
• ,q,

TAG TECHNICAL MANUAL

PRC R-939

22 January 1967

Prepared for

Jet Propulsion Laboratory

(ACCESSION NUMBER)

1

"(_IASA CR O1_ TMX OR AD NUMBER)

N67- 2 5 8 7 2

(_rEGORY)

PLANNING RESEARCH CORPORATION
LOS ANGELES, CALIFORNIA WASHINGTON, D.C.

This work was performed for the Jet Propulsion Laboratory,
California Institute of Technology, sponsored by the National
Aeronautic s and Space Administration under Contract NAS7-100.

https://ntrs.nasa.gov/search.jsp?R=19670016543 2020-03-12T11:29:53+00:00Z

TAG TECHNICAL MANUAL

PRC-R-939

22 January 1967

Prepared for

Jet Propulsion Laboratory
Under Contract Number 951553

By

Kenneth GiUett

Daniel W. LaDage
Genevieve L. Michalski

John L. Overbey

PLANNING RESEARCH CORPORATION

LOS ANGELES. CALIF. WASHINGTON, D.C.

This work was performed for the Jet Propulsion Laboratory,

California Institute of Technology, sponsored by the National

Aeronautics and Space Administration under Contract NAS7 - 100.

PRECEDING PAGE BLANK NOT FILMED.

ABSTRACT

The TAG Technical Manual presents a detailed description of the

Transient Analysis Generator (TAG) program, which was developed at

the Jet Propulsion Laboratory of the California Institute of Technology.

This manual was written primarily for the programmer who might be

required to maintain or modify the TAG program; however, it should

also be of significant interest to the user who desires more than a su-

perficial understanding of the program. Included in the text are (I) a

description of the analytical processes employed by TAG to generate

and solve the circuit equations; (2) a brief description of the list proc-

essing techniques used to generate the equations and the FORTRAN

code for the network solution program; and (B) a detailed writeup and

flow chart of the two main routines and all the subroutines that com-

prise the TAG system.

iii

oPRECEDING PAGE BLANK NOT FILMED.

I.

IV.

Ve

VI.

VII.

TABLE OF CONTENTS

INTRODUCTION 1

A. Background Summary 1

B. Program Capabilities 1

C. Programming and Computer System

Requirements 3

TAG PROGRAM DESCRIPTION 5

A. Equation Formulation 5

B. The Solution of TAG Equations 38

TAG LIST PROCESSING 51

A. Definition of TAG List Properties 51

B. Basic TAG List Operations 55

C. Examples of List Structures Found in TAG 56

TAG PREPROCESSOR MAIN PROGRAM 59

Overall Description of the TAG Preprocessor 59

First Pass Writeup and Flow Chart 61

Second Pass Writeup and Flow Chart 78

Ao

B.

C.

TAG EXECUTION PROGRAM

A. General Description

B. Detailed Description

C.

.................... 123

..................... 123

..................... iZ3

Example Execution Program 129

TAG SUBROUTINE WRITEUPS 133

A. Program Hierarchy 133

B. SuSroutine Writeups and Flow Charts For TAG

Preprocessor 135

C. Subroutine Writeups and Flow Charts for TAG

Execution Program 549

DOCUMENTATION SYMBOLS AND CONVENTIONS 613

v

PRECEDING PAGE BLANK NOT FILMED.

•

to

3.

4.

So

6.

7.

8.

9.

10.

ll.

12.

13.

14.

15.

16.

LIST OF EXHIBITS

Sample Network

Trees of a Network

Proper Tree

Relationship Between Basis Voltages and

Branch Voltages

Tree With User Assigned Branch Reference System..

TAG Voltage Basis Reference System

Network With Ideal Transformer

Multiple Transformers

Example Circuit For Basis Voltage Elimination

Example Network Demonstrating Generation of
Node System Equations

Example Network Demonstrating Singularity of

Node System Capacitance Matrix

Sample Network With No Transformers

TAG Proper Tree

TAG Network Equations in Partitioned Form

Example Network Demonstrating Singularity of

Node System Capacitance Matrix

Example Network Used in Demonstration of

Numerical Integration Techniques

General Organization of the TAG Execution Program .

FORTRAN II Program Using Solve For the Solution
of Equations

5

66

8

9

10

ll

14

16

17

23

25

35

36

4O

42

47

124

594

vii

I. INTRODUCTION

Ao Background Summary

1. Label

TAG

Z. Name

Transient Analysis Generator

3. Author

Mr. William J. Thomas

4. Sponsor

The Jet Propulsion Laboratory of the California Institute

of Technology

5. Effective Date

2 August 1966

B. Program Capabilities

1. Field of Applicability

TAG is an electrical network analyzer which performs its

function by means of mathematical simulation.

Z. Types of Simulation

TAG is primarily a transient performance simulator; how-

ever, it will perform DC steady-state analysis as a special case of tran-

sient simulation.

3. Types of Networks

TAG will provide accurate simulation of a large class of

linear and nonlinear networks that can be described by some connected

set of the allowed lumped parameter elements.

e Standard Elements

As standard circuit elements, TAG allows only the following"

reciprocal

So Computational Techniques

Equation Generation:

Program Generation:

Transient Solutions •

Nonlinear DC Solution:

List Processing

List Processing

Adams - Moulton Variable

Step-Size Integration

Newton-Raphs on Iteration

voltage sources, current sources, capacitors, conductances,

inductances, and idealtransformer windings.

5. Element Modifications

Any of the standard element parameters (with the exception

of transformer windings) ma 7 be modified during the simulation process

as a continuous or piece-wise continuous function of time, node pair

voltage, or node pair voltage integral. Such functions are provided to

allow modeling of nonstandard devices and must be expressed in terms

of FORTRAN H arithmetic statements or closed subroutines.

6. Output

Both listed and plotted outputs may be generated by TAG.

Directly available for output are time, any node pair voltage, any ele-

ment value, and any of several TAG execution control variables. In ad-

dition, any variable that may be calculated from the above list of primary

variables by FORTRAN arithmetic statement or closed subroutine is also

available for output.

7. OrGanization

TAG is organized into (1) a Preprocessing program, which

generates the simulation equations and imbeds them in a FORTRAN H

solution program; and (Z) an Execution program, which provides all the

subroutines and parameter values for performing the actual network sire-

ulation specified in the solution program.

Co Programming and Computer System Requirements

I. Program Language

Primary: FORTRAN II

Secondary: FAP

2. Computin_ System

Computer :

Programming System:

Auxiliary Storage-

Auxiliary Hardware :

IBM 7090/7094

FOR TRAN II Mod. III

4 scratch tapes or equivalent disk

file logical units

SC40Z0 Stromberg-Carlson plotter

3

PRECEDING PAGE BLANK NOT FILMED.

II. TAG PROGRAM DESCRIPTION

A. Equation Formulation

1. Introduction

The TAG User's Manual describes TAG descriptors and the

connection list. Pass I of the preprocessor reads the connection list into

the computer and forms the network equations. In this section, the im-

portant steps in equation formulation will be discussed in the order in

which they are performed by the program.

2. The Connection List

We will call the connection list WLIST to conform with the

TAG internal designation. WLIST consists of a sequence of descriptors

which define the network.

N
0
O
O

i
T

I'_ SCOZO1

T

EXHIBIT 1 - SAMPLE NETWORK

Exhibit 1 has a WLIST of the following form.

= ISL000Z;SG0Z00;SCOZ01; SV0001;WLIST
t

SCO00Z 1

The ordering of the descriptors on the input cards has an important

effect upon the final network equations. We shall call the ordering of

descriptors on the cards the input sequence. WLIST preserves the input

sequence of descriptors.

3. The Sorted Connection List

The algorithm for selecting a proper tree, to be described

in the next subsection, requires that WLIST be sorted into a new se-

quence. The sequence is V, C, G, L,

called PLIST and WLIST will be saved.

PLIST = ISVO001; SCOZOI;

N, and I. The new list will be

PLIST for Exhibit 1 is

SCO00Z_ SGOZ00; SL000Z]

4. Selection of the Proper Tree

A tree in a network is a subset of the branches of the network

which includes all nodes but has no loops. Three possible trees of the

network of Exhibit 1 are shown in Exhibit 2.

? TT I
D ITI

EXHIBIT Z - TREES OF A NETWORK

A TAG proper tree is the unique tree in a network defined by the

following algorithm.

Step I. Starting from the left in PLIST, find the first descriptor

which has zero as one of its nodes. Place this descriptor

in a new list, FLIST. Underline the descriptor in WLIST.

Underline the descriptor in PLIST only if its second node

is zero.

Step 2. Starting from the left in PLIST, find a descriptor which is

not underlined and has either node number equal to either

node number of a descriptor in FLIST. There are three

po s sibilitie s.

a. The first node only is found in FLIST. Place the de-

scriptor in FLIST; underline it in PLIST.

b. The second node only is found in FLIST. Place the

descriptor in FLIST; underline it in both FLIST and

PLIST.

c. Both nodes are in FLIST. Underline the descriptor

in PLIST only.

Step 3. Repeat step 2 until FLIST contains a number of descriptors

equal to one less than the number of nodes.

Step 4. Sort FLIST into V, C, G, L, N, I sequence.

As an example, the proper tree for Exhibit 1 will be formed.

PLIST =ISV0001; SCOZ01; SC0002; SG0200; SL000Z 1

Step 1: PLIST =[SV0001; SC0201; SC0002; SG0200; SL0002]

I

PLtST = ISV0001; SC0201; SC0002; SG0200; SL0002]Step 2:

FLIST = ISVO001; SC02011

The proper tree is shown in Exhibit 3.

7

53

EXHIBIT 3 - PROPER TREE

5. The Voltage Basis in Networks Without Transformers

With each proper tree branch, we associate one basis (co-

ordinate) voltage. The voltages are called a basis, in the vector sense,

because they are a minimum set from which every voltage in the net-

work can be determined. The basis voltages will be named in the follow-

ing way.

Vl l(i) with the ith voltage

VZI(j)

V31(k)

V41(1)

VSl(m)

The basis voltage associated

source in FLIST

The basis voltage associated

in FLIST

The basis voltage associated with the kth conduct-

ance in FLIST

The basis voltage associated with the lth inductor

in FLIST

The basis voltage associated with the ruth ideal

transformer winding in FLIST

with the jth capacitor

A current source may never enter FLIST and thus there is no assigned

basis voltage name.

8

Exhibit 4 gives the relationship between the basis voltages and the

corresponding tree branch voltages.

EXHIBIT 4 - RELATIONSHIP BETWEEN BASIS VOLTAGES AND BRANCH

VOLTAGES

Relationship FLIST Entry

Vl l(i) = SVNNNP SVNNNP (ith V)

V1 l(i) = -SVNNNP SVNNNP

VZl(j) = SVNNNP SCNNNP (jth C)

VZl(j) = -SVNNNP SCNNNP

V31(k) = SVNNNP SG1NNNP (kth G)

V31(k) =-SVNNNP SGNNNP

V41(1) = SVNNNP SLNNNP (lth L)

V41(1) = -SVNNNP SLNNNP

V51(m) = SVNNNP SNNNNP (mth N)

V5 l(m) = -SVNNNP SNNNNP

As an example, the FLIST for Exhibit 3 was

FLIST = [SV0001; SC0Z01}

The basis voltages are then VII(I) and VZI(1). They are related to the

branch voltages as follows.

Vll(1) - SV0001

VZl(1) =-sv0z01

The minus sign occurs because SC0Z01 was underlined in FLIST.

6. The Tree Branch and Voltage Basis Reference Systems

From the above discussion it is apparent that the basis voltage

reference system is different from the tree branch voltage reference system.

The second node in the descriptor is always assumed to be the positive

reference for the branch voltage. Exhibit 5 shows a tree with its user

assigned branch reference system.

EXHIBIT 5 - TREE WITH USER ASSIGNED BRANCH
REFERENCE SYSTEM

Note that the two nodes of every branch in a tree can be classified as

closest to the zero node or farthest from the zero node. In choosing

the references for the voltage basis, TAG always puts the plus sign on

the node of a branch which is farthest from the zero node. Exhibit 6

shows the tree of Exhibit 5 with the TAG voltage basis reference system

placed upon it.

10

+ + +

D

EXHIBIT 6 - TAG VOLTAGE BASIS REFERENCE SYSTEM

Using Exhibit 3 as an example, we have the following user assigned

branch reference system

57 D
+

w

+

and the following TAG voltage basis reference system.

+ +

11

7. The initial Coordinate Transformation Matrix

Since a tree touches every node in a network, and is connected,

we can always find the value of a node voltage by summing the basis volt-

ages along the path which connects the node in question with the zero node.

Using Exhibit 3, we have as an example

v z = v21{1) + vii(i)

v 1 = vii{l)

Note that, because of the TAG reference system, the summations will

always have terms with positive coefficients only.

If the network has N nodes, one of which is the zero or ground

node, there are N - 1 node voltages which can be expressed as sums of

the N-1 basis voltages. The N-1 by N- 1 matrix TC expresses

these relationships.

VN= TC_ V

where VN is the node voltage vector and V is the basis voltage vector.

The matrices and vectors are defined as follows.

VN=[Vi] i= 1,2,--., N- 1

rV''l

/VZll
v :IV311

IV411
LVS1J

vii = vl 1(i)

vY1 = VZl(i)

v31 = y31(i)

v41 = v41(i)

v51 = v51(i)

i = 1,2,..., NV

i = 1,2,.--, NC

i = 1,2,--., BIG

i = 1,2,-.., NL

i = 1,2,---, NX

12

tc.. = 1 if the jth basis voltage is in the path from node
D

all other cases tc.. = 0 .
D

i to node O. In

N = the number of nodes in the network

NV = the number of

NC = the number of

NG = the number of

voltage sources in the tree

capacitors in the tree

conductances in the tree

NL = the number of inductors in the tree

NX = the number of transformer windings in the tree

The previous example may now be expressed in matrix notation.

VN=TCSV

1 [Vl1(1)"

8. The Ideal Transformer Constraint Matrix

The equations of an ideal transformer require that winding

voltages be related in the following way.

njvti - nivtj = 0

where n i and vti are the turns and voltage of the ith winding. The

symbols n.j and vtj represent the turns and voltage for the jth winding.

It is assumed here that a set of correct references has been assigned to

the transformer windings. If a transformer has W windings, there are

W - 1 independent voltage equations which may be written for its windings.

The number of sets of W - 1 equations for a given transformer is large.

It is convenient to choose a set of the form

Vtl vti= 0 i = 2,3,.-., W

n 1 n i

13

Since each winding voltage may be expressed as the difference between

two node voltages, in terms of node voltages, the above equations be-

come the following

V a - V b V c - V d

n I ni

=0 i = 2,3,---, W

V a and V b are the voltages of the nodes to which the first winding is

connected; V c and V d are similar quantities for the ith winding.

a and c are the positive terminals of the two windings.

5]

E]

w

E,]

EXHIBIT 7 - NETWORK WITH IDEAL TRANSFORMER

As an example,

Exhibit 7.

the transformer equations will be written for

n 2 Vtl - n 1 vt2 = 0

n 3 Vtl - n 1 vt3 = 0

14

The winding voltages may be expressed in terms of node voltages

Vtl = V 1

vt2 = V 3 - V 2

vt3 = V 0 - V 2 = 0 - V 2 = -V 2

and substituted into the transformer equations

n 2 V 1 - n 1 (V 3 - V2) = 0

n 3 V 1 - n 1 (-V2) = 0

n 2 V 1 +n 1 V 2 - n 1 V 3 = 0

n 3 V 1 + n 1 V 2 = 0

If we have W ideal transformer windings in the network and T trans-

formers, there will be W - T independent transformer equations which

can be written. In TAG this number is called NRR.

NRR=W- T

In matrix notation the transformer equations are

TTR * VN = 0

The matrix TTR has NRR rows and N - 1 columns. Each row of

TTR represents one transformer voltage equation. The transformer

equations for Exhibit 7 are then

TTR _ VN = 0

In nl -ill V1V 2
3 nl

V 3

=0

15

The ordering of the rows of TTR is not mathematically important.

However, TAG groups them by transformer as described in the XFORM

subroutine writeup.

n 1

EXHIBIT 8 - MULTIPLE TRANSFORMERS

As a final example,

formers and six windings.

and five node voltages.

Exhibit 8 shows a network with three trans-

There are then three transformer equations

N=6

T=3

NRR = 6 - 3 = 3

N=6

N-1=5

TTR * VN = 0

n 2

n 4

0

-n 1

0

0

0 0 0

-n 3 0 0

0 (n6-n5) n5

Y1

V z

V 3

V 4

VS.

=0

16

9. Elimination of Voltages From the Basis

Since there are NRR independent transformer equations, it

is possible to express NRR node voltages in terms of the remaining

node voltages. TAG, however, expresses the transformer equations in

terms of the basis voltages

TTR * VN = 0

VN=TC*V

TTR * TC * V = TQ * V = 0

and then eliminates basis voltages. Because TTR has a rank of NRR

and TC is nonsingular, TQ will have rank NRR. Thus NRR basis

voltages may be expressed as linear combinations of N - 1- NRR re-

maining voltage s.

1
The first step in the elimination is to apply ffordan's method to

the equations. We try to solve for voltages on the bottom of V and

work up until we have solved for NRR basis voltages. The process is

best illustrated by an example.

D E]

EXHIBIT 9 - EXAMPLE CIRCUIT FOR BASIS VOLTAGE ELIMINATION

1See Hildebrand, F.B., Introduction to Numerical Analysis, McGraw-

Hill, 1956, p. 429.

17

Assume the connection list for Exhibit 9 is

WLIST = ISI0001; SG0001; SN0001/I-I; SN000Z/I-I; SN000Z/Z-Z;
I

SN0003/2-I; SG0003]

The tree list is

FLIST= ISG0001; SG0003; SN0002 l

The relationship between the node voltages and basis voltages is

VN= TC_V

IV

V 2

3

-1

= 0

0 °°11 0

0 1

There are two transformer equations.

"V31(1)"

V31(Z)

V51(1)

TTR • VN = 0

_ V2

V 3

TQ is the product of TTR and TC .

=0

TQ = TTB. _ TC =

-1

1

-i

1

0

1

0

_

0

I

18

We now have the equations

TQ*F=0=
I -I1

v31 (i)]

LVS ()j

v31(1) - v31(z)]

31(Z) Z VSl(1)J

In ffordan's method, we make the coefficient of a variable in some

equation +1 and then use that equation to eliminate the variable from all

of the other equations. This is repeated for each variable we wish to

eliminate. The TAG rule is that we start at the bottom of the V vector.

In our example, V51(1) is the first candidate.

V31(1) - V31(Z) = 0

-.5 V31(2) + V51(1) : 0

-v31(1) + v31(z) - 0

-.5v31(z) + v51(I) = 0

-v31(1) + vsl(z) = 0

-.sv31(1) + vsl(1) - 0

v31(z) = +v31(1)

v51(1) = +.5v31(1)

We can now express the NR/Z basis voltages in terms of the

remaining basis voltages. In general we have

V = TL * FV

N- 1 -NRR

where TL has N - 1 rows and N- 1 - NlZR columns and FV is the

reduced basis vector. In our example, the equation is

19

V31(2)[=

VS1(1)J 5

V31(1)

Since the node voltages were expressed in terms of the basis voltages,

we may now express the node voltages in terms of the reduced set of

basis voltages.

VN = TC $ V = TC # TL • FV

For the example, we have

v1VN = V 2 = TC # TL * FV

V

[1°i]I1= 0 1

0 0

V31(1)

10. The Final Voltage Basis and Coordinate Transformation Matrix

a. No Transformers in the Network

In the case of a network with no transformers, no basis

voltage elimination is required. The various lists, matrices, and con-

stants are renamed in the following way.

TR The final coordinate transformation matrix

which is equal to TC

2O

VC

FV

FVll, FV21, FV31,
FV41, FV51

LNV, LNC, LNG,
LNL, LNX

FS

The final voltage basis list which is equal
to FLIST

The final voltage basis vector which is iden-
tical to V

Subvectors of FV equal to Vll, V21, V31,

V41, andV51, respectively
The dimensions of the above subvectors

which are equal to NV, NC, NG, NL, and

NX, respectively

The voltage integral vector which is equal
to the integral of FV

t
f-

FS =1 FV dT

0

FSII, FS21, FS31,

FS41, FS51
The integrals of FVll, FV21, FV31, FV41,

and FV51, respectively.

b. Transformers in the Network

When transformers are present, the node voltages may

be expressed as linear combinations of less than N - 1 basis voltages.

As shown in subsection 9, it is TC $ TL that relates the node voltages

to a reduced voltage basis vector FV . The following definitions are

made for the network with transformers.

VC

LNV, LNC, LNG,
LNL, LNX

A list of those descriptors in FLIST whose

corresponding basis voltages have not been

eliminated by the transformer constraints.

VG is in the same sequence as FLIST

The number of voltage sources, capacitors,

conductances, inductors, and transformer

winding descriptors in FVC; also the di-

mensions of FVll, FV21, FV31, FV41,

and FV51, respectively

21

FV

FVll, FV21, FV31,
FV41, FV51

TF

N

NRR

FS

FSII, FSZI, FS31,

FS41, FS51

The voltage basis vector related to VC in

the same way that V is related to FLIST

(see subsection 7)

Subvectors of FV related to VC and the

branch voltages in the same way that Vll,

VZl, V31, V41, and V51 are related to

FLIST and the branch voltages

The final coordinate transformation matrix,

which is TL multiplied by TC

TF = TC • TL

TF has N- 1 rows and N- NRR - 1

columns

The number of nodes in the network

The number of transformer windings minus

the number of transformers

The voltage integral vector equal to the in-

tegral of FV

The integrals of FVll, FVZl, FV31, FV41,

and FV51, respectively

11. The TAG Node Equations

In TAG, node equations are first written and then modified by

the TF matrix described above.

Kirchoff's current law is written for each node in terms of node to

ground (zero node) voltages. Branch equations for each element type are

described in the TAG User's Manual.

Z2

D D

Ii
D

EXHIBIT I0 - EXAMPLE NETWORK DEMONSTRATING
GENERATION OF NODE SYSTEM EQUATIONS

The node equations for the network shown in Exhibit 10 are

WLIST = [SV0002; SC0001

FLIST = [SV000Z; SC0001]

dV 1
SC0001 * _ + SG0001 ":-"V 1

ISVOOOZ = -SIO00Z

; SG0001; SL0001; SI0001 I

t
{-

SL0001 / V 1 dr - SI0001 = 0+

0

Note that no equation is written for the zero node and that the symbol

is TAG reciprocal inductance. Also note that ideal transformers are

ignored in writing the node equations.

For an N-node network, we have the following matrix equation.

L

C d ftvNn _- VN + G VN + L dr - I - I = 0n n n en
0

where VN = the N - 1-element node voltage vector

C n = the N-1 by N-1 node capacitance matrix

23

G = the N-1 by N-1 node conductance matrix
n

L = the N - 1 by N - 1 node reciprocal inductance matrix
n

I = the N - 1 by 1 node current source vectorn

I = the N - 1 by 1 current in voltage source vector
en

In order to solve the equations numerically, we must manipulate

them into a standard form in which there are only first derivatives of

variables on the left and functions of the same variables on the right.

dY
m

dt

dY
a

dt

dY k

dt

= F(Y)

fl(Ya, •..,Yk]

fk(Ya''.'' Yk)

If C is nonsingular and I is zero, then the equations may be ma-
n en

nipulated easily into the required form.

dP
--= VN
dt

t dP
d VN+L f d_ - I - 0 = 0G n _-_ VN + G n n _ n

0

dP
--=VNdt

d -I p) + C -I I
d--_VN = - C n (G n VN + L n n n

is often singular and I is not always zero. It isUnfortunately, C n en

for these reasons that TAG must modify the node equations. A network

for which C is singular and I is nonzero is shown in Exhibit 11.
n en

Z4

EXHIBIT 11 - EXAMPLE NETWORK DEMONSTRATING SINGULARITY

OF NODE SYSTEM CAPACITANCE MATRIX

WLIST = [SVOIOZ; SCO001; SGO001; SLOOOZ]

FLIST = ISV010Z; SC00011

CO001

JISV0001

+ =0

ISV0001

The equations may be put into the correct form by making the substitution

V 2 = V 1 + SVOIO2

and then adding the first two equations.

25

Pl = V1

P2 = V1 + SV0102

SCO001 • V 1 + SGO001 ¢ V 1 + SLOOOZ • PZ = 0

ISV0001 = SL000Z $ PZ

1 (SG0001 • V 1 + SL000Z • PZ)V1 = - SC0001

ISV0001 = SL000Z _ P2

The above is a simple example of the transformation of the node equations

carried out by TAG.

12. Transformation of the Node Equations

The TAG final equations are formed by making the following

substitutions into the node equations

VN = TF # FV

/
0

d d
d'-tVN = TF *_FV

t

VN dr = TF _[FV dr

t

FS -I

A

FV dr

0

FVD = .--rd FV
(It

and then multiplying through by TF transposed.

(TF) T Cn(TF) # FVD + (TF) T Gn(TF)i_ + (TF) T Ln(TF) FS

- (TF) T I - (TF) T I = 0
I"I en

dFS
_- FS
dt

Z6

If the following substitutions are made

FC = (TF) T Cn(TF)

FG = (TF) T Gn(TF)

FL = (TF) T Ln(TF)

T
FI = (TF) I

n

I = (TF) T I
e en

the equations become

13.

FC _-FVD + FG $ FV + FL $ FS - FI - I = 0
e

Form of Final Matrices

Lock 1 and others have shown that the matrices will always

have properties to be described below.

a. Partition Dimensions

The partition dimensions are taken from the final basis

LNV = the number of voltage source descriptors in VC

LNC = the number of capacitor descriptors in VC

LNG = the number of conductance descriptors in VC

LNL = the number of inductor descriptors in VC

LNX = the number of transformer winding descriptors in VC

list, VC.

1
Lock, K. , A Digital Computer Programmed Topological Method of

Coordinate Selection for Numerical Computations in an Electrical
Network, Ph.D. , Th,::sis, California Institute of Technology, 1962.

Z7

The matrix

b.

FC =

Partitions of C

LNV LNC LNG LNL

[cllFCl oCZl FCZZ 0 LNC
0 0 LNG

0 0 LNL

FC has the following characteristics:

Columns and rows with index greater than

LNV + LNC are always zero.

o The FC22 submatrix, which is LNC by

is always nonsingular when it is not null.

LNC ,

c. Partitions of FG

FG =

LNV LNC LNG

"FGII FGIZ FGI3

FG21 FGZ2 FG23

FG31 FG23 FG33

0 0 0

0 0 0

LNL

0"

0

0

0

0

LNV

LNC

LNG

LNL

LNX

FG has the following characteristics:

o Columns and rows with index greater than

LNV + LNC + LNG are always zero.

o FG33 , which is LNG by LNG , is nonsingular

if it is not null.

Z8

d. Partitions of FL

LNV LNC LNG LNL

FL =

FLII FLI2 FLI3 FLI4 0"

IFL21 FLZZ FLZ3 FL24 0
i

IFL31 FL32 FL33 FL34 0

IFL41 FL42 FL43 FL44 0
0 0 0 0 0

i.

LNV

LNC

LNG

LNL

LNX

FL has the following characteristic:

o Matrix FL44 is nonsingular when it is not null•

eo Partitions of FV

FV =

[FVII]
i

FV21

FV31

FV41

FV51 J

LNV

LNC

LNG

LNL

LNX

FVI 1 =

"FVII(1)

FVI I(LNV

FV21 =

FV!I(1)]

FV2 I(LNC)J

FV31
-FViI(1)]

FV31 (LNG)J

Z9

FV41 =

f.

FVD =

FVD11 =

FVDZ 1 =

FVD31

FVD41

FVD51 =

"FV41(1)

FV41(LNL)

Partitions of FVD

FVDII" LNV

FVDZ 1 LNC

FVD31 LNG

FVD41 LNL

FVD51 LNX

FVDll(1)

FVD1 I(LN'V)

FVDZI(I)

FVDZI(LNC)

FVD31(1)

FVD3 I(LNG)

FVD41(1)

FVD41(LNL)

"FVD51(1)

FVD5 I(LNX)
3O

go

FI =

Partitions of FI

FII I] LNV

FI211 LNC

FI3 l_ LNG

FI41 I LNL

FI51 I LNX

Fill =

FI21 =

FI31 =

FI41 =

FIll(1)

LFnI(LNV)

"FI41(1)

FI41(LNL)

FI51 =

"FZSI(1)

FI51 (LNX)

31

he

FS =

FSII =

FS21 =

FS31 =

FS41 =

FS51 =

Partitions of FS

FSII" LNV

FS21 LNC

FS31 LNG

FS41 LNL

FS51 LNX

FSll(1)

i

FSI I(LNV)

FSZI(1)

I

[•FSZI(LNC)

FS31(1)

FS3 I(LNG'_

"FS41(1)

FS41(LNL]

FS51(I)

FS51(LNX)

32

I

l

I

I
way.

14.

i.

I
e

Partitions of Ie

"FIE11"

0

0

0

LNV

LNC

LNG

LNL

FIE11 =

FIEll(1)

FIEI I(LNV)

Summary of Equation Formulation Procedure

To summarize, the TAG equations are written in the following

ao

b.

c•

d.

e•

f•

PLIST is formed by sorting the descriptors in the con-

nection list into V, C, G, L, N, I order• Connection

list order is maintained between descriptors of the

same type.

Descriptors corresponding to a TAG proper tree are

selected from PLIST and placed in FLIST. If the second

(positive) node of an element descriptor is closest to the

zero node, then the descriptor is underlined in FLIST.

FLIST is sorted into V, C, O, L, N, I order.

The coordinate transformation matrix, TC , is formed

from FLIST.

If no ideal transformers are present, TC is renamed

TF, the final coordinate transformation matrix. In

addition, FLIST is renamed VC.

If ideal transformers are present, the following steps

are performed.

(I) The ideal transformer constraint matrix, TTR,

is formed.

33

g.

hQ

i.

(2) The matrix TQ is formed by multiplying TC by

TTR.

(3) Dependent basis voltages are solved for by ap-

plying Jordan's method to TQ.

(4) From the solution in (3) above, a new matrix TL

is formed which expresses the old basis voltages

as linear combinations of a smaller set of voltages.

(5) The final coordinate transformation matrix is

formed by multiplying TL by TC.

(6) A new list, VC, is formed which consists of only

those entries in FLIST which were not associated

with dependent basis voltages (step (3), above).

Ignoring ideal transformers and voltage sources, the

node equations for the network are written. These

equations are completely specified by forming only

the C n , G n , L , and I matrices.n n

The final TAG equations are formed by forming

(TF)T C TF, (TF)TG TF , (TF)T L TF , and
n n n

(TF) T In , which are named FC , FG , FL , and

FI , respectively.

The dependent variables for the equations are deter-

mined from VC. They are vectors with names FVII,

FVZI, FV31 , FV41 , and FV51 , corresponding to

V, C, G, L, and N entries in the VC list. Whenever

a descriptor is underlined in VC , the branch voltage

and dependent variable for that branch have opposite

signs.

34

15. Sample Network With No Transformers

SCOZ01 _ SG0203 _ SL0403

I!
SV 0001 _ SI0004

T

EXHIBIT 12 - SAMPLE NETWORK WITH NO TRANSFORMERS

The equations for the network of Exhibit 12 will be written using

the previously outlined procedures.

Connection list: SL0403, SL0400, SG0203, SV0001, SC0201, SC0200,

SG0003, SI00045

WLIST = [SL0403; SL0400; SG0203; SV0001; SC0201; SC0200;

SG0003; SI0004]

PLIST = [SV0001; SC0201; SC0200; SG0203; SG0003; SL0403;

SL0400; SIO004]_

FLIST = [SV0001; SC0201; SG0203; SL04031

The TAG proper tree is shown in Exhibit 13. Basis references

are circled; branch references are not. Note that the basis and branch

references differ only where the corresponding descriptor is underlined

in FLIST.

35

D D 5] D
+ + +

SVO001 1

SC0203

D

EXHIBIT 13 - TAG PROPER TREE

TC =

"I 0 0 -0"

I I 0 0

I i I 0

I I I I

Since there are no ideal transformers in the network, we have

TF = TC

VC = FLIST

The coefficient matrices for the node equations are

C
n

"SC0201

-SCOZOl

0

0

-SCOZOI 0 O"

SCOZOI + SCOZO0 0 0

0 0 0

0 0 0

36

G
n

L
n

n

Applying the TF

FC =

FG =

-0

0

0

0

0

SG0293

-SG0203

0

0 0

-SG0203 0

SG0203 + SG0003 0

0 0

"0

0

0

0

0

0

0

0

0

0

SL0403

-SL0403

0

0

-SL0403

SL0403 + SL0400

"0

0

0

SI0004

en

-Isv000 l

0

0

0

matrix to the above coefficient matrices, we obtain

"SC0200 SC0200 0 0]

I

SC0202 SC0201 + SC0200 0 0

0 0 0 0

0 0 0 0

"SG0003 SG0003 SG0003

SG0003 SG0003 SG0003

SG0003 SG0003 SG0203 + SG0003

0 0 0

37

FL =

SL0400

SL0400

SL0400

SL0400

SL0400

SL0400

SL0400

SL0400

SL0400

SL0400

SL0400

SL0400

SL0400

SL0400

SL0400

SL0400 + SL0403

FI =

SI0004'

SI0004

SI0004

SI0004

I
e

-Isv0001

0

0

0

The dependent variable names are

FV =

"FVlI(1)

FVZI(1)

FV31(1)

FV41(1)

SV0001

- SV0201

SVOZ03

-SV0403

FS =

FSII(1)

FSZI(1)

FS31(1)

FS41(1)

= Ft

o

FVlI(1)

FVZI(1)

FV31(1)

FV41(1)

aT

B. The Solution of TAG Equations

1. Introduction

The second pass of the TAG preprocessor takes the equa-

tions generated by the first pass and forms a solution program. The

TAG User's Manual describes the solution program from the user's

point of view. A more technical approach will be taken here; the steps

38

that are executed by the solution program in numerically solving the

network problem will be discussed.

2. The TAG Matrix Equation

The TAG network equations, in their most general form,

may be represented by two matrix equations.

C -'_ FVD + G* FV + L-_; FS = FI+ Ie + It

d FS : FV
dt

Exhibit 14 shows the equations in more detailed form. Performing the

indicated multiplication, we obtain the following five sets of equations.

LNV Voltage Source Equations

FCll ;:_ FVDll + FClZ * FVD21 + FGll * FVll

+ FG12 -:4 FV21 + FG13 $ FV31 + FLll "_ FSll

+ FLI2 _:-"FS21 + FLI3 * FS31 + FLI4 ,_ FS41 = Fill + FIE11

The above equations may be used to determine the currents in the voltage

sources at any instant of time. TAG, however, does not evaluate them.

LNC Capacitor Equations

FC21 _ FVDII + FCZZ * FVD21 + FG21 * FVII

+ FG22 _:-"FV21 + FG23 _-"FV31 + FLZI _-"FSII

+ FL2Z "_FS21 + FL23 ;:-"FS31 + FLZ4 * FS41 = FIZl

LNG Conductance Equations

FG31 ;_FVII + FG32 * FV21 + FG33 * FV31 + FL31 * FSII

+ FL32 * FSZI + FL33 * FS31 + FL34* FS41 = FI31

LNL Inductor Equations

FL41 _ FSII + FL42 $ FS21 + FL43 _ FS31 + FL44 $ FS41 = FI41

LNX Transformer Equations

O = FI51 + FIT51

TAG does not evaluate the transformer equations.

39

! l

I I

!

0 0 0 0 0

0 0 0 0 0

I i

+

I !

F-_ r-1 ,-_ ,-_ ,*.-.4

| I

'o o o o o'

o o o 0 o

o o 0 o o

0 0

0 0

I J

! !

o o o o
i i

+

+ _ o _-_o

'"4 _ _r_ "-' '--*' II II
I--I I--I I-_ _ I--I

I I

II

! !

,-M ,_I ,--I P-I)_i

I i

! !

0 0 0 0 0

xl_ _ _I_
P,I _ _I_

I

I |

L I

! i

I L i

0

_.1

0
i-i

I--t

i-i

0
)"'4

C_

0

0

[.-t
I

[--t
I--t

Izl
)-"4

4O

N - NRR - l Voltage Integral Equations

FSDII = FVII

FSD21 = FV21

FSD31 = FV31

FSD41 = FV41

FSD51 = FV51

The last two equations, for FS41 and FS51, are not used by TAG. From

this point on, we will concern ourselves only with the LNC capacitor

equations, LNG conductance equations, LNL inductance equations, and

a subset of the voltage integral equations. It will be shown that these

equations, when solved, specify every voltage in the network at every

instant of time.

The equations for Exhibit 12 are

LNC = 1

SC0200

+ SG0003

+ SG0003

+ SL0400

+ SL0400

* FVDII(1) + (SCOZ00 + SCOZ01) * FVD21

* FVII(1) + SG0003 * FVZI(1)

-':-"FV31(1) + SL0400 * FSII(1)

-%"FSZI(1) + SL0400 * FS31(1)

;:-"FS41 (I) = SI0004

LNG = 1

SG0003

+(SG0Z03
+ SL0400

+ SL0400

*FVII(1)+SG0003 *FVZI(1)
+ SG0003) $ FV31(1) + SL0400 ":_FSII(1)

FS21(1) + SL0400 * FS31(1)

* FS41(1) = SI0004

LNL = 1

SL0400
+ SL0400

* FSll(1) + SL0400 * FSZl(1)
* FS31(1) + (SL0400 + SL0403) * FS41(1)

FSDII(1) = FVII(1)

FSD21(1) = FV21(1)

FSD31(1) = FV31(1)

= SI0004

41

following parameters may depend upon voltage,

time:

3. Nonconstant Parameters and Current Generators

The TAG User's Manual describes, in detail, the rules for

specifying nonconstant parameters. It is sufficient to note here that the

voltage integral, and

Capacitor s

Condu ctance s

Indu cto r s

Current Generator s

Whenever a voltage appears in the expression for a nonconstant

parameter, we use a symbol which is similar to the voltage generator

descriptor. Thus, SVXXYY represents the voltage between nodes XX

and YY , where node YY is the positive node.

D

EXHIBIT 15 - EXAMPLE NETWORK DEMONSTRATING SINGULARITY
OF NODE SYSTEM CAPACITANCE MATRIX

In Exhibit 15, the voltage between nodes 2 and 0 is SV000Z. The

diode between nodes 2 and 0 may be represented by a current generator

having the following branch equation.

SIOZO0 = XIS(e SVOOO2/VO _1)

4Z

The dependence of the current generator does not change the equation

writing procedure. When the equations are completed, we simply sub-

stitute the expression for the current generator symbol, wherever it

In addition, SVOOOZ must be expressed as a sum of basisappears.

voltage s.

SV000Z = FV21(1) + FV31(1)

This is always possible because the basis voltages specify every other

voltage in the network.

4. Form of the Final Differential Equations

As stated previously, we wish to obtain a system of equa-

tions having the form

where Y and

final form is

dY
-_-= f(Y, t)

f are vectors and t is time. In the case of TAG, the

FV21]

fC 'VZl,FSll, 'SZl, -s31,
| |
[FS31J

where FT is time and the other symbols have been defined in earlier

sections.

Since TAG must generate a computer program for the solution of

the equations, it recognizes a large number of different forms of the

equations. For the discussion here, we will recognize only two basic

equation forms.

Form I: The equations are in the first TAG form if

o No element in the inductance or current generator

matrices of the LNL inductance equations is a function

of FV41, FS41, or FV31

o No element in the conductance, inductance, or current

generator matrices of the LNG conductance equations is

a function of FV3]

43

Form Z: The equations are in the second TAG form if they cannot be

classified as being in the first form.

When the equations are in the first form, we can solve for FS41

and FV31 at every instant of time by inverting FG33 and FL44 and

solving two matrix equations.

FS41 = (FL44) -I * (FI41 - FL41 * FSII - FL4Z * FSZI - FL43 * FS31)

FV31 = (FG33) -I * (FI31 - FG31 * FVII - FG3Z * FV31 - FL31 * FSII
- FL32 * FS21 - FL33 * FS31 - FL34 * FS41)

In order to allow parameters to be dependent upon FV41, we numerically

differentiate FS41.

FS41t - FS41t - At
FV41 m

ht

Thus, functions of FV41 become functions of FS41. It is apparent that

the above equations are explicit in FS41 and FV31 if the right-hand side

of the FS41 equation is not a function of FV41, FS41, or FV31. In ad-

dition, the FV31 equation cannot have a function of FV31 on the right-

hand side. There are a number of special cases in which FV31 and

FS41 may be solved for directly; they will not be considered here.

When the equations are in the second form, we assume that the

right-hand sides of the FS41 and FV31 equations are functions of FS41

and FV31. We may rewrite the equations as

FS41 - (FL44) -1 * (FI41 - FL41 * FSll - FL4Z * FSZ1
- FL43 * FS31) = 0

FV31 - (FG33) -I * (FI31 - FG31 * FVII - FG3Z * FV31
- FL31 * FSII - FL3Z * FSZl - FL33 * FS31 - FL34 * FSZI) = 0

In shorthand form, we have

fl (FS41, FV31) = 0

fz (FS41, FV31) = 0

(LNL equations)

(LNG equations)

For the solution of these equations, all other variables and time are

assumed constant. The FV41 variable is assumed to have been trans-

formed into a function of FS41 by numerical differentiation.

44

Although equations in the second TAG form may be linear, it will

be assumed that an iterative technique, such as the Newton-Raphson

method, is used to solve them.

Regardless of the method used to solve for FS41 and FV31, the

LNC capacitor equations can always be solved for FVD21 by inverting

FC22. Assuming FS41 and FV31 are known, we have the final differ-

ential equations.

FVD21 = (FC22) -I -:-"(FI21 - FC21 * FVDII - FG21 * FVII

- FG22 $ FV21 - FG23 $ FV31 - FL21 • FSll

- FL22 a FSII - FL23 $ FS31 - FL24 "_FS41)

FSDI1 = FVII

FSD21 = FV21

FSD31 = FV31

In the above equations, it is assumed that FVll is a known function of

time and that the derivative of FV11 is determined by numerical

differ entiation.

FVII t - FVII t _ At
FVD11 -_

At

5. Solution of the Equations

The equation formulation procedure results in LNL + LNG

linear or nonlinear equations and LNC + LNV + LNG + LNC first order

differential equations.

When the LNL + LNG equations are classified TAG type 1, FV31

and FS41 are found by matrix inversion, addition, subtraction, and

multiplication. When they are type 2, we find FV31 and FS41 by the

Newton-Raphson method. Writing the equations in shorthand form,

we have

fZ (FV31, FS41)J

where P. is the vector of residuals whose values are all zero only at

the exact solution of the set of equations.

45

The Newton-Raphson method defines a sequence of values of FV31 and

FS41 which, hopefully, converges to the solution of the equations.

S41kJ = [FS41k lJ- Pkl-1 Rk-1

The subscript k represents evaluation for the kth step and k - 1

represents evaluation for the (k - 1)th step. The matrix P is the partial

derivative matrix defined as follows.

at.
1

Pij = -_

1 < i _ LNL + LNG, 1 < j < LNL + LNG

An obvious necessary condition for convergence of the iteration is that

p-1 exist at the solution.

In TAG, the partial derivative matrix is computed by numerical

differentiation.

r i + vj)- ri(v j)
Pij -= Av.

J

The Newton-Raphson method must be given initial guesses for

FV31 and FS41 which it will refine to the solution. The closer the ini-

tial guesses are to the solution, the more rapidly the iteration will con-

verge, in most instances.

The differential equations are in a form that allows the computa-

tion of the derivatives of FV21, FSll, FS21, and FS31 from their pre-

vious (or initial) values and the computed values of FS41 and FV31.

The numerical integration program may then extrapolate all voltages,

whose derivatives are known, to their approximate values at the next

instant of time.

46

D

I SIO001 _SGOZO0

EXHIBIT 16 - EXAMPLE NETWORK USED IN DEMONSTRATION

OF NUMERICAL INTEGRATION TECHNIQUES

Exhibit 16 will be used to illustrate the numerical solution of a network

problem. Instead of the sophisticated TAG integration technique, we

will use a very simple method which adequately demonstrates the pro-

cedure. The TAG equations are assumed to be

- FV21(1) * SG0102 + FV31(1) (SG010Z + SG0200) = 0

SC0100 * FVDZl(1) + FVZl(1) * SG0102 - FV31(1) * SG010Z = SI0001

Solving for F¥31(1) and then FVDZI(1), we obtain

1
FV31(1) = SG0102 + SG0Z00 (FV21(1) * SG0102)

l
FVDZI(1) = SC0100(SI0001 - FV21(1) * SG010Z + FV31(1) * SG010Z)

For the solution, let

SG0102 = SG0200 = SC0100 = SI0001 = 1 .

47

The voltages will be evaluated at FT = 0, .5, 1, 1.5, and 2 seconds.

The initial voltage on the capacitor is -1 volt.

FT=0

FV21(1) :-I volt

FV31(1) = i/Z (-1)= -(I/Z)volts

FVDZI(1) = 1 - (-I) + (-(I/Z)) = 1.5 volts/sec

FT = .5

FVZI(1) -FVD21(1) * .5 +i-I) = .75 - 1 = - .25 volts

FV31(1) = 1/2 (-.25) = - .125 volts

FVDZl(1) = 1 + .25 - .125 = 1.125 volts/sec

FT = 1.0

FV21(1) _--.25 + 1.125 • .5 = .3125 volts

FV31(1) = 1/2 (.3125) = .1563 volts

FVD21(1) = I - .3125 + .1503 = .8438 volts/sec

FT = 1.5

FV21(1) -_.3125 + .5 • .8438 = .7344 volt

FV31(1) = i/2 (.7344) = .3072 volts

FVD21(1) = I - .7344 + .3672 = .0328 volts/sec

FT = 2.0

FV21 -- .7344 + .5 • .6328 = 1.0508 volts

If the equation for FV31(1) had been nonlinear, then the Newton-Kaphson

iteration method would have been used to solve for FV31(1) at each in-

stant of time.

6. Summar[of Equation Solution Technique

The TAG solution technique may be summarized as follows.

a. Substitute sums of basis voltages for all voltage sym-

bols SVXXYY which appear in nonconstant parameter

equations.

I

I

I

]

48

I

l

I

l

T

l

t

I

b.

C,

d.

e.

f.

go

Substitute the expression for the parameter into the

TAG equations.

Classify the FV31 and FS41 equations as type 1 or

type 2.

o If they are type l, solve explicitly for FV31

and FS41 by matrix manipulation.

o If they are type Z, put the equations in the im-

plicit form for Newton-Raphson iteration

fl(FS41, FV31)=[RI]

fz(FS41, FV31)=[Rz]

Solve the LNC capacitor equations for the derivative

of FVZI (FVDZI).

