label
COTRN
b. Name

Form the tree voltage to node voltage transformation matrix.
2. Function
This subroutine uses the sorted tree branch list, FLIST, to form

the voltage coordinate transformation matrix TC, as a two-dimensional
array-list, such that VN] =[TL] *VT] .

3. Programming System
FORTRAN II

4. Usage
a. Calling Sequence

CALL COTRN (FLIST, TL, NM)
TL = Local variable for the TC matrix used in the main

routine of Pass 1.

b. Entry C onditions

FLIST = A type D list representation of the tree branch de-
scriptions, reordered to VCGLNI sequence.
NM = The maximum node numbers in the TAG connection
list.
C. Exit Conditions

TL contains a two-dimensional array-list representation of
the voltage coordinate transformation matrix TC. TC has NM rows and
NM columns. Entries in TC are either +1 or 0. Each row in TC repre-
sents a path in the tree, from a particular node to the ground (zero)node.

Rows and row numbers correspond directly to nodes and node numbers.

183

Error Exits

When FLIST has been traced through without finding a tree

branch whose positive node number equals I, CALL DUMP is executed

and control returns to the FORTRAN monitor system.

5. Definition of Identifiers
I = Node numbers
L = Position of the tree branch descriptor in FLIST, counting
from the top down
K = Number of some node
X1 = Local variable that corresponds to FLIST

6. Method

Starting at node I = 1 and proceeding to I = NM, a path is traced in

the FLIST tree between each node I and node 0. Because of the nature of

the FLIST tree (every node has a single tree branch positively incident

on it except node zero, which has none), the tree branch voltages in each

path will add with a coefficient of +1 to equal the respective node voltages.

For each node number (I = 1, 2, ---NM) corresponding to a row of

TL, the column entries of TL are generated as follows. The columns of

TL (L =1, 2, ---NM) are ordered to correspond to the branches of the
tree whose descriptors are stored in VCGLNI order in FLIST.

a.
b.

K is set to node number (I).

Trace through FLIST for a tree branch whose positive node

number (NP) equals K. Record its position in FLIST as L.

When such a branch descriptor is found, a +1 is placed in

row I, column L of the TL matrix.

K is reset to equal the negative node number (NN) of the

tree branch found in step c.

(1) 1fK =0, the path from node I to ground has been com-
pletely traced in row I of TL. If the row number I
(corresponding to node I) is the same as the maximum
node number, NM, the TL matrix is complete, and re-

turn is made from the routine. If the maximum node

184

number has not been processed, the node number I is
increased by 1, K is reset to the new node number I,
and the scarch is started again at step b.

(2) IfK +# 0, the path from node I to ground is not com-~
plete, and the search through FLIST continues (at step
b) until the ground node has been reached for the node

number (I) in process.

Other Subroutines Used

ERASEA, PRPTR, STASH.

Using Subroutines

Main Program for Pass 1 of TAG preprocessor.

185

[CdT/ZN) /A/——thf’/\/(/"’ I's7,7¢, NM)

T P »zas%d(ﬂ_\
/ \ E&J«sr— .
E

is E
,m/z AY-LIST

R o TL

=T
(FLIsT)> x /)] T‘

_ Lo (L ‘f / >(L)

I’ — - - . l
! .

: .

i

/‘\jﬁrf\

= /Ger Mz /VN \

L T . wp, NTEN, Nr
’L - ,«/,«./7'/1 /VF s

[T / NSTASH .
N STIsSH N\
pvmpP . TLs ‘,
/ AMD 7L(ZL,0,0 :
KeTURN o .‘.\f" ‘u . ’L/
/ SYsS T‘cf{iﬂ | S
C/‘*éé 57‘45,&/(]-/ __T"/_)a/y’/’

186

Program Description

1.

Identification

a.

Routine Label

DBPCHC

Name

Output a series of card images, including comment cards,

from a list of characters in reverse order.

2.

Function

This subroutine is exactly like DBPCH, except for comment cards.

If IC1 is a C, then IZ is ignored and card text starts in column 2. If

IC1 is not a C, ICl is put in column 1 and the card image is constructed
as in DBPCH.

3.

4.,

Programming System

FORTRAN 1I
Usage
a. Calling Sequence
CALL DBPCHC (P, 1z, ICl)
b, Entry Conditions
P = A list of BCD characters in reverse order
1Z = Statement number
IC1 = Comment card flag word
C. Exit Conditions

(1) For non-comment cards (IC1 # C), the BCD string

in P is inverted and output as a series of card images, with the state-

ment number in columns 2-5, the continuation card number (if any) in

column 6, and the character in ICl in column 1. The card text is in

columns 7-72.

187 -

(2)

For comment cards (IC1 = C), the BCD string in P

is inverted and output as a series of card images with "C" in column 1

and card text in columns 2-72,

(3)

Output is on a print tape, a punch tape, and a save

tape.

d. Error Exits

None.

5. Definition of Identifiers

Z = A temporary head cell for the list of BCD characters output

in A

A = Output buffer

6. Method

The list of BCD characters in list P is output as follows:
List P is tested:

a.

C.

(1)
(2)

If P is null, step (2) is skipped. Continue at step b.
If P is not null, the elements in P are popped up, one
at a time, then pushed down into Z, thereby restoring

the order of the characters in P,

IC1 is tested:

(1)

(2)

If ICl is a C, 1Z is ignored. The card image being
constructed is a comment card and will start in col-
umn 2 of buffer A (at step c).

If ICI is not a C, the statement number in IZ is placed
in columns 2-5 of buffer A and the continuation card
number, if any, is placed in column 6 of buffer A.

The character in IC1 is placed in column 1 of buffer A,

The BCD characters in list Z are popped up, one at a time,

and placed in columns 2-72 (if a comment card) or columns 7-72 (if not

a comment card) of buffer A,

d.

Buffer A is output as a record of 13 BCD words, onto a print

tape, a save tape, and a punch tape.

188

€. Z is tested:

(1) If Z is null, exit is made from the routine,

(2) If Z is not null, and continuation cards have not ex-
ceeded 10 (for non-comment cards), processing con-
tinues at step b(2).

(3) If Z is not null, and 10 continuation cards have been
output (for non-comment cards), the continuation card
index is re-initialized and the process starts over at

step b(2).

Other Subroutines Used

CHLNE, DOWN, ERASE, FOUTPT, HEADC, POPUP, SYMCHL.

Using Subroutines

WRTEQ, Main Program for Pass 2 of TAG Preprocessor.

189

(Déf__CHC) cact DBPCHC(P}_Tz, Icy)

CHaL. CS(Ten
AS AN

ImvTEGCER

jes

Pz'FUr’ tsT
ctemaenr ef P

SAVE 17EM
~u(76m))

\’Déw—‘\

PusH seé v
cresmermnr Down
VA o B]
‘((7=~n) 4
1T

190

@ f?gﬂ

\![c.»nc ER rvc(/?, Is,re e

N
EADC
\#En! \/, = CALD I maLe SUuFS

SCr or s/x
<oLs, aF

CA8D IMREL
-2 A

Is= STATEMENMNT po,
IC= Covtivupr i .9
ICt = SMAR, 1r oL,

R

P. 2

A
0

pe. |

PoPu? 15T .
eLemeryT N 2 f
S4re 1172m

IVSEC LT CHAR,
I¥N TEMI =

KLTw Fosiri
eF A
i

TP PYUNVT TAFE,
ARCH TAPE,
SAVE TRoOZ

191

DoPcHC

N
c\

Program Description

1. Identification

a. Routine Label
DBPCH
b. Name

Output a series of card images from a list of characters in

reverse order,
2. Function

A list, containing a string of BCD characters in reverse order,
is output onto a punch tape, a print tape, and a save tape as a series
of card images, with the statement number in columns 1-5. Before the
list is placed into the output buffer, the BCD string is inverted to the

correct sequence.

3. Programming System
FORTRAN I1

4. Usage
a. Calling Sequence

CALL DBPCH (P, 12)

b. Entry Conditions

P = A list of BCD characters in reverse order
I1Z = Statement number
c. Exit Conditions

The BCD string in P is inverted and output as a series of
card images, with the statement number IZ in columns 1-5 and the con-
tinuation card number (if any) in column 6. The card text is in columns
7-72.

Output is in a punch tape, a print tape, and a save tape.

192

d. Error Exits

None.

5. Definition of Identifiers

Z = A temporary head cell for the list of BCD characters output

into A,
A = Output buffer
6. Method

The list of BCD characters in list P is output as follows:

a, List P is tested:

(1) If P is null, step a(2) is skipped. Continue at step b.

(2) If P is not null, the elements in P are popéed up, one
at a time, and then pushed down into list Z, thereby
restoring the order of the BCD characters in P,

b. The statement number in IZ is converted to BCD and placed
in columns 1-5 of buffer A. If the card image being output is a continu-
ation card, the continuation card number is placed in column 6 of buffer A.

c. The BCD characters in list Z are popped up, one at a time,
and placed into columns 7-72 of buffer A.

d. Buffer A is output, as a record of 13 BCD words, onto a
print tape, a save tape, and a punch tape.

e. Z is tested:

(1) If Z is null, exit is made from the routine.

