• -, ٠ . N67 25899 i> FACILITY FORM 602 THRU ê (CODE) 3 ſ MASA CR OR TMX OR AD NUMBER (CATEGORY)

https://ntrs.nasa.gov/search.jsp?R=19670016570 2020-03-12T11:30:58+00:00Z

1

IOCKHEED MISSILES & SPACE COMPANY
 HUNTSVILLE RESEARCH & ENGINEERING CENTER
 HUNTSVILLE RESEARCH PARK
 4800 BRADFORD DRIVE, HUNTSVILLE, ALABAMA

AUTOMATED NOSE FAIRING DESIGN -- HONEYCOMB SANDWICH CONSTRUCTION

Contract NAS8-15485

APPROVED BY:

J. S. Farrior Resident Manager Huntsville R & E Center

9 November 1965

FOREWORD

This Technical Report describes one of three computer programs which were developed as tools for generating parametric weight and design data for nose fairings suitable for Saturn-class payloads. The work was performed by Lockheed Missiles & Space Company, Huntsville Research & Engineering Center, with support from the LMSC/Palo Alto Research Laboratories, for the National Aeronautics and Space Administration/ Marshall Space Flight Center under Contract NAS8-15485, from July through November 1965.

The three computer programs developed under this contract are described in the following three reports.

- 1. Automated Nose Fairing Design -- Ring and Skin Construction, LMSC Technical Report LMSC/HREC A712552, November 1965.
- 2. Automated Nose Fairing Design -- Ring, Skin and Stringer Construction, LMSC Technical Report LMSC/HREC A712572, November 1965.
- 3. Automated Nose Fairing Design -- Honeycomb Sandwich Construction, LMSC Technical Report LMSC/HREC A712573, November 1965.

Many of the subroutines and the methods of specifying external geometry and aerodynamics loads are common to all three programs.

This report describes the computer program for honeycomb sandwich construction. Major contributors to the development of this computer program are B. O. Almroth of the Palo Alto Research Laboratories and E. S. Hendrix, I. M. Landis, and Z. Adams of Huntsville Research & Engineering Center. Appendix K of this report was written by B. O. Almroth, and the remainder was written by Z. Adams.

SUMMARY

The computer program described in this report synthesizes nearoptimum designs for honeycomb sandwich nose fairings with an external geometry consisting of up to ten intersecting conical frustums (or cylinders) capped with a spherical nose cap. The combined effects of bending moments, axial loading due to drag, and lateral pressure are considered in performing the design. Either standard gauges or non-standard gauges can be used for faces and ribbons.

The main part of the report is devoted to description of the logic followed in designing a fairing, description of the computer program, and instructions on operation of the program. The program listing and details of the methods of analysis used in design of fairing appear in the Appendixes.

TABLE OF CONTENTS

	Page
FOREWORD	ii
SUMMARY	iii
INTRODUCTION	1
TECHNICAL DISCUSSION	4
1.0 THE MAIN PROGRAM	4
1.1 Terminology and Geometric Parameters	4
1.2 Design Logic	4
1.3 Required Input Data	6
1.4 The Pressure Profile	7
1.5 Material Properties	10
1.6 Thermal Considerations	10
1.7 Standard Skin Gauges	11
1.8 Design Loads	11
1.9 Last Bay in the Frustum	11
1.10 Nose Cap Design	11
2.0 DESCRIPTION OF SUPPORTINES	11
2.0 DESCRIPTION OF SUBROUTINES	18
2.1 Subroutine THERML (Thermal Computations)	18
2.2 Subroutine TNOSST (Nose Cap Structure)	18
2.3 Subroutine AERO (Pressure Coefficients)	18
2.4 Subroutine LOAD (Bending Moment, Axial Force and	
Shear Force)	19
2.5 Subroutine PRESUR (Lateral Pressure)	20
2.6 Subroutine PROPTY (Material Properties)	20
2.7 Subroutine DIAM (Local Diameter)	21
2.8 Subroutine DLOD (Incremental Loads)	21
2.9 Subroutine RING (Ring Strength and Stiffness)	21
2.10 Subroutine RSTRES (Local Stress Level in Ring)	22
2.11 Subroutine IREQ (Required Moment of Inertia) 2.12 Subroutine INSTBL (Panel Stability)	22 22
3.0 INPUT FORMAT	22
4.0 SAMPLE PROBLEM	27
	<u> </u>
Les erenues	29

· --

TABLE OF CONTENTS (Continued)

Page

APPENDIX A	Program Listing	A-1
APPENDIX B	Definition of Variable Names	B-1
APPENDIX C	Aerodynamic Pressure Coefficients	C-1
APPENDIX D	Bending Moment, Loads and Shear Loads	D - 1
APPENDIX E	Lateral Pressure	E - 1
APPENDIX F	Face Wrinkling and Dimpling	F-1
APPENDIX G	Stiffening Ring Design	G - 1
APPENDIX H	Structural Design of Spherical Nose Cap	H-1
APPENDIX I	Effective Shear Modulus of Core	I - 1
APPENDIX J	Thermal Analysis	J - 1
APPENDIX K	General Instability Analysis of Honeycomb Sandwich Cylinders	K-1
	LIST OF ILLUSTRATIONS	
Figure l	Nose Fairing Geometry	2
Figure 2	Flow Chart Showing the Major Steps Performed in Optimizing the Design of a Multi-Frustrum Nose Fairing	3
Figure 3	Stiffner Cross-Section	5
Figure 4	Pressure Profile Used in Sample Problem	8
Figure 5	Circumferential Pressure Distrubution	9
Figure 6A	Computer Output for Sample Problem - Design Summary	13
Figure 6B	Computer Output for Sample Problem - Design Details	14

Figure 6CComputer Output for Sample Problem - Design
Details (continued)15Figure 6DComputer Output for Sample Problem - Loads
and Stresses16Figure 6EComputer Output for Sample Problem - Detailed
Loads17

INTRODUCTION

The computer program described in this report synthesizes nearoptimum structural designs for ring stiffened, honeycomb sandwich nose fairings. When the external geometry, aerodynamic loading, ring spacing, and a practical set of design constraints are given, the computer program selects a combination of honeycomb panel face thickness, core height and ring cross-section that gives a minimum fairing weight. Provisions have been made to use either standard or non-standard gauges of material for faces and ribbons. The external geometry can consist of up to ten intersecting conical frustums capped with a spherical nose cap. Figure 1 illustrates the external geometry and type of contruction.

A condensed flow chart illustrating the major logical steps performed by the program is shown in Figure 2. Design begins at the base of the fairing and moves toward the nose cap. Each bay is designed to withstand loads imposed by the interaction of bending moments, axial loading, lateral pressure and/or internal pressure. The combination of face thickness, core height, ribbon thickness, cell size and ring crosssection which results in minimum weight-to-volume ratio for a bay is considered to be the optimum design for that bay.

The computer program consists of the main program and a number of subroutines. The logical steps needed to design the fairing are performed in the main program. Specialized and repetitive functions are performed in the subroutines. This particular arrangement, as well as the liberal use of comment cards, is intended to facilitate future modifications.

Figure 1 - Nose Fairing Geometry

2-1

- Flow Chart Showing the Major Steps Performed in Optimizing the Design of a Multi-Frustum Nose Fairing -- Honeycomb Sandwich Construction Figure 2

2-2

SWD0357 SWD0358 SWD0347 SwD0348 SWD0349 SWD0350 SWD0352 SWD0353 SWD0354 SWD0355 SWD0356 SWD0359 SWD0360 SWD0362 SWD0363 SWD0365 SWD0366 SWD0351 SWD0364 SWD0368 SWD0369 SWD0370 SWD0378 SWD0361 SWD0367 UNSATISFACTORY • INCREASE CORE HEIGHT • IF A HEIGHT OF 4 INCHESSWD0372 SWD0374 SWD0375 SWD0376 SWD0371 SWD0373 SWD0377 â â IS REACHED AND THE DESIGN IS STILL UNSATISFACTORY . INCREASE AXIS. IF THE CELL HEIGHT TO WIDTH RATIO IS LESS THAN 5.0. APPLY A WARPAGE CORRECTION FACTOR BASED ON FIGURE 6 OF THE + (R + CBETA)**2 * (SIN(PHI))**2)) SBETA * (R + CBETA))/(A * (((1° + 1 + (R + CBETA)**2 * (SIN(PHI))**2)) SBETA * (R + CBETA))/(A * (((1• + SIDE. IF DESIGN IS SIDE. IF DESIGN IS CORE HEIGHT. (H/M)) + (S•1 / (H/M)**2) CHECK PANEL STABILITY ON WINDWARD SATISFACTORY · PROCEED TO CHECK LEEWARD PENZIEN AND DIDRIKKON PAPER. 2 ✓✓ ЧO 252 TRIBN * * (COS(PHI))**2) * TRIBN * * (COS(PHI))**2) MAKE FIRST ESTIMATE • GO TO 228 Y = 11.0+ •01 (CRG .GE. ANFIMN) GO TO 2.0) GO TO 229 (KG .EQ. 1) GO TO 98 GC2 * (1•0 (]•0 (GCORE * Id * S•0 + 7F FACE THICKNESS. (GCORE •GT• 5•0) = (6.3 \ •LT• 0•5) = PDESMX * ⊪ ≻ ⊻ •25 GC1 0.0 L Ш 41 SBETA**2 SBETA**2 1 11 (I.GT.1) Ħ 41 0 1 H 11 11 • GT • INSTBL IF (H/W **≥/I** CONTINUE CONTINUE I ~ CAL SC2 GC2 НЦ SCI Ŀ ыц LL من * * L. L L. 62 05 ⊁¥ 2 5 F I ۵ 228 251 υυυ O 00000

LMSC/HREC NU257*

SWD0379 SWD0380 SWD0383

234

۰ ۲

00 00

• 0 11 •

IF (KTFSTD

* 11

H

239

10

0 0

Ľ

.125

+ I

11

=

≻ ¥

I

GO TO 251

CONTINUE

229

SWD0382

SWD0381

SWD0385

SWD0384

A-11

TECHNICAL DISCUSSION

1.0 THE MAIN PROGRAM

1.1 Terminology and Geometric Parameters

Following are definitions of terms used in this technical discussion. The terms are also illustrated in Figure 1.

base	-	the larger end of the bay, frustum or fairing
bay	-	the conical frustum between two rings plus the ring at the upper end of this conical frustum
frustum	-	the conical frustum of fairing consisting of all bays having the same half angle
nose cap	-	the spherical segment which closes the top of the fairing.

The external geometry of the fairing is specified by the base diameter of the fairing (DBAS), by the half-angle of each frustum (THTA (NF)), and either the ratio of the top diameter of each frustum to the base diameter of the fairing (DOVDB (NF)), or (mandatory when the frustum is a cylinder) the length of the frustum (ALF (NF)). Frustums are numbered by index NF starting at the base of the fairing. Frustum geometry is completely described by the same parameters used to describe fairing geometry. Bay geometry is described by the base diameter of the bay (DSUBB), the half angle of the bay (THETA), and the length of the bay measured along the axis of symmetry (ALB). Bays within a frustum are numbered by index I starting at the base of the frustum. The outside diameter of a ring associated with a bay is equal to the top diameter of the bay. All dimensions of the ring cross-section are expressed in terms of the material thickness used to form the ring (see Figure 3). This thickness will be one of the standard gauges stored in the program.

1.2 Design Logic

The major logical steps followed in designing a nose fairing are shown in the condensed flow chart in Figure 2. In Appendix A, more detailed information is provided by a program listing which includes detailed comments describing in words the operations being performed. Definitions of the more commonly used variable names in this listing appear in Appendix B. The discussion which follows is supplemental to the information in the flow chart and program listing, and in general follows the sequence of the listing.

4

Figure 3 - Stiffener Cross-Section

LMSC/HREC A712573

1.3 Required Input Data

The following input data is required by the computer program:

- 1. External fairing geometry (Figure 1)
- 2. Design constraints
 - a. Minimum distance between rings, in.
 - b. Ring type (zee, hat, or angle), also flange and web thickness ratios see Figure 3.
 - c. Ring outstanding flange buckling stress level, psi.
- 3. Structural material
 - a. Kind of material to be used. (Certain properties of five materials are stored in the program. See Section 1.5 of Technical Discussion.)
 - b. Additional properties of sandwich face material
 - (1) Tensile allowable stress, psi
 - (2) Compressive allowable stress, psi
 - (3) Shear allowable stress, psi
 - (4) Young's modulus, psi
- 4. Aerodynamic data at a design point in the trajectory
 - a. Mach number
 - b. Dynamic pressure
 - c. Angle of attack
 - d. Difference between internal pressure of fairing and freestream pressure
- 5. Factor of safety (If no value is input, a factor of 1.4 will be used.)
- 6. Program controls

- a. Is pressure profile data input? If so, the type of lift data is indicated.
- b. The desired type of output is indicated. (See Section 1.13.)
- 7. Pressure profile data (optional). If a pressure profile is not input, it is computed in Subroutine AERO.

Detailed instructions on how to input this data are provided in Section 3.

1.4 The Pressure Profile

Whether input or computed, the system used to specify the pressure profile in the axial direction on the section of fairing composed of conical frustums is illustrated in Figure 4. LT is an index indicating station number, starting with the first station at the junction of the nose cap and top frustum. Uniform spacing between stations is not necessary. Two stations must be located at each intersection of the conical frustums. Where discontinuities in the pressure profile exist, two stations can be indicated for the same location.

The following three parameters are required by the computer program at each station.

1.	CPO (LT)	-	The pressure coefficient at zero angle of attack
2.	CPA (LT)	-	The difference between the pressure coefficient on the windward side when flying at an angle of attack and CPO (LT)
3.	XOD (LT)	-	The axial distance measured from the tip of the nose cap divided by the fairing base diameter

When the pressure profile is input to the program, three options are available for inputing lift data.

- 1. CPA (LT) as described above
- 2. CPA (LT) per radian angle of attack
- 3. $\frac{\partial}{(x/D)} \left(\frac{\partial C_N}{\partial \alpha}\right)$

In Option 3

- C_{N} = the normal force coefficient with the fairing base as a reference area
 - α = angle of attack in radians
- x/D = distance from the leading point in calibers

After they are read into the program, the lift data in Options 2 and 3 are converted to the form of Option 1. A sinusoidal pressure distribution (see Figure 5) in the circumferential direction is used in converting Option 3 to Option 1. Provisions can be made to read in other types of lift parameters, if the parameter can be converted to CPA (LT) after it is input.

8

Figure 5 - Circumferential Pressure Distribution

The option is available to either compute or input axial force and lift data for the nose cap. In either case they are specified by the following three parameters:

- 1. Drag coefficient with the base area of the nose cap as the reference area
- 2. Normal force coefficient per radian angle-of-attack with the base area of the nose cap as a reference area
- 3. The location of the center of lifting pressure measured from the base of the nose cap

1.5 Material Properties

Properties for the following five materials are now stored in the program in Subroutine PROPTY:

- 1. Aluminum
- 2. Magnesium
- 3. Titanium
- 4. Stainless steel
- 5. Lockalloy

Additional materials can be readily added to this list. Properties which are stored are as follows:

- 1. Modulus of elasticity
- 2. Poisson's ratio
- 3. Density
- 4. Maximum allowable temperature

If a value is input for maximum allowable temperature the stored value is not used.

The quantities stored in the program are sufficient for most of the program's operations. However, additional data is required for the shell buckling analysis. Since the shell buckling analysis is based upon elastic behavior, it is necessary to input a face cut-off stress level which will ensure that plasticity effects do not become significant.

1.6 Thermal Considerations

The maximum temperature reached by the skin due to aerodynamic heating can be controlled by placing a lower limit on the skin thickness to be used in the nose cap and the top frustum. These minimum thicknesses are computed in Subroutine THERML. The minimum thickness computed for the nose cap is based on heating at the stagnation point, and the minimum thickness for the top frustum is based on heating at the point at which the nose cap is tangent to the top frustum. The equations in Subroutine THERML are based on a nominal trajectory of two-stage Saturn V vehicle ascending to a 100 nautical mile circular orbit.

1.7 Standard Skin Gauges

Only standard gauges are used in designing stiffening rings. Either standard or non-standard gauges may be used for the sandwich faces and ribbons.

1.8 Design Loads

The individual bay is subjected to bending moments, axial forces and lateral pressure loads. Bending moments and axial forces at the base of the bay are computed in Subroutine LOAD, using the pressure profile data. These loads are then converted to line loads (force per unit of length on the circumference) on both the windward and leeward sides of the bay, and the factor of safety is applied.

The lateral pressure used in design of the bay is the difference between external and internal pressure multiplied by the factor of safety.

1.9 Last Bay in the Frustum

Before beginning the design of a bay, a check is made to determine if there is sufficient length remaining on the frustum for one more bay of minimum length. If there is not sufficient length for one more bay, the length of the last bay designed is added to the remaining undesigned length.

Additional weight is added to the top ring of each frustum to provide for attachment to the next frustum or nose cap.

1.10 Nose Cap Design

Both structural and thermal requirements are considered in the design of the nose cap. The thickness required to limit the temperature to the specified maximum is computed in Subroutine THERML. (For details of the thermal analysis see Appendix J.) The thickness required to withstand aerodynamic loads is computed in Subroutine TNOSST. (For details see Appendix H.) In both cases thickness is determined for conditions at the stagnation point. The greater of these two thicknesses is then used to design an unstiffened cap with uniform skin thickness. Nose cap skin thickness is not limited to standard gauges.

1.11 Output Data

Three options are available on the amount of detail provided by the output data.

1. Design summary only (Figure 6A)

- 2. Design summary plus design details (Figures 6A, 6B and 6C)
- 3. Design summary plus design details plus loads details (Figures 6A, 6B, 6C, 6D and 6E).

Most of the headings appearing in the output are self-explanatory. However, there are two which require some comment.

Weight Index	-	Weight of the bay divided by the inclosed volume of the bay.
Line Load	-	Force per running inch of circumferences, parallel

to the skin surface, normal to the circumferential direction. A factor of safety has been applied to this force.

	762.00 1.500 2.50 2.50 -U.000 3.373		0000°0 0°0000		NEI GHT	((18)	4194.14 1148.81 407.18	5635.12		11.396 0.0000 0.0009 0.0009 0.0009 0.000 0.000 0.001 0.01 0.
	0844 40464 40744 9061749 95141 4		TMPMAX = I TCBNTH =		USEFUL VØLUME	(CU FT)	9712.96 3446.23 040 30	14099.49		PDSPH TMINN * T TCAPSHAX * T TCAPSA TCAPAT * T TCAPAT TCAPAT * T TCAPAT TCAPAT TCAPAT * TCAP * T CAPAT * T TCAP * T T T T T T T T T T T T T T
	lsq		L'n.		2 G 0 L	BAYS	21 10			- NG - NA
	SNETT 104	LSTUMS	REA SUNS .	SECTION	PIN. GAUGE	(11)	0.C16J 0.C16J	0•10-0		GGRITY. I 5. In. 4. In. 1. DF Fair
LJADS	VEGREES JESIGN CJ	IGN BF FR	F . Thermal	FRUSTUM	MIN. BAY Length	(N I)	16.6 16.6	1 5.6	UESIGN	N, IN. F. L. REASANS E. IGHT, IN E. IGHT, IN M.C. ME. IGH
ACRJUYNAMI(SSURE PRESSURE, ERENCE AT 1 TUNS, PSI	NTS BR DES	SKIN, DEG. Guired Far	SUMMARY FOR	LENGTH	(1,1)	549.U 164.d	192.1	NZSE CAP	CSC CAP SKI SKIN, OLG- FUR THENGT FUR THENGT FUR THENGT FUR THENGT FUR T CALCULATE N CALCULATE N T. VULUME L
	SG. FT. YNAMIC PRE GN DYNAMIC SSURE DIFF IGN CØNDIT	CONSTRAI	RATURE OF ICKNESS RE	DESIGN	HALF ANGLE	(050)	0.00	25.00 Btals		CAP. PSI NESS OF N. RATURE F RATURE F REGUTED REGUTED REGUTED SC. IN. SC. IN. SC. IN. F AP. CU. FF CU. FF CU. FF
	RE, LBS./ CESIGN U K AT DESI dient Pre RE AT DES		IELE TEMPE In Skin Th		SMALL DIA.	(11)	260.00 186.91	7.80		ABLE THICK ABLE THICK ABLE THICK ABLE THICK ABLE THICKNESS THICKNESS THICKNESS THICKNESS THICKNESS THICKNESS THICKNESS CAP. LB: ACC AREA. ACC AREA
	410 PRESSU NUMBER AT UMBER AT UMBELTU-AM NNAL-TU-AM ENT PRESSU		CAL SECTIZ		LAKGĒ DIAL	(11)	260.0J 260.0U	186.91		GN PRESSU MUM ALLEN MUM ALLEN CAP SKIN CAP SKIN CAP SKIN CAP SKIN CAP SKIN CAP SUR CAP
			MAXIT		FRUS- TUM	202	- 0	~		011122/22/201201 FOFF MI40/07/201201 FOFF N/20/07/201201 FOFF N/20/07/201201 FOFF FOFF N/20/201201 FOFF FOFF

DATA REPURT FUR UPTIMIZED RUSE FAIRING STRUCIURE Case rumber 1

PATERIAL = ALUMINUP

13

Figure 6A - Computer Output for Sample Problem - Design Summary

2 E C S E C S E C S E C S E C S E C S E C S E C S E T S E C S E T S E C E E E E E E E E E E E E E E E E E	To ALUMINUM						
	Y						
	2 CATA 7C7						
	SANDWICH FACE						
1 6 e/1 6 Stress, PS							
TYPE BASE LEG MYT UPPLJMT LEG MY UTSTANDING LE ELANJE RUCKLIW	FACE MATERIAL		·				
	TYPE UNSE LEG M/T UPPLINT LEG M/T UTSTANDING LEG M/T Flanje Ruckling Stress, PSI	TYPE UASE LEG MY UPPLOHT LEG V/I UPPLOHT LEG V/I Flande Ruckling Stress, PSI Flande Ruckling Stress, PSI Face Material	TYPE DASE LEG H/T UNSETANDING LEG K/T UPRIJHT LEG K/T ULSTANDING LEG K/T ELANJE RUCKLING STRESS, PSF SANDWICH FACE CATA FACE MATERIAL	TYPE DASE LEG H/T UPRIJHT LEG H/T UPRIJHT LEG H/T EUTSTANDING LEG C/T FLANJE AUCKLING STRESS, PDF FAGE ANTEKIAL FAGE MATEKIAL	FYPE UASF LEG FYT UPRIJHT LEG FYT UPRIJHT LEG FYT ELANJER HUCKLING STRESS, PST FAGE MATERIAL FAGE MATERIAL	PAPE LEG FUT UPSE LEG FUT UPSIANDING LEG FUT FLANSE RUCKLING STRESS, PSE FACE MATERIAL FACE MATERIAL	PART LEG FUT UPSE LEG FUT UPSEANDING LEG FUT FEAGE ANTERIAL FAGE MATERIAL

. ---

Figure 6B - Computer Output for Sample Problem - Design Details

.

14

•

FRUSTON	SFELL	HAY	FACE	4[88] 4	RING	IJTAL	T2TAL	RING	WEIGHT	SHELL	TTTAL	Cr LL
- 64Y	: : :	LENGTH	u AU Uc	30000	0400E	FACE WI.	CERE #1.	۲۰	INDEX	THICK'LLSS	34Y -1-	T
			(13)	(171)	(21)	(13)	[[1]	(F 7)	(LB/CU FT)	(*1)	1 [4]	(21)
1 - 1	200.0	9.01	0-0320	0.00100	C.19-00	40.41	3.14	109.65	06640	0.9670	234.1	1.0000
1- Z	263.0	16.6	0.0200	0.00.00	L.1400	00.44	4.03	105.44	0.3410	1.1450	194.5	0.5625
1-3	200.0	16.5	U.0200	0.00100	0.1400	00.44	£ Ú = 4	109.44	0.3310	1.1450	144.3	0.5425
1 4	6.042	10.0	0.0250	0.00100	6.19GJ	01.57	3-14	104-55	0.4119	1006-0	210.1	0.8125
5 -1 5	250.0	10.0	C.U2CO	0.00100	0.01.0	53.46	4.48	109.34	0.3324	1.2700	195.0	0.50.5
1- 6	260.0	16.6	0.0200	00100.0	0061-0	53.92	5.30	109-12	0.3851	1.5200	196.4	0.5625
1-7	6.062	16.5	0.0200	0.00100	0.1900	53.95	4.92	104.23	0. 3437	1.3950	195.7	0.5625
	260.v	16.5	0.0200	0.100.0	u.1900	00 * *<	£0.3	139°44	0.3810	1.1450	194.5	ủ.5 625
l- 9	260-0	15.6	3.0200	0.00100	0.1900	¢0.≯č	3.59	109.55	0.3796	1-0200	193.0	0.5.50
1-10	260.0	16-0	0 •0400	0.01000	0.1903	104.11	3.14	109.65	0.5129	0.9150	261.5	1-0000
11-1	260.0	16.6	0.4250	0.00100	0.1900	67.44	4.42	109.23	0.4151	1.4000	2:3.2	0.8750
1-12	260.0	15.5	0.200	0.0100	L.1900	59. 6c	96.č	10 9.12	C. 3851	1.5200	196.4	0~29-0
1-13	200-0	16.0	6-0250	C.CC100	0.01-0	07.53	9.59	109.55	0.4134	U-250	210.9	0.9375
+1-1	260-0	16-5	0.0200	0.00100	0.1900	54.08	2.70	109.77	0.1769	0.7760	192.2	0.6375
1-15	260.0	15.5	0.0200	0.00100	0.1400	53.98	4.48	109.34	0.3824	1.2700	195.0	0.6675
1-10	260.0	15.6	0.0320	0.00100	0.1400	86.61	1.80	E6*60T	0.4535	0.532J	231.3	1.0000
1-17	200.0	16.5	0.0200	C.C0100	c.1900	54.11	2.25	109.67	0.3755	0.6450	191.5	0.7500
1-18	260.0	16.0	0.0700	0.00100	0061-0	54.00	4.03	109-44	0.3810	1.1450	194.3	0.7500
1-19	¢ 60 . 0	16.6	0.0320	0.00100	c.1400	86.36	4.48	109.34	0.4644	1.2420	236.9	1.0000
1-20	260.3	16.6	0.0200	0.0100	U.1250	54.05	3.14	47.71	0.2569	0.8950	131.0	0.8125
1-21	260.0	17.0	0-0200	0.0100	L.1250	96.42	2.76	95.53	0.2524	0.7700	131.9	0.8125
2-1	2.52.5	15.4	0-0250	0.00100	u.1250	57.24	5.35	46.04	0.J066	1.5250	150.2	1.0000
2 - 2	245+5	10.4	0.4200	0.00100	u.1250	52.26	5.14	44.73	0.2787	1.5200	128.4	0.8125
2-3	2.38.2	16.4	0.0200	0.00100.00	u.1250	50 -94	1.09	43.75	0.2741	0.5200	119.5	0.8750
2- 4	230.9	16.4	0.0200	C.CC100	L.1250	49.11	6.09	41.85	0.3005	1.8950	123-2	0.8750
2-5	223.0	16.4	0-0250	c.coloo	U-1250	59.77	2.58	4C.45	0.3337	0:1750	129.5	1-0000
2- 0	216.4	15.4	0-0200	0.00100.0	u.1250	16.04	1.92	39.64	0-3026	0-6450	104.2	0.8750
2 - 2	209.1	16.4	u.u2co	0.0000	u-125C	44.35	1.12	38.38	2405.0	0.3950	104-5	C166-D
2-8	201.8	16.4	0.200	C.C0100	0.1250	43.24	1.80	36.93	0.3236	0.6450	101.3	0.9375
2-9	194-6	15.4	0.0200	0.0000.0	u.1000	41.70	1.73	22.83	0.2418	0.6450		C. 55.0
2-10	136.4	17.2	0.0250	0.00100	v.1000	52.71	1.75	43.53	0.3428	0.6500	1.19	1-0000
3- 1	171.4	16.6	0.0200	0.0100	u.1250	÷1-08	1.11	31.21	0.3788	0.6450	91.5	C/ 89.0
3- 2	155.0	16.5	0-0200	C.C0100	U.1000	37.17	4.89	17.63	0.3882	2.0200	78-5	0.7500
3- 3	140.5	16.5	0.0200	0.00100	0.1000	33. 12	l.69	16.31	0.4025	0.1700	66.8	0.8125
4 - 5	125.0	16.5	0.0200	0.00100.0	0060-0	30.42	1.01	11.79	0.4217	0.5200	56.l	0.8125
3-5	109.5	15.5	0.5200	0.00100	c.0900	20 .83	1.11	10.25	0.4783	0.6450	1.04	0-18-0
3- 6	3.46	16.3	0.0200	c.cc100	C. 0800	23.25	0.96	6 • 94	0.5246	0.6450	41.1	0.9375
	73.J	15.0	0-0200	u.C0100	0.0710	19.67	10.07	4.53	0.5964	0-7700	33.6	1-0000
9 LC	6 3. l	15.6	0.0200	u_CU100	u_0630	16-07	0.42	2.63	0.7035	0.8450	26.7	1.0000
6 - <u>5</u>	47.0	16.0	U.0200	6.cc106	C.0630	12.40	0.42	2.05	0.5899	1.020C	20.7	1.0000
9-10	32.1	16.0	0.0200	C.CU100	c.0500	9.11	0.15	16.0	1.1251	0.2700	13.6	1-0000
11-6	7.5	2 - .1	U.032C	0.100.0	u .025 0	11.21	0.23	c.03	2.595	0.5320	13.6	1.0000

Figure 6C - Computer Output for Sample Problem - Design Details (Cont.'d)