Write down, directly, the equations for FSII, FS21,

and FS31, if they appear in the above equations.

Specify one initial condition for each differential

equation.

Obtain the system solution at each instant of time by

numerical methods.

49

PRECEDING PAGE BLANK NOT FILMED.

III. TAG LIST PROCESSING

A. Definition of TAG List Prop.erties

1. Introduction

The basic data structuring of TAG is in the format of lists

and list structures. A list is any sequence of elements linked together

in a fixed order. A list structure is a list whose elements may them-

selves be lists. An array-list is a one-dimensional FORTRAN array

of which each element may be a list or a list structure. Input and out-

put of card images, construction and storing of special symbolic labels,

and maintenance of parameter arrays are accomplished by applying

list-manipulation techniques to these lists.

This section will contain a description of the structuring technique

used and will define some terms useful in referring to peculiar struc-

tures and their properties. Following sections will examine the basic

FORTRAN functions operating upon the lists and some of the special-

format lists that are important in TAG.

2. Definitions

The following definitions are, for the most part, common in

list-processing literature. The format of TAG lists is peculiar to TAG,

however, and therefore a hybrid set of terms has been compiled.

AVS is available space reserved in core as a list of elements

linked to each other by pointers. This simple list initially occupies

sequentially descending positions in core. AVS is maintained as a

"free storage list" whose elements are acquired by the program as they

are needed. When elements are no longer needed for computation, they

are returned to AVS.

A head cell, or head of a list, is a cell in core that has a FORTRAN

name or symbol associated with it and whose decrement contains a pointer

to the first element of a list.

A pointer is the 15-bit address of the memory cell or element to

which it points. A pointer in the head cell of a list (as used in TAG)

gives access to the first element of the list.

51

An element is one "piece" of information in a list. In TAG, it

occupies one register (cell; word) of core storage and has the follow-

ing format:

i item Ill Link I
S, 1 17, 18-2.0, Z1 35

A link is one of a class of pointers. It occupies bits Z1-35 of an

element, and, in a list, is a pointer to the location in core of the next

element of the list.

An item is bits S, 1-17 of an element, and constitutes the basic

nonstructural data of an element. An item may be either an atom or a

pointer (nonatomic item) to another list.

An atom is an item that may be any useful piece of nonstructural

information (data). Depending on the context and the purpose of the list,

an atom may be an integer, the BCD code for a HoUenith character, etc.

f is a flag in bits 18-20 of an element that gives supplemental in-

formation about the uses of the item and link.

Type 7 element: A flag of 7 in an element indicates that its item

is nonatomic and is a pointer to another list.

Type 6 element: A flag of 6 in an element indicates that the link

points to a full word of data. This word does not have the item : flag :

link structure of normal list elements, but contains whole word data.

Note that any such word must be the last word in a list. (For example,

this is useful in storing floating-point numbers in lists.)

]

data

5Z

Type 5 element: A flag of 5 in an element indicates that the item

portion of the word contains one decimal character of an eight-element

BCD string (used when reformatting floating-point numbers for output

in the second pass of the Preprocessor}.

A list is any sequence of elements, linked in order.

A

16 28 10

A is head of a list whose elements are located in cells 16, Z8, and

10. These elements may be referred to as "list A, " using the name

associated with the head cell which points to the list. The above list

contains several elements. Each element is linked to its successor by

a pointer in the link portion of the word. The list is terminated with

an element whose link portion contains zero. This indicates that there

are no more elements to follow. The elements of a list need not be

sequential cells in core. They are associated through their links. If

the head of a list contains zero, the list has no elements at all. Such a

list is said to be a null list.

A string, or simple list, is a list containing only atoms as items.

B

In the example above, A + 34 B are atoms in list B.

A list structure is a list that may have items which are not atoms:

zl I
IA 101

l

L

171 4 I°1 171 °!

171 i- lc Iol ol I_ Iol I_lr Ioi ol
r

53

In some of the following descriptions, lists will be represented in

a nongraphic manner according to the following format:
A simple list will be written as the sequence of atoms, separated

by semicolons, and enclosed in brackets.

Z

List Z in the example above may be represented as [A ; + ; 34 ; B]

If the list contains a nonatomic item, this item will be written

according to the regular pattern for lists.

C

List C above is written as [A [B ; C] D]

Note that the "outer" list contains three items:

A

E ;c]

D

The second item is itself a list of two atomic items:

B

C

If the list contains peculiar flags, these may be indicated by plac-

ing them with the item of the same element, separated by a colon.

54

zl I
!

,_',0,_ ill_ •,7,01
T
Ic 161 F-_ x I

Listzabovomayboroproso°ted_s(AB I[c6 xll
B. Basic TAG List Operations

Five subroutines that perform basic functions on the elements of

AVS are ERASE, ERASEA, ADDLOC, BACK and NEWLOC.

ADDLOC determines the number of cells in core allocated for

lists and connects all the allocated elements into a simple list called

SPACE. Each element is linked to the next element by a pointer stored

in the address portion of the word.

NEWLOC acquires a new element from AVS.

BACK returns an unneeded element to AVS.

ERASE restores all elements associated with a given list back

to AVS.

ERASEA restores an array list back to AVS.

Seven subroutines that operate on the lists themselves are LINK,

POPUP, DOWN, UPDWN, DOWNS, FROM and INTO.

LINK gets the link of the first element in a list (location of the gnd

element.)

FROM extracts the item and flag, if any, from the first element

of a list.

INTO replaces the item and flag, if one is given, of the first

element of a list. The address or link portion of the element is unchanged.

POPUP performs the basic "pop up" list function: the first element

of a list is removed and its contents are saved. This element is then re-

stored £o AVS.

DOWN acquires a new element from AVS and pushes it down into

a list with a specified item, flag, and link.

55

UPDWN pops up all elements of a given list and pushes them down

(in reverse order) into a new list. The elements of the list that is

"popped up" are returned to AVS.

DOWNS performs the same function as UPDWN except that DOWNS

does not destroy the list that was popped up.

C. Examples of List Structures Found in TAG

Type A: Simple string of characters.

JA J J _B J] _'_']]]_Z J] _4 J] 0]

Type B: Symbol string; like type A, but symbols represent

variable names and are separated by commas (like output from RECOVER).

Type C: Symbol list structure (like output from ELIM).

Type D: Two-dimensional list structure of simple sublists (used

in PRPTG and PRPTR in first pass).

56

I

I

I I 171"I Vl

-I 1!3 II _14 II -I_1, Ilol

/

I_1 I -l_,x I I -J_, '1 IoJ

1_171o I
/

IBI'I I -MR |1 ol

Type E: Array list (as used in LOCATA, ERASEA, SNATCH,

STASH).

1. Two-dimensional array list, I,J are two dimensions of the

array, M, of coefficients FTEM(i). I = l, 2, • .. I00.

M{I) I

I

IJ

II01

r

171 ! _ 171 I-_

161 I-MFTEMI J 16l -]M FTEM2]

Tour-dimensional array list. I, 1, NN, NP are four dimen-

sions of the a_ray, M, of coefficients FTEM(i). I = 1,2, • - • 100.

M(I) I II I

I

57

I 71 -!_

4,

_FTEM3]

PRECEDING PAGE BLANK NOT FILMED.

IV. TAG PREPROCESSOR MAIN PROGRAM

A. Overall Description of the TAG Preprocessor

1. Function

The TAG Preprocessor generates a FORTRAN source pro-

gram specifically tailored to simulate the transient or DC steady-state

behavior of a certain class of electronic circuits which can be described

to it by means of a special input language. The input language is a com-

bination of a special TAG vocabulary for describing the topology, vari-

ables, and parameters of circuits and a subset of FORTRAN code for

describing special functions needed for nonstandard component modeling,

information output, and program control. Using this language, the user

creates a Circuit Description Deck, which specifies the particular circuit

and particular analysis to be run. From the Circuit Description Deck the

Preprocessor creates the simulation equations and imbeds them in a gen-

erated simulation program.

The TAG Preprocessor is composed of two main programs, which

are themselves written in FORTRAN. The first pass program examines

only the topological properties of the network, and, by treating all branch

elements as linear, passive, and bilateral, creates a set of algebraic

and/or first-order differential equations to simulate the network. The

second pass program adds all nonlinear side constraints to these equa-

tions and generates the FORTRAN code for a program that will solve

the simulation equations and output the desired variables.

2. Organization

The Preprocessor, which is the heart of the TAG circuit

analysis concept, is a system of programs consisting of the Z main

routines and over I00 subroutines. The major manipulative technique

employed in the Preprocessor is list processing. Even in the first pass,

where many of the operations are arithmetic in nature, list processing

is Used predominantly. The second pass operations, which are, for the

most part, symbol manipulative in nature, fit very well into the list

59

processing structure. Most of the subroutines of the Preprocessor are

written in FORTRAN; however, a significant number of the lower level

routines have had to be mechanized in FAP due to the limitations of

FORTRAN.

The two passes of the Preprocessor are run as separate programs

chained together through the FORTRAN Monitor System. Both programs

are stored on a special tape in precompiled binary form. The first pass

is called in by the FORTRAN Monitor System as commanded by a • LOAD

12 card provided by the user just ahead of the first card of the TAG De-

scription Deck. At the end of the first pass, the second pass is called

in through the FMS chaining feature. The equation matrices, variable

vectors, and parameter symbol lists that are generated during the first

pass are transferred to the second pass via three scratch tapes. Certain

matrix dimensions and flags calculated in the first pass are passed along

in common. At the end of the second pass, the final simulation program

is written onto the FORTRAN print and punch tapes, and control is re-

turned to the FMS in such a way as to provide an immediate compilation

of the generated program. From that point on, control is under the

FORTRAN Monitor system, and the program, if it compiles properly,

may be executed at will.

60

I

I

I

I

I

I

I

I

I

I

I

}

I

B. First Pass Writeup and Flow Chart

i. Program Description

2. Identification

a. Routine Label

TAG

b. Name

Preprocessor, Main Program, Pass I.

3. Function

The first pass of the Preprocessor reads in the connection list

down to the final asterisk, selects a proper TAG tree from this list,

and generates the standard form, linear differential and algebraic,

simulation equations. If the network contains ideal transformers, the

transformer voltage constraint equations are used to reduce the number

of simulation equations. The equations, the first pass intput symbol

table, and the final reduced tree voltage vector are written onto scratch

tapes to be used by the second pass. The constants KIND, NM, NMR,

and arrays NPT and SPACE are established in Pass 1 and passed on

to Pass 2 in COMMON.

4. Programming System

FORTRAN H

5.

a. Calling Sequence

The first pass routine of the TAG Preprocessor is loaded

from tape in precompiled form by the FORTRAN Monitor. The FORTRAN

Monitor control card, _-LOAD 12 , is placed just ahead of the TAG Cir-

cuit Description Deck to initiate the load operation.

b. Entry Conditions

The TAG Circuit Description Deck has been written on a

standard FORTRAN input tape.

61

The FORTRAN Monitor reads the Preprocessor Main Program for

Pass 1 from tape into the computer memory and turns control of the com-

puter over to it.

c. Exit Conditions

Scratch tape, NTAPE1, contains the final cut-set equation

matrices for the capacitive, resistive, inductive and current source

topologies stored in that order in a list-type format. Scratch tape,

NTAPEZ, contains the partially transformed node basis equation ma-

trices for the capacitive, resistive, inductive, and current source top-

ologies stored in that order in a list-type format. Scratch tape, NTAPE3,

contains, in order, the final tree voltage basis to node voltage basis trans-

formation matrix, TF; the input symbol table for Pass 1, which contains

the names of each branch element (except transformer elements) plus

the initial conditions voltages for all capacitors; and the final tree volt-

age vector corresponding to VC. In COMMON is stored:

KIND = 1 (for no inductors)

KIND = 2 (for inductors)

NM = Maximum number of nodes less 1

NMR = Number of variables in vector VC

NPT(NE) = Number of elements of type NE in VC

SPACE = Total available memory cells for lists

d. Error Exits

If a member of the final tree voltage vector does not match

at least one branch in the connection list, WLIST, a DUMP is called

and control is returned to the FORTRAN Monitor system.

6. Definition of Identifiers

SPACE is the total memory space allocated for list structures.

WLIST is a type D list representation of the TAG connection list.

Each branch descriptor is represented by a sublist of 3 or 5 elements.

Descriptor ordering is unchanged. All items of the branch descriptors

are represented by binary integers. The element type characters are

replaced by the following integers: V = l; C = 2; G = 3; L = 4; N = 5;

I = 6. Node numbers, transformer turns, and transformer numbers

are converted directly to binary. The members of each descriptor

6Z

I

I

I

I

sublist are in general denoted by NE, NN, NP, NTRN, NNTR, and

are placed in the order shown.

NE is the integer that represents the element type classification

for a particular branch, and is assigned according to the rules given

under WLIST above.

NN is the number of the first or negative node of a descriptor.

NP is the number of the second or positive node of a descriptor.

NTRN is the transformer core number of a descriptor.

NNTR is the number of turns on a transformer winding of a

descriptor.

PLIST is a modified copy of WLIST used as input to the TREE

subroutine. In PLIST, the branch descriptor sublists are reordered

by element type into a V, C, G, L, N, I sequence. Input ordering

within the element types is maintained.

XLIST is the tree branch list generated by the TREE subroutine.

This is a two-dimensional type D list containing the descriptors of the

branches whose node pair voltages will be used to form a voltage basis

for the network. The order of PLIST is not maintained in XLIST.

KIND is an inductor flag which equals 1 if there are no inductors

in the circuit and 2 if there are inductors in the circuit.

FLIST is a copy of XLIST reordered into a V, C, G, L, N, I

sequence.

NM is the maximum node number of the network which also equals

the total number of nodes less one, or the total number of tree branches

or network equations with all transformer windings treated as open

circuits.

NPT is an array in common which stores the number of each

type of element that makes up the TAG tree by the following rule:

NPT(NE) = the number of type NE elements in the tree.

TC is a two-dimensional type E list representation of the voltage

coordinate transformation matrix. TC has NM rows and NM columns.

Entries in TC are either +I or 0. Each row in TC represents a path,

in the tree, from some node to the zero node. Rows and row numbers

correspond directly to nodes and node numbers.

63

TTR is a two-dimensional type E list representation of the trans-

former voltage constraint matrix. TTR has NM columns and NRR rows.

Each row of TTR represents one transformer voltage constraint equation

expressed in terms of node voltages. The columns of TTI% are in one-to-

one correspondence with the nodes.

NRR is the total number of transformer constraint equations which

is equal to the total number of transformer windings less the total num-

ber of transformers.

TQ is always equivalent to TTR * TC , by which it is formed.

TQ is an NRR x NM matrix represented as a two-dimensional type E

list. Each row of TQ represents a transformer constraint equation

expressed in terms of tree voltage variables. The columns of TQ are

in one-to-one correspondence with the tree branch node pair voltages.

TL is a two-dimensional type E list representation which ex-

presses all of the unconstrained tree voltage variables in terms of a

smaller independent set of tree voltage variables. TL is NM x NMR.

NMR is the number of independent tree voltage variables under

the transformer constraint equations. NMR = NM-NRR.

XS is a four-dimensional type E list representation of either the

node basis or tree basis current equations.

TF is the final coordinate transformation matrix having NM rows

and NMR columns. TF expresses all of the node voltages as linear

combinations of the reduced set of tree voltages. TF = TC * TL.

TFT is the transpose of TF.

XF is a four-dimensional type E list representation of a matrix

which temporarily stores the partial transformations of the XS matrices.

XF = XS * TF.

XZ is a four-dimensional list representation of a matrix which

expresses the final tree branch voltage vector. XZ has +I or -I

entries only.

INSTP is an input symbol table for the Pass I circuit parameters

and is represented as a four-dimensional type E list having +I entries

only. The table contains all the descriptors in WLIST in addition to a

voltage source descriptor to initialize each capacitor voltage.

64

1

1

I

I

P

P

b

l

r

P

7. Method

The first pass of the Preprocessor operates on the connection

list only, and produces the "linear differential and algebraic simula-

tion equations in matrix format. These equations are passed from

the first to the second pass stored on tape in a special list format.

The following series of steps describes the first pass operations.

a. Initialize DIMENSION, and COMMON required variables.

b. Set up scratch tapes, NTAPE1, NTAPE2, and NTAPE3

and rewind each.

c. Set up the storage area, SPACE, to be available for list

structures (subroutine ADDLOC).

d. Write on the output tape, "CIRCUIT DESCRIPTION."

e. Set the inductor element flag KIND to 1.

f. Read in connection list, remove punctuation and excess

characters, convert BCD to binary, and store a descriptor

at a time in the two-dimensional type D list, WLIST.

Set NM equal to the maximum node number.

Set NT to equal the total number of branch descriptors.

Write on output tape a copy of the original connection list

{subroutine GOBLE).

g. Write on output tape, "NUMBER OF NODES IS < NM > "

h. Erase PLIST and FLIST.

i. Reorder WLIST in INLGCV sequence and place the result

in FLIST. Maintain WLIST intact. Set KIND to 2 if in-

ductive descriptors appear in WLIST.

Reverse order of FLIST and place result in PLIST.

PLIST is then in VCGLNI sequence, while, within the

same element type, the order of WLIST is maintained.

Erase FLIST.

j . Choose a proper TAG tree from PLIST and place the re-

sult in XLIST. Erase PLIST {subroutine TREE}.

k. Reorder the elements of XLIST into VCGLNI sequence and

place the resultant list in FLIST. Count the number of

65

l,

mo

no

Go

p.

q.

ro

so

t.

u,

each element type in FLIST and store in NPT such that

NPT(NE) equals the number of type NE elements in FLIST.

Erase XLIST.

Form TC, the tree to node system change of basis matrix,

from FLIST such that VN = TC _'.-"VT. VN is the node

voltage vector and VT is the tree voltage vector (subroutine

COTP_N).

Form TTK, the ideal transformer node voltage constraint

matrix, from WLIST such that TTR _'- VN = 0. Set NRR to

equal number of transformer constraint equations or the

number of rows in TTR (subroutine XFORM).

If NRR equals zero, there are no transformers in the cir-

cuit and the process continues at step o. If NRR is greater

than zero, there are transformers in the circuit and the

process must jump to step r.

Change the name of FLIST to VC,which is the name of the

final tree voltage vector.

Change the name of TC to TF, which is the name of the

final tree to node system change of basis matrix.

Set NMR, the final number of simulation equations, to equal

NM, the total number of nodes less 1. Proceed to stepw.

Form TQ, the transformer tree voltage constraint matrix,

by TQ = TRR _ TC (subroutine MULTS).

Solve TQ for a set of NRR dependent tree voltages in terms

of NMR = NM - NRR independent tree voltages by Jordan

elimination. Priority for dependence is greatest at the

bottom of the tree branch list, FLIST (subroutine BAKELM).

From TQ form TL, the matrix which transforms the final

independent set of tree voltages, VG, to the original list of

tree voltages, VT, such that VT = TL $ VG. Form VG from

FLIST. Recalculate NPT(NE) to conform to the constituents

of VG. Calculate N1VIR, the final number of simulation equa-

tions, from NM-NRR (subroutine STRIK).

Calculate TF, the final tree to node system change of

basis matrix, from TF = TC * TL (subroutine MULTS).

66

V.

W.

X.

y.

Z.

aa.

bb.

CO.

Erase TTR, TQ, FLIST, TC, TL.

The node system current equilibrium equation matrices

(CN, GN, LN, and IN) are formed for each element type

C, G, L, and I appearing in WLIST. Each matrix is

temporarily formed in four-dimensional type E list format

in XS and written onto NTAPE1 in the order given above.

Immediately following the I matrix, an END OF FILE

is written onto NTAPE1 and NTAPE1 is rewound (sub-

routine PARAM).

In sequential order, each of the node system current

equilibrium equation matrices, CN, GN, and LN is read

from NTAPE1, temporarily stored in XS, and postmulti-

plied by the final tree to node system change of basis

matrix, TF. The result of each multiplication is tem-

porarily stored in XF and then written onto NTAPE2. This

performs the first half of the node to tree system change

of basis operation on the CN, GN, and LN matrices. The

operation is XF = XS* TF (subroutine MULTS plus others).

Transfer IN, the node system current source equilibrium

equations, directly from NTAPE1 to NTAPE2. Rewind

NTAPE1 and NTAPE2. Erase XS.

Transpose the matrix TF to TFT (subroutine TRANS).

Write TF onto NTAPE3. Erase TF.

In sequential order, each of the partially transformed

matrices, CN ;'.' TF, GN * TF, LN ":-"TF, and IN is read

from NTAPE2 into XF and premultiplied by TFT. The

result of each multiplication is temporarily stored in XS

and written onto NTAPE1. Thus the following tree basis

equilibrium current equation matrices are formed:

CT = TFT * CN* TF, GT = TFT * GN* TF, LT = TFT*

LN* TF, IT = TFT* IN (subroutine MULTS and others).

Erase XS and XF.

Write END OF FILE on NTAPE1 and rewind NTAPE1 and

NTAPE2. Erase TFT and XZ.

67

dd.

ee.

ft.

gg.

hh.

ii.

jj.

kk.

11.

8. Other

ADDLOC, BAKELM, CHIN,

EXIT, FREWND, GOBLE, MATFT,

PRPTR, STASH, STATUS, STRIK,

VC, a two-dimensional type D list, is transformed into a

four-dimensional type E representation of a node pair voltage

vector, XZ. XZ has the following structure XZ(I, 1, NN, NP)

= Data. I is the index of the particular branch descriptor in

VC whose terminating nodes are NN and NP. NN and NP

are forced to conform to the order displayed by the corres-

ponding descriptor in WLIST rather than VC. If the node

order in VC is reversed to that in WLIST, Data is set to -1.

Otherwise Data is set to +1. If a descriptor if found in VC

which does not correspond to a descriptor in WLIST, a dump

is called and control is returned to the FORTRAN Monitor

System.

WLIST, a two-dimensional type D descriptor list, is trans-

formed into a four-dimensional type E list representation

of a descriptor list called INSTP. INSTP is stripped of all

transformer winding descriptors, and voltage source de-

scriptors are added to correspond to the initial condition

voltage across each capacitor. The data entry for each filled

position of INSTP is made according to INSTP(NE, 1, NN, NP)

= 1.

Erase WLIST.

Write INSTP onto NTAPE3 immediately following TF.

Write XZ onto NTAPE3 immediately following INSTP.

Write END OF FILE on NTAPE3 and rewind.

Erase INSTP and XZ.

Write on output tape the status of AVS, COUNT, and MAX

(subroutine STATUS).

Call in the second pass Main routine from tape (subroutine

CHIN).

Subroutines Used

COTRN, DUMP, ERASEA, ERASE,

MATOT, MULTS, PARAM, PRPTG,

TRANS, TREE, UPDWN, XFORM.

68

o Using Subroutine s

None.

69

70

\j

A i

\(rl_ ,,"'_ /

@

I

.............I....... i

"___j

V

,pts

]

I

©

1

71

i

V

,_,._-_ s _ '\

I

V

..... i_

I(,_,.z s ,-) -.,(,0!

/_._ %vrs;\

TI_ G PBsS I

I

I

I

I

I

I

I

I

I
I

t

t

I

I

I

I

l

I

74

_. _,-,,_,_/

/_'_,_ _ _ ,_X _ '

,_ _-._o._? -., "/. -

\ / \ _,,,_v-,,_r/
\ --> x s/ ', x_ /

• . , X__Zs /

i _ _ __--\
(H_p. p'_P,_'*_'',}

1_' _--_"" __-

_e5

=,,.-ie'__L__/

@---@
I

V

A

V

_'f F_o,'_ /
_ _l I

I
?

V

STP(I , .,_,,,p))

-_ /" 1

I

___--,':....J

TF_(, _ PAss -r _' _.,," s-

....... i+ - _ _

!

I

#*,#S 7/:' -)i,

IT/) P£ 3 1/
_#

C_/T Z-& /__ r�

.Z ,u .e r P 1
_ /

T
#_"' f _ r,_ 7"u.%

oF /IP5 :

','/ r/:L;; _ _r/

i

, t4/., z_E. E6,_ ,:

+_

77 '"

C. Second Pass Writeup and Flo\v Chart

1. Program De scriRtion

2. Identification

a. Routine Label

TAG

b. Name

Preprocessor, Main program, Pass 2.

3. Function

The second pass of the Preprocessor takes the equations gen-

erated in the first pass, classifies them as linear or nonlinear, and

imbeds them in the proper places in a FORTRAN simulation program.

To this program it adds all nonlinear relationships and the output and

control scquence specified in the part of the TAG Description Deck

which follows the connection list. Tiffs program is written out on the

FORTRAN Systerx_ print and punch tapes. It is ilnznediately compiled

by the FORTRAN Compiler and may be immediately executed if desired.

4. Programming S]{stem

FORTRAN II

a. Calling Sequence

The precompited binary [orm of the second pass main pro-

grain is loaded from tape under control of the FORTRAN Monitor Sys-

tem through a chaining operation.

b. Entry Conditions

Variables preset in COMNION by Pass I.

KIND = The inductor flag; equals I if there are no inductors

in the circuit and Z if th,'.re a_'e inductors in the

circuit

78

NM = The total number of circuit nodes less 1.

NMR = The total number of simulation equations and

therefore the total number of independent voltage

variables

NPT = The tree voltage vector partition array which stores

the number of each type of element that appears in

the tree. NPT(NE) is equal to the number of NE

type elements in the tree.

SPACE = The memory space available for list structures

Matrices generated in the first pass are stored on scratch tape.

Scratch tape, NTAPE1, contains the final cut-set equation matrices

for the capacitive, resistive, inductive, and current source topologies

stored in that order in a list-type format.

Scratch tape, NTAPE2, contains the partially transformed node

basis equation matrices for the capacitive, resistive, inductive, and

current source topologies stored in that order in a list-type format.

Scratch tape, NTAPE3, contains, in order, the final tree voltage to

node voltage basis transformation matrix, TF; the input symbol table

for Pass 1 with the names of each branch element (except transformer

elements) plus the initial conditions voltages for all capacitors; and the

final tree voltage vector corresponding to VC.

SWSW is a sense switch which may be set to delete the second pass.

c. Exit Conditions

The FORTRAN code for the TAG simulation program which

was generated by the second pass is output on the FORTRAN System

print tape and punch tape. Control is then returned to the FORTRAN

Monitor System in such a way as to allow immediate compilation and

execution of the gene rated program.

d. Error Exits

(1) If sense switch, SWSW, is less than or equal to 0,

exit is made at the beginning of the second pass.

(2) If dependent variable stop functions are included in a

DC steady-state problem, the message "DEPENDENT VARIABLE STATE-

MENTS HAVE NO MEANING IN A DC PROBLEM" is printed and an exit

is made. 79

6. Definition of Identifiers

NTAPE 1

NTAPE2

NTAPE3

INTAPE
NFRM

IEQ

EQST

EQST1

EQST2

IDLNK

ICHC

FRM

ICMA

WRT

IXFR

IHFR

IFXED

IFLED

REST2

REST

INLST

TC

KELST(8)

IC 1

IS T OP

INLIN

RSUT

KE

IPR

RIN

Three scratch tapes holding circuit matrices gen-

erated by Pass 1.

Holds tape number of input tape. Holds next

number to be assigned to FORMAT statements

BCD equals sign

Temp. lists used to hold parts of equation

statements

BCD

BCD

BCD

BCD

BCD

BCD

BCD

BCD

BCD

BCD

blank

''C''

list "FORMAT (IH"

comma

list "WRITE OUTPUT TAPE 6,"

ItX,,

"H"

list "=, I5)"

list "=, E 16.8)"

list "FT, FSTEP, FEPSL, FEPSL1, FEPSL2,

FEPSL3, LDBG01, LMAX, LTYPE, FOUT, FEBL4"

List used for holding symbols

List used for holding symbols

Matrix list used to hold matrices input from tape

Holds for each I, the number of statements of class

KE= 1.

Flag to indicate comment card

Statement number of first executable input statement.

Nonlinear flag

Used to hold the contents of RIN for examination

Statement-type indicator

Print switch

Holds list input as a card image

8O

1

IS

IC

AA

KDUMY

LSTMK

WRT

ITEMX

ITEM

NHC

ELE2

NCHL

IFX

KINDSV

KDIF

EEL

Method

Holds statement number of card input

Continuation-card indicator

Dummy variable

Dummy variable

List holding dep. stop function names

Holds the contents of RIN for output

Holds next link of RIN

Holds next item of RIN

Used for counting number of characters in a statement

Temp. list

Holds number of characters in a FORMAT line.

BCD temporary storage

Holds saved value of KIND

Used to sum the matrix dimensions LNV, LNC, etc.

Temporary index for DO-loops

(Paragraph numbers indicate approximate statement locations)

400.

603.

Initialize

Read statement_ from input program. Each statement is

sent to SUBST ior variable substitutions. SUBST will ex-

amine for nonlinearities, and if any exist will set INLIN = 1.

If any dependent-stop-function variables exist, they will be

collected in list LSTMK. The statement will be classified

as to type, and KE set to this type number. Each revised

statement is written out on INTAPE along with its associ-

ated KE-value. If KE = 2 and the statement is nonlinear

or if KE> 2 and the statement is not nonlinear, then a

"WRITE OUTPUT TAPE" statement is set up incorporating

the variable on the left side of the statement.

Read NTAPE1 into XS and mark the items with flags from

XFG, as set by subroutine SUBST. (The flag indicates in

which one of four sets the variable is to be output.). After

XS has been marked, it is written onto NTAPE2.

81

604.

605.

608.

609.

610.

650.

658.

Output "DIMENSION" statements

Output: LNV = NPT(1)

LNC = NPT(Z)

LING = NPT(3)

LNL = NPT(4)

Read NTAPE3 into INSTP.

If this is a

If this is a

transient problem, output:

FSTEP = I.E-I 1

FEPSL2 = 5.E-6

FEPSL3 = 5.E-4

FEPSL4 = I.E-16

LTYPE = 4

nonlinear DC problem, output:

FEPSL = 5.E-6

FEPSLI = 5.E-6

LDBG01 = 51

LMAX = 50

Output: GO TO 6000

Read the statements from INTAPE and write out those

which have KE = 0. If the statement is "INPUT, " output

the "CALL INPUT" statement. If the statement is "ZERO,

output the "CALL ZEROX" statements.

Output the "CALL ZEROX" statements with statement

number 6000.

Output the "CALL INPUT" statement.

output: 6100 CONTINUE

LALGFT = 1

If transient problem, output:

LINT = 0

LCNT = 1

FTL = FT

FTO = FT

FHC = FSTEP

Read NTAPE3 into XS and output all statements of the form

FV- •=X_SV. •

8Z

I

I

I

I

I

I

I

I

I

660.

680.

685.

788.

789.

722.

Read INTAPE, and write out all statements which have

KE =3.

Read NTAPE2 into XS, and for each variable flagged as

= 0, output:

FC..= X.SC.. file 1

Read successive files of NTAPE2 and similarly output:

FG. •=X*SG. •

FL. •=X*SL. •

FI ••=X*SI. -

Output "CALL INV"

Output:

file 2

file 3

file 4

statements through INVST.

CALL RSTOP (FSTOP, FT, FHC)

If there are dependent stop variables, output:

6200 IF (LCNT-3) 6202, 6201, 6395 and go to 788.

If this is a transient problem, output:

6200 IF (LCNT-3) 6202, 6201, 6201 and go to 788.

Else output:

IF(LALGFT-1) 6202, 6202, 6200

6200 CONTINUE

6201 CALL STOP (FOUT,LINT)

6202 CONTINUE

and go to 789.

Output:

6201 CALL STOP (FOUT, LINT)

6202 CONTINUE

Read the statements on INTAPE and output all statements

which have KE = 4. Then output all which have KE = 5.

Read NTAPE2 into XS, and for flag = 1, and each file,

output statements of form:

FC''= X*SC.. file 1

FG-.= X*SG.. file 2

FL..= X*SL.. file 3

FI-- = X*SI.. file 4

83

PRECEDING PAGE BLANK NOT FILMED,

838.

7840.

7852.

Output "CALL INV" statements through INVST. If this is

a DC problem and there exist any dependent-STOP-vari-

ables, write out

"DEPENDENT VARIABLE STATEMENTS HAVE NO

MEANING IN A DC PROBLEM," and then exit. Else

if there are no dependent stop functions and this is a DC

problem, go to 840.

Output:

GO TO (6395, 6390), LALGFT

If there are no dependent stop functions, go to 7860, else

IF (LINT) 6391,6391, 6393

FSTOP = FSTOP - FTL

CALL ROUT(0)

6393 FSTOP = FSTOP - FT GO TO 6425

6395 LEOS = 1

6400 CONTINUE

LCNT = LCNT - 3

Read statements from INTAPE and output those with KE = 8

Read NTAPE2, and for variables with flag = 2, output

output:

639O

6391

the statements :

FC. • =X*SC. •

FG. • =X*SG- •

FL. • =X*SL- •

FI • • =X*SI. •

for file 1

file 2

file 3

file 4

Output the "CALL INV" statements.

Output:

GO TO (6422, 6420), LALGFT

6420 IF (LEOS) 6421,6421,6422

6421 CALL ROUT(0)

6422 FSTOP = 0.

6425 FTI = 0.

FT2 = 0.

85

7860.

FHB(1) = FSTEP

FHB(2) = I.E-5

FHB(3) = FEPSL4

FHB(4) = .5

FHB(5) = FEPSLZ

FHB(6) = FEPSL3

LNH(1) = contents of KDIF

LNH(g) = LNH(1)

LNH(5) = 5

CALL FMARK(....

FT = FTL + FT1

LEOS = 0

IF (LCNT -2) 6300, 6400, c(ISTOP)

6300 CONTINUE

Go to 840.

Output:

6390 IF (LINT) 6392,639Z,6395

6392 FSTOP = FSTOP - FTL

CALL ROUT(0)

6395 FSTOP = FSTOP - FT

FTI = 0.

FT2 = 0.

FTL = FT

FHB(1) = FSTEP

FHB(2) = l.E-5

FHB(3) = FEPSL4

FHB(4) = .5

FHB(5) = FEPSLZ

FHB(6) = FEPSL3

LNH(1) = contents of KDIF

LNH(2) = LNH(2)

LNH(5) = 5

CALL FMARK (...)

FT = FTL + FTI

86

840.

823.

824.

825.

827.

IF (LCNT-2) 6300, 6300, c(ISTOP)

6300 CONTINUE

If nonlinear solution, output:

DIMENSION FVR, FVP, FPT

LCNV = 0

6090 CALL SHFTO (FVP, FV31, FV41, LNG, LNL)

6310 CONTINUE

CALL SHFIN (FVP, FV31, FV41, LNG, LNL)

ReadINTAPE andoutput all statements which have KE = 6. Read

NTAPE2 into XS and output statements for variables with flag = 3.

FC. • = X*SC. • file 1

FG. • =X*SG" • file 2

FL- • =X*SL. • file 3

FI. • =X*SI. • file 4

Output "CALL INV" statements.

Output matrix manipulations through EQFS41. If LNL = 0,

go to 827.

Output:

FDLT = FT - FTO

IF (FDLT) 7007, 7007, 7005

If LNL > l, go to 825.

Output:

7005 FV41 = (FS41 - FSO41)/FDLT

7007 FSO41 = FS41

Go to 827.

Output:

7005 DO 7006 L = l, LNL

7006 FV41(L) = (FS41(L) - FSO41(L))/FDLT

7007 DO 7008 L --i,LNL

7008 FSO41(L) = FS41(L)

Output "CAL INV" statements.

Output matrix manipulations through EQFVB1.

If not nonlinear, output:

LALGFT = 2

Then go to 835.

87

821.

835.

7837.

837.

Else output:

Go to (7005, 7010),

7005

7010

7015

LALGFT

LALGFT = 2

Go to 6090

CALL SHFDI (FVR, FV31, FV41, FVP, LNG, LNL)

IF (LCNV-I) 7015, 7020, 6000

CALL ROOT (FVR, FVP, FPT, FEPSL, FEPSLI,

LMAX, LNG + LNL, LCNV, LDBGOI)

Go to 6310

If this is not a transient problem, go to 850. If no____tnon-

linear, go to 835, else continue.

Output:

7020 CONTINUE

If LNV = 0 or LNC = 0, Go to 837. Else continue.

if LNL = 0, output:

FDLT = FT - FTO

Output:

IF (FDLT) 7030, 7030, 7025

If LNV g 1, output:

7025 FVDll = (FVll - FVOll)/FDLT

7030 FVQll = FVll

and go to 7837.

Else output:

7025 DO 7026 L = 1,LNV

7026 FVDII(L) = (FVII(L) - FV011(L))/FDLT

7030 DO 7031 L = I, LNV

7031 FVOII(L) = FVII(L)

Output:

FTO = FT

Output "CALL INV" statements.

Output matrix equations through EQFVZl.

if (ISIS) _; 1 and KIND = 1, go to 886, else continue.

If LNV g i, output:

FSDll = FVll

88

I

I

I

I

i

I

I

I

I

I

882.

883.

886.

850.

870.

Else output:

DO 7040 L = I, LNV

FSDII(L) = FVII(L)

If LNC & I, output:

FSDZI = FVZI

Else output:

DO 7042 L = I, LNC

7042 FSD21(L) = FVZI(L)

If LNG _ I, output:

FSD31 = FV31

E 1s e output:

DO 7014 L = l, LNG

7044 FSD31(L) = FV31(L)

Output:

CALL ROUT(0)

and go to 870.

Output:

7020 FT = FSTOP

GO TOI

where I is the contents of ISTOP.

Output:

END(l, 0, 0, 0, 0, 0, I, 0, 0, 0, 0, 0, 0, 0, 0)

Erase all lists, write end-of-files on output tape,

terminate.

and

89

_sw,_w)Lo

0 _ ('E-E_.STI)
o -# (East -z)

9O

I

I

I

I

I

I

I

I

(Co_w T 7Av_ I

i y_,_ ,.._.,

¢ _ (/'sz,_)

91

f-_ (KE)

vo

401

/

._,'JT _.,IE._S_j_:I

tl<.,? ,I I

,P,10

No

9Z

T
2-_ (s_s'_,")_

/40

2

93

I

/_T____,._.

- " I .

94

i.
\E,_,__---_

/L .__\
t Pz_,_ _Ge_D/

I

UT"/7"EI,_ \

_:Su'i) i,,_o /

+

I

I

I

I

I

I

I

I

I

I

I

,. /

[_,,_ _'.r,'e,)\

?

z ,
s •

!

,..VO

95

_s

_NJ

96

I

I
I

I

I

I
I

I

I
[e_JFE _F

R_WIAID I41TA PE"

¥6.S

Pl_ tA/?" "F'H£RE

WAS ,_'d
S FA T£./VI_,AIT

,,I/I/M BE R "

D ,vr_p_'; \
7"o XSj W_r_'_

i

CK,,v,_v) !
',

I

ND

VE8

9?

&V = *,'P T('I_

=" 1VPT _,2y

/ _,_,,-,s\

_%%(.,,/

T_ IN_:TP/

I

(Kw,r) +i',_pr
{,_)_-Hpr (2))1,_
(,v_ (_ .-_

'NO

98

I

I
I

I

I

I

I

I
I

I
I

i

99

=1

tO0

£ZW/N D
/t4 TA pE"

TP.T=f>j\

3
'vT/,L'7

(KZN D)

T

lOl

,4'0

,.)

I02

I
I

I

I
I

I

I
I

I

9
I_fw /,vD Z.,VT,4P_"

o-., (IEN)

REW./,_..O 4/T-A&_-2

103

_ \orA,-'\
Crr_T.. \

I

104

i

I

I

I

4 -_ (KE-,)

)

• -"_(r,,,-_.,:_lkk_}]

2

• CNo

105

%

_Aj

(z__+ l

106

I

I

I

I

NO

R_--Vg'I IVD
ZIVTA PE"

\¢t.,-r_,T /

\ _,vTo 'G A,_.o ?
\,¢O;T'_GT /

_ ¢
/ eeaD _r4,_s a \

/_E',4",///,/D
,V;rA _E_

_ -e (z,,=)

107

108

FE P-_C 2-

-

/,vr/ \
_T: /

L,,H(,) --___/

{, To_._, ,4,.,0I

o,

rPu r _)

\ z._,v,_(';) : /
cA,_ O)\cA,._ /

/ fYurpuT \

"_2_ _ /

F--r= F TZ. -/-_'TI

LEdS = 0

'WN_ I

109

y
/OUT_'UT-: ,\

__,?_,_z, /
k_3 _s l

11o

DTA T"

I

111

I

:Tf_J

\ eo¢c d_L.L- /

/ _,u_'"- ",,
,., _-_ ,. /

t

if#7

,J-.

llZ

?

E'E14,"/M ._

,A/P

('_EL)+ /

I19 "

"'_'I

I_EA D _.'r'APE"__\

I:-z" "-=X ,8"7-./

__ ..

I

/ L IV L

0

?

_o7 , _¢cc7,
-7,._.._

.l C _ YES

114

\ 7_" _.'_/,_/

115

I16

mo

/ _-,-,,,--\
/ d-,-,-i.,-'-\

\rye /

/--_v\
\ vo_5 .:_'/

L,-rpU.T--

G.'7 L,(,_

z_ rv#.)
)..rv.(L)/

4

117

7/

l"Pu-l" \

/ _-_ \
\ 904a _SD///

_ U-) = Fv'I(/-)//

118

0

_f _ 2# gV

I

o

L-- 4 LA,"G

I

119

120

.' \ _ \
/ OUTPUT \

\p.'_rl,o,,,,_

,; Z_IZ Sr f<_uT'

\IT._2_T ,.S(,)/

xZS,'k) xg(5) ,

, --_ s TA 7u,S,
\

, P_'/MT- \

V5 /N,qg.

.... #

pve.lz'e. 3 EOF

off TAPE Ib

I

_' _4',_/

121

PRECEDING PAGE BLANK NOT FILMED.

V. TAG EXECUTION PROGRAM

A. General Description

1. Function

The function of the Execution Program is to compute the net-

work simulation and generate the performance data as specified by the

user in the TAG Description Deck. The circuit simulation program gen-

erated in FOKTRAN by the Preprocessor constitutes the main instruc-

tion sequence of the Execution Program. The remainder of the program

is in the form of precoded and precompiled subroutines that provide the

actual computational algorithms used.

The Execution Program reads in the parameter data listed in the

Data Deck that pertains to the particular network under investigation.

These parameter values are then substituted into the proper matrix co-

efficient expressions and special function statements. The matrices

and special functions are used in evaluating the network simulation

equations. As the simulation progresses, the network variables spec-

ified for output by the user are automatically printed and/or plotted at

the specified intervals. The process continues until the specified simu-

lation for each set of input data has been generated. The job then ter-

minates, but the Execution Program may be saved for the purpose of

creating further simulations of the particular topology for which the

solution program was generated.

2. Organization

The general organization of the Execution Program is illus-

trated in Exhibit 17.

B. Detailed Description

The following is a detailed description of the steps performed by

the Execution Program.

IZ3

Initialize

Program

Input Next
Parameter

Data List

Exit on

No More Data

Return to

FMS System

Select Next

Output State
To Be Printed

Generate Simu-

lation to Next

Output State

Print and Plot

Output Variables

Yes No

EXHIBIT 17 - GENERAL ORGANIZATION OF THE TAG

EXECUTION PROGRAM

124

I

I

b

I

I

i

I

I

I

I

•

Z.

•

Program Initialization

a. DIMENSION all computational matrices.

b. DIMENSION and COMMON variables as required by

FI_kRK, the transient solution integration routine.

c. Assign values to the matrix partition constants.

d. If required, initialize all transient analysis control

constants.

e. If required, initialize all nonlinear DC analysis con-

trol constants•

f. Transfer to step 3. a.

g. DIMENSION all arrays defined by the user and COMMON

all variables as specified by the user.

Output Sequence and Termination Control

a. Print out all variables as specified by the user and

perform all FORTRAN instructions included by the

user as part of the output sequence. Plot output

variables as specified by the user.

b. Determine whether the current simulation is complete.

If it is complete, transfer to step 3. a. If it is not

complete, transfer to step 4. b.

Estahlishin_ Initial Values for Computational Arrays

a. Set all computational arrays to zero.

b. Input all required parameter values and control con-

stants from the next data list. If there is no next

data list, the job is terminated.

c. Initialize certain integration control variables.

d. Initialize the computational voltage vector. This will

set capacitor voltages to initial condition values.

e. Evaluate all special function statements whose values

are constant.

f. Evaluate all constant valued matrix coefficients.

g. Where required, invert the matrices completed by

step 3. f.

125

o

.

.

.

Select Next Point for Output Sequence Execution

a. For first pass, set Output time stop to zero to ensure

the output of initial condition state.

b. For the initial pass and all subsequent dependent vari-

able stops, transfer is immediately made to step 5. a.

For all time stops, the next time stop is selected and

the present time stop is examined to determine whether

the integrator will require resetting before the simu-

lation is continued.

Evaluation of All Equation Coefficients That Are Discontinu-
ous in Time

a. Evaluate all special function statements whose values

change at time stops only (UTF and ULF).

b. Evaluate all matrix coefficients whose values are de-

pendent only on the functions evaluated in step 5. a.

c. Where required, invert the matrices completed by

step 5. b.

Control the Reentry Into FMAKK From Print Stops r Time

Stops_ and Dependent Stops (Transient Only)

a. Update the local time-stop available for FMARK.

b. Reentry into FMARK from a print stop is accom-

plished without resetting the integrator.

c. Reentry into FMARK from a time stop is accom-

plished by resetting the integrator from the top

without evaluating the end-of-step box.

d. Reentry into FMARK from a dependent stop is ac-

complished by resetting the integrator from the top

after evaluating the dependent stop variables in the

end-of-step box.

End-of-Step Box for FMARK Intesration Routine (Transient

Only)

a.

b.

Evaluate all special dependent stop functions.

Evaluate all matrix coefficients that change value at

dependent variable stops only.

126

c. Where required, invert the matrices completed by

step 7. b.

8. Set Up Initial and Reset Entry for FMARK (Transient Only)

a. Reset local time and stop time variable to zero.

b. Reset FMARK control variables to zero.

c. CALL FMARK. The integration routine, FMARK,

is entered through the top only for initialization or

resetting after a time or dependent stop.

9. FMARK Integration and Exit Control (Transient Only)

The rest of the program is primarily concerned with calcu-

lating the derivatives required by FMARK to determine all the voltages

in the network at each step in simulated time. This part of the program

is therefore called the derivative box. For the Adams-Moulton inte-

gration mode, the derivatives must be evaluated twice for each time

step; for the Runge-Kutta mode the derivatives must be evaluated four

times per step. After each evaluation, FMARK is entered through a

special input that does not reset the integrator. At the end of each in-

tegration step, the end-of-step box, step 7, is completely evaluated

and FM__RK is reentered again without being reset.

