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Abstract

The low-thrust guidance problem has been formulated. Approximate feedback
solutions have been obtained using both minimum-time and least-squares cri-
teria. Computer programs that simulate the resulting control systems are presented.
Good performance was obtained with the minimum-time solution, and recom-
mendations are made for future work on this problem.

The nonlinear, sequential estimation problem was considered, using the esti-
mation equations obtained by Dr. R. Sridhar. A refinement of these equations
was attempted, but the results have not been encouraging so far. The computer
programs used are presented, and recommendations are also made for continued
work in this area.
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I. Introduction

In the past few years, much interest has been developed
in the use of ion propulsion for space missions. The low-
thrust ion engine will probably find its most important
application in missions to the outer planets, where the
retarding effect of the Sun’s gravity will require a large
space vehicle energy. Up to the present, all the energy
(velocity) of a spacecraft has been provided by the launch
vehicle. For high-energy missions, such as those to the
outer planets, it seems desirable to use high-impulse, low-
thrust engines to augment the energy supplied by the
boost vehicle. These low-thrust devices would operate
during the long flight time between launch and encounter,
supplying a higher specific impulse than that available
from the present chemical boosters.

If such a thrust vector were provided, it would be
desirable to use the thrust to provide guidance to the
spacecraft. The problem of guidance is to force the space-
craft to be at a certain place in space at a certain time
and perhaps with a certain velocity. This is theoretically
possible if a set of exact initial conditions and an exact
thrust program are obtained in flight. In practice, such
a scheme is clearly impossible, however, owing to initial
energy dispersion (that is, the initial velocity vector not
being obtained exactly) and also to random disturbances
in flight. The guidance problem also involves choosing a
method of guiding a vehicle that is “best” in some sense.
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A Study of Low-Thrust Guidance

Obtaining guidance as described above is new, in that
the guidance is continuous. At present, of course, guid-
ance is obtained by one or several midcourse maneuvers.
If one were to use low thrust for high-energy missions,
there would appear to be little penalty in obtaining con-
tinuous control (guidance) and its many advantages—
the main advantage being the ability to make trajectory
corrections at any time during flight.

This report represents a study of the problem discussed
above, including computer simulations. Recommenda-
tions are also made for future work.

Il. Description of the Problem

To gain insight into any problem, one usually starts by
making simplifying assumptions and then includes all
practical considerations. This method of analysis will gen-
erally be followed in this report.

The first simplifying assumption is that the vehicle has
been launched and is in heliocentric flight (i.e., Earth’s
gravity is neglected), and the second is that motion is
constrained to one plane. The first assumption is based
on the fact that the ion engine would not be turned on
for about three days after launch, and therefore the space-
craft would be essentially out of the Earth’s gravitational
field. The second assumption is based on the statement



in Ref. 1 that “performance loss incurred by the out-of-
plane dynamics . . . will not exceed 5 percent in payload.”
A third simplifying assumption will be that the nominal
thrust acceleration level over periods of time necessary
for control is a constant (i.e., assuming constant thrust
and neglecting changes in total vehicle mass).

The practical assumptions that are made concern the
low-thrust vector. It will be assumed that the ion engine
is fixed to the spacecraft. Since solar power will be neces-
sary, and this implies pointing the vehicle at the Sun, the
low-thrust vector will thus make a nominally constant
angle with the Sun-vehicle line. A value of 90 deg is con-
sidered typical for this angle (Ref. 1) and will be used
in this study (see Fig. 1). If control in two dimensions
is to be obtained, one intuitively feels that it would be
necessary to have independent control in two directions.
One practical way of obtaining such control would be,
first, to allow small attitude variations and, second, to
allow the acceleration level to change slightly. The con-
trol scheme used in this study allows only 9 discrete
states of the thrust vector, counting the nominal state
(see Fig. 2). This scheme of control has the advantage
of being both simple and highly realistic.

Because of initial energy dispersion and random effects
during flight, the state (i.e., the position and velocity) of

the vehicle will not be known exactly. Hence there is a
need for state estimation, or orbit determination, if one
is to obtain control of the vehicle. If the random disturb-
ances on the vehicle have a Gaussian distribution and if
certain conditions of system linearity are satisfied (i.e.,
if the “deterministic controller” is linear), the “separation
theorem” states that the estimation problem and the con-
trol problem can be separated in an optimal sense. Un-
fortunately, our system will not turn out to be linear, but
we will still separate the estimation and control problems
(a suboptimal solution). Hence we will assume that the
estimated state is available at all times for purposes of
control. Work on the estimation problem appears in Sec—
tion XI. ;

To solve a control problem, one mu. .
will judge each system—i.e., one must specify =
or a performance index. Before that, however, uue 1
specify exactly what it is that he wants to control. Most
often, in the control of space vehicles, one wishes to
obtain certain terminal conditions at planet encounter.
To this end, one specifies a nominal (standard) trajectory
that will be followed if the correct initial conditions and
thrust programs are used, without outside disturbances
(see Ref. 3). Actually, if at any time during flight the
vehicle were put onto the nominal trajectory at the point
in space with the velocity it would normally have at that

NOMINAL TRAJECTORY (PATH
VEHICLE WOULD FOLLOW WITH
CORRECT INJECTION CONDITIONS
AND NO DISTURBANCES)

S

Fig. 1.

Definition of the coordinate frames {x/,

VEHICLE LOCATION AT TIME ¢
(OFF THE NOMINAL TRAJECTORY)
SHOWING LOW-THRUST AND
SUN-GRAVITY VECTORS

ORIGIN AT TIME /, AT POINT
IN SPACE WHERE VEHICLE
WOULD BE IF IT FLEW THE
NOMINAL TRAJECTORY

ORIGIN FIXED AT POINT IN
SPACE WHERE ION ENGINE IS
TURNED ON (NOMINAL VALUE)

x%) and (x,, x;)
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@OE®

(D v= . Y=, =0 (NOMINAL)
Un @ u=uy+8u,y=0
® u=u,,—30,y=0

TO SUN - ———

TO SUN @ ———

TO SUN - ———

Fig. 2. The nine allowable states of the
ion-engine thrust vector

particular time, the vehicle would, of course, fly the
nominal trajectory and hence satisfy the right terminal
conditions. Therefore, one method of controlling a space-
craft would be to force it to fly on the nominal, or design,
trajectory. R. J. Parks points out (Ref. 4) that the “stand-
ard trajectory will be the result of many compromises
between conflicting requirements such as propulsion effi-
ciency (including drag losses), aerodynamic heating,
guidance accuracy (including effects of ground station
location limitations), tracking and telemetering consid-
erations. Once this standard trajectory has been selected,
it is the function of the guidance system to (1) cause the
vehicle to approach the destination in the intended
fashion . . ., and (2) to cause the vehicle to fly as closely
as is practical to the standard trajectory at all times, so as
to ensure the compromises chosen.” In this way, also, a
control system would be obtained that would be good
for many missions; i.e., for many nominal trajectories.

The criterion we will use will be that of minimum
time; that is, we will try to get the vehicle back onto
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the nominal trajectory in a minimum of time. This seems
a good criterion for this problem, in that velocity errors
will have less time to propagate. Also, the solution to
the optimum minimum-time problem involves “bang-
bang” control, or using discrete levels of control. Since
we have constrained our thrust vector control to be dis-
crete, an optimum minimum-time solution can be ob-
tained for this problem. (For such small deviations of
the thrust vector magnitude, minimizing fuel would tend
to be less important than minimizing the time off the
trajectory. However, for the purpose of choosing a nomi-
nal trajectory thrust program, a minimum-fuel problem
would probably be considered.)

So far, we have described the control we have avail-
able, the state we want to obtain, and the performance
index we wish to minimize. What remains is to translate
this into mathematical language and attempt to obtain
an exact solution to the problem.

lll. Mathematical Statement of the Problem

The coordinate systems we will be considering appear -
in Fig. 1. The coordinate frame (x,, x,) is a frame whose
origin at time ¢ is at the point in space a vehicle on the
nominal trajectory would be at time ¢, assuming flight
begins at time = 0. The angle 8 is the angle the line
connecting the origin of (x,,x;) and the Sun makes with
the x] axis of the fixed inertial reference frame (xf, x5).
Hence B is a function of time only and is determined
by the nominal trajectory desired. The equations of mo-
tion in the (x},x}) frame are as follows (note that dots
above variables represent derivatives with respect to
time):’

¥,=x=F,
—GM, (x, + D)
(. F D) + (&))"

u(xjcosy + (x} + D)siny) a
G+ DF + @

X=X =

F,
-

~

_ —GM, (x%)
(1 + D)2 A+ (x5)2)
u((x] + D)cosy — xisiny) 2 F.-
(k1 + Dy + (i) e - F
*Throughout this report, vectors are shown in lightface roman let-

ters (e.g., x), matrices in boldface roman (x), and scalars in italics
(x); the Hamiltonian is represented by &#.




Here G is the constant of gravitation, M, is the mass
of the Sun, u and y have the same meaning as in Fig. 2,
and D is defined in Fig. 1.

Using vector notation,

X} F, x}
. F X,
Elag | ey, =3¢ )
% F, x;
x4 F, x5
Then
X' =F(u,y,X) 3)

where the independent variables of F have been indi-
cated. Then the problem is as follows: given Eq. (3) and
deviations from the nominal trajectory (remembering that
(%1, %5) is fixed to the nominal trajectory) at time r, that is,

IV. First Solution of the Minimum-Time Problem

Xy

(r) ‘
X (1) | a
(

T

=X (7)

~—

X3 \7T

%4 (1)

(where x,(r) and x,(r) are defined as velocities in the
x, and x, directions, respectively), find the controls

u(t),y (t)

such that at some time T > 7
X(T)=

and the performance index

T
/dt

is minimized (that is, T is minimized).