LMSC/HREC A712573

			AAX .	188150 FA	CE STRESS.	PSI	ALLEN	AUL STRES	15- 13
FRUSTUM	UNERCH I F	LEimAYD					FACE	FACE	FACE
-64Y Ne.	LINE LEAD	LINE LJAD (L4/14)	141×5	ר ואנ	3HE 4K	BUR 5 T	#RI IKLE 10	Y I FLU	01.1 Jaw10
1 -1	7~.Uč7	-1122-15	17534.	• つ -	2725.	11602.	4 C H S H .	-1500.	22113
l- 2	719.27	-10-10.45	27274.	-0-	4362.	10504-	6504b.	41500.	27:00
[-]	686.UB	-1054.76	204.44 .	•0-	4362.	18504.	66348.	415GO.	27306
4	656.04	-1028-57	2C571.	•01	3490.	14451.	56048 ·	+1500-	24407
1-5	625.09	-997.37	24534 -	•0	4362.	18564.	60446.	41500.	27 JOC
1- ¢	594.50	-966.13	24155.	-0-	4362-	14564.	6604н.	41500.	21,000
1-7	563.31	-934.99	23375.	•0-	4362.	18564.	60045.	41500.	27,500
I- 8	532.12	-403.80	22545.	• 0 -	4362.	18504.	60045.	41500-	27.900
6 -1	500.42	-972-50	21515.	•0•	4362.	L8564.	66048.	+1500.	24il3
1-10	469.13	-441.41	1C514.	•0-	2161.	92,32.	52132.	41500.	34501
11-1	438.54	-910.22	16204.	•0-	3440.	14851.	66048.	41500.	17622
1-12	407.35	-779.02	19476.	• 0 •	4362.	18564 .	66048.	41500.	22113
[1-1]	376.15	-747.83	14457.	•0-	34.40.	14851.	66048.	41500.	15536
1-14	344.45	-716.64	17516.	-0-	4362.	14564.	6604B.	+1500.	18275
1-15	313.77	-635.45	17136.	• 0 -	4352.	18564.	6e048.	41500.	LH.75
1-16	282.57	-654.25	16223.	-0-	2720.	11602.	61222.	41500.	£1122
1-17	251.38	-523.06	15577.	-0-	4362.	18504.	66046.	41500.	15350
1-18	220.19	-541.87	14797.	-132.	4352.	18564.	66048 -	41500 -	LE 356
1-19	139.01	-560.69	e7c1.	-158.	2724.	11602.	60046.	41500.	22113
1-20	157.86	46.653-	13238.	- 346 -	4352.	18564.	60048.	41500.	13091
1-21	126.79	14°867-	12402.	-631.	4335.	13564.	66043.	+1500.	13045
2-1	97.47	-479.18	9564.	c338.	3439.	14962.	6004B.	41500.	19497
2-2	82.29	-463.27	11582.	.101.	4136.	18170.	66048.	41500.	13085
2-3	66.65	-448.44	11211.	7466.	3971.	17038.	48955.	41500.	.1282
2- 4	51.07	-433.76	10344.	1041.	3810.	17107-	54048.	41500.	1128S
2-5	34.80	-419.25	9 1 3 U	÷302.	2427-	13200.	60048.	41500.	13497
2- 6	17.90	-404 - A5	10121.	ε200.	3j 1 4.	16043.	6004B.	41500.	11292
2-7	0.18	-390.53	3763.	:782.	3377 .	15511.	56170.	+1500.	5 :24
2-8-2	-15.45	-376.22	9405.	5378 .	3247.	14974.	66046 ·	+1200-	9525
2-9	-33.46	-361.93	9 C 4 F.	+590.	3134.	14448.	60048.	41500.	9628
2-10	-60.32	-347.52	6550 -	5072	2441-	11120-	48355	+1500.	13447
]- [15-63-31	-358.01	e55C.	15722.	- 4500	14008-	66048.	41500.	18275
3- 2	-85.40	-327.63	9146.	14420.	2778.	12748.	660+8.	+1500.	15356
	-78.51	-247.62	7441.	1/118.	2522 .	11569.	56U48.	41500.	13035
3- 4	-71.12	-267.38	tc 84.	11816.	2264.	10349.	44955.	41500.	13045
3-5	-63.73	-237.09	5927.	lu513.	2006.	9129.	66048.	41500.	11242
9-6	-50.33	-206.77	5104.	+2 11 .	1747-	7910.	66048.	+ I 500.	4, 21
3- 7	14440	-175.41	4410.	7909.	1426.	663U.	6c043.	+1500.	9604
3-6	-41.55	-145.04	3652.	6607.	1222.	5470.	64048.	4 I 500 .	31,48
3-9	-31.40	-lie.12	2903.	- 22 -	960.	425l.	60048 ·	415U0.	3634
3-10	-25.70	-a6.ål	2170.	3976.	707.	.1606	61124.	41500.	3530
3-11	-17.46	+ć - jć -	512.	1605.	287.	877°	51222	41500.	22113

Figure 6D - Computer Output for Sample Problem - Loads and Stresses

16

-
-
đ
.5
-
~
د ر
- 1
0
-
-
.,
- 1

АХ ЧАХ ЧАХ ТИР ВАХ 01517 013 - КТАР ВАХ 01517 013 (14) (14) (14) (17) 114) (14) (14) (17) 01613 (14) 01613 (14)	там гам отам 	844 01519 LEAGTH F965 (1.1) (1) (1.2) 0.		116. 1456 1)	0∈Se P4€Se AltDario (PS1) -0.00	CES. PRES. L[t+40 [FS1] -0.60	AXI14 L24u (L35) 106425.4	5	35 20 20 40 - 0
200-00 200-00 100-00 100-00 200-00 100-00 100-00 200-00 100-00 100-00					00 0 0 - 0	0.0.0-	108+26.4 106+26.4	71201.7	54325151.) 33142306.3
200°C 200°C 10°C 200°C 200°C		10°5			0.0		108425.4	71251.7	31454256.3 10776316.4
260.0 250.0 16.0 26.4 3.7 0 3.6 7 3.6 85.6		16.6 60.4	1 - 0 0 - 0 0 - 0		-0.00	-0°.	108420.4	71201	29593374.
260.0 265.0 16.0 34.0	260.C 16.c 34.c	16.0 34.5	34.6		-0-	0.00-	106425.4	71261-7	28410430+3
260.0 260.0 16.6 116.2	260.0 16.6 lit.2	.6.6 llt.	116.5		-0*0-	00.1-	103+26.4	71261-1	C • C 5 4 / 7 2 / 7
200.0 263.0 16.6 132.	žėj.U 16.6 132.	16.6 132.	132.		00-0-		108425.4	71261-7	248615480
2¢0.u 2¢0.0 16.6 144.4			1 4 9 • 4			20 7 7	108426.4	71201.7	23078653.5
2901°0 2901°C 10°C 100°C 100°C		16-0 100-C	18/-6		00.0-	00.0-	103426.4	71251.1	22495704.0
200-0 260.0 16-6 193-2	260.40 16.60 194.2	16.6 194.2			-0-00	-0°	108426.4	71261.7	21312764.3
250.0 260.0 Ib.6 212.6	200.C 16.6 212.6	16.6 212.6	212. d		00.0-	00°L-	108426.4	71261.7	20129620.0
250.0 260.0 16.6 232.4	260.0 16.6 232.4	16.6 232.4	232.4		-0.00	07*0-	108426.4	71267	18.3465 (0°0
200.0 zú(.u 16.6 249.0	zúl.u 16.6 249.C	16.6 249.C	249.0		-0-00	-0.60	104-25.4	11201.1	0 - TC 50 7 7 7 1 0 0 1 7 7 9 0 1 7 1 0 0 0 1 7 1 0 0 0 1 7 1 0 0 0 1 7 1 0 0 0 1 7 1 0 0 0 1 7 1 0 0 0 1 7 1 0 0 0 1 7 1 0 0 0 1 7 1 0 0 0 1 7 1 0 0 0 1 7 1 0 0 0 1 7 1 0 0 0 1 7 1 0 0 0 1 7 1 0 0 0 1 7 1 0 0 0 1 7 1 0 0 0 1 7 1 0 0 0 1 7 1 0 0 0 1 7 1 0 0 0 0
	Ze(.0 16+6 265+C	16+c 265+c			-0-0-		1004/001	712515	15346096.2
260.6 265.0 16.6 282.2 	265.°C 16.6 282.2	16.6 282.2	2.742				108426.3	71212-7	14215584.3
260.0 4000 1000 2000 27000 260-6 260-6 315.4	260.40 10.60 2.70.5 260.40 16.6 315.4	10.c 270.c	315.4		-0-11	-0.17	108426-4	71095.1	13034303.1
260.0 260.0 17.0 332.C	260.0 17.0 332.C	17.0 332.C	332.C		-0-15	76.0-	103426.4	70817.5	11456044.4
200.0 252.7 16.4 343.0	252.7 16.4 343.0	16.4 343.0	344.		2.53	5 * •0	10047001	1023201	9:47414-8
252.7 245.5 It.4 365.4	245-5 Lt.4 305-4	16.4 365.4	365.4		2	0.45	6 96 401	61241-3	9501899.5
-140°	230.4 10.4 20.4 20.4 20.4 20.4 20.4 20.4 20.4 2	16.4 293	100	u (\	2.31	0.45	6-14-266	57025	1532513.9
	220.5 16.4 614	1c 4 414	4 4	. J	2.24	0.45	47 243 A	53072	553UC78.1
273.6 216.4 L6.4 43L.	216.4 16.4 431.	16.4 431.	431.	ں ں	2.17	0.42	94794.7	** 62055	5740264.4
215.4 209.1 16.4 447.	209.1 16.4 447.	16.4 447.	447.	4	2.09	0+0	42517.1	45407.7	5009211.0
203.1 201.3 16.4 463.	201.3 16.4 463.	16.4 463.	463.	ш.	2.01	0.37	2* 40 + 06	5 ·] 6 0 7 4	0000074 000076
201.0 194.6 16.4 480.	194.6 16.4 480.	16.4 48U.	4 80.	••	1.7d	0.34 1.5	88219.1 64317 A	0-50222	7477122-8
144.6 160.9 17.2 440.	[60.9] IT.2 440.	I7.2 446.		U u	+ C + I		F5731.7	35932+2	2350460.1
130.9 L/L+4 L0+0 /13. 17.7 JEE C JEE E EAD		16.5 5.20.	10.1	u u	6.1C		72124-7	1.021.02	1=07523.5
		16-5	547 (5.10	2.60	59647.8	24705.5	1324765.4
		16-5 563-C	563		5.10	2.05	48,50.8	19961	104405-7
		16-6 5âu-J	5âu.		6.LU	2.60	34,233.9	15157.4	68344C.
		16-6 595 r	1.695		6.10	-07 -07	29247 . 1	12021-4	494507.3
	75.5 Ic.6 (13.4	1c-6 (13.	(13.		6.1.)	2.06	21340.2	5-11-1	236638.7
79-5 c.5.1 16-6 A3U.	ci.i 16-6 +3U.	16-6 +30.	•) E 4	j.	5.10	2.00	14403.4	60,50.4	0.446401
0. 1 47.6 10.6 64C	47.6 10.6 646	10.6 646	544	Ð	6. Ul	÷ ? • 2	9593.6	3.0.0	03546.4
47.c 32.1 16.6 663.	32.1 16.6 663.	16.6 663.	£63.	1.1	5.41	2.60	5443.6	2.112.	1.001C6
37.1 7.8 20.1 679.0	7.8 20.1 679.1	20.1 679.1	679	-14	J. AC	2.64	5 40° 5		C * 61 COT
7., 705.	105.	105.	105	-س			24732		

2.0 DESCRIPTION OF SUBROUTINES

2.1 Subroutine THERML (Thermal Computations)

This subroutine computes the minimum thickness of skin required to limit the skin temperature to the specified maximum. Minimum thicknesses are computed for both the nose cap and top frustum. The analytical basis for the computations performed in Subroutine THERML is presented in Appendix J. The analysis is based on a nominal two-stage Saturn V ascent trajectory to a 100 nautical mile circular orbit.

The equations and stored coefficients in Subroutine THERML were developed by means of a multiple regression analysis of a large amount of analytical data generated for the trajectory mentioned above. Details of the multiple regression analysis are also presented in Appendix J.

The parameters required from the main program for computations in Subroutine THERML are RCAP, THETA, TMPMAX and MAT. Returned to the main program are TCONTH and TCAPTH.

2.2 Subroutine TNOSST (Nose Cap Structure)

Subroutine TNOSST calculates the nose cap skin thickness required to withstand the pressure differential, PDSPH, at the stagnation point. The method used to calculate PDSPH and the structural analysis of a spherical nose cap are described in Appendix H.

Parameters required by Subroutine TNOSST are PDSPH, E, RCAP and TMINN Returned to the main program is TCAPST.

2.3 Subroutine AERO (Pressure Coefficients)

When a pressure profile is not input to the program the pressure coefficient data for the profile is computed in Subroutine AERO. The analytical basis for the computations performed in this subroutine is presented in Appendix C. Because of the assumptions made in computing this data, the pressure coefficient at zero angle-of-attack and the change in pressure coefficient due to angle-of-attack are uniform over the length of each frustum. The pressure profile is then constructed by assigning the pressure coefficient data for each frustum to the beginning and end points of each frustum. Double points occur at the intersection of two frustums.

Parameters required to make the computations in Subroutine AERO are NF, THTA (NF), AMACH and ALPHA. Returned to the main program are CPOO and CPAA.

A sinusoidal pressure distribution in the circumferential direction is used in computing CPAA.

2.4 Subroutine LOAD (Bending Moment, Axial Force and Shear Force)

Using the pressure profile data, Subroutine LOAD computes the bending moment, axial force and shear force at the base of each bay. Bending moment and axial force are then converted to line loads (force per unit length of circumference) for both the windward and leeward sides of the bay, and the factor of safety is applied to these line loads.

When Subroutine LOAD is called upon for loads on the first bay, the bending moment, axial force and shear force are computed at the base of the fairing. As design of the fairing moves from the base to the nose cap, increments of the loads contributed by the pressure profile between the previous bay location and the new bay location are subtracted from the previous totals. Derivation of the equations used in this subroutine appear in Appendix D.

Information required for the computations in Subroutine LOAD is

1. Pressure profile data:

LTMAX

CPO (LT)	LT = 1, LTMAX
CPA (LT)	LT = 1, LTMAX
XOD (LT)	LT = 1, $LTMAX$

2. Fairing geometry:

NFMAX

DBAS

ALF (NF)	NF = 1,	NFMAX
THTA (NF)	NF = 1,	NFMAX

3. Aerodynamic data:

AMACH

QBAR

DELTAP

ALPHA

4. Miscellaneous:

DSUBB

C2

FS

LFLG

LTRIG

Parameters computed by Subroutine LOAD are ANFIMX, ANFIMN FSUBZ and LTUNCT (NF) for NF = 1 to NFMAX.

2.5 Subroutine PRESUR (Lateral Pressure)

Using pressure profile data, Subroutine PRESUR computes the pressure differential across the skin along the length of the bay. The maximum differential occurring along the bay length is determined for both the windward and leeward sides, multiplied by the factor of safety and returned to the main program. The equations used in this subroutine are developed in Appendix E.

Parameters required for computations performed in Subroutine PRESUR are

1. Pressure profile data

LTMAX

CPO (LT)	LT = 1, $LTMAX$
CPA (LT)	LT = l, LTMAX
XOD (LT)	LT = 1, $LTMAX$

2. Other parameters: LPFL, C2, DBAS, DSUBB, ALB, QBAR, NFMAX, NF, DELTAP, FS and LTUNCT (NF) for NF = 1 to NFMAX.

Parameters computed in Subroutine PRESUR are PDESMN, PDESMX, ALN and ALX

2.6 Subroutine PROPTY (Material Properties)

Properties of several commonly used materials are stored in this subroutine.

The material for which properties are desired is indicated by the input parameter MAT.

Output parameters are the material properties E, AMU, RHO, and TMPMAX.

2.7 Subroutine DIAM (Local Diameter)

When given the parameters describing the external geometry of the fairing and the distance from the tip of the nose cap in calibers this sub-routine computes the local fairing diameter.

Parameters required by this subroutine are:

ALTOT ALF (NF), NF = 1, NFMAX THTA (NF), NF = 1, NFMAX DMN (NF), NF = 1, NFMAX XN

NFMAX

The local diameter, DLOC, is computed by this subroutine.

2.8 Subroutine DLOD (Incremental Loads)

When given the geometry and pressure coefficient data for an incremental length of the fairing this subroutine computes the contribution by this increment to the total bending moment, axial load and shear load.

Input parameters are XOD1, XOD2, D1, D2, CP01, CP02, CPA1, CPA2, A3, A4, and DP.

Parameters computed in Subroutine DLOD are FSBZ, BND, and AXLOD.

2.9 Subroutine RING (Ring Strength and Stiffness)

When given the cross-sectional shape of the ring and the skin gauge from which it is to be fabricated, this subroutine computes the moment of inertia of the ring with and without the effective skin, its cross-sectional area, eccentricity and torsion constant. This subroutine also calls Subroutine RSTRES which computes the local stress level in the ring.

Input parameters required by RING are E, IKIND, AOT, BOT, COT, WSEF, J, K, PI, and T(J) when J = 1, 30.

Output parameters are AIRING, AISTT, AST, A, Z, ECC and TCONST.

2.10 Subroutine RSTRES (Local Stress Level in Ring)

When designing a stiffener ring it is necessary to check for local instability in the ring flange or web (see Appendix G). Subroutine RSTRES computes the local stress level in the ring. This computed stress level is then compared to an input flange buckling stress level, and, if necessary, a greater web thickness is assigned to the ring.

Input parameters for Subroutine RSTRES are A, T(J), Z, PDESMX, DSUBB, CTH, AL(J), AST, and AISTT.

The output parameter is FRING.

2.11 Subroutine IREQ (Required Moment of Inertia)

This subroutine computes the stiffening ring moment of inertia requirements to prevent general instability of the structure. The methods used to compute this required moment of inertia are described in Appendix G.

Input parameters are THTA (NF), C6, AL(J), DSUBB, C2, PDESMX, T(J), PI, ANFIMX, E and ALCONE.

The output parameter is AIREQ.

2.12 Subroutine INSTBL (Panel Stability)

When given details of a tentative sandwich design for a bay, along with applied crushing or bursting pressure, INSTBL computes the line load at which the bay will fail due to overall instability. The analysis was prepared by B. O. Almroth of LMSC's Solid Mechanics Laboratory, and is described in Appendix K.

Subroutine INSTBL requires a large amount of tabular information which, for reasons of convenience, is read into the program as regular input data. This data is physically located immediately after the program deck. Nose fairing data cards for a number of nose fairing designs can be stacked in the usual manner behind these cards.

Input parameters required by subroutine INSTBL are EFACE, Gl, G2, AMU, Tl, T2, APRC, H, KY, PXL, and KG. Output from the subroutine is CRG, the initial line load, which is compared to the applied line load at the position (windward or leeward) then under investigation.

3.0 INPUT FORMAT

When the pressure profile and nose cap lift and drag data are to be computed in the program, the following three types of input data cards are the only types required.

Types 1, 2, 3, and 4 Parameters which apply to the entire fairing.

Type 5	Parameters which apply to individual frustum
	(one card per frustum).

When lift and drag data for the nose cap are to be input, or when a pressure profile is to be input, the following additional card type is required.

Type 6 Lift and drag data for the nose cap.

When pressure profile data is to be input, two additional card types are required.

Type 7	Pressure profile data points (one card per data point.)
Type 8	Card indicating end of pressure profile data.

The detailed format for these cards is as follows:

Type 1: Format (5F12.8, 2I6)

Data:	DBAS	- Base diameter of fairing, in.	
	QBAR	- Dynamic pressure at design point in the trajectory, lbs/sq. ft.	
	АМАСН	- Mach number at design point in the trajectory.	
	ALPHA	- Angle-of-attack at design point in the tra- jectory, degrees.	
	KEY	- A integer indicating the type of output desired. The code is as follows:	
		(0) Design summary only. (See Figure 6A)	
		(1) Design summary plus design details(Figures 6B and 6C.)	
		(2) Design summary plus design details plus load details (Figures 6C, 6D and 6E.)	
Type 2:	Format (216, 4F12.8	<u>3, 112)</u>	
Data:	MAT	- An integer indicating the material to be used. The code is as follows:	

- (1) aluminum
- (2) magnesium

	(3) titanium
	(4) stainless steel
	(5) Lockalloy (a Be-Al alloy)
NFMAX	- The number of conical frustums in the fairing.
ТМР	- The maximum allowable skin temperature for the nose cap and top frustum, ^o F. (If no value is input, the value stored with the material properties is used. If a value equal to or greater than 10,000 is input, no thermal constraint is imposed on the skin thickness.)
TMINN	- The minimum skin gauge to be used in nose cap design, in.
DELTAP	- Difference between internal and free-stream pressure, psi
FS	- Factor of safety. (If no value is input, a factor of safety of 1.4 is used.)
LPRES	- An integer indicating whether nose cap lift and drag data and/or pressure profile data will be input. If pressure profile data is input, LPRES also indicates the type of lift data to be input. The code is as follows:
	(-1) Lift and drag data for the nose cap is input, but no pressure profile data is input.
	(0) No nose cap or pressure profile data is input.
	 (1) Nose cap data and pressure profile data with CPA (LT) as defined in Figure 5 and Appendix B is input on Card type 5.
	(2) Same as (1) except that CPA (LT) per radian angle-of-attack is input for CPA (LT) on Card type 5.
	(3) Same as (1) except that
	$\frac{\partial}{\partial X} \begin{pmatrix} \frac{\partial C_N}{\partial \alpha} \end{pmatrix} \text{ (See Section 1.4) is input for CPA (LT) on Card type 5.}$

Type 3:	Stringer Data (I5,	<u>6E12.8)</u>
Data:	IKIND	- Type of cross-section
		l = angle
		2 = zee
		3 = hat
	AOT	- Web height-to-thickness ratio (see Figure 3)
	BOT	- Flange width-to-thickness ratio (see Figure 3)
	СОТ	- Hat section flange width-to-thickness ratio (see Figure 3)
	FCFB	- Ring outstanding flange buckling level, psi
Type 4:	Face Material (216	<u>, 4F12.8, 112</u>)
Type 4: Data:	<u>Face Material (216</u> MATF	, 4F12.8, 112) - Type of material
Type 4: Data:	Face Material (216 MATF	, 4F12.8, 112) - Type of material 1 = 2024-T4 Alclad Aluminum
Type 4: Data:	Face Material (216 MATF	 , 4F12.8, 112) - Type of material 1 = 2024-T4 Alclad Aluminum 2 = 2024-T4 Aluminum
Type 4: Data:	<u>Face Material (216</u> MATF	 4F12.8, 112) Type of material 1 = 2024-T4 Alclad Aluminum 2 = 2024-T4 Aluminum 3 = 7075-T6 Aluminum
Type 4: Data:	<u>Face Material (216</u> MATF FTA	 4F12.8, 112) Type of material 1 = 2024-T4 Alclad Aluminum 2 = 2024-T4 Aluminum 3 = 7075-T6 Aluminum Face tensile allowable stress
Type 4: Data:	<u>Face Material (216</u> MATF FTA FCA	 4F12.8, 112) Type of material 1 = 2024-T4 Alclad Aluminum 2 = 2024-T4 Aluminum 3 = 7075-T6 Aluminum Face tensile allowable stress Face compressive allowable stress
Type 4: Data:	Face Material (216 MATF FTA FCA FSA	 4F12.8, 112) Type of material 2 = 2024-T4 Alclad Aluminum 2 = 2024-T4 Aluminum 3 = 7075-T6 Aluminum Face tensile allowable stress Face compressive allowable stress Face shear allowable stress
Type 4: Data:	Face Material (216 MATF FTA FCA FSA EFACE	 4F12.8, 112) Type of material 2 2024-T4 Alclad Aluminum 2 2024-T4 Aluminum 3 = 7075-T6 Aluminum Face tensile allowable stress Face compressive allowable stress Face shear allowable stress Modulus of elasticity of face material

Type 5:	(5F12.8, 216)	
Data:	ALF (NF)	- Ratio of top diameter of frustum to base diameter of fairing or length of the frustum in inches. If the number is equal to or greater than 1, it will be treated as frustum length. For conical sections, either the diameter ratio or length can be used. For cylindrical sections, only length can be input.
	THTA (NF)	- Frustum half angle, degress.

25

ELMIN (NF)	- Bay length to be used in designing frustum, in
TMNC (NF)	 Minimum face thickness to be used in de- signing frustum, in.
TRBMIN (NP)	- Minimum ribbon thickness to be used in de- signing frustum, in.
KTRSTD	- An integer indicating whether standard ribbon gauge material is to be used
	0 - Use non-standard gaug es
	l - Use standard gauge s
KTFSTD	- An integer indicating whether standard gauge material is to be used for sandwich faces.
	0 - Use non-standard gauges
	l – Use standard gauges

The next card type is required only when nose cap lift and drag data or a pressure profile is read in (PRES = -1, 1, 2 or 3 in Card Type 2). If a blank card is inserted for Card Type 6 when LPRES = 1, 2 or 3, the program will compute CDCAP, CNCAP and XBCAP.

Туре	6:	Format	(3F12.8)
• -			

Data:	CDCAP	- Spherical nose cap drag coefficient with nose cap base area as a reference area.
	CNCAP	 Normal force coefficient per radian angle- of-attack for the nose. Reference area is nose cap base area.
	XBCAP	 Distance from base of nose cap to center of pressure for the nose cap, in.

The next two card types are required only when pressure profile data is input (LPRES = 1, 2 or 3). (See Section 1.4 and Figure 4.)

Type 7:	Format (3F12.8)	
Data:	CPO (LT)	- Zero angle-of-attack pressure coefficient at station LT.
	CPA (LT)	- Lift parameter at station LT. See LPRES on Card Type 2 and Section 1.4 for options which are available.
	XOD (LT)	- Local to base diameter ratio at station LT.

(One card is required for each data point, starting with the first point at the junction of the nose cap and top frustum.)

Type 8: Format (71X, II)

Data: LSTOP = 1 - This signals the computer that the last pressure profile data point has been read in.

The set of data cards described above will design one fairing. A number of fairings can be designed with one computer run by placing several sets of data cards behind the program deck.

4.0 SAMPLE PROBLEM

The following sample problem illustrates the input format of the program. Input data is as follows:

Fairing geometry:

DBAS	= 260.0 inches
NFMAX	= 3
ALF (1)	= 349.0 inches
ALF (2)	= 0.72
ALF (3)	= 0.03
THTA (1)	= 0.00 degrees
THTA (2)	= 12.5 degrees
THTA (3)	= 25.0 degrees

Design specifications:

ELMIN (1)	= 16.6 inches
ELMIN (2)	= 16.4 inches
ELMIN (3)	= 16.6 inches
TMNC (1)	= 0.016 inches
TMNC (2)	= 0.016 inches
TMNC (3)	= 0.016 inches
KTFSTD	= 1 (use standard gauges for faces)
TRBMIN (1)	= 0.001 inches
TRBMIN (2)	= 0.001 inches
TRBMIN (3)	= 0.001 inches
KTRSTD	= 1 (use standard gauges for ribbon)
TMINN	= 0.0 inches
TMP	$= 10000.0^{\circ} F$

One ring shape is specified for all three frustums.

IKIND	= 2
AOT	= 20.0
BOT	= 10.0
COT	= 0.0
FCFB	= 30000.0 psi

Material:

MAT = 1 (aluminum)

Face Material:

MATF =	1 (7075-T6 Aluminum)
FTA =	58000. psi
FCA =	41500. psi
FSA =	27000. psi
EFACE =	10300000. psi

Aerodynamic data:

AMACH	= 1.5
QBAR	= 765.0 lbs/sq ft
ALPHA	= 8.5 degrees
DELTAP	= 0. psi

Factor of Safety:

FS	= 1.4 (It is not necessary to input this value,
	since 1.4 is the value which the program
	uses when no value is indicated.)

Program Controls:

LPRES	= 1	
KEY	= 2	
DELTAL	= 0.1 inches	3

Nose cap lift and drag data:

A blank card is inserted in the deck in place of Card Type 4, causing the program to compute this data.

Pressure profile data:

Data for the pressure profile is taken from Figure 4 and listed in Figure 8 under Card Type 7.

This input data is arranged in key-punch format in Figure 7. The computer output for this problem is shown in Figures 6A, 6B, 6C and 6D.
REFERENCES

- Nevins, Clyde D., and Benny W. Helton, <u>An Investigation of Various</u> <u>Parameters Affecting the Structural Weight of Rocket Vehicle Nose</u> <u>Cones</u>, NASA Report MTP-P&VE-S-63-4, George C. Marshall Space <u>Flight Center</u>, Huntsville, Alabama, 17 October 1963.
- 2. Simon, Wayne E., and Louise A. Walter, <u>Approximations for Super-</u> sonic Flow Over Cones, AIAA JOURNAL, Volume I, No. 7, July 1963.
- 3. Equations, Tables, and Charts for Compressible Flow, Ames Research Laboratory, NACA Report 1135, 1953.
- 4. <u>Structural Methods Handbook</u>, Lockheed Missiles & Space Company, Report No. LMSD-895078.
- 5. Becker, Herbert, <u>Handbook of Structural Stability</u>, Part VI, NACA Technical Note 3786, Washington, D. C., July 1958.
- 6. Dean, William G., <u>Thermodynamic Design Charts for Estimating Nose</u> Fairing Skin Thicknesses for a Saturn Ascent to Near Earth Orbits, LMSC/HREC, Report No. HREC-1148-1, February 1965.
- 7. Fay, J. A., and F. R. Riddell, <u>The Theory of Stagnation Point Heat</u> Transfer in Dissociated Air, J. A. S., Vol. 25, No. 2, February 1956.
- 8. Lees, L., Laminar Heat Transfer Over Blunt-Nosed Bodies at Hypersonic Flight Speeds, JET PROPULSION, Vol. 26, No. 4, April 1956.
- Bromberg, R., J. L. Fox, and W. O. Ackermann, <u>A Method of Predicting Convective Heat Input to the Entry Body of a Ballistic Missile,</u> Trans., 1st Technical Symposium on Ballistic Missiles, EDC, ARDC, and R-W Corp., June 1956.
- Kempthorne, Oscar, <u>The Design and Analysis of Experiments</u>, John Wiley and Sons, Inc., 1952.
- Keenan, Joseph H., and Joseph Kaye, <u>Gas Tables</u>, John Wiley and Sons, Inc., 1948.
- 12. Burns, A. B., <u>Structural Optizimution of Foam-Core and Honeycomb-Core Sandwich Cylinders Under Axial Compression</u>, LMSC 6-62-64-17, December 1964.
- 13. Penzien, Joseph and Theodor Didriksson, <u>Effective Shear Modulus of</u> <u>Honeycomb Cellular Structure</u>, AIAA Journal, Vol. 2, No. 3, March 1964, pp 531-535.