When a print stop, a time stop, or a dependent stop occurs, exit

is made from the internal integration loop to the beginning of the output

sequence, step 2. a. If the simulation is continued, FMARK is reset

upon reentry from a time stop or a dependent stop and is not reset upon

reentry from a print stop.

1 0. Evaluation of Algebraic Portion of Simulation Equations

a. If the problem contains a nonlinear DC steady-state

portion, the extra computational arrays required by

the Newton-Raphson process are dimensioned and

loaded with the required data.

b. Evaluate all special functions whose values change

continuously with time or network state.

c. Evaluate all matrix coefficients whose values depend

on the functions evaluated in step 10. b.

127

11.

lZ.

d. Where required, invert the matrices completed by

step 10. c °

e. Evaluate the terminal flux of all all-inductance cut-sets.

f. Evaluate the voltage of all all-inductance cut-sets by

numerically differentiating their terminal flux.

g. Evaluate terminal voltage of all all-conductance cut-

sets and all-conductance -inductance cut- sets.

h. If the algebraic equations are nonlinear, setup Newton-

Raphson subroutines for evaluating the residual vector

and the next solution estimate. Establish the iteration

logic to return to step 10. a, if the solution is not com-

plete, and to continue on if the solution is complete.

i. If the circuit is purely DC, a correct solution will

route the process to the beginning of the Output Se-

quence, step Z. a; otherwise the process will be

routed to step 11. a.

Evaluation of First-Order Derivatives for Capacitive Cut-

Set Voltages and All Cut-Set Fluxes If Required

a. Evaluate the first derivative of every voltage source

by numerical differentiation.

b. Evaluate the first derivatives of every capacitive tree

branch voltage.

c. Evaluate the first derivative of every tree branch flux.

These are the tree branch voltages.

d. Keturn to FIViARK through the entry that does not re-

set the integration process.

END Program

128

C°

uooi

Example]Execution Program

IRANSIthlT ANALYSIS GLISIERA[OR IN.J.IHt]MAS-JPLI
D|NLNSIUN FI.Ib(f'*,),LNItIb|tFHIS(].(.;ll

GUM M{jI_ FMl_t FVL)2I tf SDI I_F_tJ21 tF_UJltFV2ItF5 [I tFS2[t FS3L tF[2 IFT I _LN
[HeFIIH

DIMI+N_ I IJN FCML)MY (2t_ 14)

COMMC,_ FCMLJMY

LNV= l

LNC = l

L N(; = l

LNL=e

F_T! P=I.L-IL

FEF'LLz_ _. E-(_

FEI)._I_ 3= 5.E-4

FEP_LI_ [,E-16

LTYPE=g

GO [u (,ooo

OIMLN_IIJN htl (lOOI,bF2i [O0),bF_lLO,J) thFlllJU),bFSllOt)) _bl-6l IOOl

30 TIME=FI

WRITE IIUTPUI TAPE otI+UOO_TIME

8000 FUKPAT IlHUtl.SXl, bH11ME=pE:I6.B)
VIN=_FVII

WRITE IIUIPUT TAPE (,tSOuI_VIN

FORMAl (ill p46Xj4FtVIN=,FLb._)
VULJT =+f V?I

Wt_,IIE (+IJTPUT TAPI f,,doU_'tvbUT

OOOZ FOH_AI (Ill f45Xt_ttV(IUf=tEl/,,_|l
GIN= I-l-V3lI= SGhIu2

NKl rl + IIUTPUI TAP_ f,_SLlO:_tCIN

BOO3 FUk:_A[(IH t_6X_z+llCIN=s_lb.H)
K=I

I F I I+ T-I+IJNE) 1,1 t ()[' t 60
6U K=,'

61 CALl S(.t_PE(E [fvlh_llt I_LUO,l',t')llVI.,d V.tJLl_,41tl IHE)

(.ALl SLIJPE I F 1 t VIJU [_ t_k2 _ 100_ K _ LtlHVIJU T VUI+TS_ _HT I_L)

CALL 5LUPE(rT,(+I;+_bF-}_IO0_K_SII(.IN AMt'S,4ttTIf"I:)

b5 I F(F I -I,IJNE_ IMAm,) o i_ oz _(,Z

b2 CONI ll_l:L

CALL It+PUT If, tI')IO_)(J.ttSI(J2L}_HSLOZtJ-_SLt)_O }_(_fi_btJO_JJ_t,IJU(J3tOt|%t)Ul

I-o2_ %t,C I t.',_t&llSCf.(ItJ $_ _LOuO]t/,IISVIJOO }_'.)VOO(i3_CHSVOCOI _ L+VOOOL _IIFT_F I t

2')14F.", IE: ' _FS[t_P_'.,ItIIzP3L_t I-PSL _OItFLPSL t =If PSt.] _(.tll- LPSI / _f-L PSI.;:'_OHi EPS

}1.3_I t P%L__tt¢)IIFEI)3L4_I I. PbL4_411FIIUI tFIIUI _I,IILDt,L, OL_LD|t,UI _gfILMAX_LMAX_

4.bttI IYF'I _L1YPI: _',ttLL_.NI_LLCNI _hHLI_LG|-I _LAI (;F I _HS IIJPI _ %IUPI_',HVSTOF'_

VSI-I:P .IIVHiI,tttVI_IbH_hVI_tJW_VI.{}WI3HVIHIVIHt tHVlLtV]L t _HVI_,_VINI4HV(]

'(_UT, VUUI , '_HI+F2 _I_I- Z_ 3tll+F- J_L+Fi'J,_ $Hl+,f zt _lll-4t_tltl;f'h _HFt_ _ jill _:6_t, F6_ JFtLiF I _IJF
11 ! 4hO(_.. I I UtJNIt- I l IlK)K)]Fib I NIL lrt) IHM) M) 4Ill MAt;) I NAG)oFt1 1__ENI))

6_ CALl. SCtJPI-(FI)VlN)UF4_LOO)Kt')HVIN VL'LIF_)_H[INE)

CALl. 3(.tH)EII-[_VLII_[_I;Ft)_IOOtK_LOIIVUUI VIILTS_IH[I_t)

CALl. _t.ttpl-lFltLll'l_ht6_ 100=t_,_SttC|N AMPS_IIII[ML-)

bJ l F (K-Z I &2ou _ 6o()f}, I_O(jU

(+OO0 bALL ZI ,'IJX{FSII_I

CALl. ZI F',IJX(FSZ]=I

CALL ZI I,II+&(FSJI _ I

CALL Lt klJJt(t.VJl, L

CALL £t RIJXIPG_+s_[

CAI_L LI /.UX(I:I Jilt

GALL ZF. ROXII--I;Jl _I

129

/',LOrd

TKAN_IENf ANALYSIS GENERATOR (_.J.THONAS-JPL)

CALL ZLRIJX(FVLLt L)

CALL ZLkUXIFG32t l)

CALL Zl HOX(FV2LtL)

CALL ZiiKUX(I-L3L t L)

CALL ZLKUXIFL3Ze 1)

CALL ZtKUXII-L33_i }

CALL Z[KUX(FC£1t L)

CALL Z_KUX(I-Ilie 1)

CALL Lt RL1XIFC]?e|)

CALL LLRI|X(FGII_I)

CALL Zl R(JXIFGLZtl)

CALL ZL. KIJX(FG|Jt L)

CALL Z| t,.tJXil-LlltL)

CALL Zl- I_OX(FL L2 _ l)

CALL LPRfJX(I-LL3e])

CALL Z!.HUX(FVU2i e])

CALL ZI R(JXIFC22_l)

CALL ZI-I,',UX(F i 2[t [)

CALL ZLROXIFGZI w).)

CAlL ZI:KUX(PG22 _ 1)

CALL Z[-HUXIFG23tl)
CALL ZPHIJXII-L2I t [}

CALL LIRUX(FL2Zt I i

CALL LEkLJxiFL23t|)

CALL ZE_,UX(I- SD[I e 1)

CALL ZEI_,UX(F SU2 1 t I)

CALl. LLKtJXIFSD31 _[)

CALL ZLRUX(FC21 _1)

CALL LERt)XIFVUII e l)

CALL If- RUX():VUI [e I)

F I :':(: •
CALl. INPUT (6HSIO'Z()3_SIOZU3t6HSLO20:_tSLO20:,,6H_I;UO(_3,SGOOO_tbHSGOI

IOZeSGCIOZt/dlSCiJUO3e_COUO-_et_HSVUOO_ItSVOOU3e6H_VOOUIeSVOOO|tzHPTtFIt

25HI S TLI' t F Slf P e'ihF PPSLt f:EPSL f 6Ht'kPSL L eFEPSL l e 6HF LPSL 2 t FLPSL2 _ 6Ht EPS

.tL 3 e t LPb L _teCLIP EP _ L4 eF EP bL '_ e 4HI" (IUT _ FLJUI t 6tILI)I_GO! t LUBI;o I t 4HLMAX ! LNAX

¢StlLIYPI tLTYPi-e_IILLCNleLLCNItOHL&LL;F1eLAL(;FIt'_HS1L)PieSTuPXtt)ItVSIUP_

5V_TI_Pe%IIVIIIG)t_Vt' [GIt_ 41tVL(JNe VL(Jk_ 311VilifY] lit 3HVTL eVil , _hV|r_Vl Ne_HVU

6UTeVUUI _JIILF2_P, F2e _.HflF-4_I_FS_sHhF4tbI'4_3HHF-_ieDFSe 3FII'i'b_I_Fb_JHbFI_bF

I L t 4I,DUrl L _ UIlNL t I hK eKe -_IIC IN_CINe lllM _MI4H IHAL; e1MAb ebHb I,$END)

CON I I _iLl L

LALGFI _ [
LINf=e

kChll =l

FTI =t i

I:l_,=_ i

FHL,-FSfLP

I'V_ ! =*b V OEJU],
FVZ | =_SVOUt):t

FV_,I=_3VOI02

I-G._ =+I;(,01o2

PL I I = _.'..,LO2C,3

t.L I,'=-_,L U2u3

FLI _ =_._LU2U.$
FL2 l =-_; L O20,_

130

I

I

I
I

I

I

I
I

6200

6201

6202

6390

639l

6_93

6]95

6600

FL2Z=+SL0203

FL2J=-SL0203

FL31=_SL0203

FL32=-bL0203

FL33=+SL0203

FIII=-SI0203

F|21=4_I0203

F131=-SI0203

FCI2Z=t./FCZ2

FGI33=I.IFGI_3

CALL H:_TUP IFSItJPtIT_FIIC)

lFILCN1-3)bZOZ.oZOI_639b

CALL STIIPIFUUT_LINTI

CUNTlhUL

GO TO (b39_,b39UJtLALI;FT

IF(LI_I)639tt63qlt6393

FSIUP=I STOP-FTL

CALL xUot(O)

FSTUP=i_STOP-FT

GO TO _425

LEUS=I

CO_;I_Uc
LLCNI=LGNT-3

THANSIENT ANALYSIS GLNERATUR (N.J.IHUMAS-JPL)

CALL VNUU(I+FVII) ,(+FV2I)tST(JPI,VSTUP_VItlGtI,VLUN,VIHtVTLILLCNTILAL

IGFT_I)

GO TIJ(6422_642tJ) ,LALGF1

6420 lt-(I.kb. _,)6421,6621_6622

6421 CALL RItUI(U)
6422 F STtJP=O.

6425 FTI=O.
FT/.=O.

F TL = F i

FH_(l)-" I- STEP

FI4L_I2I--I.E-b

FHI;(.tj-FEPSL4

FItBI ge) :.:.5

FHH(5)=I-EPSLZ

FHBIo)=I L:P.%L 3

LNhl l):Zl
LNHI 2 |-LNH(I)

LNH(5)=_

CALL F/'_AkKILCNT,FHk_.O_LIYPLv I,Le2sPHCo3_FTI tPS1OPtg.,STllpltOoU)

FT=I IL+FTI

IF I Lt.NI -Z)(, l()O. 640U t 30

6300 (.IJ,q[INIIL:

(.t V3l= FGI 3:_.(F I 3L-FG tl .FV! I-FG32*FVZI-FL31*FS l I-FL3Z.FS2 [-FL3]aFS3L)

/'tiLl (FL3J,f S3I . FfLMI. I. l, I)

MLiLIIFL'_L.FS2I .FTEt4L_I,L.II

PhUMlt TEN/IFTLML.FTEM!. l, l)

I=UL fIFL3LtFSII _FTEH_' _ L. Lt L)

P_,UM(t TLMZ I PTEMLt FTEML. I. l)

PULTIFG"tZ.PVZI tFTEM2IL.]_[)

P-_,UNI f II:N_. FTLMI _ F TLMI t l t l)

PIJLTIFG31tFVII .FIt'HZe 1 t It 1 I

P_UHIFIENLt FIEMI. FTEML, 1. I I

CALL

CALL

CALL

CALL

CALL

CALl.

GALl.

CALL

CALL.

131

TRANSIENT ANALYSIS GENEHATOK |NoJ.THOMAS-JPL}

CALL _UMIFI31_FTEMLIFTENI_Itll

CALL PIJLT|FGI3_tFTEMIeFV31tXtlt||

LALGFI=2

FDLT=FI-FTU

[FIFULI|TUJUtIU3Ut7025
70Z5 FVUIL=IFVIL-FVUII)/FULT

7030 FVUXI=FVII
FT()=FT

CFVD21=FCIZZ*(FIZL-FGZL*FVII-FGZZ*FV2L-F_23*FV31-FL2L*F_LI-FLZ2_F_ZI-FL2

C3=FS3 I-PC2 ll FVD/L)
CALL PULTIPL2L,FVUi 1 ,F (EMI, l ! I ml)

PULT(FL23tFS31_FTEM2_IpI_I|

PSUM(FFEN2tFTEMI_FTEMIII_I|

MULT(tLZ2tFSZIeFrEM2t|tLtL)

P_UMI_TEM2_FTLMI_FTEMIvIlll

PIJLT(FL2[tF_IL_FTEH2tLtI_L|

PSUM(FTEM2tFTEM[tFTFNLtLvL}

_IJLTIf:G23tFV31tFT_M2tItI_]|

PSUMIFTEM2_FTLNItFTEMItL_I|
PIJLT(F{PZZIFV21_FTEM2tItltI|

PbUM(FTLMZtFTEM_el TEMltIlI|

MULT(FG2L_FVII,FTEM2,IllvI)

P_U_IFILMJpFTLMI_FTEM|tItl)

p_UMIt 12I_FTEHLIF]EHL_Lt[}

_ULTIPCI2_IPTLMltFVU21tltI_II

t=l VII

l=t VZI

l=l V3L

rtJb T (U)

| tC tOtOtolOt I IOIOIUIUt(JtUIOIO)

P_X L74T CUUN| _J[

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL
CALL

CALL

CALL

CALL

CALL

CALL

FSDI

FSL)2

I-SU3

CALL

ENI)(

2._C }5L41

132

I
I

I

I

I

I

I

I
I

I

VI. TAG SUBROUTINE WR/TEUPS

A. Program Hierarchy

Hierarchy Subroutine Hierarchy
Level Name Pas s Level

2 ADDLOC 1 2 3

7 AFTER 1 2 Z

6 AFTLK 1 2 2

8 BACK 1 2 Z

2 BAKE LM l 6

4 BCB 2 3

6 BCD 2 4

4 BCL 2 4

6 BNDZ 2 3

5 CHLNE 1 2 3

3 COMBN 2 4

5 COPY 2 5

2 COTRN 1 5

4 DBPCHC 2 5

4 DBPCH 2 8

4 DBPFH 2 2

4 DIFA 1 2 5

2 DIMEN 2 5

5 DONBD 2 3

7 DOWN 1 2 5

4 DOWNS 1 2 5

2 DPDST 2 2

Subroutine

Name

ELIM

EQFS41

EQFV21

EQFV31

ERASE

ERASEA

EXCPT

EXTRX

FISH

FLAG

FLT C ON

FOUTPT

FRACT

FRFL

FROM

GOBLE

HEAD

HEADC

HOLBK

IDNTP

INFL

INPUTX

Pass

2

2

Z

2

2

2

133

Hierarchy
Level

5

2

8

2

2

2

8

4

7

5

5

3

3

3

2

9

2

3

6

2

2

7

3

Sub routine
Name Pass

INSRT 1 2

INT LST 2

INTO 1 2

INVST 2

INZERO 2

LEVMRK 2

LINK 1 2

LNECH 1 2

LNKT 1 2

LOCAT 1 2

LOCATA 1 2.

MAT FT 1 2

MAT OT l 2

MRKLST 2

MU LTS 1

NEWLOC 1 2

NLINDM 2

NUMB l

PAGEHD 2

PARAM 1

PARTS Z

POPUP 1 Z

PRPTG 1 2

Hierarchy
Level

3

Z

2

3

4

6

4

4

3

3

2

2

2

4

6

2

3

2

2

4

3

Z

2

Subroutine

Name

PRPTR

PUSPCH

READCH

RECOVR

SEGMNT

SET

SNAT CH

STASH

STAT

STATC

STATUS

STRIK

SUBST

SYMBL

SYMCH

SYMCRD

SYMTP

TRANS

TREE

U PDW N

WRTEQ

XFORM

ZEROX

Pass

1 2

2

I

I

I

I

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

134

B. Subroutine Writeups and Flow Charts for TAG Preprocessor

Program Description

1. Identification

a. Routine Label

ADDLOC

b. Name

Allocate available space (AVS).

2. Function

Space is reserved in core as a list of elements linked to each other

by a pointer in the link position of the word.

3. Pro_rammin_ System

FAP

4.

a. Calling Sequence

CALL ADDLOC (A, I)

b. Entry Conditions

A = Head of AVS

I = Number of cells to be allocated as elements in AVS

c. Exit Conditions

a(AD90) = Head of AVS with pointer to current available

element

a(ADgl) = Pointer to last element in AVS

d. Error Exits

None.

5. Definition of Identifiers

AVS = Available space list from which elements for all list struc-

tures are taken

135

INg0 = A location containing the address AD93, a pointer to the

last available element in AVS

6. Method

A list, headed by A, is formed of I elements, which occupy sequen-

tiaUy descending positions in core. Each element is linked to its succes =

sor by a pointer in the link portion {bits 21=35) of the word. The list is

terminated with an element whose link contains zero.

7. Other Subroutines Used

None.

8. Using Subroutines

Main Program for Pass 1 of TAG Preprocessor.

Main Program for Pass 2 of TAG Preprocessor.

136

137

Pr0_ram Description

I. Identification

a. Routine Label

AFTER

b. Name

Insert an element AFTER the first element.

Z. Function

This subroutine inserts a new element into a list immediately fol-

lowing the first element of that list.

3. Programming System

FAP

4. Usage

a. Call_g Seq_u.enc e-

CALL AFTER (A, B, C)

b. En__try Conditions

A = Head of a list

d(B) = Item of new element

d(C) = Flag of new element

c. Exit Conditions

List A contains a new element with d(B) as its item and

d(C) as its flag. The first element in list Aisl[nked to this new element.

d. Error Exits

None.

5. Definition of Identifiers

d(AF90) : Pointer to new element to be inserted

138

6. Method

Ak new element is acquired using NGWLOG. If list A is null, a new

list is started that contains this one dement, with a link of zero. If list

A is not null, its first element is linked to the new element. The Iink

formerly in the first element becomes the link in the new element, thus

maintaining the list connections. The item and flag (if any) given in

d(B) and d(G) is pushed down into the element by INTO.

7. Other Subroutines Used

INTO, NEWLOC

8. Using Subroutines

AFTLK, COPY, DONBD, MRNLST, SUBST, SYMBL.

139

I I

(,4FTEZ(>
L

d_j --;k+,<,j
/H LisT" v_

4-

i ,"#_;v £Ld."_t-Nr" I

{,..Lis. _ j

_ALL

140

I

I
I

I

I

I

I
I

I
I

I
I
I

I

Program De scription

i. Identification

Routine Label

AFTLK

2. Function

This subroutine inserts a new element immediately after the first

element of a list and resets the head of the list to point to this new ele-

ment. If the inserted element is the only entry in the list, its location

is saved in a flag word.

3. Pro_rammin_ System

FORTRAN II

4. Usage

a. Callin_ Sequence

CALL AFTLK (A, B, G, F)

b. Entry Conditions

A = Head of a list

d(B) = Item of the new element

d(G) = Flag of the new element

F = Flag word

c. Exit Conditions

If list A was null, a first element is inserted into A with

d(B) as its item and d(G) as its flag. If A was not null, a new element,

with d(B) as its item and d(G) as its flag, is inserted between the first

and second elements of A. In either case, A is reset to point to this new

element. If the inserted element is the first and only entry in the list,

its location is saved in F.

d. Error Exits

None.

141

.

.

Definition of Identifiers

None.

Method

a. If list

(i)

(z)

(3)

(4)

b. If list

(1)

(z)

(3)

A was not null:

A new element with d(B) as its item and d(G) as its

flag is inserted immediately after the first element.

The first element is linked to the new element.

The head cell of list A is set to point to the new element.

The new element is linked to the element which was

formerly the second element.

A was null:

A new element is inserted with d(B) as its item,

d(G) as its flag, and a link of zero, creating a list of

just one element.

The head cell of list A is set to point to this element.

Location of the single element in A is saved in the flag

word F.

Other Subroutines Used

AFTLK, LNK'r

U sing Sub routine s

ELIM, INSRT, MATFT, MRKLST, PRPTG, STASH.

I

I

I

I

I

I

I

I

I

I

I

I

14Z

(A F T L t_)
CALL AFTLa<(A

CP,_L

t

' Pot,v_" To ZN_)

\&¢'/" F.= A)//= _)7

_CLe_rn _ t-$ T 7

L_'_ T(AyA_F)

_, 143

Program De sc ri_tion

1. Identification

a. Routine Label

BACK

b. Name

Restore an element BACK to AVS.

2. Function

Restores an element back to available space (AVS), thendecreases

number of elements used by one.

3. Programming System

FAP

4. Usage

a. Callin_ Sequence

CALL BACK (I)

b. Entry Conditions

d(I) = The decrement of location I holds pointer to element

which is to be restored,

c. Exit Conditions

(1) Element pointed to by d(I) restored to AVS.

(Z) Pointer to next available element in AVS reset to re-

stored pointer.

(3) COUNT decreased by one.

d. Error Exits

If pointer to last element in AVS = O, or if location I = O,

CALL I)UMP is executed and return is made to the FOIt'FRAN monitor

system.

144

2

,

o

o

.

Definition of Identifiers

a(AD91) = Pointer to last element in AVS

COUNT = Number of elements used from AVS

MAX = Max count of elements used from AVS, maintained for

printout by subroutine STATUS

Method

a,

b°

c.

do

If (AD91) = 0, the subroutine ADDLOC has not yet been exe-

cuted to reserve space inAVS, and an error return is made.

If d(I) = 0, there is no element to be restored and an error

return is made.

If (AD91) _/ 0, and d(I) _/0, COUNT and MAX are updated

and the element pointed to by d(1) is restored to AVS.

Pointer to next available element in AVS is reset to the ele-

ment just restored.

Other Subroutines Used

None.

Using Subroutines

ERASE, POPUP.

145

/,_ HrS.

J

_ _te s

N_

V

• duNr}

,t

.... i

146

,.._._,_ _ .Tu._-r" I

_______.......... I

Program De sc ription

1. Identification

a. Routine Label

BAKELM

b. Name

Perform Jordan elimination on each row of a matrix.

2. Function

BAKELM transforms TQ, the NRR x NM tree voltage based trans-

former constraint matrix, to a form in which each row, I , intersects

a column whose Ith element is unity and whose other elements are all

zero. Each row of the transformed TQ matrix is a solution for one of

the NRR coordinate variables in the unconstrained tree voltage vector,

VT , as a linear combination of the NM - NRR remaining coordinate

variables of VT. By this process VT is divided into NM - NRR inde-

pendent coordinate variables, VTI, and NRR dependent coordinate var-

iables, VTD. The transformation is applied to TQ so that priority for

membership in the dependent variable subvector, VTD, is given to the

coordinate variables at the bottom of VT.

3. Programming System

FORTRAN II

4. Usage

a. Calling Sequence

CALL BAKELM (TQ, NRR, NM)

b. Entry Conditions

TQ = The NRR x NM tree voltage based transformer con-

straint matrix calculated by the product TRR * TC

such that TQ * VT = 0.

NRR = The number of transformer constraint equations that

is equal to the total number of transformer windings

less the total number of transformers.

147 "

NM = The number of coordinate variables in the uncon-

strained tree voltage vector VT that is equal to the

number of nodes less one.

c. Exit Conditions

TQ = An equivalent NRR x NM transformer constraint

matrix in which NRR of the columns have been

transformed into the NKR members of the NRR

dimensioned identity matrix. Thus NKK of the

tree voltage variables are essentially solved in

terms of the NM - NRK remaining variables. The

transformed columns are chosen whenever possible

from the right-hand side of TQ.

d. Error Exits

If NKR of the tree voltage variables cannot be solved for,

a dump is called and control is returned to the FORTRAN Monitor.

5. Definition of Identifiers

J = The row search index

I = The column search index

FTEM, FTEM1, FTEM2, FTEM3 are used as temporary vari-

able names for the elements of TQ being operated upon.

L and K are used as search indices for various operations. NR

is used to keep track of the number of pivot columns already found.

6. Method

BAKELM uses Jordan elimination to transform the NRR x NM

TQ matrix to a form that solves for NRK coordinate variables of the

unconstrained tree voltage vector, VT, in terms of the remaining

NM - NRR variables. In this process, priority for membership in

the set of NRR dependent coordinate variables is given to the bottom

of the tree voltage vectors VT, by choosing pivot columns starting

from the right-hand side of TQ, and pivot rows from the bottom. The

148

usual result of this process is to produce a transformed TQ matrix of

the form [TQ' : U'] , where TQ is an NRR x NM - NRR submatrix,

which expressed the dependent coordinate voltages, as a linear function

of the reduced set of independent coordinate variables; and U' is a

permuted NRR x NRR identity matrix which expresses the fact that the

rows of TQ' will not solve for the dependent variables in the same order

as they appear in VT. For some nondegenerate transformer connections,

it will not be possible to select the bottom NRR coordinate variables to

be dependent. In such cases the columns of TQ' and U' may be inter-

woven. The following algorithm defines the process as mechanized in

BAKELM.

a. Set NR, the elimination control index, to 0 (NR = NRR ter-

minates the process}.

b. Set I, the pivot column search index, to NM.

c. Set J, the pivot row search index, to NRR.

d. Starting at row J, search up column I for the first non-zero

element. When found, stop the search so that J is the row number and

I the column number at which this possible pivot element is located.

Store value of element JI in FTEM and go to step e. If the search

reaches the top of column I (J = 0) without finding a non-zero element

in an unpivoted row, I is decreased by one; and if I > 0 return is made

to step c. If I = 0 a dump is taken and control is returned to the FOR-

TRAN Monitor.

e. If I = NM, I is the first column searched and element JI

has to be a proper pivot element. The next step taken is g.

f. If I _ NM, search all elements of row J to the right of col-

umn I. If they are all zero, element JI is a proper pivot element and

the next step is g. If they are not all zero, row J has already been

pivoted on and element 5I may not be used as a pivot. In this case,

the next step is to add one to J and return to step d.

g. Add one to NR and set K, the pivot row normalization index,

to 1.

h. Starting at column 1, replace every element of row J by its

initial value divided by the value of the pivot element, JI, stored in

FTEM. Thus EjK(NEW) = EjK(OLD)/EJI)OLD) for K = 1, Z, ---NM.

149

i. Set L, the row elimination index, to 1. Starting at the top

of the column I, search down until the first non-zero element is located

at LI, and store its value in FTEM. Starting at the left, replace each

element of row L by its value decreased by the product of the corres-

ponding element in row J, and the element initially located at LI, whose

value is stored in FTEM.

Thus ELK(NEW) = ELK(OLD) - EjK(NEW) • ELI(OLD) for K =

i, 2 ---NM. This process is continued until L = J - I, at which time

all the elements of column I will be reduced to zero except element

JI which will be +I.

j. If NR is less than NRR, I is decreased by one. If I equals

zero, a dump is taken and control is returned to the FORTRAN monitor.

If I is greater than zero, the process returns to step c. If NR = NRR,

a return is made to the main program.

7. Other Subroutines Used

DIFA, DUMP, SNATCH, STASH.

8. Using Subroutines

Main Program for Pass 1 of TAG Preprocessor.

150

/ ._,,,,,"rc _. $

: "t'e ,s

/,

_/ --1
!, _.T) i

1 ,/_:s

_____.,

X_
l

A

.151

152-

i

/ ._,,,_r,_,._" \

k*_,,,<,o,_:-/
\ r,__,.,j

\ T<_<,'-,_,_,,<v:/

"re s "1,

.,,t,<.,.;>,- >

)

,/es

153

Program De scription

1. Identification

a. Routine Label

BCB

b. Name

Convert a BCD number to an integer.

2. Function

This subroutine performs a BCD-to-binary conversion. The

converted number is placed in the lower part of the accumulator.

3. Programmin_ System

FAP

4. Us_

a. Calling Sequence

CALL BCB (ERROR)

b. Entry Conditions

BCD number in the accumulator.

c. Exit Conditions

Converted number in lower accumulator as a binary integer.

Contents of the MQ are not destroyed.

d. Error Exits

Error exit is taken if any illegal character is encountered

during the conversion.

5. Definition of Identifiers

ERROR = Contains location of the character in error

BC85 = A table of binary equivalents for a BCD number. Used

with convert instruction CAQ.

154

6. Method

The contents of the MQ (on entry to the routine) are saved in BC92.

The BCD number in the accumulator is placed in the MQ, then the ac-

cumulator is cleared to zero, in preparation for use of these registers

with a CAQ instruction. A table lookup in BC85 is performed for each

character to be converted. If an illegal character is encountered, an

error exit is taken with the location of the character in ERROR. If all

characters were legal, low accumulator will contain the converted

nurnb e r.

7. Other Subroutines Used

m

None.

Using Subroutine s

STATC

155

(" _c_ -_

..... r /]

I

[

L F

L O_P ,qc

| r,wo_'_ I,-, |

-f

-_.:_:_;- . [,,
y,/

Go._,l.rST'- /_,,F_GE,_ I

_° _S

156

Program Description

1. Identification

a. Routine Label

BCD

b. Name

Convert an integer to a BCD character.

2. Function

An integer, right adjusted in the accumulator, is converted to a

six-character BCD number (right adjusted with leading blanks). The

least significant digit is at the top of the list.

3. Programming System

FAP

4. Usage

a. Calling Sequence

CALL BCD

b. Entry Conditions

The accumulator contains the integer, right adjusted, to be

converted.

c. Exit Conditions

Six-character BCD number in the accumulator, right ad-

justed, with leading blanks.

d. Error Exits

None.

5. Definition of Identifiers

BC90 = Local variable used to accumulate BCD characters during

the conversion.

157

.

binary integer with leading blanks.

adjusted in the accumulator.

7. Other Subroutines Used

None.

8. Using Subroutines

BCL, HEAD, HEADC.

BC9Z = Integer in accumulator, right adjusted, to be converted.

BC93 = A table of six entries, with BCD blank characters (0 to

S blanks}.

BC94 = A table of six entries, each a shift operation, used to

right-adjust the converted number in the accumulator.

Method

Each of the BCD characters in the accumulator is converted to a

The converted number is right

158

2

. .i . .

/

Io_]

vl._.

I_c) _--->_'qJl

¢
¢,

1[

, _ oe_.-e_6z<z_l

1 ,.... --F.¢-

l l_#&/4t AIDS. _,#0._ -- 7A-_'_¢

(ac) ACc_.¢_,.t'_

To(_aq3_-)- _,_ _,C_

F.{,_,-} ': Q:_'°)-_'.

! L_.m_')_J

159

i_r ograrn De sc ription

1. Identification

list.

2.

_o

b.

Routine Label

BCL

Name

Convert an integer to BCD and push characters down into a

and pushed down into a list as individual elements.

zeros) are removed.

3. Programming System

FAP

4. Usa&e

a. Calling Sequence

CALL BCL (I, A)

b. Entry Conditions

I = Binary integer

c. Exit Conditions

Function

An integer is converted to BCD and the characters are split up

Blanks (leading

The integer in Iis converted to BCD. List Ais created with

each character of the BCD number pushed down into the list as an indi-

vidual element.

d. Error Exits

None.

Definition of Identifiers

BC92 = A table of six entries, each a shift operation, used to

right-adjust each character in the acculnulator, after

conversion from binary to BCD

.

160

6. Method

The binary to BCD conversion is performed as follows:

a. The integer in I is placed in the accumulator and converted

to a six-character BCD number by the subroutine BCD. The BCD char-

acters will be right adjusted (with leading blanks) in the accumulator.

b. Each of the six characters is placed in the item of an ele-

ment and pushed down into list A by the subroutine DOWN.

7. Other Subroutines Used

BCD

8. Using Subroutines

COMBN, DIMEN, DPDST, INPUTX, NLINDM, PARTS, SYMCRD,

WRTEQ, XEROX, Main Program for Pass 2 of TAG Preprocessor.

161

T
i/

t'_ZT::._:d

.... g 1

_C]Z -- 7,4, _ .=

"_ _> t" ,P," ,_ T / _ ';

V'

V

.(,

1

V

"r4' (Bc<_l...+_)- I

¥

! ->_"_<) !

V_ 5

/

t _ "#_'_

l..........@
,' __ _' \ ¢,_

', _o /.#_'"t _ /
, _,,,*_ ,_(a_-'_)/

No, <I_ £ T U IZ I_I'

" i
i

t

162

Program Description

1. Identification

a. Routine Label

BND2

Z. Function

This subroutine decomposes an integer into a units digit and a

tens digit.

3. Programming System

FAP

4. Usage

a. Calling Sequence

CALL BND2 (I, J, K)

b. Entry Conditions

I = Binary integer

c. Exit Conditions

J = Units digit of integer I

K = Tens digit of integer I

d. Error Exits

None.

Definition of Identifiers

None.

Method

The units and tens digits of integer I are extracted as follows:

a. I is placed in the MQ.

b. AC is cleared to zero.

c. I is shifted into the address portion of AC.

Q

.

163 "

d. AC, MQ are divided by 10.

(1) The remainder is shifted into the decrement of AC and

then stored into the decrement of J, as the units digit

of I.

e. The AC is cleared to zero.

f. AC and integral part of quotient in MQ (from division in

step d) are divided by I0.

(I) The remainder is shifted into the decrement of AC

and then stored into the decrement of K, as the tens

digit of I.

, Other Subroutines Used

None.

8. Using Subroutines

DONBD

164

J

/------3

! .

[
I

,L
¢ffFT _HJ_T

I

_c Ig _JT_ t

tv"__

I ' F5

-- t

i

i

{ o_A_ I

A_

1

l gT 51'_/1=T I
I

l
v

,,-re_c# ,,,, r -_ "-{(K)

IAr_

Program Description

1. Identification

a. Routine Label

CHLNE

b. Name

Insert a character into an array.

2. Function

This subroutine inserts a BCD character into a given character

position of a Hollerith array.

3. Programming System

FAP

4. Usage

a. Calling Sequence

CALL CHLNE (A, I, J}

b. Entry Conditions

A = An array of IIollerith characters

I = A character position in the array

J : A word that contains a BCD character

c. Exit Conditions

A BGD character, as an integer in J, is inserted into char-

acter position I of the array A. The rest of A is unchanged.

d. Error Exits

None.

5. Definitiou of Identifiers

•CH90 : 'Fhis cell contains the BCD character in J as an integer

(right-adjusted in the decrement portion).

166

CH92 = A table with six entries, each a shift operation.

6. Method

Each time the subroutine is entered, the BCD character in J is

shifted into the decrement of CI-t90 as an integer, rigl_t-adjusted (CH92

determines the appropriate shift). The contents of CH90 are then

"OR-ED" into the Ith position of the Hollerith arrayA.

7. Other Subroutines Used

None.

8. Using Subroutines

DBPCtIC, Dt3PCH, DBPFH, GOIBLE, INPUTX, MATOT, PUSPCH.

167

CH L_f_

,!

t
"l

i
q

J.

4

(._<.)
F

i

i

!

H I-._; £ ("ql Z_ 5",)

i_.)W(-_<,))-,

I C._<>
A
I

¢,. I G/_/"- ,,-_2 Jv'.s _ c" _ I

A
....... i

(',__,)-) (cH_o)

, 1

Se_

/-_ _ _.

168

Program Description

1. Identification

a. Routine Label

COMBN

Z. Function

The abstract quantity descriptors SYN1NZ are transformed into

a linear combination of existing data items which will compute the quan-

tities in terms of existing transforms.

3. Programming System

FORTRAN II

, Usage

a,

Do

Callin_ Sequence

CALL COMBN (RIN, T,

ISSW, ISIS)

Entry Conditions

RIN =

T ..

N ._

NPT =

ISSW =

ISSW =

ISSW =

N, ROUT, NPT, NCB, IV34,

A simple list containing, in order, the

characters representing the sequence of

descriptors

A four-dimensional matrix represented in

list- structure form

The nurnber of node s

The array containing npt dimension

information

A switch

1 if processing a nonlinear statement

2 if processing a standard statement

169

o

co Exit Conditions

ROUT =

NCB =

IV34 =

ISIS =

d. Error Exits

None.

Definition of Identifiers

A simple list which contains the character

string representing the appropriate

t ran s formation

The number of combined data values in

ROUT

An indicator computed from ISSW and RIN

An indicator computed from RIN

KS

LTYPE

IO

IT

NSP

Constants: BCD character strings

Type Name Value

Integer IBRKL (

Integer IBRKR)

Inte ge r ISS S

Inte ge r IPLUS +

Inte ge r F F

Inte ge r IMIN US -

Integer ITYPE(1) V

Integer ITYPE(2) S

List Zero [+ ; O; . ; O]

List PNTST [. ;*]

Va r iable s:

KN = Character counter used to maintain position

when popping up KIN

= Indicator of sign of abstract variable

= Holds second character of abstract variable

= Holds first node number

= Holds second node number

= Computed index

170

NSIJ =

TEM =

TEMX =

ITEM =

SI(Z, IO0) =

6. Method

Computed index

List used for construction of the output string

List used to hold second node numbers temporarily

Used to hold character most recently popped out

of RIN

Holds numerical values as they are computed

from the abstract variable

a. RIN contains a linear combination of abstract variables, each

of which has six characters:

Chl =S

Chg = (LTYPE)

Ch3 t First node-number
Ch4

Ch5 t Second node-number

Ch6

Example:

SV0304

RIN may contain any linear combination of these.

Example:

SV0304 + SV0302 - SV010Z

b. For each variable 4. SYN1N2, the list T

using SNATCH, for any non-zero data.

and the data is computed this way:

is searched,

This is clone for all 0<i_N,

X(i) = + (T(NZ, i, 0, 0) - T (NI, i, 0, 0))

c. For any X(i) that is non-zero, an entry is pushed into

TEM which has the following format:

4- Z * Fybl(k)

171

where Z =

y __

j and k =

the BCD representation of X(i), as a

floating-point numbe r

the character <V > if the second charac-

ter of the abstract variable was a V;

otherwise y is the character <S>

BCD representations of integers computed

in the following manner:

given X(i} _ O, J is such that

j-1 j

NPT(m}<i< _ NPT(m} NPT(o} = 0
m=0 m=0

J
and K = i - _ NPT(m)

m=0

This means that j will indicate the submatrix (V, C, G...) where i

occurs, and k will be the index within that submatrix.

d. TEM is popped up and pushed down into ROUT; then exit.

ROUT will then have the transformed combination, with the sign and

high-order digits of the floating-point number at the top of the list.

e. If TEM is null, then either RIN was null or no non-zero

X(i) could be found. A comment "ZERO HAS BEEN PLACED IN THE

STATEMENT BELOW" will be printed, and the contents of list ZERO

pushed into ROUT.

f. NCB will contain the number of entries

± Z * Fyjl(K)

or (Z)

inserted in ROUT.

ISIS will be set = Z if y was not a V ; unchanged otherwise.

IV34 will be set = 1 under these conditions:

(1) c(ISSW) _ l

j=4

c(ISSW) < 1

j=3

yisaV

17Z

7. Other Subroutines Used

BCL, DIFA, DOWN, DOWNS, DUMP, ERASE, FLTCON, I:_)PUP,

SNATCH, SYMBL, UPDWN.

8. Using Subroutines

SUBST

173

5_": r UP
C _ ,%I _ TA /V' T,__

y_s

I Mo

+
/-,_)

ND

NO

174

Q
I

2 -_ (_)

z:N_-# _--r_M I

2---(,,.,w)

[

L

_,v r#'
.ZT-E_

©

P_PuP prN

NT _'TEM

1 --.)
_puP Q:F_J

•-_vrO ;z"rE,_4

+
x)• to.+
{ZTE I_) -._ (ZT)

/-,, _z)

M (% .z5'

, I

NO

-")*(') J

d)
(5:E UV vC, I)_

175

(z)

P_P_IP A/EXT
TWO GzG_gwr_

O�= _r_ 6. /MUSH

"/'_G/vl _flWN

ZN T_ T_'AA }(. A D_

PUT "1-I-t_ ._ U ,'_I
ZJv Z,._U_vl

Y_G

f].O r

£_'ACE" 7g_X

0 _- ,'i_-_]

IVO

4

176

o -> Cs#)i

p(.l _- /"eJ /_ llrJ [.

-,°',,,_--_-,4_ I_-'_-_':-_ I

.ZZ-_Lc oF

f Ei,..t I:
Po s>_Pz<,_A:

m,,,cl

J

f

<" '>>hI

• T/wo "

L

(.,_gBJ '"
/ /

/ _t__
i

.\ PM_ H _,.xTO I

"\ _'_ Ii

...... i

,P_"5/_" "F i,

¢"z-o _-_I

/
! 177

-.

llJO

Prqgram De scription

I. Identification

a. Routine Label

COPY

b. Name

Copy a list and append a second list to the copied list.

2. Function

A copy is made of the list IN and to this copy is appended the list

IOUTF. IOUTF is reset as the head of this new list, and IOUTL points

to the last element of the copied portion of the new list.

3. Programming System

FORTRA/W II

4. Us_

a. Calling Sequence

CALL COPY (IN, IOUTF, IOUTL)

b. Entry Conditions

IN = Head of the list to be copied

IOUTF = Head of the list which is appended to the copy of IN

c. Exit Conditions

(I) If IOUTF is null, IOUTF is set to point to the first ele-

ment of the copied portion of IN, and IOUTL is set to

point to to the last element of the copy of IH.

(2) If IOUTF is not null, IOUTF is appended to the copy

of IN, and IOUTF and IOUTL are set as described in

step (1) above.

d. Error Exits

None.

180

5. Definition of Identifiers

IOUT = A local variable which is the head cell of the copied por-

tion of list IN

Method

The list IN is copied, one element at a time, into a new list IOUT.

When all of the elements of IN have been copied, a test is made to

determine if IOUTF (the list to be appended to IOUT) is null.

a. IfIOUTFis null, setIOUTF andIOUTL as described in

step c.

b. If IOUTF is not null, append list IOUTF to list 1OUT and

proceed at step c.

c. Set IOUTF to point to the first element of IOUT and IOUTL

Then exit from the routine.

6.

to point to the last element of IOUT.

7. Other Subroutines Used

.

WRTEQ,

AFTER, FROM, LINK, SET.

Using Subroutines

DIMEN, EXCPT, INPUTX, POWER, RAISE, RECOVR, SUBST,

ZEROX, Main Program for Pass 2 of TAG Preprocessor.

181

I

Program Description

1. Identification

a. Routine Label

COTRN

b. Name

Form the tree voltage to node voltage transformation matrix.

2. Function

This subroutine uses the sorted tree branch list, FLIST, to form

the voltage coordinate transformation matrix TC, as a two-dimensional

array-list, such that VN] = [TL] * VT]

3. Pro_rammin_ System

FORTRAN 11

4.

a. Callin_ Sequence

CALL COTRN (FLIST, TL, NM)

TL = Local variable for the TC matrix used in the main

routine of Pass I.

b. Entry Conditions

FLIST = A type D list representation of the tree branch de-

scriptions, reordered to VCGLNI sequence.

NM = The maximum node numbers in the TAG connection

list.

c. Exit Conditions

TL contains a two-dimensional array-list representation of

the voltage coordinate transformation matrix TC. TC has NM rows and

NM columns. Entries in TC are either +I or 0. Each row in TC repre-

sents a path in the tree, from a particular node to the ground (zero)node.

Rows and row numbers correspond directly to nodes and node numbers.

183

d. Error Exits

When FLIST has been traced through without finding a tree

branch whose positive node number equals I, CALL DUMP is executed

and control returns to the FORTRAN monitor system.

5. Definition of Identifiers

I = Node numbers

L = Position of the tree branch descriptor in FLIST, counting

from the top down

K = Number of some node

X1 = Local variable that corresponds to FLIST

. Method

Starting at node I = 1 and proceeding to I = NM, a path is traced in

the FLIST tree between each node I and node 0. Because of the nature of

the FLIST tree (every node has a single tree branch positively incident

on it except node zero, which has none), the tree branch voltages in each

path will add with a coefficient of +1 to equal the respective node voltages.

For each node number (I = 1, Z, ---NM) corresponding to a row of

TL, the column entries of TL are generated as follows. The columns of

TL (L = 1, Z, ---NM) are ordered to correspond to the branches of the

tree whose descriptors are stored in VCGLNI order in FLIST.

a. K is set to node number (I).

b. Trace through FLIST for a tree branch whose positive node

number (NP) equals K. Record its position in FLIST as L.

c. When such a branch descriptor is found, a +1 is placed in

row I, column L of the TL matrix.

d. K is re set to equal the negative node number (NN) of the

tree branch found in step c.

(1) IfK = 0, the path from node I to ground has been com-

pletely traced in row I of TL. If the row number I

(corresponding to node I) is the same as the maximum

node number, NM, the TL matrix is complete, and re-

turn is made from the routine. If the maximum node

184

o

1

number has not been processed, the node number I is

increased by l, K is reset to the new node number I,

and the search is started again at step b.

(2) If 14 _ 0, the path from node I to ground is not com-

plete, and the search through FLIST continues (at step

b) until the ground node has been reached for the node

number (I) in process.

Other Subroutines Used

ERASEA, PRPTR, STASH.

Using Subroutines

MaLriProgram for Pass 1 of TAG preprocessor.

185

Z-

"" I'-- ..c- .

Program De sc ription

1. Identification

a. Routine Label

DBPCHC

b. Name

Output a series of card images, including comment cards,

from a list of characters in reverse order.

2. Function

This subroutine is exactly like DBPCH, except for comment cards.

If IC1 is a C, then IZ is ignored and card text starts in column 2. If

IC1 is not a C, IC1 is put in column 1 and the card image is constructed

as in DBPCH.