Referring to Fig. 3, consider the following coordinate transformation:

x) = x{cos B + x;sin 8 (8)

xy = —xisinB + xicos B

X3

SUN

:
} =

B(t)

THE (x,', x3 ) COORDINATE

FRAME IS ROTATED AN
AMOUNT B(7) AT TIME /7

Fig. 3. Definition of the (x}’, x%’) coordinote frame
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Then
, o - . A
%)’ = %l cos B + x5isin B — xiBsin B + xiBcos f =«

¥’ = = ¥ cos B + ¥;sin B — 2€;B sin B — xiB%cos B — xfsin B + 248 cos B — x,B% sin B + x4 cosB

9)
. ) . . a
% = —xisinB + xjcos B — xifcos B — xiBsin B =’
¥ =%/ = —¥sinB + ¥ cos B — 2B cos B + %3 sin B — ;B cos B — 2B sin B — x48 cos B — x5f sin B
Let
cos B 0 sin B 0 X xy
R() A cos 8 0 sin 8 X A 1:3;’ X a x’
—sin 8 0 cos 8 0 Xy x5
0 —sin B 0 cos B xy x
—Bsinﬁ 0 Bcosﬂ 7770777777777
S(t)ﬁ —Bsin g — B2cos B —2@sin B Bcos B — B2sin B 28 cos B
B —Bcos B 0 —Bsin B 0
—BcosB + Bsin B —28cos B —BsinB — frcosp  —2Bsing
Then a shorthand notation for Eq. (9), using Eq. (3), is
X" =R({®F(u,y,X") + S X’ (10)

If at time ¢ the vehicle is off the nominal trajectory by an amount X(¢), there will be a difference between the
nominal and actual states in all reference frames. Letting the subscript n denote the nominal values of variables at
time ¢, the last statement can be written:

X7+ 8X” = R(t) F (un + 8u,va + 8y, X0 + X) + S () (X} + X) (11)

where 8X”, su, and 8y are deviations from their nominal values at time ¢. It should be pointed out that Eq. (11) is
an exact equation. Now the quantities 8u, 8y, and X are small in the sense that a first-order expansion of F about the
nominal values will be a uniformly “good” approximation for all values of time. This statement is certainly true for
the control deviations 8u and 8y (this has been mentioned before), and the spacecraft state deviations from nominal
are not expected to go outside the region where linearity holds for any reasonable errors in initial conditions or dis-
turbances en route. Hence, through this expansion, Eq. (11) becomes

X;’ +8X” =R (2) (F (U, yur X) + Fxe (tn, v, X0) X + Fo (tn, va, X3) 8u + Fy (U, yn, X3,) 8y + (higher-order terms))
+ S(t) (X, + X) (12)

JPL TECHNICAL REPORT 32-1055 5



where the following definitions apply:

moF, oF, oF, oF, 7]
ox, ol ox’ o,
oOF,  oF,  oF,  oF, o 1 0o 0
F ox x4 oxl oxh 1A 0 B 0
Y |eF,  9F,  oF.  oF, 0 0 0 1
ox] ox% ox; o, C 0 D 0 |
oF, oF, oF, oF,
ox, o ox) A
- ox ’ g xiJ Un; Yo, Xa
where
A= —GM, + u, (x}, + D) + 3GM, (x1, + D)*
(s + D)* 4 (x5a))** ~ ((x%n + D)2 + (x5,)%)°
B— U {(250)? — (X1 + D) — (x4,)?) 3GM, (x1, + D) x5,
((in + D)* + (x4)?)* ((n + D)* + (x50)?)**
C— 3GM, %, (x5, + D) u, (2 (x5, + D) + (x},)?)
((xin + D) + (x52))2  ((x1n + D)* + (xh,)2)*2
D= GMa (S(x:’m)2 - (x’m + D).’ - (x:’m)z) . Uy x:'m (x’m + D)
((xin + D)* + (x50)*)* ((*1n + D)* + (x4a)2)"*
o, _ - -
" 0 0
iF, s -
poal (@ T DY + ()7 —sinf ()
©| R B B
™~ 0 0
oF, (xin + D) 80
P 7 z FEEVIYp™ cos
L Xy L@ D] L l
~oF, ) - 1 -
Y 0 0
oF . —u, (21, + D)
s | o (¥on + D) + (2)?) 7 i cosB ()
FY = = =
8F.’t
dy 0 0
oF, ~ Uy Xin )
a— ’ 5 ’ e\1/a —u, sin ,8 t
- ,u,n Yns Xn (t) _((xl" + D) + (x-“') ) ' - - -
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Since y can have only three values (0, + 8y, —8y), and similarly for u (u,, 4, + 8u,u, — 8u), let us define

A A
Uy 8y = —u, du =u, (13)

Hence, positive and negative u, correspond to rotating the low-thrust vector away from and toward the Sun respec-
tively. Also, positive and negative u, correspond to increasing and decreasing thrust vector length respectively. If we
neglect higher-order terms and use Eq. (10), Eq. (12) becomes

8X” (£) =R (t) Fx+ (ttn, yn, X3) X (£) + R (&) Fy, (t, v, X3) 81 (£) + R () Fy (b, yn, X3) 8y (£} + S () X () (14)

Now, using the definitions for Fx., R(t), F,, Fy, and S(t), and Eq. (13), we have

0 cos B (¢t) 0 sin 3 (¢) 0
. A + Csi t 0 B + Dsi 0 0
5X” (¢) = cos B (t) sin B (t) ‘ cos B () sin B (¢) X() + (0
R 0 —sin B8 0 cos B 0
—Asini,l}i(})i:i-iéédsfﬁi(i)ﬁf 0 " =Bsing{#)+Dvospgl{t)-----0--1 . |11 |
0 —Bsin B 0 Bcos B 0
1 —fBsin B — B2cospB —2Bsin B B cos B — B2sin B 28 cos
+ u, (¢) . - X(t)
0 —fBcosf 0 —pBsing 0
0 —fBcos B + Bsinp —2Bcos B —Bsin B — B2 cos B —2@sin B

(15)

To gain more insight into the problem, Eq. (15) will be simplified by neglecting small terms. The quantities A, B,
C, and D are proportional to changes in the Sun’s gravity and the angle 8 over a region in space (the region includes
the deviations of the spacecraft from the nominal trajectory). These quantities are of the order of 10-'2, in mks units,
and hence can be neglected. The same is true for the quantities g and g2, which are of the order of 10-** or less for the
mission under consideration (i.e., a Mars mission—these quantities would be even smaller for missions to the outer
planets). Finally, it will be assumed that the quantities Bx, and Sx, are negligible with respect to u; and 1. Actually,
typical values would be 10-¢ for Bx, and Bx,, and 10+ for u, and u.. Hence, although this is a good approximation, it
is the one that would give by far the largest error. Note that

X" =X +8X” = Q(#) (X4 + X)

where

cos B 0 sin 8 0
—Bsin B cos B Bcos B sin 8

Q (t) B —sin ﬁ 0 cos B 0
—BcosfB —sin B —Bsin B cos

JPL TECHNICAL REPORT 32-1055 7



Since

X, =Q@®X,

we find
83X () = Q) X (¢)

Clearly

0 0
3X” (t) =

o © © ©
o ©C o -
S © o o
O = O O

0 0

If we use this and neglect the smaller terms mentioned, Eq. (15) becomes

8X” (t) = 8X” (t) +

S O o O
[ R N
[ = N = =
S = O O
(= = =

u, (t) +

—Bsing cos 8 Bcos B sin

~Bcos B —sin g —Bsing cos 8

0
X (?)
0
0
0
o |5 (16)
1

where $X” (t) are deviations from nominal values of X” at time ¢. It should be noted that our problem of reducing
X (t) to zero is equivalent to reducing §X"” (¢) to zero as shown by Egs. (15) and (16).

Examining Eq. (16), it becomes evident that our four-dimensional minimum-time problem has been reduced to two
two-dimensional problems, since the 8%’ and 8%}’ equations are decoupled from the 84}’ and 8%’ equations. Redefining

$X” and 8X”,

s/ [y [8% i
AR RSN
Sxy’ - Y ’ 8xy - g:;
8xy Ys &z Us
Equation (16) becomes
nh=Y i/:«x =Y,
Y, = Uy Y = U

Using the results of Appendix A, we find the multiplier equations for y, and y, to be

A=0
xzz—l\l

7)
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Solving these, we have

A=A (0)

A= —X(0)t + A, (0)

Since u* = —sgn (), we see that only one switching is possible.

Now, solving the y,,y. equations for constant u,, we have

0o () = S 4o ()¢ + 1 (0)

2

Y. (t) = u,t + y.(0)

Eliminating ¢ from these equations, we find that

2u, (y, —

¥1(0)) = (y2 — ¥ (0))* + 29 (0) (> — y-(0)) (18)

"~ " 'Equation (18) shows that the vehicle will follow a parabolic trajectory in the y,,y. plane (see Fig. 4) for constant u,.
Coupling this fact with the fact that only one switching is optimal, the “switching boundary” is-obtained, as shown

in Fig. 4. A similar analysis is valid for y; and y,, and the switching boundary is the same as for y, and y.. The
expected trajectory for a set of initial deviations from the nominal trajectory is also shown in Fig. 4.

42 (110), y200))

VEHICLE IN (y,, y2) PLANE FOR

OPTIMAL PATH FOLLOWED BY A
[ INITIAL DEVIATIONS {, (0), y2(0)
L

~<
~

A

U|=—8U N

SWITCH 7 //r

u)=+3u \\
SWITCHING BOUNDARY

L] ,.2
()’I‘ 30,| 72

\

Fig. 4. Definition of the “'switching boundary”
in the ly,, y.) plane

V. Experimental Results of the First Solution

A computer program was written (see Appendix B) to
simulate the flight of a space vehicle on a typical nominal
trajectory. An initial velocity error of about 12 m/sec,
considered to be typical (Ref. 1), was used. An initial

JPL TECHNICAL REPORT 32-1055

position error that would result from 3 days of such an
initial velocity error was used (assuming that the engine
was turned on 3 days after launch). A nominal value of
102 m/sec? was used for the low-thrust acceleration, with
the vehicle weight taken at 4,535 kg. Hence u, and u,
were taken as 10% of u,, or 10* m/sec?.