(2) If Z is not null, and continuation cards have not ex-
ceeded 10, processing continues at step b.

(3) If Z is not null, and 10 continuation cards have been
output, the continuation card index is re-initialized

and the process starts over at step b.

7. Other Subroutines Used

CHLNE, DOWN, ERASE, FOUTPT, HEAD, POPUP.

193

8. Using Subroutines

DIMEN, DPDST, NLINDM, PARTS, SYMCRD, WRTEQ, ZEROX,

Main Program for Pass 2 of TAG Preprocessor,

194

(pBPCH

v
\ExnsE
€KXASE
LIST 2

ves

PoPuP \
PoPUP IST |\

etemenr N
P.SAVE ITEM

—>d(Tem1)

ShwnN

PUSH DOWN

New eLememt
1T 3 wivh
1TeM 2 4(TEM

cac pBpen(P12

R —

P. 2
ol <,k
12T
. &

(T-0->(T<)

195

I.i'jJ\

A}
1

cau erinvilA ke, vy

v TEM| =D
Ke1r Posrian
oF A

PYPUP -
PoruP 18T
ClememT im B
SAve 11&M

tve LLTEM)

———\
(+ENAD
ComyerT \
INTEC2RS M
Is,2¢ To 8<), (.ts Deoiss-8 om 4
STORE 1v ,4"3(IC—*;.:L, 4 0; A

caee mEAd(A,2s 02)

& & = 1T

weire
wekdS FRoOMm A

PysneH TAPE,
SAVE TAPE

— i eme - - e e e — -

196

Program Description

| 1. Identification
a. Routine Label
DBPFH
b. Name

Output a series of card images.
2, Function

A list of BCD characters is output onto a punch tape, print tape,

and save tape as a series of card images, with the statement number in

columns 1-5,

3. Programming System
FORTRAN II

4. Usage
a. Calling Sequence

CALL DBPFH (Z, 12)

b. Entry Conditions

Z = A list of BCD characters in order

IZ = Statement number

C. Exit Conditions

The BCD string in list Z is output as a series of card images,
with the statement number IZ in columns 1-5, and continuation card num-
ber, if any, in column 6. The card text is in columns 7-72.

Output is in a punch tape, print tape, and save tape.

d. Error Exits

None.

5. Definition of Identifiers

A = Output buffer

197

6. Method

The list of BCD characters in list Z is output as follows:

a. The statement number in IZ is converted to BCD and placed
in columns 1-5 of buffer A. If the card image being output is a continu-
ation card, the continuation card number is placed in column 6 of buf-
fer A.

b. The BCD characters in Z are popped up, one at a time, and
placed into columns 7-72 of buffer A.

d. Buffer A is output, as a record of 13 BCD words, onto a
print tape, punch tape, and a save tape.

d. Z is tested:

(1) If Z is null, exit is made from the routine

(2) If Z is not null, and the number of cards has not ex~
ceeded 10, processing continues at step a.

(3) If Z is not null and 10 cards have been output, the
continuation card index is re-initialized and proc-

essing starts over at step a.

7. Other Subroutines Used

CHLNE, FOUTPT, HEAD, POPUP.

8. Using Subroutines

STAT.

198

catl

(ppPFH

(IQ)—/(" ’*)

o8rFH2 T2
P

we&jre 13 B2 b

N\

R
1 I \
3> 69

v

ConvvzieT
IvTEZERS N
Is, IC 70 8¢

sStTok: In A

cace wEaY(A, TS, I2)

_,?5-9 cos. (-5 oF A4
IC = coz. b oF A

worg 2SS FRoM

eIsS?7 A apN To

PRIMY TS P,
Prrcm "1)"/

A drre z‘dp{f

NO

-

\!/
0= (1s) .
|
Y. \ECHLNEN
- K \ INvscrT cu,n/Z\
I~ TESE
| K+t K X KeTH Prsimioay
‘E oF A
\V4
Q<+(.) %fKL)“

Y¥es

No

PoPuP 13T
Cremern™ FReM
2. SAve rr2m
oL TEM)

199

ey = e m——

Program Description

1. Identification

Routine Liabel

DIFA
2. Function

This subroutine computes the absolute difference between the char-

acteristics of two floating-point numbers.

3. Programming System
FAP

4. Usage
a. Calling Sequence

CALL DIFA (A, B, C)

b. Entry Conditions

A and B are floating-point numbers.

c. Exit Conditions

C = absolute difference between the characteristics of AandB

d. Error Exits

None.

5. Definition of Identifiers

None.
6. Method

B is subtracted from A with UFS (un-normalized floating-point sub-
traction and the result stored in the accumulator. Then, -
a. (AC)N 000777777777 U 1’1'7000006000 - (AC)
b. (AC) + 177000000000 - (AC), where + is a floating-point ad-
dition, gives the absolute difference between the characteris-

tics of A and B, which is stored in C.

200

Other Subroutines Used

None.

Using Subroutines

BAKELM, COMBN, MULTS, STRIK.

201

Program Description

1. Identification

a. Routine Label

DIMEN

2. Function

Writes out the "DIMENSION" statements.

3. Programming System
FORTRAN II

4. Usage
a. Calling Sequence

CALL DIMEN (NPT, KIND)

b. Entry Conditions

NPT
KIND

The NPT array of Main 2
The KIND indicator of Main 2

1

c. Exit Conditions

"DIMENSION" and "COMMON" statements written out.

d. Error Exits
None.
5. Definition of Identifiers
IDFSW = An indicator
DEF = A list of type A holding "DIMENSION"
DIM = A list of type A holding "DIMENSION FHB(6), LNH(6),
FMIS("
COM = A type A list holding "COMMON FMIS"
IBLK = A BCD blank
ICOMA = A BCD comma

202

IBRKR =
IBRKL
PLC
ITEMX
KYN
N1

N2

MIS
MIS1
MIS2
MAXTM
SDEF

I

SCOM

6. Method

A BCD right parenthesis
A BCD left parenthesis
A list used to hold the output card image

Temporary storage

Used to hold output information from EXCPT

Used to calculate the dimension of FMIS

Holds the dimension of FCMDMY

Holds the dimension of FTEM1, FTEM2

A list of the following symbols: FS41, FL44, FI41,
FL41, FS11, FL42, FS21, FL43, FS31, FV31l, FG33,
FI131, FG31, FV1l, FG32, FV21l, FL31, FL32, FL33,
FL34, ¥FClii1, FIlli, FCl2, FGll, FGl12, FG13, FLI11,
FL12, FL13, FL1l4, FVD2l, FC22, FI121, FG21l, FQG22,
FG23, FL21, FL22, FL23, FL24, FSDll, FSD21,
FSD31, FC21, FVDl11l, FVOll, FCI22, FGI33, FLI44,
FV41l, FSO41

A list of the following symbols: FVD21, FSD1l, FSD21,
FSD31, FvV21, FSl11, FS21, FS31, FTZ2, FT1l, LNH,
FHB

a. The symbols of SDEF are sent, one at a time, to EXCPT

for

testing and transformation.

If KYN = 1, and N1 is non-zero and N2 equals 2 or greater,
or if KYN = 1 and N1 is = 2 or greater and N2 = 1, then the
symbol is placed in the DIMENSION statement in the form
symbol (N1, N2).
The DIMENSION statement is written out.

b. Set MIS = NPT(2). If KIND is greater than zero, then set
MIS = MIS + NPT(1) + NPT(2) + NPT(3). If MIS >0, set
MIS1 = 26%MIS and output these statements:

203

DIMENSION FHB(6), LNH(6), FMIS(misl)

COMMON FMIS, S1, S2,- - -
where S1, S2 are symbols from SCOM with this character-
istic: each symbol from SCOM is sent to EXCPT for test-
ing., If KYN =1 and N1 # 0 and N2 # 0, then the symbol
is placed in the "COMMON" statement.
Set MIS2 = 3000-(MIS*28+14). If MIS2 > 0, output these
statements: DIMENSION FCMDMY (mis2) COMMON FCMDMY

d. Set MAXTM = max(NPT(2), NPT(3), NPT(4)). If MAXTM > 1,
output this statement: DIMENSION FTEMl(maxtm), FTEM2
(maxtm)
7. Other Subroutines Used

BCL, COPY, DBPCH, DOWN, DUMP, ERASE, EXCPT, EXTRX,
STAT, SYMBL, SYMCH, UPDWN.

8. Using Subroutines

Main Program, Pass 2, TAG Preprocessor.

204

DIimen

L

F;(Iur w)

e

/Put @5\
("QU"&N.A PR
~ DEF

N

/ \57’"@;

/ u !) /
DIM

/’_*\d@5L\

\\ vgz/ A

/ \é‘.f—M_CH
b’aﬁk (P2l B
' IBLK

/ SYMC H
(L" Immo e

JcpmA /
/

[MT 5VMCH ‘
‘ h{h? per«n
R TBRKe,

N

/ pat T_L”)_Y/"C hLiAN
left paren
t*ﬂ IBQKL

-

205

JDLF

ot HMBL |
> '
scgm

. P
V.