3. Programming System

FORTRAN II

4.

a. Calling Sequence

CALL DBPCHC (P, IZ, ICI)

b. Entry Conditions

P = A list of BCD characters in reverse order

IZ = Statement number

IC1 = Comment card flag word

c. Exit Conditions

(1) For non-comment cards (IC1 _ C), the BCD string

in P is inverted and output as a series of card images, with the state-

ment number in columns 2-5, the continuation card number (if any) in

column 6, and the character in IC1 in column 1. The card text is in

columns 7-72.

187

(2) For comment cards (ICI : C), the BCD string in P

is inverted and output as a series of card images with "C" in column I

and card text in columns 2-72.

(3) Output is on a print tape, a punch tape, and a save

tape.

d. Error Exits

None.

5. Definition of Identifiers

Z = A temporary head cell for the list of BCD characters output

in A

A = Output buffer

6. Method

The list of BCD characters in list P is output as follows:

a. List P is tested:

(I) If P is null, step (Z) is skipped. Continue at step b.

(Z) If P is not null, the elements in P are popped up, one

at a time, then pushed down into Z, thereby restoring

the order of the characters in P.

b. ICI is tested:

(I) if ICI is a C, IZ is ignored. The card image being

constructed is a comment card and will start in col-

umn 2 of buffer A (at step c).

(Z) If ICI is not a C, the statement number in IZ is placed

in columns Z-5 of buffer A and the continuation card

number, if any, is placed in column 6 of buffer A.

The character inICl is placed in column I of buffer A.

c. The BCD characters in list Z are popped up, one at a time,

and placed in columns Z-7Z (if a comment card) or columns 7-7Z (if not

a comment card) of buffer A.

d. Buffer A is output as a record of 13 BCD words, onto a print

tape, a save tape, and a punch tape.

188

o

,

e, Z is tested:

(1) If Z is null, exit is made from the routine.

(2) if Z is not null, and continuation cards have not ex-

ceeded l0 (for non-comment cards), processing con-

tinues at step b(Z).

(3) if Z is not null, and I0 continuation cards have been

output (for non-comment cards), the continuation card

h_dex is re-initialized and the process starts over at

step b(2).

Other Subroutines Used

CHLNE, DOWN, ERASE, FOUTPT, HEADC,

Using Subroutine s

POPUP, SYMCH.

WRTEQ, Main Program for Pass 2 of TAG Preprocessor.

189

])8 PC 1-tc)

t
I k_#-<__c_____:•

I

<9

I

I

v

_.,,<-;-k
pi..,,r #,c J)>

,4k'_ i T @,''1 /

\ £___¢ <_.... J

£,_ LA

.{£G

?
u__-..

tOO

_2/

190

0

F-f'_'-. U]

ivo

191

Program De scription

1. Identification

a. Routine Label

DBPCH

b. Name

Output a series of card images from a list of characters in

reverse order.

2. Function

A list, containing a string of BCD characters in reverse order,

is output onto a punch tape, a print tape, and a save tape as a series

of card images, with the statement number in columns I-5. Before the

list is placed into the output buffer, the BCD string is inverted to the

correct sequence.

3. Programming System

FORTRAN II

4. _Usag_

a. Calling Sequence

CALL DBPCH (P, IZ)

b. Entry Conditions

P = A list of BCD characters in reverse order

IZ = Statement number

c. Exit Conditions

The BCD string in P is inverted and output as a series of

card images, with the staten_ent number IZ in colun_ns I-5 and the con-

tinuation card number (if any) in column 6. The card text is in columns

7-72.

Output is in a punch tape, a print tape, and a save tape.

192

d. Error Exits

None.

5. Definition of Identifiers

Z = A temporary head cell for the list of BCD characters output

into A.

A = Output buffer

6. Method

The list of BCD characters in list P is output as follows:

a. List P is tested:

(1) If P is null, step a(2) is skipped. Continue at step b.

(Z) If P is not null, the elements in P are popped up, one

at a time, and then pushed down into list Z, thereby

restoring the order of the BCD characters in P.

b. The statement number in IZ is converted to BCD and placed

in columns I-5 of buffer A. If the card image being output is a continu-

ation card, the continuation card number is placed in column 6 of buffer A.

c. The BCD characters in list Z are popped up, one at a time,

and placed into columns 7-72 of buffer A.

d. Buffer A is output, as a record of 13 BCD words, onto a

print tape, a save tape, and a punch tape.

e. Z is tested:

(i) If Z is null, exit is made from the routine.

(2) If Z is not null, and continuation cards have not ex-

ceeded I0, processing continues at step b.

(3) If Z is not null, and 10 continuation cards have been

output, the continuation card index is re-initialized

and the process starts over at step b.

o Other Subroutines Used

CHLNE, DOWN, ERASE, FOUTPT, HEAD, POPUP.

193

8. Usin_ Subroutine s

DIMEN, DPDST, NLINDM, PARTS, SYMCRD,

Main Program for Pass Z of TAG Preprocessor.

WRTEQ, ZEROX,

194

t

•1' ,l_S

_o

(,)

! I _-]

._

o-_ (_s') 1

l .
\

195

0

-,. _ ._

v

E.

f

Tel

196

Program De scription

1. Identification

a. Routine Label

DBPFH

b. Name

Output a series of card images.

2. Function

A list of BCD characters is output onto a punch tape, print tape,

and save tape as a series of card images, with the statement number in

columns 1-5.

3. Programmin_ System

FORTRAN II

4. Usage

a. Calling Sequence

CALL DBPFH (Z, IZ)

b. Entry Conditions

Z = A list of BCD characters in order

IZ = Statement number

c. Exit Conditions

The BCD string in list Z is output as a series of card images,

with the statement number IZ in columns 1-5, and continuation card num-

ber, if any, in column 6. The card text is in columns 7-72.

Output is in a punch tape, print tape, and save tape.

.

d. Error Exits

None.

Definition of Identifiers

A = Output buffer

197

6. Method

The list of BCD characters in list Z is output as follows:

a. The statement number in IZ is converted to BCD and placed

in columns 1-5 of buffer A. If the card image being output is a continu-

ation card, the continuation card number is placed in column 6 of buf-

fer A.

b. The BCD characters in Z are popped up, one at a time, and

placed into columns 7-72 of buffer A.

d. Buffer A is output, as a record of 13 BCD words,

print tape, punch tape, and a save tape.

d. Z is tested:

(1}

onto a

.

.

If Z is null, exit is made from the routine

If Z is not null, and the number of cards has not ex-

ceeded 10, processing continues at step a.

{3) If Z is not null and 10 cards have been output, the

continuation card index is re-initialized and proc-

essing starts over at step a.

Other Subroutines Used

CHLNE, FOUTPT, HEAD, POPUP.

Using Subroutine s

STAT.

198

><,__0'

)

199

Program Description

I. Identification

Routine Label

DIFA

2. Function

This subroutine computes the absolute difference between the char-

acteristics of two floating-point numbers.

3. Programming System

FAP

4. Usage

a. Calling Sequence

CALL DIFA (A, B, C}

b. Entry Conditions

A and B are floating-point numbers.

c. Exit Conditions

C = absolute difference between the characteristics of A andB

d. Error Exits

None.

5. Definition of Identifiers

None.

6. Method

B is subtracted from A with UFS (un-normalized floating-point sub-

traction and the result stored in the accumulator. Then,

a. (AC) (%000777777777 U 177000000000 -_(AC}

b. (AC) + 177000000000 -_(AC), where + is a floating-point ad-

dition, gives the absolute difference between the characteris-

tics of A and B, which is stored in C.

ZOO

o

m

Other Subroutines Used

None.

U s in_ Sub routine s

BAKELM, COMBN, MULTS, STRIK.

ZOl

Program Descriptio n

1. Identification

a. Routine Label

DIMEN

.

o

o

.

Function

Writes out the "DIMENSION" statements.

Programming System

FORTRAN II

a. Calling Sequence

b.

Co

d.

CALL DIMEN (NPT, KIND)

Entry Conditions

NPT = The NPT array of Main 2

KIND = The KIND indicator of Main 2

Exit Conditions

"DIMENSION" and "COMMON" statements written out.

Error Exits

None,

Definition of Identifier s

IDFSW = An indicator

DEF = A list of type A holding "DIMENSION"

DIM = A list of type A holding "DIMENSION FHB(6),

FM/S("

COM = A type A list holding "COMMON FMIS"

IBLK = A BCD blank

ICOMA = A BCD comma

LNH(6),

202

e

IBRKR = A BCD right parenthesis

IBRKL = A BCD left parenthesis

PLC = A list used to hold the output card image

ITEMX = Temporary storage

KYN

N1

N2

MIS

MIS 1

MIS2

IVLAXTM

SDEF

SCOM

Method

ae

b.

Used to hold output information from EXCPT

Used to calculate the dimension of FMIS

Holds the dimension of FCMDMY

Holds the dimension of FTEMI, FTEM2

A list of the following symbols: FS41, FL44, FI4 I,

FL41, FSII, FL42, FSZl, FL43, FS31, FV31, FG33,

FI31, FG31, FVII, FG32, FV21, FL31, FL3Z, FL33,

EL34, FCil, Fill, FCIZ, FG!!, FGI2, FGI3, FLII,

FLI2, FLI3, FLI4, FVDZl, FCZ2, FlZl, FG21, FGZ2,

FGZ3, FLZl, FL2Z, FL23, FLZ4, FSDII, FSDZl,

FSD31, FCZl, FVDII, FVOII, FCI22, FGI33, FLI44,

FV4 I, FSO41

A list of the following symbols: FVDZl, FSDII, FSDZl,

FSD31, FV21, FSII, FSZl, FS31, FT2, FTI, LNH,

FHB

The symbols of SDEF are sent, one at a time, to EXCPT

for testing and transformation.

If KYN = 1, and N1 is non-zero and N2 equals 2 or greater,

or ifKYN = 1 and N1 is = 2 or greater andN2 = 1, then the

symbol is placed in the DIMENSION statement in the form

symbol (N1, N2).

The DIMENSION statement is written out.

Set MIS = NPT(2). If KIND is greater than zero, then set

MIS = MIS + NPT(1) + NPT(2) + NPT(3). If MIS > 0, set

MISI = 265MIS and output these statements:

203 "

C,

do

DIMENSION FHB(6), LNH(6), FMIS(misl)

COMMON FMIS, SI, $2,. • •

where Sl, $2 are symbols from SCOM with this character-

istic: each symbol from SCOM is sent to EXCPT for test-

ing. If KYN = 1 and N1 _ 0 and N2 4 0, then the symbol

is placed in the "COMMON" statement.

Set MIS2 = 3000-(MIS'28+14). If MIS2 > 0, output these

statements: DIMENSION FCMDMY(misZ) COMMON FCMDMY

Set MAXTM = max(NPT(Z), NPT(3), NPT(4)). If MAXTM > I,

output this statement: DIMENSION FTEMl(maxtm), FTEM2

(maxtm)

7. Other Subroutines Used

BCL, COPY, DBPCH, DOWN, DUMP, ERASE,

STAT, SYMBL, SYMCH, UPDWN.

8. Using Subroutines

Main Program, Pass 2, TAG Preprocessor.

EXCPT, EXTRX,

2O4

/

)

r......_ '_----'-'_,

/)_y_,3,-",

rt

i

/- '_ \

/ --_) ,

\

\
-" [

\

......CL

'5Y_C_
p _'r . .,

!

/ t

,,),, $ 8_l(:U.,

F _

i

(

!

205

/ >,_-d",cx...........

.¢,c¢_
)

' p_.¢.

At

• 5_l_al Cr_

s_f_ # ,#e.t
,,_)__Tg_.__)/

• /

/

-\

---T-". o, {Nz)">----
tO. " ,/'_o

:0

I1

.r

..... I$.,

1 ('0< I _y_

Z06

aJ

/..-__ _-_ _.

/

\

.t",._ _oL,.'

1

" ;5

M%, -. -0 ." ye_

"]j_o

.9)

t,)o:

Z07

5

___/"

, #Lc

"_PO

Y_5

Il'M_9:l_,<'ri'l))

+(Net(3))

\ Ds.__,_'to/
X__LC...../

! p, sl,_
_.l'Sli_ig 7.1o)

7:;
2O8

,b
/ '_,'_
\ PLc)

\7

y__,!,.Te_

It p

A_/\ ..c_
l'T;_ v'r,_$

!

.°

_il l

i

I

f,.

!

- °_. _

"75

, Ptc

PLC

!

k

\

209

\

/

i

/

T

210

(2oo

yNo

Yes _I

('_ V'er _r---_
"YhA_'T,_ _ /

" T_ /

<reva_se TF_

-- \ [_.L._X

p/.c

' PLC '

211 "

Program Description

1. Identification

a. Routine Label

DONBD

2. Function

The tens and ones digits of integer I are split out and stored as in-

dividual BCD characters. They are pushed down into list P such that the

ones digit is the first element of P.

3. Programming System

FORTRAN II

4.

a. Callin_ Sequence

CALL DONBD (P, I)

b. Entry Conditions

I = A binary integer

P = Head of a list

c. Exit Conditions

List P contains the ones digit of integer I in its first element

and the tens digit of integer I in its second element.

d. Error Exits

None.

5. Definition of Identifiers

IX(1) = Tens digit of integer I

IX(2) = Units digit of integer I

6. Method

The tens and units digits of integer I are split out and pushed down

into list P as follows:

212

a. J is cleared to zero. List L is erased.

b. The units digit is split out from I and placed in IX(2). The

tens digit is placed in IX(1).

c. Two elements containing IX(Z), IX(1) are inserted into list

J, with IX(l) at the top of the list. L is set to point to the first element

inJ.

d. The new elements are popped up from L and pushed d°wn into

list P, such that the first element contains the units digit in IX(Z).

7. Other Subroutines Used

AFTER, BND2, DOWN, ERASE, LINK, POPUP.

P Using Subroutine s

FLTCON, INPUTX, SYMCRD.

Z13

214

Program Description

I. Identification

a. Routine Label

DOWN

b. Name

Push an element DOWN into a list.

2. Function

This subroutine pushes a new element down into a list. If the list

is null, a new list is started which points to this new element.

3. Pro_rammin_ System

FAP

4. Usage

a. Calling Sequence

CALL DOWN (Z, C, IF)

b. Entry Conditions

Z = Head of a list

d(C) = Item of hew element

d(IF) = Flag of new element

c. Exit Conditions

New element with d(C) and d(IF), if any, is first element

pointed to by Z. The pointer formerly in Z becomes the link portion of

the new element. If list Z was null, the new element will contain a link

of zero.

d. Error Exits

None.

5. Definition of Identifiers

d(DW90) = Pointer to new element to be pushed down into list Z

215

6. Method

A new element is obtained from AVS and pushed down into Z with

the item portion and flag portion of the element as specified by d(C)

and d{IF).

7. Other Subroutines Used

INTO, NEWLOC.

8. Usin G Subroutines

BCL, BLNOUT, COMBN, DBPCHC, DBPCH, DIMEN, DONBD,

DOWNS, DPDST, ERASE, EXTRX, FISH, FLTCON, FRACT, GOBLE,

HOLBK, INPUTX, LTRACE, MRKLST, NUMB, PARTS, PUSPCH,

READCH, RECOVR, STRIK, SUBST, SYMCRD, SYMTP, UPDWN,

WRTEQ, ZEROX, Main Program for Pass 2 of Tag Preprocessor.

216

', LL _'E_, V._ _ _ o_

/PK N£ _ pvll N

a /k/et._, _'Lt,",ll',,vl_

r

7

.. /s \

AYUZ. L. /-

!//

(.I(.,,°.9t

__. = _1_

i

217

Program De scription

1. Identification

a. Routine Label

DOWNS

2. Function

The elements of a list are popped up,

down into another list, in reverse order.

3. Programming System

FORTRAN II

4. Usage

a. Calling Sequence

CALL DOWNS {P, I}

b. Entry Conditions

Co

P = Head of the push down list

I = Head of the pop-up list

Exit Conditions

that their order will be reversed.

.

one at a time, and pushed

List P will contain all elements that were in list I, except

List I is not destroyed.

d. Error Exits

None.

Definition of Identifier s

TEM1 = A temporary cell whose decrement holds the item of the

element popped up from list I.

TEM2 = A temporary cell whose decrement holds the flag, if any,

of the element popped up from list I.

J = A temporary head cell whose decrement points to the next

element to be popped up from list I.

218

6. Method

a. J is initialized with the contents of the head cell I,

pointing to the first element of list I.

b. J is tested:

(I)

(z)

(3)

(4)

o

(5)

thereby

If J is null, there are no more elements in the list,

and exit is made from the routine.

If J is not null, the first (or next) element in the list

is popped up, and its item and flag are saved in TEMI

and TEM2.

A new element is pushed down into list P, whose item

is TEM1 and whose flag is TEM2.

The link of the element popped up from J is moved to

the decrement of J, thus becoming the pointer to the

next element to be pepped up.

Steps b(1), b(2), b(3), and b(4) are repeated until list

I (pointed to by J) is terminated.

Other Subroutines Used

DOWN, FROM, LINK.

8. Using Subroutines

COMBN, GOBLE, INZERO, SUBST, SYMCRD, SYMTP,

Main Program for Pass 2 of TAG Preprocessor.

ZEKOX,

219

©

C D¢_AIC7 C,_LL

<

()

_-:: _-_-.\

\--- "r" ___.__I

I
I

,¢c e m e r, ? }"

/

C,_ /-&

c"/_-C e

</ICL

)

,(_-,_-)

.:-._)

©

g20

Program Description

1. Identification

a. Routine Label

DPDST

2. Function

Writes out the CALL FMARK statement using dependent stop

variable name s.

3. programmin_ System

FORTRAN II

4. Usage

a. Calling Sequence

CALL DPDST (LSTMK)

b. Entry Conditions

LSTMK is a list in list format C which contains the depen-

dent stop function variable names.

o

c. Exit Conditions

The statement CALL FMARK (....

LSTMK is unchanged.

d. Error Exits

None.

Definition of Identifiers

P1

is output.

List used to hold LSTMK symbols.

P

ICM

IBLK

NUM

format B.

Holds P1 in reverse order

B CD comma

BCD blank

Pl is in list

List (format A) used to hold the number portion of

the dependent stop variable

221

ITEM

LCNT

ITEM

ITEM1

REST

REST1

Holds characters as they are popped out of P

Used to convert the BCD number to binary

List (format A) used to hold statement to be

output

List {format A) used to temporarily hold char-

acter strings to be put in REST

6. Method

RECOVR is used to transform LSTMK, in format C, to Pl,

format B.

P1 is then reversed into P.

in

P now holds symbols of the following form: na, na , --- where

n is an integer and a is a string of alphanumerics. These are the de-

pendent stop function names in the form used in input; e.g.,

$1FLXSTI

SZFLXST2

but with the $ stripped off.

REST (in format A) is initialized to hold the first part of the state-

ment to be output:

CALL FMARK(LCNT, FHB, 0, LTYPE, I, i, 2, FHC, 3, FT, FSTOP,

The variable names in P are now processed, one at a time. The in-

teger portion of the variable is incremented by 3 and pushed into REST,

followed by a comma, followed by the alphanumeric portion, followed by

a comma, a zero, and a comma. At termination (when P is null), a

final zero and right parenthesis are pushed into REST, and the state-

ment is output. For the two example symbols given above, the output

statement would look like this:

CALL FMARK(LCNT, FHB, 0, LTYPE, 1, 1,2, FHC, 3, FT, FSTOP, 1,

FLXST1, 0, 2, FLXST2, 0, 0)

222

7. Other Subroutines Used

BCL, DBPCH, DOWN, ERASE, POPUP, RECOVR, SYMBL,

SYMCH, UPDWN.

8. Using Subroutines

Main Routine, Pass Z, TAG Preprocessor.

ZZ3

No

224

No

J

",o,"1I

/ _.\
\/__-__I /

#

I \Dflwff \

225
2--

Program De scription

1. Identification

a. Routine Label

ELIM

b. Name

Eliminate duplicate symbols.

Z. Function

Merges two symbol-lists, deleting all common names.

3. Programmin_ System

FORTRAN II

4. Usage

a. Calling Sequence

CALL ELLM (IN, IN1)

b. .Entry Conditions

IN is a list of characters in list format C.

IN1 is a list of characters in list format D. It contains a

sequence of variable names separated by commas.

c. Exit Conditions

The symbols in IN1 are merged into IN. Duplicate names

are absorbed, and new names from IN1 are constructed in iN in for-

mat C.

d.

.

IN1 is erased.

Error Exits

None.

Definition of Identifie r s

ICM BCD comma

LO List; used to link down through IN1

Z26

e

L1

LZ

L3

L4

L5

ITEM1

ITEMZ

Method

The list

Points to the current sublist of LO

Temporarily used to hold new list constructions

List; points at a subportion of L5

Temporarily used to hold the item portion of L3

List; points at current portion of IN1 being examined

Holds the current character in IN

Holds the current character in IN1

IN1 is examined, one sublist (symbol string) at a time.

The variable name in this string is placed in L1 and is used to ex-

amine IN. L5 and L3 are set to start with IN. ITEM1 is set equal

to the item of the item of L3. ITEMZ is set equal to the item of L1.

If ITEM1 and ITEM2 are identical, L3 is set to point to the link of the

item of L3, L1 is set to the link of L1 , and this process is repreated.

If L1 becomes null, then the next symbol on L0 is acquired for proc-

essing. If L3 becomes null, then the remainder of L1 is appended

to L3. If, on comparison, ITEM1 and ITEM2 are not identical, then

L5 is set = L3, and L3 is set = link(L3), and the process continues.

Subroutine terminates when L0 is null.

7. Other Subroutines Used

AFTLK, ERASE, FROM, LINK, SYMCH.

8. Using Subroutines

Main Routine, Pass g, TAG Preprocessor SUBST.

227

_-T t..,,p 1

t-O - ,T,_ S i
I

.. Q o,) .,
A)uL t. "

.7

i_K" /_-.7
i

I

--20re,w_ Y_s

/b)O '

J

Z,,N_C/*_-)]

228

t

TYw-.
229

L/M "2.-

Program Description

1. Identification

a. Routine Label

EQFS41

b. Name

Write equation using FS41.

2. Function

Outputs a matrix-multiply equation by using WRTEQ.

3. Programming System

FORTRAN II

4. Usage

a. Calling Sequence

CALL EQFS41 (NPT)

b. Entry Conditions

NPT is the NPT array of Main number Z.

.

c. Exit Conditions

Statements output.

d. Error Exits

None.

Definition of Identifiers

HFS41 Holds left part of equation:

"FS41 = FLI44*(FI41

SFS41 Holds right part of eltqation:

" -FL41*FSI 1 $ - FL4Z*FS21 $ - FL43*FS315

2-30

6. Method

If NPT(4) = 0, exit. Else call WRTEQ: CALL WRTEQ(HFS41,

SFS41, 0, 4)

7. Other Subroutines Used

SYMBL, WRTEQ.

8. Using Subroutines

Main Routine, Pass Z, TAG Preprocessor.

231

YE,F,

232

Program Description

1. Identification

a. Routine Label

EQFVZ1

b. Name

Write equation using FVZ1.

2. Function

Outputs a matrix-multiply equation by using WRTEQ.

3. Programming System

FORTRAN II

4. Usage

a. Calling Sequence

CALL EQFV21 (NPT)

b. Entry Conditions

NPT is the NPT array of Main number 2.

c. Exit Conditions

Statements output.

d. Error Exits

None.

5. Definition of Identifiers

HFV21 Holds left part of equation:

"FVDZl = FCI22@(FI21

SFVZl Holds right part of equation:

" -FGZI@FVI 1 $ - FGZZ_FVZI$ - FGZ3@FV315

-FLZI_FSII$- FLZZ_FSZI$- FLZ3#FS31$

-FLZ4_FS41$ - FCZI_FVDI I$"

233

6. Method

If NPT(Z) = 0,

SFVZl, NPT, 0, 2).

7.

.

exit.

Other Subroutines Used

SYMBL, WRTEQ.

Using Subroutine s

Main Routine, Pass Z,

ELSE call WRTEQ: CALL WRTEQ(HFVZI,

TAG Preprocessor.

Z34

"/s.

rl

Ijc, rp.r _¢o_zo_

\ __L___I

I

Z35 '

Program Description

1. Identification

a. Routine Label

EQFV31

b. Name

ZB

.

.

Write equation using FVZl.

Function

Outputs a matrix-multiply equation by using WRTEQ.

Programming System

FORTRAN II

Usage

a. Callin_ Sequence

CALL EQFV31 (NPT)

b. Entry Conditions

NPT is the NPT array of Main number Z.

c. Exit Conditions

Statements output.

d. Error Exits

None.

Definition of Identifier s

HFV31 Holds left part of equation:

"FV31 = FGI33_(FI31

SFV31 Holds right part of equation:

" -FG31_FVII$ - FG3Z_FVZI$- FL31_FSII$

-FL3Z_FSZI$ - FL33#FS315 - FL34_FS415"

.

Z36

. Method

If NPT(3) = 0, exit. Else call WRTEQ: CALL WRTEQ (HFV31,

SFV31, NPT, 0,3).

7. Other Subroutines Used

SYMBL, WRTEQ.

8. Using Subroutines

Main Routine, Pass 2, TAG Preprocessor.

237

/

er(_p). ..T---
: C) ./ YES

IVo

__-

i \ s×,_e-O.
I _'ET Up .',
\EQUAT'/ON"

Uq HFV.BI.

, -_ET UP ,

, Equ4T/oN
IH SFv-_/

I oor_r eou._;

(bo -"

T

Z38

Program De scription

I. Identification

a. Routine Label

ERASE

b. Name

ERASE a list.

2. Function

This subroutine restores all elements of a specified list,

structure, to AVS.

3. Programming System

FORTRAN II

4. Usage

a. Calling Sequence

CALL ERASE (C)

b. Entry Conditions

C = Head of a list,

c. Exit Conditions

or list structure

All elements of the list or list structure,

are restored toAVS. Head cell C is set to zero.

d. Error Exits

None.

5. Definition of Identifiers

Z =.

CI, C2 =

E1 =

or list

pointed to by C,

Temporary cell used as the head of a list each of whose

elements point to type 7 elements of a list structure.

Temporary head cell used to point to the next element

to be restored to AVS.

The first element of a list pointed to by C1.

239

.

$2

K2

IP

Method

a,

b.

Co

A cell in whose decrement the item portion of E1 is

saved.

A cell in whose decrement the flag portion of E1 is

saved.

A cell whose decrement contains lhe location of the

second element of a list pointed to by C1. This ele-

ment contains a full word of data and is the end of a

list. The element linked to this last element is a

type 6.

Z is initially set = 0.

If list C is null, there is no list to be erased, and return is

made to the routine that called ERASE.

If list C is not null, the following steps are executed:

(1) The pointer in C is saved in CZ and C is set = 0.

(C, the head cell of the list to be erased, is made

"null. ")

(Z) The loop for erasing a list is initialized by moving the

pointer in CZ to C1, which makes C1 the new head of

the remainder of the list.

(3) The item and flag of the first element in C1 is saved

in $2 and K2, respectively.

(4) The flag in KZ is tested:

(a) If KZ = 7, an element is pushed down into list Z

whose item contains the decrement of C1 (pointer

to the type 7 element). SZ, whose decrement

points to the next sublist to be erased, is stored

in CZ, and erasure proceeds again at step c(Z).

(b) If KZ = 6 a there are only two more elements to

be erased in the list .pointed to by C1, the last

one being a full word of data (e. g. , a floating

point number). After these two elements are re-

stored to AVS, execution continues at step c(5)

with a test to determine if list 7. is null.

240

o

e

(s)

(c) If KZ _ 6 or 7, the element pointed to by C1 is

restored to AVS and its link is saved in CZ.

When CR = 0, the end of a list or sublist has been

reached and execution continues at step c(5). If

CZ _ O, execution continues at step c(Z) where

the erasure loop is re-initialized.

The head cell Z is tested:

(a) If Z is null, the end of the list has been reached;

therefore exit from the routine.

(b) If Z is not null, one more element is popped up

from Z, giving the pointer to the next type 7 ele-

ment to be erased. This pointer is stored in

CI, which becomes the temporary head cell of

the list whose first element is the type 7 element

to which it points. The flag of this type 7 ele-

ment is ignored (as if it were less than 6) and the

process proceeds to step c(4) (c) to erase the

type 7 element and all elements appended to it.

Other Subroutines Used

BACK, DOWN, FROM, LINK, POPUP.

Using Subroutine s

BLNOUT, COMBN, DBPCC, DBPCH, DIMEN, DONBD, D PDST,

ELIIVI, ERASEA, EXCPT, EXTRX, GOBLE, HOLBK, INPUTX, INTLST,

INZERO, MULTS, NLINDM, PUSPCH, READCH, RECOVR, SEGMNT,

STRIK, SUBST, SYMBL, SYMCRD, SYMTP, TREE, WRTEQ, Main

Routines for TAG Pass 1 and Pass 2.

241

242

243

r

.... •°._ __

_ I6T _,,,1,,)_sr"

I

_ i/l_d _,7" d,_ _ " ,,, _. ---: -. _ . _

\ A _s ,.,_/

$

-_.'-.- k ":.:--- - "

244

Program Description

1. Identification

a. Routine Label

ERASEA

b. Name

ERASE an array of lists.

p. Function

This subroutine restores to AVS the elements of the lists associ-

ated with a vector of 100 head cells.

3. Programming System

FORTRAN II

4. Usage

a. Calling Sequence

CALL ERASEA (C)

b. Entry Conditions

C(1) = A vector of i00 head cells

c. Exit Conditions

All non-null lists pointed to by C(1) are restored to AVS.

d. Error Exits

None.

5. Definition of Identifiers

None.

6. Method

CALL ERASE (C(1)) is executed I00 times, (I) being initialized to

The 100 head cells,1 and increased by 1 each time ERASE is called.

C(I), are a FORTRAN array.

245

7. Other Subroutines Used

ERASE

8. Using Subroutines

COTRN, LEVMRK, MULTS, PARAM, STRIK, SYMCRD, TRANS,

XFORM, Main Programs for Pass 1 and Pass 2 of TAG Preprocessor.

246

j'

I

d,_

)) To

.", L.L.

Z4:?

Program Description

1. Identification

a. Routine Label

EXCPT

2. Function

To determine the matrix indices from examination of a circuit

element name.

3. programming System

FORTRAN II

4. Usage

a. Calling Sequence

Call EXCPT (TEM,NPT,KYN, NI,NZ)

b. Entry Conditions

TEN A list (type A) containing the characters of the cir-

cuit element name in reverse order.

NPT The NPT array of Main number Z.

KIND (in COMMON) is an indicator.

c. Exit Conditions

N1 holds the first matrix index.

NZ holds the second matrix index.

KYN indicates the status of N1,NZ.

d. Error Exits

None.

5. Definition of Identifiers

TEMI A list that is a copy of TEN

ITEM Used to hold the first ite_n of TEN

ITMN2 Used to hold the previous contents of ITEM

ICK Used to hold the characters C, L, G, in succession,

for examination

248

.

.

So

Method

TEM contains a variable of the form

w x ¥ z

where w and x are letters, and y and z are digits.

N1 is set = NPT(y).

N2 is set = NPT(z)

If either y or z is not a digit, set KYN = 2 and return

If x is not a "C," "L," or "G," and z < i,

then set N2 = I.

If W is an "S" and KIND < I, then set N2 = 0.

Set KYN = I and return.

Examp le:

TEM

SG34

FPT

KYN N1

1 NPT(3)

2

Other Subroutines Used

COPY, ERASE, POPUP, SYMCH.

Using Subroutine s

DIMEN, SYMCRD, WRTEQ, ZEROX .

NZ

NPT(4)

249

_..i

II

E xc FT

1. 1

I

I 0 .-'_(Nt)
o _fl'_J.E)

1 / "-') (7)

i

I,

-, = ,7 - YES

T

pqp:,p ,-_/_,/ \
/,u;-m xzzAl

I

6"0

l:.......
/ ' Ozv)'_

t
' I(K C,v)

q TEA11

\\ ___j/

,f"
; \

6o;

2--_ I(K YA/.}

',, k"f I J,C II/

250

zSI

T _tSt_ I_I)

(ICKi i

,4JD

_'" YC5

252

Program Description

1. Identification

a. Routine Label

EXTRX

b. Name

Extract from a list all elements preceding a dollar sign.

2. Function

The list SRC is scanned for a dollar sign, then split into two parts.

The elements preceding the dollar sign are removed from SRC and be-

come the list TEM. SRC and TEM are in reverse order, with the dollar

sign removed.

3. _:ogramming System

FORTRAN II

4. Usage

a. Calling Sequence

CALL EXTRX (SRC, TEM}

b. Entry Conditions

SRC = Head of a list

C. Exit Conditions

All elements preceding the dollar sign in SLC are popped up

The dollar sign is

List TEM will be in reverse order from list SRC.

d. Error Exits

None.

Definition of Identifiers

None.

from SRC and pushed down into the new list TEM.

discarded.

o

253

.

.

.

Method

List SRC is split as outlined below.

a. SRC is tested.

(I) If SRC is not null, an element is poppe(l up and its

item tested:

(a) If the item is not a dollar sign, the element

containing the item is pushed down into list

TEM. The procedure continues at step a.

(b) If the item is a dollar sign, list TEM is com-

plete and exit is made from the routine.

If SRC is null, exit is made from the routine.(z)

Other Subroutines Used

DOWN, ERASE, POPUP,

Using Subroutine s

SYMCH.

DIMEN, WRTEQ, ZEROX.

254

• _

Et,4 SE >

[/

_/t _"_ "/e5

(.,)

oPuP I_T '

R(. 5,4. V_ /

,*e :, -,,¢L"r _,7J

i_z,v_ a

®
I

Pa o_,Ar\,

_ ,,'To T_:.I /

\,,,/_ ,,, :,_ /

o

255 . .

Program Description

1. Identification

a. Routine Label

FISH

b. Name

Extract all the data associated with the I,

matrix in array list format.

J position of a

2. Function

FISH provides a process for extracting all the coefficient data,

one piece at a time, from the I, J position in matrix, M, represented

by a type E array list. For a two-dimensional array list, FISH is

identical to SNATCH, and places in FTEM the data word associated with

I, J in matrix M. For a four-dimensional array list, FISH finds the

submatrix position, NN, NP, of the first unprocessed, non-zero data

entry in the I, J position of matrix M, and returns the values of NN,

NP and their associated data word, FTEM. In addition, ICNT is re-

turned containing a set of pointers to the next non-zero entry in the I,

J submatrix of M. Continuous applications of FISH to M(I, J) will ex-

tract on a one-at-a-time basis all the non-zero data entries in the I, J

submatrix of M as well as all their corresponding submatrix indices,

NN and NP.

3. Programming System

FORTRAN H

4.

a. Calling Sequence

CALL FISH (M, I, J, NN, NP, FTEM, ICNT)

b. Entry Conditions

M = A t_vvo-dimensional or four-dimensional matrix repre-

sented in an array list of type E format

Z56

e

Ce

I = Index of the row lists

J = Index of the column lists

Exit Conditions

INN = Negative node number.

NP = Positive node number.

ICNT = A special list whose elements keep track of the man-

ning position of the NN, NP sublists.

When M is a two-dimensional matrix:

(1) If J was found with a flag = 6, the data word in the element

linked to J is placed in FTEM. ICNT is made null and NN,

NP=O.

(Z) If J was not found, ICNT will be null, NN, NP, FTEM = 0.

When M is a four-dimensional matrix:

(ICNT null), return is made with FTEM along with its

identifying NN, NP.

(Z) If J was found with a flag 4 6 and ICNT was not null, return

is made with the nextnon-zero FTEM along with its NN, NP.

d. Error Exits

None.

Definition of Identifiers

M(1) = Ith list structure of array-list M.

ICNTI = An element pushed down into ICNT whose decre-

ment contains the location of the next NN sub-

list of J in M(1).

ICNTZ = An element pushed down into ICNT whose decre-

ment contains the location of the next NP sub-

list of J, INN in M(I).

IC = An element popped up from ICNT whose decre-

ment gives the location of the next NN or NP

sublist of J in M(I).

Z57

6. Method

The search through M(I) for FTEM and its identifying NN, NP is

performed as outlined below.

a. FTEM is cleared to zero.

b. ICNT is tested. If ICNT is null, continue at the next step.

If ICNT is not null, proceed to step d to continue.

c. ICNT is null. M(I) is scanned to locate J.

{1) If J cannot be found, NN, NP are cleared to zero and

exit is made from the routine with no data word in

FTEM.

(2) If J was found, its flag is tested to determine if a

data word is appended to the element containing J.

{a) If flag {J) = 6, there is a data word. ICNT is

(b)

(ii}

(iii)

made null, the data is placed in FTEM, NN,

NP and cleared to zero, and exit is made from

the routine.

If flag {J) _ 6, no data word is appended to J.

The search continues to the element whose item

points to an NN sublist.

{i) The link of this element is saved in d

{ICNT1). d{ICNT1) is pushed down into

the ICNT list to keep track of the location

of the next NN sublist.

NN is extracted and saved in d {NN).

The search continues to the element whose

item points to an NP sublist.

o The link of this element is saved in

d {ICNT2). d{ICNT2) is pushed down

into the ICNT list to keep track of

the location of the next NP sublists.

o NP is extracted and saved in d (NP).

o The data word in the element ap-

pended to NP is placed in FTEM.

258

do

(c) FTEM is tested.

(i) If FTEM _ 0, exit is made from the rou-

tine with FTEM and its identifying NN, NP.

The first element in ICNT will contain the

location of the next NN or NP sublist.

(ii) If FTEM = 0, ICNT is tested.

o If ICNT is null, NN, NP are cleared

ICNT is not null.

to zero and exit is made from the

routine.

If ICNT is not null, continue at

step d.

The first element in ICNT is popped up into the d(IC).

ICNT is tested.

(a) If ICNT is null, the d(IC) is used to initialize

the location of the next NN sublist.

(i) IC is tested.

o If IC is null, NN, NP are cleared to

zero and exit is made from the rou-

tine with FTEM = 0.

o If IC is not null, proceed to step

c(2)(b)(i) to continue the scan to the

element whose item points to the

next NN sublist.

(b) If ICNT is null, the d(IC) is used to initialize the

location of the next NP sublist.

(i) IC is tested.

o If IC is null, return to step d(1) to

continue.

o If IC is not null, return to step

c(Z)(b)(iii) to continue.

(1)

_z)

259

.

.

Other Subroutines Used

DOWN, FRFL, FROM, LINK, LOCATA, POPUP.

Using Subroutines

MULTS

Z60

,_j "-.-L-J

Z61

',,..j

'V _ ,4• L #-

o P cvp IS"/"

I

.... .j_

...... i

• _i. 1_7_5

- "7-_" _. No@
. !

NO

.,_, tr .., :," o #" t

PpP .-_ /

A
_ ,,_.,

OF # 1¥ ,

7" / ,,_ >

\/_" .p,,,:_ /
\zOo,) /

• 4

/ _._"< \
/_,,.,_. °,, ,,----_\

\ _ P _._e@ -_ " _ /

\

--h F__--_
÷...77o.. ,--7_

A

A

/_,,j-_--7-7_J-7'---

,.. _,' _._.,,'r_........................ t:>(c_,...,...,., i.*.,"_eJ,

_.. __l_ ?'___,._,tl___ ,.'___

J'_ _ _ _,. ,'_ ,

/ -_______

c,._ l.&

Z6_-

Program De scription

1. Identification

a. Routine Label

FLAG

b. Name

Insert a FLAG into an element.

2. Function

This subroutine inserts a flag into the tag portion of the first ele-

ment of the first sublist pointed to by a given head cell.

3. Programming System

FORTRAN I/

4. Usage

a. Calling Sequence

CALL FLAG (X, IFLG)

b. Entry Conditions

X = Head of a list

IFLG = Flag to be inserted into the element of a sublist

c. Exit Conditions

The first element of the first sublist pointed to by X will

have IFLG as its tag.

d. Error Exits

None.

5. Definition of Identifiers

Z = A temporary head cell

ITEM = A temporary cell used for storage of the item in the

first element of a sublist

263

.

.

.

Method

a. The item portion of the first element in list X is saved in

Z. This item is a pointer to some sublist.

b. The item portion of the first element in Z is saved in ITEM.

c. ITEM is returned to the first element of Z along with IFLG

as its tag.

Other Subroutines Used

FROM, INTO.

Using Subroutines

STRIK, TREE, XFORM.

264

FLA(S)
-. .j

(" 151 t L t ,,'*I t _,_ r \

\

('1o

C_ILL

c-ALL

_-f/_G.")f L ,a _)() _ ,

#

\

265

Program De sc ription

1. Identification

a. Routine Label

FLTCON

b. Name

Floating-point c onve r sion

Z. Function

To convert a floating-point number to BCD

3. Program System

FORTRAN

4. Usage

a. Calling Sequence

CALL FLTCON (X, LST)

b. Entry Conditions

X contains floating-point number.

LST is a list.

c. Exit conditions

X is converted to BCD and the characters pushed into LST;

an asterisk is pushed into LST after X.

5. Definition of Identifier s

MULTS

FLOG

ICH

FICH

FRAC

SIGN

EXP

B CD " _ "

Used to compute the exponent

Fractional portion of X

Used to hold the sign portion

BCD "E"

Z66

,

o

o

Method

The exponent of X is placed in ICH.

The fractional part is placed in FRAC.

The algebraic signs of ICH and FRAC are determined.

The sign (FR_C} is pushed into LST.

Decimal point is pushed into LST.

{FRAC} is converted to BCD and pushed into LST.

"E" is pushed into LST.

Sign {ICH) is pushed into LST.

ICI-I is converted to BCD and pushed into LST.

An " _'" is pushed into LST.

Other Subroutines Used

DONBD, DOWN, FRACT, SYMCH.

Using Subroutine s

COMBN, SYMCRD.

267

YES

()

oT_ /iv

NI _al..T'_ J

(.r-_-/._ _ CFzc/Y')I

/LII_

-->(r_Ac)

I

vVO

268

(_w) . I-_(tcH)
(r¢_) -_@/c#)
fE_) c:,_,"}l-.,

,_ _,'-_'\

I "l --" --

EXP

269

Y

/_ _,_ /
_'/t..,,_J 1

4/4L'/_,_)

_-70

Program De scription

1. Identification

a. Routine Label

FOUTPT

b. Name

Write one record on FORTRAN Monitor tapes.

2. Function

This subroutine writes 13 BCD words of a buffer, as one record,

onto a print tape, a punch tape, and a save tape.

3. Programming System

FORTRAN II

Calling Sequence

CALL FOUTPT (A)

b. Entry Conditions

A = A buffer that holds 13 BCD words.

c. Exit Conditio,ls

Contents of buffer A are written on a FORTRAN Monitor

print tape, punch tape, and save tape.

d. Error Exits

None.

5. Definition of Identifiers

N one.

6. Method

The contents of buffer A are written as one record onto a save tape,

a print tape, and a punch tape. The subroutine PAGEHD is used to con-

trol the page eject and title printing for each new page.

271

o

o

Other Subroutines Used

lOPS, PAGEHD.

Us ing Subroutine s

DBPCHC, DBPCH, DBPFH, INPUTX.

272

i

I

I

\ (A_ ,,,_ ,-o /

i

\ t"A,,,, ," /

,'co_ _ C,-1)/

f
7

J

Z73

Program Description

l. Identification

a. Routine Label

FRACT

b. Name

Convert a floating-point number to BCD and push the BCD

characters down into a list.

2. Function

The floating-point number A is converted to decimal and stored

as a sequence of BCD characters in list L. Storage is in reverse order,

with the least significant digit at the top of the list.

3. Programming System

FAP

4. Usag_e

a. Calling Sequence

CALL FRACT (L, A)

b. Entry Conditions

A = Floating point-number

c. Exit Conditions

List Lwill contain a sequence of BCD characters, in reverse

of the converted number in A. Each element in L will have a flagorder,

of 5.

Be

d. Error Exits

None.

Definition of Identifiers

None.

274

6. Method

The floating-point nun_ber in A is normalized and saved in the ac-

cumulator. The number in the accumulator is converted to 8 BCD char-

acters and pushed down into list L. each element containing one BCD

character as its item and a flag of 5.

7. Other Subroutines Used

DOWN

8. .Using Subroutines

FLTCON

275

t FLF. p;r. _'O.

...... _._ r,v A C

--- - I

.......... [_°''v_T I

, _ _v. /_, S_gl'_

__ = -

At_ -

C LL

s

C ,.4 t ," D _ "_ ,'v (/_)

.o

Z76

Program Description

1. Identification

a. Routine Label

FRFL

b. Name

Replace the contents of a word.

2. Function

This subroutine replaces the contents of a given word with the

contents of the first element of a list.

3. Programming System

FAP

4. Usage

a. Calling Sequence

CALL FRFL (I, A)

b. Entry Conditions

I = Head of a list

A = A full word of information

c. Exit Conditions

The first element of list I replaces the contents of A.

o

o

d. Error Exits

None.

Definition of Identifier s

None.

Method

I. d(I)-, (UOC2)

z. ((LOCZ)) (A)

Z77

.

o

Other Subroutines Used

None.

Using Subroutine s

FISH, LTRACE, MATOT, SNATCH, SYMCRD.

278

Program Descriptio n

1. Identification

a. Routine Label

FROM

b. Name

Extract item and flag FROM an element.

2. Function

This subroutine extracts the item portion and flag portion, if any,

from the first element of a list.

3. Programming System

FAP

4. Usage

a. Calling Sequence

CALL FROM (Z, C, IF)

b. Entry Conditions

Z = Head of a list

c. Exit Conditions

d(C) = Item of the first element in Z

d{IF} = Flag, if any, of the first element in Z

d. Error Exits

If list Z is null, CALL DUMP is executed and return is

made to the FORTRAN monitor system.

5. Definition of Identifiers

None.

6. Method

The item portion and flag portion, if any, of the first element in

list Z is extracted from the element and placed in the decrement of C

Z79

and the decrement of IF, respectively. If Z was null upon entry to this

routine, CALL DUMP is executed and return is made to the FORTRAN

Monitor System.

7. Other Subroutines Used

.

None.

Using Subroutine s

COPY, DOWNS, ELIM, ERASE, FISH, FLAG, IDNTP, LEVMRK,

LOCAT, LOCATA, MATFT, MATOT, MRKLST, INVST, POPUP,

PRPTR, READCH, RECOVR, SNATCH, STASH, STRIK, SYMCRD,

SYMTP, WRTEQ, Main Programs for Pass 2 of TAG Preprocessor.

Z80

/5 "_ I

,_,D / /'T'_ "tes /i

AI 0

J

[

ZTe-,_ OF t_l"

L_-+_ <@ I)I " "- l

i

i
/3 "

-- F_,9_ o_ r

281

Program Description

1. Identification

a. Routine Label

GOBLE

b. Name

Read TAG connection lists from tape and from WLIST.

Z. Function

This subroutine reads the TAG connection list, removes punctu-

ation and excess characters, converts BCD characters to binary, and

stores a descriptor at a time in WLIST. NM is set to the maxirnurn

node nuInber and NT will hold the total number of branch descriptors.