It was found that the error incurred by neglecting By
and Bx, was large enough to require that the minimum-
time solution be applied twice; that is, the large initial
errors were reduced, and then the resulting errors were
reduced. The trajectories obtained are shown in Figs. 5-10.
A deviation from zero indicates a deviation from the
nominal state.

Probably the most significant disturbance on a practical
system will be attitude-control limit cycle operation caus-
ing attitude variation of the thrust vector. A sinusoidal
disturbance with an amplitude of 1 deg (peak-to-peak)
and a frequency of 1 cycle per 20 min was put into the
control system. The resulting trajectories are shown in
Figs. 11-16, and the performance is seen to be very good.
More work is certainly needed in investigating the effects
of other disturbances on this control system and the ones
following.
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Fig. 5. The x, position deviation vs time for the first solution
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Fig. 6. The x, velocity deviation vs time for the first solution
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Fig. 8. The x; velocity deviation vs time for the first solution

JPL TECHNICAL REPORT 32-1055

13




ACCELERATION, m/sec?

14

R R

& - .
i ) j
; . ; Ch e o
H H
i : i
1 - | S %
: ;
} . 2 b H . '
j ¢ :
; ; H :
4 : H
! i
i P

TIME, sec

Fig. 9. The control variable u, vs time for the first solution

JPL TECHNICAL REPORT 32-1055




w

o . iy W e s
15 -
~N
(%]
b
N
€
o
©
= i
<
@
w
4
w
o
o
<
TIME, sec
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Fig. 12. The x, velocity deviation vs time for the first solution, with attitude variations
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Fig. 13. The x; position deviation vs time for the first solution, with attitude variations
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VI. Second Solution of the Minimum-Time Problem

With the aid of a digital computer, it may be possible to solve the four-dimensional minimum-time problem exactly
—a difficult task in general. It is anticipated that by doing this, one may be able to reduce the number of switchings
necessary and, consequently, the number of commands to be executed by the space vehicle.

First, we shall linearize Eqs. (1) as follows:

X (8) = X, (8) + X () = F (tn + 81, yn + 8y, Xo + X) = F (t4n, yn, X4) + Fu 8, + Fy 8y + Fx- X + (higher-order terms)
(19)

As before, we neglect higher-order terms, and the terms A, B, C, and D in Fy.. Also, we use the definitions of u, and u.
to obtain

‘ 0 1 0 0 0 0
\
1 ) 0 0 0 0 cos 83 (t) —sin B (t)
| —
X(t) = 0 0 0 ) X + 0 u, (t) + 0 u, (t) (20)
0 0 0 0 sin 3 (¢) cos B (t)

As was pointed out previously, this linearization is an excellent approximation to the true differential equations.
Using' Appendix A, we can write the multiplier equations

A 0 1 0 0T A
A|_ 0O 0 0 0 As
As 0 0 0 1 Ay
A 0 0 0 0 X
Solving this system, we obtain
A=A, (0)

A= 2 (0)2 + 1. (0)
Ay = Ay (O)

A= —Aa (0) £+ A, (0)

Now the optimal controls are

u' (t) = —sgn((—A (0)t + X, (0)) cos B(t) + (— A4 (0) ¢ + A, (0)) sin B (¢))

21
ul (t) = —sgn((—2 (0)¢ + 1. (0)) (—sin B (1)) + (— A4 (0) 1 + 1, (0)) cos B (1)) @
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Some possible solutions of Eqs. (21) appear in Fig. 17. (Note that 8 is not expected to exceed 90 deg before nominal
trajectory acquisition.) It seems intuitively reasonable, then, that each control would have a maximum of two switchings

for B(T) less than 90 deg.

Now, given the initial conditions on Eq. (20), we can write the explicit solution for X (T), where T is nominal * tra-
jectory acquisition time. That is,

0 0
X(T)zm(T,O)X(ono(T,t) °Sf(t) ul(t)dt+/oT0(T,t) _Smg(t) us (£) dt (22)
sin 8 (t) cos B (t)

where ® (., t,) is the fundamental matrix that satisfies the matrix differential equation

® (2 t) = D (t.,11) (23)

(=2 -~
S O O =
S o o O
QO = O O
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with

1 0 0 0
° 0 1 0 0
t,t) =
(b 8) 0 0 1 0
0 0 0 1
The solution of Eq. (23) is
1 (¢.—1t) O 0
0 1 0 0
o (t2) tl) = (24)
0 0 ]. (tz - tl)
0 0 0 1

Since the absolute values of u, and u, are constant, only the sign of these quantities is needed inside the integrals
of Eq. (22). If we designate u, (0) and u, (0) as the initial values of u, and u., t, and ¢, as the switching times of u,,
and ¢, and ¢, as the switching times of u. (recall that a maximum of two switchings is possible for each control vari-
able), then Eq. (22) becomes

xm:o(T,O)X(O)+u,(0)(/0"—/t1’2+/:)+uz(0)(ﬁh—ﬂ‘+f) (25)

The integrals of Eq. (25) can be explicitly evaluated if we assume that 8 varies at a constant rate. This is an excel-
lent approximation for the trajectories of interest. Hence, if we assume that

B(t) =wt w = constant = g

and if we define

+ —coswT — —;

2t . 2 2t, | 2 cos wit, TsinwT 1 1
I, = u, (0){ — sinwt, + — coswt, — —=sinwt, — - + —
w w? w w? w w w?

—w© - 2t, cos wt, + 2 sin wt, n 2t, cos wt, B 2 sin ‘wt,, _ T cos wT + sin t:;T
w w? w w* w w?

2 2 1 2 2 1 1
I, = u,(0)({ — sinwt, — —sinwt, + —sinwT ) — u,(0){ — — coswt; + — cos wt, — — cos wT +—
w w w w w w w

—2t, cos wt 2 sin wt 2t, ¢ ot 2sin wt, T T in wT
L= u, (0)( . L 2sinewt,  coswh, 2sinwt,  Tcoswl , sinw )
w w- 1w w:* w w?
2. 2 2t 2coswt, Tsinwl 1 1
+ u, (0) (——' sinwt, + —; sinwt, — —* sinwt, — COS,,"’ Lo Smwl —coswT — _>
w w? w w? w w? w*
—2coswt 2 1 1 9 9 1
I, = u,(0) (___ -~ + — cos wt, — — cos wT + —> + u, (0) (— sinwt, — — sinwt, + — sin wT)
w w w w w w w
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then Eq. (25) becomes

£ (T) = %, (0) + Txo (0) — I + TL = G, (£, tu, tay £2, T)
Xo (T) = X3 (0) + 12 é G2 (th t2, t3, t4’ T)

. (26)
%, (T) = 25 (0) + Tx, (0) — I + TL, = Gs (b, bo, s, 80, T)
Xy (T) = X3 (0) + I,; ; G.; (tl, t27 t37 t47 T)

Equations (26) are four equations in five unknowns. Since it is desired that X(T) = 0, the problem is now to find the
minimum value of T for which Egs. (26) can be satisfied. In order to solve Eqgs. (26), we first define

t G,
e2 Bl e G
t, G:"
t, G,
Then Eqs. (36) become
X(T)=G(t,T) )

One method of solving Eq. (27) is by 2 Newton-Raphson iterative technique. If we guess at the vector t for a fixed
value of T, X (T) will in general not be zero, as desired, but some value that we shall designate X. (T). We wish to find
a new vector t + At such that

G+ at,T)=0 (28)
Making a first-order expansion of Eq. (28), we have

Git,T)+G (t,T)at=0

where
G o]
oty oty
G = (29)
G, ) G,
t, of,
EaRa
and

G(t, T) = X (T)
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Then, if G, (t, T) is nonsingular,
at= —G(t, T)X:A(T) (30)

We use Eq. (30) in an iterative fashion to find, for each value of T, the values of ¢,, t., t;, and ¢, that make X(T) = 0.

Computer analysis indicates that the minimum value of T is achieved when T = t, or T = ¢,. In most cases it is easy
to guess which solution will prevail. Hence, one control will have one switching, and the other will have two switch-
ings. It is usually an easy matter to determine u, (0) and u, (0), and hence Eqs. (26) can be solved for the minimum value
of T and for the switching times of the control variables.

VII. Experimental Results of the Second Solution

The flight situation that was used to test the first solution was used on the “exact” solution. It was found that neglect-
ing second-order effects in the control variables caused large errors in this solution. Since our motivation here is to

obtain an exact solution, we shall account for the second-order effects by modifying Eq. (25). For the case when T = ¢,,
we have

X (T) = ® (£,0) X (0) +u1(0)(FAc1f'~FAle:S—FAczf: + FAC?2 T>+u4_,(0)<FACSﬁts—FAC4/f)

t St 3
where FAC 1, FAC2, FAC3, and FAC 4 are the factors that account for the second-order effects. As a result of inte-

grating these equations, one obtains answers very similar to Eqs. (26). The interested reader may find these integrals
in the computer program in Appendix B.

Excellent performance was obtained using this modified solution, which includes second-order effects. The results
appear in Figs. 18-23, and comparison with Figs.5-10 shows that the “exact” solution (1) requires about 24 hours less
time to acquire the nominal trajectory, and (2) requires 3 fewer commands (switchings) to be sent to the vehicle. It
should also be noted that with this solution the relative sizes of u,, u., and 8 (=) are of no consequence. (This state-
ment was checked using u = 0.25 X 10* m/sec® and u, = u, = 0.25 X 10-* m/sec®, and the results appears in Figs.