\ ensi

PLc

S

Dt‘.F ity
A

|G8Le) (rm)
5

e{\EXHy
5ymbo| from

J)£P ¢ put .
in TEM /

51

1

(N ") <| \>..__.),

L7 Yes
e !
ho ‘

brcmc‘a
r—T“ °»(~2) \——*
| 0
!
i i1

i

L0 BN

o~

o

PN
| 1% 206

. ,(’IBRKL) mD

PLe

-

Con M\E‘- \
(N’)? Push

*n > Prc !

\

lp-2 |
19

s
w m\——

/ C(\m mg
LC /
' Pre,

_h

(0)1 Ve\PL?\

(N2 R BD
k‘pcf pw

e \\Lk...,_

150 VBN
Y 0‘\" P3ren '

M"J PLC

1 ’/*MA)-)(I Tem)

m———— g

R L
0
Pl .
‘P/;/ (3 .
))'

207

lp-2 1

O

(m15)4 (VPTT1)Y)

+(neT(2))

+(NPT(3))
2(mxs)

A
F UPDy,
'REVerse Cam
\In‘?o Pic ;
.,i....,w/
(15)

’e,d"(’(_ Symbp))

from M5
MTin TEM

-\

T R T,
/ ﬂusm
TBRER o

e -

(1 - - no
’ e .
) 757

208 (82

commy
N l‘,

/push PN

... st -t

¥

o Py \

!

15 ‘ . |
- (SC¢M‘):0\,-\"‘“"‘""""ﬁ
- - No

?'Y;»s
Mo

209

210

OymAXTH) |

L
I

ENPT(S))-)(M AXTA)

;'Lﬂ

A

T S——

z
|

®

211 -

e
“BeL

cL

/cn g
(‘M;f vV
Pt in ALC

T NsYmp
 set up
LTEemM :

/
:\ e e

- “W’E@\
(Yeversé Tem
wante PLe

"L

\B(L

Conver
§ MAXTMT >

\F” in th..

¥

_ ush\e‘m
<.¢jhf rén *

L

A DBACH
pre 7

1
= 'EeZ{a\-\

P

LC
z’:wo)

\

N\

A

Program Description

1. Identification
a. Routine Label
DONBD
2. Function

The tens and ones digits of integer I are split out and stored as in-
dividual BCD characters. They are pushed down into list P such that the

ones digit is the first element of P.

3. Programming System
FORTRAN II

4. Usage
a. Calling Sequence

CALL DONBD (P, I)

b. Entry Conditions

I = A binary integer
P = Head of a list

c. Exit Conditions

List P contains the ones digit of integer I in its first element

and the tens digit of integer I in its second element.

d. Error Exits

None.

5. Definition of Identifiers

IX(1) = Tens digit of integer I
IX(2) = Units digit of integer I

6. Method

The tens and units digits of integer I are split out and pushed down

into list P as follows:

212

a. J is cleared to zero. List L is erased.

b. The units digit is split out from I and placed in IX(2). The
tens digit is placed in IX(1).

c. Two elements co}ltaining IX(2), IX(1) are inserted into list
J, with IX(1) at the top of the list. L is set to point to the first element
in J,

d. The new elements are popped up from L and pushed down into

list P, such that the first element contains the units digit in IX(2).

7. Other Subroutines Used

AFTER, BND2, DOWN, ERASE, LINK, POPUP,

8. Using Subroutines

FLTCON, INPUTX, SYMCRD.,

213

cpll

’ o->(T)

mreser N T

~P owniTS DIEIT
o Ix(1)

- TENMS)/.,,r
oo ITKEH)

VAR
‘ 1> K ‘
=3
LAt arTeR(7, Ix(K))

A B
Juse T M =]
QlLemenT AFTE

757 eLe . NCNT
.7 wor T

.,((rx t))»sj @y—

PUVS N rE W
eigMELrT DoUIN
1UTO P owrtrm

‘4(75"‘1)/‘& fem

\Frarve
PorPur 15T .
SLEdMENT Iy
L. SAPE

11em> L(1Em)

S e |

SN LMK
Link oF ur\ i
RLEmMEMT I . %
i

v (T

Program Description

1. Identification
a. Routine Label
DOWN
b. Name

Push an element DOWN into a list.

2. Function

This subroutine pushes a new element down into a list. If the list

is null, a new list is started which points to this new element.

3. Programming System
FAP

4. Usage
a. Calling Sequence

'CALL DOWN (Z, C, IF)

b. Entry Conditions

Z = Head of a list

d(C) = Item of hew element

d(IF) = Flag of new element
C. Exit Conditions

New element with d(C) and d4(IF), if any, is first element
pointed to by Z. The pointer formerly in Z becomes the link portion of
the new element. If list Z was null, the new element will contain a link

of zero.

d. Error Exits

None.

5. Definition of Identifiers

. d(DW90) = Pointer to new element to be pushed down into list Z

215

6. Method

A new element is obtained from AVS and pushed down into Z with
the item portion and flag portion of the element as specified by d(C)
and d(IF).

7. Other Subroutines Used

INTO, NEWLOC.

8. Using Subroutines

BCL, BLNOUT, COMBN, DBPCHC, DBPCH, DIMEN, DONBD,
DOWNS, DPDST, ERASE, EXTRX, FISH, FLTCON, FRACT, GOBLE,
HOLBK, INPUTX, LTRACE, MRKLST, NUMB, PARTS, PUSPCH,
READCH, RECOVR, STRIK, SUBST, SYMCRD, SYMTP, UPDWN,
WRTEQ, ZEROX, Main Program for Pass 2 of Tag Preprocessor.

216

CALL N!wLJz()wqo)

To New Lllmew

- 4’/06099)

. _//
7 No

- ——— AR AR T2 | etz

A(2)—>
a(d(dw 1))
Parmrer IFw 2 J
Boooavy & Linvkg
IN NEwW PUS M
DOWN cELL.
(Dwu\r\"x
R W
3 /l/pww)—)z/g)f
i o
C = am

ARGCOoMEnNT OF
LAl ZInT Y
P STAare mé s ¢

b
-
l
|

!

IF — 34 s
L AREUMEnT rF yes IF ";', ~.
’ CALL PTun
fog) -
; “ awid Sr/zre’mylr
I Stdremev r -
Lo >
] e
@«;/s"
CALL INTJ(DwQJ,d/IF)
/ IrTd. N
[Tresmt s s,

Flae rv IF, ;
-)h/sn bow,

e (k(oupyo))

. ce
N LA

/,”' .
N ,/Y_,a_,, N Qw:a
T

I MTY
T7éMm rar
~— PUSKH DI N

\
\cecl (d(dwpr)

SRS

I
e

1

(l KET N
AN

217

7’

cact zmrad(owan,

1

b

)

Program Description

1. Identification
a. Routine Label
DOWNS
2. Function

The elements of a list are popped up, one at a time, and pushed

down into another list, in reverse order.

3. Programming System
FORTRAN II

4. Usage
a. Calling Sequence

CALL DOWNS (P, I)

b. Entry Conditions

P = Head of the push down list
I = Head of the pop-up list

c. Exit Conditions

List P will contain all elements that were in list I, except

that their order will be reversed. List I is not destroyed.

d. Error Exits

None.

5. Definition of Identifiers

TEMI = A temporary cell whose decrement holds the item of the
element popped up from list L.
TEM2 = A temporary cell whose decrement holds the flag, if any,
of the element popped up from list 1.
J = A temporary head cell whose decrement points to the next

element to be popped up from list L

218

6. Method

a. J is initialized with the contents of the head cell I, thereby
pointing to the first element of list I,
b. J is tested: '

(1) IfJ is null, there are no more elements in the list,
and exit is made from the routine. :

(2) IfJ is not null, the first (or next) element in the list
is popped up, and its item and flag are saved in TEMI
and TEM2Z2,

(3) A new element is pushed down into list P, whose item
is TEMI and whose flag is TEM2,

(4) The link of the element popped up from J is moved to
the decrement of J, thﬁs becoming the pointer to the
next element to be poepped up.

(5) Steps b(l), b(2), b(3), and b(4) are repeated until list
I (pointed to by J) is terminated.

7. Other Subroutines Used

DOWN, FROM, LINK.

8. Using Subroutines

COMBN, GOBLE, INZERO, SUBST, SYMCRD, SYMTP, ZEROX,

Main Program for Pass 2 of TAG Preprocessor.

219

.

(?ffi"NS L cAcLe Da’u{N(/’{f)
I /

‘ -

[m—m l
|

T\ FRSM
I7em AAD
FLAE FloM
\IST elemanmT iV
\J ~9]’EMI) (Tépmr)
—

CALL Fedm(;f) TEM/) TEMX)

—— g

\ Ddwn 2
SuNL deN(P) TEMI TEMZ)

PuSH SL2renT

Powa iMTro LS
P witin rempy) .
And (1omea) i
1

l
1

y
fes L rak N\,

A /N/(T NMT

t.‘L.:merIf

cALL LII«K(T)T)

220

Program Description

1-

2.

Identification

a. Routine Label
DPDST -

Function

Writes out the CALL FMARK statement using dependent stop

variable names.