3. Programming Syste m

FORTRAN II

4. Usage

a. Calling Sequence

CALL GOBLE (WLIST, NM, NT)

b. Entry Conditions

The TAG connection list will be on a FORTRAN input tape

in BCD.

c. Exit Conditions

WLIST is formed as a t%vo-dirnensional list representation

of the TAG connection list. Each branch descriptor is represented by

a sublist with 3 or 5 elements. Branch ordering is not changed. All

components of the branch description are represented by binary integers.

The element type characters are replaced by the following integers:

V = 1

C = 2

G = 3

Z82

L = 4

N = 5

I = 6

Node numbers, transformer turns, and transformer numbers are

converted directly to binary. NM will contain the maximum node num-

ber in the connection list. NT will contain the total number of branch

de sc riptor s.

d. Error Exits

.

None.

Definition of Identifier s

P = A temporary list used in processing the branch de-

scriptors. P contains an inverted copy of the TAG

branch connection list. Allblanks are removed and

the terminating • is not included. P is a one-

dimensional list with one character stored in each

element.

A = A local variable, dimensioned at 14. Used for input,

output of BCD characters.

Index for BCD words being processed.

A local variable dimensioned at 6. Contains the 6

allowed terminating characters for a branch

descriptor.

Contains the current character being processed.

IEXM(1) =

ITEM =

ERROR1,
ERROR2 =

o

Temporary lists that hold the characters for error

comments to be printed.

Method

The TAG connection list is read in to form WLIST as follows:

a. Clear KTRN, KIND, NM, NT to zero.

b. ERASE P list and WLIST.

c. Store six characters blank *, S / - in IEXM(I), I = I, 6.

d. Read 13 BCD words (branch descriptors) from tape and

store in A(1), I = i, 13.

e. Write 13 BCD words from A(1), I I, 13 onto a print tape.

283 "

f.

go

h.

i.

The Ith character of A is placed in ITEM and compared with

IEXM(Z) to determine if the character is an asterisk (*).

(I) If ITEM contains an _, discontinue reading the input

tape and proceed to step i to continue.

(2) If the character in ITEM is not an *, proceed to the

next step.

The Ith character of A in ITEM is compared with IEXM(1)

to determine if the character is a blank.

(1} If ITEM contains a blank, ITEM is not pushed down

into P list. Go to step h to continue.

(2) If ITEM does not contain a blank, a new element is

pushed down into P list with the d(ITEM) as its item.

I is tested:

{1) If I _ 77, store I + 1 in I. Return to step f and continue.

(2) If I = 72, return to step d and continue processing.

An asterisk has been read (step f(1)):

(1) Clear NTRN, NNTR to zero. Initialize flag word

KSW to 1.

(2) Segment list P at the first comma encountered (after

the first descriptor in list P). Form a new list O

containing the segmented portion of P (first descriptor

followed by a comma). P will contain the rest of the

descriptors. Set flag word K.

(3) ERASE list ERROR1.

(4) Popup list Q and push elements down into ERROR1.

List Q is not destroyed.

(5) K is tested:

Ca) If K = 3, list P was null. Exit from the routine.

(b) If K = 1 or 2, segment list Q at the first / or -

encountered in the descriptor. Form new list R

of segmented portion of Q. Set K.

(i) For K = 1 or 4, a / was found or Owas

null. Go to step j to print error comment.

284

(6)

(7)

(8)

(ii) If K = 2, a - was found. Proceed to step

i(12) and continue.

(iii) If K = 3, a / or - was not found within the

descriptor. List Q is now null and list R

contains the elements formerly in Q.

Continue at next step.

The first two elements in list R are popped up and

their characters converted from BCD to binary, then

saved in NP. K is set.

(a) If (K-Z) _0, either R was null or one of the

digits popped up from R was non-numeric. Go

to step j to print error comment.

(b) If (K-2) = 0, the digits in the two elements

(popped up from R) were converted.

Popup the next two elements in R, convert them to

binary, then save the converted number in NN. Set

K.

(a) If (K-Z) _ 0, go to step j to print error com-

ment (same conditions as in (6)(a) above).

(b) If (K-2) = 0, the digits popped up from 1%were

converted.

Match the item of the next element in R with a number

of the array, VCGLNI, to determine the type of branch

descriptor being processed. The number corresponding

to the position of the matched character in the above

array is saved in NE.

(a) Popup the next element from R (whose item was

just matched) and store in the decrement of

ITEM. Test NE.

(i) If NE = I, Z, 3, or 6, go to stepi(10) to

(ii)

(iii)

continue.

If NE = 4, go to step i(9) to continue.

If NE M 5, go to step i(lI) to continue.

285

(9)

(lO)

NE = 4 (branch descriptor of type L) set KIND to Z.

NE = 1, 2., 3, 4 or 6 (branch descriptor of type V, C,

G, L, orI)

(a) Test KSW.

(i) If KSW = 2, go to step j to print error

comment.

(ii) If KSW = l, continue.

(b) Test if R is null.

(i) If R is null, go to step j to print error

c omm ent.

(ii) If R is not null, continue.

(c) Popup the next element in R. Save its item in

d(ITEM).

(i) If the character in ITEM is not an S, go

to step j to print error comment.

(ii) If ITEM does contain an S, continue.

(d) Test if R is null.

(i) If R is null, go to step i(10)(f) to continue.

(ii) If R is not null, proceed at next step.

(e) Popup the next element in R. Save its item

in d(ITEM).

(i) If ITEM does not contain comma (,), go to

step j to print error comment.

(ii) If the character in ITEM is a (,), continue

at the next step.

(f) ERASE list K.

(g) Push down a sublist into WLIST containing ele-

ments with item NE, NN, NP, NTKN, NNTR for

the descriptor just processed.

(h) NN is compared with NM.

(i) If NN > NM, NN replaces NM as the max-

irnum node number. Proceed at step (i)

below.

(ii) If NN < NM, NM is unchanged.

Z86

(11)

(12)

(i) The NP of the descriptor is compared with NM.

(i) If NP > NM, NP replaces NM as the max-

in%un% node number.

(ii) If NP < NIVI, NM is unchanged.

(j) NT, which holds the number of branch descriptors,

is increased by I.

(k) Return to step i(1) to continue processing of the

next descriptor in list P.

NE = 5 (transformer branch descriptor SN)

(a) Test KSW.

(i) If KSW = I, go to step j to print error

comment.

(ii) If KSW = Z, continue at step i(10)(b) above.

A - was found within the descriptor. (transformer)

(a) Set KSW to 2.

(b) A/1 characters in R up to 10 are connected from

BCD to binary and saved in NNTR. K is set to

number of actual characters converted.

(c) Set KTRN to 2.

(d) Segment list Q at the first / encountered within

the descriptor. Form new list R from segmented

portion of Q (up to and including /). Set K.

(e) Test K.

(i) If K = 2 or 3, a / could not be found or Q

was nut1. Go to step j to print error

comment.

(ii) If K = I, continue at next step.

(f) A/I characters in list R up to 10 are converted

from BCD to binary and saved in NTRN. K is

set to number of characters actually converted.

(g) Te st R.

(i) If R is null, go to step j to print error

comment.

(ii) If R is not null, continue.

287

j.

(h) Pop up the next element in R. Save its item in

d(ITEM).

(i) Test R

(i) If R is not null, go to step j to print erase

comment.

(ii) If R is null, move the pointer in head cell

Q to head cell R. List R is now pointing

to the remaining elements which were in

Q. Q is made null. Return to step i(6)

to continue processing.

An error has been detected during the descriptor processing.

(1) Place the characters "/ IS IN ERROR" into list

ERRORZ.

(2) Insert a blank into the first position of A.

(3) Set I to 2.

(4) Test list ERRORI.

(a) If ERROR1 is null, continue at step j(8).

(b) If ERROR1 is not null, proceed to next step.

(5) Popup the next element in ERRORI. Save its item in

d(ITEM).

(6) Place character in ITEM into the Ith position of A.

(7) Test I

(a) If I _ 7Z, increase I by 1 and return to step

j(4) to continue processing for error comment.

(b) If I = 72, print error comment from A(I),

I = 1, 13, CALL EXIT and return to FORTRAN

monitor system.

(8) ERRORI was null.

(a) Test list ERRORZ

(i) If ERRORZ is null, store a blank character

in ITEM and go to step j(6) to continue.

(ii) If ERROR2 is not null, popup the next

element from ERRORZ and save its item in

d(ITEM). Go to step j(6) to continue.

Z88

7. Other Subroutines Used

CHLNE, DOWN, DOWNS, ERASE, IDNTP, LNECH, NUMB, POPUP,

PRPTG, SEGMNT, SYMBL, SYMCH, FORTRAN SYSTEM ROUTINE "EXIT."

8. Using Subroutines

Main program for PASS I of TAG preprocessor.

289

_',4 L.L

I C'A_c

l

° 1t 5 £H_l/_crc_

,/ \ _ _ .E" T E t'_ A

\

VD

• /_us_ ,,ec_, "\\

\ _"z o P "_.,"/

r-_ 2 i

I

I _Y_'_c14 \ •

\ -'_Z g * ,',(!)/
\t4¢ t,/yeCe_J

I

'+1---) .. i

.... i

'L£¢f_c_.J ZgO

7
'+ t--- T"

t

.1

'Z91

4

U

It

293

, e-..-, --,

I
I

f _b__!_._ L"

='_'4£AC?_''rS /

"X '=='_ _= __J----: -
I

!

7- i

--I

--- :._..0 s

" " t _b

OPu e, o r.,_.. \

. 4,° P

--: \ ..3......

I Z ÷ z---).E

_o

(,4cc. Pd_Pv P(d£_' d.£_.

\,o_. _ _ / s._. ze

Program Description

1. Identification

a. Routine Label

HEAD

b. Name

Convert statement number and continuation card number to

BCD and store in an output buffer.

Z. Function

The integers in NS and NC are converted to BCD and stored in

BUFF. NS goes into columns 1-5, right justified, and the low digit of

NC goes into column 6.

3. Programming System

FAP

4. Usage

a. Calling Sequence

CALL HEAD (BUFF, NS, NC)

b. Entry Conditions

NS = Statement number

NC = Continuation card number

c. Exit Conditions

NS and NC are converted to BCD and stored in the output

buffer BUFF, NS to column I-5, right justified, and low digit of NC

to column 6.

.

d. Error Exits

None.

Definition of Identifiers

None.

295

o

e

So

Method

ao

b.

C,

The output buffer BUFF is cleared to blanks.

The statement number in NS is placed in the accumulator,

right justified, then converted to BCD and stored in col-

umns 1-5 of BUFF.

The continuation card number in NC is placed in the accu-

mulator, right justified, then converted to BCD and stored

in column 6 of BUFF.

Other Subroutines Used

BCD

Other Subroutine s

DBPCH, DBPFH, INPUTX

I

I

I

I

i

I

I

q

Z96

V

v
IDh ,4 N_ _

-to (Ac ;

+

J
c _/z _c J)

V

•_ Q

V

(L _. _) ..."

\r"
pI t)

f

" " I " '"

>lEA -P,C _''_'#."'_, "_')

297

Program Description

1. Identification

a. Routine Label

HEADC

b. Name

Convert statement number, continuation card number, and

special character (for column 1) to BLD and store in output buffer.

Z. Function

The integers in IS and IC are converted to BCD and stored in col-

umns Z-5 and column 6, respectively, of output buffer A. The character

in IC1 is stored in column 1 of buffer A.

3. Programming System

FAP

4. Usage

a. Calling Sequence

CALL HEADC (A, IS, IC, ICI)

b. Entry Conditions

IS = Statement number

IC = Continuation card number

IC1 = Character for column 1

c. Exit Conditions

Output buffer A will contain ICI in column l, IS converted

to BCD in columns Z-5, and IC converted to BCD in column 6.

So

d. Error Exits

None.

Definition of Identifiers

None.

Z98

.

o

o

Method

Ii

2.

o

4.

The output buffer A is cleared to blanks.

The statement number in IS is placed inthe accumulator,

right justified, and is then converted to BCD and stored in

columns 2-5 of buffer A.

The character in IC1 is stored in column 6 of buffer A.

The continuation card number in IC is placed in the accumu-

lator, converted to BCD, and stored in column 6 of buffer A.

Other Subroutines Used

BCD

Using Subroutine s

DBPCHC, PUSPCH

299 "

d) ,,'1o,,o........

\,+_ ,. 8_,>./

/

l_

(z_,)-'_',,¢) i

.?-

LA_J -_ (." @c #)
_A

r,,#,,_ L_ #_#o.

i =

..P

.C_z _.. i-S" of _ ,,_ -" -_"r,,_ _'d t'74 ,'_"

300

Program Description

1. Identification

a. Routine Label

HOLBK

b. Name

Remove blanks from a list of BCD characters.

2. Function

RIN is a list of BCD characters from which all blanks are re-

moved except those which occur imbedded in Hollerith variables of the

form--6H" " " ---

3. Programming System

FORTRAN II

4. Us_

a. Calling Sequence

CALL HOLBK (RIN)

b. Entry Conditions

RIN = A list of BCD characters

c. Exit Conditions

List RIN will contain the original BCD characters with all

blanks removed except those in a literal Hollerith string.

d. Error Exits

None.

5. Definition of Identifiers

ITEM = Contains a BCD character

RT = A list which contains the same elements as RIN, in re-

verse order

301

0

CNT = A list used to save the integer which precedes the char-

acter H in a literal Hollerith string

Method

The blanks are removed from list RIN as outlined below.

a. List RIN is popped up, one element at a time, and then

pushed down into RT. RIN is destroyed.

b. RT is tested:

(1) If RT is null, exit is made from the routine.

(2) If RT is not null, the first element in RT is popped

up and the character in its item is saved in ITEM.

c. ITEM is tested:

(1) If the character in ITEM is a (or a , execution con-

tinues at step d.

(2) If the character in ITEM is a blank, the blank is not

pushed down into the new list RIN. Execution is re-

peated at step b.

(3) If the character in ITEM is not a (or a , or a blank,

it is pushed down into KIN, and then execution is re-

peated at step b.

a. When the character in ITEMis a (or a , the (or , is

pushed down into RIN.

e. RT is tested:

f,

(1)

(z)

ITEM

(1)

(2)

(3)

If RT is null, exit is made from the routine.

If RT is not null, the next element in RT is popped

up and saved in ITEM.

is tested:

If ITEM holds a blank, step e is repeated.

If ITEM holds an integer (1 to 9), it is pushed down

into RIN and CNT, then step e is repeated.

If ITEM does not hold a blank or an integer, a test

is made to determine if the character is an H or a

comma.

30Z

o

o

(a)

(b)

(c)

(d)

If the character is a comma, continue at step d.

If the character is an H, it is pushed down into RIN

as a new element. The integer saved in CNT is popped

up to determine how many characters are in the lit-

eral Hollerith string following H. These characters,

including any embedded blanks, are pushed down into

RIN with a flag of 1 in each element.

RT is tested:

(i) If RT is null, exit is made from the routine.

(ii) If RT is not null, go back to step b to continue.

If the character in ITEM is not a comma or an H,

continue at step c(2).

Other Subroutines Used

DOWN, ERASE, POPUP,

Using Subroutines

SYMCH, UPDWN.

INZERO, SUBST.

303

304

I

.o
.

./.l,_,t ,_ _. 2 _ _,

\ t_=o _z_ /

I 2 4 (Nc_r)

• .I #_''_''_ I. •

/P_s_ _.., '\.

(e,e_e.,. ,o_-)

4',

/

_ \e_,._,,. \- ;'."
PUP t.sw" _

305

/<< \

<-I \';:':<m"7

/

,,,o X .

ygf_

,¢_.% ._ \/. .
-- No

°

<.,)

_ewT oF)

ll_ I TE./_

<_) 1 (_<,,,_')!

/

f

Program Description

I. Identification

a. Routine Label

IDNTP

b. Name

Search an array of characters to match a given character.

2. Function

This subroutine searches N characters of a Hollerith array until

one is found which matches a character in the item portion of the first

element of a given list.

3. Programming System

FORTRAN II

4. Usage

a. Calling Sequence

bt

Co

do

CALL IDNTP (X, I, N, H)

.Entry Conditions

X = Head of a list

N = Number of characters to be searched

H = An array of Hollerith characters

Exit Conditions

If a match is found,

I = the number of the character (in H) which matches the

given character.

If there is no match, I = N + 1.

Error Exits

None.

307 "

5. Definition of Identifiers

ITEM = The decrement of this cell contains the character to be

matched.

ITEM1 = The decrement of this cell contains the Ith character of

array H, right-adjusted.

6. Method

a. A character is extracted from the item portion of the first ele-

ment in list X and saved in the decrement of ITEM.

b. Each of the first N characters of the Hollerith array H is placed

on ITEM1 and compared with ITEM until a match is found. I is set to the

number of the character in H when there is a match. If none of the char-

acters in H match the character in ITEM, I is set = N + 1.

7. Other Subroutines Used

FROM, SYMCH.

8. Using Subroutines

GOBLE, SEGMNT.

308

!

,A_ × .-_L(_rTr/)

CI.AL-L .ZZ_N7 PC× Z
x)

.i_j /

V

!
c

_ - "" . . / ...-_._----_!.r , , _ ,, = , 7

! "/e.s vc s

I AI41.-'_ T-

//_

309

Program Description

1. Identification

a. Routine Label

INFL

b. Name

Replace the contents of an element.

2. Function

This subroutine replaces the contents of the first element of a list

with the contents of a given word,

3. Programming System

FAP

4. Usage

a. Calling Sequence

CALL INFL (I,A)

b. Entry Conditions

I = Head of a list

A = A full word of information

c. Exit Conditions

The contents of A replace the contents of the first element

a

,

Error Exits

None.

Definition of Identifiers

None.

Method

a. d(I) -_ (LOC2)

b. {AI {(LOC2))

310

I

I

I

I

o

o

Other Subroutines Used

None.

Using Subroutine s

STASH

311

Program De scription

1. Identification

a. Routine Label

INPUTX

2. Function

To write out the "CALL INPUT" statement

3. Programming System

FORTRAN II

4. Usage

a. Callin_ Sequence

CALL INPUTX (IS, INSTP, INLST)

b. Entry Conditions

IS =

a

INSTP =

INLST =

The statement number to be used for the

"CALL INPUT" statement

Contains a list-structure of system para-

meters (the list INSTP of Main Z)

Contains a list of input variable names

(the list INLST of Main Z)

c. Exit Conditions

The statement "CALL INPUT ...

d. Error Exits

None.

Definition of Identifiers

Z

" is output.

Type A list initially containing ", 6H$$$END)"

list is used to construct the output card image)

Type A list containing "CALL INPUT ("

BCD comma

(this

INPUT

ICM

31Z

I

t

I

I

t

o

PAR1

ISP

IBRK

IBLK

IH

ISEP

IN1

NE

NO

NT

NTRN I

NNTR I

NF J

P

ITEM

Zl

IC

A

Method

BCD "S"

BCD blank

BCD right parenthesis

BCD blank

BCD "H"

B CD " / "

Used to link through INSTP

Used as parameters to examine a symbol in

IN1 through the PRPTR subroutine

Holds the "input" symbols as they are constructed

Used to hold the top element of P

Used to hold a symbol temporarily before it is

placed in Z.

Used to compute the continuation card number

Output buffer holding the completed card image

a. The symbols in INSTP are extracted, one at a time, and

sent to PRPTR for reduction. The output parameters NE, NO, NT are

used to construct a four-letter word of this form: SX • Y • Z

X is V, C, G, L, $, I, depending on the value of

Y is NO

Z is NT

This symbol is pushed into list P.

b.

P.into

NE

The list INLST is RECOVR-d, and each symbol is pushed

313

c. The list P is then examined. Each symbol (e. g. , SV12)

is popped out and pushed into Z. The number of characters (e. g. , 4)

is determined, and a special symbol (e. g., 4HSVIZ,) is constructed and

pushed into Z. When P is exhausted, the statement

CALL INPUT ("Z - list" , 6H$$$END)

is output with statement number IS.

7. Other Subroutines Used

BCL, CHLNE, COPY, DONBD, DOWN, ERASE,

POPUP, PRPTR, RECOVR, SYMBL, SYMCH, UPDWN.

8. Using Subroutine s

Main Routine, Pass 2, TAG Preprocessor.

FOUTPT, HEAD,

314

• +

. ! .-°

,/..2_

. .

Ib

316
=..

°-_ b.

/._,'f<.,' ?'- ,t" P_.

P

_/ /

- a_

/_/'Pu T" X "_

.... °

1

._0 . •

" "- 7

/ \, _Po,"\
l/l,:<'," \
_/,,., ro /
\ p_',",_,/

'T

I o -_ (_)

l
I--> C'_)

.+ .

Py i.,,.sPu,,")

L,_." f7

°* •

_.". #

J

° "_=__,_-r

l

318 I

i,<ii_<< ft

+_

Program Description

1. Identification

a. Routine Label

INSRT

b. Name

INSERT a new element into a list.

2. Function

This subroutine is identical to AFTLK, except that when the list

is null, the address portion of the element inserted into the list is cleared

to zero.

3. Programming System

FORTRAN II

4. Usage

a. Calling Sequence

CALL INSRT (LP, ICD_ NT, LTP)

b. Entry Conditions

LP = Head of a list

d(ICD) = Item of the new element

d(NT) = Flag of the new element

Co

LTP = Flag word

Exit Conditions

A new element, with d(ICD) as its item and d(NT) as its

flag_ is inserted into list LP as its second element. The pointer in

LP is reset to this new element. If the new element is the onIy ele-

ment in the list, its location is saved in LTP.

d. Error Exits

5. Definition of Identifiers

None

320

. Method

a. If list LP was not null:

(1) A new element is inserted immediately after the first

element.

element.

(z)

(3)

The first element is linked to the new element.

The head cell of list LP is reset to point to the new

(4)

formerly the second one in list LP.

b. If list LP was null:

{I} A new element is inserted with a link of zero,

ating a list of just one element.

(2)

element.

(3)

flag word LTP.

The new element is linked to the element that was

cre-

The head cell of list LP will be set to point to this

Location of the single element in LP is saved in the

Other Subroutines Used

AFTLK, LINK, SET.

o

8. Using Subroutines

M_ATFT, STASH.

321

ZWsR7)

r.eo

"_ &, •

• p)/'sT L.T
2

,4 I_ 7"/. ,_"(Z.
7

. o.

¢',,,a_. ,

322

Program Description

1. Identification

a. Routine Label

INTLST

2. Function

Reads type 2 records from tape and stores the information in a

list.

3.

.

.

Programming System

FORTRAN II

Usage

a.

b.

Calling Sequence

CALL INTLST (INLST, NTAPE)

Entry Conditions

INLST = The list to be updated by the read-in information

(It is type- .)

NTAPE = The tape to be read

c. Exit Conditions

INLST is updated.

d. Error Exits

None.

Definition of Identifier s

ITYPE

NE

J

NF

FTEM

NN

NP

HOLTH_

parameters read in from NTAPE

323 "

. Method

Read records from NTAPE in this format:

Columns Format D estination

2 integer ITYPE

4-6 integer NE

8- I0 integer J

13 integer NF

15-30 real number FTEM

32-34 integer NN

36-38 integer NP

40-75 Hollerith HOLTH

If ITYPE = 2, enter the six quantities NE, NN,

INLST through PRPTG.

If ITYPE = 5, exit.

If ITYPE is anything but 2 or 5,

7. Other Subroutines Used

DUMP, ERASE, PRPTG.

8. Using Subroutines

Main Routine,

NP, 0, 0, 0 into

then CALL DUMP and exit.

Pass 2, TAG Preprocessor.

324

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

\
, ,.,_<.,,,,ptp/

J
i

l
I

7

•_<.._ c,/- _'co,, _'>,_
A-_ oa s _ f,_Pd' ,

".),', ,'.)_ Hd _ r.,; j

"_,

, ,_o'

/

".D_",:-__'- zJ/_', '

3Z5

Program Description

I. Identification

a. Routine Label

INTO

b. Name

Replace item and flag of first element of a list.

2. Function

The item portion and flag portion of the first element of a list is

updated. The address Clink) is unchanged. If the list is null, a new

element with a link of zero is pushed down into a new list.

3. Programming System

.

FAP

Usage

a. Calling Sequence

CALL INTO (Z, I,IF)

b. Entry Conditions

Z = Head of a list

d(I) = Item

d(IF) = Flag

c. Exit Conditions

d (lst element) = Item

t (Ist element) = Flag

d. Error Exits

None.

Definition of Identifiers

None.

.

326

6o Definition of Identifiers

None.

7. Method

If the head of list Z = 0, it is considered to be null. A new ele-

ment is obtained from AVS (using NEWLOC), and this element is pushed

down into Z with d(I} a_ its item, d(IF) as its flag, and a link of zero.

If the head of list Z I 0, d(I) and d(IF) replace the item and

flag of the first element of Z, the link portion of the element is unchanged.

8. Other Subroutines Used

NEWLOC

o Using Subroutines

AFTER, DOWN, FLAG, LEVM/IK, MATFT, MRKLST, SUBST.

327

._ ...,.

I,< <.,.:j,_
"':" "-- _'_" - -'-'_ 7.'" "

i,

3Z8

Program De scription

1. Identification

o

.

.

a. Routine Label

INVST

b. Name

Write "CALL INV" statement.

Function

Outputs the "CALL INV" statements.

Programmin_ System

FORTRAN II

a. Calling Sequence

CALL INVST (NPT, LEV, NFLS, I)

Do

Co

Entry Conditions

NPT =

LEV =

NFLS =

I =

Exit Conditions

Array NPT of Main 2

A flag indicator

An array list. It is XFG of Main 2.

The index indicating the sublist of NPT,

NFLS to be processed

"CALL INV" statements output.

d. Error Exits

None.

Definition of Identifiers

KSW Control indicator

N1 Used to link through list NFLS(1)

NF Flag (NI)

329

.

L1

NT

NEX

Method

KSW is set = 1

N1 is set = NFLS(I)

If N1 is null, then if LEV = 0,

Used to link through the sublist of N1

Item (L1)

Flag (L1)

output statement, else exit.

If N1 is not null, N1 is examined, one sublist at a time. L1

is set equal to the sublist, and the flag portion of each element of the

sublist is compared with LEV.

if (NEX) > (LEV),

if (NEX) = (LEV),

If (NEX) < (LEV),

When done, if KSW = 2,

Else,

exit .

set KSW = 2 and continue.

c ont inue.

exit.

output statement according to the following schedule:

I=l

I=2

I=3

I=4

NPT(1) 0
exit

exit

exit

exit

NPT(I) = 1

exit

FCI22 = 1. /FC22

FGIZZ = 1. /FG33

FLI44 = I. /FL44

NPT (I) > I

exit

CALL INV(FC22, FCIZZ, LNC)

CALL INV(FG33, FGI33, LNG)

CALL INV (FL44, FLI44, LNL)

.

.

Other Subroutines Used

FROM, LINK, STAT.

Using Subroutine s

Main Routine, Pass 2, TAG Preprocessor.

330

............ j

" I °

f

°.

...... •

.............. i Ev.rT

Program De scription

1. Identification

a. Routine Label

INZERO

.

B

.

Function

Tests if a BCD string contains "INPUT" or "ZERO."

Programming System

FORTRAN II

Usage

a. Calling Sequence

CALL INZERO (RIN, KES)

b. Entry Conditions

RIN is a simple list (type A) in reverse order.

c. Exit Conditions

KES = 1 (No find)

KES = 2 (RIN contains "INPUT")

KES = 3 (RIN contains "ZERO")

RIN is erased for KES = 2, 3

d. Error Exits

None.

Definition of Identifiers

TEM Temporary list used to hold RIN in reverse

order

IEXM Used to hold literal BCD chars for comparison

with items in TEM

ITEM Used to hold the current item of TEM

333

6. Method

KES is set = 1.

RIN is reversed into TEM, and all blank characters are removed.

The top item of TEM is then examined. If it is an "I", then the rest of

TEM is examined. If the rest of TEM contains "NPUT 'i and no other

characters, KES is set = 2, RIN is erased, and exit is made. If the

first character is an I, but the rest of RIN does not match, then exit

with RIN as on input. Match, then exit with RIN as on input.

If the first item is "Z," then if the rest of TEM contains "ERO"

and no other characters, KES is set = 3, RIN is erased, and exit is

made. Else exit with RIN as on input.

7. Other Subroutines Used

BLNOUT, DOWNS, ERASE, POPUP, SYh4CH.

8. Using Subroutines

Main Routine, Pass Z, TAG Preprocessor.

334

. _X/VZ£EO

PeP _P R_N

AWD PuSH

Y_

Program Description

1. Identification

a. Routine Label

LEVMRK

Z. Function

To update the flag portion of the major XS matrices.

3. Program,ning System

FORTRAN H

4. Usage

a. Calling Sequence

CALL LEVMRK (X, IFLS, NM, NTAPEI, NTAPE2)

b. Entry Conditions

X = An array list used as a base for absorbing

o

IFLS

NM

NTAPEI

NTAPE2

the XS matrices from tape

= An array list of type

= The array size of X

= The input tape

= The output tape

c. Exit Conditions

Revised lists XS are output to NTAPEZ.

d. Error Exits

None.

Definition of Identifiers

I

N1

L1

NO

NT

Index number of the matrix retrieved from NTAPEI

IFLS(1)

Next item of N1

First item of L1

Second item of L1

336

o

NEX

J

LJ

KSW

LJJ

JP

NEF

Method

Second flag of L1

Used to index through X

Used to hold position in X(ll, J)

"Found" (indicator set by LOCATA)

Item (LJ)

Link (LJJ)

Flag (LJJ)

Each list XS is read from NTAPEI and absorbed into X through

MATFT, and flags found through IFLS are used to update X. Then X

is output to NTAPEZ through MATOT. This is done for four matrix

lists, using I = 2,5. The procedure is as follows:

a. Read and merge XS into X.

b. For each triplet NO, NT, NEX on IFLS(I), update X:

(I) For each Ii, J where Ii and J range from I to NM,

find

JP = L(_CATA (x(II, J))

and then

LJ = LOCAT (JP (NO, NT))

(2) If such a quadruplet exists, then update its flag NEF

by setting

NEF = max (NEF, NEX)

c. Output X to NTAPEZ

After all four XS matrices have been updated and output, write an

EOF on NTAPE2, rewind NTAPEI and NTAPE2, and exit.

7. Other Subroutines Used

e

ERASEA, FROM, INTO, LINK, LOCATA, LOCAT, MATFT, MATOT.

Using Subroutines

Main program for Pass 2 of TAG Preprocessor.

337

o.

D /J7"A PEI)

"'__ /

J

"FILE _/J tJTAr_

_EkmJa _I"AP£ I

_°£_b NfAPE 2.

338

I

" : -339

340

I

I

I

I

I

i

I

Program Description

i. Identification

a. Routine Label

LINK

b. Name

Get LINK of the first element of a list.

2. Function

The location of the second element of a list is placed in the dec-

rement of a word as an integer.

3. Programming System

FAP

4. Usage

a. Calling Sequence

CALL LINK (C, I)

b. Entr Y Conditions

C = Head of a list

c. Exit Conditions

d(I) = Location of the second element in list C

d. Error Exits

If list C is null, CALL DUMP is executed, and return is

made to the FORTRAN Monitor System.

5. Definition of Identifiers

None.

6. Method

The link (bits 2-35) of the first element in list C is inserted

in the decrement portion of I.

341

7. Other Subroutines Used

None.

8. Using Subroutines

COPY, DONBD, DOWNS, ELIM, ERASE, FISH, INSRT, INVST,

LEVMRK, LNKT, LOCAT, LOCATA, LTRACE, MATFT, MATOT,

MRKLST, PRPTR, READCH, RECOVR, SEGMNT, SNATCH, STASH,

STRIK, SUBST, SYMBL, SYMCtLD, SYMTP, Main Program for PASS

2 of TAO Preprocessor.

342

.... l --

_lsr

I

!& ¢z_))-, ,_{x):

__ _: ._= . .:_:_= _ _ N'£ r _,_ _!

2
............... _J

-____ ._'5_-_ _. .J_ _

_ALL

Program Description

1. Identification

a. Routine Label

LNECH

b. Name

Place one character of a Hollerith array into the decre-

ment of a word.

2. Function

The Ith character of an array is placed into a word as an inte-

ger (see SYMCH).

3. Programming System

FAP

4. Usage

a. Calling Secluence

CALL LNECH (A, I, ILOC)

b. Entry Conditions

A = An array of Hollerith characters

I = Character position in A

c. Exit Conditions

ILOC = Ith character of A as an integer

d. Error Exits

None,

5. Definition of Identifiers

LN92 = A table with six entries, eac_ a shift operation.

6. Method

Each time the subroutine is entered, the character correspond-

ing to the value of I is shifted into the decrement of ILOC as an in-

teger, right-adjusted. A table, located at LN92, determines the ap-

propriate shift.
344

e

o

Other Subroutines Used

None.

Using Subroutines

GOBLE, IViATFT, READCH.

345

<L_EcH)

!
V

{

t

c.,d t _, oe_. ('AC) -9 t

I

•
L_,_)__);1

&H£ cH {,9 Z

o.

KE7u_ _I)

1

• T °o

n

{A_) ,.,-
_ooo77oooooo

i
c. _ "
,(Cze_,_)-_{Ac)]

i(:'°')I

346

Program Description

1. Identification

a. Routine Label

LNKT

b. Name

Set a head cell to point to the second element of a list.

2. Function

The location of the second element of a list, if one exists, is

placed in a head cell.

3. Usage

a. Calling Sequence

CALL LNKT (A,

b. Entry Conditions

A = Head of a list

B = Head cell

F = Flag word

c. Exit Conditions

B, F)

B points to the second element of A. If A has only one ele-

ment, B points to this element, and F is also set to point to this element.

d. Error Exits

None.

4. Definition of Identifiers

None.

5. Method

The location of the second element in list A is placed in X. If

X - O, A is pointing to its only (or last) element with a terminating

link of zero. The pointer in A is saved in B and the flag word F. If

347 '

X _ 0, list A has a second element,

and F is unchanged.

7. Other Subroutines Used

LINK

8. Using Subroutines

AFTLK

B is set to point to this element,

348

!
I _/.,a_,. mc)s'r_ i

L_/KT

l.
"l" l.. etv _r o p

-_Z(.)/
r

:/"J PosiTS "+

i

(z/sT a _,,4s

349

Program Description

I. Identification

a. Routine Label

LOCAT

b. Name

Scan a list structure representing the four-dimensional

array of a matrix.

2. Function

This subroutine scans a list structure for an element whose dec-

rement points to a word containing row index I as its decrement. If

found, LI is set to point to this element, which is considered as a sub-

list. This sublist is then similarly scanned for the column index 5,

and, if found, LJ is also set.

3. Programming System

FORTRAN II

4.

a. Calling Sequence

Call LOCAT (M, I, J, LI, LJ, KSW)

b. Entry Conditions

M = A four-dimensional matrix represented in list-structure

(list type E)

I = Index of the row lists

J = Index of the column lists

c. Exit Conditions

KSW = I if neither index, I or J, found.

KSW = 2 if index I found.

KSW = 3 if both indexes I, J were found.

If I is found, LI will contain the location of the element that points

to I.

350

If Iis not found, LI = 0.

If J is found, LJ will contain the location of the element that

points to J.

If J is not found, LJ = 0.

d. Error Exits

None.

5. Definition of Identifiers

LN = A temporary head cell that is set to point to a sublist

in the four-dimensional list headed by M.

LI = A temporary head cell initialized by LN when scanning

for I.

LJ = When scanning for J, a temporary head cell initialized

by the pointer in LN at the time I was found.

.

IP = Item ((LI)) for I index,

II = Item ((IP)) for I index.

JJ = Item ((IP)) for J index.

Method

a.

b.

C.

d.

item ((LJ)) for J index.

LI and LJ are cleared to zero.

KSWis set = 1.

LN is initialized by (M).

LN is tested:

(1) If LN = 0, the list structure pointed to by LN is null.

Exit is made from the routine with KSW = 1, LI = 0, LJ = 0, indicating

that neither I nor J was found.

(2) If LN ¢ 0, the list structure pointed to by LN is not

null, and the scan proceeds for the sublist that contains I.

e. LIis set to point to the sublist pointed to by LN.

f. (d(LI))-*d(IP), then (d(IP))_d(II) gives an element II, which

should contain the index I.

g. If (II - I) ¢ O, I has not been found. The scan is repeated

atstep d. after Clink (ILl}} -* item (LN)) is executed.

h. If (II - I} = 0, Ihas been found in M. KSW is set = 2; LI

will be pointing to the sublist whose first element contains I.

351

i. The location of the next element in IP, item ((LI)), is stored

in LN to initialize the search for J.

j. LH is again tested:

(1) If LN = O, the sublist IP pointed to by item ((LI))

is null. Exit is made from the routine with KSW = Z. LI set is described

in steph. LJ = O, for I found but not J.

(2) If LN _ 0, the sublist IP is not null. The scan pro-

ceeds for the sublist which contains ft.

(3) LJ is set to point to the sublist pointed to by LN.

(4) (d(LJ)) -_d(IP), then (d(IP)) -_d(JJ) gives an element

J J, which should contain the index J.

(5) If (JJ - if) _ 0, J has not been found. The scan is

repeated at step j. after (link ((LJ)) -*item (LN)) is executed.

(6) If (JJ - J) = 0, J has been found in M. KSW is set

=3;

7.

.

LJ will be pointing to the sublist whose first element contains J.

Other Subroutines Used

FROM, LINK.

U s ing Subr .urine s

LEVMRK, SNATCH, STASH.

352

A

.... "-" " /Zz.',,_ r_',_,,:_ \ i I :'t'_ - _=_-_ •
• --C.,,,,:,,,,,---..-1 -', k',_<',7'<-:",)

program Description .

1. Identification

a. Routine Label

LOCATA

b. Name

Scan an array of lists for the column index of a matrix.

2. Function

An array of lists headed by M(1) is scanned to locate an element

whose decrement points to a word containing the column index J as its

decrement. If found, LJ is set to point to this element, which is con-

sidered as a sublist.

3. Programming System

FORTRAN II

4. Usage

a. Callln_ Sequence

Call LOCATA (M, I, J, LJ, KSW)

b. Entry Conditions

M = A four-dimensional matrix represented in array-list

form (list type E)

I = Index of the row lists

J = Index of the column lists

c. Exit Conditions

If J is found, LJ will contain the location of the element

that points to 5.

If J is not found, LJ = 0.

KSW = 1 if neither index found in M(I).

KSW = 2 if I is the only index in h4(I).

KSW = 3 if both indexes I, J were found in M(I).

354

Be

g

LN

LJ

IP

JJ

Method

a. LJ is cleared to zero, and KSW is set =

d. Error Exits

None.

Definition of Identifier s

M(I) = Ith list structure of the array-list M.

= A temporary head cell set to point to M(1).

= A temporary head cell initialized by LN.

= Item ((LJ)).

= Item ((IP)).

I.

b. If M(I) is null, exit is made from the routine with KSW

=I; LJ=0.

c. If M(I) is not null,

(1) KSW is set = 2.

(2) LN is initialized by M(1).

d. LN is tested:

(I) If LN = 0, the list pointed to by LH is null. Exit is

made from the routine with KSW = 2, iJ = 0, indicating that J could

not be found.

(2) If LN _ 0, M(1) is not null, so the scan proceeds for J:

(a) LJ is set to point to the list pointed to by LN.

(b) (d(LJ)) -. d(IP), then (d(IP)) -.d(JJ) gives an

element J$ which should contain J.

(c) If (JJ - J) _ 0, J has not been found. The scan

is repeated at step d. after (link ((LJ)) -- item (LN)) is executed.

(d) If (JJ - J) = 0, J has been found in M(1). KSW

is set = 3, and exit is made from the routine, with LJ pointing to the

sublist whose first element contains J.

7. Other Subroutines Used

FROM, LINK.

8. Using Subroutines

FISH, LEVM/[K, MATFT, SNATCH, STASH, SYMCRD.

355 "

356

Program Description

1. Identification

a. Routine Label

MATFT

b. Name

Read from tape to reconstruct a matrix in array-list form.

2. Function

The variables ITYPE, I, J, NF, FTEM, NN, NP, and HOLTH

are read from NTAPE. The type of element in each record is iden-

tified by ITYPE. If ITYPE = l, 2 then FTEM is "STASHED" in

MATRIX by I, J, NN, NP. If ITYPE = 3, HOLTH is "STASHED" in-

stead of FTEM. If ITYPE = 4, HOLTH is stored linked to previous

characters. Reading of NTAPE terminates when ITYPE = 5 is

encountered.

3. Programming System

FORTRAN II

4. Usage

a. Calling Sequence

Call MATFT (MATRIX, NTAPE)

b. Entry Conditions

NTAPE = An intermediate tape used in Pass 1 whose rec-

ords contain the elements for reconstructing

a matrix in array-list form.

c. Exit Conditions

The array-list is reconstructed in MATRIX for each type

as shown below.

If ITYPE = I,

If ITYPE = 2,

I, J and FTEM are "STASHED" in MATRIX.

I, J/NF, NN, NP, FTEM are "STASHED" in MATRIX.

357

If ITYPE = 3, I, J, HOLTH are "STASHED" in MATRIX.

If ITYPE = 4, successive sets of HOLTH are inserted in MATRIX.

If ITYPE = 5, the last record has been read from NTAPE, and

reading terminates.

d. Error Exits

None.

5. Definition of Identifiers

If tag (J) = 6, ITYPE = l

If tag (J) _ 5, ITYPE = 2

If tag (J) = 5, ITYPE = 3 for first 36 characters, and ITYPE

= 4 for successive sets of 36.

IBLK = A BCD blank character as an integer.

MATRIX(I} = Ith list structure of array-list MATRIX.

6. Method

The array-list on NTAPE is reconstructed in MATRIX as follows:

a. A blank Hollerith character is stored in IBLK as an integer.

b. Read a record from NTAPE.

c. Test ITYPE.

(I} If ITYPE = 1 or 2, test FTEM.

(a} If FTEM = 0, go to step b.

(b} If FTEM _/ 0, "STASH" FTEM into MATRIX,

identified by I, J, NN, NP.

(i} Test NF. If NF = 0, go to step b to read

(ii)

(iii)

the next record. If NF _ 0, continue.

Locate J in MATRIX(I}. Save flag (J)

in NFF.

Gompare NFF with NF.

o If NFF = NF, go to step b to read

the next record.

o If NFF _ NF, replace the flag in

the element containing J with NF,

then go to step b to read the next

record.

358

o

(z)

(3)

(4)

If ITYPE = 3, scan MATRIX (I) for J.

(a) If MATRIX(I) is null, store nonblank charac-

ters from HOLTH in a simple list which is linked

to MATRIX(I). After 36 characters have been

stored, go to stepb.

(b) If MATRIX(l) is not null, but J was not found;

store nonblank characters from HOLTH in a

simple list linked to the J sublist. After 36

characters have been stored, go to step b.

(c) If Jhas been found in MATRIX(I), replace FTEM

identified by I, 5, NN, NP with nonblank char-

acters from HOLTH. After 36 characters have

been stored, go to step b.

If ITYPE = 4, store nonblank characters from HOLTH

in a simple list, linked to previous characters, in

MATRIX(I). After 36 characters have been stored,

go to step b.

If ITYPE = 5, discontinue reading from NTAPE and

exit from the routine.

Other Subroutines Used

AFTLK, FROM, INSRT, INTO, LINK, LNECH,

SYMCH.

8. Using Subroutines

LEVMRK, SYMCRD,

of TAG Preprocessor.

LOCA TA, STASH,

Main Programs for Pass 1 and Pass 2

359

I I_ _ \

\ (eLJ,,_<) -'5 1
\ _-_ _I

_ _ 7 ,_ F T) _ 4_ _ _.. _,_ _ _ _ T (_ _ _" _ _ _
#

=3

• o

_ ALL/.

\- _._ _. ,_,-/

@
I

? _ A(¢z) I
V_.xtL,', _zZ.L/

f-):_%

} -.

360

i

m̧
1

V

,rQz ,<_z). /$

i .i

I
• °

p,

÷

, i"

.e

361

36Z

Program Description

1. Identification

a. Routine Label

1VLATOT

b. Name

Write an array-list onto tape.

2. Function

The sublists of array-list MATRIX are identified according to

list types (a two-dimensional or four-dimensional list containing nu-

merical information, a one-dimensional or two-dimensional list con-

taining Hollerith information) are written onto NTAPE.

3. Programming System

FORTRAN II

4. Usage

a. Calling Secluence

Call MATOT (MATRIX, NTAPE)

b. Entry Conditions

MATRIX = A matrix in array-list form

c. Exit Conditions

The array-list in MATRIX is written onto NTAPE with

a different format for each of the four element types. Each type is

identified by ITYPE, which is the first word of each record. The for-

mats for each type are as follows:

ITYPE 1 : 1,

ITYPE 2 = 2,

ITYPE 3 = 3,

ITYPE 4 = 4,

ITYPE 5 = 5,

I, J, FTEM

I, J, NF, FTEM, NN, NP

I, J, HOLTH

HOLTH

END (written as the terminating record on NTAPE)

363

.

.

d. Error Exits

None.

Definition of Identifiers

NTAPE = Local variable that corresponds to a Pass 1 inter-

mediate tapes.

ITYPE = 1, if tag of J = 6

ITYPE = 2, if tag of J _ 5

ITYPE = 3, if tag of J = 5 (for first 36 characters)

ITYPE = 4, if tag of J = 5 (for successive sets of 36 characters)

ITYPE = 5, written on NTAPE to signify the end of the array-list

M = MATRIX(I), Ith list structure of array-list MATRIX

M2 = Temporary head cell that points to the next J sublist

in M

M3 = Temporary head cell that points to the next NN sub-

list in M

M4 = Temporary head cell that points to the next NP sub-

list in M

Temporary head celI that is changed for each J sublist

List structure index for array-list MATRIX

BCD character index

A BCD blank character as an integer

MMM =

I =

K =

IBLK =

Method

The sublists for each of the element types in MATRIX are ex-

tracted and written onto NTAPE as follows:

a. A blank Hollerith character is stored in IBLK as an integer.

b. I + 1 -* I sets.

c. Initialize M with MATRIX(I) for the Ith list structure in

MATRIX.

d. Clear M2, M3, M4 to zero.

e. Test M. If M is null, I is tested.

(1) If I _ 100, all-array-lists have been extracted and

written onto NTAPE. An ITYPE = 5 record is writ-

ten as the terminating record on NTAPE, and exit

is made from the routine.

364

f.

o

h.

i.

(2) If I < 100, continue at step b.

If M is not null, extract the link of the first element in

M and save it i_ M2 as the pointer to the next sublist in

M.

(1) Extract J and its flag, NF. Save link of element

holding J, in MMM, as a pointer to the next 5 sublist.

(2) Test NF.