29

APPENDIX A

_

-

MAIN PROGRAM LISTING

\$J0E	3 LMSC-C53/ADAMS SAB +460040+000+12+140CEP	SWD0001
8	NOSE FAIRING OPTIMIZATION PROGRAM	SWD0002
\$EX∃	CUTE IBJOB	SWD0003
\$18,	JOB LMSC MAP	SWD0004
\$ 18F	TC C53S DECK	SWD0005
U	STRUCTURAL OPTIMIZATION AND DESIGN OF MULTI-FRUSTUM NOSE	SWD0006
U	FAIRINGS USING RING AND SANDWICH CONSTRUCTION.	SWD0007
	DIMENSION WSEG(400), VSEG(400), T(30), D(400), ALOPT(400) 0	SWD0008
	<pre>[TRING(400), WRING(400), WTDEX(400), ENFIMX(400), ENFIMN(400),</pre>	SWD0009
	2FFWR(400)•FFDMP(400)•ELMIN(400)•TMNC(400)•IMX(400)•CELSIZ(400)•	SWD0010
	3FZ(400)•TRBN (400)•WFACE(400)•WT0TFC(400)•TRBMIN(400)•TRBSTD(8)•	SWD0011
	4 WTCORE(400).TFACE(400).FFAX(400).FFC(400).FFS(400).FFB(400).	SWD0012
	5 WSPLCE(400), TCORE(400)	SWD0013
	INTEGER CASE	SWD0014
	COMMON ANFIMN+ANFIMX+DSUBB+PDESMN+PDESMX+E	SWD0015
	COMMON /THRML/ TMPMAX.MAT.TCONTH.TCAPTH.THETA	SWD0016
	COMMON/AERPRS/CPAA+CPO0+LPFL	SWD0017
	COMMON/INSTB/EFACE 61 62 AMU 11 T2 APRC H CRG KY P KG	SWD0018
	COMMON/LOADS/CDCAP, CNCAP, XBCAP, FSUBZ, AXLDCP, FSBZCP, BNDCAP, LTRIG,	SWD0019
	1 ALCAP	SWD0020
	COMMON/KLSS/XL	SWDOO21
	COMMON/PRESR/CPA(121), CPO(121), XOD(121), DELTAP, FS, LTMAX, SUMAL,	SWD0022
	1 QBAR+ALTOT	SWD0023
	COMMON /CHKLD/ C1.C3.C4.ALB.DELTAS.CHK.RAXMIN.RAXMAX.RPMIN.RPMAX.	SWD0024
	1 CHKWND • CHKLEE • C2	SWD0025
	COMMON/SFCTN/ GBAR, F	SWD0026
	COMMON/CONFG/THTA(10).ALF(10).NFMAX.DBAS.DMN(10).ICONFG	SWD0027
	COMMON/AERLOD/ALPHA . AMACH . NF	SWD0028
	COMMON/IRQ/ TTM. PI. ALCONE. C6. AIREQ	SWD0029
	COMMON/RNG/ IKIND, AOT, BOT, COT, TSTD(30), K, AIRING, DD	SWD0030
	COMMON /RSTRSS/ AA, TF. Z. CTH. AST, AISTT, FRING	SWD0031
	COMMON/TNOS/TM1NN+PDSPH+TCAPST+RCAP	SWD0032
υ		SWD0033
	CASE ± 0	SWD0034
	PI = 3.1415927	SWD0035
υ	READ PARAMETERS WHICH APPLY TO ENTIRE FAIRING.	SWD0036
~ - 1	0 CONTINUE	SWD0037
	READ (50131) DBASODELTALOGBAR,AMACH,ALPHA,KEY DEAD (50132) MAT NEMAX THE THINK PCLITOR CONCO	SWD0038
	KEAU (D. 132) MAI ON MAXOIMPOIMINNOUEL APOPSOLPHES	SWD0039

-

LMSC/HREC A712573

SWD0042 SWD0045 SWD0043 SWD0044 SWD0046 SWD0048 SWD0049 SWD0055 SWD0059 SWD0063 SWD0064 SWD0065 SWD0068 SWD0072 SWD0041 SWD0047 READ(50131) ALF(NF)0THTA(NF)0ELMIN(NF)0TMNC(NF)0TRBMIN(NF)0KTRSTD0SWD0050 SWD0052 SWD0053 SWD0054 SWD0056 SWD0058 SWD0060 SWD0062 SWD0066 SwD0069 SWD0070 SWD0071 SWD0073 SWD0074 SWD0075 SWD0076 SWD0040 SWD0051 SWD0057 SWD0061 SWD0067 SWD0077 DO NOT USE ALLOWABLE STRESSES IN EXCESS OF PROPORTIONAL LIMIT, SINCE BUCKLING Ш L O FRUSTUMS. 0 AND DRAG DATA IF INPUT INSTEAD SI DATA READ PARAMETERS WHICH DESCRIBE INDIVIDUAL DMX - 2.*ALF(NF)*SIN(THETA)/COS(THETA) (DMX+DMN(NF))*COS(THETA)*•5/SIN(THETA) PRESSURE PROFILE READ SANDWICH FACE MATERIAL DATA. READ (5,365) CPO(LT),CPA(LT),XOD(LT),LSTOP (5.990) MATF. FTA. FCA. FSA. EFACE ANALYSES ASSUME ELASTIC BEHAVIOR. DATA. READ(5,989) IKIND AOT,BOT,COT,FCFB 0.0174532925#THTA(NF) L. READ PRESSURE PROFILE READ (5,131) CDCAP, CNCAP, XBCAP IF (ALF(NF) .LT. 1.) GO TO 20 READ NOSE CAP LIFT GO TO 98 CHECK TO DETERMINE ALTOT + ALF(NF) (LPRES .EQ. 0) GO TO 45 IF (LPRES .LT. 0) GO TO 50 IF (LSTOP .GT. 0) GO TO 40 DBAS #ALF (NF) = 1.NFMAX OMN (NF) IF (NFMAX .GT. 10) LT = 1,101= DBAS **# DBAS** •0 COMPUTED. READ IN. 8 41 11 11 11 11 30 NF GO TO 25 CONTINUE CONTINUE CONTINUE CONTINUE DMN (NF) ALF (NF) DMN (NF) KTFSTD THETA ALTOT 00 35 ALTOT READ ZWC XWQ XWQ 8 Ľ. 35 20 ຽ 30 υυυ υ υυ $\cup \cup$ 000

LMSC/HREC A712573

SWD0085 SwD0089 SWD0079 SWD0080 SWD0081 SWD0082 SWD0086 SWD0087 SWD0088 SWD0093 SWD0078 SWD0083 SWD0084 SwD0090 SWD0092 SWD0094 SWD0095 SWD0096 SWD0098 SWD0097 SWD0099 SWD0100 SWD0102 SWD0103 SWD0105 SWD0106 SWD0108 SWD0091 SwD0101 SWD0104 SWD0107 SWD0109 SWD0110 SWD0112 SWD0113 SWD0114 SWD0115 SWD0116 SWDOIII IF MAXIMUM ALLOWABLE TEMPERATURE IS EQUAL TO OR GREATER IF NOSE CAP RADIUS IS ZERO, A NOTE IS WRITTEN OUT, AND CAUSES THE PROGRAM TO BY-PASS THE THERMAL EQUATIONS, WHICH RADIUS EQUALS ZERO . THE REQUIRED THERMAL THICKNESS OF BOTH NO MAXIMUM TEMPERATURE WAS SPECIFIED & A NOMINAL VALUE WILL MAXIMUM ALLOWABLE TEMPERATURE IS SET EQUAL TO 10000. THIS 1 IS САР IF A FACTOR OF-SAFETY WAS INPUT, THE INPUT VALUE PROPERTIES ARE LOOKED UP FOR THE INPUT MATERIAL. THAN 10000. EITHER FROM INPUT DATA OR BECAUSE NOSE THE NOSE CAP AND TOP FRUSTUM ARE SET EQUAL TO ZERO. RADIUS OF SPHERICAL NOSE CAP IS COMPUTED. USED. OTHERWISE THE FACTOR-OF-SAFETY IS 1.44 ARE NOT VALID FOR A NOSE CAP RADIUS OF ZERO. WRITE OUT HEADINGS FOR DATA REPORT. PROPTY (MAT . E. AMU. RHO. TMPMAX) = 0.0174532925 * THTA(NFMAX) 0.5*DMN(NFMAX)/COS(THETA) (PI**2 *E) / (12• * C8) RCAP*(1.-SIN(THETA)) = SQRT (1 - AMU**2) IF (TMP .LT. 10000.) GO 70 60 •GT• 0•) GO TO 55 FS = 1.4ALTOT + ALCAP CHOSEN AND USED. = CASE + (6.555) CASE = 10000. I (F (FS .LT. 1.) I TMP Ľ J • (6, 501) (6,550) WRITE (6,178) # # 11 Ħ Ħ H (RCAP GO TO 50 CONTINUE CONTINUE CONTINUE CONTINUE Ш WRITE WRITE LTMAX CDCAP WRITE TMPMAX THETA ALCAP ALTOT CASE RCAP CALL TMP L 0 0 40 40 4 10 0 ເງ រ ខ្ល O υυυυ υυ υ υυυ $\cup \cup \cup \cup$

Λ-4

LMSC/HREC AT12513

A-5

-

-

SWD0156 SWD0157 SWD0158 SWD0159 SWD0160 SWD0162 SWD0163 SWD0164 SWD0165 SWD0167 SWD0168 SWD0169 SWD0173 SWD0155 SWD0161 SWD0166 SWD0170 SWD0172 SWD0175 SWD0179 SWD0183 SWD0171 SWD0174 SWD0176 SWD0177 SWD0178 SWD0180 SWD0181 SWD0182 SWD0184 SWD0185 SWD0186 SWD0188 SWD0189 SWD0190 SWD0187 SWD0191 SWD0192 CAUSED IN THE LOCAL PRESSURE COEFFICIENT BY THE SPECIFIED BEEN PRESSURE PROFILE DATA WAS INPUT. THE TYPE OF DATA IS FORCE COEFFICIENT CURVE HAS BEEN SINCE PRESSURE DATA WAS NOT INPUT, PRESSURE PROFILE CONVERTED TO THE MAXIMUM CHANGE ATTACK FROM DEGREES TO RADIANS. PRESSURE PROFILE DATA HAS HEADINGS FOR SUMMARY REPORT ARE WRITTEN OUT. DATA IS COMPUTED IN SUBROUTINE AERO. = 0.0174532925 * ALPHA CHECK TO DETERMINE IF INPUT . THESE VALUES ARE SLOPE OF THE NORMAL (LPRES .GT. 0) GO TO 398 ALF (NF) GO TO (437,438,440) %LPRES CONVERT ANGLE OF L PRES. ALPR/DBAS ALPR/DBAS ANGLE-OF-ATTACK. = LTMAX + = 2*NFMAX = 1 • NFMAX I INDICATED BY = ALTOT ŧ CPOO CPAA ALPR L T T CPOO CPAA F (6,310) (6.311) (6,607) (6,309) (6,312) INPUT. 1 8 11 11 11 #1 41 -11 # CALL AERO GO TO 437 DO 70 NF CONTINUE CONTINUE CONTINUE CP0(LT) XOD(LT) CPA(LT) CPO(LT) XOD (LT) CPA(LT) WRITE WRITE WRITE WRITE WRITE ALPHA LTMAX ALPR ALPR Г Ľ ł Ŧ 398 438 0 υ υ $\cup \cup$ υυ υυ 0000

LMSC/HREC AM2573

SWD0193 SWD0195 SWD0196 SWD0198 SwD0199 SWD0194 SWD0197 SWD0200 SWDO202 SWD0203 SWD0204 SWD0205 SWD0206 SWD0208 SWD0201 SWD0207 SWD0209 SWD0210 SWD0212 SWD0213 SWD0214 SWD0215 SWD0216 SWD0218 SWD0219 SWD0220 SWD0211 SWD0217 SWD0222 SWD0223 SWD0224 SWD0225 SWD0226 SWD0229 SWD0228 SWD0221 SWD0227 SWD0230 SWD0231 ANGLE-OF-ATTACK HAS BEEN INPUT. THESE VALUES ARE CONVERTED CHANGE CONSTANTS ARE EVALUATED AND PARAMETERS ARE INITIALIZED THE CHANGE IN SURFACE PRESSURE COEFFICIENT PER RADIAN AT THIS POINT THE PRESSURE PROFILE DATA AT SPECIFIED ARE INITIALIZED. COEFFICIENT AT ZERO ANGLE-OF-ATTACK AND THE MAXIMUM PARAMETERS USED IN DESIGN OF THE ENTIRE FAIRING TO THE MAXIMUM CHANGE CAUSED IN THE LOCAL PRESSURE OF SURFACE PRESSURE IN PRESSURE COEFFICIENT DUE TO ANGLE-OF-ATTACK. THE SPECIFIED ANGLE-OF-ATTACK. S DO-LOOP WHICH DESIGNS THE FRUSTUMS DIAMETER RATIOS IS IN THE FORM THE FRUSTUM BEING DESIGNED. 0.5*ALPHA*CPA(LT)/DOD 0.0174532925*THTA(NF) CTH) ALPHA*CPA(LT) = XOD(LT)*DBAS C8 × (0.3 * 2.*STH/CTH COS(THETA) SIN(THETA) = DLOC/DBAS = 1 ° NFMAX COEFFICIENT BY DIAM (XN.DLOC) DO 441 LT = 1.LTMAX = 1°LTMAX INITIALIZED. DBAS 0•0 • • • 1 0 IJ = H 41 ŧ 11 11 11 li 11 91 ŧł. łi at it L Z DO 439 LT GO TO 437 CONTINUE CONTINUE Я О Г CPA(LT) CPA(LT) VGROSS DO 129 LTRIG CALL DBASE THETA SUMAL WTOT VTOT PFL 000 STH H۲U z 0 0 0 439 437 440 441 0000 00000000 υυ $\cup \cup$

A-7

LMSC/HREC AT1251A

	εc	= 0.3/CTH	SwD0232
	C5	= P1 / CTH	SWD0233
	C6	= (0•25/CTH**2)*(DBASF/(5•51*F*C2))**1 - 33333	
	C.7		
	DMIN	= DWN(NF)	Second Second
•	NBAY	0 11	
	ALCONE	= ALF(NF)	
	ALB	= ELMIN(NF)	
	TMINC	= TMNC (NF)	
	WCONE	• O =	
	SLOPT	= 0.	
	VUSE	14 O•	SWDD243
υ		IDENTIFY CONE BASE DIAMETER AS BASE DIAMETER OF BOTTOM	SWD0244
υ	SEGV	EN1.	SWD0245
	DSUBB	= DBASE	SWD0246
υ		IF THE TOP FRUSTUM IS BEING DESIGNED, REQUIRED THERMAN	
υ	THIC	KNESS AND MINIMUM ALLOWABLE THICKNESS ARE COMPARED. THE	SWD0248
υ	GREA	TER OF THE TWO IS USED AS MINIMUM ALLOWARLE THICKNESS	0700MS
υ	FOR	THE TOP FRUSTUM.	SWDD250
	IF (NFMAX	•GT• NF) GO TO 101	SWD0251
	IF (TCONT	H •GT• TMINC) TMINC = TCONTH	SWD0252
υ		DESIGN OF THE INDIVIDUAL BAY BEGINS AT THIS POINT.	SWD0253
10	1 CONTINUE		SWD0254
	ر	r 2	
	l		
	IF (I .GT	• 400) GO TO 98	
υ		THE REMAINING LENGTH OF THE FRUSTUM IS COMPUTED.	
	ALMX2	= ALF(NF)-SLOPT	
	1F((2•*A	_B) • GT • ALMX2) ALB = ALMX2	SWD0260
υ	_	-INE LOADS AND SHEAR LOADS AT THE BASE OF THE BAY ARE	SwD0261
υ	COMP	JTED IN SUBROUTINE LOAD . THEN REINDETIFIED AND STORED	SWD0262
υ	FOR	DUTPUT PURPOSES.	SWD0263
	CALL LOAD		SWD0264
		= ANFIMN	SWD0265
		= ANFIMX	SWD0266
(FZ(I)	= FSUBZ	SWD0267
5.0		MAXIMUM DESIGN PRESSURES ALONG THE LENGTH OF THE BAY	SWD0268
ر	AXI	COMPUTED ON BOTH THE WINDWARD AND LEEWARD SIDES.	SWD0269

A-8

-

-

. 16

	-	-	_	-	_	_			_	_
	CALL PR	ESUR						SWDO2	20	
C	LPFL	1	2					SWDO2	172	
υ		NIM	IMUM MECHANICAL PROPERTIES O	F HONEYC	OMB M	ATERIALS	ARE	SWDO2	13	
υ		.ISTED	•					SWDO2	74	
	თ	H	E /(2•0 *(1•0 +AMU))					SWDO2	75	
	GFACE	11	EFACE / (2•*(1•+AMU))					SWDO2	76	
υ		ŭ	ORE MATERIAL IS 2024-T4 ALUM	I NUM				SWDO2	77	
	CTA	11	40000					SWDO2	78	
	CCA	11	40000.					SWDO2	79	
	CSA	н	23000.					SWDO2	80	
	ECORE	یں 11	1.1					SWDO2	81	
	GCORE	11 11	ECORE / (2•*(1•+AMU))					SWDO2	82	
υ		CALC	CULATE SKIN THICKNESS REQUIR	ED TO CA	RRY TH	Ψ		SWDO2	83	
υ	Σ	ERID1/	ANAL COMPRESSIVE LOAD PER IN	UH				SWDO2	84	
	TKMCL	"	ANFIMX / FCA					SWDO2	85	
υ		CALC	CULATE SKIN THICKNESS REQUIR	ED FOR TI	Щщ			SWD02	86	
υ	CI	RCUMFE	ERENTIAL LOAD PER INCH					SWDO2	87	
	TKCIL	ц. 11	DESMX * DSUBB / (2.0 * FCA	* CTH)				SWD02	88	
υ		CALC	CULATE SKIN THICKNESS REQUIR	ED FOR SI	HEAR S	STRESS		SWD02	89	
υ	-	DUE TC	O AERODYNAMIC LIFT					SWDO2	90	
	TKSAL	11	2.0 * FZ(1)/ (PI * DSUBB * F	SA)				SWD02	91	
υ		CALC	CULATE SKIN THICKNESS REQUIR	ED FOR H	OOP S1	TRESS. I	H-	SWDO2	92	
υ	1	S ASSL	JMED THE PRESSURE DIFFERENTI	AL WILL I	VOT EV	CEED 4 F	I Se	SWDO2	93	
	PDIFF	1	4•O					SWDO2	94	
υ		CALC	CULATE EQUIVALENT PANEL RADI	US OF CUI	RATUR	ХE.		SWD02	95	
	ENSUBR	"	0.6 * (1.7 - 2.0 * ALB * C	7 / DSUBI	ín)			SWDO2	96	
	APRC	"	0.5 * DSUBB * ENSUBR / CTH					SWDO2	97	
	TKHOOP	ц. 11	S * PDIFF * APRC / FTA					SWD02	98	
υ		SELE	ECT LARGEST VALUE OF SKIN TH	I CKNESS.	USE F	ALF THIS	ŝ	SWDO2	66	
υ	>	ALUE A	AS FACE THICKNESS.					SWD03	00	
	TF T	• •	•5 * AMAX1(TKMCL, TKCIL, TKS)	AL ° TKHO	С <mark>О</mark> О			SWD03	01	
υ		MON	COMPARE THE THEORETICAL FACI	E THICKNE	ESS WI	TH THE		SWD03	02	
υ	Σ	INIMUN	A ALLOWABLE FACE THICKNESS.					SWDO3	03	
υ		r~	THE FACE THICKNESS MUST BE II	NCREASED	TOM	IN MUM AL	LOWA	SWD03	4 0	
υ	FA(CE THI	I CKNESS •					SWD03	05	

LMSC/HREC AT12573

SWD0307 SWD0308

0 •••

IF (TF .LT. TMINC) TF = TMINC NEXT. STANDARD GAUGES ARE TO BE USED IF KTFSTD IS IF (KTFSTD .NE. 1; GO TO 239

FACE THICKNESS.

U

SWD0305 SWD0306

SWD0310 SWD0312 SWD0311 SWD0313 SWD0314 SWD0315 SWD0316 SWD0309 SWD0317 SWD0318 SWD0319 SWD0320 SWD0333 SWD0322 SWD0323 A HEXAGSWD0324 SWD0325 SWD0326 SWD0328 SWD0332 SWD0330 SWD0329 SWD0335 SWD0336 SWD0342 SWD0343 SWD0345 SWD0321 SWD0327 SWD0331 SWD0334 SWD0339 SWD0340 SWD0344 SWD0346 SWD0337 SWD0338 SWD0341 USED. SQRT((2• * TF**2*E)/(CB*AMAX1(FFAX(I) %FFC(I))) 9E THE CORE USED IN THIS ANALYSIS IS ASSUMED TO HAVE TO THE VEHICLE 0 IF KTRSTD IS 1 STANDARD RIBBON GAUGES ARE DATA. CTH) ASSUME THE RIBBON DIRECTION I PARALLEL RIBBON THICKNESS ONAL SHAPE. INITIALIZE DIMENSIONAL * Ч 11 = AMAX1 (TRBMIN(NF) . . 0005) •GE. TRIBN) GO TO 223 CELSIZ(I) CELSIZ /(2.0 * SBETA) 238 (PDESMX * DSUBB)/(4. = FLOAT(NCELL) * .0625 CALCULATE CELL SIZE. BETADG 0 ANFIMX /(2. * TF) IF (KTRSTD .NE. 1) GO TO 224 0 0 SET FIRST TRIAL â 98 8 16. GO TO 98 IF (CELSIZ(1) .GT. 1.) 0.017453 * + (JF .GT. 30) GO TO TRBSTD(JG) .GT. TF) SIN(BETA) CELLWD * COS(BETA) 0.5 × (A TSTD(JF) + + 60.0 B/A ц Л 5 б 8 IF (TRBSTD(JG) ٩ (TSTD(JF) 11 11 ŧ # Ħ 11 tI H 11 H H R н 11 41 11 0 IF (JG .GT. CELSIZ(I) TO 237 GO TO 222 CONTINUE CONTINUE FFAX(1) FFC(I) CELLWD BETADG XL=ALB CBETA TRIBN NCELL SBETA TRIBN BETA 00 L. Ľ. Щ Ĩ ۴ ч С y З ∢ αm 237 238 239 234 222 223 224 $\cup \cup$ υυ υ υ Ο

LMSC/HREC A702573

SwD0386 SWD0388 SWD0389 SWD0387 SWD0390 SWD0392 SWD0422 SWD0423 SWD0391 SWD0393 SWD0394 SWD0395 SWD0396 SWD0398 SWD0399 SWD0402 SWD0403 SWD0397 SWD0400 SWD0401 SWD0404 SWD0405 SWD0406 SWD0407 SWD0408 SWD0409 SWD0410 SWD0412 SWD0413 SWD0414 SWD0415 SWD0416 SWD0418 SWD0419 SWD0411 SWD0417 SWD0420 SWD0421 * AMINI(A°B))) ANALYSIS BY LL. STABILITY TEST. THE BURNS IN LOCKHEED TEHNICAL REPORT 6-62-64-17, DEC. 1964, ΗH COMPARE WRINKLING ALLOWABLE AND APPLIED STRESSES. z = (2.496 * TF /H) * ((EFACE * AMIN1(A.B)) / TEST PANEL IS NOW CHECKED FOR WRINKLING, USING THE * ((GCORE * TRIBN)/(EFACE * ((GCORE * TRIBN * TF) A PANEL STABILITY WINDWARD SIDE. NEXT. CHECK LEEWARD SIDE. (H/M)) = (S•1 / (H/M)**2) THE DESIGN HAS PASSED THE PANEL 0°0**((н 2 5 * 254 THIS BAY HAS PASSED •01 •01 GO TO 227 = 11.0 234 IF (AFACT .LT. 1.) GO TO 243 (CRG .GE. ANFIMX) GO TO * (H • GT • 2 • 0) GO TO 232 [(GCORE * TRIBN))**0.33333 + IF (KTFSTD .EQ. 1) GO TO = 0.93 * EFACE (EFACE * AMINI(A.B) (KG .EQ. 1) GO TO 98 PAGES 3-3 AND 3-4. = GC1 * (1•0 GC2 * (1.0 = 0.83* EFACE ≻ H + •125 L + * THICK CORE •GT• 5•0) ✓ €*6) = = PDESMN •LT• 0•5) THIN CORE H 11 INSTBL GO TO 253 GO TO 239 GO TO 244 IF < H/W 1**0.66667 IF < H/W CONTINUE CONTINUE CONTINUE CONTINUE CONTINUE 244 CONTINUE AFWRIN 243 AFWRIN AFACT CALL LL. 25 Ŀ L 5 Ĩ ۵ I 252 253 227 232 254 241 υυ 0000 \mathbf{O} υ Ο

LMSC/HREC

A -12

SWD0424 SWD0425 SWD0425	SWD0427	SWD0428 SWD0429	SWD0430	SWD0431	SWD0432	SWD0433	SWD0434	SWD0436	SWD0437	SWD0439	SWD0440		SWD0442 SWD0443	SWD0444	SWD0445	SWD0446	SWD0447	SWD0448	SWD0449	SWD0450	SWD0451	SWD0452	SWD0453	SWD0454	SWD0456	SWD0457	SWD0458	SWD0459	SWD0460	SWD0461
WRINKLING IS PREDICTED, INCREASE RIBBON THICKNESS. IF (AFWRIN - AMAX1(FFAX(I),FFC(I)))246, 247, 247 246 CONTINUE	CTO CONTINUE DESIGN IS INADEQUATE. INCREASE RIBBON THICKNESS. RETES'	IF (KTRSTD •NE• 1) GO TO 271 IF (JG •GT• 8) GO TO 98	JG = JG + 1	TRIBN # TRBSTD(JG)	GO TO 241	271 TRIBN = TRIBN + •00001	GO TO 241 247 CONTINUE	PANEL DESIGN FOR THIS BAY IS NOW STRUCTURALLY ADEQUATE.	COMPLITE BAY DIMENSIONS NEEDED IN WEIGHT CALCUMATIONS.	DSUBB IS OUTSIDE BASE DIAMETER, D(I) IS THE UPPER OUTSIDE	DIAMETER, DBNSD IS INSIDE BASE DIAMETER AND DINSD IS UPPER INSIDE DIAMTED.		DINSD = D(1) = 2• * ((H = TF) / CTH)	DBNSD = DSUBB + 2 • * ((H - TF) / CTH)		CALCULATE WEIGHT OF INNER FACE.	WIINFC == (ALB * C5) * (DBNSD + DINSD) * TF *	1 (RHO / 2•)	CALCULATE WEIGHT OF OUTER FACE	WINTEC = (ALB * CD / * (DSOBB + D(1)) * TF *		WFACE(1) = WIINFC + WTOTFC		VCODE - COVE WEIGH!		ROCORE = (TRIBN * RHO * (1. +R))/(A * SBETA * (R + CBETA))	WTCORE(1) = VCORE * ROCORE		MAKE AN ALLOWANCE FOR THE WEIGHT OF BONDING MATERIAL	ASSUME ONE OUNCE PER SQ: FT. PER FACE WROND = # (D1/2)) * (DBNED + D1NED) * (D1/2)
U	U							υ	C	υ	υυ	I			υ	υ		(υ			C	ς Σ)				υ	υ	υ

SWD0465 SWD0466 SWD0468 SWD0463 SWD0464 SWD0469 SWD0470 SWD0472 SWD0473 SWD0475 SWD0482 SWD0483 SWD0467 SWD0474 SWD0476 SWD0478 SWD0479 SWD0480 SWD0481 SWD0484 SWD0485 SWD0488 SWD0489 SWD0493 SWD0495 SWD0498 SWD0471 SWD0477 SWD0486 SWD0487 SWD0490 SWD0492 SWD0494 SWD0496 SWD0497 SWD0499 SWD0491 SWD0500 INERTIA OF A STIFFENING RING IS STIFFENING RING FOR THE BAY IS DESIGNED USING STANDARD WFACE(I) + WTCORE(I) + WBOND + WRING(I) + WSPLCE(I) * (TF * (3.5 + H + TF)) * RHO MAKE AN ALLOWANCE FOR CIRCUMFERENTIAL SPLICE WEIGHT. S CHECK RING TO SEE IF MOMENT OF INERTIA IS ADEQUATE , AND I SKIN GAUGES AND INPUT NORMALIZED RING CROSS-SECTION. (PI*ALB/12•)*(DSUBB**2 +DSUBB*D(I) + D(I)**2) BAY WEIGHT IS ADDED TO PREVIOUS BAY WEIGHTS FOR (2 * TF**2 * EFACE) / (C8 * CELSIZ(1)**2) / CTH) * PI * RHO í. IF OUTSTANDING FLANGE WILL BUCKLE. WSEG(I) * 1728. / VSEG(I) FZ(1) / (PI * DSUBB * TF) • {\} AST * (DINSD = 2. * DD IF (AIRING .GT. AIREQ) GO TO 257 $\mathsf{WSPLCE}(I) = \mathsf{PI} * (\mathsf{D}(I) + \mathsf{DINSD})$ THE REQUIRED MOMENT OF FS * PDIFF * APRC / IF (FCFB .LT. FRING) GO TO 256 ALOPT(1) = WCONE + WSEG(I) + ALB IF (K .GT. 29) GO TO 98 + TSTD(K) AFWRIN 0.125 / 144.0 CALCULATED. SUMAL + + 1 SLOPT TRIBN ALB Ļ I FRUSTUM. 1I Ħ -CALL RSTRES H 41 41 11 Ħ 11 11 41 11 11 н 11 11 CALL IREQ RING GO TO 256 CONTINUE WRING(1) TRING(1) WTDEX(1) ALOPT(1) TFACE(1) TCORE(1) FDMP(1) WSEG(1) VSEG(1) TRBN(1) =FWR(1) FFS(1) FFB(1) SLOPT SUMAL **NCONE** CALL * $\mathbf{\Sigma}$ ¥ 256 257 υ υυ υυ υυ υυυ