3.

4.

Programming System

FORTRAN II

Usage

a. Calling Sequence

CALL DPDST (LSTMK)

b. Entry Conditions

LSTMK is a list in list format C which contains the depen-

dent stop function variable names.

c. Exit Conditions

The statement CALL FMARK (.... is output.
LSTMK is unchanged.

d. Error Exits

None.,

Definition of Identifiers

Pl List used to hold LSTMK symbols. Pl is in list
format B,

P Holds Pl in reverse order

ICM BCD comma

IBLK BCD blank

NUM List (format A) used to hold the number portion of

the dependent stop variable

221

ITEM Holds characters as they are popped out of P

LCNT

ITEM Used to convert the BCD number to binary

ITEMI ‘

REST List (format A) used to hold statement to be
output)

REST1 List (format A) used to temporarily hold char-

acter strings to be put in REST

6. Method

RECOVR is used to transform LSTMK, in format C, to Pl, in
format B.

Pl is then reversed into P.

P now holds symbols of the following form: na, na, --- where
n is an integer and a is a string of alphanumerics. Thesearethe de-

pendent stop function names in the form used in input; e.g.,

$1FLXSTI
$2FLXST2

but with the $ stripped off.
REST (in format A) is initialized to hold the first part of the state-

ment to be output:
CALL FMARK(LCNT, FHB, 0, LTYPE, 1, 1, 2, FHC, 3, FT, FSTOP,

The variable names in P are now processed, one at a time. The in-
teger portion of the variable is incremented by 3 and pushed into REST,
followed by a comma, followed by the alphanumeric portion, followed by
a comma, a zero, and a comma. At termination (when P is null), a
final zero and right parenthesis are pushed into REST, and the state-

ment is output. For the two example symbols given above, the output

statement would look like this:

CALL FMARK(LCNT, FHB, 0, LTYPE, 1, 1, 2, FHC, 3, FT, FSTOP, 1,
FLXST1, 0,2, FLXSTZ2,0,0)

222

1. Other Subroutines Used

BCL, DBPCH, DOWN, ERASE, POPUP, RECOVR, SYMBL,
SYMCH, UPDWN,

8. Using Subroutines

Main Routine, Pass 2, TAG Preprocessor.

223

BOLS IN LSTHK

A’VD ;7/7' 7
: O -+ (LeNT)
‘LW\ I — (ITEN)

REVERSE
F/ INTO P

ITEM (NUM)
> (TTEM 1)

(LenT)+(ITEM)
e (ITem —~
(LCNTD
(ITEN)> (0 —>
(ITEN)

/
_ (ITEM)
YW NO

224

v/

(cenr) +3
—> (LcN'T)

CONVERT
(LCNT) TO Bep
AND" PUT”
IN REST

REVERSE
REST / /
INTO REST,

PUSH " O)"
INTO REST

OUTPUT

REST /

225

PProST

Program Description

1. Identification
a. Routine Label
ELIM
b. Name

Eliminate duplicate symbols.
2. Function

Merges two symbol-lists, deleting all common names.

3. Programming System
FORTRAN II

4. Usage
a. Calling Sequence

CALL ELIM (IN, IN1)

b. Entry Conditions

IN is a list of characters in list format C.
IN1 is a list of characters in list format D. It contains a

sequence of variable names separated by commas.

C. Exit Conditions

The symbols in IN1 are merged into IN. Duplicate names
are absorbed, and new names from INl are constructed in IN in for-

mat C. INl is erased.

d. Error Exits
None.
5. Definition of Identifiers
ICM BCD comma
LO List; used to link down through INl

226

L1 Points to the current sublist of L.O

L2 Temporarily used to hold new list constructions

L3 List; points at a subportion of L5

L4 Temporarily used to hold the item portion of L3

L5 List; points at current portion of IN1 being examined
ITEMI Holds the current character in IN

ITEMZ2 Holds the current character in IN1

6. Method

The list IN1l is examined, one sublist (symbol string) at a time.
The variable name in this string is placed in Ll and is used to ex-
amine IN, L5 and L3 are set to start with IN., ITEMI is set equal
to the item of the item of L3, ITEMZ2 is set equal to the item of Ll.
If ITEMI1 and ITEMZ are identical, L3 is set to point to the link of the

item of LL3, Ll is set to the link of Ll, and this process is repreated.

If L.l becomes null, then the next symbol on LO is acquired for proc-
essing. If L3 becomes null, then the remainder of Ll is appended

to L3, If, on comparison, ITEMIl and ITEM2 are not identical, then
L5 is set = L3, and L3 is set = link(LL3), and the process continues,

Subroutine terminates when LO is null,

7. Other Subroutines Used

AFTLK, ERASE, FROM, LINK, SYMCH .

8. Using Subroutines

Main Routine, Pass 2, TAG Preprocessor SUBST,

227"

(ELs T)

L SeT v
-y 7 :C'ol,'f/’.w!
la9=zuu -l
Ko
(400 >
%)/6’5 > . A/UL'L
. \\ . /UO
(70 ‘%
$ 4
- \&eaE \ i/
ZA s |
lzn—w@apﬁ. ’)
SET LR =T 1y
L$:L3

./l'Em{; DP@TEM %

!/TeM[L 3)7(e4
ln?m(z4)e>

wo Y
/ 50/

-

[eerss-¢3 ‘
K/A/L(‘.S—)
> (¢32)

228

(/0

L1k (c4) 7(e3)

P!

ﬁﬂ/{-‘/tzo
TEN 2 7O &

7

229

SffL'% = r A

SeTLs =42

/7S

NLm &
/'J/s_(LI>'7L/C1\i
/

/ Sér_
_27’5/4 2)
= Conerr 4

ELIM 2

Program Description

1. Identification

a. Routine Label

EQFS41
b. Name
Write equation using FS41,
2. Function
Outputs a matrix-multiply equation by using WRTEQ.

3. Programming System

FORTRAN II

4, Usage

a. Calling Sequence

CALL EQFS41(NPT)

b. Entry Conditions

NPT is the NPT array of Main number 2.

c. Exit Conditions

Statements output.

d. Error Exits

None.

5. Definition of Identifiers

HFS41 Holds left part of equation:
"FS41 = FLI44%(FI41
SEFS41 . Holds right part of eugation:
" _FL41%FS11$ - FL42%FS21$ - FL43*FS31$

230

6. Method

If NPT(4) = 0, exit., Else call WRTEQ: CALL WRTEQ(HFS41,
SFS41, 0, 4)

1. Other Subroutines Used

SYMBL, WRTEQ,

8. Using Subroutines

Main Routine, Pass 2, TAG Preprocessor.

231

PYT FS41=
FLI#4 ¥ (F141)’
INTg HES4)

PUT BIG

EQUATrgN VIS
SFsqi

GuTPuT
EQUATIONS

FROM HFS 4,
CFsq)

232

Program Description

‘ l .

Identification

a. Routine Label
EQFV21

b. Name

Write equation using FV21,
Function
Outputs a matrix-multiply equation by using WRTEQ,

Programming System

FORTRAN II

Usage

a. Calling Sequence

CALL EQFV21(NPT)

b. Entry Conditions

NPT is the NPT array of Main number 2.

C. Exit Conditions

Statements output.

d. Error Exits

None.

Definition of Identifiers

HFVZ21 Holds left part of equation:
"FVD21 = FCI22*%(F121
SFV2l Holds right part of equation:

" ~FG21*FV11$ - FG22*%FV21$ - FG23*FV31$
-FL21*FS11$ - FL22%FS21$ - FL23%FS31$
-FL24%FS41$ - FC21*FVDI11$"

233

6. Method

If NPT(2) = 0, exit. ELSE call WRTEQ: CALL WRTEQ(HFV2Zl,
SFV2l, NPT, 0, 2).

7. Other Subroutines Used

SYMBL, WRTEQ.

8. Using Subroutines

Main Routine, Pass 2, TAG Preprocessor.

234

9P EPUHTION

o, ///—‘V,27,

[/

TseP\STmEL
P EQIRTI0n
'\ sV SFV 2/

e —

A

/ wWerea:

y
/ ATPeT EQuato

N2y
\ SFEY 21

235

Program Description

1. Identification
a. Routine Label
EQFV3l
b. Name

Write equation using FV21,
2, Function

Outputs a matrix-multiply equation by using WRTEQ.

3. Programming System
FORTRAN II

4. Usage
a. Calling Sequence

CALL EQFV31(NPT)

b. Entry Conditions

NPT is the NPT array of Main number 2.

c. " Exit Conditions

Statements output.

d. Error Exits

None.

5. Definition of Identifiers

HFV3l Holds left part of equation:
‘ "FV3l = FGI33%(FI31
SFV3l Holds right part of equation:
" -FG31%FV11$ - FG32%FV21$ - FL31*%FS11$
-FL32%FS21$ - FL33*%FS31$ - FL34*FS5418$"

236

6. Method

If NPT(3) = 0, exit. Else call WRTEQ: CALL WRTEQ (HFV31,
SFvV3l, NPT,O0, 3).

7. Other Subroutines Used

SYMBL, WRTEQ.