(a) If NF = 6, extract data word in element pointed

to by J and store it in FTEM. Write an ITYPE

1 record on to HTAPE containing 1, I, J, FTEM.

Re-initialize M with the pointer in M2. Continue

at step e. above.

If NF ¢ 6, save link of the first element in MMM,

in M3, as a pointer to the next NN sublist.

If NF ¢ 5, save pointer to the next NP sublist

in M4. Extract NN, NP and FTEM. Write

an ITYPE 2 record onto NTAPE containing

2, I, J, NF, FTEM, NN, NP.

(i) If M4 is not null, repeat f(2)(d) for the

next NP.

(ii) If M4 is null, save M3 in MMM and test

M3.

o If M3 is null, continue at step f(2)(b)

for the next J sublist.

o If M3 is not null, continue at step

f(2)(c) for the next NN sublist.

continue at step g.

(b)

(c)

(d)

(e) If NF = 5,

Set ITYPE = 3.

Initialize K to 1.

Test MMM.

(1)

(2)

If MMM is null, insert IBLK in Kth position of HOLTH.

Continue at next step.

If MMM is not null, extract BCD character from

the first element of MMM and place it in the Kth po-

sition of HOLTH as an integer.

365

.

.

(3) Test K.

(a) If K ¢

(b) If K =

(i)

(ii)

(iii)

36, increase K by I and continue at step i.

36, test ITYPE.

If ITYPE = 3, write a record onto NTAPE

containing 3, I, J, HOLTH.

o Set ITYPE = 4.

o Test MMM.

o If MMM is not null, continue at

step h for the next 36 characters.

o If MMM is null, continue at step

f(2)(b) for the next J sublist.

If ITYPE ¢ 3, write an ITYPE 4 record

onto NTAPE containing 4, HOLTH.

Test MMM.

o If MMM is null, continue at step

f(2)(b) for the next J sublist.

o If MMM is not null, continue at

step h for the next 36 characters.

Other Subroutines Used

GHLNE, FRFL, FROM,

Using Subroutine s

LINK, SYMCH.

LEVMRK, PARAM, Main Program for Pass I of TAG Preprocessor.

366

C,a/ _

_A/-L

L

i

I

.,,¢._" oP I.¢7 2

\,,,v /vl -._ I

\. a(_) /

367

" • ,_1

Yes @ _,.

I
[_ TYPE= I

,rt:__:. I"

" Uy_Z_"_ / -

r_-_ #,_ /'_/" "_l

m,,_ --9 /
"_ r_m,

• Vts __,,)

V

\,. •___,.,_
f

l _ T £ g £ ,"_ _ ," "r" '2

.* _ _, ,'_}

/

)

_,o

x /

,'t'te,',1,i*pLOd- \

P P-.._.,_IS 7)

'.,,I,_,_w_ / _. r_._l

loo

'@,

-_-.:.,_,\
IO-_°\

./ _,_\

f u;_W)

368

-'1 _

1

J

F_Cq

/,./,_ t" t.,_ .I/

_ 7 o /
/

_r_p_. /.

f

¢
@

i

3 -_(_ r-_ _'_ t

I

I

I

t

I

f

LIN_¢ op isr', j,'p_Se't.r c_,._,._

\"_"_"" "_" _ I_, a_ .--'.. \

\f,,_m/_ .._ ,i '\ _C'A_ p_. I /

.__ _ .- _. /-_

/ __

,,_o_./

, +
- @_

• _

*T _ /

369

\ r_OLT_ /
\o_, ro /

• _,_ /
t o •

.'_._

-@

L_

370

Program De s c ription

1. Identification

a. Routine Label

MRKLST

g. Function

o

o

e

To update the flag portion of a node-pair list.

Programming System

FORTRAN II

Usage

a. Calling Sequence

CALL MRKLST (NE, NO, NT, FLS, KE)

b. Entry Conditions

NE Index to FLS array list

NO First node number

NT Second node number

FLS Array list of node-pairs {type list)

KE Type code (1-8)

c. Exit Conditions

FLS list will be updated.

d. Error Exits

None.

Definition of Identifiers

NEX =

L2 =

L3 =

NO1 =

L4 =

NTI =

NEZ =

New flag portion computed from value of KE

Sublist FLS(NE)

Item (LZ)

Item (L3)

Link (L3)

Item (14)

Flag (14)

371 "

.

If such a pair exists, set NEZ = max (NEZ, NEX) and exit.

construct a new sublist:

Method

If KE = 1, 2, 3, then exit immediately.

If KE = 4, 5, set NEX = 1.

If KE = 8, set NEX = 2.

If KE = 6, 7, set NEX = 3.

Search L2 for NO1, NT1 such that NO1 = NO and NT1 = NT.

Else

N_NT [NEX I 0 I

and append it to the end of L2.

7. Other Subroutines Used

AFTER, AFTLK, DOWN, FROM, INTO, LINK.

8. Using Subroutines

SUBST

372

I- " | 1

l-7 (_E-x2 i
!

(oo _,7
• _Z\ tcE- / 6

373

f

],

•.. _ .

374 /,aro _-4
_/g-,g/._l'- 2..

Program Description

1. Identification

a. Routine Label

MULTS

b. Name

Multiply two matrices in array list form.

2. Function

MULTS performs a standard matrix multiplication between ma-

trices stored in array list format. Specifically the M x L matrix, TX,

is postmultiplied by the L x N matrix, TY, and the result is stored in

M x N matrix TZ. If TX and TY are both two dimensional:

L

[TZ]II, J) = _ [_TX]II, K) * [TY](K,J) .
K=I

If TX is two dimensional and TY is four dimensional:

L

[TZ]II, J,NN, NP) = _ [TX]{I, KI * [TY]{K,J, NN, NP) .
K=I

If TX is four dimensional and TY is two dimensional:

L

[TZ]{I,J,NN, NP) = Z [TX]{I,K, NN, NP) * [TY]{I,J) .
K=I

TX and TY may not both be four dimensional.

3. Programming System

FORTRAN II

4. Usage

a. Calling Sequence

CALL MULTS {TX, TY, TZ, M, L, N)

375

b. Entry Conditions

TX = An M x L matrix represented by either a two- or

four-dimensional array list

TY = An L x N matrix represented by either a two- or

four-dirnensional array list

TX and TY may not both be four-dimensional.

M = The number of rows in TX and TZ

L = The number of columns in TX and rows in TY

N = The number of columns in TY and TZ

c. Exit Conditions

TZ : An M x N matrix product of TX • TY.

TZ is in two-dimensional array list format if both TX and TY are

two-dimensional. TZ is in four-dimensional array list format if either

TX or TY is two-dimensional.

o

d. Error Exits

None.

Definition of

I : The

K = The

J : The

NN = The

NP : The

AIK = The

IJth

BKJ =

TXI :

TY1 :

PROD =

Identifier s

row index of TX and TZ

column index of TX and the row index of TY

column index of TY and TZ

negative node number of an element descriptor

positive node number of an element descriptor

current coefficient of TX being used to form the

product term of TZ

The current coefficient of TY being used to form the

IJth product term of TZ

The list which holds the pointers to the next non-zero

coefficient in the NN, NP submatrix [TX](I,J)

The list which holds the pointers to the next non-zero

coefficient in the NN, NP submatrix [TY] (I, J)

The current product, AIK * BKJ

376

SUM = The partial summation of

L

I [TX](I, K) # [TY] {K, J)

K=l

for all NN, NP if any

NNI = The negative node descriptor index for TX

NP1 = The positive node descriptor index for TX

NNZ = The negative node descriptor index for TY

NP2 = The positive node descriptor index for TY

6. Method

A straight matrix multiplication is performed between two two-

dimensional coefficient matrices, or between a two-dimensional co-

efficient matrix and a four-dimensional coefficient matrix in which

each element (I,J) is itself a matrix which stores the coefficients (CIJ)

of a summation of the form

100 100

X
NN=I NP=I

CU(NN, NP) * F(NN, NP)

by indices NN and NP. The multiplication algorithm is mechanized

twice to conveniently accommodate the cases in which TX is two di-

mensional and four-dimensional, respectively. When TX is two dimen-

sional and TY is two dimensional, the IJth element of the two-dimensional

product matrix, [TZI(I.J). is constructed as

L

I
K=I

[TX] (I,K) * [TY] (K, J)

for all I from 1 to M and allJ from 1 to N. When TX is two dimen-

sional and TY is four-dimensional, the (I,J. NN, NP)th element of the

four-dimensional product matrix TZ (l,J, NN, NP) is constructed as
L

I [TX](I,K) * [TY]IK, J,NN, NP)
K=I

377

for alllfrom 1 to M, allJ from 1 to N, all NN from 1 to 99, and all

NP from 1 to 99. When TX is four-dimensional, TY must be two di-

mensional, and the (I, J, NN, NP)th element of the four-dimensional

product matrix TZ(I, J, NN, NP) is constructed as

L

_ [TX](I,K, NN, NP) * [TY](K,J)
K=I

for allI from 1 to M, allJ from 1 to N, all NN from 1 to 99, and all

NP from 1 to 99.

7.

So

Other Subroutines Used

DIFA, ERASEA, ERASE, FISH, SNATCH, STASH.

U sin_ Subroutine s

Main Program for Pass I of TAG Preprocessor.

378

7-'/ T_ul. TS FXj _

37_

,,,<.,-: -_\
\-,..,--., j/

r

•f,_]!

I _ _-_- ,,,

1

1

°

o, _ (_ _,) '

-" _//

V

I

!

/_.\

Y_ 5

_o

f

(,-_'-"'_.)" (_'__.k)_ . "

i

! •

"_s<_

- __.

--Su/_/ j

m

380

.

• _ _ _w

!

.°

.381

Program Description

i. Identification

a. Routine Label

NEWLOC

b. Name

Get a NEW LOCATION from AVS.

2. Function

This subroutine obtains a new element from available space (AVS).

3. Programming System

FAP

4. Usage

a. Calling Sequence

CALL NEWLOC (A).

b. Entry Conditions

None,

c. Exit Conditions

d(A) = Pointer to new element

a(ADg0) = Pointer to the next available element in AVS

COUNT is increased by one.

d. Error Exits

If either (AD91) or (AD90) = 0, AVS is exhausted and a

CALL DUMP is executed. Then return is made to the FORTRAN mon-

itor system.

5. Definition of Identifiers

AVS = Available space list from which elements for all list

structures are taken

COUNT = Number of elements used from AVS

38Z

a(AD90) = Pointer to first element in AVS

a(AD91) = Pointer to last element in AVS

6. Method

The pointer to the first element in AVS is stored in the decre-

ment of A; COUNT is incremented by one, and the pointer to the sec-

ond element in AVS is placed in a (AD90), thereby becoming the new

first element of AVS.

7. Other Subroutines Used

None.

8. _Using Subroutines

AFTER, DOWN, INTO, STASH.

383

E,qL Z _,._._,__,_)

t

-:.:I,(....,-I

CA).. p°,.,,-,_

• ._

I°-.,,:o.<.
.....

I

i

To

°i o

• 2 ..2

; v* r-"

o

o

.o

P_rogram Description

I. Identification

a. Routine Label

NLINDM

Z. Function

Outputs "DIMENSION FVR. • "" statement.

3. Programming System

FORTRAN II

4. Usage

a. Calling Sequence

CALL NLINDM (NPT)

b. Entry Conditions

NPT is the NPT array of Main 2.

c. Exit Conditions

"DIMENSION. • ." statement output.

d. Error Exits

None.

5. Definition of Identifiers

REST = Used to construct the card image

REST1 = Used to hold partial contents of REST

NUM = Used to compute the dimension of the arrays referred

to in the DIMENSION statement

6. Method

Set NUM = NPT(3} + NPT(4)

If NUM _ 0, exit immediately;

to BCD and output this statement:

DIMENSION FVR(num),

else convert the contents of NUM

FVP(num), FPT(num, num)

385

,

1

Other Subroutines Used

BCL, DBPCH, ERASE, SYMBL, UPDWN.

Using Subroutines

Main Routine, Pass 2, TAG Preprocessor.

386

\E,_As_'3X

I_
C'N,_TC_.))+
CNPT('_))-"

lYO

•, pEr-r/ IN7"0
IZE.CT i

\, 7"_ ,_CZ> NV./),"

i \.r!_",,

"____._£7-_L/

__esT l I,v_ ,_

/coA, VZ:._TN_',,I.!\

I_
(pUT .,O/W_\

\ IN7O ,

•_p__-//,v_i:

387 "

oN vE_ T No_\

Bcp A_D /
r _N_Err/

388

4,Z. 2",V.'_A,I

Program Description

I. Identification

a. Routine Label

NUMB

b. Name

BCD to binary conversion.

Function

A BCD number (stored in reverse order in a list) is converted

to a binary whole integer, providing all digits representing the num-

bet are numeric.

3. Programming System

FORTRAN II

4. Usage

a.

be

C*

Calling Sequence

CALL NUMB (A, K, N, I)

Entry Conditions

A = Head of a list

N = The maximum number of elements in list A that rep-

resent the BCD number

Exit Conditions

If I -- N + 1, no digits were converted (either list A was

null on entry to the routine, or the first digit popped up fromlist A

was non-numeric).

Otherwise, I = the number of digits converted and K = the BCD

number converted to a binary whole integer.

d. Error Exits

None.

389

. Definition of Identifiers

ITEM = A temporary cell whose decrement holds one of the dig-

its belonging to the BCD number to be converted.

ITEN = A temporary cell with a conversion factor (integer of

1 or 10) in its decrement.

6. Method

a. If list A is null upon entry to this routine,

withI = N + 1 and K = 0 (no conversion).

exit is made

b. If the first element popped up from list A has as its item

a non-numeric digit, the element is pushed back down into the list

and exit is made with I = N + 1 and K = 0 (no conversion).

c. If any other than the first digit in N elements is non-numeric,

the element in which it appeared is pushed back down into the list, and

exit is made with the conversion in K and I = the number of digits con-

verted before the non-numeric item appeared.

d. If the end of list A is encountered before N elements have

been popped up from the list, exit is made with the conversion in K,

and I = the number of digits converted before the end of the list was

reached.

e. When N elements have been popped up from list A and all

of the digits in the elements have been numeric, conversion is consid-

ered complete. Exit is made with I = the number of digits converted

and K = the BCD number converted to a binary whole integer.

f. Conversion is accomplished as follows:

K + ITEM * ITEN -* K, where ITEN = I for the first digit

and ITEN --ITEN * l0 for each successive digit, until N

digits have been obtained.

7. Other Subroutines Used

DOWN, POPUP.

8. Using Subroutines

GOB LE

390

(ftL C.

391

Program Description

I. Identification

a. Routine Label

PAGEHD

b. Name

Print title at the head of each page.

2. Function

This subroutine prints the title "TRANSIENT ANALYSIS

GENERATOR (W. J. THOMAS - JPL}" at the head of each page of

FORTRAN code generated by the TAG Preprocessor. Each entry to

the routine reduces the line count by one until 56 lines have been prinfed,

at which time a page eject is given and a title is again printed.

3. Programming System

FORTRAN I1

4. Usage

a. Calling Sequence

CALL PAGEHD (IRSTC)

b. Entry Conditions

IRSTC = Input argument which controls page eject. The

first time the routine is entered, IRSTC = 0.

c. Exit Conditions

If IRSTC = 0 or 1 andIPAGE = 0, the page is ejected, a

title is printed, IPAGE is initialized to 56, and IPAGE is reduced by

one.

If IRSTC = 1 and IPAGE > 0, IPAGE is reduced by one.

d. Error Exits

None.

392

e Definition of Identifiers

IPAGE = Line Count per page

6. Method

Page eject is controlled by IRSTC and line count by IPAGE.

If PAGEHD is being entered for the first time, IRSTC is set = I, IPAGE

= 56, and then the title is printed and the line count in IPAGE is re-

duced by one. Subsequent entries to the routine reduce the line count

by one until 56 lines have been printed, at which point another page

eject is given, a title printed, etc., until all the FORTRAN code op,

erated by the TAG program is printed.

7. Other Subroutines Used

None.

8. Using Subroutines

FOUTPT, INPUTX.

393

J
I

,)

NO

i
I(zp,__)-, -->I
t

,,_

394

Y

v

Program Description

1. Identification

a. Routine Label

PARAM

b. Name

Form the node basis equations and store them in a four-

dimensional list.

2. Function

This subroutine forms a four-dimensional list representation

of the node system current equilibrium equations for each of the ele-

ment types: capacitors_ conductances, reciprocal inductances, and

current sources. Each of the four array-lists is constructed in XS

and written onto NTAPE.

3. Programming System

FORTRAN II

4. Usage

a. Calling Sequence

Call PARAM {XS, WLIST, NTAPE}

b. Entry Conditions

WLIST = A type D list representation of the TAG connec-

tion list

c. Exit Conditions

NTAPE has written on it the set of node basic current equil-

ibrium equations pertaining to each element type, in order: capacitors,

conductances, reciprocal inductances, and current sources. Each

set of equations was formed in XS as a four-dimensional array-list

and is therefore stored on NTAPE as ITYPE 2. XS is null on exit from

the routine.

395

d. Error Exits

When a descriptor in WLIST is found with both nodes zero,

a comment to that effect is printed, CALL DUMP is executed, and

control returns to the FORTRAN monitor system.

5. Definition of Identifier s

I = Element type index.

Xl = Local variable used to search WLIST.

NTAPE = Local variable that corresponds to the PASS 1 inter-

mediate tape NTAPE1.

6. Method

For each type of element, capacitors, conductances, reciprocal

inductances, and current sources {these correspond to NE = 2, 3, 4,

and 6, respectively}, a node current equilibrium equation matrix is

established in four-dimensional array-list XS by the following algorithm.

a. Set element type search index I = 2.

b. Test search index. If I = 5 {X former windings}, set I = 6

and continue. If I ¢ 5, continue.

c. Erase XS and set Xl to point to the top of WLIST.

d. Search WLIST starting at Xl for the first descriptor whose

element type index, NE, matches search index I. When

found, extract NN and NP and set Xl to point to next WLIST

descriptor.

e. If the element type index NE # 6, the matrix XS being formed

is not for current sources, and plus or minus ones are

stashed in XS according to the following table. For WLIST

descriptor variables NE, NN, NP:

Locations in XS

Conditions on NN_ NN, NN, NP, NP, NN, NP, NP,

NN and NP NN_ NP NN_ NP NN_ NP NN_ NP

NP = 0, NN ¢ 0 0 0 0 +1

NP ¢ 0, NN = 0 +1 0 0 0

NP ¢ 0, NN ¢ 0 +1 -1 -1 +1

NP = 0_ NN = 0 Call Dump and Return to System

396

If the element type index NE = 6, the matrix being formed is for

current sources, and plus or minus ones are stacked in XS according

to the following table:

Locations in XS
Conditions on
NN and NP NN, I, NN, NP NP, I, NN, NP

NP = 0, NN¢ 0 -1 0

NP _ 0, NN = 0 0 +1

NP t20, NN _ 0 -I +I

NP = 0, NN = 0 No entries are made in MS.

Test to see if entire V¢LIST has been searched for element

(I) If the search is incomplete return to step d.

(Z) If the search is complete, write XS for element Type

I onto NTAPE and erase XS. Test to see whether [is less than 6.

(a) If I is less than 6, add one to I and return to

step b to form XS for next element type.

.........(b) If I is equal to or greater than 6, then all four

MS matrices have been formed. An EOF is written on NTAPE; it is

rewound, and returnis made to the main program.

7. Other Subroutines Used

ERASEA, IViATOT, PRPTR, STASH.

8. Using Subroutines -.

Main Program of Pass 1 for TAG Preprocessor.

397

J

Ib

399

Program Descriptio n

I. Identification

a. Routine Label

PARTS

Zo

o

.

e

o

Function

Outputs a statement of the form:

Programming System

FORTRAN iI

a. Callln E Sequence

bo

C.

d.

None.

Definition of Identifiers

then reversed into lOUT.

XXX = N.

CALL PARTS(N, H}

Entry Conditions

N = The integer to appear on the right side of the equation

H = The Hollerith symbol to appear on the left side• H con-

sists of packed BCD characters.

Exit Conditions

The statement h = n is output.

(h is the first three characters of H. n is the integer value

of N.)

Error Exits

IWRK = A type A list containing the first three characters of H

IOUT = IWRK, but in reverse order

EQL = BCD equals sign

Method

The first three characters of H are extracted and placed in IWRK,

An "=" is pushed into IOUT. The value of

400

N is converted to BCD and pushed into 1OUT,

as a card image.

7. Other Subroutines Used

BCL, DBPCH, DOWN, SYMBL, SYMCH,

8. Using Subroutines

Main Routine, Pass Z,

and then lOUT is output

UPDWN.

TAG Preprocessor.

401

(p_r_)

•/_A,r,-_e.,

• • \

_Op£_eMt_l

'p_, S Y_" <',,,"

,./_ro 6Q2.

k

1.1. "

7-- lot i/
/

"_\\ ./" ,,t.._

/

I _c. 1- "
t

/

402

p

'," _'r /

D_pcH

\ _ff A dw,,'/3 /
k_ /

\ ,J

Program Description

1. Identification

a. Routine Label

POPUP

b. Name

POPUP the first element from a list.

2. Function

The first element of a list is popped up,

saved. The element is then restored to AVS,

used is decreased by one.

3. Programmin_ System

FAP

4. Usage

a. Calling Sequence

Call POPUP (Z, C, IF)

b. Entry Conditions

Z = Head of a list

Ce

de

If list Z is null, CALL DUMP is executed,

to the FORTRAN Monitor System.

5. Definition of Identifiers

{PP90} = Contents of the element popped up from list Z.

and its item and flag are

and the count of elements

Exit Conditions

d{C) = Item portion of the element popped up from Z

d(IF) = Flag portion of the same element

Head of list Z will point to the next element in the list.

Error Exits

and return is made

403

6. Method

The item portion of the first element in list Z is placed in d(C),

and the flag portion, if any, is saved in d(IF) by the subroutine FROM.

The link portion (bits 21-35) of the element, saved in a(PP90), is placed

in the d(Z), so that Z will now be pointing to the next (second) element

of the list. If Z was null upon entry to the routine, CALL DUMP is ex-

ecuted and return is made to the FORTRAN Monitor System.

7. Other Subroutines Used

BACK, FROM

8. U sing Subroutine s

BLNOUT, COMBN, DBPCHC, DBPFH, DONBD, DPDST, ERASE,
e

EXCPT, EXTRX, FISH, GOBLE, HOLBK, INPUTX, INZERO, NUMB,

PUSPCH, RECOVR, SUBST, SYMTP, UPDWN, WRTEQ, Main Program

for Pass Z of TAG Preprocessor.

404

f

":,"::<:ill
i

4O5

Program De s c ription

1. Identification

a. Routine Label

PRPTG

b. NAME

Place the parameters of a single branch descriptor into a

compound list.

Z. Function

A simple list representation of a single branch descriptor is

formed of the quantities, in order: NE/NF, NN, NP, NTRN, NNTR.

For branches other than transformer windings, NTRN and NNTR are

omitted. A type 7 element whose item points to this simple list is

pushed down into the list, LIST, to create a type D list of branch

descriptors.

3. Programming System

FORTRAN II

4. Usage

a. Calling Sequence

CALL PRPTG (LIST, NE, NN, NP, NTRN, NNTR, NF)

b. Entry Conditions

LIST

NE

NN

NP

NTRN

NNTR

NF

= Head cell of the main list being formed

= The integer representing the element type

of a particular branch. If NE = 5, NTRN,

NNTR contain transformer information

= The number of the first, or negative, node

= The number of the second, or positive, node

= The transformer core number

= The number of turns on a transformer unwinding

= The flag in the NE element of the list

406

below:

Ce

e

Exit Conditions

The list pointed to by LIST may be represented as shown

1. No transformers (NE ¢ 5)

LIST _ l

S IN_ IN] "---_N. IOI _ I I

g. Transformers (NE = 5)
to previous
descriptor sublists

LIST [, I
I

]7[_ to previous descriptor sublists

INi Ioi N' Ioi --'F-"li mloIO I

d. Error Exits

None.

Definition of Identifiers

S = Pointer to a sublist which contains NE/NF, NN, NP,

NNTR

NTRN,

T = Temporary head cell for generating sublist S. The pointer

in T changes after each insertion of a parameter

6. Method

A new parameter list is pushed down into LIST as outlined in the

steps below:

a. T is initialized to 0.

b. NE with a tag of NF is inserted into the first element of T.

The location of this element is saved in S. T is set to point to the first

element.

c. NN with a tag of 0 is inserted after the first element of T.

T is reset to point to this new element.

d. NP with a tag of 0 is inserted after the first element of T.

T is reset to point to this new element.

e. If NE _ 5, S with a tag of 7 is inserted between the head

cell and first element of LIST. The new list is complete, and return

is made.

407

f. If NE = 5, NTRN and NNTR with tags of 0 are inserted as

the next two elements in T; then step 3 is executed.

7. Other Subroutines Used

AFTLK, DOWN.

8. Using Subroutines

GOBLE, INTLST, STRIK, TREE, Main Program for Pass 1 of

TAG Preprocessor.

4O8

j " .2

I_o.-'_(r)I

409

Program Description

1. Identification

• a. Routine Label

PRPTR -.-

b. Name

Extract a single branch descriptor from the next sublist.
0

2. Function

-This subroutine extracts the elements associated with a single

branch descriptor from a simple sublist of a type D list. The sublist

is not destroyed, and the Bead of the list is reset to point to the next

sublist.

3. Programmin$ System

4.

FORTRAN II

Usage

a. Calling Sequence
ii---7 f_ --

CALL PRPTR (X, NE, NN, NP, NTRN, NNTII, NF)

..L

b. Entry Conditions

X = Head of a list with a type D format whose first element

. points to the next sublist of X.

c. Exit Conditions - " ' -- -"- "

The elements in the first descriptor sublist of X are ex-

tracted and given variable names as shown below:

NE = The integer representing the element type of a par-

ticular Branch. If NE = 5, NTRN, NNTI_ contain

transformer information.

NN = The number of the first, or negative, node

NP = The number of the second, or positive, node

NTIIN = The transformer core number (= 0 if NE _ 5)

410

NNTR = The number of turns on a transformer winding (= 0
if NE _ 5)

NF = The flag in the NE element of the list

The sublist which contained these elements remains intact. X

is reset so that its first sublist is the next descriptor sublist of the

main list.

d. Error Exits

None.

5. Definition of Identifiers

Z = Temporary head cell that points to the next sublist of X.

The pointer in Z changes after each extraction of an ele-

ment type.

ITEM = Local variable that holds an element of the branch

de sc riptor.

6. Method

The next descriptor is extracted from X as follows:

a. Item ((X)) -* d(Z) initializes Z to point to the next sublist

containing a single branch descriptor.

b. NTRN and NNTR are cleared to zero.

c. The branch descriptor element type index I is initialized to I.

d. Z is tested:

(I) If Z is null, link ((X)) -_d(X) sets the first element in

X to point to the next descriptor sublist, and exit is made from the

routine.

(Z) If Z is not null, item ((Z)) -, d(ITEM) provides the next

element of the branch descriptor in ITEM.

(3) I is tested:

(a) If I = I, the element type is NE. The item and

flag of the first element in Z is stored in d(NE) and d(NF), respectively.

(b) If I = Z, the element type is NN. d (ITEM) is

stored in NN.

411

(c)
stored in NP.

(d)

is stored in NTKN.

(e)

stored in NNTR.

If I = 3, the element type is NP. d (ITEM) is

If I = 4, the element type is NTRN. d (ITEM)

If I = 5, the element type is NNTR. d(ITEM) is

(4) Link ((Z)) _ d(Z) gives the location of the next element

type in the Z sublist.

(5) I is tested:

(a) If I = 5, all elements have been extracted for

the branch descriptor. Step d(1) is repeated; and exit is made from

the routine.

(b) If I _ 5, I is increased by 1, and steps d(1)

through d(5) are repeated for the next element type.

7. Other Subroutines Used

FROM, UNK.

8. Using Subroutines

COTRN, INPUTX, PARAM, STRIK, TREE, XFOKM, Main Pro-

gram for Pass 1 of TAG Preprocessor.

412

Program Description

I. Identification

a. Routine Label

PUSPCH

.

. •

.

Function

Constructs and outputs a card image from a character list.

Programming System.

FORTRAN II

Usage

a. Calling Sequence.

CALL PUSPCH (P, iZ, NTAPE, KE, ICI)

b. Entry Conditions

P = List of characters (type A list) to be output

....f--as a card image. P is in reverse order.

IZ = Statement number to be used for output

- statement.

NTAPE = Tape number of tape on which card image is

.... to be written

KE = Two-digit integer to be placed in columns

73-74 of card image

ICI = Comment ca£cl indicator

c. Exit Conditions

C(P) output as a series of card in-.ages on NTAPE

d. Error Exits

Non e.

Definition of Identifiers

A Output buffer

ICHC BCD comma

b

414

.

Z

IS

TEMI

KSTRT

IC

K6

I

Method

Used to hold P in reverse order

Holds statement number IZ

Temporary storage

Column number of beginning of image

Continuation card number

Column number used to accomplish character packing

Card sequence number

C(P) is reversed into Z.

If IC1 is a BCD "C," then card image is set up as a comment card

by setting the starting column number = 2. Else the starting column is

set as 7. HEADC is used to format the contents of columns 1-6, using

IC1, IS, IC. The characters in Z are then inserted, one at a time, into

the buffer A. When full, it is output to NTAPE. This may continue for

up to 10 continuation cards. If Z is still not empty, the statement

"A GENERATED STATEMENT HAS MORE THAN 10 LINES" will be

printed on the output listing.

7. Other Subroutines Used

CHLNE, DOWN, ERASE, HEADC, POPUP, SYMCH.

8. Using Subroutines

Main Routine, Pass 2, TAG Preprocessor.

415

P_PuP p
INTO 7EAd

No

j •

_.,A\t/eADc\
.':T up CM.o,L_

1

416

j

1@) + /

_ A/w

i

i.
i

(A ,_

O'_TPJT A -
D'.'FF-EI_

._ y_#r

."/ig

<,. cO)-

yer
[O_2"Kpb,7- ,,

";- _.¢._,reAY_b
.-_TA T_/_4E N 7"HA[

/f_ -.

__ ,_ _ TU,_H

Program De scription

1. Identification

a. Routine Label

READCH

b. Name

Read a card image from tape and push characters down into

a list.

2. Function

This subroutine reads a card image from NTAPE when IC = 0; the

card image is the first statement, and it is read into buffer A. When

IC = I, NTAPE is not read; the card image to be processed will be con-

tained in A. In either case, the characters in A are processed and

pushed down into list P.

3. Programming System

FORTRAN II

4. Usage

a. Calling Secluence

CALL READCH (P, IS, IC, IPR, A, NTAPE, KE, ICl)

b. Entry Conditions

NTAPE =

IC =

IC =

P =

c. Exit Conditions

P contains the card image in a push-down list of characters.

IS contains the statement number as an integer. IC = 0 if this was an

end card; IC = 1 if otherwise. IPR will contain print control informa-

tion (l = EJECT, 0 = DOUBLE SPACE, BLANK = REGULAR SPACING).

Input tape

0 if card image is on NTAPE (first statement)

1 if card image is in buffer A

Location available for a push-clown list

418

Buffer A will contain the next card image.

that flags the type of format required for the card image in P.

tains the character from column 1.

KE is the statement type

IC1 con-

d. Error Exits

None.

5. Definition of Identifiers

T = A temporary cell used as head of a list which points

to the first element of list P

KEE = A local variable containing the statement type (read in

from NTAPE}

6. Method

The card image on NTAPE (or in buffer A) is processed as follows:.

a. IC is tested.

(I) If IC = 0, this is the first statement.

NTAPE is read and the card image is saved in A. The

statement type is saved in KEE. IC is set to 1 (card image in A). Proc-

essing continues at step b.

(Z) If IC = 1, the card image is already contained in A.

Continue at step b.

b. Extract from buffer A.

(1) The statement number is saved in IS.

(g) The continuation card number is saved in IX.

(B) Column 1 is placed in IC1.

c. Statement type in KEE is stored in KE.

d. A test is made to determine if this is a comment card.

(1) If it is a comment card, columns 2-72 are extracted

from buffer A and pushed down into list P.

(2.) If it is not a comment card, columns 7-72. are extracted

from buffer A and pushed down into list P.

e. Column 73 is extracted from A, and the appropriate print

control character is placed in IPR.

419

f. NTAPE is tested.

(1) If NTAPE = 5, a title is printed (written onto the print

tape) and page count is updated. The next step is then executed.

(2) If NTAPE _ 5, buffer A (13 BCD words), is written onto

the print tape.

g. IX is tested.

(i) If IX = I, the card image being processed is not a con-

tinuation card.

Ca) T is set to point to list P.

(b) T is tested.

(i) If T is null, continue at step g(Z)(a).

(ii) If T is not null, continue at next step.

(c) List T is scanned for its first nonblank item.

When a nonblank item has been found, the next

two items are extracted from T.

(i) If the three items contain the characters

"END," IC is set to zero and exit is made

from the routine.

(ii) If the characters are not "END," continue

at next step.

If IX _ I, the card image being processed is a contin-(z)

uation card.

(a)

(b)

(c)

Read the next card image from NTAPE and save

in buffer A.

Extract continuation card code from A and save

in IX.

Test IX.

(i) IF IX = 1, the next card to be processed

is not a continuation card. Exit is made

from the routine.

(ii) If IX _ 1, the next card to be processed is

a continuation card. Continue at step c.

4Z0

Q

o

Other Subroutines Used

DOWN, ERASE, FROM, LINK, LNECH, PAGEHD, STATC, SYMCH.

Using Subroutine s

Main Program for Pass Z of TAG Preprocessor.

4Zl

K E,z)D r_ H)

I

&/5*r P

" t

. _¢" .

/ \5_ \

_.4 t. /

(I<EE)-_(K D

' / v_____' "

\ ca#r.,=b.c_¢._/

",, ¢e&t ._ Zc.I'T7

v

1

• , L.....--?___ . \

•
, ,_$.Ir"

,- , ,_ I _s

w

_ y,.£

)

I_,_,__ I
'--_r

'_272"._;")

) ._ _, ,,_,. P)

, ,-,., Z (z_m ,)/

422

I --_ -L

S ',5_____p___,\

\ _,_,_,_ I /

5.# - z,P,_ _1 /

Z

:\

\,4[zLz:,,/_ i

/ ,__

• " I - ' -,!

I "¢-

424

Program De s c ription

1. Identification

a. Routine Label

RECOVR

b. Name

Recover symbol string from a symbol list structure.

2. Function

The symbols in the list IN (in type C format) are re-collected as

individual symbols and placed in list IN1 in the type B list format.

3. Programming System

FORTRAN II

4. Usage

a. Calling Sequence

CALL RECOVR (IN, IN1)

b. Entry Conditions

IN = Head of a list of type C format. List IN con-

tains symbols separated by commas. Those sym-

bols which have a common initial character are

stored as one initial character plus two substrings.

c. Exit Conditions

The type C list IN is re-collected in list IN1 as a simple sym-

bol string of the type B format.

.

d. Error Exits

None.

Definition of Identifiers

IXX = Initially set to a blank, otherwise contains a

c omma

425

.

ICM

IRC

= Contains the Hollerith representation of a comma

= A temporary cell that is the head of a list of

pointers to the sublists being scanned in IN

L1 = Head cell that is set to point to the top of list IN

TEM1 = A temporary list containing the copied portion

of TEM

TEM = A temporary list used to collect the symbols that

will be placed into list IN1

ITEM = Contains one character of the symbol being

processed

Method

List IN is placed into list IN1 as outlined in the steps below.

a. IXX is initialized to a blank, ICM to a comma. Lists IRC

and TEM are erased.

b. L1 is set to point to list IN.

c. The pointer to list L1 is pushed down into IRC .

d. TEMI is made null.

e. TEM is copied into TEMI.

f. The pointer to TEMI is pushed down into IRC.

g. The item of the first element in L1 (pointer to a sublist)

is placed in d(LZ).

h. The item from the first element pointed to by d(LZ) is

saved in ITEM.

i. ITEM is tested

(I) If the character in ITEM is not a comma:

(a)

(b)

(c)

(2.) Ifthe

The character in ITEM is pushed down into list

TEM as the item of a new element.

L1 is reset with the link of the first element

in L2.

Processing of list L1 continues at step c.

character in ITEM is a comma:

426

o

o

jo

ko

{a)

(b)

(c)

IXX is pushed down into IN1 as the item of a

new element.

List TEM is copied into IN1.

IXX is reset with the comma in ICM.

IRC is tested.

(1) if IRC is null, exit is made from the routine.

(2) if IRC is not null:

(a) Thenext (or first) element in IRC is popped up

and its item (pointer to a sublist) is saved in

dCTEM).

_b) The next element in IRC is popped up and its

item (pointer to a sublist) is saved in d(Ll).

L1 is tested.

(I) If L1 is null, go to step j to continue.

(Z) If L1 is not null, go to step c to continue processing.

Other Subroutines Used

COPY, DOWN, ERASE,

Using Subroutine s

DPDST, INPUTX.

FROM, LINK, POPUP, SYMCH.

V'.

__ /

, _ _,_"_ /

" i

_' .

-I

,'iT _0 :''-_ I

I.'_'N_ 7_'_?_ "

\, "_ _' eo,_,# / "

\ _-" _ A'_ _'X _._,_ _

I

- 428

Pr9gram De scripti0n

1. Identification

a. Routine Label

SEGMNT

Zo

b. Name

Segment a Hst.

Function

This subroutine divides a list into two new lists. The division

takes place at the firstcharacter in the list that matches any of the

first H characters of a specified list of Hollerith characters.

3. Programming System

FOP_T KAN LI

4. Usage

al

bQ

El

Calling Sequence

CALL SEGMNT (A, B, I, N, IHL}

Entry Conditions

A = Head of the list to be segmented

IHL = An array of Hollerith characters

N = Number of characters in IHL to be matched with

characters in list A-

Exit Conditions

At the first character in A that matches one of the N char-

actersin Hollerith array IHL, the original list A is severed. A is the

head of the list of all the characters of A following the matched charac-

ter. B is the head of a list starting at the first character, formerly

in list A, and extending to and including the matched character. I is the

number of the characters in the Hollerith array IHL for which the

match was achieved.

430

If a match is not found, and the end of list A is reached,

and list A is null. If A is null upon entry, list B is erased and

toN+2.

.

I=N+ 1,

I is set

d. Error Exits

None.

Definition of Identifiers

AL = Temporary head cell used to save the current pointer of A

during the search for IHL

Method1

Upon entry to the routine, list B is erased,

to the top of list A. Starting at the top of list A,

and B is set to point

each character in A

is sequentially compared to the first N characters in Hollerith array

IHL.

If a match occurs, I is set to the character number in array IHL,

and the head of list A will point to the element immediately following

the matched character. The last element of list B will contain the

matched character as an item and a link of zero.

If a match does not occur, and the end of list A is reached, I is

set to N + 1, and list A will be null.

If list A is null upon entry to the routine, list B is erased, and I

is set to N + Z.

7. Other Subroutines Used

o

ERASE, IDNTP, LINK, SET.

U sing Subroutines

GOBLE, WRTEQ.

431

pe SA_'_._ 7e I"_P

be" L/Sr A _AI'_

/AI _.

C_4_.e40, _Tr Ft_'_,l-I t_

1"14 I "iF e'oT _'e_,,', _

/

, i_ _ /$_ /I ,,'
,,, /

_,s r _ T

' _ETvKN

,NO

43Z

Program Description

1. Identification

a. Routine Label

SET

b. Name

Append one list to another list.

Z. Function

The list IF is appended to list IX, such that the first element of

list IF becomes the second element of list IX.

3. Programming System

FAP

4. Usage

a. Calling Sequence

CALL SET (IX, IF)

b. Entr[Conditions

IX = Head of a list

IF = Head of a list

c. Exit Conditions

List IF is appended to the list IX.

d. Error Exits

None.

5. Definition of Identifiers

None.

6. Method

The decrement of IF (pointer to a list) is shifted to the address por-

tion of the accumulator, and then stored in the address of the location

433

contained in the decrement of IX (pointer to a list with just one

element).

7. Other Subroutines Used

None.

8. Using Subroutines

COPY, INSRT, SEGMNT, STASH.

434

f/" .SE.T ""k!

, J

1

i__'_--_'<,j:-i

L.::__!_'--<;.<_<-">j

.)

,,,(.s,-.-_<,_<>):
1_ 7 ,l__ 6,.t 1le_;"1-""

i._",,,THP CL_f,,.._/,.'f /,,/ I

K" _" 7 O" _ *,,

435

Program Description

I. Identification

a. Routine Label

SNATCH

b. Name

SNATCH a data word from an array of list structures.

Z. Function

This subroutine searches an array of list structures for a data

word identified by successive parameters. When found, this word

is placed in FTEM. If the list is two-dimensional, the data is identi-

fied by I, 3. If the list is four-dimensional, the data is identified

byI, J, NN, andNP.

3. Programming System

FORTRAN II

4. Usage

a. Calling Sequence

CALL SNATCH (M, I, J, NN, NP, FTEM)

b. Entry Conditions

M = A two-dimensional or four-dimensional matrix rep-

resented in array-list form (type E)

I = Index of the row lists

J = Index of the column lists

NN = Negative node index

NP = Positive node index

If NN and NP are not given (0 in calling sequence), list M is

If NN and NP are given, list M is a four-a two-dimensional matrix.

dimensional matrix.

436

c. Exit Conditions

When M is a two-dimensional matrix:

(1) If J was foumd in an element whose flag = 6, the data

word in the element linked to J is placed in FTEM.

(2) If ff was found in an element whose flag ¢ 6, exit is

made with FTEM = 0.

Where M is a four-dimensional matrix:

(1) If J, NN, and NP were found and the element contain-

ing NP has a flag = 6, the data word in the element

linked to NP is placed in FTEM.

(2) If J was found, butnot NN and NP, exit is made with

FTEM = 0.

If M(I) was null on entry to the routine, or if J could not be found,

exit is made with FTEM = 0.

d. Error Exits

None.

5. Definition of Identifiers

M(I) = Ith list structure of the array-list M

LPP = A multilevel list structure of array-list M

LJ = A temporary head cell that points to the sublist containing

3 or NP

LP = Item ((LJ))

JJ = Item ((LP))

NF = Flag ((LP))

6. Method

The search through array-list M to locate the data word is exe-

cuted as outlined below.

a. Where M is two-dimensional, M(I) is scanned for J.

(I) If M(I) was null, or if J could not be found, exit is

made with FTEM = 0.

(2) If J was found, item (Lff) = location of the element

which points to the word containing ff (or 3 sublist).

437

(3) Item ((LJ)) -. d(LP), item ((LP)) -. d(JJ), gives J in JJ.

Flag ((LP)) -. d(NF) gives the flag of the element con-

taining J.

(4) Link ((LP)) -. d(LPP) gives the location of the element

appended to J.

(5) If the flag in d(NF) = 6, the element pointed to by d(LPP)

contains a data word. This word is placed in FTEM

and exit is made from the routine.

b. When M is a four-dimensional matrix, the scan for J in M(I)

is made as described in steps a(1), a(Z), a(3), and a(4). However, in

this case, the location in d(LPP) is considered as an element which points

to a sublist. This sublist (called LPP) is searched to locate the data

word identified by successive parameters NN and NP.

(1) If NN and NP cannot be found, exit is made with FTEM = 0.

(Z) If NN and NP were found, item (LJ) = location of the

element which points to the word containing NP.

(3) Item ((LJ)) -. d(LP), item ((LP)) -. d(JJ), gives NP in

JJ. Flag ((LP)) -_ d(NF) gives the flag of the element

containing NP.

(4) Link ((LP)) -. d(LPP) gives the location of the element

appended to NP.

(5) If the flag in d(NF) = 6, the element pointed to by d(LPP)

contains the data word identified by NN and NP. This

word is placed in FTEM and exit is made from the routine.

(6) If the flag in d(NF) ¢ 6, the scan is repeated in all sub-

lists of LPP until NN and NP are found or until the end

of LPP is reached (see steps b(1) through b(5)}.

.

.

Other Subroutines Used

FRFL, FROM, LINK,

Using Subroutines

BAKELIM, COMBN,

LOCAT, LOCATA.

MULTS, STRIK, TRANS, XFORM.

438

I's,-A_',,Lz)\,
\.Fe_ _'.s=]

!

c,,,L__s_,,_T_-,1z,_ ,_,(5,v.",_zL:,,.p

i

439

Pr9gram Description

I. Identification

a. l_outine Label

STASH

Do Name

STASH a data word into an array of list structures.

Z. Function

An array of list structures is created to hold a data word identi-

fied uniquely by successive parameters. If the list is t'_o-dimensional,

i the data is identified by I, J. If four-dimensional, the data is identified

! byl, J, NN, andNP.

J
3. Programming System

o

FORTRAN II

a. Calling Sequence

CALL STASH (M, I, J, NN, NP, FTEM)

..

b. Entry Conditions

M = A two-dimensional or four-dimensional matrix repre-

....... sented in array-list form (list type E)

I = Index of the row lists - -- - "

I = Index of the column lists

NN = Negative node index

NP= Positive node index

If NN and NP are not-given (0 :in calling sequence), list M is two

dimensional. If NN and NP are given, list M is considered a four-

dimens ional matrix.

c. Exit Conclitions

- If M(I) is null, a sublist lV[(I) is created which holds J,

NP, and FTEM. If NN and NP are not given in the call statement,

NN,

a

440

data word containing FTEM is appended to an element containing J, form-

ing M(I), a two-dimensional sublist. If NN and NP are given, FTEM

is appended to NP, forming a four-dimensional sublist M(I).

The remaining exit conditions are separated into the two categories
of matrices as follows:

.

Two-Dimemsional Matrix

(1)

(2)

If M(I) is not null, J was not found, and NFG has been

set = 6 (NN + NP <0), J is inserted into M(I) with an

element containing FTEM appended to it.

If J was found in M(I} and NFG has been set = 6 (NN

+ NP g 0), an element containing FTEM is appended

to that element in which J was found.

Four-Dimensional Matrix

(1)

(2)

(3)

(4)

If M(I) is not null, 5 was not found, and NFG = 0 (NN

+ NP >0), J, NN, NP, and FTEM are inserted into

M(I).

If 5 was found in M(I), NFG = 0, and NN, NP were found

in the J sublist, a data word containing FTEM is ap-

pended to the element containing NP.

If J was found in M(I), NFG = 0, and NN was found but

not NP, NP and FTEM are inserted into M(I).

If J was found in M(I), NFG = 0, but NN, NP were not

found in the J sublist, NN, NP, and FTEM are inserted

into M(I).

d. Error Exits

None.

Definition of Identifiers

M(I) = Ith list structure of the array-list M

LJ

LI

= Contains location of element whose decrement points to J

= Contains location of element whose decrement points to I

441

.