24-29.) The results using attitude variations appear in Figs. 30-35, and the same advantages over the first solution are
obtained.
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Fig. 18. The x, position deviation vs time for the second solution
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Fig. 19. The x, velocity deviation vs time for the second solution
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Fig. 20. The x; position deviation vs time for the second solution
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Fig. 21. The x, velocity deviation vs time for the second solution
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Fig. 22. The control variable u, vs time for the second solution
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Fig. 23. The control variable u, vs time for the second solution
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Fig. 24. The x, position deviation vs time for the second solution, using smaller v
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Fig. 25. The x, velocity deviation vs time for the second solution, using smaller v
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Fig. 26. The x, position deviation vs time for the second solution, using smaller v
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Fig. 27. The x, velocity deviation vs tinte for the second solution, using smaller v
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Fig. 28. The control variable u, vs time for the second solution, using smaller v
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Fig. 29. The control variable u. vs time for the second solution, using smaller v
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Fig. 30. The x, position deviation vs time for the second solution, with attitude variations
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The x, velocity deviation vs time for the second solution, with attitude variations
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Fig. 32. The x; position deviation vs time for the second solution, with attitude variations
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Fig. 33. The x, velocity deviation vs time for the second solution, with attitude variations
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Fig. 34. The control variable u, vs time for the second solution, with attitude variations
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Fig. 35. The control variable u. vs time for the second solution, with attitude variations
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VHLI. Linear Regulator Formulation

It would be of interest to investigate other control configurations and performance indices. One further assumption
we could make on available control would be to assume

Ju,| =k, |u}=k. (31)

where k;, k. are constants. This, of course, would be much more difficult to implement than the discrete control con-
figuration (Fig. 2). A performance index that is often considered is that of least squares:

ﬁ "(XQM %) + (R () ) dt (32)

where Q () and R (¢) are weighting matrices, and { *) is the inner product operator.

One control system that is suboptimal, but often yields good results, is the saturating unbounded solution (i.e., the
Letov solution). That is, one solves for the optimum control functions, neglecting (31), and assumes that u, and u,
can take on any values. Then condition (31) is imposed on the optimurn solution. This will become clearer in the follow-
ing discussion. First we shall solve the unbounded control problem.

The dynamical eﬁiﬁaiibhé to be considered are - -

X=AX+b()u (33)
where
0 1 0 0 0 0 x, %
0 0 0 0 cos B (t —sin B (t) ) X, . Xo
Ao b(t) = B(t) B( = u X= x="
0 0 0 1 0 0 U, X3 x5
0 0 0 0 sin 8 (t) cos B (t) x4 Xy
The Hamiltonian (Ref. 2) for this problem is

K (£, X,u,2) =X, Q) X) + (,R(¥) u) + (A, AX) + (A, b (t) v) (34)

According to optimal control theory, the optimum u(=u*) is that control which minimizes the Hamiltonian at each
instant of time. Hence

w = — %R-‘ b (£) A (35)

Substituting this into Eq. (34),
1
G (¢, X* A) = K (t, X*,u, A) o= & QXY — 7 bRbTA) + (x, AX")

where X* is the optimum trajectory and &¢* is the extremal Hamiltonian.
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The equations of motion (Ref. 2) are
. . 1
X* = g5, = AX* — 3 bR bT A (36a)
A= —g= —ATx - 2QX* (36b)

These equations can be solved exactly, and it is known that A () is of the form

At) =P(t)X* (37)
Then
A = PX* + PX*
Using Eqgs. (36) and (37), this becomes
) = (P + PA — %PbR*‘ b" P) X+ (38)
Also, from Eq. (36b) and Eq. (37),
A(t) = (—ATP — 2Q) X* (39)
Comparing Eqgs. (38) and (39), we find that
P(t) = —(PA + ATP)+%PbR4bTP—2Q (40)
Also, using Eq. (37) and Eq. (35),
ut = — én—l b PX* (41)

If a problem is time-independent (i.e., if the dynamical equations and the performance index are not dependent on

explicit time), then we may solve Eq. (40) with P = 0 (the stationary solution). This is not the case here, since the b
matrix is time-dependent. But note that

0 0
bhT = cos B —sin 8 I:O cos B 0 sin 8 :|

(42)
0 0 0 —sing 0 cos 3

sin f3 cos 3

©c o o O
S O = O
[N I I -
- o O O

which is indeed independent of time. So if R and Q are time-independent, we will be able to solve Eq. (40) as a set
of algebraic equations (i.e., set P = 0). Let
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where C; and C, are scalars and I is the identity matrix. Then

1
R —C_ll

Now we partition the matrices A and bb™:

(43)

A, 0 0 1 0 0 B 0 0 0
0 A, 0 0 0 0 0 B 0

We can use the symmetry of these matrices to see that the P matrix will be of the form
P, 0
P= ‘
0 P, |

Using Egs. (43), (44), and (45) in Eq. (40), and letting P = 0, we have

where P, is 2 X 2.

P, O7[A, O AT 0[P, © L TP. 0B O7[P,
+ T aC
0 P |lo A o Arjlo AT 1o pllo Bl O

When Eq. (48) is simplified, we find that P, must satisfy

1
P.A, + ATP, —2—(1—P1BP1 +2C.I=0

The solution to Eq. (47) is easily obtained as

2
T (2CiCy + (G, Gy 2(C, C.)%
p=|C

2(C,C.P%  2(2C,(C, Co)% + C, Cu

Using Eq. (48) in Eq. (41), we finally obtain

ut = ~3C. (cos B(t) (2(C, C1)%x, +2(2C, (C1Cy)% + C, C,)xs)
+ sin B (£) (2(Cy Ca)%x + 2(2C, (C, Co)% + C, CoYen,))
u = — oé (—sin B (£) (2 (C: Co)tt 1, + 2 (2C, (C, Co)% + C, Co)e x,)
Uy

+ cos B (t) (2(C,C.)%xs + 2(2C, (C1 Co)% + C, C.)%xy))
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(45)

0

0 0
+2C, 1=
P, 0 0

(46)

(47)

(48)

(49)
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Recall that this is the solution for unbounded u, and u.. The suboptimal (Letov) solution we will use is

lut| < ki

uy
u, =
k. sgn (u3) |ut|=k,

(50
[uy| < k.

u
u, = .
k.sgn(ul)|ut|=k,

IX. Results of Saturating Linear Regulator

Initial computer runs using the control law (Eq. 50)
indicate that there may be some problem with converg-
ence of the state vector to zero (i.e., reducing deviations
from nominal position and velocity to zero). It is possible
that an investigation of the stability of this closed-loop
system will yield enough insight into the problem to
enable one to choose optimum values for C, and C,, and
also to find other compensatory measures that may exist.
The methods of determining stability that should be used
are Liapunov’s direct method, describing function tech-
niques, and the Popov criterion. These methods will have
to be extended to include systems with multiple inputs,
which are of interest in our problem. The computer pro-
gram used to simulate the linear regulator solution ap-
pears in Appendix B.

X. Control Problem Summary and Future Work

We saw that the minimum time problem was solved
to an excellent first approximation (i.e., the second solu-
tion). It would not be hard from that point to implement
a program that would solve the nonlinear two-point
boundary value problem for the exact switching times.
It also seems it would be quite simple to extend this
solution to three dimensions, where a new control (u,)
would be needed (this would correspond to roll axis devi-
ations of the thrust vector). It has been pointed out that
the effects of noise (e.g., solar pressure and thrust vector
magnitude variations) have not been fully considered and
that more work is needed in this area. Thrust vector orien-
tation variations due to attitude-control deadband have

XI. The Sequential Estimation Problem

been considered, but more sophisticated models for this
effect should be used. Variations in the thrust vector mag-
nitude that are due to variable vehicle mass and distance
from the Sun (which affects power available for a solar-
powered spacecraft) should also be considered.

The linear regulator feedback coefficients were ob-
tained, and the Letov solution was tried. It is evident
that more analysis of the stability and performance of
this configuration is needed. This would, in part, involve
extending the existing techniques, as has already been
pointed out.

In each solution to the control problem, the knowledge
of all the state variables (position and velocity vectors)
is assumed. Hence the problem of state estimation, i.e.,
orbit determination, is of fundamental importance to
these solutions. Accurate orbit determinations are, of
course, already being made. At present, however, non-
sequential estimation is being used. That is, each time
an orbit determination is made, all the observed data
up to that time are considered. This method has been
satisfactory, although it is very “slow.” To achieve con-
tinuous control, as we have formulated the problem, the
estimator must “keep up” with the spacecraft. For these
reasons it becomes clear that sequential estimation is
mandatory. The sequential estimation problem was con-
sidered (see Section XI), but more work is obviously
needed. Finally, owing to the problem of communication
time lag between the spacecraft and the Earth, an orbit
prediction will become necessary. Work in this area
should also be considered.

The problem of state estimation, or orbit determination, as it is better known, is simply stated as follows: given
observations (e.g., range and range-rate) on the spacecraft, determine the best guess (estimate) of the position and
velocity (i.e., the state) of the spacecraft in space. A sequential estimator considers only the current observation and
makes use of the present “best estimate”; hence a sequence of state estimates is generated. Estimator equations exist

via Kalman (linear), and Sridhar and Detchmendy (nonlinear). The following discussion considers Sridhar’s equations
with both linear and nonlinear dynamics and observations.
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The detailed derivation of the following equations is given in Reference 2. First we modify Eq. (3) as follows:

X' =F(u,y,X)+ k(X)) (51)

where k (¢, X’) is an n X p matrix, and u’ is a p-vector. The term k (¢, X’) u’ gives Eq. (3) a new degree of freedom to
account for unknown dynamics. Our observations are

y () = h (t,X") + (observation error) (52)

where y and h are m-vectors (i.e., m = 2 for our problem, since we measure range and range-rate). Define the residual
€rTors

e, (t) =y —h(t,X)

e, (t) =);(— F(u,v,X)

~ ‘where X indicates the guessed state for 0<<t=T. The criterion used is that of least squares. We wish to minimize

/ " (e (1), Qe () + (e (1), We, (6)) dit (53)

where Q and W are weighting matrices. Defining X (T) = )’Z(T) as the best current estimate (at time T) and with

V(t,X) = k' (£, X) W (£, X) k (¢, X)

the minimization of (53) yields the following estimation equations:

X —Fum. L)+ 2MBATRQY —h(T.R)
%’ = Fg (u(T), 7 (T), X(T) P + PF3(u(T), v (T), R (T)) (54)
+ 2P (HQ(y — h(T. RN P + 5k (TR v (1. Rk (1.R)

where the j, ith elements of H and F3 are

H(T,X) ohi i=12 -,m i=12 - ,n
’ ox;
" )
oF;

| =(%)  imracooe s
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For our problem

h. (X') = (@) F ()% (range-rate) )

hy (X') = ((x1)* + (x3)%)% (range)
In the computer program (Appendix B), both the linear and nonlinear cases were simulated. The linear dynamics are

X(T) = Fx: (s (T), ya (T), X4 (T)) X + F, 8u + Fy 8y

where the subscript n indicates nominal values and X, as usual, is the deviation of the state from nominal. The linear
observations are

sh(X) = H* (T, X}) X

where 8h indicates the deviation of observations from those that would be obtained on the nominal trajectory.