8. Using Subroutines

Main Routine, Pass 2, TAG Preprocessor,

237

EQFV3/

{/

"\ SymeL
/ SET UP

EQUAT/ION
\//v HFV3/ .

b

: SET R
. EQUATION
N SFV31

ourePur EQ04 -
T/IONS US/NG//
NG 2

/Q ETURN

4

238

Program Description

1, Identification
a. Routine Label
ERASE
b. Name

ERASE a list,

2. Function

This subroutine restores all elements of a specified list, or list

structure, to AVS,

3. Programming System
FORTRAN II
4, Usage

a. Calling Sequence

CALL ERASE (C)

b. Entry Conditions

C = Head of a list, or list structure

C. Exit Conditions

All elements of the list or list structure, pointed to by C,

are restored to AVS. Head cell C is set to zero.

d. Error Exits

None.
5. Definition of Identifiers
Z =. Temporary cell used as the head of a list each of whose
elements point to type 7 elements of a list structure.
Cl,C2 = Temporary head cell used to point to the next element
to be restored to AVS,
El = The first element of a list pointed to by Cl,

239

S2

K2

1P

a.

b.

c.

Method

A cell in whose decrement the item portion of El is
saved.

A cell in whose decrement the flag portion of El is
saved.

A cell whose decrement contains the location of the
second element of a list pointed to by Cl. This ele-
ment contains a full word of data and is the end of a
list. The element linked to this last element is a

type 6.

Z is initially set = 0.

If list C is null, there is no list to be erased, and return is
made to the routine that called ERASE,

If list C is not null, the following steps are executed:

(1)

(2)

(3)

(4)

The pointer in C is saved in C2 and C is set = 0.

(C, the head cell of the list to be erased, is made

"null,")

The loop for erasing a list is initialized by moving the

pointer in C2 to Cl, which makes Cl the new head of

the remainder of the list.

The item and flag of the first element in Cl is saved

in S2 and K2, respectively.

The flag in K2 is tested:

(a) If K2 = 7, an element is pushed down into list Z
whose item contains the decrement of Cl (pointer
to the type 7 element), S2, whose decrement
points to the next sublist to be erased, is stored
in C2, and erasure proceeds again at step c(2).

(b) If K2 = 6, there are only two more elements to
be erased in the list pointed to by Cl, the last
one being a full word of data (e.g., a floating
point number). After these two elements are re-
stored to AVS, execution continues at step c(5)

with a test to determine if list Z is null.

240

(c) IK2# 6or 7, the element pointed to by Cl is
restored to AVS and its link is saved in C2,
When C2 = 0, the end of a list or sublist has been

reached and execution continues at step c(5). If

C2 £ 0, execution continues at step c(2) where

the erasure loop is re-initialized.

(5) The head cell Z is tested:

(@) If Z is null, the end of the list has been reached;
therefore exit from the routine.

(b) If Z is not null, one more element is popped up
from Z, giving the pointer to the next type 7 ele-
ment to be erased. This pointer is stored in
Cl, which becomes the temporary head cell of
the list whose first element is the type 7 element
to which it points. The flag of this type 7 ele-
ment is ignored (as if it were less than 6) and the
proéess proceeds to step c(4) (c) to erase the

type 7 element and all elements appended to it.

7. Other Subroutines Used

BACK, DOWN, FROM, LINK, POPUP,

8. Using Subroutines

BLNOUT, COMBN, DBPCC, DBPCH, DIMEN, DONBD, DPDST,
ELIM, ERASEA, EXCPT, EXTRX, GOBLE, HOLBK, INPUTX, INTLST,
INZERO, MULTS, NLINDM, PUSPCH, READCH, RECOVR, SEGMNT,
STRIK, SUBST, SYMBL, SYMCRD, SYMTP, TREE, WRTEQ, Main
Routines for TAG Pass 1 and Pass 2.

241

Ddww

242

L I NVK

—

() (e)

o=(¢)

[

e
S

T
()= 1)

\ CALL FRIM (C/)Sz)k.?)
der)»4(2), L i
() 2l '

SE1=2 /8T SlemenT
IN LI1ST PorvTED

e 3y C/
\
Ger\ LTNR\ €Act L:N;{(_’/).IPJ

TAINK oF -

. : FLAG ™\
} 77 N\Yes TN To1SE=Y o7 cLzmenty

- — K2 =
‘3@/ S 7] \!& &1 > (1P

r_(;z)-—é ((z_)

P STALT

Cess/0 o
LisT 52

4
caw bswn(zct) ¥

D ura
FPusH Do 1’
AN- eLemenmnT

2 wrrr L2
As 133 /.7Cﬁ!

/ Gack', cace 84cx (zp)
ResSToRr2 Y

\

241 Ccement’

eFlr— _/
Avs

jes %

P BACR\ €At Back(2r)
LAST - Restose

R words | IST etemenT

,r(,.':fouu?cl 7o
TVFPE 7 CLemen T
IN LIST STRucTURE

eFr Ct—
\L Arvs

Jo) —= B ;

243

S)

— LINK\ cAace czng(C/C2)
Bel LINK oF :

o 18T 2lememr
. weor — ;=lacarian
i . 4_[_42) CQF AND e mer

—_— _ X B;Q_c?__\ CALL BACK(CI

I4
— e . - jResTrene”

e ' ’ /ST tremten r\
) w L) =
AvVsS

.

- A . rz
= i e Nes ERAse TYre 7
t S etemenT PoIaTES

10 =
.@ V(CND oF sUesLlST) o BY &(4/)/“’5'

G¢eF PoiwreR

ST
NZIZAN 7o werr SUBLIST,

PO » ONG . £

CLemenmr FROM, 1EANY .

244

Program Description

1-

Identification

a. Routine Label -
ERASEA

b. Name

ERASE an array of lists.
Function

This subroutine restores to AVS the elements of the lists associ-

ated with a vector of 100 head cells.

3'

6.

Programming System

FORTRAN II

Usage

a. Calling Sequence

CALL ERASEA (C)

b. Entry Conditions

C(I) = A vector of 100 head cells

c. Exit Conditions

All non-null lists pointed to by C(I) are restored to AVS.

d. Error Exits

None.

Definition of Identifiers

None.
Method

CALL ERASE (C(I)) is executed 100 time s, (I) being initialized to

1 and increased by 1 each time ERASE is called. The 100 head cells,
C(I), are a FORTRAN array.

245

7. Other Subroutines Used

ERASE

8. Using Subroutines

COTRN, LEVMRK, MULTS, PARAM, STRIK, SYMCRD, TRANS,
XFORM, Main Programs for Pass 1 and Pass 2 of TAG Preprocessor.

246

(Cecrn 1o
. AYS

(RETUZ P)

2417

Program Description

1.

Identification

a. Routine Label

EXCPT

Function

To determine the matrix indices from examination of a circuit

element name.

3.

4.

Progr

amming System

FORT
Usage

a.

RAN II

Calling Sequence

Call EXCPT (TEM,NPT,KYN, N1, N2)

Entry Conditions

TEM A list (type A) containing the characters of the cir-
cuit element name in reverse order.

NPT The NPT array of Main number 2.

KIND (in COMMON) is an indicator,

Exit Conditions

N1 holds the first matrix index.
N2 holds the second matrix index.

KYN indicates the status of N1, N2,

Error Exits

None.

Definition of Identifiers

TEMI1
ITEM
ITMN
ICK

A list that is a copy of TEl\/i
Uscd to hold the first item of TEM
2 Used to hold the previous contents of ITEM
Used to hold the characters C, L, G, in succession,

for examination

248

Method
TEM contains a variable of the form

W X Yy z

where w and x are letters, and y and z are digits.

N1 is set = NPT(y).
N2 is set = NPT(z)

If either y or z is not a digit, set KYN = 2 and return

If x is not a "C," "L, " or "G," and z £ 1,
then set N2 = 1.

If Wis an "S" and KIND < 1, then set N2 = 0.

Set KYN = 1 and return,

Example:
TEM KYN N1 N2
SG 34 - 1 NPT(3) NPT (4)
FPT 2

Other Subroutines Used

COPY, ERASE, POPUP, SYMCH.

Using Subroutines

DIMEN, SYMCRD, WRTEQ, ZEROX .

249

—
,/CaPY
C sk ro remi

l 0 =(N7)
o 2(z)
/=2 (r)

PGPUP TEMI O\
T X TLAL

'Qﬁg yes
wo
(£)+1 (1)
‘ A}
55,
!}~
(Kvw)
ERASE
/
K TEMI

.\ RETURN
Ne—_——

250

¥
. CCIURN

(wPr (item))
— (NV2)

(werGes)y>0n

i
P.7

40

GE7T JU
CHARACHTER

251

252

Program Description

1. Identification
a. Routine Label ’
EXTRX
b. Name

Extract from a list all elements preceding a dollar sign.

2. Function

The list SRC is scanned for a dollar sign, then split into two parts.
The elements preceding the dollar sign are removed from SRC and be-

come the list TEM. SRC and TEM are in reverse order, with the dollar
sign removed.