JP

NFG

NWJ =

NTJ =

NTI =

NWNN =

NWNP =

NTNP =

IFTEM =

NTNN =

NTJJ =

LJT =

LJJ =

NPP =

NPPP =

LIT =

Method

a.

b.

C.

Location of

Location of

Temporary

Temporary

Location of

Temporary

ing FTEM

J sublist which is searched for NN and NP

A flag word which is tested to determine whether FTEM

is to be appended to J or NP

NFG = 6 where NN + NP < 0 (two dimensions given}

NFG = 0 where NN + NP > 0 (four dimensions given}

Temporary head cell

element containing J

element which points to J

head cell of NN sublist

head cell of NP sublist

element containing NP

head cell which points to an element contain-

Location of element containing NN

Location of element containing NTNN

Location of a type 7 element which points to an NP sublist

Location of element whose decrement points to a J sublist

Location of element whose decrement points to an NP

sublist

Temporary head cell of a sublist whose first element

contains FTEM

Location of type 7 element which points to an NN sublist

The flag word NFG is initialized to zero.

(NN + NP) is tested:

(1) If _g 0, NN and NP were not given and NFG is set =

6. This flags the routine that the array-list M has

two dimensions.

(2) If > 0, NN and NP were given and NFG = 0, flagging

the routine that array-list M has four dimensions.

The following lists show, in graphic form, how the sublists

are constructed for each possible condition. The circled

numbers in each item represent, sequentially, the operations

442

dl

required to construct each sublist. The symbols used for

each list correspond to those used in the routine.

Two-Dimensional Matrix

(1) M(I) Null, NFG ¢ 0

(NWJIN_JI I.0 I
(_)_ _Nr_

k NTJI J 161 I

(M(I) IN; III I

@ _TI IN_JI71 I

_wJIN;J o®
\m_JI J I I __IFTEMFTEM I

MmlN I I 0 I
Ir

NWIINJITI I
t

NTJ[161 NFYEM I

(2) No J in M(I), NFG _ 0

® J+N
_Tj

_wJIN_l I o t
@ JI J I+1 HFEMI

®

L

,: LJTIN

NTJ I +

_11 °l
r

rsl71 l
r

161 ___I

443

(3) J Found in M(I), NFG _/ 0

"_ I'JJI I I
I

Laa] 17{ i
I

[J [6IJP_.FTEM[

e. Four-Dimensional Matrix

(1) M(I) Null, NFG = 0

NWJ

Q _TJ

/'/M(1)

I N_J I I o I
V

I J I°1 _NTNNI71 I
©

I_III I
I NTJ'IT] I

_WNNIN?NII I

®

®

M(_II_T_ I I I

I N'r_ 171 I

FTEM I

444

(2)

L_LJ IL:C) JTIN'

TII0 I

V

rJ]7[i

r

• Iol I

No J in M(I},

thenOthr oughQas
shown in e(1) above.

(3) J Found in M(I),

LJ I

NPP [

NPPP[B

Ii I

V

IT1 I

Pl6l _FTEM l

NFG = 0

M(I)

NTI

!

FTEM I

NFG = O, NN, NP Found in JP Sublist

(4) J Found in M{I), NFG = 0, NN Found in JP Sublist
But Not NP

(_WNPI _ 10 l

@ X_TNPI NP 16I,, I

Q JT '7

Q _,NTNP I NP 161 "_(_)TEM I

LJ [Ld

: LJT INT:

NTNP[N:

TII !

r

'16[-._FTEM !

445

(s) J Found in M(I), NFG = 0, NN and NP Not Found in
JP Sublist

(!) \N_--I.. 101 J

/NWNP _ FTE

7. Other Subroutines Used

LI

LIT

NTNN

AFTLK, FROM, INFL, INSRT, LINK, LOCATA, LOCAT, NEWLOC,

SET.

8. Using Subroutines

BAKELM, COTRN, MATFT, MULTS, PARAM, STRIK, TRANS,

XFORM, Main Program for Pass 2 of TAG Preprocessor.

EM

446

t_

V

_(z). s_T !

t
/ _ rrc_.- \

/

\ _r/v_ j

'\,_ IT¢,t_ ,4#D /-/

'f, r,_. s,, I
\ _'Tj, JP _/

rt _ c,J c L etp_t _, _'/

(,.o,,.,_o,-o')

(,,'Cz,",',",,,))."

_ _ _ '_("'"-'"_ ""I, ", "_""'_

..,,,_z ('.r/=r_,%f _'_-"L)

" I

[°_("_.")]

¢,
,/'"' *" "''"';'X

\ _, - i.,-_'.--:J.

\,,=" t rc,_;, "7 ,_s/
',, tr/.A_,. &l_V¢.o/

• i _'°

@

i

/

,,,',,_ _ ,',_)

• ¢_¢,'_#,_z_" o, c / ", ¢_._ _te /

,t48

,E:£ 7 u _zt,,/)

/ \ _ . .<..,:.
. IST e(.-",,,='/

\ Z(i _') /"

-\

/'_k o F /,_r",\

3,7 --'_ /

,5 T ,4 S

449

f

I

r,\
/

'\

Program Description

1. Identification

a. Routine Label

STAT

b. Name

Output characters of a Hollerith array as a card image.

2. Function

N characters of H, a Hollerith variable, are output as a card image

with the statement number IS.

3. Programming System

FORTRAN II

4. Usage

a. Calling Sequence

CALL STAT (IS, N, H)

b. Entry Conditions

IS = Statement number

N = Nu_*nber of characters in Hollerith array H

H = Hollerith array

c. Exit Conditions

N characters of H are output as a series of card images with

the statement number IS in columns I-5. Output is a punch tape, a print

tape and a save tape.

d. Error Exits

None.

5. Definition of Identifier s

IWRK = A temporary cell used to head a list containing N charac-

ters of H after the first element.

451

6. Method

a. N characters of H are placed in list IWRK, immediately

after element 1.

b. The list IWRK is output onto a print tape, a punch tape, and

a save tape, as a series of card images, with the statement number IS

in columns 1-5. Continuation cards, if any, will have a continuation

card number in column 6.

7. Other Subroutines Used

DBPFH, SYMBL.

8. Using Subroutines

DIMEN, INVST, ZEROX, Main Program for Pass 2 of TAG

Preprocessor.

45Z

s_S_ /_ _1)

a_ ,_._s,s t

.'_.Z _ I

c,__" _"_,_; (-_-S", "')

Prograrn Description_

I. Identification

a. Routine Label

STATC

b. Name

Extract the first Word from a card image buffer.

2. Function

If the card image in buffer A is not a comment card, the statement

number is extracted, converted to an integer and stored in IS. If the

card image in A is a continuation card, iX is set to one. If it is not a

continuation card, IX is set to two. If the card image in A is a comment

card, the statement number is ignored, IX is set to one, and the charac-

ter C is stored in IC.

3. Programming System

FAP

4. Usage

a.

b*

CQ

Calling Sequence

CALL STATC (A, IS, IX, IS)

Entry Conditions

A = Card image buffer of 13 BCD words

Exit Conditions

If A does not contain a comment card,

IS = statement number from A as an integer

IX = I if not a continuation card

IX = 2 if a continuation card

IC = character in column I

If A does contain a comment card,

IC = the character "C"

454

d. Error Exits

If a non-numeric statement number is encountered during

the BCD-to-binary conversion of the statement number in A, an error

comment "NON-NUMEKIC STATEMENT NUMBER" is printed. The

accumulator is cleared to zero and exit is made from the routine.

5. Definition of Identifiers

None.

6. Method

The following steps are performed to extract to first word from

buffer A:

a.

Q

be

Co

Other Subroutines Used

Column 6 is extracted and tested.

(1) If it is not a zero or ablank, the card image inA is

a continuation card and IX is set to 2.

(2) If it is a zero or blank, the card image in A is not a

continuation card, and IX is set to 1.

Column 1 is extracted and tested.

(I) If the character in column 1 is a "C," the card image

in A is a comment card. "C" is placed in IC, IX is

set to one, the accumulator is cleared to zero, and

exit is made from the routine.

(2) If the character in column i is not a "C," the charac-

ter is stored in IC.

The statement number in A is extracted, converted to BCD

and stored in IS, then exit is made from the routine.

(I) If a non-numeric statement number is found, an error

comment is printed, the accumulator is cleared to

zero, and exit is made from the routine.

BCB

Using Subroutines

READCH

•455 *

r

J

/ --)(At)

(5 r_o) 1

456

Pro gr am De s c ription

1. Identification

a. Routine Label

STATUS

b. Name

Print STATUS of AVS.

Z. Function

This subroutine prints the current and maximum count of elements

used from AVS.

3. Programming System

FAP

4. Usage

a. Calling Sequence

CALL STATUS

b. Entry Conditions

None.

c. Exit Conditions

STATUS of AVS (maintained in COUNT and MAX) is printed.

d. Error Exits

None.

5. Definition of Identifiers

COUNT = Number of elements used from AVS

MAX = Max count of elements used from AVS

6. Method

The subroutine CDOUT (a system routine) is called to print the

contents of COUNT and MAX.

457

.

.

Other Subroutines Used

CDOUT (System Routine).

Using Subroutines

Main Programs for Pass 1 and Pass 2 of TAG Preprocessor.

458

Program De scription

1. Identification

a. Routine Label

STRIK

2. Function

From the TQ matrix as transformed by BAKELM, STRIK pro-

duces an NM x NMR (NMR = NM - NRR) matrix, TL, which relates

the unconstrained tree voltage coordinate vector, VT, to the NMR in-

dependent coordinate variables, VTI, of VT under the constraint of NRR

transformer equations. In addition, STRIK extracts the independent

set of coordinate variables, VTI, from FLIST in which the VT vector

is stored and inserts them, in order, in the list VC. Finally, STRIK

counts the number of each type of element in VC and stores these par-

tition indices in the NPT array such that NPT(NE) = the number of type

NE elements in VC. The resulting matrix relationship is VT = TL * VC.

3. Programming System

FORTRAN II

4. Usage

a. Calling Sequence

CALL STRIK (TQ, TL, PLIST, VC, NPT, NRR, NM, NMR)

b. Entry Conditions

TQ = The equivalent transformer constraint matrix as

output from BAKELM

PLIST = A local name for FLIST which is a two-dimensional

list representation of the unconstrained tree voltage

vector

459"

NPT = An array which stores the number of branches of

each element type that make up the unconstrained

tree in PLIST

NRR = The number of transformer constraint equations;

is equal to the total number of transformer wind-

ings less the number of transformers

NM = The number of branches in the unconstrained tree

c. Exit Conditions

TL = A two-dimensional list type E which represents the

NM x NMR coefficient matrix that expresses the NM

unconstrained tree voltage variables in terms of the

NMR members of the final constrained tree voltage

vector VC

VC = A two-dimensional list containing the NMK members

of the final constrained tree voltage vector

NPT = An array which stores the number of branches of

each element type that make up the final constrained

tree voltage vector listed in VC. NPT(NE) = the

number of type NE elements in VG

• NMK = The number of variables listed in VG; is equal to

NM - NRR

d. Error Exits

(1) If a row of TQ is found in which the first non-zero

element on the right end is not unity or in which there is no non-zero

element, a dump is called and control is returned to the FORTRAN

Monitor system.

(2) If the index of a pivot column in TQ does not corres-

pond to a member of PLIST, CALL DUMP and return control to the

FORTRAN Monitor system.

5. Definition of Identifiers

T is an NM x NM matrix used in formation of TL and is in type

E array list format.

460

1, J, and K are used as indices for addressing individual elements

of the TQ, T, and TL matrices.

FTEM, FTEMI, FTEM2, and FTEM3 are used as temporary

names for the elements of the various matrices being manipulated.

ST is a simple list which stores the pivot column numbers of

TQ in right-to-left order.

X1 is used as a temporary head cell for searching PLIST.

XZ is used as a temporary head cell for searching ST.

NMR counts the number of columns generated for TL.

VV is the two-dimensional list type D in which the final NMR

members of the constrained tree voltage vector are listed in reverse

order.

VC is the final constrained tree voltage vector listed in proper

order in type D format.

6. Method

STRIK forms the matrix TL such that VT = TL # VC, where VT

is the unconstrained tree voltage coordinate vector stored in PLIST (the

local name for FLIST) and VC is the list which stores the independent

members of VT under the transformer constraint equations TQ • VT = 0.

TL is formed by removing from an auxiliary NM x NM matrix T, which

is formed such that T • VT = VT, the NRR zero columns which corres-

pond to the dependent members of VT. The formulation of matrix T

implies the expansion and rearrangement of the TQ matrix to an NM x NM

matrix TQ' in which the rows of TQ are placed such that their pivot ele-

ments fall along the principal diagonal. All other rows of TQ' are zero.

This rearrangement does not alter the original set of constraints, and

TQ' @ VT = 0 where the zero vector is now of dimension NM. T is

formed by subtracting TQ' from an NM x NM identity matrix I such

that T = I - TQ'. The equality T • VT = VT is obvious from the fact

that 1 • VT = VT and TQ' * VT = 0. The NRR columns of T correspond-

ing to the dependent members of VT will be zero, and T • VT may be

reduced to TL • VC by removing the zero columns of T to form TL and

461

removing the corresponding dependent members of VT to form VC. The

portion index array NPT{NE), which previously held the number of each

type of element in VT, is reset to reflect the contents of the reduced tree,
VC. The following procedure describes the mechanization of STRIK.

a. Erase lists TL, T, ST, VC, and VV.

b. Create T as an identity matrix of dimension NM x NM.
c. Set the row search index, I, for TQ to 1. Set the column

search index, J, for TQ to NM.
d. Search row I of TQ starting at J = NM (the right-hand side)

for the pivot element. If no pivot element is found or if its value is not

unity, call for a dump and return to the FORTRAN Monitor system. For

a pivot element found in row I and column J subtract the Ith row of TQ
from the Jth row of T. Store the pivot column number, J, in list ST.

If I does not equal NRR, add one to it, reset J to NM, and repeat step d.

If I equals NRR go on to step e.
e. Set the column transfer index, I, of T to 1 and the column

insertion index, NMR, of TL to 0.
f. Test column index I to see if it corresponds to any of the

pivot column numbers in list ST. If not, add one to the column index,

NMR, of TL and replace column NMR of TL with column I of T. Pro-

ceed to step h.
g. If I does correspond to a member of list ST, then column I

in T is zero and corresponds to a dependent member in the tree voltage
vector stored in PLIST. This member of PLIST is flagged with a I. If

no member of PLIST corresponds to I, CALL DUMP.

h. Test I, If I is not equal to NM, I is increased by one and

the process returns to step f. If I is equal to NM, the process continues

to step i.

i. ListsST and T are erased, and array NPT{NE) is set equal

to zero for ME = 1, Z, ---7.

j. List VV is formed in reverse order from all the unflagged

members of PLIST, and a new NPT{NE} array is computed such that

NPT{NE) is equal to the number of eiements in VV of type NE.

462

k. VC is formed by reversLug the order of VV and return is

made to the main program.

7. Other Subroutines Used

DIFA, DOWN, DUMP, ERASEA, ERASE, FLAG, FROM, LINK

PRPTG, PRPTR, SNATCH, STASH, UPDOWN.

8, Using Subroutine s

Main Program for Pass 1 of TAG Preprocessor.

463

GTLr.<)

._,,_._j
--_

- _.s_&

\ i-/

i

I

L_S1" Yd. i

LIST Vl/,,/

Ep L(.

Z+

} I'-'>±

I

I _'_1-_ (_)

_ -,

:._ ._J "x/

\. -1. E-ta.
.\ .f_

(,)

' t

DU_l P /

464

I I

o,J =,\

.4 i I

A

465

_@

• iIt ,/e_

I _,",-_ ,b,_ ,., ('5_ ,7")

.c_,<.,J
_r+,-__ t_"

I el.,,__.___ o-->C_'J

.. _. #"_ _ <_,c #,S ;'"

xz _ ,zg_,_/,

A

I cJ_t. _,ey,,,,C.,'lj._-)
/" _,__.t______f_ \
./,,o, ,<o_\

. _,."

!
C_ T) -_ C>c._.),+

1

..........

<,-, (,,,,.,,:}_,L.(._,} l

4

..K" r I -) r

!

I

i

¢ °. _.

I

.

l--> !

, _p,_,(v_ _,.)
/_\ F
l'eo,'u_' L,_rv_'\ IK

1

<::I

, I !

A

V _,,7,+ ',,,,_ $

___/

p#

t .

%_ xr /

I

I

- O,_ YT'_., _.

i

467

Program Description

1. Identification

Z.

a. Routine Label

SUBST

Function

An abstract statement description is transformed into an executable

statement in FORTRAN format.

Programming System

FORTRAN II

.

Calling Sequence

•4. Usage

at

CalISUBST (R, T, N, PRO, FLS, KE,

ISSW, IV34, ISIS, LSTMK)

b, Entry Conditions

" " - R ----"

T ..

N _.

NPT =

FLS =

INLST =

ISSW =

ISSW =

ISSV_ =

IV34 =

ISIS =

LSTMK =

NPT, EQST, INLST,

A simple list containing, in reverse order, the

Characters representing the abstract statement

A four-dimensional matrix represented in list-

structure form (matrix TC of Main Z)

The number of nodes

The array NPT of Main Z

The matrix XFG of Main Z

A list which holds input-variable names. This

list is updated

A switch

1 if processing a nonlinear statement

2 if processing a standard statement

Newton-Raphson switch, which may be updated

An indicator, which may be updated

A list which holds dependent stop-function

identifiers. This list is updated.

•468 _

,

c. Exit Conditions

PRO A list holding the transformed statement in

FOR TRAN format.

FLS May be updated by inserting new items.

KE An integer indicating the type of statement in PRO

EQST A list containing the left side of the statement, if

the statement was an equation.

INLST May be updated by inserting new input-variables

IV34 May be updated

ISIS May be updated

LSTMK May be updated by inserting new stop-function names.

Definition of Identifiers

IOP{8) contains these punctuation characters:

IOP(1) =

IPP(Z))

iop(3) (

IOP(4) _-"

ioP(5) /

IOP(6) +

IOP(7) -

IOP(8) ,

IDLR contains the character $.

PMAST A list containing a containing a copy of R, in reverse

J

KSTB

ITEM

IFLG

ITEM3

ITEM5

ITEM4

ITEM6

ITEM7

order

Holds the index to the current punctuation chracter

Holds the index to the previous punctuation character

Used to hold the character being popped out of R

Holds the flag of the element being popped out of R

Holds first character of symbol being examined

Holds first character of symbol being examined

Holds punctuation character corresponding to index 5

Holds second character of symbol

A list of characters representing a dependent stop

variable

469

6. Method

ITEM8

INLSTZ

INLST 1

SYMB

KTMDF

KSV

IV34S

KS

NE

NO

NT

TEM

TEM 1

SAV

PL2

PL3

DLRVR

A list-structure of all ITEM7's in the statement

A list of characters representing an input-

variable name

A list-structure of all the INLSTZ's in the

statement

A list used to hold the symbol being examined

= 1 if c(SYMB) is 'FT' or '$UTF'

= 0 otherwise

= Z if c(SYMB) is 'SS ' or 'SV '

= 1 otherwise

Used to hold the revised value of IV34

Type code of c(SYMB)

Element type code of c(SYMB)

First node {number of c(SYMB)

Second node (number of c(SYMB)

Lists used for temporary construction of

character strings

Holds (NE, NO, NT) triplet for each $S

symbol occurring on right side.

List R is popped up and saved in SYMB until a punctuation char-

acter is recognized. The symbol (in SYMB) is examined by SYMTP

and indicators KS, NE, NO, NT, KTMDF, KSV are set. The symbol

is examined further: KE is set; if it is an input variable, it is saved

in INLSTZ/INLST1; if it is a dependent stop-function variable, it is

saved inITEM7/ITEM8. If the symbol is a system variable of the

type SV or SS then COMBN is called to transform the abstract

symbol into a linear combination of computable variables. As the sym-

bols are processed, they are pushed into PRO, along with the existing

punctuation and any new punctuation (e. g., parentheses) necessary to

preserve the computational integrity of tPe statement. If an = is

470

encountered as a punctuation character, the statement is recognized

as an equation and the left side is processed• If no = is found, R is ex-

amined for other statement types:

a. Equation type -- •

The symbol to the "left" of the = sign (the remaining con-

tents of R) is saved in EQST. INLSTI is OR-ed into INLST; ITEM8 is

OR-ed into LSTMK. The symbol on the left side is examined. If'itis

an SV then COMBN is used to replace the symbol with its equivalent

computational variable. The result is pushed into PRO. KE is set, de-

pending on the contents of the left and right sides of the euqation. IV34

is updated if KE _ 8. If the left side is a network variable but not SV

or SS, if KE >3 and this is a FORM-I statement, then (NE, NO, NT) of

the left side are entered in FLS through MRKLST.

b. Statement type

If R contains:

(I} DIMENSION of DEFINE, INLSTI is erased, and the

array names are extracted and placed in INLSTI. Then INLSTI is

OR-ed into INLST. PRO is set to contain the original statement. KE

is set = I.

(Z} IF: If any characters follow iF and precede the left

parenthesis, then INLSTI is OR-ed into INLST, ITEM8 is OR-ed into

LSTMK, and PRO remains in its transformed form. If no characters

follow IF, then PKO is set to contain the original statement. KE is

set = I.

(3} GO TO: If it is a computed GO-TO, INLSTI is OR-ed

into INLST; else INLSTI is ignored. PRO is set to contain the original

statement. KE is set = I.

(4} CALL: If DLKVR is null, and then if ITEM8 is null,

KE is set = l. If ITEM8 is not null, KE is left undisturbed. If DLRVR

is not null and KE < 3, KE is set = 3. IfDLRVRis not null and KE>3,

then each triplet in DLKVI_ is examined. If the network variable is not

FT or SS or SV and this is a FORM-I statement, then enter

(NE, NO, NT) in FLS, using MRKLST and parameter KE. If any of these

network variables was neither FT nor SS and KE _ 8, then set IV34

= max(IV34, IV34S).

_471 _

o -p (2_g#_)

_ ,
E_.g_c z.zS_'&:
DLR V_, S Y_8

pl_ I S '_ _/

wEes_" _

Az_om,.,',_=c7

+_
I ZT_tlT,4cJz

.°

;1 -

V,g3

Illl

.f'_.>,,\

.\"_-..-_/

()
1

rV _y_ s /

"_ ,V_

._TZ

C,v_/vr)

('zov,-)÷/

,4/0" l

Ib

473

'o*a?._,,.)I
!

('--_r;;'!4.)/

\ (_---.v)J

,)

w

r

VE.s

-r M_

474

=!

l ! _,(kr,._F)

.1.1o
//0

476

yE_

7 Jk

o

!

477

• _y, "

8_,_.___._,.,,-¢\
,-,-,)./
"r# ,'._3,,_T_

_-_cz"B. \

g.

4_s

o

............. ° . _

o

479

°.

4

NO

- -. • .

0

°

480

o

eLO-,(P;_)

. °

481

.°-

°

482

.... 7

....... -"

s"u_s 7-- /I

. .

I

" " --IF'E-< ,_.'o

/ _._
(,,',_,_/,,,,.,,,-)

o

•_V_

• _t.;o

¢'z:v;q_.)_ I

• 483 _u_y f /

T

o

°

484

" _

/->(-_ =) f

l

485

e

486

ZgO

/,_,_' \
• \ _'_-_,_.s7"#'?

\'Z_ _>/

°!
J

,)

L.

48_

- , - . .

i
488

/7

°

489

o

' Y_-3

i

_E,5

\,,,

490

°..

_ o

,-Ud,@r !_

Program Description

I. Identification

a. Routine Label

SYMBL

b. Name

Insert an array of Hollerith characters into a simple list.

2. Function

A Hollerith array is scanned and inserted into a list, character

by character, such that the first character of the array is the first ele-

ment and the last character is the last element.

3. Lprogramming System

FORTRAN II

4. Usage

a. Calling Sequence

CALL SYMBL (L, N, H)

b. Entry Conditions

L = Head of a list

N = Number of characters in array H to be inserted in list

L

H = An array of Hollerith characters

c. Exit Conditions

N characters of the Hollerith array H are placed in list L,

right side up.

d. Error Exits

None.

5. Definition of Identifiers

J = Temporary head cell of the simple list being created from

N characters of the array H.

491

. Method

a. List L is erased (restored to AVS by ERASE) and the head

cell L cleared to zero.

b. A temporary head cell J is also cleared to zero.

c. I is initialized to one.

d. The following steps are executed for each character of H,

until N characters have been inserted into the list headed

by L:

(1) The Ith character of H is extracted from the array

and shifted into the decrement of a temporary cell

S as an integer.

(2) L is tested:

(a) If L = 0, (S) is inserted as the item of the first

element of J, with a link of zero. J is set to

point to this first element. The pointer in J is

also saved in L (after N characters have been

inserted, L will point to the top of the list, or

the first character of the array H}.

(b) If L $ 0, the converted character in S becomes

the item of a new element inserted immediately

after the first element of list J, and J is set to

point to this new element. The link of the ele-

ment preceding the newly inserted element is

also set to point to the new element, thus main-

taining the subsequent linkage down the list.

Note that each time a new element is placed into

the list, J is pointing to the last element inserted

or what can be considered as the current bottom

of the list.

(3) I is tested:

(a) If I = N, all characters have been inserted and

exit is made from the routine.

492

o

.

(b) If I N, I is incremented by one and steps d(1),

d(2), and d(3) are repeated until _I -- N.

Other Subroutines Used

AFTER, ERASE, LINK, SYMCH.

Using Subroutines

COMBN, DIMEN, DPDST, EQFS41, EQFV31, GOBLE, INPUTX,

Main ProgramNLINDM, PARTS, STAT, SUBST, SYMCRD, WRTEQ,

for Pass Z of TAG Preprocessor.

493

, _ _,-__ _(L)

,/es

/,2_'/

, (_)+(L)
1

J

494

Program Description

1. Identification

a. P_outine Label

SYMCH

b. Name

Place one character of a Hollerith array into the decrement

of a word.

2. Function

The Nth character of a Hollerith array is placed into the decre-

ment of a word as an integer (exactly like LNECH but with reversed

calling sequence}.

3. Programming System

FAP

4. Usage

a. Calling Sequence

CALL SYMCH (IX, N, BCDV}

b. Entry Conditions

N = Character position in BCDV

BCDV = An array of Hollerith characters

c. Exit Conditions

IX = Nth character of BCDV as an integer.

d. Error Exits

None.

Definition of Identifiers

SY90 = A table of six entries, each a shift operation

495

6. Method

Each time the subroutine is entered, the character correspond-

ing to the value of N is shifted into the decrement of IX as an integer,

right-adjusted. A table, whose location is SY90, determines the appro-

priate shift.

7. Other Subroutines Used

None.

8. Using Subroutines

BLNOUT, COMBN, DBPCHC, DIMEN, DPDST, El/M, EXCPT,

EXTRX, FLTCON, GOBLE, HOLBK, IDNTC, IDNTP, INPUTX, INZERO,

MATFT, MATOT, PARTS, PUSPGH, READCH, RECOVR, SUBST,

SYMBL, SYMCRD, SYMTP, WRTEQ, ZEROX, Main Program for Pass

2 of TAG Preprocessor.

496

,_.-i_ "- ". 5 "i/_ <.- ,_ / 7 X

j

,i c-_ l;
)

.......... i

i

i ___..)

F--

{,,ie)

-=q,

l

i(,_<J<--->6,,,,_)

/') . • :

_.........._i _
I

C,_"}
i #'i o_<,,.,77.,<,,.,a,,<,

_(,q(z _,<,.))
I

f

i_:;<:J..:',_, z_<-)
i

,..z _: ,?
......... ,i

497

Program Description

1. Identification

a. Routine Label

SYMCRD

b. Name

Output a symbolic card

2. Function

To output a series of cards of the form

ABKL(M, N) = X_CDNONT

which establish the transformation from circuit parameters to TAG-

defined arrays.

3. Programming System

FORTRAN II

4. Usage

a. Callin_ Sequence

Call SYMCRD (X, N, NPT, TYPEH, PARH, NLEV, NTAPE2)

b. Entry Conditions

X = The list structure from which the transformation

is derived

N = The maximum size of the I, J indices within X

NPT = The NPT array of MAIN No. 2

TYPEH = The two characters represented by'WAB" above

PARH = The two characters represented by "CD" above

NLEV = The flag for the items to be extracted from X

NTAPE2 = The tape number of the tape from which X is

acquired

498

.

c,

de

Definition

R IGHT

COMMA

LEFT

EQUAL

PLUS

MINUS

TYPE

PAR

I

J

ITERMS

P

L3

LZ

L4

L5

L6

KSW

NEF

IVECT

NxP}IX

IP

NSP

Exit Conditions

X is updated by absorbing a file from NTAPEZ.

Cards will be output.

Error Exits

None.

of Identifier s

BCD Right parenthesis

B CD Comma

BCD Left parenthesis

BCD Equal sign

BCD Plus sign

BCD Minus sign

List (type A) containing the two characters of

TYPEH

List (type A) containing the two characters of PARH

I (index to X)

J (index to X)

Used to count items in X

List (type A) used to construct the output card image

Used to hold links while examining X

Indicator used in scanning X

Used to hold flag portion of a list element

Holds second character of TYPE

Used to compute K, L, M, N from I, J, NPT

499

.

KYN

NZI

NZ2

NSIJ

ITST

NF

NO

NT

XX

Me thod

a.

b.

el

d.

eo

f.

Indicators used in examining X

Used to hold M, N parameters

Temporary storage, holds character "r'

for testing

Holds a flag portion of list X

Node number extracted from X

Node number extracted from X

Decimal number associated with I, J,

or I I "V'I I

NO, NT

A file is read from NTAPEZ and merged into X using MATFT.

The characters in TYPE are pushed into P.

For all I,J (I,J = I,N), X is searched, using LOCATA,

to find a sublist entered under I and J which has a flag

portion = NLEV. If none is found, the search through X

is restarted using new values for I, J.

If found, then K, L, M,N are computed from I, J, and

NPT values. For I, K would indicate the submatrix num-

ber and M the index within that submatrix where I is found.

L and N are computed the same way for J; i.e.,
L-1

J = N + _ NPT(r)

r=l

As they are computed, K and M are pushed into P; L and

N are saved in NSIJ(1) and NSIJ(2).

The symbol so constructed in P is sent to EXCPT for

testing; If it is illegal, a CALL DUMP is executed.

L and N are pushed into P, enclosed in parentheses, and

followed by an =:

(L, N) :

The sublist of X is then examined further to see if NO, NT

are present. If an element is found that contains a 5 in the

500

.

EXCPT, FLTCON, FRFL, FROM, LINK, LOCATA, MATFT,

SYMCH.

8. Usin_ Subroutines

Main Program for Pass Z of TAG Preprocessor.

flag portion, then the item portion (pointing to a BCD sym-

bol) is pushed into P and output as a card. This would

result in a statement like this:

ABKL(M, N) = 'variable name'

If a flag of 5 is not found, the sublist is searched for NO

and NT' If found, then the link following NT points to a

decimal number. This number is converted to BCD and

pushed into P, followed by an asterisk.

The characters in PAR are pushed into P, followed by

NO and NT, and the string in P is output. This would be

of the form

ABKL(M, N) = X*CDNONT

K,L are digits; M,N, NO, NT are integers; X is a decimal

number; 'AB' is the contents of TYPEH, and 'CD' is the

contents of PARH.

Other Subroutines Used

BCL, DBPCH, DONBD, DOWN, DOWNS, ERASEA, ERASE,

SYMBL,

501

TvPEH _llEF
rVPE
Z dH/IR:" _P

/b /,u "
I

rz_ X I

l

[/.----_ (v--)[

\!A._'-. \\

(,/2
/'

50Z

ql

#-t i,¢.,'TO P/

¢, _ b'J:pl/ -_ C2-:)

L "_E'5"

----_Cr:)+l _CzP] !

503

/I

I

(KYw) = I "I

c_ E_G/xr \

504

?
T

_H t.EFT" \

°

i

I .\.,¢_,_\

_,,) " .

-_"_-)l

(.,)-

- (_f)/

\i,._

5.(_._._l
1

&'_l /

506

\,< _/). , Pz,,'#" 7

i,t) F i'

/ xm-_,eo\

\ ,_, ,-> /

Lcz÷_)_cJ)

., /. . .. ucr

_x.,o

"--- -k

.i,./ /_ "

<./_C_)---6,'-') i">

"-_ tl _o

k_____/

,

lar+_._-',C_)]

507 "

Program Description

I. Identificati on

Zo

m

e

.

a. Routine Label

SYMTP

b. Name

Check for symbol.

Function

Examines a symbolic name.

Pro_rammin$ System

FORTRAN II

Usase

a. Calling Sequence

Call SYMTP (TEM, KS, KSTB, INLST, NE, NO, NT)

b. Entry Conditions

TEM = List containing the characters of the symbol

KSTB = Contains a constant

c. Exit Conditions

See "Method."

d. Error Exits

None.

Definition of Identifiers

TEM1

TEM2

IDECP

IKND1

I

Temporary lists

BCD decimal point

BCD "S"

Temporary index

508

IOP

ITEM

ISF

J

TEMIX

6. Method

C,

Temporary to hold a character

Temporary index

Used to hold a link

If (KSTB) = 3, set KS = 2.

If (TEM) contains $UTF

Set NE = 0

NO=0

NT=0

Else set KS = 3

Return

If (KSTB) # 3, set KS = 1.

If (TEM) contains

(I) FT

Set

(z)

NE= 7

NO=0

NT=0

SXnlnZ

Set NE = I to 6

Set NO = nl

Set NT = nZ

for "X" = V Set NE = I

C Z

G 3

L 4

I 5

S 6

(3) Else set KS = 3

Return

Except in illegal case (KS = 3),

Else erase INLST.

7. Other Subroutines Used

DOWN, DOWNS, ERASE,

UPDWN.

FI_OM,

put c(TEM) into INLST.

LINK, POPUP, SYMCH,

509

/ DEC IM' = \
\ PO IAIT /

.->(I_>EcD)

/'_-_ TE___

• T£M Z

511

. V

IV� 2. 1_,170/

7"£M I /

[
=l

PUP

M I IHrO /

r£lM

• OA/ = 2.

=0

V

512

T_ _-_-'_'

513

!

DUMP /

\. _"YA_CII-_

,,6_ _ ; -_

,_ _L._,'S_.-/
V_"L"'_3-_1

£.
(:sF)_'.,,

,i-t

CN_RIVCT_.)j

r/w Z.._P/

yes

(_e)+ _-->(ire) t

J

514

(ISF

515

,'-_i__',_

, -_ (_r_M)/
, /

IN " "...
\

(?:e)_ "-..

"\ ITeM/_;/

" J NO

I

5L6

Program Description

I. Identification

a. Routine Label

TRANS

b. Name

Transpose a two-dimensional matrix.

2. Function

The transpose of an NM x NMR matrix TF (in array-list format)

is created as NMR x NM matrix TFT (also in array-list format) by ex-

tracting each element from its position I, J in TF and placing it in po-

sition J, I of TFT.

3. Programming System

FORTRAN II

4. Usage

a. Callin E Sequence

CALL TRANS (TF, TFT, NM, NMR)

b. Entry Conditions

TF = The final coordinate transformation matrix with NM

rows and NMR columns. TF expresses all the node

voltages as linear combinations of a reduced set of

true voltages.

NM = The maximum node numbers in the connection list

NMR : NM - NRR

NRR = The total number of transformer windings minus the

number of different transformers

c. Exit Conditions

The NMR x NM matrix, TFT, has been created in array-

list format such that [TFT](I, J) = [TF](J,I).

517

.

.

t

Q

d. Error Exits

None.

Definition Identifier s

I = Row index for TF, column index for TFT

J = Column index for TF, row index for TFT

FTEM = Local variable which holds the data word identified by

I,J

Method

The matrix transpose of TF into TFT is performed as follows:

a. Array-list TFT is erased.

b. The row index I for TF is initialized to 1.

c. The column index J for TF is initialized to 1.

d. Using SNATCH, list TF is searched for data identified by

1,3. When found, the data is saved in FTEM.

e. If FTEM ¢ 0, the subroutine STASH is executed to insert

the data word into TFT, identified by J, I.

f. J is tested:

(1) If J = NMR, I is tested.

(a) If I = NM, the transpose is complete and exit

is made from the routine.

(b) If I _ NM, I is increased by 1 and execution re-

turns to step c to continue the search with a new I.

(Z) If J ¢ NlviR, J is increased by 1 and execution returns

to step d to continue the search with a new J.

Other Subroutines Used

ERASEA, SNATCH, STASH.

Using Subroutines

Main Program for Pass 1 of TAG Preprocessor.

518

C.4 LC

519

Program Description

1. Identification

a. Routine Label

TREE

b. Name

Form a proper TAG tree from PLIST.

Z. Function

The tree routine forms a special type of proper C tree from the

ordered connection list, PLIST. The proper C tree covers all nodes

while forming no loops and contains all voltage sources, a maximum of

capacitive elements, a minimum of inductive elements, and no current

sources. The TAG tree is a directed graph in which every node but

one has one and only one branch positively incident with it. The single

exception is the O node, which has no branches positively incident with

it. Tree is formed as a list of element descriptors in the type D, two-

dimensional list, FLIST.

3. Programming System

FORTRAN H

4. Usage

a. Callin_ Sequence

CALL TREE (PLIST, FLIST, NM}

b. Entry Conditions

PLIST = A copy of the connection list, WLIST, whose

branches have been ordered according to ele-

ment type in a VCG LNI sequence. PLIST,

like WLIST, is in type D format.

NM = The maximum node number, which is equal to

the total number of nodes less one and to the

number of elements that should be in the tree.

520

c. Exit Conditions

FLIST = A two-dimensional type D list which holds the

NM branch descriptors of the proper TAG tree.

The order of PLIST is not maintained in FLIST.

d. Error Exits

(I) If a tree of NM elements cannot be found which con-

nects to node O and is completely connected itself, the error comment

"PLIST EXHAUSTED TREE" is printed out, and a CALL DUMP is

executed.

(2) If a voltage source is excluded from the tree, the

error comment "VOLTAGE CODE/DUP. NODE/TKEE is printed out

and a CALL DUMP is executed.

5. Definition of Identifiers

FLIST is a local variable name for XLIST.

NFL keeps a running count of the number descriptors that have

been entered into FLIST.

Xl, ILl, and X2 are local variable head cells used to search

PLIST and FLIST.

NE, NN, NP, NTRN, NNTR, and NF are the constituents of the

descriptors extracted from PLIST.

NEF, NNF, NPF, NTRNF, NNTRF, and NFF are the constituents

of the descriptor extracted from FLIST.

NENT is a flag used to indicate whether NN and/or NP is already

covered by FLIST.

NENT = I (neither NN or NP are in FLIST)

NENT = 2 (at least NN is in FLIST)

NENT = 3 (at least NP is in FLIST)

6. Method

The proper TAG tree is constructed in FLIST from the branches

listed in PLIST to cover all nodes and form no loops. The process

starts at node zero and proceeds one branch at a time to build suces-

sively larger but always connected partial trees until the entire network

521

is covered. The next eligible tree branch, which must always have one

of its nodes covered by the partial tree, is always selected by search-

Lug down PLIST from the top. Because PLIST is ordered in VCGLNI

sequence, priority for membership in the tree also has the VCGNLI

order. If the network contains no voltage source loops or current

source cut-sets, the process will ensure that the final tree will con-

tain all voltage sources, a maximum of capacitors, a minimum of in-

ductors, and no current sources. In addition, the tree is constructed

such that every node except the zero node is touched by the positive

node of one and only one tree branch. Tree branches incident with the

0 node touch it with their negative node only. The algorithm that mech-

anizes the tree selection process is described below.

a. Erase FLIST and set the tree branch counter, NFL, to one.

b. Search PLIST from the top for the descriptor of the first

branch which touches the 0 node. If, for this descriptor, NN = 0, push

down the descriptor, as is, into FLIST. If NP = 0, reverse the node

order and push the resultant descriptor down into FLIST. Proceed to

step d. If no such element is found proceed to step c.

c. PRINT "PLIST EXHAUSTED TREE" and CALL DUMP.

d. Flag the descriptor in PLIST that was just placed in FLIST.

Test NFL. If NFL = NM, control is returned to the main program.

If NFL < NM, increase NFL by i and continue to step e.

e. Search PLIST, starting at the top, for the next unflagged

element which has one or both of its nodes already covered by the partial

tree in FLIST.

(I) If no such element is found go to step c.

(g) If both nodes are already covered by FLIST, flag the

element descriptor in PLIST. If the element is a voltage source PRINT,

"VOLTAGE CODE/DUP. NODE/TREE" and CALL DUMP. If the ele-

ment is not a voltage source descriptor, but is the last entry in PLIST,

go to step c. Otherwise start step e over.

(3) If only the negative node of the element is already

covered by the partial tree in FLIST, the element descriptor is pushed

down, as is, into FLIST and the process returns to step d.

52Z

(4) If only the positive node of the element is already

covered by the partial tree in FLIST, the node numbers are reversed

and the resultant element descriptor is pushed down into FLIST. The

process returns to step d.

7. Other Subroutines Used

DUMP, ERASE, FLAG, PRPTG, PRPTR.

8. Using Subroutines

Preprocessor Pass 1 Main Routine only.

523

c._ z.z mx:E_(/'Pz z s T, FLZS_, ,_u,'7)

IJO ".i.

-- " 7--,.-w,"
\ _pr.,,,r,e,.,,-.i
\ _'_, "'",:/ • _ ..

.... .

[

"le$

(.,)

,,o __<_<t_'_'""-;;):.

-/)=O

_o

524

I

i

Fgom X

°

/ _,__-_

t

I

I _,_ ,_ -_.
\-"_'_"" !
\,_ _,,/

i

f

@
1
i

Y
\ pr.,,.,T 7
\" vo.,.c. I

V
E_r /
F_o_ I

VJ7£r_]

528

i

t
t

\ ,_,,° I

)

Program Description

I. Identification

a. Routine Label

UPDWN

2. Function

This subroutine pops up a list, one element at a time, and then

pushes each element down into another list (similar to DOWNS except

that UPDWN destroys the list that was popped up).

3. Programming System

FORTRAN II

4. Usage

a. Callin_ Sequence

CALL UPDWN (T, S)

b. Entry Conditions

T = Head of a list

S = Head of a list

c. Exit Conditions

List T is popped up and pushed down into List S. List T

is destroyed.

d. Error Exits

o

None.

Definition of Identifiers

ITEM = A temporary cell whose decrement contains the item of

the element popped up from list T

NF = A temporary cell whose decrement contains the flag of

the element popped up from list T

527

.

g

Method

a. If list T is not null upon entry,

be

the elements in list T are

popped up, one at a time. The item and flag of each element

are saved in ITEM and NF respectively. The element popped

up from T is restored to AVS. A new element containing

ITEM AND NF is then pushed down into list S. This oper-

ation continues until the end of list T is encountered.

If list T is null upon entry, exit is made from the routine.

Other Subroutines Used

DOWN, POPUP.

8. Using Subroutines

BLNOUT, COMBN, DIMEN,

PARTS, STRIK, SUBST, SYMTP,

DPDST, HOLBK, INPUTX, NLINDM,

WRTEQ, Main Programs for Pass

I and Pass Z of TAG Preprocessor.

528

br p b u_ N _)

I
____._--_

No

i

/,__ "

SZ9

Program Description

1. Identification

a. Routine Label

WRTEQ

b. Name

Write equations.

2. Fun ction

Expresses a symbolic equation involving matrix manipulations into

a series of subroutine calls, and outputs these statements as card images.

3. Programming System

FORTRAN II

4. ,Usage

a. Callin_ Sequence

CALL WRTEQ(HLST, SLST, NPT, NEQ, NNEQ)

b. Entry Conditions

HLST Type A list containing the first part of the

symbolic equation

SLST Type A list containing the second part of the

symbolic equation.

NPT The NPT array of Main number I

NEQ Statement number to be output

NNEQ Index indicating the submatrix to be involved

in the matrix manipulations

c. Exit Conditions

A series of statements will be output which effect the corn-

Each statement will be one of theseputation of the symbolic equation.

three:

530

CALL PSUM (FTEMZ, FTEM1, FTEM1, n, 1)

CALL MSUM (tern, FTEM1, FTEM1, n, 1)

CALL MULT (tem, teml, temi, n, 1, nl)

n = NPT (NNEQ) = Row dimension

tem, teml represent matrix names extracted from the

symbolic equation

temi is either FTEM1 or FTEMZ

nl = Column dimension

The first statement to be output will carry the statement number

(NEQ).

e

d. Error Exits

None.

Definition of Identifier s

ICHC

ICMA

IBRKR

PLC

TEM

TEM1

IN1

NZ

DUMY

IPO

NEQI

IT

PLCC

IDMY

IDUMY

B CD "C"

BCD COMMA

BCD right parenthesis

List used to form the initial equation from

HLST and SLST

Temporary list used to hold one name

Temporary list used to hold a series of

names (push-down)

Parameters used to evaluate a single name

Dummy -list

Holds a code for "previous op"

Holds running equation number

Number of temporary matrix being used

Used to hold a copy of PLC for output as a

comment card

Dummy variable s

531

.

TEMT

ND1 1NDZ

IO

IOL

RST

CAL

Method

Temporary list

Parameters used to evaluate a single name

Holds a code for "this op"

Push-down list used to save IO

Temporary list used to construct constituent parts

of final output

List containing the card image of the statement to

be output

The initial format of HLST is something like this:

FV31 = FGI33_(FI31

The format of SLST is like this:

-FG31 • FVI I$ - FG32* FV21$ --- etc.

a. HLST is pushed (reversed) into PLC.

b. SLST is split into the segments separated by $, and each

segment is sent to EXCPT for testing (EXCPT will test the left symbol

of each pair), if it is a legal symbol, then that segment is pushed into

PLC. If not it is erased. When done, a right parenthesis is pushed

into PLC to complete the equation.

c. The symbolic equation in PLC is now examined, starting

from the right, and the infix notation of matrix multiplications and sub-

tractions is transformed into a series of CALL statements. The proc-

ess is a restricted infix-to-polish transformation which is generally as

follow s:

(1) Initialize:

O-- IPO

O-.IT

Output PLC as a comment card.

Remove the right parenthesis (top element)

from PLC.

532

(z)

(3)

(4)

(5)

(6)

(7)

(8)

(9

' Scan PLC for a left parenthesis, equal sign, minus

sign, or asterisk, preceded by a name. The name is

placed in TEMT, and the hierarchy order of the punc-

tuation character is placed in IO. This order is

No character found 0

(1

= 2

- 3

* 4

EXCPT is called to determine nl (the column dim-

ension) fo the symbol in TEMT. TEMT is placed in

TEM.

If IO>IPO, go to (5} else go to (6}.

Push If) into IOL. If TEM is not null, push TEM

into TEM1. Set IO = IPO. Go to (2).