Efforts so far have failed to produce adequate convergence of Eqs. (54) to the true state (in a simulated flight with

unknown initial conditions and simulated noise). All the possible ways of helping convergence have by no means
been exhausted, and, owing to the importance of the problem, it would be very desirable to continue work in this
area. In the effort to obtain convergence, the filter equations (Eqs. 54) were refined by including higher-order terms
that were neglected in the original derivation (Ref. 2). This work appears in Appendix C.
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| Appendix A
Solution of the Minimum-Time Problem

P Consider the dynamical equations

X=AX+b(Hu [u]=k (A-1)

where X is an n-vector, b is an n X p matrix, and k and u are p-vectors. Also

X () = X,
X(T)=0 (T is minimum)

(A-2)

The Hamiltonian for this problem is

CHEX LA =RAX) b @a) -

The optimal u minimizes the Hamiltonian. Hence

~k, O OW
0 k.

where the sgn function is defined as

Applied to a vector, the sgn function acts on each component. Thus
&* (8, X,2) = (A, AX) + (A, b () (—Ksgn (b (1) 1))
\ The equations of motion are

X = % = AX — b (#) Ksgn (b (£) A)

A= -G = —ATA (A3
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The transversality condition yields

(T, b(T) k)| = 1 (A-4)

Equations (A-3), with conditions (A-2) and (A-4), yield a two-point boundary-value problem that must be solved in
order to obtain the optimal control.

52

Program 1.

Program 2.
Program 3.

Program 4.

Program 5.

Appendix B

Computer Simulation Programs

State-estimation program, including nonlinear, two-term filter and linearized
filter

Simulation program for minimum-time solution No. 1
Simulation program for minimum-time solution No. 2

Computation of switching times for control system No. 2, according to Newton-
Raphson technique

Simulation program for solution to linear regulator problem
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Program 1. State-estimation program, including nonlinear,
two-term filter and linearized filter

100

FORMAT (5E1848) ' T e
DIMENSION TS(1019)sEUC112),EL(112)sVAR(113)»RAN(6)sDIR(113)

COMMON VARsRAN,DIR o T
EXTERNAL DER

VAR(1)=0.
VAR(2)=1000s

VAR(3)=1043E3
VAR(4)=1000

VAR(5)=1T7+82E3
VAR(6)=1010.

VAR(7)=10e31E3
VAR(8)=950,

VAR(9)=17.81E3
VAR{10)=0.

VAR(111=0.
VAR(121)=0e

VAR(1I3)=0.
VAR(30)=1000.

VART31)=10,3E3 S T o oo
VAR(32)=10C0.

- VARI133)=17,82E3 Tt

DO 700 I=1,16 T e T T T

TT=13+] R i

JJ=33+1

700

VARTITT =5, T o o ’ Tt
VAR(JJ)=5,

DO 70T I=154%
11=13+4%(1-1)+]

JI=33+4%¥{I-1)+1
VAR(II)=50,

VAR(JJ1=50,
DO 600 I=1,64

T1T=49+1
VAR(II)=5.

DO 601 I=1,4
I1=16%(1-1)

DO 601 J=1,4
JI=4G+1 1+4% (J=-1)+J

VARTUJJ1=50,
DO 20 I=151019

TS(1)=0.
DIR(1)=4001

25

CALL AMRKS(VARSDIRsDERs11250+sEUsEL+e0194001»75s0)
CONTINUE

2g

31
28

DO 26 T=1,6

CALL PRN(RNs0Q)
RANTCIY=RN
IF(VAR{11-10000.) 31,31,30

T=VAR(1}
CONTINUE

DO Z7 T=1,112
EU(I)=4U001%ABS(VAR(I+1))+10.

27

EL{T1=+.000001¥ABS(VAR(I+1))+e1l
D1=VAR(1C)+VAR(2)

D2=VAR(I1)+VARI(3)
D3=VAR(12)+VAR(4)

D&4=VART{I3)+VAR(5)
WRITE(65100) D1sD2sD3sD4

T WRITET69 1007 VAR(30)sVAR(31)sVAR(32) s VAR(33)

JPL TECHNICAL REPORT 32-1055

53



WRITE(6s1C0)IVAR (261 9sVAR(2T)»VAR(Z8)sVARI(29)
WRITE(6s10C)IVAR(34) sVAR(35),VAR(36)sVAK(37)

WRITETS6,1I00)VARTZ8YsVART29)»VAR(40} s VAR(&G1)
WRITE(65100)VAR{42)sVAR(43)sVAR(44)sVAR(45)

WRITE(EsI0CIVART46) s VAR(4T) s VAR(48) s VAR{4LD)
DO 90CC I=1,16

IT=4%(1-1)
11=50+11

T 14=53+411
900

" CALL DER

12=51+I1
13=52+11

WRITE(69100) VAR(I1)sVAR(I2)sVAR(I3)sVAR(I4)

CALL AMRK

TFTABSTT+s0I=VARTIT 1. LT+ e000001j 60 T0 25~~~ "~~~
IF(T+¢01=VAR(1)=DIR(1)) 50550451

50
51

DIR(1)=T+.CI-VAR(1) ' o e
CONTINUE

30

GO TO 28
STOP

’ND e e
SUBROUTINE DER

DIMENSTION HU8)YsV1(4s4)sV2(as8)sVI4)sU(2)9V314)sDZ{2)sY (h4st)s
ZRX(49b94) VX1(496964) aVX2{hobola) gVX3(Loboli)sVXGIbobtobt) sGX LAY

Ted)sV21T494)1sDP U444 ) W VAR(113) oRAN(6)sDIR(113)9RI(49444)

DIMENSION HT(4s492) sHB( 494 s492)sHO (L4 sHI LUl s4)sHIO(Loksa)sH1L (4

T34y B ) sHIZUh s s G s HIG TG A 3G ) sHIB (A G s b)Y sH16 (b b o) s VXB G &Y
COMMON VAR,RANsDIR

FACT=1. T
A=(VAR(2)+1.SE11)ff?ffyAR(A))**2

B=SQRT (A}
C=A*B

FAC=1,. .- i e e
DIR(2)=VAR(3)

DIR(3)=(-14325E20% (VAR(2)+1e5E11))/C—1e409E~4%VAR(4) /B
DIR(4)=VAR(5)

DIRTS ) =1~T,325E20¥VAR(4)/7C+1e409E-4%(VAR(2)+15E11)/B)

DIR(6)=DIR{Z2}+RAN(1)

11

12 DIRTU9I=DIR(5)*+RAN{&Y —— 7 I

13

DIRUT)=DIR(3Y+RAN(Z}
DIR(8)=DIR(4)+RAN(3)

D=SQERT(VAR(6)**2+VAR(8) *¥2)

- HH=VARTZ)¥VAR(3)1+VAR(&4}*VAR(5)