3. riogramming System
FORTRAN IT
4, Usage

a. Calling Sequence

CALL EXTRX (SRC, TEM)

b. Entry Conditions

SRC = Head of a list

c. Exit Conditions

All elements preceding the dollar sign in SL.C are popped up
from SRC and pushed down into the new list TEM. The dollar sign is
discarded. List TEM will be in reverse order from list SRC,

d. Error Exits

None.

5. Definition of Identifiers

None.

253

6. Method

List SRC is split as outlined below.
a. SRC is tested.
(1) If SRC is not null, an element is popped up and its
item tested:
(a) If the item is not a dollar sign, the element
containing the item is pushed down into list
TEM. The procedure continues at step a.
(b) If the item is a dollar sign, list TEM is com-
plete and exit is made from the routine.

(2) If SRC is null, exit is made from the routine.

7. Other Subroutines Used

DOWN, ERASE, POPUP, SYMCH.

8. Using Subroutines

DIMEN, WRTEQ, ZEROX.

254

EKTKX CAce Exrex(shc, TEM)

Y
\ SYmcH
$5(s)
AS AM
INTECER

CALL S\//'/?Ch'(rs) l) IHS)

Yes
SRC MNultL >

XY

PoruP 167
etementT OF

SRC, Save
trem > 4078

S reroan)

~ <N

Pd wnrl
Pvspn arew \
CLemer'T Do

9
L

w

IMTO TEM™M
w [17em s
e~

255

Program Description

1. Identification
a. Routine Label
FISH
b. Name

Extract all the data associated with the I, J position of a

matrix in array list format.
2, Function

FISH provides a process for extracting all the coefficient data,
one piece at a time, from the I, J position in matrix, M, represented
by a type E array list, For a two-dimensional array list, FISH is
identical to SNATCH, and places in FTEM the data word as sociated with
I, J in matrix M. For a four-dimensional array list, FISH finds the
submatrix position, NN, NP, of the first unprocessed, non-zero data
entry in the I, J position of matrix M, and returns the values of NN,
NP and their associated data word, FTEM. In addition, ICNT is re-
turned containing a set of pointers to the next non-zero entry in the I,
J submatrix of M. Continuous applications of FISH to M(I,J) will ex-
tract on a onc-at-a-time basis all the non-zero data entries in the I, J
submatrix of M as well as all their corresponding submatrix indices,
NN and NP,

3. Programming System
FORTRAN II

4. Usage
a. Calling Sequence

CALL FISH (M, I, J, NN, NP, FTEM, ICNT)

b. Entry Conditions

M = A two-dimensional or four-dimensional matrix repre-

sented in an array list of type E format

256

I = Index of the row lists
J = Index of the column lists
c. Exit Conditions
NN = Negative node number.
NP = Positive node number,
ICNT = A special list whose elements keep track of the man~

ning position of the NN, NP sublists.

When M is a two-dimensional matrix:

(1) If J was found with a flag = 6, the data word in the element
linked to J is placed in FTEM. ICNT is made null and NN,
NP =0,

(2) If J was not found, ICNT will be null, NN, NP, FTEM =0,

When M is a four-dimensional matrix:

t1) I J was [ound with a flag £ 4, and thic w
(ICNT null), return is made with FTEM along with its
identifying NN, NP.

(2) If J was found with a flag # 6 and ICNT was not null, return
is made with the next non-zero FTEM along with its NN, NP,

d. Error Exits

None,

Definition of Identifiers

M(1) = Ith list structure of array-list M.,

ICNTI = An element pushed down into ICNT whose decre-
ment contains the location of the next NN sub-
list of J in M(I).

ICNTZ2 = An element pushed down into ICNT whose decre-
ment contains the location of the next NP sub-
list of J, NN in M(I).

1C = An element popped up from ICNT whose decre-

ment gives the location of the next NN or NP
sublist of J in M(I).

257

6. Method

The search through M(I) for FTEM and its identifying NN, NP is
performed as outlined below.
a. FTEM is cleared to zero,
b, ICNT is tested. If ICNT is null, continue at the next step.
If ICNT is not null, proceed to step d to continue.
c. ICNT is null., M(I) is scanned to locate J.
(1) If J cannot be found, NN, NP are cleared to zero and
exit is made from the routine with no data word in
FTEM.
(2) If J was found, its flag is tested to determine if a
data word is appended to the element containing J.
(a) If flag (J) = 6, there is a data word. ICNT is
made null, the data is placed in FTEM, NN,
NP and cleared to zero, and exit is made from
the routine,.
(b) If flag (J) # 6, no data word is appended to J.
The search continues to the element whose item
points to an NN sublist.
(i) The link of this element is saved in d
(ICNT1). d(ICNT1) is pushed down into
the ICNT list to keep track of the location
of the next NN sublist.
(ii) NN is extracted and saved in d (NN),
(iii) The search continues to the element whose
itemm points to an NP sublist.
o The link of this element is saved in
d (ICNT2). d(ICNTZ2) is pushed down
into the ICNT list to keep track of
the location of the next NP sublists.
o NP is extracted and saved in d (NP).
o The data word in the element ap-
pended to NP is placed in FTEM,

258

(c) FTEM is tested.
(i) If FTEM # 0, exit is made from the rou-
tine with FTEM and its identifying NN, NP.

The first element in ICNT will contain the

location of the next NN or NP sublist,

(ii) If FTEM = 0, ICNT is tested.

o If ICNT is null, NN, NP are cleared
to zero and exit is made from the
routine,

o If ICNT is not null, continue at

step d.

d. ICNT is not null.
(1) The first element in ICNT is popped up into the d(IC).
(2) ICNT is tested.
(a) If ICNT is null, the d(IC) is used to initialize
" the location of the next NN sublist,
(i) IC is tested. .

o If IC is null, NN, NP are cleared to
zero and exit is made from the rou-
tine with FTEM = 0.

o If IC is not null, proceed to step
c(2)(b)(i) to continue the scan to the
element whose item points to the
next NN sublist.

(b) If ICNT is null, the d(IC) is used to initialize the
location of the next NP sublist.
(i) IC is tested.

o If IC is null, return to step d(1) to
continue.
o If IC is not null, return to step

c(2)(b)(iii) to continue.

259

Other Subroutines Used

DOWN, FRFL, FROM, LINK, LOCATA, POPUP.

Using Subroutines

MULTS

260

, » FITSH cacct FJ’SH(M’I/J‘)NN’NFJ FT.E/"JI _z‘c/\/f)

-

_ “Ei’ﬂ_\ ;
Yrem Flom i
'8 7 etcmeﬂr\ :
w T = /
dler) /

|
I

ey &(Le qc/ur\
sa0 L P —91(J’.T)

AE DL £ ?"

cAact FRFA(L PP FTEM)

|
|
!
|
|
]
oKX 'Q

1 ‘>
A s€r
eael Lzﬂfn/l@zﬁf’) \cLrk . LPP= ~
LIV K oF /"'"'\w(, ! E\ :
5 elememT im LP; Oara 1w LFP>
A DLcrr) [word | "9<F7'Em) /

VE.:
' Q——é o0->(zerr)
DA?A o X

261

‘ g .
: : : N .
. . Q.
3
N : _
. ' - ‘ _
. ~ .
| R '

oo

y €A p,}pj_f&’rcﬂr re)

X PaPUP :
PrPup 15T

etemenwT 12
SemNT, ITeMm

= d(1¢) .

|
V

L1sr TewnT

roee ¥

(::}aapﬁ} o | ;

0»&

|

\Cy ,

Cpce LIMrR{poN, LPPE

\LZrE\

LINK oF (37T
CLe MarT M

(P rN =2 ST
Llerrr) f

A

o=

/\ERdm\ |

11em FRom s !
LINK off 15T etemernt T ;o
l2mevT IN LANN =
Llrorv)
!
v ALt Dd,u,u(¢HT ’(NT/) e |
D'!g’ﬂ Cé/)[‘_\

e FRrA 45
=B (ecemens 1202

—u‘/znvj

- CALL de.‘v(&f.D/LpN/./)

PUSH LowH \
rE L c:.e.mcu'r/ e+ e e i e maes

STenr Wv?"/
/1‘[.‘{/'7 l) AS/
LTE2M

PIRER|

262

cace FRIM(LPPA,

AL FRFL\{P.F/.; f«’.fM)
(FRFL \

PATA 1A /57
ClemenrT
LPrPApP

o
_FTEM Fffn /

za.{t 4zm<(pum L £22)

Ltk aF XY 2
ELEMENT 1A/
LEMP D

4L Idid P/’)

can ﬂcy;(m,// w?)
rFRdM |
ITeMm FRIM
18y 2L e M2
1IN LPIMPD

;((/"’)

A

|
lcacs ff/dv/zf "c’-/’ﬂ?)

BANGEY X B
(TEM A 2Mm N

l1sr €te.ner? yn
LAPP =D

LltpwP)

rw) :

oM Q20

Moy BLEMENT -
- Temt T ot ‘
J(Io«n)»s . ‘

\
SiemeNT N
LAPPP =D /
{(TCN/ }-)

caLl LI M K(Lr,"‘ —T(NT:'.)