		، مر ۱	0.0	*	~ ~	_		<u></u>					~	_								_	_			_					
-	0502	0000	0505 0506	0201	0506	551C	0511	0512	0514)515	516)518)518	513	0520 0521	522	1523)524	525	526	527	528	229	530	531	0532	1000	535	1536	537	538	52.50
-	S WDI S WDI	N N N	SWD	SWD(S WD	SWD(SWD(SWD	SWDG	SWDC		SWDO		SWDO	SWDC	SWDO	SWDO	SWDO	SWDO	SWDO	SWDO	SWDO	SWDC	S WDO			SWDO	SWDC	SWDC	SWDC
	ц Ц Ц Ц Ц Ц Ц	7	≻		م	1		۵.												L-								õ			
-	ATED AME		A B		LL OF)		10 L						BAY						L GH	r O R			ARY				Г Ш			
_					ւ * և) 		THE				•		1St						Щ М	MO			N M M N S C M M				ADD		₩S)	
	CAL BAS		N N N	SE	SE D I SI)))		10						ί μ			۲°			Å LEO	ALL			Ш				AND		ŧΖI₩	
	THE DN 10		L L	DBA	н С С С С С С С С	1		auar									F BA			S S	0 F 0			н Д				ĒD			
_	- OAD OF C)	M D S	× 20	***			Ш Ш			L		1	<u>.</u> Л			- X I N I N			ð Z	ASE			Ē				ULAT		Ξ Σ Δ *	
	PAYL ENT F TI	: Ш . Е	щ	•	• "	1728		S S									ΗH			Ш Ш	NCR NCR NCR NCR			2 2 7		ħ	1	CALC	٩S.	BASE	
_	FOR DERC		0	(1))*((1)	1 2 1		I Y			ç		1	L.			, Ng			HAS	s S			L L		CONF	5	IS 0	STUN	2+DE	
		יר יר יר		ING	UNC UNC	Ж. Ш.		1 B/			(∟ ∩ -	-				DESI			ΣΩ	Σ		1	I A M	, ,	ы С		TUM	FRU	* と い	
-	USEF VD T ND T		ADD	¥		SNO		NEX 3A 4 •]	-		П Т Т			5			RUS	NST		1	ARF	μN L		•	RUS	ous	DBA	
	IS (S An HF I	I S I	ΩM•	01	₩ ₩			E F F			- -	i ∩	(5 5		362	Z O			ш Ш Т	и Ш	•	:	τCM	THTA	NBA Y		щ	REVI) ¥ Щ∠	
		- I (∢ *	₹00 * ^	1 1 2		OF ARE					1	ц		5	SOES			Ē		0 2 2	- (SO2	.°N	Ц П П	-	Т Ц	ŭ		n C N
	N N N	MIN	2 S O	è.				ы С Ц Ц Ц Ц			L	5		• MAL		00	ΔA			A ∠ O			SZ I	և. Տ	× °Dv			о Щ	Б П	07*70	פ > ↓
	- UME 2 ING CTED		THI	а СС П	+ +			LAME		_			+•	N T CM		1X2)	ROGR			m H	żά μα		Υ S	I H	ί WC °	ž	NF)	יסרטי	OLU	179	, ע ע
	WO F		L L L L L L L L L L L L L L L L L L L	DSO) 		ω α Ο Ο		0 (1)		Ż	NBA)			ALV	ш			LA L		- '	* i •	A Q A	L L L	(NF)	NWC	SS <	> SS	0•20	つようへ
-	BAY SUE			ŧI	0 11			BAS METE		11		-	11 11 <	ע ד⊔ די		ы. Ю	Ī		1	H	H C		1 11 •		• m • m	Z Z	11	GRO	GRO		ł
	л х М М М	ORDI	VOL					DIAN						0F 1		8			NUE		Ч Ч Ч				л С С С С С С С С С С С С С С С С С С С	Ц Ц			ШН	r.	n
_				USE1	USE2 JSE					SUBB			βAΥ			¥ ~		2			_ `	(141)	ט ב	•	LTE	CON	¥		-	s o a s o a	n DY
_				õ	ăŚ					Ď			Ë			uL.		ບ ເ ເ	J J N			Ц.Ч.	13		Ц Х Д	1 A!	2 D			00	り >
	() () ()) ()				4 1.		• •									(0 7												
	000	00					0	00	U			0	C	0	υ	1	υ		1		$\mathcal{O}(\mathcal{O})$)	($\mathcal{O}(\mathbf{c})$	ر			υ	υ		

-

A**-**15

_

υ	U	SWD0540
υ	C USEFUL VOLUME OF THIS FRUSTUM IS ADDED TO USEFUL VOLUI	SWD0541
O	C OF PREVIOUS FRUSTUMS.	SWD0542
	VTOT = VTOT + VUSE	SWD0543
υ	C WEIGHT OF THIS FRUSTUM IS ADDED TO WEIGHT OF PREVIOUS	SWD0544
υ	C FRUSTUMS.	SWD0545
(WTOT = WTOT + WCONE	SWD0546
5	C BASE DIAMETER OF NEXT FRUSTUM IS SET EQUAL TO TOP	SWD0547
υ	C DIAMETER OF THIS FRUSTUM.	SWDO548
	DBASE = DMIN	SWD0549
υ	C TOTAL NUMBER OF BAYS DESIGNED UP TO THIS POINT IS STOF	D.SWD0550
•	IMX(NF) = I	SWD0551
υ	C PROGRAM GOES ON TO NEXT FRUSTUM.	SWD0552
	129 CONTINUE	SWD0553
	GO TO 326	SWD0554
	98 CONTINUE	SWD0555
υ	C CONTROL HAS BEEN TRANSFERRED TO THIS POINT BECAUSE THE	SWD0556
υ	C INDEX OF ONE OF THE SUBSCRIPTED VARIABLES HAS EXCEEDED THE	SWD0557
υ	C NUMBER PERMITTED BY THE DIMENSION STATEMENT.	SWD0558
	WRITE (6.120)	SWD0559
	WRITE (6.121)	SWD0560
	WRITE (6.614) I.J.J.JF.JG.K	SWD0561
	IF(KG •EQ• 1) WRITE(6•201)GBAR	SWD0562
	WRITE (6, 501)	SWD0563
	326 CONTINUE	SWD0564
	IMAX = I	SWD0565
	WRITE(6.314)	SWD0566
	WRITE (6.315) ALTOT.IMAX.VTOT.WTOT	SWD0567
	WRITE (6,606)	SWD0568
υ	SURFACE AREA OF THE NOSE CAP IS COMPUTED	SWD0569
	SCAP = 2 + PI * RCAP * ALCAP	SWD0570
υ	NOSE CAP SKIN THICKNESS REQUIRED FOR STRUCTURAL INTEG	SWD0571
υ	C RITY IS DETERMINED AND COMPARED WITH THICKNESS PREVIOUSLY	SWD0572
υ	CALCULATED TO MEET THERMAL REQUIREMENTS. THE LARGER OF THE	SWD0573
5	TWO THICKNESSES IS USED TO COMPUTE CAP WEIGHT.	SWD0574
	CALL TNOSST	SWD0575
(TCAP = AMAX1(TCAPST • TCAPTH)	SWD0576
5	NOSE CAP WEIGHT IS COMPUTED.	SwD0577

	WCAP = SCAP* RHO * TCAP	SWD0578
υ	USEFUL VOLUME OF NOSE CAP IS CALCULATED.	SWD0579
	RUSE = RCAP - 2. * AOT * TRING(I)01 * DBASE	SWD0580
	HUSE = ALCAP - 2. * AOT * TRING(I)01 * DBASE	SWD0581
	VCAP = 1.0471976*HUSE*HUSE*(3.*RUSE - HUSE)/1728.	SWD0582
υ	GROSS VOLUME OF CAP IS COMPUTED AND ADDED TO GROSS	SWD0583
υ	VOLUME OF THE FRUSTUMS.	SWD0584
	VGROS = 1.0471976*ALCAP*ALCAP*(3.*RCAP - ALCAP)	SWD0585
	VGROSS = (VGROSS + VGROS) / 1728.	SWD0586
υ	USEFUL VOLUME OF CAP IS ADDED TO USEFUL VOLUME OF CONE	SWD0587
υ	TO OBTAIN TOTAL USEFUL VOLUME OF FAIRING.	SWD0588
	VTOT = VTOT + VCAP	SWD0589
υ	TOTAL LENGTH OF FAIRING IS OBTAINED BY SUMMING CONE AND	SWD0590
U	CAP LENGTHS.	SWD0591
υ	TOTAL FAIRING WEIGHT IS THE SUM OF CAP WEIGHT AND CONE	SWD0592
υ	WEIGHT.	SWD0593
	WTOT = WTOT + WCAP	SWD0594
υ	DATA REPORT IS WRITTEN OUT.	SWD0595
	WRITE (6.82)	SWD0596
	WRITE (6.511) PDSPH	SWD0597
	WRITE (6,67) TMINN	SWD0598
	WRITE (6.96) TMPMAX	SWD0599
	WRITE (6.89) TCAPST	SWD0600
	WRITE (6.90) TCAPTH	SWD0601
	WRITE (6.91) TCAP	SWD0602
	WRITE (6,87) RCAP	SWD0603
	WRITE (6.84) ALCAP	SWD0604
	WRITE (6+88) SCAP	SWD0605
	WRITE (6,316) VCAP	SWD0606
	WRITE (6.94) WCAP	SWD0607
	WRITE (6.92)	SWD0608
	WRITE (6085) ALTOT	SWD0609
	WRITE (6.86) VTOT	SWD0610
	WRITE (6.329) VGROSS	SWD0611
1	WRITE (6.95) WTOT	SWD0612
υ		SWD0613
U I	IF AN INTEGER WAS READ IN FOR KEY, DETAILED DESIGN	SWD0614
υ	INFORMATION IS WRITTEN OUT FOR THE FAIRING.	SWD0615
	IF (KEY •LT• 1) GO TO 10	SWD0616

327 CONTINUE	SWD0617
WRITE (6+ 501)	SWD0618
WRITE (6.606)	SWD0619
WRITE (6+51)	SWD0620
WRITE (6, 14)	SWD0621
14 FORMAT (59X, 10HRING DATA ///)	SWD0622
60 TO (1615, 1616, 1617), IKIND	SWD0623
1013 WKITE (0+2011)	SWD0624
COLIFORMAL(23X+4HTYPE + 61X+ 11HANGLE)	SWD0625
GO TO 2625 1616 WRITE (6,2612)	SWD0626
2612 FORMAT(23X, 4HTVPF , 61V, 11H7EF SECTION)	
GOTO 2625	
1617 WRITE (6,2613)	SWD0629
2613 FODMAT/23V. AHTVOF . 61V. 1144AT SECTION .	
2625 CONTINUE	SWD0631
WDITE (6.1620) BOT - AOT COT FOR	
WATTE (0110CU) BUT + AUTO CUTO FORD	SWD0633
1620 FORMAT(23X+ 12HBASE LEG B/T + 53X+ 11HBOT = F7+2 /+	SWD0634
1 23X• 15HUPRIGHT LEG B/T • 50X• 11HAOT = F7•2 /•	SWD0635
2 23X• 19HOUTSTANDING LEG B/T • 46X• 11HCOT = F7•2 /•	SWD0636
3 23X 27HFLANGE BUCKLING STRESS PSI , 38X, 11HFCFB = F7.0//)SWD0637
WRITE (6. 22)	SWD0638
22 FORMAT (55X 18HSANDWICH FACE DATA //)	SWD0639
GO TO (671.672.673). MATF	SWD0640
671 WRITE (6.676)	SWD0641
676 FORMAT (23X, 13HFACE MATERIAL , 36X, 24H2024-T4 ALCLAD ALUMINUM)	SWD0642
GO TO 679	SWD0643
672 WRITE (6.677)	SWD0644
677 FORMAT (23X+13HFACE MATERIAL +42X+ 17H2024-T4 ALUMINUM)	SWD0645
	SWD0646
0/3 WRITE (6+678)	SWD0647
6/B FURMAT (23X+13HFACE MATERIAL +42X+ 17H7075-T6 ALUMINUM)	SWD0648
	SWD0649
WRITE (6+501)	SWD0650
	SWD0651
	SWD0652
WRITE (6,169)	SWD0653
WKITE (6+607)	SWD0654

SWD0655 SWD0656 SwD0658 SWD0659 SWD0660 SWD0662 SWD0663 SWD0665 SWD0666 SWD0657 TRING(1), SWD0664 SWD0668 SWD0669 SWD0670 SWD0672 SWD0673 SWD0674 SWD0675 SWD0676 SWD0678 SWD0682 SWD0683 SWD0685 SWD0688 SWD0689 SWD0661 SWD0667 SWD0671 SWD0679 SWD0680 SWD0686 SWD0677 SWD0681 SWD0684 SWD0687 SWD0690 SWD0691 SWD0692 SWD0693 WRITE (6.508) NF, IW, ENFIMN(I), ENFIMX(I), FFAX(I), FFC(I), wFACE(I) wTCORE(I), wRING(I), wTDEX(I),TCORE(I) wSEG(I), ALOPT(I), TFACE(I), TRBN(I), FFS(I), FFB(I), FFWR(I), FCA, FFDMP(I) 453 = IMAX WRITE (6.58) NF. IW. D(I). TO 457 = IMAX 0 - ENFIMN(I) 00 00 12 ၀ ပ IF (12 .GT. IMAX) 12 10 4 11, 12 11, 12 I MAX) IMAX) •GT• + + 1 w + = IV + 40 Ľ 20 501) 40 WRITE (6, 501) (6,806) (6,606) (6+807) (6,808) (6,809) 11 # # • Ħ **\$**1 li 11 IF (12 •GE• я 0 11 Ħ IF (IMX(NF) П 11 Ħ 11 41 11 IF (12 • GT ENFIMX(I) •9) 2CELSIZ(I) GO TO 451 CONTINUE ENFIMN (I CONTINUE CONTINUE CONTINUE D0 453 DO 463 WRITE WRITE WRITE WRITE WRITE WRITE 10 Ψ ١ Ξ Ìχ 12 Чz Įκ S Ιw ЦZ -453 451 457 461

SWD0695 SWD0696 SWD0698 SWD0699 SWD0694 SWD0697 SWD0700 SWD0702 SWD0703 SWD0704 SWD0701 SWD0705 SWD0706 SWD0707 SWD0708 SwD0709 SWD0710 SWD0712 SWD0713 SWD0715 SWD0711 SWD0714 SWD0716 SWD0718 SWD0719 SWD0717 SWD0720 SWD0722 SWD0723 SWD0725 SWD0724 SWD0726 SWD0728 SWD0729 SWD0721 SWD0727 SWD0730 SWD0731 IF 2 WAS READ IN FOR KEY. DETAILED LOADS INFORMATION 0.5*(ENFIMN(1) + ENFIMX(1))/FS 0.0174532925*THTA(NF) IF (IMX(NF) .GT. I) GO TO 463 IMAX GO TO 467 10 11 GO TO 2.*STH/CTH COS(THETA) SIN(THETA) 12 IS WRITTEN OUT. 54 ALOPT(1) 0.3/CTH (12 •GE• IMAX) = I1 • I2 •LT• 12) + + DBAS = 12 •NE · 2) ١Ľ 501) 606) 40 (6, 501) 0 N (6,606) 6.608) (6.609) (6,610) 6+612) n 1 11 11 n 11 11 II 4í п ł 11 11 11 CALL PRESUR 41 11 (6, WRITE (6. GO TO 461 ----CONTINUE CONTINUE IF (IMAX (KE√ DO 473 WRITE ANF I AX WRITE WRITE WRITE **WRITE** WRITE WRITE THETA DSUBB SUMAL LPFL LPFL СТН STH ALB Ч ١L Z Ľ 2 ΪW Ψ 12 N 0 0 0 ЧZ -463 467 471 υυ

	ANF 18	= ANFI	AX - ENFIMN(I)/FS	SWD0732	
	AXLOAD	I JUNI	AX*DSUBB*•94248/C3	SWD0733	
			562*ANF1B*DSUBB**2/C3	SWD0734	
	WRITE	(6,611) NF	IW+DSUBB+D(I)+ALOPT(I)+SUMAL+PDESMX+PDESMN+	SWD0735	
	I AXLC	AD+FZ(I)+BE	END	SWD0736	
	N I	+ MI =	1	SWD0737	
	SUMAL	= SUMAL	L + ALOPT(I)	SWD0738	
	DSUBB	= D(I)		SWD0739	
	ALB	= ALOP1	T(1+1)	SWD0740	
	IF (IM	X(NF) .GT.	I) GO TO 473	SWD0741	
	MI			SWD0742	
	L Ž	+ LN 11	1	SWD0743	
	THETA	= 0.017	74532925*THTA(NF)	SWD0744	
			THETA)	SWD0745	
			(HETA)	SWD0746	
	Ч r J c		TH/CTH	SWD0747	
, 1 ,			CTH CTH	SWD0748	
) ;		L L		SWD0749	
	IF CIM	AX •LE• I2)	GO TO 477	SWD0750	
	11	+ -		SWD0751	
			54	SWD0752	
		(0. 201)		SWD0753	
		(0)0)		SWD0754	
1		1 - t		SWD0755	
~ ~ +		Л Т Т		SWD0756	
		(0,013) DSU	JBB • SUMAL • AXLDCP • FSBZCP • BNDCAP	SWD0757	
i				SWD0758	
ດ ເ	FORMAT	(48X,36H D	ESIGN DETAILS OF CONICAL FRUSTUMS ///)	SWD0759	
տ գտ	FORMAT	(54X,24H	FAIRING GEOMETRY //)	SWD0760	
0			12•4X•F6•1•F8•1•F10•4•F9•5°F9•4°F11•2°	SWD0761	
- (F9.2° F1	•4• FII•4• FII•I• FIO•4)	SWD0762	
5 (0 (F UKMAT	(48X,33H	CONSTRAINTS ON FAIRING DESIGN	SWD0763	
- 5 0		W HII NXEZ I	INIMUM BAY LENGTH CONSIDERED IN.	SWD0764	
- ,			ALMIN = +F8.3)	SWD0765	
00	L UKMAT	(23X . 77H M	INIMUM ALLOWABLE THICKNESS OF CONE SKIN, IN.	SWD0766	
- 			TMINC = +F8+4)	SWD0767	
10	FORMAT	(23X,77H M	INIMUM ALLOWABLE THICKNESS OF NOSE CAP SKIN .	IN. SWD0768	
68 .	FORMAT	H75°X44)	TMINN = (F8.4) (Control of the control of the contr	SWD0769	
))			OFECT IED DESTON PRESSURES //)	SWD0770	

LMSC/HREC A71257.5

SWD0812 TSWD0813 SWD0809 SWD0810 NSWD0811 SWD0814 SWD0815 SWD0816 SWD0817 SWD0818 SWD0819 SWD0820 SWD0822 SWD0823 SWD0824 SWD0825 SWD0828 SKIN THICKNESS REQUIRED FOR THERMASWD0821 SWD0826 SWD0829 SWD0830 SWD0832 170 FORMAT (23X,77H DESIGN PRESSURE ON LEEWRD SIDE OF CONE, (SAFETY FASWD0833 178 FORMAT (14X.103H RADIUS OF THE NOSE CAP IS ZERO. FOR THIS CASE THESWD0835 SWD0838 SWD0827 1 HEAT TRANSFER EQUATIONS ARE NOT VALID. THEREFORE, NO/ 9X,70H THERSWD0836 201 FORMAT (20X+52HCASE TERMINATED SINCE GBAR IS OUTSIDE RANGE. GBAR =SWD0839 SWD0842 SWD0843 SWD0845 SWD0831 SWD0834 SWD0837 SWD0840 206 FORMAT (23X.77H CHANGE IN PRESSURE COEFFICIENT DUE TO ANGLE OF ATTSWD0841 SWD0844 LARGSWD0846 USEFUSWD0847 163 FORMAT (23X,77H INTERNAL-TO-AMBIENT PRESSURE DIFFERENCE AT DESIGN 120 FORMAT (23X+80H DESIGN OF THE CONICAL SECTION OF THE FAIRING HAS 121 FORMAT (23X+80H OR K INDEX HAS EXCEEDED THE MAXIMUM PERMITTED BY 2MAL CONSTRAINTS HAVE BEEN IMPOSED ON THE DESIGN OF THIS FAIRING. BAY WT. RING GAUGE (NI) TOTAL (11) SKIN+ DEG+ F. FORMAT (23X+77H AMBIENT PRESSURE AT DESIGN CONDITIONS, PSI FRUS-• oz < < < RIBBON GAUGE (IN) **THICKNESS** CONSTRAINTS ON DESIGN OF FRUSTUMS //) 92H SHELL (IN) 309 FORMAT (48X,36H DESIGN SUMMARY FOR FRUSTUM SECTION 96 FORMAT (23X+77H MAXIMUM ALLOWABLE TEMPERATURE OF •ZIW GAUGE FACE (NI) (LB/CU FT) MIN. BAY 165 FORMAT (77X, 9H WINDWARD,27X,8H LEEWARD) WE I GHT 307 FORMAT (56X+18H AERODYNAMIC LOADS //) (/// I NDEX LENGTH = +F8.3 ///) ВАΥ (N I) TMPMAX = •F8•1 164 FORMAT (23X+77H CONICAL SECTION PDESMN = +F8+3) = \$F8.4) = ,F8.3 TCONTH = +F8.4 LENGTH 10T BEEN COMPLETED. THE I. J. SHELL 0.D. WT. (NI) RING (LB) DELTAP FORMAT (216.4F12.8.112) 1HE DIMENSION STATEMENT. PSTAT 131 FORMAT (5F12.8. 216) 167 FORMAT (128H FRUSTUM СРА CORE WT. HALF TOTAL -BAY • NO (18) FORMAT (48X,34H 1L REASONS. IN. 1CTOR=1.4), PSI 1 COND I T I ONS + PS I 168 FORMAT (128H 169 FORMAT (128H wT. 310 FORMAT (20X. SMALL TOTAL (LB) FACE 2 CELL 2 WIDTH (II) 1 E11•4 3 ///) 1 ACK Ш ••• -പ 162 132 308

LMSC/HREC A712573

SWD0848 DIASWD0849 VOLUMSWD0850 (INSWD0852 SWD0854 SWD0855 SWD0856 SWD0859 FTSWD0853 SWD0858 SWD0860 SWD0851 SWD0857 SWD0862 SWD0863 SWD0864 SWD0865 SWD0866 SWD0868 /)SWD0869 SWD0867 SWD0872 SWD0873 SwD0861 SWD0870 SWD0874 FROM BASESWD0875 SWD0876 //)SWD0878 SWD0879 SWD0871 SWD0877 SUBSCRIPTED VARIABLES HAS EXCEEDED /35X°20H THE MAXIMUM VALSWD0885 SwD0880 SWD0882 SWD0883 SwD0884 SWD0881 FORMAT (1X+12+1H-+12+4X+F8+2+4X+F8+2+5X+F7+0+F9+0+2F10+0+5X+F9+0+ DISTANCE (22X:03H DESIGN OF THE FAIRING HAS NOT BEEN COMPLETED. ONE) CO (42X+48HDATA REPORT FOR OPTIMIZED NOSE FAIRING STRUCTURE ΩN) FORMAT (10X+12+1H-+12+F12+1+F10+1+F9+1+F11+1+F12+2+F13+2+F13+1+ TANG. PT. FI0.1019X.FI1.1025X.FI3.10F12.10 (IN-LBS) BENDING MOMENT Ν Σ Γ 92H NO. BAYS F10.2.F10.2.F9.2.F9.1.F10.1. Ь LENGTH (NI) 92H BA≺ GAUGE (23X+77H USEFUL VOLUME OF NOSE CAP. CU. FT 329 FORMAT (23X+77H TOTAL VOLUME OF FAIRING, CU, FEET (IN) 511 FORMAT (23X,77H DESIGN PRESSURE ON NOSE CAP, PS) SHEAR LOAD (LBS) BAY TOP DIA. í Z I) (46X+6HT0TALS+F11+1+23X+14+2F11+2) LENGTH (I N) DETAILED LOADS DATA BAY BASE LOAD (59X+12HCASE NUMBER .13 //) AXIAL (LBS) DIA. = .F8.2) (IN) = •F8•2 = •F8•3 (NI) (57X, 6H ----,24X,25H DES. PRES. (10X.112H FRUSTUM VGROSS LEEWRD F10.4.17.F11.2.F11.2) (PS1) PDSPH (3F12.8.35X.11) -BAY å VCAP ANGLE (DEG) 4X+F7+0+5X+F7+0) 609 FORMAT (10X,112H 610 FORMAT (10X.112H FORMAT (54X,24H C1X · //> 313 FORMAT(21X.14. (1X+ /) DES. PRES. 1 F12.1.6F14.1) WE I GHT (20X• (20X • (1H1) (NI) DIA. (LB) WNDWRD (17н (ISd) F14.1) 311 FORMAT 314 FORMAT 312 FORMAT 316 FORMAT 315 FORMAT 365 FORMAT 501 FORMAT FORMAT FORMAT 614 FORMAT FORMAT FORMAT FORMAT FORMAT 1 OF THE ۲ Å • ŝ 508 550 555 606 608 611 613 607 612

LMSC/HREC A712573

	2UE• /11X+13H [(MAX) = 400 •6X•12H J(MAX) = 29 •7X•13H JE(MAX) =	200 MD ARA
	3 •6ו13H JG(MAX) = 8 •7ו13H K(MAX) = 29 •7ו12H M(MAX) = 7 /	SwD0887
	+ 10/12/17 - 11/11/12/12 = 110/11/2/44407 = 110/11/2/4406 = 11/2/12/ 5 3HK = 13/12/3HM = 12/2 /)	(• SWD0888 SWD0889
	650 FORMAT (1H1)	SWD0890
	BUG FURMAT(39X, 28HMAX APPLIED FACE STRESS, PSI , 15X,	SWD0891
	I ZIMALLUWABLE STRESS, PSI //)	SWD0892
	901 FORMAL VIA / MEROSIUM, 3X, BHWINDWARD, 4X, 7HLEEWARD, 49X, 4HFACE 1 BX, 4HFACF - 7Y, AHEACE)	• SWD0893
	BOB FORMAT (5H -BAY + 5X + 99H INF I DAD I INF I DAD AVIAL	SWD0894
	1 SHEAR BURST WRINKLING YIELD DIMPLING	
	809 FORMAT (4H NO 7X. 20H(LB/IN) (LB/IN) //)	SWD0897
	989 FORMAT(I5+6E12+8)	SWD0898
	990 FORMAT (16, 5F12.44, 16) Fin	SWD0899
1	ENC	SWD0900
₩ €	BFTC C53S2 DECK	PTY 001
	SUBROUTINE PROPTY (MAT. E. AMU. RHO. TMPMAX)	PTY 002
	GO TO (1.2.3.4.5). MAT	PTY 003
	I CONTINUE	PTY 004
υ	ALUMINUM PROPERTIES (MAT = 1)	PTY 005
	WRITE (6.141)	PTY 006
	141 FORMAT (54X•24H MATERIAL = ALUMINUM ///)	PTY 007
	$E = 1050000 \cdot 0$	PTY 008
		PTY 009
		PTY 010
		PTY 011
	D CONTINUE	PTY 012
Ċ		PTY 013
)	MAGNEDIOM PROPERTIES (MAT # 2)	PTY 014
	WRITE (D+14Z)	PTY 015
	146 FURMAI 134X%24H MAIERIAL = MAGNESIUM ///)	PTY 016
		PTY 017
		PTY 018
		PTY 019
		PTY 020
		PTY 021
ı		PTY 022
,	ITTANIOM PROPERTIES (MAT = 3)	PTY 023

025 027 028 029 030 032 026 033 034 035 036 038 039 031 037 024 040 041 043 042 044 045 046 047 048 049 001 002 003 002 004 006 008 600 007 010 011 012 PTY P H A PTY РТΥ PTY РТΥ PTY РТΥ РТΥ PTY РТΥ PTY РТΥ РТΥ PTY PTY PTY TML TML TML TML JML TML KEEP NOSE CAP AND TOP FRUSTUM SKIN TEMPERATURES UNDER TMPMAX.TML TML TML 1 ML 1 ML TML TML THE EQUATIONS AND STORED COEFFICIENTS IN THIS SUBROUTINE WERE OBTAINED BY MEANS OF A MULTIPLE REGRESSION ANALYSIS OF ۷ NOMINAL LLSV TRAJECTORY. THE HOTTEST POINT ON THE NOSE CAP HOTTEST OF THE THIS SUBROUTINE COMPUTES SKIN THICKNESSES REQUIRED TO DATA RESULTING FROM A THERMAL ANALYSIS OF SPHERES FLYING IS AT THE STAGNATION POINT OF THE SPHERE, AND THE POINT ON THE TOP FRUSTUM IS AT THE TANGENCY POINT ()/) ()/) -----COMMON /THRML/ TMPMAX.MAT.TCONTH.TCAPTH.THETA ()/) STAINLESS STEEL PROPERTIES (MAT ົດ = LOCKALLOY = TITANIUM 11 COMMON/TNOS/TMINN, PDSPH, TCAPST, RCAP STEEL LOCKALLOY PROPERTIES (MAT 11 MATERIAL MATERIAL FORMAT (54X+24H MATERIAL DIMENSION AT(50) AS(20) = 16000000.0 = 30000000 = 2700000.0 1100.0 0.006 700•0 0.283 0.076 0.16 SUBROUTINE THERML FORMAT (54X+24H FORMAT (54X+24H с 0 ლ. 0 e.0 WRITE (6,143) WRITE (6,144) WRITE (6,145) DECK ÷. 11 11 H 11 11 11 11 11 11 CONTINUE CONTINUE RETURN TMPMAX \$IBFTC C53S3 TMPMAX RETURN RETURN TMPMAX вно AMU AMU вно AMU вно END ш 143 4 144 145 ហ υ υ υυ 000000