14 Z=(VAR(6)*VAR(T)+VAR(8)*VAR(9))/D+RAN(5)
ZX=D+RAN(G] o

16 E=VAR(2)*¥%24VAR(4) %%2

17 F=SQRTITE) T

18 G=E*F
19 HUST=VARIZV/F T -
20 H{6)=0s

71 HT7T=VARTGT/F T

22 H(8)=0a

TZ3 T T THUT)ESTE®WARI3)-HH*®¥VARIZ2))/6

24 H(2)=VAR(2) /F

25 TTH{3V7=(E*VARTS)~HH*VAR(4)) /G

26 H(4)=VAR(4) /F

27 DZTIVY=L-HH/F e e e T
29 DZ(2)=ZX-F

30T TQF(=1.325E20+T. 4050E=4% (VAR(2)+145E11) 1 /C
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1+3e%14325E20/ LI (VAR(Z21+145ET1+VAR(GI*VAR(G) /(VAR(2)1+1.5E11) 1 **2) %8
2)
31 RE(<A+VAR(G)®¥¥2V1¥1 409E-4/C ~ ~~— ~ 7~~~ T
1+3e%(16325E20/C)* (VAR(2)+1e5E11) % (VAR(4)/A)
| 34 S=(A+(VAR(2)+1e5EI L) ¥ %2 ) ¥ 1 ,40SE~4/C
: 1+3e*(1e325E20%(VAR(2)+1e5E11)/C)* (VAR(4L)/A) S
: 35 T=(-14325E20-1e 409E-4¥ (VAR(27+1.5E11) *VAR(4) ) /C
1+3¢%(1¢325E2C/C)*{ (VAR(4)#%2)/C)
36 U(2)=0.
] 37 U(1)=0 -
i 38 DO 1 K=1,2 - - .
40 DO 1 I=1s4 B
41 J=9+1 - T - -
42 [I=4%(K-1)+1
1 UIKT=UTKT+ATT T ®¥VAR(J]
DO 2 I=1le4 i -
43 V(I)=Oo o
44 V3(1)=0e -
_ 45 DO 2 J=1+4 T
} 46 V1(I+J)=0, -
; 2 V2(T+J7=0,
; 49 DO 100 I=1l,4 )
o EY0) DO 100 J=1,2 “‘
; OBl T OKEEM(IS1YHL - - - - - - - L -
100 VITI =V3(IT+RIRIF(DZ (IT=UTJIV I *2 . ¥FAC e
52 DO 3 I=1ls4 S
53 TT=(1-11%4+13 T T
54 DO 3 J=ls4 ) o
55 K=11+J
3 VIEY=VII)+VAR(K Y *V3(J) 7 B -
57 DIR(TICI=VAR(ILV+V(IY ’ N
58 DIR(11)=Q%VAR(10)+R*VAR(12)4V(2) o
59 DIR(IZ)I=VAR{13)+V(3)
60 DIR(13)=S*VAR(10)+T*VAR(12)+V(4) o -
61 DO &4 T=1.4 T e
62 11=13+(1-1)%4 B o
63 DO & J=1+4& T
64 JJ=J+4 i —
55 DO & K=1+4
66 L=11+K ) ) o
KK=K+4
4 VI(I9Jd)=VI(1sJ)=VAR(L) ¥ (H(J)¥H{K)+H(JJI¥H(KK))
67 DO 5 I=1s4
68 DO 5 J=1s4 L
69 LL=13+J
70 DO 5 K=1s4 - )
71 T LELL+e¥(K-1)y 7T T
5 V2(I1sJ)}=V2(TsJ)+V1(]IsK)*¥VARIL)*FAC
DIRTIGZI=VAR{IB)I+VARTIST+2 ¥ VZ( s 11+« 5*FACT
73 DIR(15)=VAR(19)+Q*VAR(14)+R¥VAR(16)+24%V2(1s2)
75 DIRTIBIEVARIZO0TFVARTITI+Z2*¥VZ{1s3)
76 DIR(17)=VAR(21)+S*VAR(14)+T*VAR(16)+2+%V2(1s4)
77 DIR(IBI=DIR(IS} o T -
78 DIR(19)=Q% (VAR(15)+VAR(18) ) +R* {VAR(23)+VAR(20) )+2e*¥V2(2+2)++5%*FACT
79 DIRTZUV=G¥VARTIE TFR¥FVARTZG VFVARTZ2IT+2.*V2( 2y 3)
80 DIR(21)=Q%*VAR(17)+R*VAR(25)+S*¥VAR(18)+T*VAR(20)42e%V2(254)
81 DIRTZZT=DIRTI6)
82 DIR(23)=DIR(20)
83 DIRTZ4 T=VAKT ZB)+VAK(ZD)+&.*VZ(5’5’371_;‘5*”(:1”_“
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84 DIR(25)=YAR(29) +S*VAR(22 ) +T*VAR(24) 424 *V2(3s4)

85 DIRI(26)=DIR(17)
86 DIR(271=DIR(21)
87  DIRI(28)=DIR(25) -
88 DIR{29)1=S*(VAR(17)+VAR(26))+T*(VAR(25)+VAR(28) 1 +2%V2 {44 )+e5%FACT
89 E=VAR(30)**24+VAR(32)%%2 e B
90 F=SQRT(E) o - i -
91 G=F*E
121 HH=VAR{30)*VAR(311+VAR(32)*VART{33]
92 H{1)=(E*VAR(31)~HH*VAR(30}}/6G .
93T U H(2)=VAR(3CY/F T -
94 H{3)={E*VAR(33)-HH*VAR(32))/G

G577 TH({4Y=VAR(3Z2)Y/F S
99 H(5)=H(2)
T01 HUTI=H{4) T T
102 DZ{1)=2e*(Z~-HH/F)
103 DZ(21=2e*(ZX-F) T o
104 DO 6 I=1ls4
105 vViT)=0.
106 V3(1)=0e
DO 6 J=1,4 -
107 V1(1+J)=0e
T V2T, JY=0.
V21(1yJ}=0s
6 T DPU(TIsJY=0e
DO 7 1=1s4
DO 7 J=1s2 T T T T
Kzb4*(J=1)+]
ST VITTIEVI(TY+HIKY*DZ 1Y
DO 8 I=1e4
D 6 R SO B K2/ 3 5 T
DO 8 J=1ls4
K=TT¥+J
8 VII)=VII)+VAR(K ) *V3 {J)*¥FAC
TITO T W=TVART3UIFISS5EIT I ¥*¥2+VAR(32)%%2
111 R=SQRT(Q)
“TIZ  5=R T T o ’ ST
113 DIR(30)=VAR(31)+VI(1)
1% DIRU3IT==1¢325E0FTVART 3UTF+1eSEI LY /5S=1<40GE=4*VART3ZT/R+V(2Z]
115 DIR(32)=VAR(33)+VI(3)
1716 DIRU331==1,325E20*VART32)17S+1«409E-4®{VART30Y+1.5E11Y/R*V{aY
117 W2=E
118 WI=F - T
119 W3=W1¥*W2
TTTIT "WSSW3¥WZ
1106 W&=W2*W2
120 WE=W3A¥W3 i T ' ST
WT=W6*W1
D V.Y HZ=HH¥*¥? T T
X1=VAR(30)
130 XZ2=VART3TY
131 X3=VAR(32)
135 X4=VAR(33] ’ h - o I
140 X12=X1#%2
TTET  X3Z=X3¥FT oo
142 Y(191)==Z¥X2%X)1/W3~ZH (W2H (HH+X1%X2) =X 12%HH*3 4 ) /WE+(W2¥ [H2+X1%24%HH
T¥ R TR X L 2 ¥ G VW F (=W 2R ¥ X ¥ X 2 ¥ HAR 2 X I T/ WL+ ZXFIWZ=XIZV/W3~1.
150 Y(291)=Z%(W2-X12) /W3~ (W2¥ (HH+X1%X2)=X12%2 ., *HH) /W4
TIS5T YU S IT=E=Z®RG¥XT7WI=ZHF(W2RXZEXI-XIH¥HH®3 (XY T/WH+ (WZRX3HZ (HHH¥XZ2-HZ¥'
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e i R T 1 e

o W TR

TXTFG o F X1V /W= (W2 EX2FXG-XGFAH¥ 2 ¥ X 11 /WG—ZXXX3¥X1 /W3
153 Y{G9l)=—Z%¥X3%¥X1 /W3~ {W2¥X2%#X3=X3¥HH¥%2 4 *X 1) /W&
YT{Is21=7(2-,1) T
160 Y(292)=-X12/W2
Y( 3+ 2)1=—Z2%X1%¥X3 /W32 JFHH¥X 1 ¥ X3/ WLH-X1*X4 /W2
180 Y(492)==X3%X1/W2
181 Y(1+3)=Y(3,1)
182 Y(253)=Y(342)
183 Y(3+3)=—2FX4F¥ X3/ WA~ Z* (W2¥ (HH+X3%X4)—HH*X32%3¢) /Wo+(W2¥ ([H2+X3%X4%2,
1#HH) ~H2%X32%44) /WO— (W2EXLXXG— XU HH*2 o #X3) /Wa+ZX* (W2=-X32)/W3-1
185 Y{4s3)=2%(W2-X32) /W3~ (W2* (HH+X3%X4)-X32%HH*2,) /W& o
186 Y(1lo&)=Y(4sl)
187 Y(294)=Y(442)
188 Y(394)=Y(by3)
189  Y{(&4+4)=-X32/W2
190 DO $ I=1,4
192 T1=33+(1-11%4
193 DO 9 J=1ls4
194 DO 9 K=1+4
L=11+K
g VI I =VI{ I+ N +FVARTDI ¥ Y (K J)
DO 10 I=1+4
DO 10 J=1s4
LLE33H+T -~ — - - - - - oL

DO 10 K=1s4 T e I

L=LL+4%(K~-1)
VZ{1sJT=V2( 1, T +VITT . K) ¥VARTUT*FAC
10 V21(I1sJ)=V21({1eJd)+Y(1eK)*¥VAR(L)
o QU= (—1+325E20+1+409E-4%* (VAR{30)+1.5E11Yy7s
2+3e¢%14325E20/(((VAR(30)+1¢5E11+VAR(32)*VAR(32)/(VAR(30)+145E11)) %%
3271%R) T mmm memmm e e
RR={-Q+VAR(32)%%2)%] ,409E-4/5
T+2e%(1e325E20/7/5 )% (VAR(30)+1.5E11)*(VARI(32)/Q)
SS={Q+(VAR(30)+145E11)%%2)%],409E~-4/S
T+3 % (1e325E20%(VAR(30)1+1.5E111/S)1*{VAR(32)/Q)y
TT=(~1¢325E20~1¢409E-4% (VAR(30)+145E11)%VAR(32))/S
T T T T I+ 3 ¥ (1 W 325E2C/5 V¥ ITVARIUI2Y¥%2Y /5y T T
DIR(34)=VAR(38)+VAR(35)+24%*V2(1s1l)+e5¥FACT
DIR(35)=EVAR(39) +GA¥VAR{ 34 ) +RRE¥VAR (361 +2.¥VZ2 {17}
DIR(36)=VAR(40)+VAR(37)+2+%V2(1s3)
DIR(37)1=VAR(&G1)+SS*¥VAR( 241 4TT*VAR(36)+24%V2(194)
DIR(38B)=DIR(35)
DIR(39)=00% (VAR (35 )+VAR(38) )+RR¥F{VAR(43)+VAR(40))1+2*¥V2(292)+5
1*FACT
DIR{&GU Y =QU¥VART 35T +RR¥VARTGAV+VAR(GT Y +2.¥V21293)
DIR(41)=QQ*VAR(27)+RR*¥VAR(45)+SS*VAR(3B)+TTH*VAR(40)+2.%V2(2s4)
- T DIRT&2V=DIR(36)Y =~ T
DIR(43)=DIR(40)
DIRTG4G)=VARIGB)+VART45 )1 +2 ¥ V2 (333 1+5¥FACT
DIR(45)=VAR(49)+SS*¥VAR(42)+TTH¥VAR(44)+24%V2(394)
DIRUGET=DIR(3T)
DIR(47)1=DIR(41])
DIR(481=DIR(45)
DIR(49)=SS*(VAR(3T7)+VAR(46))+TT*(VAR(45)+VAR(48) ) +2e¢¥%V2 ({494 )+e5
I1*FACT T T ey e
DO 500 I=144
DO 500 J=1,.4
GX{IsJ)=0e
DO 500 K=1s4
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58