Program Description

1. Identification
a. Routine Label
FLAG
b. Name

Insert a FLAG into an element,
2. Function

This subroutine inserts a flag into the tag portion of the first ele-

ment of the first sublist pointed to by a given head cell.

3. Programming System
FORTRAN II

4. Usage
a. Calling Sequence

CALL FLAG (X, IFLG)

b. Entry Conditions

X = Head of a list
IFLG = Flag to be inserted into the element of a sublist

c. Exit Conditions

The first element of the first sublist pointed to by X will
have IFLG as its tag.

d. Error Exits

None.

5. Definition of Identifiers

Z = A temporary head cell
ITEM = A temporary cell used for storage of the item in the

first element of a sublist

263

Method

a. The item portion of the first element in list X is saved in

Z. This item is a pointer to some sublist.

b. The item portion of the first element in Z is saved in ITEM,
c. ITEM is returned to the first element of Z along with IFLG
as its tag.

Other Subroutines Used

FROM, INTO.

Using Subroutines

STRIK, TREE, XFORM.

264

o

L AG
(,MF) cace feac (x rrce))

\\. fbﬂdl'"‘ﬁ_
2rEm b m cace regm (X 2)

1ST . nNEMT
v X =P L?)
T PO M
|

— s .
T UFRIMN CAce redmz,27:m)
Trewm FRom 4
(157 eLemenr

\ IV 2o d(11Em) .

[o
N\
-V
YA |
R2PiACE 272m cAce InM7o (‘2/.775/")_ZF1.()

\ANVL FLLL g
e g ain

v 2
ST '\J"‘M)
Nlreegl)

265

Program Description

1, Identification

a. Routine Label

FLTCON
b, Name
Floating-point conversion
2. Function
To convert a floating-point number to BCD

3. Program System

FORTRAN

4, Usage

a. Calling Sequence

CALL FLTCON (X, LST)

b. Entry Conditions

X contains floating-point number.
LST is a list.

c. Exit conditions

X is converted to BCD and the characters pushed into LST;
an asterisk is pushed into LST after X,

5. Definition of Identifiers

MULTS BCD " *"

FLOG

ICH Used to compute the exponent
FICH

FRAC Fractional portion of X

SIGN Used to hold the sign portion
EXP BCD "E"

266

T ., VR, S T R TR R Tmm—)

Method

The exponent of X is placed in ICH,

The fractional part is placed in FRAC, _
The algebraic signs of ICH and FRAC are determined.
The sign (FRAC) is pushed into LST.

Decimal point is pushed into LST, '_

(FRAC) is converted to BCD and pushed into LST.

"E" is pushed into LST,

Sign (ICH) is pushed into LST.

ICH is converted to BCD and pushed into LST.

An " *" is pushed into LST.

Other Subroutines Used

DONBD, DOWN, FRACT, SYMCH.

Using Subroutines

COMBN, SYMCRD,

267

rPuT X IN
MoLTE

|

Loy (101Y A7 46)

(ro5) »(1cH)

A

F3

100

[(EL86)+ [-(rcH)

268

Creid) 2 (F1cH)
1(%) <]

> (FRAC)

Crem) =1 > (1eu)

Cren) S(Fier)

/(75) (Fresd]
- (FRAC)

-
o

Cre)+ 1=(1cH)
Crert) = (FieH)

/(%5) CereH) /,,
(FrAC)

269

PusH Gram) s
INTD LST

ConvseT FEAL

70 EBLD &

PosH AJTD
LET

SVric i

EXP

¥

PUT TV J07
Sier

PusH Csibu); 5
wro LST

=Y. -

Dgu
Pusd (mulTs
JOTD BT -

RETURNL

270

Pur mmes

srbn m
<16 A

Pusi ($tbn)
JNTO 18T

\
RETOR L

Program Description

1. Identification
a. Routine Label
FOUTPT
b. Name

Write one record on FORTRAN Monitor tapes.
2, Function

This subroutine writes 13 BCD words of a buffer, as one record,

onto a print tape, a punch tape, and a save tape.

3. Programming System

FORTRAN II

4, Usage

a. Calling Sequence

CALL FOUTPT (A)

b. Entry Conditions

A = A buffer that holds 13 BCD words.

c. Exit Conditioris

Contents of buffer A are written on a FORTRAN Monitor

print tape, punch tape, and save tape.

d. Error Exits

None.

5. Definition of Identifiers

None.
6. Method

The contents of buffer A are written as one record onto a save tape,
a print tape, and a punch tape. The subroutine PAGEHD is used to con-

trol the page eject and title printing for each new page.

271

Other Subroutines Used

IO0PS, PAGEHD.

Using Subroutines

DBPCHC, DBPCH, DBPFH, INPUTX,

272

cacl FlorrT(s)

—X
PRIV PASE

TiItte v ~erscs
LINE Coun?)
8y o2mr/2

AGE S\ CALL PAse Hn(J.ﬂSm)

\Io®rs

wRITC 1> B¢t
woldd R€zZond

(A) ew T2

\5__,4 V_c 'TA 144
|
¥

wRriTe 13 9’-0/
Loann @ercoRS
(A) on 70

preINT
Tarl

cact Theslp)

wﬂ/f‘ /3
Bc D wrR2
wecont (A4)

onv TC
puarcH

TAPE

273

Program Description

1. Identification
a. Routine Label
FRACT
b. Name

Convert a floating-point number to BCD and push the BCD

characters down into a list,
2. Function

The floating-point number A is converted to decimal and stored
as a sequence of BCD characters in list L. Storage is in reverse order,

with the least significant digit at the top of the list.

3. Programming System
FAP

4. Usage
a. Calling Sequence

CALL FRACT (L, A)

b. Entry Conditions

A = Floating point-number

c. Exit Conditions

List L. will contain a sequence of BCD characters, in reverse

order, of the converted number in A, Each element in L will have a flag
of 5.

d. Error Exits

None.

5. Definition of Identifiers

None.

274

6. Method

The floating-point number in A is normalized and saved in the ac-
cumulator. The number in the accumulator is converted to 8 BCD char-
acters and pushed down into list L, each element containing one BCD

character as its item and a flag of 5.

7. Other Subroutines Used

DOWN

8. Using Subroutines

FLTCON

275 °

o (FeacT) CARL FceACT(/./A)

A\
—]
L4 (FK’:cy"i

NolmAli2e
FLr, PT, ~Vo.
v AL

lonvvelLT
- FCTr. FT. I~ AC
7o 4 Becp. | -
—— CHACACTER,

T - SAVE /N FEDTT

(4 / /-.9 5
UVSH A BcD

CHAR, 2ewopm
Imora LIST L FETFI = s7¢m

Sz rrpe

CHALZACTLZY -
PLoCESSC Y

-‘276

Program Description

1. Identification
a. Routine Label
FRFL
b. Name

Replace the contents of a word.
2, Function

This subroutine replaces the contents of a given word with the

contents of the first element of a list,

3. Programming System
FAP

4., Usage
a. Calling Sequence

CALL FRFL (I, A)

b. Entry Conditions

I = Head of a list

A = A full word of information

c. Exit Conditions

The first element of list I replaces the contents of A.

d. Error Exits

None.

5. Definition of Identifiers

None.
6. Method

1. d(I) - (LOC2)
2, ((LOC2)) ~ (A)

277

Other Subroutines Used

None.

Using Subroutines

FISH, LTRACE, MATOT, SNATCH, SYMCRD.

278

Program Description

1.

Identification
a. Routine Label
FROM
b. Name
Extract item and flag FROM an element.
Function

This subroutine extracts the item portion and flag portion, if any,

from the first element of a list.

3.

made

6.

Programming System

FAP

Usage

Calling Sequence

CALL FROM (Z, C, IF)

Entry Conditions

Z = Head of a list

Exit Conditions

d(C)
d(IF)

Item of the first element in Z

Flag, if any, of the first element in Z

Error Exits

If list Z is null, CALL DUMP is executed and return is

to the FORTRAN monitor system.

Definition of Identifiers

None.

Method

The item portion and flag portion, if any, of the first element in

l1st Z is extracted from the element and placed in the decrement of C

279

and the decrement of IF, respectively. If Z was null upon entry to this
routine, CALL DUMP is executed and return is made to the FORTRAN
Monitor System.

1. Other Subroutines Used

None,

8. Using Subroutines

COPY, DOWNS, ELIM, ERASE, FISH, FLAG, IDNTP, LEVMRK,
LOCAT, LOCATA, MATFT, MATOT, MRKLST, INVST, POPUP,
PRPTR, READCH, RECOVR, SNATCH, STASH, STRIK, SYMCRD,
SYMTP, WRTEQ, Main Programs for Pass 2 of TAG Preprocessor.