LMSC/HREC A712573

SPHERICAL NOSE CAP AND TOP FRUSTUM. THE METHOD USED TO OBTAINT SPERICAL NOSE CAP AND TOP FRUSTUM. THE METHOD USED TO OBTAINT TMAGENCY POINT COEFFICIENTS FOR ALUMINUM. 11 TANGENCY POINT COEFFICIENTS FOR ALUMINUM. 1364-20-7. DATA AT 0.027903. -0101662. 6996866. -512848. TANGENCY POINT COEFFICIENTS FOR ALUMINUM. 20063291. 11 TANGENCY POINT COEFFICIENTS FOR MAGNESIUM. 20053291. 11 TANGENCY POINT COEFFICIENTS FOR MAGNESIUM. 20053694. 117 TANGENCY POINT COEFFICIENTS FOR MAGNESIUM. 2302364. 11659594. 1161965. TANGENCY POINT COEFFICIENTS FOR MAGNESIUM. 2305604. 1161965. 2301249. 117 TANGENCY POINT COEFFICIENTS FOR ALUMINUM. 2305364. 1161965. 2301249. 117 TANGENCY POINT COEFFICIENTS FOR ALUMINUM. 2302369. -3325602. -3325602. -3325602. -3325602. -3325602. -3325602. 161965. -0494315. 117 TANGENCY POINT COEFFICIENTS FOR ALUMINUM. 2304331. 1-437764. -1119165. -056437. 116 2325602. 1469776. 1497764. 1170110. 117 169766. 1497764. 11210165. 11001001. 110010	ML 014 MI 013	ML 016	ML 017	ML 018	ML 019	ML 020	11 021	1L 022	1L 023	1L 024	11 025	1L 026	11 027	11 028	1L 029	1 030	1L 031	11 032	11 033	11 034	11 035	1L 036	1L 037	1L 038	1 039	1 040	11 041	1L 042	IL 043	IL 044	L 045	L 046	L 047	L 048	L 049	1 050) .) [] .
	SPHERICAL NOSE CAP AND TOP FRUSTUM. THE METHOD USED TO OBTAINTML THE ORIGINAL THERMAL DATA IS DESCRIBED IN LMSC DOCUMENT NO. TMI	TM 54-20-7.	TANGENCY POINT COEFFICIENTS FOR ALUMINUM.	DATA AT/ •027903• -•010162• •691498• -•013716• 2•108521• TML	I •25293 •52256 •560318 •896866 •512848 TML	TML		J	TANGENCY POINT COEFFICIENTS FOR TITANIUM.	4 • 056461• • 062469• • 579819• - • 018108• 2• 341248• TML	5 •206238• •399368• -•336502• •835144• -•355804• TML	TANGENCY POINT COEFFICIENTS FOR STAINLESS STEEL. TML	• 194916• 1•457764• -1•19165• -•064727• 1•619629• TML	7	TANGENCY POINT COEFFICIENTS FOR LOCKALLOY.	8 • 352531 • 1.183907 • 312973 • 001026 • 1.551514 • TML	9 • 084351• • 735126• • 335369• • 614578• - 366287/ TML	STAGNATION POINT COEFFICIENTS FOR ALUMINUM.	DATA AS/014267.5.2911531.559019010812.	STAGNATION POINT COEFFICIENTS FOR MAGNESIUM.	1 -•029125•6•776562•-1•966431•-•033269•	STAGNATION POINT COEFFICIENTS FOR TITANIUM.	2 *• 001164•5•252344•=0•926601•=•012582•	STAGNATION POINT COEFFICIENTS FOR STAINLESS STEEL.	3 0.009530.3.5053411.058136017291. TML	STAGNATION POINT COEFFICIENTS FOR LOCKALLOY.	4	S2 = (SIN(THETA))**2 TML	X2 = 1.0/SQRT(RCAP) TML	X3 = 0.001*TMPMAX*X2 TML	X4 = (0.001 * TMPMAX+ 0.46) ** 4	X5 = X2*S2	X6 = X5*(0.001*TMPMAX)	X7 = 1.0/(RCAP**.2)	XB = •001*TMPMAX*X7 TML	X9 = X7*S2 TML	X10 = 0.001*TMPMAV*VO

053 052 490 055 056 057 058 059 060 002 003 004 005 006 008 001 007 600 010 012 013 015 011 014 016 017 019 018 020 022 023 025 021 024 026 028 029 027 030 AER AER AER AER AER AER AER TML TML AER AER AER AER AER F TML TML TML TML TML TML AER IS CALCULATED BY THE METHOD OF SIMON AND WALTER, AIAA JOUNAL, FIRST. THE PRESSURE COEFFICIENT AT ZERO ANGLE OF ATTACK SOLUTIONS WITH A MODIFIED QUADRATIC IN SINE SQUARE OF DELTA WITH COEFFICIENTS BEING FUNCTIONS OF GAMMA AND MACH NUMBER. COEFFICIENTS AT ZERO THE CHANGE IN PRESSURE COEFFICIENT DUE COEFFICIENTS. EACH FRUSTUM IS TREATED AS A COMPLETE CONE. G=GAMMA=1.4. GAM1=(G+7)/(G+1), GAM2=(G+7)/4. GAM3=((G-1)/4)**2 AT(M)+X2*AT(M+1)+X3*AT(M+2)+X4*AT(M+3)+X5*AT(M+4) +X6*AT(M+5)+X7*AT(M+6)+X8*AT(M+7)+X9*AT(M+8)+X10*AT(M+9) TO ANGLE-OF-ATTACK. FOR THE PURPOSE OF COMPUTING THESE JULY 1963. PP 1696-97. THE METHOD APPROXIMATES EXACT COMMON/CONFG/THTA(10).ALF(10).NFMAX.DBAS.DMN(10).ICONFG AS(L)+X2*AS(L+1)+X3*AS(L+2)+X4*AS(L+3) COMPUTES PRESSURE GAM5=GAM4*GAM1 GAM6=GAM1/2 100.*YSTG/(TMPMAX-70.) 100.*YTAN/(TMPMAX-70.) 0.0174532925*THTA(NF) + 10*(MAT - 1) COMMON/AERPRS/CPAA,CP00,LPFL COMMON/AERLOD/ALPHA, AMACH, NF ANGLE-OF-ATTACK AND THIS SUBROUTINE 4* (MAT IF (THTA(NF)) 30,30,31 IF(EM-1.05)100.1.1 AMACH + SUBROUTINE AERO • • DECK 8 11 H 11 11 11 11 11 GAM4=G/2 GO TO 300 GAM5=2.45 GAM6=1.75 CONTINUE GAM1=3.5 GAM2=2.1 GAM3=•01 GAM4= • 7 TCAPTH TCONTH RETURN C53S4 DELTA YSTG YTAN CP00 CPAA БND Σ Ш Σ \$1BFTC 90 Э 00000000000 υυ

LMSC/HREC A712573

-

032 033 034 035 036 037 038 039 040 042 043 045 046 048 049 041 044 047 050 052 053 054 055 056 051 057 058 059 060 031 061 062 063 064 065 066 068 067 AER LIKAER AER HIGH Ø SI BASED ON DATA FROM CHART **OBTAINED** X=F8•2) PRESSURE DISTRIBUTION WHICH IS SINUSOIDAL. THE EQUATION CPAA IS VALID FOR MACH NUMBERS BETWEEN 1.4 AND 1.6. NEXT. THE INCREASE IN PRESSURE COEFFICIENT (ON THE OF NACA REPORT 1135 AT MACH 1.5 AND A CIRCUMFERENTIAL PRESSURE SIDE OF THE CONE) DUE TO ANGLE OF ATTACK IS CHECK IF MACH NUMBER LIES BETWEEN 1.4 AND 1.6. с О 50 DEG THE CI EM0=F6.2.7H. F1=((EMS-1•)/(EM4*SDELT))+(6•/EM6)+GAM2-GAM3 0.5*((F2+F1SSD)-SQRT(SQUID)) SQUID=(F2-F1SSD)**2-((F3-F1)*SSDEL)**2 CALCULATION IS FORMAT(84HOSUBR RAP-AT ANGLES BEYOND ELY TO BE ERRONEOUS. DELTA=F6.2.6H. EMSTR=SQRT ((1.+GSSDE)/(1.-GSSDE)) IF (AMACH - 1.4) 201.202.203 202+202+201 IELY TO BE ERRONEOUS. COMPUTED. THIS IF (EM-EMSTR) 110.2.2 FINK=DELTA*57.2958 1F(FINK-50.)3.3.4 SSDEL=SDELT*SDELT F2=GAM6*(1.-01)*0 SDELT=SIN (DELTA) F3=GAM5*(1.+Q1)*Q (6.5) FINK IF (AMACH - 1.6) GSSDE=1.4*SSDEL F1SSD=F1*SSDEL Q=1+(1./EM6) WRITE (6,205) WRITE (6.204) WRITE (6.205) 11 FORMAT (1H1) EM6=EM4*EMS EM4=EMS*EMS EMS=EM*EM 01=1 . /EMS FOR RETURN WRITE EM#O. CP00 ហ 4 25 m N 203 205 0000000000

LMSC/HREC A712573

_	-			_	_						~							
C	204	FORMA 11.6.	T (1 VALU	6X,10 ES CA		H NUME TED FO	BER LIE DR CPA	ES OUTS MAY BE	IDE 1 INAC	HE II	VTERV TE•	AL FI	MOR	• 4 1	A A E	00 22	69 70	
υυ			-	CALCL	JLATE	INCRE/	ASE IN	THE PRI	ESSUF	со С	EFF I C	IENT	•			ααι	72	
נ	202 300	CPAA CONT11	NUE	"	- 60.	1.204	(DELTA)	*ALPHA	°. *•°.	IN (DE	ELTA)	/cos	(DELT	(A)	4 4 <	οοά ααα	0 4 U	
	1 00		v v	(101	Σ											o o i c c c	. 9 I	
	101	FORMA	T (32 E M 0:		SUE SUE	BROUT 1 EM1=F	INE RAF 6.2.51	MACH	00• (3• 2)	F6•2	(H92	IS I	ĒSS	THAN		ο ό ό καια	- 40	
		EM#0.													A A A	οõ (μ	N O O	
	•	RETUR	z												А	õ a	31	
		FORMAT	T (27)		SUBRO	EM DUTINE	RAP	DELTA (F	-6.2	42H)	EXCE	EDS 7	A X A A A	NGLE	E A E F A E	õõ aa	28	
		LOR THE	ΕMA	ON HO	• USED	0(F6•2	• (H8•]	EMO=F6	5.2.7	i.	EM1=F	6.2.4	× •H	=F8•	2) AE	о и	34	
			7												Ч Ч Ч	õ a i	52	
			2												ц г А	õõ ru	ð í	
\$	BFTC	C5335	10	ND												ŏŏ r ⊲		
1		SUBROL	NI LO	VID 3	• XX) W	DLOC)									0	o V	22	
υι		I		PAR A	AMETER	SSXN	DMN (N	F) FOR	II L	1 TC	NEW	AX•TF	HTA (N	, Е	01	A 00	ЭЗ	
ບ ບ								AL 101								ŏ ŏ A ¢	4 I	
)		NOMMOD							((ŏ ∀ ·	n O	
		COMMON	-> PRE	SR/C	PA(121	, CPO	(121)		П С С С С С С С С С С С С С С С С С С С	MN (LC	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		MUS•	AL.		0 0 0 0	0 7 7	
	-	OBAR	ALTC	T T											0	A A	80	
		XTOT		H H	тот										D	0 4	60	
			" Z	Z I	FMAX	l									0	A 01	0	
							-									Q A	- (
			TAN													0 4	N	
	10	CONTIN	с - Ц - Ц														n d	
	20	CONTIN	1 U E													50 . 4	ហ	
		ANGLE		• •	017453	2925*	THTA(N	1 >							0	A 01	ę	
	_		-	1 2 1 1	(I Z) Z	*• • •	DELTA*	SINCANG	LE)/	COS (A	NGLE	~			Ō	A 01	2	
	_		7												0	0 4	0	
1 \$	BFTC	CS3S6		ECK ECK												۲ 0 0 0	o -	
															1	,		

١

003 004 200 008 005 006 001 600 010 012 013 014 015 016 018 011 017 019 020 022 023 025 021 024 026 027 028 029 030 032 033 031 034 035 036 037 038 LDS BENDING MOMENTS AND THE RESULTING LINE LOADS USING EITHER THE INPUT PRESSURE DATA OR THAT COMPUTED IN SUBROUTINE AERO. COMMON /CHKLD/ C1.C3.C4.ALB.DELTAS.CHK.RAXMIN.RAXMAX.RPMIN.RPMAX. COMMON/LOADS/CDCAP,CNCAP,XBCAP,FSUBZ,AXLDCP,FSBZCP,BNDCAP,LTRIG, COMMON/PRESR/CPA(121), CPO(121), XOD(121), DELTAP, FS, LTMAX, SUMAL, COMMON /DLOAD/D1.D2.X0D1.X0D2.CP01.CP02.CPA1.CPA2.A3.A4.QB.DP. THIS SUBROUTINE COMPUTES AXIAL LOADS, SHEAR LOADS, COMMON/CONFG/THTA(10),ALF(10),NFMAX,DBAS,DMN(10),ICONFG 458 IF ((XOD(LTX) - XOD(LTX-1)).GT..O00001) G0 T0 DETERMINE IF THIS IS THE FIRST BAY. COMMON ANFIMN + ANFIMX + DSUBB + PDESMN + PDESMX + E (ALCAP + ALF(NFMAX))/DBAS ALF (NX) /DBAS 1 • 5707963*QB*DBAS COMMON/AERLOD/ALPHA, AMACH, NF COMMON/PRSLOD/ LTJNCT(10) IF (LTRIG) 399,399,393 ALCAP/DBAS AL TOT/DBAS 0BAR/144. + FSBZ+BND+AXLOD CHKWND + CHKLEE + C2 DO 458 LTX= 2.LTMAX XODSTP = NX = 1 XODSTP XOD(LTX-1)= XODSTP NFMAX SUBROUTINE LOAD LTJNCT(NX)= LTX 41 11 Ħ LTJNCT(NX)= 11 11 GBAR • AL TOT XOD (LTMAX) = н 41 XOD (LTX) CONTINUE CONTINUE XODSTP ALCAP XOD(1) XODSTP ž x Z ЪЗ BO 399 458 0000

039

LDS

A3*DBAS

Ħ

44 4

A-31

υυυ

	= DELTAP SINCE THIS IS THE FIRST BAY, THE BENDING MOMENT, AXIAL	LDS 040 LDS 041 LDS 042
このたら.	AND SHEAR LOAD AT THE BASE OF THE FAIRING ARE COMPUTED THE PRESSURE DATA FOR THE ENTIRE FAIRING. HE LOADS CONTIBUTED BY THE CONICAL FRUSTUMS ARE TED FIRST.	LDS 043 LDS 044 LDS 045 LDS 045 LDS 045
		LDS 047
31	• 0 •	LDS 049
41 4	• • •	LDS 050
		LDS 051
••••		LDS 052
		LDS 053
	= 1 = TMAX + 1	LDS 054
.,		
••	= 1 NFMAX	990 SUJ
••	= LTMAX - LTJNCT(N1)	LUS 037
••	<pre>= 0.0174532925*THTA(N1)</pre>	LDS 059
	<pre>= 2.*SIN(THETA)/COS(THETA)</pre>	LDS 060
	= LTR1 %LTR2	LDS 061
	- LIMXI = LIK	LDS 062
		LDS 063
		LDS 064
		LDS 065
		LDS 066
		LDS 067
		LDS 068
		LDS 069
		L.DS 070
		LDS 071
	E CPA (LT-1)	LDS 072
		L.DS 073
	∺ EL ≁X	LDS 074
	= (XOD] - XOD2) *DBAS	LDS 075
	* AXLOD + AXLOAD	LDS 076
1.	FSUBZ + FSBZ	LDS 077
11	BEND + EL*FSBZ + BND	LDS 078

0000000

-

LMSC/HRFC MC257

079 080 081 082 083 084 085 086 087 088 089 060 092 093 091 094 095 096 260 098 660 00 102 101 04 105 106 00 03 0 107 , **¥** ₩ 112 **(**) ິ 44 300 LDS LDS LDS LDS S O S LDS L D S LDS LDS LDS LDS LDS LDS LDS LDS DS s o -LDS LDS L DS LDS S D J S D S LDS _ DS L D S IN COMPUTING UPPER CAP ARE { 166.92158*AMACH**7.7.7.**AMACH**2-1.***2.5-2.** THE LOADS CONTRIBUTED BY THE SPHERICAL NOSE PARAMETERS ARE INITIALIZED FOR USE R * S IN (THETA VCOS (THETA) BEND + (EL + XBAR)*FSBZ •7853982*DMN NFMAX)**2 CPSTG*(1.+STHTA**2)/2. AC*(CDCAP*QB = DELTAP) 0.0174532925*THTA(NF) ADDED TO THE FRUSTUM LOADS. (0•7*AMACH**2) AC*CNCAP*ALPHA*QB 2.03 - 1.2*THETA 0.3 / COS(THETA) AXLOD + AXLOAD DMN (NFMAX)/C2 FSUBZ + FSBZ IF (CDCAP) 435,435,436 SIN(THETA) FSBZ*XBAR LTR2 + CZALFA AXLOD XBCAP X/3. FSBZ LOADS. 2 C H Ħ 11 11 **H** II 71 П 11 11 ţÌ 11 11 1, 1) 9 11 ţ) ti я к 8 371 CONTINUE CONTINUE CONTINUE CONTINUE B∆≺ CZALFA AXLDCP FSBZCP BNDCAP AXLOAD XBCAP CNCAP STHTA CDCAP **CPSTG** AXLOD LFLG THETA LTRI FSUBZ FSBZ XBAR BEND С Р С Р CG П A П A × 463 436 4 35 0000 0000

LMSC/HREC AT 1257 5

 $A \dots \in \mathbb{R}$

	~ " ~	0		20	2	(U (2)	1 m 1 m	ร์ ().	ЦС С	26	1	800	29	30	n M	132	, 33	134	32	136	M M	338	6 6	4 0	1 † 1	5 4 2	43	144	័ 4 ប	246 46	147	48	0.1	500	ហ្	ល ភូមិ	153	្លំ។	155
_			S C I	0 	5 - -	501	י ר ר ר ר	SC	 ເ	- D.S	S C S	SQU	LDS	LDS	SO	LDS	1 DS	, U S	S Q -	SO?	LDS	100	SOI	ሪነ ርነ	SOT	L DS	L D S	L D S	LDS	LDS	S D T	LDS	S 0	CEDUDS	LDS	い) (_) (_)	LDS	L.DS	LDS
_																																	SE OF	5 pg 0DU	ETTOUS	Ш Т ł			
																																	THE BA	HE LOAD	μ Ω Ω	DS FROM			
-																																	LOADS A"	F ON LOO	UNA YAU	UTED LOA			
																																	Ч. Н	ST COM	STHE N	E COMP			
-								DBAS																									DER BAY		6E ⁺wee	SULL ON	٩٢.		
-								SUMAL 12	ری اری																								AN UPE	RMI NED	ROF 1.LE	TRACT N	IOUS BA		
_	(LTMAX	(LTMAX)	LTMAX	(0)				01 = 10	13 (7 5 4 E			~	. .					N	AD			ന	a	ם	1	n n	n a	ம					HIS SIH	E DETER	SURE PF	EN SUB'	E PREV		
_	СРО П	- CDA	OOX III	= DBA9	₹W÷ T =			H (AL	5.446.4		: • • • 14		ZOOX =			N I D I II	ا ۱ ۱ است ۱۲	= FSUB	= AXLO			H BNDL H E 3				= XOUL		H CHAL		L L L D			I NCE	BAV AR	E PRES	AND UNA	OF TH		A NOUZ
	(V	ŝ	N			10 386	TINUE	ſŊ	TO 6445	T INUE	رب در	ן ה	ים	מים	2			- ⁻ (NUE		S	SINT	Ч Т Г С	BA≺	LOADS		•
	CPO	CPA.	XOD.	D2	н 	09	93 CON	JOOX	00	46 CON			TOOX						AXLL AXLL									CPAC	N 1 0 .	- '	tr CON:t								NOD:
							(*)			4										<	ł										4	U I	ر	0.0	0	0	υu	ر	

LMSC HREC AT12574

A = 34

-

-			
-			
_			
-			
-			
•			

~

		CP01	= CP02					LDS	156
		CPAI	= CPA2					LDS	157
		01	= D2					LDS	158
		IF (XOD(L	T) - XOD	і в) д	87,388,388			LDS	159
	387	CONTINUE						LDS	160
		XOD2	# XODB					LDS	161
			= Ch0(L	+	(CPO(LT+1) - CPO(L	T))*(XODB -	XOD (LT))	LDS	162
					/(XOD(LT+1) -	XOD(LT))		LDS 1	63
				+	(CPA(LT+1) - CPA(L	T))*(X0DB -	XOD (LT))	LDS 1	64
		L CO TO 200			/(XOD(LT+1) =	XOD(LT))		LDS 1	65
								LDS 1	66
	0 0 0			·				LDS 1	67
				() - -				LDS 1	68
								LDS	69
				2				LDS 1	70
				1				LDS 1	71
	500							LDS 1	72
		INX	= X0D1*[DBAS				LDS 1	73
		XN2	= XOD2*[DBAS				LDS 1	74
		×		N Z				LDS 1	75
		CALL DIAM	(IU.INX)	~				LDS 1	76
		CALL DIAM	(XN2+D2)	~				LDS 1	77
		CALL DLOD						LDS 1	78
		FSUBZ	= FSUBZ	() L 1	BZ			LDS 1	79
		AXLOAD	= AXLOAC		VXLOD			LDS 1	80
		BEND	= BEND -	- BND) - X*FSUBZ			LDS 1	81
	(IF (XOD2 -	, XODB)	386•3	186+445			LDS 1	82
. (380	CONTINUE						LDS 1	83
ر بر								LDS 1	84
J					DS COMPUTED ABOVE.	LINE LOADS	WITH THE	LDS 1	85
ט נ		AND L	EEWARD S	SIDES	APPLIED ARE COMPUT OF THE BAY.	ED FOR BOTH	THE WINDWARD	LDS 1	86 87
υ								1 DS 1	88
		ANF I AX	H CO*AXL	OAD/	(0.94248*DSUBB)			LDS 1	89
				N N I	(0.23562* DSUBB	(2*)		LDS 1	90
					- ANFIB)			LDS 1	91
				XXIL	+ ANFIBJ			LDS 1	92
								LDS 1	93

C53S7	DECK	LDS 194 DLD 001
	NE DLOD "UT VARIABLESD].D2.X0D].X0D2.CD0].CD02.CD4].CD42.A3.A4.	DLD 002
		DLD 004
OUT	PUT VARIABLES FSBZ, BND, AXLOD	DLD 005
NOMMO:	DLOAD/D1.D2.X0D1.X0D2.CP01.CP02.CPA1.CPA2.A3.A4.QB.DP.	DLD 006
FSB	Z•BND•AXLOD = YOA1 - VOA3	DLD 007
F (DX1.		
X2		
EX0	= XOD1**3 - XOD2**3	
0X4	= XOD1**4 -XOD2**4	DLD 012
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	= (CP01 - CP02)/DX1	DLD 013
31	= CPOI - B2*XODI	DLD 014
4	= (CP01 - CP02)/(D1 - D2)	DLD 015
ກ (ກ	= CP01 + B4*D1	DLD 016
N -	= (CPA1 -CPA2)/DX1	DLD 017
11	= CPA1 - A2*XOD1	DLD 018
	= (D1+D2)/DX1	DLD 019
	= UI = ADZ*XODI	DLD 020
- 4 I	= A1*AD1	DLD 021
1 × 1	= O•5*(A1*AUZ + A2*AD1)	DLD 022
		DLD 023
	= A3#(BIAI#UXI + BIA2#UX2 + BTA3#DX3)	DLD 024
Ì	= A4*(BIA1*UXZ/Z* - BTA1*XOD2*DX1 + BTA2*DX3/3.	DLD 025
202		DLD 026
03 03		DLD 027
XLOD		DLU 028
0 10 20		DLU 029
AV		DLD 030
		DLD 031
		DLD 032
		DLD 034
		DLD 033
		DLD 035
	<pre>[1 • 0 / 0 / 0 / 3 * 0] • 0 2) * 0 4 / * (C P 0 4 / * 0 8 + 0 P / 0 / 6 + 0 P / 2 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +</pre>	DLD 036
		DLD 037
NYO -		DLD 038

LMSC/HREC A712573
002 003 004 002 600 013 039 001 006 007 008 010 012 014 015 016 017 018 019 011 020 022 023 025 021 024 026 027 028 029 030 031 032 033 034 035 036 037 DLD PRS рдс PRS PRS PRS PRS PRS рдS PRS COMMON /CHKLD/ C1.C3.C4.ALB.DELTAS.CHK.RAXMIN.RAXMAX.RPMIN.RPMAX. - XOD (LT-1)) OCCURRING ANYWHERE ALONG THE LENGTH OF THE BAY ON BOTH THE COMMON/PRESR/CPA(121), CPO(121), XOD(121), DELTAP, FS, LTMAX, SUMAL, THIS SUBROUTINE COMPUTES THE MAXIMUM DESIGN PRESSURE INPUT PRESSURE DATA OR THAT COMPUTED IN SUBROUTINE AERO. THE BAY. USING EITHER THE COMMON/CONFG/THTA(10),ALF(10),NFMAX,DBAS,DMN(10),ICONFG - CPO(LT-1))*(X0D1 • 00001 - XOD(LT-1)) COMMON ANFIMN+ANFIMX+DSUBB+PDESMN+PDESMX+E ł WINDWARD AND LEEWARD SIDES OF = XOD (L2) + CPA(LTMAX) CPA (LTMAX) IF (NF•GT•1) L2 = LTJNCT(NF-1) -+ (CPO(LT) SUMAL) /DBAS /(XOD(LT) 414 COMMON/AERLOD/ALPHA, AMACH, NF COMMON/AERPRS/CPAA,CP00,LPFL G0 T0 (399,400,417,415),LPFL IF (XOD1.LT.XOD(LT1)) GO TO COMMON /PRSLOD/ LTJNCT(10) IF (XOD1.GE.XOD(L2)) XOD1 1 CPO(LTMAX) ALTOT/DBAS CPO(LTMAX) # LTJNCT(NF) CP0(LT-1) GBAR/144. LTMAX + 1 = (ALTOT -CHKWND + CHKLEE + C2 D0 412 LT1 = $L1 \cdot L2$ SUBROUTINE PRESUR LTMAX XODB = XODB = LT1 DECK н ŧ 11 11 Ħ H 11 1 QBAR.ALTOT ŧ G0 T0 415 CONTINUE CONT INUE CONTINUE \$IBFTC C53SB CPMX1 CPMN1 XODB ДND XOD1 XODB XOD 1 CPOO LT1 ВQ 1 N Ľ 399 412 414 400 0000

LMSC/HREC 712573

_	

038 039 040 043 042 045 041 044 046 047 048 049 050 052 053 051 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 072 073 071 074 075 076 PRS PRS ряс PRS рдS PRS - XOD (LT-1)) - CPA(LT-1))*(XOD1 -XOD(LT-1)) - CPA(LT-1))*(X0D2 -X0D(LT-1)) - CPO(LT-1))*(X0D2 .00001 - XOD(LT-1)) /(XOD(LT) - XOD(LT-1)) /(XOD(LT) - XOD(LT-1)) + ALB)/DBAS = XOD(L1) = (XODB - XOD(LT))*DBAS CPA(LT-1) + (CPA(LT))CPA(LT-1) + (CPA(LT) + (CPO(LT) /(XOD(LT) IF (XOD(LT) - XOD2) 419,422,422 ł + CPA(LT) CPA(LT) CPX) 424,425,425 CPN) 426,427,427 SUMAL IF (XOD2+LE+XOD(L1)) XOD2 CPAA CPAA IF (LT.LE.L1) GO TO 419 + CPAA CPAA IF (JFIN.EQ.O) ALX=ALB CP0(LT-1) 1 I CPO(LT) CPO(LT) CP00 + I (ALTOT ł = [1 + 1 = LT = 1 CPMX1 CPMN1 CPOO CPOO СРОО 111 • = CPX CPN • 0 11 ŧ = 11 11 E 11 31 41 ŧ Ħ # л 11 11 н 11 (1 I 1 GO TO 428 CONTINUE CONTINUE CONTINUE IF (CPMX IF (CPMN CONTINUE CONTINUE CONTINUE CONTINUE CPMN CPMN1 CPMX1 CPAA CPMX CPMN X0D2 CPAA JF IN CPMX CP00 NI LU ALN ALX ХdО CPN CPN Ľ ХdО ALX 5 433 LT 4 I G 417 419 422 428 424 425 426

078 079 080 003 081 082 083 001 004 006 077 084 085 002 005 007 008 600 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 PRS PRS PRS PRS PRS PRS STB PRS PRS STB PRS STB OF LMSC SOLID MECHANICS LABORATORY, HANDLES AXIAL COMPRESSIONSTB THE ANALYSIS IS ELASTIC. AND INCLUDESSTB TRANSVERSE SHEAR EFFECTS. A KNOCKDOWN FACTOR BASED ON (R/T) STB EFFECTIVE IS APPLIED TO THE CLASSICAL LOAD. LATERAL PRESSURESTB STB STB STB STB STB STB GBAR=E11STB STB STB STB STB METHOD. DEVELOPED BY BO ALMROTH THIS SUBROUTINE PERFORMS A GENERAL INSTABILITY ANALYSIS F=E11.4) RD. HT. CRG. K.P.KG CRW+ XNCL+ PBAR+ XN+ XN1+ XN2+ XN11+ XN12+ XN22 t SINCE GBAR WAS OUTSIDE RANGE SINCE F WAS OUTSIDE RANGE -• G1. G2. XNU. T1. T2. MAY BE EITHER BURSTING OR CRUSHING. ЧHН = (XODB - XOD(LT))*DBAS DELTAP) DELTAP) COMMON/INTRP/ X. A2. Z. XNMIN DIMENSION X(44), A2(2,44), Z(4) FOR SANDWICH CYLINDERS. PLUS LATERAL PRESSURE. SK I PPED FORMAT(1H0+43HCASE SKIPPED 1 I FORMAT(1H0.5HXNXR=E15.8) FS*(CPMX*QB FS*(CPMN*QB IF (JFIN.EQ.O) ALN=ALB 429,429,433 GBAR, F FORMAT(1H0,49HCASE SUBROUTINE INSTBL ш COMMON/KLSS/XL FORMAT (6E12.8) DECK COMMON/KLASS/ COMMON/INSTB/ COMMON/SFCTN/ $Z(1) = 1 \cdot E - 02$ # # Z(2)=1.E-03 $Z(3) = 1 \cdot E = 04$ Z(4)=1.E-05 IF (JFIN) CONTINUE CONTINUE TR=T1/T2 PDESMX PDESMN \$IBFTC C53S9 R=RD/HT RETURN П П ALN С И И И E2=E •4) ပ ¥ 429 427 202 210 101 201 00000000