VX1(1sJeK)=0,
VX2(IsJsK)=0,

VX3(1sJsK)=0a
HI(1sJsK)=0o

H10(IsJeK)=0,
H11(1sJsK)=0,

H12(TyJsK)=0,
H15(1sJ9K)=0,

H16(IsJsK)=0.
VX5(1sJsK)=0,

5¢C0

VX4 (T1eJeK)=0,
GX(1s2)=1s

GX(2y1)=0Q
GX(2+3)=RR

GX{3s4)=1,
GX{4491)=5S

GXT14+3)=TT
DO 505 I=144

IT=16%(1-1)
DO 505 J=1ls4

JI=4%(J-1)
DO 505 K=1ls4

505

T DO 501 TI=1.4

KK=49+I 1+JJ+K
RX(IeJsK)=VAR(KK)

DO 5C1 J=1ls4

DU 50T K=149%
DO 501 L=1ly4

RT{T s JeL )= B5¥RXTTsJsLY+RXTTIsLsJ))
VX1 (IsJoK)2RI(T o JoL I X¥XGX (KoL) %24 +VX1(1svsK)

VX2 TT s JsKI=VXZTT s a KT FVIITsUYFRX (L JsKI %2,
VX3(TsJeoK)zVX3(TsJsK)+RI(T9JelL)%V21(LaK)*4,

501

VXL T3 JsK1=VXG{ T s JsKI+GRI T s LI FRX (L de KT 7777
H7(19191)==X2*X1/W3=(HH+X1%¥X2)/W3+3 4 ¥HH¥X12/W5

H7{192+1)=1e/W1-X12/W3
H7(19391)=~X4%¥X1/W3~- X3%X2/W3+3 4 ¥HH*X3%#X]1/W5

H7(1sb4y1)==X3%¥X1/W3
H7(2+191)=H7(192+1)

H7UZ292+s17=0
H7(29391)==X1%X3/W3

H7(2+4+1)=04
H7(39151)=HT7(1s3,1)

H7(4s1s1Y=HT7(1s4,1)
HT7(b49251)=0,

H7(493,ITY=HT(344,41)
HT7(4s451)=0s

HBU1 o1 I s TT==X2/7W3F3 s ¥X2HXTI2/W5-2e¥X2/W3+(6e ¥HH¥X]
143 %*X12%X2)/W5-154*HH*X12%X1/W7+34 *Xl*(HH+X1*X2)/W5

HBlT s To 2y IT=~X1/W3-Z ¢ ¥XT/W3+3.,¥x12%X1 /w5
HB8(1l91l93s1)=—-X4/W3+3, *xn*x12/w5+x3*x2*3.*x1/w5+<

eHHH¥ X3+3 ¢ ¥ X1 ¥X3%

IXZT7Wo=15 ¥AA*X3*¥XTZ7W 1T
H8(1slsbsl)=-X3/W3+3, *X3*X12/W5

HT{3921Y=HT71Z,3517
H7(3’3ol)--X4*X3/W3—(HH+X3*X4)/W3+30*HH*X32/W5

H71394y1)=T4 /WI=-X327W3 ~ B
HB{29191s1)=HB(191s2,1)

HE8TZ9 192 17T=0U,
H8(29103;l)——x3/w3+3 *XIZ*X3/W5

HBTZs1+4917=T0
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H8(3919191)=HB(1ls1s3,1)
H8(3919291)=H8(2919341)

HB(391s3s1) =3 ¥X4*¥X3¥X]L/WE=X2/W3+3 e ¥ (HH+X3%*X4) *X1/W5+3 ¢ ¥X32%X2/ W5~
1156 ¥HH®X32%X1/W7

HB8(391s4s1)==-X1/W3+34%¥X32%X1/W5
HB8{49191s1)=-X3/W3+34*¥X12%*X3/W5

HB(4sls291)=Ce
HB(4919391)=H8(3s194,1)

H8(4s1lsby1)=0e
HB(2929191)=0,

HB(Z292925s1)=0¢
H81({2929351)=0e

HBUZ9Z949s17=00
HB8(39291s1)=HB8(29193,1)

HB(3929291)Y=00
H8(3929391)==X1/W3+3*¥X1%X32/W5

HB(3929451)Y=0s
HB8(4329191)=00

HB(49292+1)=0s
HB(4929351)=00

HB{49294911=0e

HB(3930191)=-X2/W3+3¢¥X2¥X32/W5+34*¥X1¥X4¥*X3/W5+(3e¥HH*X1+34%X3¥X 1%

IXG)Y/W5-15 e ¥HH¥X1¥X32 /W7

THBT39392s 1) =-X1/W3+3 *X1%X32/W5 . _  _ _ _ _
T HBU3 3 3y ITEoXG /W33 (X GFXIZ /WS -2 s ¥ X4/ WIH 3o ¥ (HH+X 3¥XG ) ¥X3 /WE+ (H

IH*6e¥X3+3e%X32%X4) /W5~15e ¥HH®X32%X3 /W7

HEBT3 9398 [ 1=—X3/W3~Z«*¥X3/7W3+3 ¥ XB2¥X3/W5

HB8(4s49191)=0e

HB(49492e1)=00
H8(4949391)=0e

HB (&4 9bs4s1)=0Doe
DO 670 I=1l,4

H7{T eI 2)Y=HT{I+sZ2s1)
H7(1+2+2)=0,

670

HT{T+3s2)=HT(I54,1)
H7(1s492)=0,

DO 671 T=1,4
HB8(291s1s1)=H8(19291,51)

HB(3s1sTs1)=HB(I+3,1,1)
HB8(39291s1)=HB(29s391,s1)

HB8(491s191)=H8B8(1949]s1)
HB8 (4929191 )=H8(2949141)

HB8(493s]101)=H8(39491s1)
DO 672 I=1l,.4

"H8(T+Js2921=0.

DO 672 J=1ls4
H8(I’J,192)=H8(I’)92l;)

HB8(I9Je3s2)=HB8(IeJs4s1)

HB(TsJeds2)1=00
DO 673 I=144

DO 673 J=1s2
I1=4%(J=-1)+1]

H6(T»JI=HI{TT)
DO 674 I=1,4

DO 674 J=144
DO 674 K=1ls4

DU B74 L=1y/7
HI (T 9sJeK)=HIO (19 JsK)—HT(IsJsL)*¥HE(KL)

HIOTT s s KI==HE(JHyLIFHTUIsKyLIT+RI0(T» I Ky — ~
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674

HI1(I»JsK)=H11(1sJsK)+HB(KsIsJsL ) ¥D2 (L)
H12(IeJsK)=HI2( T sJsKI=HT(KeJsL)*¥HE (I ,4L )

DO 675 I=1,4
DO 675 J=1ls4

675

DO 675 K=1ly4

H14(1sJsK)=H (1 9sJsKI+H1O0(T9JsK)+H11(14J9K)/2e+H12(19J9K)

DO 676 I=1,4
DO 676 J=1ls4

DO 676 K=1,4
KK=33+K

DO 676 L=1r4
LL=KK+(L=-1) %4

676

HISTT s JsK)=HIST Ty JsK)+2 e *VAR(LL)I*H14 (1 9L +K)

DO 677 I=1,4

DO 677 J=1,4
DO 677 K=1ls4

KK=33+K
DO 677 L=1+4

677

LL=KR#4¥(L-1) e
H16(1sJsK)=H16(1sJsK)+H15(1sJsL ) ¥VAR(LL)

DO 678 I=1,4
11=33+(1-1)1%4

DO 678 J=1,4
DO 678 K=1ly4

DO 678 L=1,4
LL=11+L

678

VX5TT» JsK1=VX5({Ts JoKT+VAR(LIY¥FHIGE (L9 JHK)
DO 502 I=1ls4

IT=16%(1-1})
DO 502 J=ls4

JI=4%(J-1) a
DO 502 K=1ls4

502

KK=49+TT+JJ+K

DIR(KK)=VX1(IOJ9K)+VXZ(IoJ,K)+VX3(IvJoK)+VXQ(IoJ;K)+VX5(IyQ}K)

DO 503 T=1,4
DO 503 J=1ly4

503

DU 503 K=1s4 o
DP{1+J)=DP(IsJ)+V3(K)*¥RI(]sJsK)

DU 50% =14
IT=a4%(1-1)

DO 504 J=T1,4 T T
K=33+[1+J

T 504  DIRTKIEUIRTKY¥DPUT.JT o

RETURN

END
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Program 2. Simulation program for minimum-time
solution No. 1

DIMENSION VAR(9)sDIR(9)sTS(83)+sEU(B)ELI(B)sY(4)sRAN(2)
DIMENSION XY1(791500)9XY2{2+1500) 9YNAME2(10)sYNAME3(10)sXNAME(14)y

ITITLEL(14) o TITUE2(T14) s TITLE3(14)sTITLESG(14)sYNAMEL(10)oTITLES(14),
2TITLEG(14)

DOUBLE PRECISION VARsDIRsULlsUZ2sDIRT1sTSsDIRT2sDIRT3sDIRT4sBDOT
1U10sU20RAN

DOUBLE PRECISION U2A4U2BsU2CsUX
DOUBLE PRECISION DU1,DU2

COMMON VARsDIRsU15U2,COsS1
EXTERNAL DER

DATA YNAME1 (1)/60HMETERS
1 /
DATA YNAME3(1)/60HMETERS PER SECOND SQUARED

1 /

DATA SYMBUL/TIH./
DATA YNAME2(1)/60HMETERS PER SECOND

1 /
DATA TITLE1(1)/84H

1 X POSITION/
DATA TITLE2(1)/84H

1 X VELOCTTY/

© DATA TITLE3(13/84H - - .

1 Y POSITION/ T T T T T T e
DATA TITLE4(1)/84H
T Y VELOTITY/
DATA TITLES(1)/84H
1 Ul/
DATA TITLE6(1)/84H
1 uz7
DATA XNAME(1)/84H
I SECONDS/

UX=DSQRT(99D0)

UZ2A=T1.1D-3%UX-1eD-3
U2B=¢9D-3%UX~1eD-3

U2C=1.D-3%UX-1.D-3
BDOT=411678565E-6

IT=1
U20=1eD-4

UZ2=1.D-4
Ul0==1leD-4

Ul=-~1eD-4
RAN(1)=0.D0

RAN(21=0.,00
FLAG3=0e

FLAG1=0.
FLAG2=0.