If IPO was an asterisk, go to (9) ; if it was a minus

sign, go to (7). Else DUMP.

If IT = Z, set up this equation:

CALL PSUM (FTEM2

If IT _ 2, set up this equation:

CALL MSUM (C(TEM)

and erase TEM.

Append to the previous equation:

, FTEMI, FTEMI, n, I)

Output this as a card image. Set IT = I and go to

(iz).

Set up this equation:

CALL MULT (C(TEM),

and erase TEM. If TEMI is not null, pop up the top

symbol and append it to the equation. If TEMI is null,

append "FTEMI" and set nl = n. if IO is an equal

sign, append the rest of PLC to the equation and go to

(II), else go to (I0).

533

(lO) Set IT = IT+l,

where i = IT.

equation.

(l l) Append to the equation:

, n, l , nl)

and construct a symbol "FTEMi"

Then append this symbol to the

and output it as a card image. If IO was an equal

sign, exit from WRTEQ, else continue to (1Z).

(lZ) Pop up one element of IOL. If IOL is null, then

go to (5}, else set IPO = the top item of IOL and go

to (4).

d. WRTEQ assumes that the equation must end with a right

parenthesis, and that the right-most symbol-pair must be a multiplica-

tion; i. e., that the right end of the equation must look like this

A'B)

Except for this, any combination of single names or multiplications is

permissible, e.g.,

A = B- C- D_ (E- FSGSH_J)

There can be only one nested {enclosed in parentheses} expression.

7. Other Subroutines Used

BCL, COPY, DBPCH, CBPCHC, DOWN, DUMP,

EXTRX, FROM, POPUP, SEGMNT, SYMBL, SYMCH,

8. Using Subroutines

ERASE, EXCPT,

UPDWN.

EQFS41, EQFVZl, EQFV31.

534

.,

I "
I

T

I

__s_\ __
)

\ itL_r ipj.ro/
\ p_c I

-0

i_\ _=_\
EIZitJ_)

TO P"- C\ l

r

{P<,¢H _,6i7r

. °

/

0 _Urc_g

o,e_O

,I
," , CP!/_e"

I,UOlU_"

I
I

I

_DE; i

o 1
I

I
2. I

4 i
J

1 \,_'_\

\ _-_ /

y_-.<

Pc.,_/iT &-,"._]

I,_,TO 1"-_1"41.I

536

e-:- P."

/

I

I

r

#/ /

IT

I

537

. Jl

7-ida- _Y_,.8oL

t

" 1
ti P,#c_ D "

Y_-5

A PP_-t_I D "

'= rEf4 / r _

_laO

7"0 _-Ou_lo,'3 J

538

b

- T "

. ° .

• 1

%

/qf/':_",a,,_ ."]

I

©,. :]--->(z"

+
|

Aq-PP_-,,o zb : I

l
Iv

Y POT")

_/,_T/ O/,J ,,.'

o):,,,",,

?

.Z",'_ ,_ y]

f '_ .

r: _

\

p

539

Program Description

I. Identification

a. Routine Label

XFORM

b. Name

Form the ideal transformer voltage constraint matrix.

Z. Function

This subroutine forms the node system ideal transformer constraint

matrix TTR, as a two-dimensional array-list of NRR rows and NM col-

umns such that [TTR] * VN] = 0.

3. Programming System

FORTRAN II

4. Usage

a. Calling Sequence

CALL XFORM (WLIST, TTR, NRR)

b. Entry Conditions

WLIST = A type D list representative of the TAG connection

list.

c. Exit Conditions

TTR contains a two-dimensional list representation of the

transformer voltage constraint matrix.

NRR equals the total number of transformer windings minus the

number of different transformers.

d. Error Exits

None.

540

5. Definition of Identifiers

NM = The number of nodes less one

Xl = Local variable used to search down through WLIST

XIL = The firstunflagged transformer descriptor

X2L = The first transformer descriptor whose transformer

number NTRN is equal to that of XIL.

6. Method

The matrix representation, TTR, of the transformer node voltage

constraint equations is generated from the WLIST such that TTR * VN

= 0. For each transformer having N windings of Ti(i = 1, 2 - N) turns

respectively, N - 1 equations are formed which relate the node pair

voltage of the first winding to that of the N - 1 other windings. Thus)

N - 1 equations of the form Ti(VNp - VNN)(of N1} - TI(VNp - VNN)(of Ni}

= 0 are generated for each transformer in WLIST and recorded as

the four-dimensional array-list TTR, TTR has dimensions 1NRR x NM.

The following steps are implemented in XFORM to accomplish

b.

Co

d.

e. •

f.

Search WLIST from Xl on for the first unflagged X former

descriptor and, when found, label it XIL and flag it.

Search WLIST from XIL + 1 for the first transformer

descriptor whose transformer number NTRN is equal

to that of X1L. When found, label it XZL, flag it and

add one count to NRR.

If the negative node number, NN(X1L), of winding X1L

0, the number of turns, NNTR(XZL), of winding XZL is sub-

tracted from the value of the NRR, NN(XlL) position of the

TTR matrix.

If NN(XIL) = 0 or NP(XIL) _ 0, NNTK(XZL) is added to the

value of the NRR, NP(XIL) position of the TTI_ matrix.

If NP(X1L) = 0 or NN(X2L) t 0, NNTR(X1L) is added to the

value of the NRR, NN(X2L) position of the TTR matrix.

If NN(X2L) = 0 or NP(X2L) _ 0, NNTR(X1L) is subtracted

from the value of the NRR, NP(X2L) position of the TTI_

matrix.

541

<

C_ :-c

t

I_ _'j ,vMr4, ,'vf/2

•_o,, x,_/

542

,'(4_-am(,_,zzs7 rT"c _4g)-
J

FL./_a

"_ _p .¢1 L

A

I
i.

I
I<'_<,,.++,-,,,-,,j l

i.__->¢?__ !
/_

J--'""'<:"'_<'"'::°7
_ :_-,,,.,/

543

= _UA'I J

N

544

Program Description

I. Identification

a. Routine Label

ZEROX

b. Name

Output ZEROX statements.

Z. Function

To output the CALL ZEROX statements.

3. Programming System

FORTRAN II

4. Usage

a. Calling Sequence

CALL ZEROX (IS, NPT)

b. Entry conditions

IS contains statement number; NPT is the NPT matrix of

Main number 2.

c. Exit Conditions

CALL ZEROX statements output.

Output "FT = 0."

5. Definition of Identifiers

IZ

CALL

ICOMA

IBRK

TEM 1PLC

N1, N2

Temp. to hold IS

List (type A) contains "CALL ZEROX("

BCD comma

BCD right parenthesis

Temp. lists

Used by EXCPT to hold matrix dimensions

545

SDEF contains (in list type A format):

FS41 $FL445FI41 SFL41 SFS11 $FL425FSZ1 $FL43 $

FS31 SFV31 $FG33 $FI31 $FG31 $FV11 $FG325FV21 $

FL31 $FL3 ZSFL33 $FL345FC 11SFI11 $FC12$FG11 $

FG12$FG13$FL11SFL12$FL13$FL14$FVD21 $FC225

FI21 $FG21 $FG225FG23 $FL21 SFL225FL23 $FLZ4$

FSD 11 SFSD 21 $FSD 31 SF C 21 SFVD 11 SFVO 11 SFV41 $FSO41

6. Method

The symbols in SDEF are extracted one at a time and sent to

EXCPT for examination, if legal, their dimensions are multiplied to

compute a single-array dimension, and the statement

CALL ZEROX (< symbol >, < dimension >)

is output.

After all such statements have been output, the statement

FT=0

is output.

7. Other Subroutines Used

BCL, COPY, DBPCH, DOWN, DOWNS, EXCPT,

SYMBL, SYMCH.

8. Using Subroutines

Main Program for Pass Z of TAG Preprocessor.

EXTRX, STAT,

546

\/A/ C_/.L. //

}

\,_ _ I

NO

/ _.__._

F-7=O./

"T.I

,, \E,_ r_, k

'i,._-T1 S<YV,

V

547 "

548

C. Subroutine Writeups and Flow Charts for TAG Execution Program

Prosram Description

1. Identification

a. Routine Label

INV

b. Name

Matrix Inversion Subroutine

2.. Function

The subroutine computes the inverse of a real N x N matrix.

3. Programming System

Coded in FAP for use in FORTRAN II

4. Usage

a. Calling Sequence

CALL INV (A, B, N)

b. Entry Conditions

A = A real N x N matrix to be inverted.

B = The N x N matrix into which the inverse of A is to be

stored.

N = The dimensions of A and B.

c. Exit Conditions

If A has the properties described in "Method," the inverse

of A is placed in B.

d. Error Exits

The routine has no error exits. However, whenever a divi-

sion by zero has occurred during inversion, prior to exit, a SINGULAR

MATRIX message is printed.

549

5. Definition of Identifiers

The following identifiers appear on the flow diagram:

A(i) = The ith location of matrix A.A is being treated as a

column matrix

B(i) = The ith location of matrix B. B is being treated as a

column matrix

N = The number of rows and columns in h and in B

[B] = The last location address of the matrix B

LF k = The first address of the pivot row

L k = The address of the element in the pivot row which is

currently being operated upon

LF. = The first address in the row which is currently being1

operated upon

L. = The address of an element in the above row
1

n = An index used to count columns during row operations.
c

n usually ranges between N-1 and 1.c
CIl = The value of the first element in the current pivot row

CK1 = The value of the first element in the row being operated

upon

n 1 = An Ludex used to count the N-1 other rows that a par-

ticular pivot row must operate upon

n z = An index used to count the required N pivot row

selections

6. Method

The INV algorithm is essentiaUy a FAP implementation of the

INVRS subroutine method, but without maximum pivot element selection.

In INV, the diagonal elements of B are taken, in sequence, as

pivot elements. When the space-saving column shifting algorithm is ap-

plied, the diagonal elements always appear in their correct rows, but

in column one. The flow diagram shows the address manipulation re-

quired to carry out the procedure in FAP.

The algorithm may be stated in standard matrix element notation

in the following way:

55O

for

for

bkl -" C 1

bk(+l)
C1 -* bkj

l<j< N-l

1/C 1 -, bkN

bil -. C z

bi{j+l} - Czbkj -. bij

i_ k <N

where b.. is a typical element of B, in the ith row and jth column.
1j

kth row is the pivot row.

The matrix A must have the following properties:

a.

b.

C.

The

A must be nonsingular.

The first element of the first row of A must be nonzero.

A zero may not develop in the pivot element position of the

matrix during inversion.

Example:

The following matrices will be considered to be singular

by INV:

[: :1 [: :]

551

o Subroutines Used

CDOUT

552

553

/ ,/
J

J

_0

2N v
;

554

Program De sc ription

I. Identification

a. Routine Label

INVRS

b. Name

Real Matrix Inversion Subroutine

Z. Function

The subroutine transforms a matrix to its inverse.

treated in several different ways, as described below.

3. Programming Language

FORTRAN H

,

u

Singularity is

Usage

a. Calling Sequence

CALL INVRS (P, N, KSIG)

b. Entry Conditions

P = An N x N real matrix to be inverted

N = The dimension of P

KSIG = The matrix singularity flag (see "Method")

c. Exit Conditions

1m is transformed to the inverse of 1D or some other matrix

as described under "Method."

N is unchanged.

KSIG is set to either zero or one as described under "Method."

Error Exits

No error exit is ever made. However, under certain conditions,

KSIG is set, and a message "SINGULAR MATRIX" is printed.

555 "

1 Definition of Identifiers

P = The N x N real matrix to be inverted

N = The dimension of P

KSIG = The singularity flag

DET = The determinate of the matrix

J = An index used for counting at several places in the rou-

tine. When used in P, it is usually the column number.

1 = An index used for counting. In P, it is usually the row

numb e r.

J1 = A counter which is set to one plus the number of trans-

formations that have been completed. It ranges from 1

to N.

IMAX = The row number of the maximum element in the first col-

umn of P, prior to an inversion step

PIVOT = The value of the maximum element in column one prior

to an inversion step

PMAX = The absolute value of PIVOT

L = A vector representing the row permutation matrix. L(Jll

contains the number of pivot row chosen for the Jlth in-

version step. If no pivot was chosen for the Jlth step,

L(J1) will be zero. The dimension of L is assumed to be

N but can be no greater than 100.

Ll = A vector representing the column permutation matrix.

The location L(i) contains the step number (J1) at which

the ith row was pivot row. If L(i) is zero, the ith row

has not been used. The dimension of L1 is assumed to

be N but can be no greater than 100.

Lg = A vector used to record row and column exchanges that

are required after the transformation has been com-

pleted. As with L and L1, its dimension is assumed to

be N, but is actually 100.

L3 = A vector whose L(J) entry is zero if every element in the
-30

jth column of the original P matrix was less than l0

556

If some element was greater than 10 -30 , then L(J) con-

tains the row number of the last element; counting from

row one, that was greater than 10 -30.

PM = The first element of row currently being operated upon

during an inversion step

PPM = The product of PM/PIVOT times the element in the pivot

row that is in the column currently being operated upon

DIFA - A subroutine that inspects additions and subtractions dur-

ing inversion to determine whether or not the result is

largely roundoff.

6. Method

The basic inversion algorithm is standard and is discussed in
1

a number of sources. The basic algorithm will be briefly described.

A more thorough presentation of the subroutine's deviations from stand-

ard procedures will be made.

a. Basic Algorithm

Matrix inversion in its basic form can be explained in the

following way: Consider the real N x N matrix P, augmented by the

identity matrix.

A sequence of N matrices B. is found which transforms P into the iden-
1

tity matrix and I into some other matrix.

B 1 xB2x • • • B N P I = I!Blx • • • B N

1Ral.qton and Will, Mathematical Methods for Digital Computers. New
York: John Wiley and Sons, 1960.

557

However, the definition of P-1 is

-1
P P=I

and the process, if it exists, replaces the original identify matrix with

p-1. The process of trans£orming one column of P into a unit vector
1

is the well known pivot transformation formula.

Wik

wij "--" wij - Wkj wkk

for all i except i : k
and for all j

_-- Wkj for all j
Wkj Wkk

where the kth column is being transformed into the kth unit vector.

This is equivalent to the kth basis change matrix.

B k =

1

0

- (Wik/Wkk)

-W2k/Wkk

(l/Wg k)

-Wnk/Wkk

0

lIbid.

558

In more complicated algorithms, an effort is made to minimize

the roundoff error by choosing Wkk not in sequence, but in a way that
maximizes its magnitude. The result of this "positioning for size" is

that P is not transformed into the identity matrix, but into an identity

matrix with its rows permuted. Let this matrix be Q. N transforma-

tions D. have then been defined such that

Dl D2 DNID 1 xD 2 • • • D N P I = Q, x • • •

A property of any permutation matrix is

Q-I = QT

where Q-1 is also a permutation matrix. We now have

(D 1 xD 2. • • DN) P = Q

and

QT(D 1 x D 2- • • DN) p = QTQ = Q-IQ = I

By definition

p- 1 QT(D 1= x D z • • • DN)

Thus, when the pivot rows are not chosen in sequence, the inverse may

be retrieved by rearranging the rows of the resulting matrix.

One additional complication is introduced to save computer stor-

age space. It is that P is not augmented by I, but instead by Q. The

process then becomes:

559

olD_ DNI_°I=!°DIDz °_°1

i . QT IDlxD Z" "DNx Q P= Q

QTIDlXDz.. . DNxQIO p=I

p-I =OTIDIXDz'"" DNXQI QT

The rows and the columns of the result must now be rearranged to get

the inver s e.

P °

D1Dz = 0

I 0 0

560

p1oT°I°2°TI°[::]

pp1i:°11[110]1

b. Modified Algorithm

The INVRS routine requires the permutation of both rows

and columns of the resultant matrix and is thus similar to the exam-

ple above. To save space, however, Q is not initially stored in the

computer. In a like manner, Q is not retained in core as it is formed.

The computation proceeds in roughly the following manner:

(1) L, L1, and L3 are set to zero. L2 is set to 1, 2,

3," • • N, J1 is set to 1.

(2) A search of column one is performed to find the larg-

est magnitude element which

o is not in a previous pivot row and

o is not in a row that has the same number as a column,

in the original P matrix, having no element greater
-30

in magnitude than 10 .

561

(3)

(4)

(5)

(6)

(7)

(8)

IMAX is set to the pivot row number and PIVOT is

set to the pivot element value. LI(MAX) is set to

J1 to indicate that row IMAXhas been used on the Jlst

step. L(JI) is set to IMAX to indicate that the Jlst

column of Q is the IMAXth unit vector.

Row IMAX is divided by PIVOT and shifted one column

to the left. The Nth element of row IMAX is set to

I/PIVOT.

Remembering that row IMAX is shifted, the subtrac-

tion phase of the elimination algorithm is performed

on each of the N - 1 rows. Starting from the left in

each row, the new element value is computed and shift_

left one column. The Nth element of each non-pivot

row is replaced by -1/PIVOT times the value of the

first element of the row, prior to the row-shifting

operation.

When the elimination process has been performed

for each row, J1 is increased. If J1 is greater than

N, we go to (8), otherwise back to step (Z).

If, after the search for a pivot element, it is found

that no eligible element is greater than 10 -30, one

of two courses is taken.

(a) If any element of the Jlst column was greater

than 10 -30 in the original P matrix, KSIG is set

to zero, "SINGULAR MATRIX" is printed, and

the routine is exited.

(b) If all elements of the Jlst column of the orig-

inal P were less than 10 -30 , then all columns

of the current P matrix are shifted one column

to the left, and step (6) is carried out.

When N steps have been performed, L contains a rep-

resentation of the Q (permutation) matrix. It is used

to perform an inverse row permutation upon the matr:

that has replaced P. During permutation, if a zero

56Z

{9)

(10)

Example Z:

entry is found in L, the corresponding row is cleared

to zero. Such rows have the same numbers as col-
-30

umns in the original P that were less than 10 .

Using the LZ vector representation of the Q (permu-

tation) matrix, the columns are permuted. Any col-

umn corresponding to a column of the original P which

had no element greater in magnitude than 10 -30 is

set at zero. A -1 is then inserted in the diagonal ele-

ment of such columns.

The subroutine is exited with KSIG = 1.

0 0 L=
Z 0

From left to right and down, the sequence of operations is

approximate ly:

[!°i,]oo

[i [io [iool0 1 0 1 0 1 1/Z 0
o o l/Z1 o l/ZJ o t/zJ

[oooj [!o,,,.1o,[ooO ,21o fooO ! 1
0 1/ 0 1t2J 0 0 1/ [0 l/Z

At this point, the elimination is completed. Pivot rows were Z,

3, and 1, in that order. Therefore, L and L1 are

563 "

[2]L= 3

1

L2 is always

The permutation proceeds as follows:

o o l/Z
l/z o o

o l/z o [1,200]o o llZ Lz =
o llZ o

o °I/zl/z o]
o I/Z]

The row permutation is complete. Reset L2 to:

il[°° [ilo tlz tlz o I LZ--
o o 112 o o J

o l/z[Lz :
l/z o o .I

564

The column permutation is complete.

[Olo [!0] [oo]o l/Z / o o = o 1 o
112 o o j z o o o 1

Example 3:

If P has zero columns:

[!o2]P= 0 0
0 0

Briefly, the results are

The results of permutation and column and row ze_roing are

L2 =

[i1/2oO1!2][i 000?]Lio°°l/2°°]L2[!J

[!]i1o o][0o o!] [i]L2 = 0 -I -I L2 =
o o llZ llZ o

c. Comments on Modified Algorithm

The column shifting and the use of L, L1, and LZ for per-

mutation are effective space-saving devices.

When P initially has zero columns, clearly no inverse exists.

In this one instance of singularity, the routine essentially strikes out

565

k

all rows that correspond to zero columns. The resulting reduced ma-

trix is then inverted. Except for the inverted submatrix, all other ele-

ments are set to zero. Then, minus ones are inserted on the diagonal

locations of the zero rows and columns. Although the minus ones may

be scattered throughout the matrix, a simpler situation can be arranged

by defining a P of the following form:

f

p = I0 PIZ

[0 PZZ

In this case, the routine will produce a matrix of the form:

H __

ii1 1 0 11
P; z

This is clearly not the inverse, since

H P=

IZl J

However, if we have a set of simultaneous equations to be solved

P X= B

The zero column condition yields

X ___ [Xl]x2i-II1°]0P221[::]
566

X 1 -- -Ill B 1

-I B2X2 = P22

It must therefore be concluded that INVRS is not a generalized

inversion routine and should not be used as such.

8. Other Subroutines Used

ABSF, DIFA, DUMP.

567

C O""f,f. _ .T

. t,

_ £ .--_ .z

f I

i_.z-s _z-zA/

,r , i

Tg JZ_

C L ---'-zT./.

>

C ' o'--,_ ._,,L_/T-X

-f

; 1,10

_'"ms

_O
f-lPO0 I -_ P_P_K

L" pC._) --_ PrW.0T ._•!- _ ,.T-P.'L__F, -

: _o _"

• (z.nx _ L (Jib)

f

5_8

e

)

(

(

C

)

|

/

/

I

f
" . ,.

• (-£5 r'_MA_

_v,o
(- pC_) -',

f

I.

)

)

)
®

. . .-

t.

• . -. ,..

!

569 .. -

o

)

i

ye_

< >_°' .. -: T5 _2/V ">

• _-,/e $

' " " _.. J --'_.Z"

(E) _ 'Y
' _ _z'sz(sO -o .z

_ _ yes

>

t ----_ ..T >

C

I

°.

_'÷£ --_2::

.

y_O

%, ° . .°,

', 7"

.... . ,..,

®
e t

< _-_ po)=o_. _>

I

• e,_ UL_

.. -"

. . _ , -

i

.i

• ',: . , _ _ L

..-...,.,...: . .

.) " "

i

)
..)

• i_ _'

", ." " . : ,
.;: . :...

, . ,°,.. • ,

." • ,,

I

• %- ,, . • .

I

572

Program Description

l. Identification

a. Routine Label

MULT

b. Name

Matrix Multiply Subroutine

2. Function

Computes the product of two real,

3. Programming Language

FAP coded for use in FORTRAN II

4. Usage

a. Calling Sequence

CALL MULT (A, B, C, M,

b. Entry Conditions

single precision matrices.

A and

N, L)

from C.

C.

A = A matrix with M rows and L columns

B = A matrix with L rows and N columns

B may be the same matrix, but they must be different

Exit Conditions

C is a matrix, with M rows and N columns,

the following way:

computed in

C=A_B

where • represents matrix multiplication and A and B are unchanged.

d. Error Exits

None.

573

Definition of Identifiers

The following identifiers are used in the flow diagram,

necessarily in the subroutine:

[A] =

[B] --

[c] :

M =

N =

L =

ar =

The last address in matrix A

The last address in matrix B

The last address in matrix C

The number of columns in A

The number of columns in B

The number of columns in A and rows in B

but not

(La) :

L b =

(L c) =

k =

In ._

So

The first address of the row currently being operated upon

in matrix A

bc = The first address of the column turrently being operated

upon in matrix B

The address of the element in A currently being operated

upon

The element of A currently being operated upon

The address of the element in B currently being operated

upon

(Lb) = The element in B currently being operated upon

L = The address of the element in C currently being operated
c

upon

The element of C currently being operated upon

The dummy index used in forming the inner product of a

row inAwith a column in B. k ranges from Lto 1.

The index used for counting the rows of A that have been

processed, m ranges from M to 1.

n = The index used for counting the columns of B that have

been processed, n ranges from Nto 1.

Method

C is defined by the following formula:

L

C (i, j) = _ A(i, k) * B(k, j)
k=l

1 _i_M 1 <j _N

574

In the particular FAP implementation, the elements of C are gen-

erated column by column. The general logic is similar to the following

FORTRAN program:

DO 1 J=l, N

DO I I=I,M

SUM = 0.0

DO Z K=I, L

2 SUIV[= SUM + A(I, K) * B(K, J)

i c(I,J) : sum

END

The flow diagram represents more closely the method by which

the subroutine accomplishes the multiplication. For the purposes of

increased speed, the logic is arranged so that the appropriate matrix

element addresses may be rapidly formed from the previous one by

incrementing an index register. To accomplish this, the first address

of a row in A and a column in B are used as variables. To increment

across a row of A, one starts with the first address of the row and re-

peatedly subtract M. In a like manner, to increment down a column of

B, one starts with the first address of the column and repeatedly sub-

tracts one. The first row of A starts at [A] , the second row of A starts

at [A]-I, and the ith row of A starts at [A]-(i-1). The first column of

B starts at [B], the second column starts at [B]-L, and the jth column

starts at [B]-_-I)L.

To summarize the incrementing, let L be the location of any el-
a

ement in A and let L b be the location of any element in B. We then

have

I.

_o

Increment the column number by 1:

L -M-.L
a a

L b- I.,-,L b

Increment the row number by I:

L - 1-.L
a a

L b - 1 --,L b

575

Remembering that the last location of A is [A] and the last location of

B is [B], the address of any element may be generated by addition and

subtraction only.

The subroutine forms the addresses for the required M*N inner

products by the above described method.

576

I
Lo.-_--_ l-,a.L

I..O- I -'_ L I_ j

hO

M_LT

p,], L, _,
i,

r.c]---->L_.

f
ely"_ Lc_

bc "-_ Lb

t
SvM+ (-,), q

Lc-I --> Lc

V_--I --_ I,_

bc-L -_ be. i

-----[IZe,s4or_,xes I

........... .,

E.xl÷

577

I

Program Description

1. Identification

a. Routine Label

ROOT

b. Name

Solution of N Simultaneous Nonlinear Equations

g. Function

The subroutine enters SOLVE to perform Newton Raphson iteration

the independent variablesteps. If a step does not meet certain criteria,

increment is modified to improve convergence.

3. Programming System

FORTRAN II

4. Usage

a. Calling Sequence

CALL ROOT (F, X, P, FEPSL, FEPSL1,

IRRNT)

bo

be reduced

ITER, N, K,

Entry Conditions

F = The N dimensional vector of functions, fi ' which are to

to zero

X = The N dimensional vector of independent variables, x.1

P = The N x N matrix defined by

af.
1

Pij =
J

at various stages of completion, or its inverse.

FEPSL = A constant used in testing the independent variable

step size for convergence

FEPSL1 = A constant used in testing the vector F for

convergence

578

.

co

ITER = The maximum number of iterations allowed

N = The dimension of F and X. The number of equations

IPRNT = The number of iterations that will elapse before

diagnostic printing will commence

K

X1

X2

= The convergence flag, set by SOLVE

= The previous value of X

= The current value of the X correction

Exit Conditions

X = the value of X, computed by SOLVE, may be modified

by ROOT

d. Error Exits

None.

Definition of Identifiers

ICNT = An index that counts the number of exits from SOLVE.

ROOT performs a function only when ICNT = 0 and ICNT

=N+I .

KSW = A flag that indicates the mode of operation of the ROOT

routine:

KSW = 0 - the first entry of a particular solution

KSW = 1 - the /iX magnitude reduction mode (AX = XZ)

KSW = 2 - the AX one coordinate at a time reduction mode

(_X = XZ)

I = An index used at various places in the subroutine

BETA = A constant, ranging between 1 and 2-1 0, by which X is

multiplied in the magnitude reduction mode (KSW = 1,

/_X = X2)

SMP = For testing purposes, the sum of the absolute value of

the elements of F

SM = The value of SMP for the last Newton Raphson iteration

or for the last AX reduction step

579 "

XMAX = The element in X that has the largest magnitude

IMAX = The index of XMAX in X

6. Method

ROOT performs an operation every N + 1 entries into the routine.

For intermediate entries, it passes control to SOLVE. After SOLVE has

changed the X vector to a new value, ROOT inspects the change that the

correction has made in the function:

N

SMP = _. IFn+l(I) l

I=l

evaluated at Xn+ 1

Let SM be the value of the same function prior to the change in X:

N

SM = _, IFn(1) l

I=l

evaluated at X
n

The magnitudes of SMP and SM are compared.

IS SMP _ 100 SM ?

If the above is not true, KSW is set to 1, and X is changed to the follow-

ing value:

Xn+2= Xl +(1) XZ

where X1 is the previous value of X and

correction. SMP is now evaluated at X .
n

XZ is the Newton Raphson

580

N

SMP = _ IFn+z(I) l

I--1

evaluated at xn+ z

The test is repeated with the new SMP,

For k failures of the test,

and the old SM evaluated at X .
n

k
1

Xn+l+ k = Xl + _ XZ

SMP =

N

IFn+l+k(I) I

I=l
evaluated at Xn+l+ k

N

SM = _ IFn(I) I evaluated at X n

I=l

During this process, SOLVE is bypassed. If SMP is not reduced suffi-

ciently in 10 steps (k = 10), an alternative approach is tried.

When 10 of the steps have been completed, and the criterion is not

satisfied, KSW is set to Z and X is recomputed as follows:

Xn+12 = X +n

"I

I,

l/Z

Oc

o

XZ

"1

1

where the 1/Z is in the same row as the largest n_agnitude element of

XZ. Let M h be defined by

M h =

"1 0"

1

1/Z

1

0 1

581

where the 1]2 is in the same row as the largest magnitude element 0f

the vector

Mh_ 1 Mh_ 2 M 1 X 2

After h steps, X is then

Xn+ll+h = Mh Mh-1 Mh-z M 1 X2

For each of these reductions the following test is made:

IS SMP ": 5 SM

where SM is evaluated at X and SMP is evaluated at Xn+ll+h.,n

Whenever one of the tests is satisfied, KSW is set to 1 and a new

Newton Raphson step is initiated. From this point on, the values of X

and F generated by the above process are used in place of the X n and

F n generated by SOLVE.

Example

Assume that we have entered SOLVE and have the following vectors:

[:] [:0241Xl= XZ = X=

OZ4J IOZ4J

We also have SM evaluated at Xl and SMP evaluated at X. Assume

SMP < 100 SM

for the following 10 steps:

[::][',:1[:1[11[:1[',]
582

When both elements have been reduced to 1 with no success, a new stra-

tegy is tried:

II°2"lf512
LlOZ4J [lOZ4J 51 L51ZJ

zso r1281ii] 6,
The above is continued until:

To Subroutine s Used

SOLVE

583

@
F),M _(ZMAX]

t

)
. _ x_ (z_Ax)---- I

J

584

Program Description

1. Identification

a. Routine Label

SHFDI

b. Name

Move Residual to FVR

2. Function

The difference between FVP and another vector is inserted into FVR.

3. Programming System

FORTRAN II

4.

a. Calling Sec_uence

CALL SHFDI (FVR, FV31, FV41; FVP, LNG, LNL)

b. Entry Conditions

FV31 = A column vector with LNG elements

FV41 = A column vector with LNL elements

FVP = A column vector with LNL + LNG elements

LNG = The dimension of FV31

LNL = The dimension of FV41

c. Exit Conditions

FVR = A vector with LNL + LNG elements which is set to a

value defined under "Method. "

d. Error Exits

None.

5. Method

The first LNG elements of FVR are computed as follows:

585

FV31 (i) - FVP(i) _ FVR(i)

1 _< i _< LNG

The next LNL elements of FVR are

FV41(i) - FVP(i) _ FVR(i)

LNG + 1S iSLNG + LNL

Either LNG, LNL, or both, may be zero.

In matrix notation, the function of the subroutine is

FV41

586

Program Description

1. Identification

ZB

a. Routine Label

SHFIN

b. Name

Move FVP into FV31 and FV41

Function

The first subvector of FVP is moved to FV31, and the second sub-

vector of FVP is moved to FV41.

3. Programming System

FORTRAN II

4. Usage

a. Calling Sequence

Call SHFIN (FVP, FV31, FV41, LNG, LNL)

b. Entry Conditions

FVP = A column vector with LNG + LNL elements

LNG = The number of elements in FV31

LNL = The number of elements in FV41

c. Exit Conditions

FV31 = A column vector with LNG elements

FV41 = A column vector with LNL elements

The first LNG elements of FVP are moved to FV31. The

next LNL elements of FVP are moved to FV41. FVP remains unchanged.

d. Error Exits

None.

5. Method

The dimensions LNG and LNL are tested so that either LNG or LNL,

or both, may be zero.

587

The move may be represented by the following diagram:

FVP I
T

LNG

LNL

i

FV31

FV41

588

Program Description

l. Identification

a. Routine Label

SHFTO

b. Name

2. Function

The vectors FV31 and FV41 are inserted into FVP.

3. Programming System

FORTRAN II

4. Usage

a. Calling Sequence

CALL SHFTO (FVP, FV31, FV41, LNG, LNL)

b. Entry Conditions

FV31 = A vector with LNG elements

FV41 = A vector with LNL elements

LNG = The dimension of FV31

LNL = The dimension of FV41

c. Exit Conditions

FVP = A vector with LNG + LNL elements

The vectors FV31 and FV41 are moved to FVP as described under

"Method."

d. Error Exits

None

5. Method

FV31 and FV41 are treated as subvectors of the same vector and

moved to FVP. FV31 is inserted into locations 1 to LNG of FVP. Lo-

cations LNG + 1 to LNG + LNL are filled by FV41. The vectors FV31

and FV41 are left unchanged.

589

°--I-I-"_1-----------+]:,_ • _vPI-.......

LNLj L'-
Either LNG, LNL, or both, may be zero.

LN G+ LN L

590

.Program Description

1. Identification

a. Routine Label

SOLVE

b. Name

Simultaneous Nonlinear Equation Solver

Z. Function

In conjunction with a user-supplied FORTRAN II program for eval-

uating the functions representing the equations, the subroutine employs

the Newton Raphson method to compute the solution of N simultaneous

nonlinear equations to a specified accuracy.

3. Programming System

°.

FORTRAN II

4. Usage

a. Calling Sequence

CALL SOLVE (F, X, P, FEPSL, INTER, N, K, IPRNT,

xz, CR)

b. Entry Conditions

F = An N dimensional column vector whose entries

are the values of the N functions that are being

reduced to zero. F is evaluated at X.

X = The N dimension independent variable vector

FEPSL = A parameter used to test AX for convergence

FEPSL1 = A parameter used to test F for convergence

ITER = The maximum number of iterations that may be

performed

N = The number of equations

IPRNT = The number of iterations that will elapse before

iteration data begins to print

591

only after convergence is attained (K=l).

tions, see "Method."

c. Exit Conditions

X = After the convergence criteria have been satisfied,

X contains the solutions to the simultaneous equations

P = An N x N matrix containing the inverse of the partial

matrix of the system of equations

K = the convergence flag having the following meanings:

K = 0 (no convergence)

K = 1 (convergence criteria satisfied)

K = 2 (maximum iterations exceeded)

X2 = the last correction to X (AX)

CR = The previous value of X

The above conditions, with the exception of those for K, hold true

For intermediate exit condi-

d. Error Exits

Although no error exits are made by the subroutine, when

K is set to 1, the maximum number of iterations has been exceeded.

5. Definition of Identifiers

K = The convergence flag

SSQ = The square of the magnitude of the vector F

SSQS = The maximum SSQ computed during the solution

ITR = The internal subroutine index that is used to count the

number of iterations. An iteration requires N + l sub-

routine entries.

IPRNT = The control constant for printing iteration data. Print-

ing commences after IPRNT iterations have been

completed.

F = The N dimensional vector of functions to be reduced to

zero

FP = An N dimensional vector containing the negative of the

value of F computed prior to the first entry of an

iteration

592

NI =

CRR =

CR =

NJ =

PMAX =

FSTEP =

FPL =

XRND =

p _.

A row index used at various places in the subroutine

The X vector that produced the larges SSQ

The value of the X vector upon the first subroutine entry

of an iteration

The iridex used for counting the N subroutine entries

during which P is computed

Not used

The number by which one of the elements of X is incre-

mented for computing one of the columns of P

A location containing -FP(NI) during the P matrix

evaluation

A constant used to determine whether or not an exces-

sive roundoff error has occurred in the cbmputation of

of a particular element of F and FP

Prior to matrix inversion, P contains the approximate

partial matrix defined by:

DxF= 8F(1) =_ AF(NI).8X(J) - AX(NJ) = P

INVRS = The subroutine used for inverting P

KSIG = The singular matrix flag, set by INVRS, which has the

following meaning:

KSIG = 0 (nonsingular matrix)

KSIG = 1 (singular matrix)

SUM = The location used for accumulating the row-column inner

product during matrix multiplication

6. Method

a. The Algorithm

It is assumed that the SOLVE subroutine is imbedded in

a FORTRAN LI program of the form shown in Exhibit 18.

593

ye8

Set X to ita

e stimate d

value

t
Compute

F{X)

t_
/ \ -

K-..O

EXHIBIT 18 - FORTRAN II PROGRAM USING SOLVE FOR

THE SOLUTION OF EQUATIONS

594

The routine is not completely general in that the function vector

F is assumed to have a specified form.

F = -X + G-If

where G -I is a real, nonsingular, N x N matrix and I is an N dimen-

sional vector of functions of X. The partial derivative of F is defined

with respect to X as

DxF = [8X(j) j

where F(i) is the ith function of F

Assuming the nth estimate for

formula for finding Xn÷ 1 is

In the subroutine, F
n

N subsequent entries,

and X(j) is the jth variable of X.

X is known, the Newton Raphson

Xn+ 1 = X n - (D Fn)-I F n

to approximate a column of

defined as:

is computed upon the first entry. For each of

one of the elements of X is perturbed in order

D F . Let the kth perturbation of X be
x n

X k =
n

u

0

0

.o

d* Xn(k)

0

0

where X (k) is the kth element of vector
n

is then approximately:

X . The jth column of D F
n x

595 '

jth column of D F__
x

-FIXn]+F[_x +X k]

X (k) {d)
n

where the quantity within the brackets following

of X at which F is evaluated.

The constant d is chosen as follows:

F defines the value

if X
n

if X
n

(k) > 10 -20 then d : 10 -3

(k) _ 10 -2 then d = 10 -20

Convergence is considered to have been attained if:

_5x10

I _i _N

-8

or if the following two criteria are met:

IXn+l (i) - Xn(i)Xn(i)
FEPSL

I Fn(i)Xn+ 1(i) I

1 _;i<N

< FEPSLI

b. Implications of the Assumed Equation Form

In a number of places in the program, it is assumed

that the functions, F , are of the form

-I
F=G l-X-X

596

Whenever the INVRS routine indicates singularity of the P ma-

trix by setting KSIG to one, the normal Newton Raphson formula is

abandoned, and Xn+ 1 is computed by the following formula:

Xn+ 1 = -X + F = -X + X + G-If = G-Ifn n n n

A feature of the INVRS routine will result in the use of the above

formula for selected elements of Xn+ 1 and the Newton Raphson for-

mula for the remaining elements. If it is assumed that the first k

columns of the partial derivative matrix are zero, we have

P = _ DxF
P22 j

The inverse routine will compute a matrix of the form

Applying the Newton Raphson formula yields:

]r:l [-:n+l X

:Lxn J+Xn+ 1 = Xn + 1 0] [_4]-1 = X + P -1 *
P22 [-FZJ n n (-Fn)

•the transformation of

X 1 = X 1 + F 1
n+l n n

P produced by INVRS

X 2 = X z -1 F 2
n+l n " P22 n

597

Note that the first equation above is similar to the formula used

in the singular matrix case. The second equation is similar to the

Newton Raphson iteration formula.

The assumed form of the function F

F : G-II -X

has certain implications. Some of these are

(1)

(z)

The matrix inverse
.-1

must exist in some

neighborhood of the s_;[ution.

The inverse of the matrix:

D F=Dx x IG-1I - UI

must also exist in some neighborhood of the

solution. U is the identity matrix.

If the matrix G is constant and nonsingular, the Newton Raphson

formula may be expressed as

F=G-1 I_X

D F = G-ID I -U
x x

l'x -if:I°-',xI-°']-':'°x'_o,-!o

Xn+ 1 : X n -(nxl n -G)-IG [G'IIn - Xn] : X n - (nxI
-G X

n n

It should be noted that this is the same formula that would be de-

rived from the function F 1 defined as

F 1 =I-GX

D F 1 = D I-GX x

598

I - 1 -G X n)Xn+l = Xn " DXIn -G (In

-1
if the G matrix is a function of X , G can no longer be fac-

tored out of the expression, and the formula is

Co

F=G "I I-X

Xn+ 1 = X n - IDx(G'II -X)I'I. (G-II -X)

values of the index u

iteration.

SUBROUTINES USED

Diagnostic Printout

When the number of iterations exceeds IPRNT, the

with X(u) and F(u} are printed prior to each

INVRS

599

600

no

O--_K

Yes

601

Program Description

1. Identification

a. Routine Label

SUM

b. Name

_o

.

Matrix Sum or Difference Subroutine

Function

Computes the sum or difference of two matrices.

Programming System

Coded in FAP for use in FORTRAN II.

Usage

a. Calling Secluence

CALL PSUM {A, B, C, M, N)

CALL MSUM {A, B, C, M, N}

b. Entry Conditions

A = A real matrix with M rows and N columns

B = A real matrix with M rows and N columns

M = The number of rows in A, B, and C

N = The number of columns in A, B, and C

c. Exit Conditions

For the PSUM entry C is set to:

,

C=A+B

where the + represents matrix addition.

6O2

, Definition of Identifier s

The following identifiers are used in the flow diagram:

[A] = The last address of matrix A

[B] = The last address of matrix B

[C] = The last address of matrix C

a = The current address in A

b = The current address in B

c = The current address in C

(a) = The contents of a

(b) = The contents of b

(c) = The contents of c

M = The number of rows in A, B, and C

N = The number of columns in A, B, and C

k = An index used to count the M x N steps of the sum or

difference

For the MSUIV[entry C is set to:

C=A-B

where the - represents matrix subtraction.

In this subroutine, A, B, and C may be the same or different

matrices.

6. Error Exits

None.

7. Method

If aij, bij, and Cij are typical elements in A, B, and C respec-

tively, then the sum and difference are defined as follows:

P SUM:

c.. = a.. + b.
1j 13 1j

603 "

M SUM:

C.. = a., - b.,
1j D D

In the FAP implementation, the matrices are treated as column

matrices having M x N elements. A single loop of M x N steps accom-

plishes the addition or subtraction. The PSUM entry inserts an add

command into the loop, and the MSUM entry inserts a subtract command.

8. Other Subroutines Used

None.

604

MSu_4 ,

se_ up -,tar- Is'ub ÷_ c'f"

re_l s4_ s

-f

tc]_ c_

........... t

b-I_b

C.-I_C.

,S t_r.S

_0

605

Program Description

1. Identification

a. Routine Label

ZEROX

b. Name

Clear Matrix to Zero

2. Function

Zeros a specified number of locations in a matrix.

3. Programming

FAP coded for use in FORTRAN II.

4. Usage

a. Calling Sequence

CALL Z]EROX (A, N}

b. Entry Conditions

A = The matrix to be cleared to zero

N = The number of locations, starting with the fir st,

to be cleared

c.]Exit Conditions

Zeros are inserted,

tions have been cleared.

d. Error]Exits

column by column,

J

sequential locations in descending order,

of A.

that are

into A until N loca-

None.

Method

A FAP program uses an indexed store zero command to clear N

starting with the last location

606

Program Description

1. Identification

a. Routine Label

UTF, RSTOP, STOP, ULF

b. Name

Independent variable stop maintenance routine.

Z. Function

The subroutine updates the output time stop during integration.

In addition, two rectangular pulse functions are provided for forming

discontinuous functions of time.

3. Pro_r ammin_ System

FAP

4. Usage

a. Calling Sequence

RSTOP (FSTOP, FT, FHC) UTF(X)

CALL STOP (FOUT, LINT) ULF(X)

b. Entry Conditions

FSTOP = Value of FT at which output has or will occur

FT = The independent variable time

THC = The integration time step

TOUT = The time intervals at which output will occur

X = The time at which UTF or ULF is to change state

c. Exit Conditions

TOUT will be updated to next output time and/or next UTF

or ULF change-of-state time.

LINT is set to flag no discontinuity (0) or a discontinuity

(1) in some function.

UFT = one for 0 • FT _ X and zero otherwise

ULF = zero for 0 _ FT • X and one otherwise.

607

d. Error Exits

Name.

5. Definition of Identifiers

TEM1 = The time of the next regular output time stop

STOPZ = The time of the next UTF or ULF time stop

6. Method

The independent variable stop time, FSTOP, is set to the next

regular printout time or the next ULF or UTF change-of-state time,

whichever is closest to the present time FT. Time differences are

computed in un-normalized modulo two arithmetic. Thus two times

are considered equal when the number of significant digits in their

difference is less than a specified threshold.

7. Other Subroutines Used

None.

8. Using Subroutines

Execution program.

6O8

sz_ j

5 -pop]..-, ,
_ ,-opZ i

E'='Tj/ //_IE

t
[_.11 o_ es --_
I ,STop?_ J

f
.. OZ-DT

t

609

®

t

1";0

nO

'POu-r-I 8rtS_

57oP_ ,_cc

/"

./ T_

---_ _<-r _ O,

I

I I.......(,CIt o',' e _

TF P4

\

5"IcPZ-

011 c_,r_.,
"_ //

I t t
/

"-I_

q-t" o.'_

;/0"_ £- /-,',C 1

F

"-_., 7 r--P4 J

g ---'_L INT

t
I_''_ I--_ S'ro PT.. j

,_Q5

I ,, .

L(,,÷ 4./o-_).,, FT

--_ F,$'rOP l

g.//

._,5-_op_FO_-1

I[OLD'r-- r7)*"
---_ Ad C .,!

/A_.c. > --...., w o

"les t _

J TE"--_OCDT I

t
i

J

1
[I----_ l..llV7 !

61t

._..

,_ -/_,_._
_-. J

L_-_--- _cc- .I

I v_O

UL,L-

J

I, _ ,at<.. _-<//&c > "

"_ 7"

i 7""

X -'-_&_oF'7.-[

f
612

VII. DOCUMENTATION SYMBOLS AND CONVENTIONS

<

<

>

>

U

OorN_

N

X

(x)

(X)m, n

d(X)

a(X)

t(x)

((x))

Ix]

--P .

0

I

1

:z

L_bCli)

Le s s than

Less than or equal to

Equal to

Greater than or equal to

Greater than

Not equal to

Logical inclusive OR

Logical exclusive OR

Logical AND

Logical Negation

A:B, compare A with B

Location X

Contents of location X

Contents of bit positions (msb)m through (isb)n

at address X

Decrement portion of X

Address portion of X

Tag portion of X

Contents of location whose address is contained in

X (indirect address)

Address of location whose contents are X

Replaces

Letter "O"

Digit zero

Letter I

Digit one

Letter "Z"

Parameter that indicates index register manipulation

where i = I, Z, 3 or 4

613

Other Conventions

For one-dimensional lists (strings): If the list name is L, then

First element = L 1

Second element = L 2

etc.

L
n

In the TAG data structure, if A is the head of the list:

L 1 -= (d(A))

L 2 = (a(d(A))) = (a(L1)) etc.

614