280

o
YA)

< F@ JAceL anbm(z 2
" -) ’

" PorvreR To
L L1ST &

\

cacl 'oump/

AA/D /
E‘TL FR?D Yyes /4,57- 2
" ~uu_ 2
/

SV"E

Mm})n (Ac)

r(/-»()-e' 4(@);';

ITerm ©oF 1S T !
eeemenT '

— d(c)

/15\

Ao 7H6RC LYV

T TS
1274 (AL‘ //
2
~
‘Yes

Y
| & (cdWn £(7F)

2 FLA¢ ¢efF
I1ST QleménT

D L(IF)

$/l'\‘;io,

(/?fﬂ/fu

281

A

F)

Program Description

1. Identification
a. Routine Label
GOBLE
b. Name

Read TAG connection lists from tape and from WLIST.
2. Function

This subroutine reads the TAG connection list, removes punctu-
ation and excess characters, converts BCD characters to binary, and
stores a descriptor at a time in WLIST. NM is set to the maximum

node number and NT will hold the total number of branch descriptors.

3. Programming System
FORTRAN II

4. Usage
a. Calling Sequence

CALL GOBLE (WLIST, NM, NT)

b. Entry Conditions

The TAG connection list will be on a FORTRAN input tape
in BCD,

C. Exit Conditions

WLIST is formed as a two-dimensional list representation
of the TAG connection list. Each branch descriptor is represented by
a sublist with 3 or 5 elements. Branch ordering is not changed. All
components of the branch description are represented by binary integers.

The element type characters are replaced by the following integers:

vV =1
CcC =2
G =3

282

L
N

I

4
5
6

Node numbers, transformer turns, and transformer numbers are

converted directly to binary. NM will contain the maximum node num-

ber in the connection list. NT will contain the total number of branch

descriptors.
d. Error Exits
None.
5. Definition of Identifiers
P = A temporary list used in processing the branch de-
scriptors. P contains an inverted copy of the TAG
branch connection list. Allblanks are removed and
the terminating * is not included. P is a one-
dimensional list with one character stored in each
element,
A = A local variable, dimensioned at 14. Used for input,
output of BCD characters,
I = Index for BCD words being processed.

IEXM(I) = A local variable dimensioned at 6. Contains the 6
allowed terminating characters for a branch
descriptor.

ITEM = Contains the current character being processed.
ERRORI1,
ERRORZ = Temporary lists that hold the characters for error

6. Method

comments to be printed.

The TAG connection list is read in to form WLIST as follows:
Clear KTRN, KIND, NM, NT to zero.

ERASE P list and WLIST. .

Store six characters blank *, S/ - in IEXM(I), I =1, 6.
Read 13 BCD words (branch descriptors) from tape and
store in A(I), I =1, 13,

Write 13 BCD words from A(I), I 1, 13 onto a print tape.

a.
b.
C.
d.

283

i.

The Ith character of A is placed in ITEM and compared with

IEXM(2) to determine if the character is an asterisk (%),

(1) If ITEM contains an *, discontinue reading the input
tape and proceed to step i to continue.

(2) If the character in ITEM is not an %, proceed to the
next step.

The Ith character of A in ITEM is compared with IEXM(1)

to determine if the character is a blank.

(1) If ITEM contains a blank, ITEM is not pushed down
into P list. Go to step h to continue.

(2) If ITEM does not contain a blank, a new element is
pushed down into P list with the d(ITEM) as its item.

Iis tested:

(1) IfI#72, storel+ 1inl. Return to step f and continue.

(2) IfI =72, return to step d and continue processing.

An asterisk has been read (step £(1)):

(1) Clear NTRN, NNTR to zero. Initialize flag word
KSW to 1.

(2) Segment list P at the first comma encountered (after
the first descriptor in list P), Form a new list Q
containing the segmented portion of P (first descriptor
followed by a comma). P will contain the rest of the
descriptors. Set flag word K.

(3) ERASE list ERRORI1.

(4) Popup list Q and push elements down into ERRORI.
List Q is not destroyed.

(5) K is tested:

(a) If K = 3, list P was null., Exit from the routine,
(b)) IfK =1 or 2, segment list Q at the first / or -
encountered in the descriptor. Form new list R
of segmented portion of Q. Set K.
(i) ForK=1o0r4, a/ was found or Q was

null. Go to step j to print error comment,

284

(6)

(7)

(8)

(ii) If K =2, a ~ was found. Proceed to step
i(12) and continue.
(iii) If K=3, a/ or - was not found within the
’ descriptor. List Q is now null and list R
contains the elements formerly in Q.
Continue at next step.

The first two elements in list R are popped up and

their characters converted from BCD to binary, then

saved in NP, K is set.

(a) If (K~2) £0, either R was null or one of the
digits popped up from R was non-numeric. Go
to step j to print error comment.

(b) If (K-2) = 0, the digits in the two elements
(popped up from R) were converted.

Popup the next two elements in R, convert them to

binary, then save the converted number in NN. Set

K.

(a) If (K-2) £ 0, go to step j to print error com-
ment (same conditions as in (6)(a) above).

(b) If (K-2) = 0, the digits popped up from R were
converted. ,

Match the item of the next element in R with a number

of the array, VCGLNI, to determine the type of branch

descriptor being processed. The number corresponding
to the position of the matched character in the above
array is saved in NE,

(a) Popup the next element from R (whose item was
just matched) and store in the decrement of
ITEM. Test NE,

(i) I NE =1, 2, 3, or 6, go to step i(10) to
continue,
(ii) If NE =4, go to step i(9)'to continue.
(iii) If NE M 5, go to step i(11) to continue.

285

(9)
(10)

NE

4 (branch descriptor of type L) set KIND to 2.

NE =1, 2, 3, 4 or 6 (branch descriptor of type V, C,
G, L, or])
(a) Test KSW.
(i) If KSW = 2, go to step to print error
comment.
(ii) If KSW = 1, continue.
(b) Test if R is null.
(i) If R is null, go to step j to print error
comment.
(ii) If R is not null, continue.
(c) Popup the next element in R. Save its item in
d(ITEM).
(i) If the character in ITEM is not an S, go
to step j to print error comment.
(ii) If ITEM does contain an S, continue.
(d) Test if R is null,
(i) If R is null, go to step i(10)(f) to continue.
(ii) If R is not null, proceed at next step.
(e) Popup the next element in R, Save its item
in d(ITEM).
(i) If ITEM does not contain comma (,), go to
step j to print error comment.
(ii) If the character in ITEM is a (,), continue
at the next step.
(£) ERASE list R.
(g) Push down a sublist into WLIST containing ele-

(h)

ments with item NE, NN, NP, NTRN, NNTR for
the descriptor just processed.

NN is compared with NM,

(i) If NN > NM, NN replaces NM as the max-

imum node number. Proceed at step (i)

below.
(ii) If NN < NM, NM is unchanged.

286

(i) The NP of the descriptor is compared with NM.

(i) If NP > NM, NP replaces NM as the max-
imum node number,
(ii) If NP < NM, NM is unchanged.

() NT, which holds the number of branch descriptors,
is increased by 1.

(k) Return to step i(1) to continue processing of the
next descriptor in list P, |

(11) NE = 5 (transformer branch descriptor SN)
(a) Test KSW.
(i) If KSW = 1, go to step j to print error
comment.
(ii) If KSW = 2, continue at step i(10)(b) above.
(12) A - was found within the descriptor. (transformer)

(a) Set KSW to 2.

(b) All characters in R up to 10 are connected from
BCD to binary and saved in NNTR, K is set to
number of actual characters converted.

(c) Set KTRN to 2.

(d) Segment list Q at the first / encountered within
the descriptor. Form new list R from segmented
portion of Q (upto and including /). Set K.

(e) Test K.

(i) If K=2or 3, a/ could not be found or Q

was null. Go to step j to print error

comment,
(ii) If K =1, continue at next step.
(£) All characters in list R up to 10 are converted

from BCD to binary and saved in NTRN. K is
set to number of characters actually converted.
(g) Test R.
(i) If R is null, go to step j to print error
comment,

(ii) If R is not null, continue.

287

(h) Pop up the next element in R. Save its item in
d(ITEM).
(i) Test R
(1) If R is not null, go to step j to print erase
comment.
(ii) If R is null, move the pointer in head cell
Q to head cell R. List R is now pointing
to the remaining elements which were in
Q. Q is made null. Return to step i(6)

to continue processing.

An error has been detected during the descriptor processing.

(1)

(2)

(3)

(4)

(5)

(6)
(7)

(8)

Place the characters "/ IS IN ERROR" into list
ERROR2.
Insert a blank into the first position of A.
Set I to 2.
Test list ERRORI.
(a) If ERRORI1 is null, continue at step j(8).
(b) If ERROR1 is not null, proceed to next step.
Popup the next element in ERROR1. Save its item in
d(ITEM).
Place character in ITEM into the Ith position of A,
Test I
(a) If 14 72, increase I by 1 and return to step
j(4) to continue processing for error comment.
(b) IfI =172, priht error comment from A(I),
I1=1, 13, CALL EXIT and return to FORTRAN
monitor system.
ERROR! was null,
(a) Test list ERROR?2
(i) If ERRORZ2 is null, store a blank character
in ITEM and g;) to step j(6) to continue.
(ii) If ERROR2 is not null, popup the next
element from ERROR2 and save its item in

d(ITEM). Go to step j(6) to continue.

288

7. Other Subroutines Used

CHLNE, DOWN, DOWNS, ERASE, IDN