LMSC/HREC A712573

(H=HT/T2	STB	030
Ď	F=(IK**3+E2/E1)*(TR+1•0)**2/(H*H*TR*(1•0+E2/E1*TR))/12•0 GBAD=0-54451/C1*450047/F0/71**40//1***00//1***00//1***00//1***0	STB	031
	00000000000000000000000000000000000000	•STB	032
	15//CBAD-V/10/62.10.10	STB	033
5		STB	034
		STB	035
(+		STB	036
-	IF (GDAR-X(44))]]•]]•9 Coutting	STB	037
יק		STB	038
		STB	039
•		STB	040
- (IT (F#Z(4/)IZ0IG0IG T - ****	STB	041
ч с 		STB	042
-) ((IF (F = 2(1)) 51, 51, 122 F = 211)	STB	043
1 2 1		STB	440
	CALL INTERP	STB	045
100	CALL CLASS	STB	046
C L		STB	047
n N	XNK#Z*07XXVCL*E1*SQK「(E2/E1*TR/(]*0-XNU**2))/(H*R*R)	STB	048
ر		STB (049
) (XMIN IS BASED ON GI = G2 (SQUARECELL CORE). XMIN ALSO	STB (050
, J	NEGLECTS PRESSURE EFFECTS. HOWEVER. THE KNOCKDOWN FACTOR IS	STB (151
J	APPROXIMATE, SO XMIN WILL BE ADEQUATE FOR OLTHER G1/G2	STB (52
ر	VALUES AND FOR LOW PRESSURES.	STB (53
•	IF (XNN-1.00) 15, 15, 14	STB (54
1 -		STB (55
1	ド・ニードネロックWK1(「ドキヒビノに」)/ 20K1(「ド**3+E2/E1+12。0米H*H*TR*(1。0+E2/E1*TR) ノノイエロュューの/ ××の / /	STB (56
	//////////////////////////////////////	STB (157
Ţ		STB 0	58
		STB 0	59
		STB 0)60
8	ГЧІ — 0 е фол (КІЕХжОе 54) Сж (РН т. О. 10) ло. др	STB (191
•		STB 0	62
	×××××××××××××××××××××××××××××××××××××	STB 0	63
40		STB 0	64
		STB 0	65
))		STB 0	66
		STB 0	67
	Ĩ	STB C	68

SIBFTC C53S10 DECK	TRP 001
SUBROUTINE INTERP	TRP 002
C THIS SUBROUTINE IS UTILIZED BY INSTBL	TRP 003
DIMENSION X(44) A2(2,44) Z(4)	TRP 004
COMMON/INTRP/ X. A2. Z. XNMIN	TRP 005
COMMON/SFCTN/ GBAR, F	TRP 006
U1VD1(9000FL+9001FL+9002FL+9003FL+9004FL+9005FL+9005FL+9005FL+9001FL+(30TRP 007
106rL-4000FL)/(G002FL-G000FL)*(G003FL-G001FL)+(G006FL-G000FL)*(G0	06TRP 008
ZrL=0002rL)/(0004rL=0000rL)*((0005rL=0003rL)/(0004rL=0002rL)=(000 21 0001rL;///0000rL=0000rL)*(3FTRP 009
	TRP 010
ABSLUG(4007FL+4008FL+9009FL+6010FL+6011FL)=0008FL+(ALOG(0011FL)-	ALTRP 011
106(400/FL))/(AL06(0009FL)-AL06(0007FL))*(0010FL-0008FL)	TRP 012
	TRP 013
	TRP 014
	TRP 015
	TRP 016
IF(GBAR-X(I))8,10,9	TRP 017
9 CONTINUE	TRP 018
10 M=1	TRP 019
B DO 11 J=1.4	TRP 020
IF(F-Z(J))11,13,12	TRP 021
11 CONTINUE	TRP 022
	TRP 023
12 IF(GBAR-0.2)14.14.15	TRP 024
14 IF(F-Z(2))16,16,17	TRP 025
	TRP 026
GO TO 25	TRP 027
	TRP 028
25 IF(M)18•18•19	TRP 029
19 XNMIN=A2(K+M)	TRP 030
	TRP 031
18 1F(1-2)20,20,21	TRP 032
20 1=1+1 21 20-22 01	TRP 033
	TRP 034
XI=X(I-1)	TRP 035
	TRP 036
XC=GBAK	TRP 037
	TRP 038

040 042 043 039 041 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 062 063 061 064 065 066 067 068 069 070 073 071 072 074 075 076 077 TRP TRP ТКР ткр тар ТКР TRP TRP TRP TRP TRP ткр ткр ткр TRP ткр T RP TRP ткр ткр ткр TRP ткр T R P TRP ткр TRP ТКР TRP TRP дят ТКР TRP TRP ткр TRP ЧКР TRP XNM [N=D I VD I (X0 • Y0 • X1 • Y1 • X2 • Y2 • XC) V1=D1VD1(X0+Y0+X1+Y1+X2+Y2+XC) XNMIN=ABSLOG(U0+V0+U1+V1+U) XNMIN=ABSLOG(80,D0,B1,D1,F) IF(D0-D1)32,99,32 IF(K-1)22,22,99 IF(IT)24,29,30 IF(N)23.23.99 IF(N)33,33,34 1F(1-2)4.4.5 Y0=A2(K.1-2) $YI = AZ(K \cdot I - 1)$ Y0=A2(2.1-2) Y1=A2(2.1-1) Y2=A2(K.1) Y2=A2(2.1) X0=X(1-2) X1=X(1=1) B0=Z(J-1) V WNX=0V GO TO 99 GO TO 18 GO TO 18 N I WNX = 00 GO TO 18 D1 = XNMINXC=GBAR X2=X(1) JO=Z(1)U1 = Z(2)B1=Z(J) 1 = 1 + 1K=J=1 1T=0IT=1и 11 И U=F Z ∥ ⊻ ר # צ 28 26 2 2 4 2 3 4 2 3 4 ហ 19 ee 29 90 32 34

LMSC/HREC A712573

99 RETURN	TRP 078	
	TRP 079	
\$IBFTC C53S11 DECK	CLS 001	
SUBROUTINE CLASS	CLS 002	
C NON-SYMMETRIC BUCKLING PROGRAM. F. BROGAN. B. ALMROTH, B. BURN	S CLS 003	
C WHEN K=0. SUBROUTINE CLASS PICKS INITIAL ESTIMATES FOR THE	CLS 004	
C INDEPENDENT VARIABLES.	CLS 005	
C IF K GREATER THAN 0. PREVIOUS SOLUTIONS ARE USED FOR STARTING	CLS 006	
C ESTIMATES FOR THE NEXT CASE.	CLS 007	
C IF IOUT=0. NO INTERMEDIATE OUTPUT WILL BE PRINTED.	CLS 008	
C SET IOUT=1 IN SUBROUTINE CLASS IF INTERMEDIATE OUTPUT IS DESIRED.	• CLS 009	
COMMON/KLSS/XL	CLS 010	
COMMON/KLASS/ CRW+ XNCL+ PBAR+ XN+ XN1+ XN2+ XN11+ XN12+ XN22	CLS 011	
CUMMON/INSTB/ EX. GI, G2, ZNU, TI, T2, RD, HT, CRG, K ,P	CLS 012	
COMMON/SFCTN/ GBAR, F	CLS 013	
901 FORMAT (48H0 THE VALUES OF Nº N1º N2º Z1º Z2º Bº AND E ARE /	CLS 014	
1 7E16.8)	CLS 015	
902 FORMAT (59H0 THE NON-SYMMETRIC BUCKLING PROGRAM HAS NOT CONVERGE	EDCLS 016	
1 IN 14. 12H ITERATIONS. / 3H B= E16.8. 2HE= E16.8)	CLS 017	
903 FORMAT (48H0 THE NON-SYMMETRIC BUCKLING HAS CONVERGED IN 14,	CLS 018	
1 11H ITERATIONS / 33H THE VALUES OF N. B. AND E ARE / 3E16.8)	CLS 019	
PI2=3.1415927**2	CLS 020	
	CLS 021	
AP=P12*ZN1*RD*HT/XL**2	CLS 022	
KBR=AMAX1(KBR,1)	CLS 023	
1 BR=KBR	CLS 024	
CFT=,75	CLS 025	
	CLS 026	
	CLS 027	
	CLS 028	
	CLS 029	
ZMU=61/62	CLS 030	
UELX=DEL	CLS 031	
G=GDAR Militar	CLS 032	
	CLS 033	
G/ = Z M	CLS 034	
	CLS 035	
	CLS 036	

•	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-	No No <td< td=""></td<>
_	
-	6 I 4 0 (8)
-	
-	AILED 4H
_	HAS 100 110 100 100 100 100 100 100 100 10
	- *F2+F • 5H • 5H
	3, 103 3, 103 7, (F3-2 7, 12 7, 12 7, 12 7, 12 7, 12 7, 12 7, 12 7, 12 7, 12 1, 10 7, 10, 10 7, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10
	RT (F) 21)-DL 21)-DL 21)-DL 21)-DL 21)-DL 21)-FR 105. 105. 105. 11ER 11ER 4
-	R 101 (20 (20 104 (20 104 (20 101 (20 101 (20 101 (20 101 (20 101 (20 101 (20 101 (20 101 (20 101 (20 101 (20 101 (20 101 (20 101 (20 101 (20 101 (20 101 (20 101 (20 101 (20 102 (20 101 (20 102 (20 10 (20 10 (20 10 (20 10 (20 (20 (20 (20 (20 (20 (20 (2
-	X X
—	

101 102

103

105

LMSC/HREC A712573

m

908 150

A-44

110

120

121

906

130

076 077 078 079 080 081 082 083 084 085 086 087 088 089 060 092 093 094 095 096 098 091 260 660 100 102 103 101 104 105 106 108 109 107 [10 112 113 11 CLS CLS CLS CLS CLS crs crs cLS W5=W3*V4+V3*W4-ZMU*W ~ 4 V5=V3*V4-ZMU*BB W14=-W5*V14**2 W6=V*W14+W*V14 W7=W2*V6+V2*W6 4 Y5=2.*ZMU*ZNU Y2= (1.+F)/4. w11=-w*v11**2 ₩Z*Y*•S=4Y V1=Y*ZMU*BB IF (AP-1.) W2=X*ZMU*W A=1./(G*E) V14=1./V5 V3=A+Y+BB V11=1•/BB V4=V2+ZMU Y3= • 25*G 19=V*V/BB CONTINUE Y=1-ZNU V7=V2*****V6 E=2.*AP Y1=Y+1. PBAR=0. V=1 • +BB V2=A+V1 V6=V/V5 A1=A+Y 88#8*8 W=2•*B Z2=0. 1 BR= 1 W4=W2 BS=B ES≞E ES=E M=EM ~ 4

	CLS 114
	CLS 115
	CLS 117
	CLS 118
	CLS 119
	CLS 120
MU*C2**2)	CLS 121
izB+ZMU*C2*C2B)	CLS 122
	CLS 123
	CLS 124
	CLS 126
	CLS 129
	CLS 130
2//20	CLS 131
	CLS 132
	CLS 133
	CLS 134
	CLS 135
	CLS 136
3*V26)	CLS 137
	CLS 138
24	CLS 139
	CLS 140
	CLS 141
	CLS 142
/31	CLS 143
38)	CLS 144
	CLS 145
	CLS 146
/33	CLS 147
	CLS 148
	CLS 149
	CLS 150
22	CLS 151
	CLS 152
	CLS 15

	W37=Y5*(V36+B*W36)	CLS 153
	06-ce×(vc3+vc4**c+v3/+v35)+d•*(v32+v34) 508-0 */208-0 */00*00 */00*000	CLS 154
	34D-76*(W45440*V24*W24+W37+W35)+4•*(W32+W34)	CLS 155
	V 10 - V 1 AFR * SA / 30 = FPBAR	CLS 156
	W 10 + W 1 C + C + A > C D / Q + A > C + M + C + M + C + M + A > C	CLS 157
		CLS 158
	○C=KC 175=ΔF★ / V.3+V.4 /	CLS 159
	0)	CLS 160
		CLS 161
	U7=U2*V6+V2*U6	CLS 162
	B2E=-B*U7	CLS 163
	U21=-AF*V23	CLS 164
	B1E=-V22*U21	CLS 165
	C2E=+A1*U6+AF*V6	CLS 166
	U24= ZMU*C2F	CLS 167
	U12=2•*Y3*(B2*B2E+V24*C2E)	CLS 168
	U25=2•*BB*B1*B1F	CLS 169
		CLS 170
	0.00 - UCETE*024 (130= BOF*V21	CLS 171
	001-011 134:074/23	CLS 172
	0	CLS 173
		CLS 174
		CLS 175
		CLS 176
	ucc==ce× <ucc+ce×vc4*uc4+u3 +4.*(u32+u34)<="" +u35="" td=""><td>CLS 177</td></ucc+ce×vc4*uc4+u3>	CLS 177
	VIEVOARTAVOAVIEVEVOAVIEVEVOAVIEVEVOAVIEVEVOAVIEVEVOAVIEVEVEVEVEVEVEVEVEVEVEVEVEVEVEVEVEVEVE	CLS 178
	<pre>CMT C = C = C = C = C = C = C = C = C = C</pre>	CLS 179
	VN)=VO464M04M16/F1/1114/V1/2001/2001/2001/2001/2001/2001/2001/2	CLS 180
	<pre>X4+1 + C * W > FW I J / C + V I 1 * W I D + W [* V] D YN 2 = Y 2 ¥ Y D + C ¥ Y F + K * C + Y + Y + Y + Y + Y + Y + Y + Y + Y +</pre>	CLS 181
	ANGL I C × V > T G × V I J × AE + V I [★ U] 0 FNI + VNI + VN J × ED	CLS 182
	TE LEWIT JA JA JA JA	CLS 183
34	15 (TTED) 40, 40, 35	CLS 184
5 0 0	1F (XN-XNA) 40, 45, 45	CLS 185
0		CLS 186
	XNAB=SORT (XN1++24VN2++2)/OFT V	CLS 187
	XNA=XN	CLS 188
		CLS 189
		CLS 190

192 193 194 195 196 199 191 197 198 200 201 202 203 204 206 207 208 209 210 212 213 211 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 cls crs CLS CLS crs CLS CLS crs CLS CLS cL S CL S crs CLS cLs crs CLS crs CLS CLS CLS CLS crs CLS crs crs cLS CLS CLS ราว CLS CLS CLS CLS CLS CLS crs cLS CLS WB12=2•*Y3*(B2*B2BB+B2B**2+ZMU*(C2*C2BB+C2B**2)) WB21=-2•*W20*V21*W21-8•*V23 B12B=-2•*(W22*W21)-V22*WB21-48•*B/V20 WB15==WB9*V15**2+2•*W9**2*V15**3 WB14=-2•*W5*V14*W14-WB5*V14**2 WB5=2•*(M3*W4+V4+Y*ZMU*V3-ZMU) 46 WB7=2•*W2*W6+WB2*V6+V2*WB6 IF (DELX-.1*DLTA) 60, 60, WB6=2•*(W*W14+V14)+V*WB14 44 (EN1) GO TO (36. 37), 1BR 47. B2BB=-2•*W7-B*WB7 Z1=DELX*FN1/ABS 47. WB11=6.*V11**2 DELX=CFT*DELX E=E+•66667*22 B=B+.66667*Z1 DELX=DELX/3. Z1=XN1/XNAB Z2=XN2/XNAB IF (IT2-M4) C2BB=-A1*WB6 WB9=2.+WB11 Z2=CFT*Z2 Z1=CFT#Z1 CONTINUE GO TO 39 CONTINUE CONTINUE GO TO 47 CONTINUE Z1=Z1/3. Z2=Z2/3. GO TO 49 WB2=Y4 Z2=0. M4 = 15172=0 M4=10 172=0 36 37 68 40 46 44 48

WB24=ZMU*C2BB	
WB25=2•*(B1B+4•*V26*B+BB*(B12**2+B1*B12B))	CLS 231
WB30=BZBB+2•*W24+ZMU*B*C2BB WB31-2 *8	CLS 232
	CLS 233
₩006=6●★060*₩01+B24₩B31+B2BB*V31 ₩B34=9●★CVB*⊌A3+C9*9。★V+★7₩1+C95B*V30	CLS 234
WB35=4 • * Y* (W30**2+WBa0*V30)	CLS 235
	CLS 236
wB37=Y5*(2•*W36+B*wB34)	CLS 237
S2BB#Va*(JBV6+Va+SU-450-4440+0)	CLS 238
wB16=WB12+E*S2BB/8. WB16=WB12+E*S2BB/8.	CLS 239
AEE=-2•*G*AE*A	CLS 240
U5E=2•*AE**2+AEE*(V3+V4)	CLS 241
U5B=AE*(W3+W4)	CLS 242
U14E=+2•*U5*V14*U14+U74+V14*V	CLS 243
W14E==U5B*V14**0-0**U5*V14*W14	CLS 244
	CLS 245
U6B=V*W14F+W*U14	CLS 246
	CLS 247
	CLS 248
	CLS 249
B2EB==U7=B*U7B	CLS 250
U21E=+V**AF*VV1*=V1+AFF*V03	CLS 251
0	CLS 252
81EF#=V20*=U0+F	CLS 253
B1EB==W20*101=V20*101B	CLS 254
C2EE=+A1#116E-AFE+V6-2 *AE*!12	CLS 255
	CLS 256
	CLS 257
	CLS 258
	CLS 259
U128=0***/3*/80*8055405555555555555555555555555555555	CLS 260
→	CLS 261
U25B=4●*B*B1*B1E+2●*AB*/B12=2	CLS 262
U30E=B2EE+B*U24F	CLS 263
U30B=B2EB+U24+B*U24B	CLS 264
U32E=B2EE*V31	CLS 265
U32B=B2EB*V31+B2F*w31	CLS 266
	CLS 267

	U34E=C2EE*V33	07C 2 1	
	U34B=C2E*W33+C2EB*V33	CLS 269	
	U35E=4•*Y*(U30**2+V30*U30E)	CLS 270	
	U35B=4•*Y*(V30*U30B+M30*U30)	CLS 271	
	U36E=2•*B2E*C2E+B2*C2EE+B2EE*C2	CLS 272	
	U36B=B2B*C2E+B2*C2EB+B2EB*C2+B2E*C2B	CLS 273	
	U37E=Y5*B*U36E	CLS 274	
	U37B=Y5*U36+Y5*B*U36B	CLS 275	
	S2EE=2•*(U25E+2•*(U24**2+V24*U24E)+U37E+U35E)+4•*(U32E+U34E)	CLS 276	
	S2EB=2•*(U25B+2•*(W24*U24+V24*U24B)+U37B+U35B)+4•*(U32B+U34B)	CLS 277	
	U16E=U12E+S2E/4.+E*S2EE/8.	CLS 278	
	U16B=U12B+S2B/8•+E*S2EB/8•	CLS 279	
	EBB=AP*WB11	CLS 280	
		CLS 281	
	XN11=Y2*E*WB9+WB15/E+2•*W11*W16+V11*WB16+WB11*V16	CLS 282	
	XN12=Y2*W9+G*W15*AE+V11*U16B+W11*U16	CLS 283	
	XNZZ=G*V15*AEE+ V11*U16E	CLS 284	
	GU 10 (41, 42), IBR	CLS 285	
4		CLS 286	
	XK=XNIZ/XNII	CLS 287	
	ZZ=(XNZ-XK*XNI)/(XNZ2-XK*XN12)	CLS 288	
	21=(XNI-XNI2*Z2)/XN11	CLS 289	
(CLS 290	
U t		CLS 291	
	FN11=XN11+2•*XN12*EB+XN22*EB2+XN2*EBB	CLS 292	
	ZI=FNI/FNII	CLS 293	
	Z2=0•	CLS 294	
4 1	CONTINUE	CLS 295	
		CLS 296	
(CLS 297	
4 I D I		CLS 298	
ິ ທີ່ເ	IF (E-AP/B**2) 56, 56, 58	CLS 299	
۵ ۵		CLS 300	
Į		CLS 301	
ר ס ח ש		CLS 302	
0		CLS 303	
	UI=ABS (ZI/B)	CLS 304	
	UC-ADS (ZC/E) 15 (10011) 53, 53, 51	CLS 305	
		CLS 306	

308 309 307 310 311 312 313 314 315 316 317 318 319 320 322 323 324 325 326 321 327 328 329 330 332 333 335 331 334 336 338 339 340 337 341 342 343 001 CLS cL S CL S CLS CLS CLS CLS CLS crs CLS crs cLs CLs CLS CLS CLS CLS CLS crs cls CLS CLS crs cLS CLS SFN CLS CLS ш 'n Z2 • WRITE (6.901) XN, XNI, XN2, Z1, ш ŵ ш IF (D1-DLTA) 50, 50, 52 IF (D2-DLTA) 60, 60, 52 żx â 64 96 WRITE (6,903) ITER. WRITE (6, 902) ITER, GO TO (61. 62). IBR ж В Х 64 • 4 0 • 80 IF (KM) 97, 97, 68 IF (KM) 97, 97, 99 IF (D1-DLTA) 50. XNCL=AMIN1 (AN+XN) XNCL=MIN1 (AN·XN) 4 IF (KM) 97, 97, GO TO (63, 65), 66+ ITER=ITER+1 IF (ITER-M2) DECK IF (XN-XNS) CONTINUE CONTINUE GO TO 66 CONTINUE CONTINUE PBAR=PS GO TO 4 GO TO 7 XNCL=AN \$IBFTC C53S12 I TER=0 1 TER=0 SNX=NX XNS=XN RETURN 1 BR=2 B=1. BS=B ES=E KM=1 BS≞B ES≇E О И Ш 96 ເ ເ 53 50 67 68 61 62 63 60 64 65 66 98 66

LMSC/HREC A712573

003 004 005 002 000 007 008 002 003 004 002 010 001 006 007 008 600 011 012 013 014 015 016 019 017 018 020 002 003 001 004 005 006 007 008 600 010 012 011 SFN SFN SFN S F Z SFN SFZ SFN I RO I RO IRQ IRQ IRQ IRQ R0 R0 I RQ 202 RO I RQ ğ IRQ IRQ IRQ HANDBOOK OF STRUCTURAL STABILITY, VOL. 6, P24. (NACA TN 3786)IRQ IRQ I RO IRQ * (2.5E - 04) * PI * ANFIMX * (DSUBB / 2.) ** 4)/ IRO RNG RNG RNG RNG RNG RNG RNG RNG RNG NG RNG BNG RNG COMMON /CHKLD/ C1.C3.C4.ALB.DELTAS.CHK.RAXMIN.RAXMAX.RPMIN.RPMAX. 2 = ZEEDETERMINE RING MOMENT OF INERTIA REQUIREMENTS TO PREVENT GENERAL INSTABILITY BY THE METHOD OF SHANLEY. SEE BECKER'S RINGS ARE ASSUMED TO BE FORMED SHEET METAL OF STANDARD 3 = HAT. BASE FLANGE WIDTH IS GIVEN BY B. RING DEPTH IS A. SHEET)**2)*(PDESMX**1.3333) AND OUTSTANDING OR UPPER FLANGE WIDTH IS GIVEN BY C. GAUGE. IKIND INDICATES THE TYPE OF RING...1 = ANGLE. COMMON/RNG/ IKIND, AOT, BOT, COT, TSTD(30), K, AIRING, DD COMMON/CONFG/THTA(10).ALF(10).NFMAX.DBAS.DMN(10).1CONFG COMMON /RSTRSS/ AA, TF, Z, CTH, AST, AISTT, FRING COMMON ANFIMN + ANFIMX + DSUBB + PDESMN + PDESMX + E COMMON/IRQ/ TTM. PI. ALCONE. C6. AIREQ *((DSUBB - C2*ALB SFUN=(1•+F)*Z+1•/ZX-ZX*Z/(1•/GBAR+ZX) THICKNESS IS INDICATED BY TT. IF (THTA(NF).LT. 0.01) GO TO 990 DIMENSION X(44), A2(2,44), 2(4) COMMON/AERLOD/ALPHA . AMACH . NF LL. COMMON/SFCTN/ GBAR. CHKWND + CHKLEE + C2 = AOT * TT = BOT * TT = C6*ALB = TSTD(K) FUNCTION SFUN (Z) SUBROUTINE IREQ SUBROUTINE RING /TTM**•33333 DECK AIREQ = (ALB)(E * ALCONE) DECK GO TO 994 \$18FTC C53S13 CONT INUE ZX=4.*Z \$1BFTC C53S14 RETURN **RETURN** AIREQ Д И И О Z Ш т ч в 994 066 υυυ 00000

015 014 016 017 018 019 020 022 023 025 021 024 026 028 029 030 027 032 033 034 035 031 036 037 038 039 040 042 043 044 045 041 046 048 049 047 050 RNG 5 NG RNG NG RNG NG RNG RNG RNG RNG RNG RNG NG RNG RNG RNG RNG RNG RNG FACE. ((B+TT)*TT*TT + A*A*TT + (C-2•*TT)*(A-TT/2•)*TT)/AST CALCULATE MOMENT OF INERTIA OF RING. INCLUDING ONE + 2**(Z -AIST + (B * TF**3 / 12.) + AST * (ECC (A*A*TT/2• +(B-TT)*(TT/2•)**2)/AST = (AST * ECC) / (AST + B * TF) +C*TT + 2•*(A-2•*TT)*TT AIST=AIB*2•+AIW*2•+AIT+AB*2•*DB*DB ((B-TT) * TT**3)/12 (B-TT) * (TT**3)/12. A*TT + 2•*(B-TT)*TT (C-2•*TT)*(TT**3)/12• B*TT + (A-TT) * TT AIST=AIB+AIF+AB*DB*DB+AF*DF*DF (1020,1030,1040), IKIND = (B-TT)*(TT**3)/12. AIST=A1B*2•+A1W+AB*DB*DB*2• 2• * (B-TT)*TT = 2•0 * A * 1; = (C =2•*TT)*TT = TT*(A**3)/12• (A**3)*TT/12 = (A-TT/2. -DD) TT*(A**3)/12 • 5 * TF = (A*A*TT/2
= ((B-TT) *
= (A**3)*TT/
= (B-TT)*TT (A-TT)/2. (B-TT)*TT +AW*DW*DW*2•+AT*DT*DT COT * TT = A/2. -DD DD - TT/2. =DD-TT/2. + 00 " - A/2. ... n 11 AST=2.*8*TT 11 11 н 0 11 11 н A/2. # н GO TO 105 GO TO 105 00 CONTINUE 10 Ħ 11 AISTT AST AIB AIF 0 0 AST AIB AIW 00 AB 00 A 1 B A 1 W AIT ECC 80 ΑF 80 ШO AB AB 0 A A T 80 01 MO υ N 1020 1030 1040 1050 υ

052 053 054 052 500 006 008 001 002 003 004 001 600 010 012 002 003 004 005 006 05] 011 001 007 008 600 010 011 012 013 014 015 001 002 003 004 002 RNG RNG RNG RNG RNG ВГК BLK BLK BLA BLK BLK ВΓК ВГК BLK RSS RSS RSS RSS RSS RSS RSS BLK RSS 1 •071• •080• •090• •100• •125• •190• •250• •312• •375• •438• •500•BLK RSS RSS RSS RSS DATA X/•003.•004.•005.•006.•007.•008.•009.•01.•02.•03.•04.•05.•06.BLK RSS RSS RSS TNS SZL THE FOLLOWING SUBROUTINE CALCULATES NOSE CAP SKIN THICK-TNS NESS REQUIRED FOR STRUCTURAL INTEGRITY. THE FAILURE CRITERIONINS INS COMMON /CHKLD/ C1.C3.C4.ALB.DELTAS.CHK.RAXMIN.RAXMAX.RPMIN.RPMAX. OUT-OF-ROUNDNESS USED IS THAT PRESENTED FOR NON-SHALLOW SPHERICAL CAPS IN THE DATA TSTD/ .008. .012. .016. .020. .025. .032. .040. .050. .063. 1.07..08..09..1..2..3..4..5..6..7..8..9.1..2..3..4..5..6..7..8.. 0 •938.1.000. 1.125. 1.250 COMMON/RNG/ IKIND. AOT. BOT. COT. TSTD(30), K. AIRING. AST. * TF)) CTH. AST. AISTT. FRING = ANTHTA * ALB * (AST /(AST + 2• * ALB ESTIMATE COMPRESSIVE RING STRESS DUE TO 2 9 • 10 • 20 • 30 • 40 • 50 • 60 • 70 • 80 • 90 • 100 • COMMON ANFIMN + ANFIMX + DSUBB + PDESMN + PDESMX + E = pg / (2. * CTH) 2 •562• •625• •688• •750• •812• •875• AND ASSYMMETRY OF LOADING. (F = ANRING * ZFLG / AISTT = ANRING / AST + FREND AST + FBEND COMMON/INTRP/ X. A2. Z. XNMIN DIMENSION X(44), A2(2,44), Z(4) = AA + •5 * TF - Z COMMON /RSTRSS/ AA. TF. Z. = PDESMX * DSUBB ANRING / CHKWND + CHKLEE + C2 SUBROUTINE RSTRES AIST SUBROUTINE TNOSST S**Z * 4 DECK \$IBFTC C53S16 DECK DECK 11 11 BLOCK DATA Ч \$IBFTC C53S15 BFTC C53S17 ¥ AIRING RETURN ANTHTA ANRING RETURN ന FRING FBEND ZFLG ВND 2 Z U ٩A БND υυ 00000

006 007

TNS TNS

LMSC STRUCTURAL METHODS HANDBOOK, SECTION 6.32.1, DATED

30 SEPTEMBER 1962.

600 008 010 011 012 013 014 015 016 017 019 018 022. 020 023 021 024 020 SNF SNF JNS TNS SNF NNS 1NS SNF TNS **NNS** INCREASEDTNS SNF SZF 1NS TNS JNS N INS TNS SHELL THICKNESS IS SET EQUAL TO TMINN, AND COLLAPSE PRESSURE OF THE NOSE CAP IS CALCULATED. IF COLLAPSE PRESSURE FOR COLLAPSE PRESSURE IS EQUAL COLLAPSE PRESSURE IS LESS THAN THE DESIGN PRESSURE. SKIN THICKNESS IS TO OR GREATER THAN THE DESIGN PRESSURE. CONSTANT USED IN CALCULATING THE COMMON ANFIMN + ANFIMX + DSUBB + PDE SMN + PDE SNX + E 0.001 INCH UNTIL A * (TCAPST ** 2)/EXP(B) COMMON/TNOS/TMINN, PDSPH, TCAPST, RCAP = 0.04*SQRT (RCAP/TCAPST) =0.606*E/(RCAP**2) PDSPH) 90,91,91 = TCAPST + 0.001 = TMINN -0.001 BY INCREMENTS OF NOSE CAP IS ł H IF (PCOLL THE CONTINUE TCAPST RETURN TCAPST PCOLL END മ ۷ 4 6 60 5

υυ

00000

LMSC/HREC A712573

APPENDIX B

DEFINITIONS OF VARIABLE NAMES

А	-	The length of the free side of a honeycomb cell, in.
AA	-	The height of the stiffening ring, in.
AFACT	-	Used to determine which equations to use in deter- mining wrinkling stress.
AGWRIN	-	Allowable face wrinkling stress, psi.
AIREQ	-	Moment of inertia required of the stiffening ring cross-section, in. 4
AIRING	-	Moment of inertia of the stiffening ring, in. 4
AISTT	-	Moment of inertia of ring and effective skin, in. 4
ALB	-	Bay length, in.
ALCAP	-	Axial length of nose cap, in.
ALCONE	-	Frustum length, in.
ALF (NF)	-	Length of frustum number NF, in.
ALMX2	-	Axial distance from base of bay to top of frustum, in.
ALPHA	-	Angle of attack, degrees when read in and radians when used in computations.
ALTOT	-	Total length of fairing, in.
AMACH	-	Mach number.
AMU	-	Poisson's ratio.
ANFIAX	-	Line load contributed by axial loading on bay, lbs/in.
ANFIB	-	Line load contributed by bending moments on bay, lbs/in.
ANFICR	-	Critical line load, lbs/in.
ANFIMN	-	Total line load on windward side of fairing multiplied by factor of safety, lbs/in.
ANFIMX	-	Total line load on leeward side of fairing multiplied by factor of safety, lbs/in.
AOT	-	The ratio A/t (see Figure 3).

APRC	-	An equivalent radius of curvature of the particular bay under consideration.
AST	-	Cross-sectional area of ring, sq. in.
AXLDCP	-	Axial load contributed by nose cap, lbs.
AXLOAD	-	Axial load at some specified location on fairing, lbs.
В	-	The length of the bonded side of a honeycomb cell, in.
BEND	-	Bending moment at some specified location on fairing, lb-in.
BETA	-	The acute angle formed by the sides of a honeycomb cell, radians.
BETADG	-	The acute angle formed by the sides of a honeycomb cell, degrees.
BNDCAP	-	Bending moment of the nose cap about its base, lbs/in.
BOT	-	The ratio of width of attaching ring flange to ring thickness (see Figure 3).
CASE	-	The number of a particular set of data in a sequence of runs.
CBETA	-	Cosine of the angle BETA.
CCA	-	Honeycomb core allowable compressive stress, psi.
CDCAP	-	Drag coefficient for the spherical nose cap with the base area of the nose cap as a reference area.
CELLWD	-	Calculated honeycomb cell size, in.
CELSIZ	-	Honeycomb cell size reduced to a standard size, in.
CNCAP	-	Normal force coefficient per radian angle of attack for the spherical nose cap using nose cap base area as a reference area, /radian.
СОТ	-	The ratio of the width of the cap of stiffener to ring thickness (see Figure 3).
CPA(LT)	-	The change in pressure coefficient on either the wind- ward or leeward side of the fairing due to angle of attack at station LT. (See Figures 4 and 5.)
СРАА	-	Same as CPA(LT).

CPO(LT)	-	Pressure coefficient at zero angle of attack at station LT.
CPOO	-	Same as CPO(LT).
CRG	-	Critical line load for general panel instability, lbs/in.
CSA	-	Sandwich core allowable shear stress, psi.
CTA	-	Sandwich core allowable tensile stress, psi.
D (I)	-	Small diameter of the Ith bay, in.
DBAS	-	Base diameter of fairing, in.
DBASE	-	Base diameter of a frustum, in.
DBNSD	-	Inside base diameter of bay, in.
DD	-	Distance from the centroid of the stiffening ring to the inside bay wall, in.
DELTAP	-	Difference between internal and free-stream pressure, psi.
DELTAS	-	Bay skin thickness, in.
DINSD	-	Inside upper diameter of bay, in.
DMIN	-	Small diameter of frustum, in.
DMN	-	Same as DMIN.
DOD(LT)	-	Ratio of local diameter to fairing base diameter at station LT.
DOVDB(NF)	-	Ratio of small diameter of frustum NF to base dia- meter of fairing.
DSUBB	-	Base diameter of bay, in.
DUSEl	-	Diameter of area useful for payload at the base of the bay. (See Line SWD 0507 of program listing in Appen- dix A.)
DUSE2	-	Diameter of area useful for payload at top of bay. (See Line SWD 0508 of program listing in Appendix A.)
E	-	Modulus of elasticity of structural material, in.
ECORE	-	Modulus of elasticity of core material, psi.
EFACE	-	Modulus of elasticity of face material, psi.

B-4

· Mite and address

ELMIN(NF)	-	Minimum bay length for frustum NF, in.
ENFIMN (I)	-	ANFIMN for Ith bay, lbs/in.
ENFIMX (I)	-	ANFIMX for Ith bay, lbs/in.
ENSUBR	-	Radius conversion factor for conical frustums.
FCA	-	Sandwich face allowable compressive stress, psi.
FCFB	-	Ring outstanding flange allowable buckling stress, psi
FFAX (I)	-	Face axial stress at base of Ith bay, psi.
FFB (I)	-	Face bursting stress in Ith bay, psi.
FFC (I)	-	Face compressive stress in Ith bay, psi.
FFDMP	-	Face dimpling stress, psi.
FFS (I)	-	Face shear stress due to aerodynamic lift, psi.
FFWR (I)	-	Face wrinkling stress, psi.
FRING	-	Maximum compressive stress in ring flange, psi.
FS	-	Factor of safety.
FSA	-	Sandwich face allowable shear stress, psi.
FSBZCP	-	Shear force contributed by nose cap, lbs.
FSUBZ	-	Shear force at a specified location on the fairing, lbs.
FTA	-	Sandwich face allowable tensile stress, psi.
FZ (I)	-	Shear force at the base of the Ith bay, lbs.
G	-	Modulus of shear, psi.
GCORE	-	Modulus of shear of core material, psi.
GC1	-	Effective shear modulus of the honeycomb cellular material in the ribbon direction, psi.
GC2	-	Effective shear modulus of the core in the direction perpendicular to the ribbons, psi.
GFACE	-	Modulus of shear of face material, psi.
Gl	-	Effective shear modulus of the core material cor- rected for height to cell size ratio, in the ribbon direction, psi.

G2	-	Effective shear modulus corrected for height to cell size ratio, perpendicular to the ribbon direction, psi.
н	-	Distance between midplanes of facing sheets, in.
HUSE	-	Useful axial length of nose cap, in.
I	-	Index indicating bay. Numbering begins at base of fairing.
IKIND	-	Type of ring. 1 = angle, 2 = Zee, 3 = hat.
IMAX	-	Total number of bays in fairing.
IMX(NF)	-	Number of bays from bottom of fairing to top of frustum NF.
IW	-	Index indicating bay number within a frustum.
I1	-	Lower index used for writing output data.
12	-	Upper index used for writing output data.
J	-	Index indicating parameter associated with face thickness T (J).
JF	-	Index of skin thickness which is optimum for a bay.
JG	-	Index used for determining minimum adequate ribbon thickness.
KEY	-	Input parameter indicating type of output desired. (See Section 3.0 of the TECHNICAL DISCUSSION.)
КG	-	Parameter generated by Subroutine INSTBL, indicating that GBAR has exceeded the range in which it is valid.
KTFSTD	-	An input parameter which tells if standard gauges are to be used for sandwich faces.
RTRSTD	-	An input parameter which tells if standard gauges are to be used for core ribbons.
КҮ	-	An optional control used to obtain faster convergence in Subroutine INSTBL.

LPFL	-	An integer used to control computation of lateral pressures.
LPRES	-	An integer indicating type of pressure profile to be read in. (See Section 3.0 of TECHNICAL DISCUS- SION.)
LSTOP	-	An integer indicating that the last pressure profile data card has been read.
LT	-	Index that identifies a particular point on the fair- ing.
LTMAX	-	Total number of pressure profile data points.
MAT	-	An integer indicating the material to be used. (See Section 3.0 of the TECHNICAL DISCUSSION.)
MATF	-	An integer indicating the type of material to be used for sandwich faces.
NBAY	-	Number of bays in a frustum.
NF	-	Index indicating frustum number.
NFMAX	-	Total number of frustums in the fairing.
Р	-	Pressure differential, equal to either PDESMN or PDESMX, as appropriate, psi.
PDESMN	-	Maximum pressure differential across the sandwich, multiplied by the factor of safety, on the leeward side of the bay, psi.
PDESMX	-	Maximum pressure differential across the sandwich, multiplied by the factor of safety, on the windward side of the fairing, psi.
PDIFF	-	Maximum burst pressure differential, psi.
PDSPH	-	Maximum pressure differential across the nose cap skin, multiplied by a factor of safety, psi.
PHI	-	Angle between the applied load and the direction of the honeycomb ribbon.

B-7

PSTAT -Free-stream pressure, psi. Dynamic pressure, lbs/sq. ft. QBAR Radius of spherical nose cap, in. RCAP Material density, lbs./cu. in. RHO -ROCORE Core material density, lbs/cu. in. Radius of nose cap volume which is useful for pay-RUSE load, in. SCAP Surface area of spherical nose cap, sq. in. -SLOPT Sum of bay lengths within a frustum, in. Distance from the base of the fairing to the base of SUMAL the bay, in. TCAP Thickness of nose cap skin, in. -TCAPST Thickness of nose cap skin required to withstand pressure loads, in. TCAPTH Thickness of nose cap skin required to limit its temperature to the maximum specified, in. TCONTH Thickness of skin required on the top frustum to limit its temperature to the maximum specified, in. TCORE(I) Honeycomb core height in the Ith bay, in. -TF Sandwich face thickness, in. TFACE(I) Face thickness in the Ith bay, in. THETA Frustum half angle, radians -THTA(NF) Half angle of frustum NF, degrees. -TKCIL Skin thickness required to carry the circumferential load, in. TKHOOP Skin thickness required for hoop stress due to internal pressure, in.

TKMCL	-	Skin thickness required to carry the meridianal compressive load, in.
TKSAL	-	Skin thickness required for shear stress due to aerodynamic lift, in.
TMINC	-	Minimum skin thickness to be used in designing a frustum, in.
TMINN	-	Minimum skin thickness to be used in designing the nose cap, in.
TMNC(NF)	-	TMINC for frustum NF, in.
ТМР	-	Maximum allowable temperature for both the top frustum and nose cap, ^o F.
ТМРМАХ	-	Same as TMP.
TRBMIN	-	Input value of minimum ribbon thickness, in.
TRBN(I)	-	Ribbon thickness for the Ith bay, in.
TRBSTD(JG)	-	Block data values to be used for ribbon thickness if KTRSTD is equal to 1.
TRIBN	-	Ribbon thickness, in.
TRING (I)	-	Thickness of ring material for optimized design of the Ith bay, in.
TSTD	-	Block data of standard sheet metal gauges, in.
Т 1	-	Thickness of outer face of sandwich, in.
T2	-	Thickness of inner face of sandwich, in.
VCAP	-	Volume of nose cap which is useful for payload. (See HUSE and RUSE), cu. ft.
VCORE	-	Volume enclosed between the two sandwich faces, cu. in.
VGROS	-	Gross volume of nose cap, cu. in.
VGROSS	-	Gross volume of fairing, cu. ft.

VSEG (J)	-	Volume of bay designed for a skin gauge of T (J), cu. in.
VTOT	-	Useful volume of fairing (see DUSE1, DUSE2, HUSE and RUSE), cu. ft.
VUSE	-	Useful volume of frustum (see DUSE1, and DUSE2), cu. ft.
w	-	Average length of a core cell wall, equal to $1/2$ (ATB), in.
WBOND (I)	-	Weight of adhesive bond material used to attach faces to core, lbs.
WCAP	-	Weight of nose cap, lbs.
WCONE	-	Frustum weight, lbs.
WFACE (I)	-	Weight of both sandwich faces of the Ith bay, lbs.
WRING (I)	-	Weight of ring for the Ith bay, lbs.
WSEG (I)	-	Weight of the Ith bay, lbs.
WSPLCE (I)	-	Weight of panel splices in the Ith bay, lbs.
WTCORE (I)	-	Weight of core material in the Ith bay, lbs.
WTDEX (I)	-	Weight of bay divided by volume of bay, lbs/cu. in.
WTINFC	-	Weight of inner sandwich face material in the Ith bay, lbs.
WTOT	-	Total fairing weight, lbs.
WTOTFC	-	Weight of outer face material in the Ith bay, lbs.
XBCAP	-	Distance from base of nose cap to center of lift pressure on the nose cap, in.
XL	-	Length of bay, in.
Y	-	Warpage correction factor for thick cores.

APPENDIX C

AERODYNAMIC PRESSURE COEFFICIENTS

When data for the fairing pressure profile is not input, the pressure coefficient at zero angle of attack, CPOO, and the maximum change in pressure coefficient due to angle of attack, CPAA, are computed for each conical frustum in Subroutine AERO. For the purpose of computing these parameters, each frustum is treated as a complete cone with an attached shock. Both CPOO and CPAA will then be uniform in the axial direction for each frustum. In order to construct the pressure profile as described in Section 1.4 and Figure 4, the values computed for CPOO and CPAA for the frustum are assigned to the stations at the ends of the frustum. That is

CPO (LT)	=	CPOO
CPO (LT+1)	=	CPOO
CPA (LT)	=	CPAA
CPA (LT+1)	Ξ	CPAA

In which LT is the station at the small diameter of the frustum, and (LT+1) is the station at the large diameter of the frustum.

Using the ground rules indicated above, CPOO can be readily determined through the use of equations developed by Simon and Walter in Reference 2, which agree within a few percent with data presented in Chart 6 of Reference 3 (NACA Report 1135). These equations have been programmed in Subroutine AERO and are used in computing CPOO for each frustum.

When flying at an angle of attack the pressure distribution in the circumferential direction varies with circumferential position. This circumferential pressure distribution is assumed to be sinusoidal (see Figure 5). Since each frustum is treated as a complete cone, the distribution in the axial direction is uniform. The pressure distribution over the entire frustum can now be described by equations specifying the circumferential pressure distribution. These equations, as illustrated in Figure 5, are

$$C_{\mathbf{p}} = C_{\mathbf{p}\mathbf{0}} - \Delta C_{\mathbf{p}} \sin \phi \tag{C1}$$

$$P = P_{AV} - \Delta P_{MAX} \sin \phi$$
 (C2)

In which

$$C_{PO} = CPOO$$

 $\Delta C_{P} = CPAA$

The normal force, ΔF_N , produced on an incremental length, ΔX , by this pressure distribution can be computed as follows:

$$\Delta F_{N} = \Delta X \int_{0}^{2\pi} (-P\sin\phi) \left(\frac{D}{2}\right) d\phi \qquad (C3)$$

in which D is the diameter of the increment. When the expression for P (Equation C2) is substituted in Equation C3, and the integration performed

$$\Delta F_{N} = \frac{\pi}{2} D(\Delta X) (\Delta P_{MAX})$$
(C4)

In which

 $^{\Delta P}_{MAX} = (^{\Delta C}_{P}) q$

and

$$\Delta F_{N} = \frac{\pi}{2} D (\Delta X) (\Delta C_{P}) q \qquad (C5)$$

The normal force on the same increment of cone can also be computed by using the normal force coefficient, C_N . For a complete cone the normal force, F_N , is expressed by

$$\mathbf{F}_{\mathbf{N}} = \mathbf{C}_{\mathbf{N}} \mathbf{q} \mathbf{A} \tag{C6}$$

in which A is the base area of the cone. The incremental normal force, $\Delta F_{\rm N}$, produced by a short length, ΔX , of this cone is

$$\Delta F_{N} = C_{N} q (\Delta A) \tag{C7}$$

in which ΔA is the surface area of the increment projected on the cone base. expressed by

The change in diameter, 4D, for a change in length, 4X, is

$$\Delta D = 2 (\Delta X) \tan \theta \tag{C9}$$

in which θ is the half angle of the cone. Substituting Equations C8 and C9 into C7 yields the following expression for ΔF_{N} :

$$\Delta F_{N} = C_{N} q (\pi D) (\Delta X) \tan \theta \qquad (C10)$$

When the two expressions for ${}^{\Delta}F_{N}$ (Equations C5 and C10) are equated and solved for ${}^{\Delta}C_{P}$, the following expression is obtained.

$$\Delta C_{\mathbf{p}} = 2 C_{\mathbf{N}} \tan^{\theta} \tag{C11}$$

In Chart 8 of Reference 3 $C_{N_{cl}}$ is plotted as a function of cone half angle v and Mach number. $C_{N_{cl}}$ is defined as

$$C_{N\alpha} = \left(\frac{\partial C_{N}}{\partial \alpha}\right)_{\dot{\alpha}} = 0$$
 (C12)

in which α is the angle of attack. For small angles of attack the following relationship is valid:

$$C_{N} = (C_{N\alpha})\alpha \tag{C13}$$

For the study for which this computer program was developed maximum loads occur in the neighborhood of Mach 1.5. In this region $C_{N\alpha}$ is not a strong function of Mach number. Therefore, a plot was made of $C_{N\alpha}$ versus θ at Mach 1.5. The points fell on a straight line expressed by the following equation.

$$C_{N\alpha} = 2.03 - 1.2\theta$$
 (C14)

In Equation Cl4 both α and θ are expressed in radians. Substituting Equations Cl3 and Cl4 into Cl1 yields the following equation which is used to compute CPAA in Subroutine AERO (CPAA = ΔC_p).

$$\Delta C_{\mathbf{p}} = (2 \tan \theta) (2.03 - 1.2\theta) \alpha$$
 (C15)

In Equation C15, $\&math{\mathcal{L}_{p}}$ is the difference between the pressure coefficient on the windward side of the fairing and the pressure coefficient at the neutral position on the fairing.

APPENDIX D

BENDING MOMENTS, AXIAL LOADS AND SHEAR LOADS

In order to design a bay within the nose fairing structure, it is necessary to know the magnitude of the loads to which the bay is subjected. In addition to lateral pressure there are bending moments and axial loads which are used in computing line loads (force per running inch on the circumference) for the bay being analyzed. These computations are performed in Subroutine LOAD using the pressure profile data which was either computed in Subroutine AERO or input to the program.

The pressure profile data consists of a number of points connected by straight line segments as illustrated in Figure 4. In order to compute axial loads, shear loads and bending moments, it is necessary to compute the contribution of each of these pressure profile increments to the total load. In computing these incremental loads the point on the increment nearest the base of the fairing is used as a reference point.

First, an equation is derived to represent the shear force contributed by a pressure profile increment at its reference point. Nomenclature for this derivation is illustrated in Figure D1. The expression for ΔC_P as a function of X/D between locations $(X/D)_1$ and $(X/D)_2$ is as follows:

$$\Delta C_{p} = \Delta C_{p1} - \frac{\Delta C_{p1} - \Delta CP_{2}}{(X/D)_{1} - (X/D)_{2}} \left[(X/D)_{1} - (X/D) \right]$$
(D1)

At a specified location ΔC_P is the difference between the pressure coefficient on the windward side of the fairing and the pressure coefficient at the neutral position on the fairing (see Figure 5). The relationship between the variables in Equation D1 and Figure 4 are as follows:

$$\Delta C_{P1} = CPA (LT+1)$$
$$\Delta C_{P2} = CPA (LT)$$
$$(X/D)_{1} = XOD (LT+1)$$
$$(X/D)_{7} = XOD (LT)$$

Let

$$A_{2} = \frac{\Delta C_{P1} - \Delta C_{P2}}{(X/D)_{1} - (X/D)_{2}}$$
(D2)

$$A_1 = \Delta C_{P1} - A_2(X/D)_1$$
 (D3)

Then, combining Equations D1, D2 and D3

$$\Delta C_{p} = A_{1} + A_{2}(X/D) \tag{D4}$$

In a similar manner the following expression can be obtained for the local diameter D_{\bullet}

$$D = A_{D1} + A_{D2}(X/D)$$
 (D5)

In which

$$A_{D2} = \frac{D_1 - D_2}{(X/D)_1 - (X/D)_2}$$
$$A_{D1} = D_1 - A_{D2}(X/D)_1$$

In Appendix C an equation for the normal force, ΔF_N , for an increment of length, ΔX , was derived for a sinusoidal pressure distribution in the circumferential direction. This equation (Equation C5) is as follows:

$$\Delta F_{N} = \frac{\prod}{2} D (\Delta X) (\Delta C_{P}) q$$

in which q is dynamic pressure. Using Equation C5 the running load in the axial direction, w, is expressed as follows:

$$w = \frac{\Delta F_{N}}{\Delta X}$$
$$= \frac{\Pi}{2} D (\Delta C_{P}) q$$
(D6)

By combining Equations D4, D5 and D6, the following expression is obtained for w_{\bullet}

$$w = \frac{\Pi}{2} q \left[A_1 A_{D1} + A_1 A_{D2} (X/D) + A_2 A_{D1} (X/D) + A_2 A_{D2} (X/D)^2 \right]$$
(D7)

The shear force, v, at any point on the increment is

$$\mathbf{v} = \int_{X_1}^{X} - \mathbf{w} \, dX$$

= $-D_{\text{base}} \int_{(X/D)_1}^{X/D} \mathbf{w} \, d(X/D)$ (D8)

In which D_{base} is the base diameter of the fairing. When the integration is performed, the following expression is the result.

$$v = \frac{\Pi}{2} q D_{\text{base}} \left\{ \beta_1 \left[X/D - (X/D)_2 \right] + \beta_2 \left[(X/D)^2 - (X/D)_2^2 \right] + \beta_3 \left[(X/D)^3 - (X/D)_2^3 \right] \right\}$$
(D9)

In which

$$\beta_1 = A_1 A_{D1}$$
$$\beta_2 = \frac{A_1 A_{D2} + A_2 A_{D1}}{2}$$
$$\beta_3 = \frac{A_2 A_{D2}}{3}$$

The incremental shear force, v_i , at the reference point of the ith increment (the point nearest the fairing base), due to aerodynamic pressure acting on the ith increment, is obtained by substituting $(X/D)_1$ for X/D in Equation D9.

The incremental bending moment, M_i , about the reference point of the ith increment is expressed as follows:

By substituting Equation D9 into Equation D10 and performing the integration, the following expression is obtained.

$$M_{i} = \frac{\Pi}{2} q D_{base}^{2} \left\{ \frac{\beta_{1}}{2} \left[(X/D)_{1}^{2} - (X/D)_{2}^{2} \right] - \beta_{1} (X/D)_{2} \left[(X/D)_{1} - (X/D)_{2} \right] + \frac{\beta_{2}}{3} \left[(X/D)_{1}^{3} - (X/D)_{2}^{3} \right] - \beta_{2} (X/D)_{2}^{2} \left[(X/D)_{1} - (X/D)_{2} \right] + \frac{\beta_{3}}{4} \left[(X/D)_{1}^{4} - (X/D)_{2}^{4} \right] - \beta_{3} (X/D)_{2}^{3} \left[(X/D)_{1} - (X/D)_{2} \right] \right\}$$
(D11)

These incremental shear loads and bending moments are now used to compute the shear load, V_{base} , and bending moment, M_{base} , at the base of the fairing.

$$V_{base} = \sum_{i=1}^{I} v_i + Contribution$$
 (D12)

$$M_{\text{base}} = \sum_{i=1}^{I} (v_i L_i + m_i) + \begin{array}{c} \text{Contribution} \\ \text{of nose cap} \end{array}$$
(D13)

in which I is the total number of increments and L_i is the distance from the base of the fairing to the reference point of the ith increment. The shear moment contribution of the nose cap are discussed below.

As design of the fairing moves from the base toward the nose cap, shear and moment contributed by each of the increments of pressure profile are subtracted from the total shear and bending moment. In moving from the reference point of the (i-1)th increment to the reference point of the ith increment the shear and bending moments at the ith reference point are computed as follows:

$$V_{i} = V_{i-1} - V_{i-1}$$
(D14)

$$M_{i} = M_{i-1} - M_{i-1} - V_{i} x_{i-1}$$
(D15)

in which x is the length of the increment.

Usually the location of the base of a bay will not coincide with the beginning or end of a pressure profile increment. In this case the pressure profile increment is divided at the base of the bay and each part is treated as a complete increment.

Computation of axial loads is handled in much the same manner as computation of shear force. Using nomenclature similar to that used previously for the ΔC_P calculations (see Figure DI) the equation for the pressure coefficient within a pressure profile increment is

$$C_{\mathbf{P}} = B_1 + B_2 D \tag{D16}$$

in which

$$B_{1} = C_{P1} - \frac{C_{P1} - C_{P2}}{D_{1} - D_{2}} D_{1}$$
(D17)

$$B_2 = \frac{C_{P1} - C_{P2}}{D_1 - D_2}$$
(D18)

The incremental axial load is

$$\Delta F_{ax} = \int_{D_1}^{D_2} (q C_P - \Delta P) (\pi D) \frac{dD}{2}$$
(D19)

in which ΔP is the difference between fairing internal pressure and ambient pressure. When the expression for C_P is substituted into this equation and the integration is performed, the following equation is obtained.

$${}^{(D20)}_{4F_{ax}} = \frac{\pi}{2} \left[\frac{1}{2} \left(q B_1 - \Delta P \right) \left(D_1^2 - D_2^2 \right) + \frac{1}{3} q B_2 \left(D_1^3 - D_2^3 \right) \right]$$

Total axial load at the base of the fairing is computed by summing up the incremental loads plus the drag contributed by the nose cap. As design of the fairing progresses from the base towards the nose cap, increments of axial load are subtracted in a manner similar to that employed in computing shear loads.

When the bending moment and axial load are known at the base of a bay, the circumferential line load can be computed. This is the load per unit length of circumference parallel to the surface of the skin. The axial load places a uniform compressive load on the circumference. The bending moment places a compressive load on the leeward side and a tensile load on the windward side. The line load due to the axial force is

$$(N_{\phi})_{AX} = \frac{F_{aX}}{\pi D \cos \theta}$$
(D21)

in which

 F_{ax} = Axial force at the base of the bay D = Diameter at the base of the bay θ = Semi-vertex angle of the bay

Using the assumption that the strain in the skin due to bending is proportional to the distance from the neutral plane, the maximum contribution of bending moment to the line load is computed by the following equation:

$$(N\phi)_{BEND} = \frac{M}{\frac{\pi}{4}D^2} \frac{1}{\cos\theta}$$
 (D22)

When line load due to bending is superimposed on line load due to axial force the total becomes

$$(N\phi)_{WND} = (N\phi)_{AX} - (N\phi)_{BEND}$$
 (D23)

$$(N_{\phi})_{\text{LEE}} = (N_{\phi})_{\text{AX}} + (N_{\phi})_{\text{BEND}}$$
 (D24)

The subscript WND indicates windward side, and the subscript LEE indicates the leeward side.

The contribution of the nose cap to axial load, shear force and bending moment are computed by means of the nose cap drag coefficient, C_D , normal force coefficient per radian angle of attack, $C_{N\alpha}$, and \overline{X} , the distance from the base of the nose cap to center of pressure on the normal plane. The reference area for C_D and $C_{N\alpha}$ is the base area of the nose cap. These parameters can be read into the computer or computed in Subroutine LOAD.

The computations for the nose cap C_D in Subroutine LOAD are based on a computed pressure coefficient at the stagnation point, $(C_P)_{stg}$, and a pressure distribution over the nose cap described by the following equation:

$$C_{P} = (C_{P})_{stg} \sin^{2} \phi$$
 (D25)

in which ϕ is the angle between a plane tangent to the nose cap surface and the line of flight.

In order to compute $(C_P)_{stg}$, the pressure at the stagnation point is assumed to be equal to the stagnation pressure downstream from a normal shock with upstream Mach number equal to that of the vehicle. For one-dimensional flow of a perfect gas with constant specific heat and molecular weight the ratio of downstream stagnation pressure, P_0 , to upstream static pressure, P_{∞} , is expressed by the following equation taken from Reference 11.

$$\frac{P_{o}}{P_{o}} = \left[\frac{\gamma+1}{2}M^{2}\right]^{\frac{\gamma}{\gamma+1}} \left[\frac{2\gamma}{\gamma+1}M^{2} - \frac{\gamma-1}{\gamma+1}\right]^{\frac{1}{1-\gamma}}$$
(D26)

in which γ is the specific heat ratio of air and M is the Mach number of the vehicle. When $\gamma = 1.4$, Equation D26 reduces to

$$\frac{Po}{P_{\infty}} = \frac{166.92 \text{ M}^7}{(7M^2 - 1)^{2.5}}$$
(D27)

An expression for P_{∞} derived from basic definitions is as follows:

$$P_{\infty} = \frac{q}{\frac{1}{2} \gamma M^2}$$
(D28)

For air, Equation D28 reduces to

$$P_{m} = \frac{q}{0.7 M^2}$$
(D29)

D-9

Using the definition for pressure coefficient

$$(C_{\mathbf{P}})_{stg} = \frac{\mathbf{Po} - \mathbf{P}_{\infty}}{\mathbf{q}}$$
$$= \left(\frac{\mathbf{Po}}{\mathbf{P}_{\infty}} - 1\right) \frac{\mathbf{P}_{\infty}}{\mathbf{q}}$$
(D30)

Combining Equations D27, D29 and D30 yields the following equation

$$(C_{\mathbf{p}})_{stg} = \frac{1}{0.7 \text{ M}^2} \left[\frac{166.92 \text{ M}^7}{(7\text{M}^2 - 1)^{2.5} - 1} \right]$$
 (D31)

The pressure coefficient, C_P , at all points on the nose cap is now defined by Equations D25 and D 31. By integrating C_P over the nose cap surface the following expression is obtained for C_D .

$$C_{\mathbf{P}} = \frac{1}{2} \left(C_{\mathbf{P}} \right)_{\text{stg}} \left(1 + \sin^2 \theta \right)$$
 (D32)

in which θ is the half angle of the top frustum. The axial force contributed by the nose cap is now expressed by the following equation:

$$(\Delta F_{ax})_{CAP} = C_D q A \tag{D33}$$

in which A is the base area of the cap.

For small bluntness ratio (less than 0.2) the bending moment contribution of the nose cap can be approximated by assuming that the nose cap is replaced by a cone having the same half angle as the top frustum. $C_{N_{\alpha}}$ can then be computed by Equation Cl4 which is derived in Appendix C.

$$C_{N_{\alpha}} = 2.03 - 1.2 \theta$$
 (D34)

Shear force contribution of the nose cap is

$$\mathbf{v}_{CAP} = \alpha C_{N_{\alpha}} q A \tag{D35}$$

For a complete cone the normal force (shear force) acts a point one-third of the distance from the base of the cone to its apex.

$$\overline{X} = \frac{1}{3} \frac{d}{2 \tan \theta}$$
(D36)

In which d is the diameter of the nose cap base. The bending moment at the base of the nose cap is expressed as follows:

$$m_{CAP} = \overline{X} V_{CAP}$$
(D37)

APPENDIX E

LATERAL PRESSURE

-

The lateral pressure used to design the fairing is the difference between internal and external surface pressure multiplied by a factor of safety. This pressure is computed on both the windward and leeward sides of the bay, using the pressure profile data and input aerodynamic data.

Pressure coefficients on the windward and leeward sides of the bay are expressed by the following equations.

$$(C_{\rm P})_{\rm WND} = C_{\rm PO} + \Delta C_{\rm P} \tag{E1}$$

$$(C_{\rm P})_{\rm LEE} = C_{\rm PO} - \Delta C_{\rm P}$$
(E2)

In which

(C _P)WND	2	pressure coefficient on windward side
(C _P) _{LEE}	=	pressure coefficient on leeward side
с _{ро}	=	pressure coefficient at zero angle of attack
C _P	=	change in pressure coefficient due to angle of attack

The difference between surface pressure and free-stream pressure is expressed by the following equations.

$$(P_S)_{WND} - P_{\bullet} = (C_P)_{WND} q \qquad (E3)$$

$$(P_S)_{LEE} \sim P_{\infty} = (C_P)_{LEE} q \qquad (E4)$$

In which

 P_S = surface pressure

P_ = free-stream pressure

q = dynamic pressure

Recall that the difference between internal pressure and free-stream pressure is an input parameter.

$$\Delta P = P_{int} - P_{\infty} \tag{E5}$$

In which

ΔP = the input value of pressure difference

P_{int} = absolute pressure inside the fairing

Combining Equation E3 with E5 and E4 with E5 the following equations for pressure difference are obtained.

$$(P_S)_{WND} - P_{int} = (C_P)_{WND} q - \Delta P$$
 (E6)

$$(P_S)_{LEE} - P_{int} = (C_P)_{LEE} q - \Delta P$$
 (E7)

Design pressures are obtained by multiplying these pressure differences by the factor of safety, FS.

$$(P_{des})_{WND} = FS\left[(C_{P})_{WND}q - \Delta P\right]$$
(E8)

$$(P_{des})_{LEE} = FS\left[(C_P)_{LEE}q - \Delta P\right]$$
(E9)

APPENDIX F

FACE WRINKLING AND DIMPLING

Face wrinkling involves the buckling of one face only. Normally, an analysis is made in a manner similar to a beam on an elastic foundation. The analysis used here (Reference 12) depends upon whether the core is "thin" or "thick". If the core is thin, it is assumed to behave like a group of independent springs with no shearing forces between them. If the core is thick, shear forces between these springs are considered. If $\frac{h}{R} > \frac{2W}{R}$ as determined by the following equation, the core is considered thick.

$$\frac{2W}{R} = \frac{2.496 t_{f}}{R} \qquad \left\{ \frac{E/G_{c}}{t_{c/a}} \right\}$$

where:

R	=	cylinder mean radius
^t f	=	face thickness
E	=	elastic modulus of face
G	=	shear modulus of core

 $t_c = core ribbon thickness$

a = free honeycomb-core wall dimension between nodes

For thick cores, wrinkling stress is predicted by

$$\sigma_{\omega} = 1.66 (E)^{1/3} (G_c)^{2/3} (t_c/a)^{2/3}$$

For thin cores, wrinkling stress is predicted by

$$\sigma_{\omega} = 1.86 (E)^{1/2} (G_c)^{1/2} (t_c/a)^{1/2} (t_f/h)^{1/2}$$

where:

h = distance between midplanes of face sheets

The above equations predict wrinkling stress levels if there are no imperfections in the face sheets. To approximately account for the deleterious effect of reasonable imperfections, half of the predicted wrinkling stress level has been used as an allowable stress. Normally, designs having practical ribbon and face thicknesses will not be critical for wrinkling.

Face dimpling considerations limit the maximum size of the core hexagon. From Reference 12, the following equation is used to predict dimpling:

$$\sigma_{\rm d} = \frac{2t_{\rm f}^2 E}{a^2(1-\nu^2)}$$

where:

- ν = Poisson's ratio of face sheets.
- a = Minimum distance between nodes.

One half of the predicted dimpling stress value as determined by the above equation was used as an allowable stress level.

APPENDIX G

STIFFENING RING DESIGN

After the shell portion of a bay has been designed, it is necessary to provide a ring of adequate stiffness to prevent general instability of the composite structure, i.e., to prevent the entire side of the fairing from caving in. This ring is placed at the upper end of the bay. For tapered conical sections, lateral crushing pressure is normally the dominant factor in ring size determination. For these sections, the required moment of inertia of such a ring is expressed by the following equation which was used by Nevins and Helton in a similar study reported in Reference 1.

$$I_{req} = L_{bay} \left(\frac{D}{2\cos\theta}\right)^2 \left(\frac{1}{t}\right)^{1/3} \left[\frac{(P_{des})_{WND} D_b}{11.02 E \tan\theta}\right]^{4/3}$$
(G1)

in which

L _{bay}	= length of bay, in.
D	= small diameter of bay, in.
θ	= semivertex angle of bay
t	= skin thickness, in.
(P _{des}) _{WND}	= the crushing pressure on the windward side of the fairing, psi.
D _b	= the base diameter of the fairing, in.
E	= modulus of elasticity of the material, psi.

This equation is a modification of the general stability equation developed by Becker in Reference 5.

For cylindrical sections, axial loads are higher and lateral collapse pressure much lower than in conical sections, hence rings are sized on a different basis. As stated in Section 1.13, the cylindrical section is divided into bays of equal length using stiffening rings of identical cross-section. Skin gauge for the first bay is determined by the same methods used elsewhere in the fairing. Then assuming that the skin gauge and loading determined for the first bay prevail throughout the cylindrical section, the minimum ring cross-section required to prevent general instability is computed by the method of Baruch-Singer adapted for use in this program by A. B. Burns (see Appendix K).

After computing the moment of inertia required of the ring, the ring cross-section which will provide this moment of inertia is selected. The three types of cross-sectional shapes which may be specified are shown in Figure 3. Also to be specified are B/t ratios of the web(s) and flanges. When designing the ring, the computer program selects the smallest standard skin gauge which provides a ring cross-section with moment of inertia equal to or greater than that required, providing that the selected ring has no buckled flanges. It is necessary to check for flange (or web) buckling because large B/t values may be input, and these large B/t values present a definite possibility of local instability occurring. In making this check, a small (one percent) ovality tolerance was assumed, and bending stress due to this ovality effect are added to the hoop compression stress. The total flange stress thus obtained, is compared to an input flange buckling stress level (FCFB), and if excessive, the ring web thickness is increased as required.

APPENDIX H

STRUCTURAL DESIGN OF SPHERICAL NOSE CAP

The nose cap design is analyzed structually as an unstiffened, nonshallow spherical cap with uniform shell thickness. The method of analysis used is presented in Section 6.23.1 of Reference 4. From experiments it is observed that non-shallow (the ratio of height to radius is greater than 1/6) spherical caps buckle in the form of a small dimple in some area of the surface of the cap. Therefore, the critical buckling pressure for non-shallow caps is independent of the height to radius ratio, depending only on the radius to thickness ratio and the modulus of elasticity of the shell material.

The equation recommended in Reference 4 is

$$P_{crt} = \frac{0.606 E}{\left(\frac{R}{t}\right)^2 e^{0.04 \sqrt{R/t}}}$$
(H1)

In which

P_{crt} = critical buckling pressure R = nose cap radius E = modulus of elasticity t = shell thickness

A trial and error procedure is used in determining the minimum shell thickness required for the nose cap. When R, E and design pressure are known the shell thickness is increased by 0.001 inch increments until P_{crt} is equal to or greater than the design pressure computed for the nose cap.

Maximum design pressure for the nose cap occurs at the stagnation point. Assuming that the pressure on this point is the same as the stagnation pressure downstream from a normal shock, the pressure coefficient, $(C_p)_{stg}$, is expressed by Equation D30, and the design pressure is expressed by the following equation:

$$(P_d)_{CAP} = (FS) \left[q (C_P)_{stg} - \Delta P \right]$$
 (H2)

in which

FS = factor of safety

q = dynamic pressure

4P = internal to free-stream pressure difference

APPENDIX I

EFFECTIVE SHEAR MODULUS OF HONEYCOMB CELLULAR STRUCTURE

The general instability analysis developed for this program accounts for the effect of transverse shear deformation, hence buckling loads are a function of cone shear stiffness. Core shear stiffness is calculated for aluminum hexagon honeycomb using the analysis of Penzien and Didriksson (Reference 13). The effective shear modulus is

$$G_{c} = \frac{G \sin\beta (R + \cos\beta)}{\frac{A}{t_{r}} \left[(1 + R) \sin^{2}\beta \cos^{2}\phi + (R + \cos\beta)^{2} \sin^{2}\phi \right]}$$

where:

- G = shear modulus of core material
- R = B/A (See Figure 1 below)
- t_r = thickness of core material
- \$\phi\$ = angle between direction of the shear force and ribbon direction

Ribbon direction

Figure 1 - Geometry of honeycomb cells

A correction factor based on Figure 6 of Reference 13 is also applied to the above equation when the ratio of core height (H) to average cell wall length $(\frac{1}{4}A + \frac{1}{4}B)$ is 5 or less.

When the ratio of core height to the quantity W = 0.5 (A + B) is five or less, prevention of warpage increases the effective shear modulus (See Figure 6 of Reference 13). For values of H/W less than five, the effective shear modulus is calculated from the equation

$$G_{ceff} = G_{c} (1 + 0.01Y)$$

where:

Y =
$$(9.3/(H/W)) - (2.1/(H/W)^2)$$

APPENDIX J

THERMAL ANALYSIS

.

The maximum temperature reached by the skin due to aerodynamic heating can be controlled by placing a lower limit on the thickness of skin to be used in critical locations. Provisions have been made in the program to place such constraints on both the nose cap and top frustum of the fairing, either by specifying the minimum skin thickness to be used or by specifying the maximum temperature to be reached by the skin.

Design curves for determining the minimum thicknesses have been prepared by LMSC/HREC. These curves and the methods used in generating the data for these curves are presented in Reference 6. The trajectory used in this analysis was a nominal two-stage Saturn V ascent trajectory to a 100 nautical mile circular orbit.

Both laminar and turbulent heating occur during the flight. Laminar flow was assumed to exist when the Reynolds number based on momentum thickness of the local boundary layer was equal to or less than 500. Turbulent flow was assumed to exist at Reynolds numbers above 500. When the flow was laminar, the method of Fay and Riddell (Reference 7) was used together with the laminar heating rate distribution of Lees (Reference 8). When the flow was turbulent, heating rates were calculated by using a method from Reference 9 (Bromberg, Fox and Ackermann). Radiation from the outer surface was also taken into account.

Other assumptions were that the heat flow is one-dimensional, that at any time or location on the fairing the skin temperature is uniform throughout the thickness of the skin, and that the inner surface of the skin is perfectly insulated. These latter assumptions were found to have only a minor effect on the final results.

Maximum temperature constraints are applied to the nose cap and the top frustum. The thickness of material required to limit the maximum temperature of the nose cap is based on heating at the stagnation point of the nose cap, and the thickness required for the top frustum is based on heating on the nose cap at its junction with the top frustum. Thus, the heating data required to establish these constraints can be obtained from a spherical shell.

Several hundred data points were generated for each of the following five materials: aluminum, magnesium, titanium, stainless steel and Lockalloy. Each data point for a specified material is completely described by the following four parameters:

- R = radius of spherical nose cap
- θ = the angle between the line of flight and a plane tangent to the nose cap at the point of interest

 T_{max} = the maximum temperature reached by the skin, ${}^{o}F$

= thickness of the skin

t

When applying this data to nose fairing design, θ is equal to 90° at the stagnation point and to the half angle of the top frustum at the junction of the nose cap and top frustum. (Note that ϕ in Reference 6 is the complement of θ .)

In order to avoid the necessity of storing all of these data points in the fairing design program, a set of linear algebraic equations which fit the data within a few percent was developed by a technique commonly referred to as multiple regression analysis. A detailed description of multiple regression analysis can be found in many statistical text books such as Reference 10, Chapters 4 and 5.

Two major steps are involved in such an analysis. First, it is necessary to establish the form of the equation relating the variables which describe the data points. This step can be based on intuition and/or a knowledge of the physical laws relating the variables. This equation must be reduced to linear form, which is then referred to as a linear model. The linear model has the general form

$$y = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$
 (J1)

The variables y and x_1 , x_2 , ---, x_n may be grouped parameters such as $(T_{max}-70)$ and T_{max} / \sqrt{R} . However, these variables must be such that numerical values can be obtained for each variable for each data point.

Having developed a linear model the next step is to determine the set of coefficients (c_1, c_2, \dots, c_n) which give the best fit to the data. This is done by means of the "least squares" curve fit technique. Usually several different linear models are tried in an attempt to curve-fit a given set of data.

For this application two models were developed, one for the stagnation point and the other for the point of tangency between the spherical nose cap and the top frustum. A set of coefficients was computed for each of the two models for each of the five materials, making a total of ten sets of coefficients. The equations and coefficients appear in Subroutine THERML.

The linear model representing heating at the stagnation point is based on laminar and radiative heating theory. It is postulated that the following

relationship is approximately true.

$$\rho C_{pt} (T_{max} - 70) = K_1 + \frac{K_2}{\sqrt{R}} (K_3 - T_{max}) - K_4 \epsilon (T_{max} + 460)^4$$
(J2)

in which

 ρ = density of skin

 C_p = specific heat of skin

 ϵ = emissivity of skin

The terms in Equation J2 represent the following physical quantities:

 $C_{pt}(T_{max}-70)$ = the maximum quantity of heat stored in a unit area of skin during the flight

 $K_1 = a constant$

 $\frac{K_2}{\sqrt{R}}$ (K₃ - T_{max}) = convective heat input (laminar flow) to the unit area

 $K_4 \epsilon (T_{max} + 460)^4$ = radiative heat loss from the unit area

When material properties are dropped (coefficients are determined for each material) and when the multiplications are performed Equation J2 reduces to the following linear form.

t
$$(T_{max}-70) = a_1 + a_2 \frac{1}{\sqrt{R}} + a_3 \frac{T_{max}}{\sqrt{R}} + a_4 (T_{max} + 460)^4$$
 (J3)

Comparing this to Equation J1

$$y = t (T_{max}-70)$$

 $x_1 = 1$

$$x_{2} = \frac{1}{\sqrt{R}}$$

$$x_{3} = \frac{T_{max}}{\sqrt{R}}$$

$$x_{4} = (T_{max} + 460)^{4}$$

Using the data generated in Reference 6 the coefficients a_1 , a_2 , a_3 and a_4 can be determined by the least-squares technique.

A more complex model is required to represent heating at the point at which the nose cap is tangent to the top frustum. Turbulent flow occurs during part of the flight, and laminar flow occurs during the remainder. It is also necessary to specify the angular location, θ , on the sphere. The following model was postulated:

$$PC_{P}t(T_{max}-70) = K_{1} + \frac{K_{2}}{\sqrt{R}}(K_{4} + \sin^{2}\theta)(K_{5}-T_{max}) + \frac{K_{3}}{R^{0.2}}(K_{4} + \sin^{2}\theta)(K_{5}-T_{max}) - K_{6}\epsilon(T_{max} + 460)^{4}$$

The additional terms in this equation have the following physical significance:

$$\frac{K_2}{\sqrt{R}} (K_4 + \sin^2 \theta) (K_5 - T_{max}) = \text{convective heat input during} \\ \text{laminar flow}$$

$$\frac{K_3}{R^{0.2}} (K_4 + \sin^2\theta) (K_5 - T_{max}) = \text{convective heat input during}$$

turbulent flow

in which $(K_4 + \sin^2 \theta)$ accounts for pressure variation with angular position on the nose cap. When material properties are dropped and the multiplications are performed the quantities corresponding to the variables in the linear model are as follows:

y = t (T_{max}-70)

$$x_1$$
 = 1
 x_2 = $\frac{1}{\sqrt{R}}$

J_5

$$x_{3} = \frac{T_{\max}}{\sqrt{R}}$$

$$x_{4} = (T_{\max} + 460)^{4}$$

$$x_{5} = \frac{\sin^{2} \theta}{\sqrt{R}}$$

$$x_{6} = \frac{T_{\max} \sin^{2} \theta}{\sqrt{R}}$$

$$x_{7} = \frac{1}{R^{0.2}}$$

$$x_{8} = \frac{T_{\max}}{R^{0.2}}$$

$$x_{9} = \frac{\sin^{2} \theta}{R^{0.2}}$$

$$x_{10} = \frac{T_{\max} \sin^{2} \theta}{R^{0.2}}$$

Note that y and x_1 , x_2 , x_3 , and x_4 are identical for both the stagnation point and tangency point models.

Coefficients were determined for each of the five materials at both the stagnation point and the tangency point. A summary of pertinent information about the curve fit is presented in Table J1.

The coefficients stored in Subroutine THERML were determined for a nominal two-stage Saturn V ascent trajectory to a 100 nautical mile orbit. If the subroutine is to be used for trajectories which differ greatly from this trajectory it would be adviseable to determine a new set of coefficients based on thermal data for the new trajectory. The linear models used in Subroutine THERML will probably be valid for a wide range of trajectories. TABLE JI

THERMAL CURVE-FIT INFORMATION

LocationMaterialTemperature, ^o FSkin ThicknLocationMaterialTemperature, ^o FSkin ThicknStagnation PointAluminum3669870.0500Magnesium38810000.060000Stagnation PointAluminum57912340.0400Titanium57912340.02500Stainless Steel74613610.02500Lockalloy36911750.03500Tangency PointAluminum40410910.0250Magnesium39611320.02011Titanium47513650.01500Stainless Steel64711470.01250				Range of]	Data		No No	Range o Errors Skin Th	ii ni ni ni ni ni ni ni ni ni ni ni ni n
· Low High Low H Stagnation Point Aluminum 366 987 0.050 0 Magnesium 388 1000 0.060 0 0 0 0 Magnesium 388 1000 0.050 0	Location	Material	Temper	ature, ^o F	Skin Thie	ckness, in	Data	Pero	cent cost
Stagnation Point Aluminum 366 987 0.050 0 Magnesium 388 1000 0.060 0	•		Low	High	Low	High	Points	Negative	Positive
Magnesium 388 1000 0.060 0 Titanium 579 1234 0.040 0 Stainless Steel 746 1361 0.025 0 Stainless Steel 746 1361 0.025 0 Lockalloy 369 1175 0.035 0 Tangency Point Aluminum 404 1091 0.025 0 Magnesium 396 1132 0.025 0 0 Tangency Point Aluminum 404 1091 0.025 0 Stainless Steel 376 1132 0.025 0 0 Stainless Steel 647 1147 0.0125 0 0	Stagnation Point	Aluminum	366	987	0.050	0.400	28	-0.66	0.50
Titanium 579 1234 0.040 0 Stainless Steel 746 1361 0.025 0 Stainless Steel 746 1361 0.025 0 Lockalloy 369 1175 0.035 0 Tangency Point Aluminum 404 1091 0.025 0 Magnesium 396 1132 0.020 0 Tangency Point Aluminum 475 1365 0.015 0 Stainless Steel 647 1147 0.0125 0		Magnesium	388	1000	0.060	0.500	28	-0.93	0.42
Stainless Steel 746 1361 0.025 0 Lockalloy 369 1175 0.035 0 Tangency Point Aluminum 404 1091 0.025 0 Yangency Point Aluminum 404 1091 0.025 0 Tangency Point Aluminum 404 1091 0.025 0 Tangency Point Aluminum 404 1091 0.025 0 Tangency Point Aluminum 404 1091 0.025 0 Stainless Steel 647 1147 0.0125 0		Titanium	579	1234	0.040	0.250	21	-0.39	0.30
Lockalloy 369 1175 0.035 0 Tangency Point Aluminum 404 1091 0.025 0 Yangency Point Aluminum 404 1091 0.025 0 Tangency Point Aluminum 404 1091 0.025 0 Tangency Point Aluminum 404 1132 0.020 0 Stainless Steel 647 1147 0.0125 0		Stainless Steel	746	1361	0.025	0.080	23	-0.91	1.26
Tangency Point Aluminum 404 1091 0.025 0 · Magnesium 396 1132 0.020 0 · Titanium 475 1365 0.015 0 Stainless Steel 647 1147 0.0125 0		Lockalloy	369	1175	0.035	0.300	30	-1.50	0.7S
Tangency Point Aluminum 404 1091 0.025 0 · Magnesium 396 1132 0.020 0 Titanium 475 1365 0.015 0 Stainless Steel 647 1147 0.0125 0									
 Magnesium 396 1132 0.020 (Titanium 475 1365 0.015 (Stainless Steel 647 1147 0.0125 (Tangency Point	Aluminum	4 04	1091	0.025	0.200	124	-3.44	3.84
Titanium 475 1365 0.015 0 Stainless Steel 647 1147 0.0125 0		• Magnesium	396	1132	0.020	0.300	149	- 7.00	4.81
Stainless Steel 647 1147 0.0125 0		Titanium	475	1365	0.015	0.200	125	-3.49	3.79
		Stainless Steel	647	1147	0.0125	0.060	72	-4.55	7.54
Lockalloy 395 1234 0.025 (Lockalloy	395	1234	0.025	0.150	105	-6.03	02.7

NOTES:

Nose cap radius ranges from 13 to 52 inches for both locations and all materials.

Angular location of the tangeney point (half angle of the top frustum) ranges from 0 to 45 degrees for all materials for the tangeney point data.

LMSC/HREC A712573

APPENDIX K

GENERAL INSTABILITY ANALYSIS OF HONEYCOMB SANDWICH CYLINDERS

by

B. O. Almroth, member Solid Mechanics Laboratory LMSC Research Laboratories

GENERAL INSTABILITY ANALYSIS OF HONEYCOMB SANDWICH CYLINDERS

Summary

In the establishment of the general instability load for a sandwich shell, the practical method of analysis which was recommended in Ref. 1 is used. This method uses the classical buckling load as an upper bound and the minimum postbuckling load as a lower bound to the critical load of the shell. An empirical reduction factor is applied to the upper bound in such a manner that the critical load will not fall below the lower bound. For the case of pure axial compression upper as well as lower bound analyses are available in Ref. 2. The classical buckling load analysis is modified here to include the effects of lateral pressure but the reduction factor has been chosen in a more expedient manner.

Classical Buckling Load

For sandwich cylinders under pure axial compression it was found in Ref. 3 that buckling can occur either in an axisymmetrical or in a nonsymmetrical mode, the former being critical for cylinders with weaker cores. It may be shown that the critical axial load corresponding to symmetrical buckling is independent of the lateral pressure. On the other hand the nonsymmetrical buckling load is reduced in the presence of an external pressure. According to Ref. 2, for the symmetrical pattern:

$$\overline{N} = (1 + F)z + 1/(4z) - 4z^{2}[4z + (1/G)]$$

Here N is to be minimized with respect to the wavelength parameter z .

K-2

After addition of the influence of external pressure, we have for the nonsymmetrical buckling mode:

$$\overline{N} = (1 + F)(1 + \beta^2)^2 / (4\beta^2/\eta) + (\beta^2/\eta) / (1 + \beta^2)^2 + (b_2^2 + \mu c_2^2) / (4\beta^2/\overline{G}) + s_2 / (8\beta^2/\eta) - \overline{p}/\beta^2$$

where

$$s_{2} = 2[\beta^{2}b_{1}^{2} + \mu^{2}c_{2}^{2} + 2\nu\mu\beta b_{2}c_{2} + 2(1 - \nu)(b_{2} + \mu\beta c_{2})^{2} + 4[b_{2}\beta(2 - \nu + \beta^{2}) + c_{2}\mu\{1 + (2 - \nu)\beta^{2}\}]$$

$$b_{1} = -8\beta^{3}/[1/(\overline{G}\eta) + 4\beta^{2}] \qquad (1)$$

$$b_{2} = -\beta(1 + \beta^{2})\{1/(\overline{G}\eta) + (1 - \nu)\mu\beta^{2}\}/[\{1/(\overline{G}\eta) + (1 - \nu)\mu\beta^{2} + \mu\} + [1/(\overline{G}\eta) + 1 - \nu + \beta^{2}] - \mu\beta^{2}]$$

$$c_{2} = -(1 + \beta^{2})\{1/(\overline{G}\eta) + 1 - \nu]/[[1/(\overline{G}\eta) + (1 - \nu)\mu\beta^{2} + \mu] + [1/(\overline{G}\eta) + 1 - \nu + \beta^{2}] - \mu\beta^{2}]$$

The nonsymmetrical buckling load is found through minimization of \overline{N} with respect to the wavelength parameters η and β . These parameters can only take on the specific values which correspond to an integer value for the number of waves in the circumferential and the number of halfwaves in the axial direction. However, we will only apply here the restriction that the axial halfwave length cannot be larger than the shell length. That is

$$\eta \leq \alpha/\beta^2$$

where, for equal face sheets

 $\alpha = \pi^2 \sqrt{1 - \nu^2} Rh/L^2$

K-3

In the computer program the symmetrical buckling load is first determined. The equation $\partial \overline{N}/\partial z = 0$ is solved by use of the Newton-Raphson method. As initial estimates for z are used

$$z = \begin{cases} 1/(2 - 4\overline{G}) & \text{if } \overline{G} < .5 \\ \\ 1/\sqrt{4F} & \text{if } \overline{G} \ge .5 \end{cases}$$

It appears that the Newton-Raphson method would be most efficient whenever reasonably close estimates are available. In the procedure of optimization close estimates are generally available in the form of previous solutions. In such cases the Newton-Raphson method is used directly. However, when a new case is started close initial estimates are not available and the procedure is modified as follows. The initial estimates are

$$\beta = 1$$

$$\eta = \begin{cases} 2\alpha & \text{if } \alpha \ge 1 \\ 1 & \text{if } \alpha < 1 \end{cases}$$

These estimates are improved by use of the steepest descent method before they are used in the Newton-Raphson method. If during iteration η becomes less than α/β^2 this indicates that buckling will be with one halfwave in the axial direction. Consequently we set $\eta = \alpha/\beta^2$ and minimize with respect to β only. After minimization the proper value of \overline{N} is computed and the classical buckling load is chosen as the lowest of the symmetrical and nonsymmetrical buckling loads.

Reduction Factor

Inclusion of lateral pressure in the lower bound analysis would be a major undertaking and was not considered necessary for the purpose of this study. For monocoque cylinders it was shown in Ref. 3 that the ratio between

K-4

lower and upper bound increases when an internal pressure is added. It seems reasonable to assume that this is the case also for sandwich cylinders. It is well known also that for cylinders under external pressure the agreement between theory and test is much better than it is for cylinders under axial compression. Consequently it seems safe to assume that a conservative estimate of the reduction factor will be obtained if the effect of lateral pressure is neglected. It is expected that the shells in this investigation will be primarily subjected to axial compression and thus the conservatism involved will be moderate.

When the effects of lateral pressure are neglected, the ratio $N_{min}/N_{c\ell}$ may be obtained from Ref. 2. A number of values of $N_{min}/N_{c\ell}$ are read from the curves of that analysis and stored in the computer. These values correspond to different shell parameter combinations in such a manner that intermediate results can be obtained easily through interpolation.

According to Ref. 1:

$$N_{x} = N_{c\ell} \left[\frac{N_{min}}{N_{c\ell}} + c(1 - \frac{N_{min}}{N_{c\ell}}) \right]$$

where

$$c = \frac{\varphi - 0.12}{0.88}$$

$$\varphi = \begin{cases} 1.0 & \text{for } (R/t)_{e} \leq 33 \\ 6.48/[(R/t)_{e}] & \text{for } (R/t)_{e} > 33 \end{cases}$$
(2)

For equal face sheets

$$(R/t)_e = R/\sqrt{t^2 + 3h^2}$$

Nomenclature

R	mean radius of cylinder
Е	Young's modulus of face sheets
υ	Poisson's ratio of face sheets
t	thickness of face sheets
h	distance between midplanes of face sheets
Gl	shear modulus of core in axial direction
G ₂	shear modulus of core in circumferential direction
l, l	axial and circumferential half-wave lengths
p	external pressure
N	axial compressive load per unit width
N	$RN(1 - v^2)^{1/2}/(2Eht)$
$\overline{\mathbf{p}}$	$R^2 p(1 - v^2)^{1/2} / (Eht)$
F	$(t/h)^2/3$
G	$1/2(E/G_1)(t/R)(1 - t/h)(1 - v^2)^{-1/2}$
μ	G ¹ /G ²
α	$\pi^2 (1 - v^2)^{1/2} (Rh/L^2)$
z	β ² /η
8	
η	$\pi^2 (1 - v^2)^{1/2} (Rh/l_v^2)$
N _{min} /N _{cl}	ratio between lower and upper bounds for critical load
с	see Eq. 2
φ	see Eq. 2
с ^{5, в} 5 ^{р^{1, р}5,}	see Eq. l
(R/t) _e	$R/\sqrt{t^2 + 3h^2}$

Subroutine Symbols

CRG1	critical buckling line load (pounds/in)
E	Young's modulus of facing sheets
Gl	Effective shear modulus of core in axial direction
G2	Effective shear modulus of core in circumferential direction
HT	distance between midplanes of sandwich facing sheets
К	optional control; used to speed up calculations for classical buckling load if desired
Ρ	collapse pressure (psi); burst pressure is entered as negative quantity
RD	cylinder mean radius
T1, T2	thicknesses of face sheets
XL	cylinder length
XNU	Poisson's ratio of facings material
References

- A. B. Burns and B. O. Almroth, "Structural Optimization of Axially Compressed, Ring-Stringer Stiffened Cylinders, Journal of Spacecraft and Rockets, Vol. 2, No. 6, 1965
- 2. Lockheed Missiles & Space Co., "Buckling of Axially Compressed Sandwich Cylinders," B. O. Almroth, LMSC Rept. 6-62-64-9, July 1964
- B. O. Almroth and D. O. Brush, "Postbuckling Behavior of Pressure or Core-Stabilized Cylinders under Axial Compression," <u>AIAA J.</u>, Vol. 1, No. 10, Oct 1963, pp 2338-2341