FLAG4=0.
C0=1,D0

ST=0.D0
VAR(1)=0,D0O

DELT=30U,
VAR(2)=75000,

VART37=10300,45D0
VAR(4)=-1500004D0

VARTS5T=17819.5D0
B=2e%34141592654

VARTB1=10ULDI
VAR{7)=1030.D1

T VARTBY=I00.D]
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VAR(9)=1782.D1
DIRT1I=VAR(2)-VAR(6)

DIRTZ2=VART3)Y-VAR(T)
DIRT3=VAR{4)-VAR(8)

DIRT4=VAR(5)~VAR(9)
DO 1 I=1,83

TS(T)1=0.
DIR(1)=.001

25

CALL AMRKS (VAR DIRsDERs89s0sEUIEL 9100090017591

CONTINUE

WRITE(6,1000)Y(1)sY(2)sY(3),Y(4)
XY1(1eI1)=VAR(2)-VAR(6)

XYI(Z,IT)Y=VARTI3T-VAR(T)
XY1(3,I1)=VAR(4)~-VAR(8)

XYLI{4yI1)=VARI5)=VARK(T)
XY1(5,11)=U1

XY1(6,11)=02
XY1{7+11)=VARI(1)

31

IT=1T+1
T=VAR(1)

28

CONTINUE
AX=64E-3%#VAR(1)

AA=AMOD (AX,B)
BB=e015%SIN(AA)

DUI=(u2+1.D-3)%*BB
DU2=Ul*BB

Y{1T=VAR(Z)-VARTE)
Y(2)=VAR(3)~-VAR(7)

Y(3)=VAR(4)-VAR(8)
Y(4)=VAR(5)-VAR(9)

IF(U10eEQeQe s ANDeUZ0.EQe0s) GO TO 3060

IF(Ul0eGTe0seANDeU204GTe04)GO TO

2000

IF(U10eGTe0eeAND.UZ0.,LTe04)G0O TO
IF(UlO0elLTeOeeANDoU204GTe04)GO TO

2002
2006

IFTUIOeLTe0eeANDU20,LT40,)G0 TO
IF{UlOelLTeO0eeANDeU204EQe0e)GO TO

2008
2007

IF(UICeEQe0e s ANDUZ0LT+041GO TO

IF{UL0eEQeOe e ANDeU204EQe0+)GO TO

2005
2004

ITF(UIOeEWQe0eoANCoeUZ20.GT«0.1G0 TO

1F(U10eGTe0eeANDsU204EQe0,)GO TO

2009
872

CONTINUE
CONTINUE

2003

2001

DO 20 I=1,8
X=VAR(I+1)

20

Z=ABS(X)
EULI)=1eE-10%Z+1.E-12

O EL(I)=1E-12%Z+1.E-14

CALL DER

CALL AMRK

IF(ABS(T+DELT-VAR(1))eLTes000001)GO TO 25

60

TF(THOELT-VARTIT-DIRTITI60+,60+61
DIR(1)°T+DELT VAR(l)

61

CONTINUE T

DIRTI—(VAR(2)~VAR(6))*CO+(VAR(4)-VAR(8))*SI

DIRTZEIVART3T=VART TV T*¥COF (VAR5 1~VAR{9 ") ®*5T={VARTZT=VAR(&TT*5T*8

1DOT+ (VAR(4)-VAR(8) )*CO*BDOT

DIRT3==1IVARTZT-VART6 T I *ST+ [VARTGT-VARTEBTT*CU
DIRT4‘-(VAR(3)'VAR(7))*SI+(VAR(5)‘VAR(9))*CO-(VAR(Z) VAR(6))*CO*

IBDUT=TVART4J<=VARTBY)¥ST*¥BDOT
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IF{1e-FLAG1)21921440

21 IF(DIRT2*U104GTe06) ULl0=04D0

40 IF(DIRT2%U10eGT e0e eANDe 2o ¥UI¥DIRT1+DIRT2¥%2,GE«0+)GO TO 200
50 IF(1e-FLAG2)51951423

51 IF(DIRT4*U20,GT«0a) U20=0.D0

23 IF(DIRT4%U204GT 006 e ANDa 2 ¥U2¥DIRT3+DIRT4*¥%2,GE«06)GO TO 201

22 GO 70 28
871 FLAG1=0.

FLAG2=04
Ul0=-1eD-4

U20=-1+D-4
FLAG4=1e

GO TO 872
260 FLAGLI=FLAGl+1,

WRTTETE»I000TY(ULT s YTZT Y3 Y (4)
WRITE(691000) VAR(2)sVAR(3)sVAR(4)sVAR(S)

ulo=-Ul0
GO TO 50

201 FLAGZ=FLAGZ+1.
WRITE(691000)Y(1)sY(2)sY(3)sY{4)

WRITE(6,1000) VAR(ZY,VAR(3),VAR{4),VAR(5)
U20=-U20

GO 70 22
2000 U1=14ID=44DU1 ~ ~ =~ -~ =~ - - - - - - - - - - - - . . .

u2=U2A+DuU2
GO TO 2009

<001 UlI=l.D-4+DUI
U2=y2C+DU2

GO TO 2009
2002 Ul=.9D-4+DU1

U2=U2B+DUZ
GO 70 2009

2003 UI=0.+DUI
U2=140-4+DU2

GO 7O 2009
2004 Ul=0.+DU1

UZ=0.+DU2
GO TO 2009

2005 " UI=0.+DUI
U2==14D-4+DU2

GO TOU 2009
2006 Ul=-1.1D-4+DUl

U2=UZA+DUZ
GO TO 2009

2007 UI=—T.D=4+DUI
u2=u2Cc+bu2

GO TO 2009
2008 Ul=-+9D-4+DU1

U2=U2B+DUZ
GO TO 2009

300 WRTTETG»I0U0UTYII ) sY(ZTsY(3]»Y(4)
WRITE(651000) VAR(2}sVAR(3}sVAR(4)sVAR(5)

WRITE{6»1000)VARI(1)
IF(FLAG4<EQe04)GO TO 871

1000 FORMATUGELIB.EB])
I1=11-1

DO 860 I=1,11]
XY2(1eI1)=XY1(1s1I)

860 XYZUZ2»TV=XYI(T71)
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CALL KCPLOTI(XY2+25132919I1s1sSYMBOLSTITLELlsXNAMEsYNAMEL3)
DO 861 I=1,11

861 XY2({1eI)=XYI(2Z2y1)
CALL KCPLOT(XY29291929191191lsSYMBOLsTITLE29XNAME YNAME2,3)

DO 862 I=1s11
862 XY2(1sI)=XY1(3s1)

CALL KCPLOT(XY292919291s11+s1sSYMBOLTITLE3+sXNAMEsYNAMEL»3)
DO 863 I=1,11

863 XY2(1aI)=XY1(4,y])
CALL KCPLOT(XY252+1929151191sSYMBOLsTITLE4»XNAME»YNAMEZ+3)

DO 864 I=1,1I1
864 XY2(1eI)=XY1(5s1)

CALL KCPLOTI{XYZ+2515291s11,1,SYMBOL,TITLES s XNAME s YNAME3,3)
DO 865 I=1,11

865 XYZUT»I1=XYI(6s1}
CALL KCPLOT(XY2929192919119s19SYMBOLTITLES»XNAME sYNAME3,+3)

30 STOP
END

SUBRUUTINE DER
DIMENSION VAR(9)sDIR(9)

~“COMMON VAR, DIR,UT,UZ,CUO»ST
DOUBLE PRECISION VARsDIRsAsBsCrULlsU25COsSI»BDOT

A= (VAR(2)1+145D11) ¥ ¥ 24+ (VAR(4) ) *¥%2

B=DSQRT(A)
C=A%B
SI=VAR(4)/B

CO={VAR{2)+1.5D11)/B
DIR(2)=VAR(3)

DIR(3)=(-1.325D20%(VAR(21+1.5D11))/C-1D-3 *S1+U1*CO-U2*S]
DIR(4)=VARI(5)

DIR(5)= -1,325D20%VAR(4)1/C+1.D-3 *CO+UT*ST+U2*CO
A= (VAR(6)+145D11 ) %¥%24+(VAR(8))*%2

B=DSQRT(A)
C=A¥*B

SI=vAR(8)/8B
CO=(VAR(6)+1,5011)/8B

DIR{6)=VAR(T)
DIR{7)=(~14325D20%(VAR(2)+1e5011))/C-1eD-3 *VAR(4) /B

DIRTB)=VAR(9]
DIR(9)= -14325D20*VAR(8)/C+1sD-3  *(VAR(2)+145D11)/B

RETURN
END
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Program 3. Simulation program for minimum-time
solution No. 2

DIMENSTON VAR(S)sDIR({9)sTSTB3Y,EU(B) sEL(B)sY(4)9sRANI(2)
DIMENSION XY1(71500)9sXY2(291500) »YNAME2(10),YNAME3(10)+sXNAME(14]),

ITITLEI(LIG) »TITLEZ2(T4) s TITLE3(14) s TITLEG(14) s YNAMEL(10)sTITLES(14)y
2TITLEG(14)

DOUBLE PRECISION VAR,DIRsUIsU23DIRT19TSsDIRT2sDIRT3sDIRT4»BDOT
1U1G»U2CsRAN

DOUBLE PRECISION UZA,UZ2B,UZC,UX
DOUBLE PRECISION DU1,DU2

COMMON VARSDIRSUI sUZ2sCUsOT
EXTERNAL DER

DATA YNAMEITUIJ/60HMETERS

1 /
DATA YNAME3(17760HMETERS PER SECOND SQUARED
1 /

DATA SYMBOL/1He/
DATA YNAME2(1)/60HMETERS PER SECOND

1 7
DATA TITLE1(1)/84H
1 X POSTTION/
DATA TITLE2(1)/84H
T X VELOCITY/
DATA TITUE3(IV/B&H —~ —~ - - -~ — - - - _ o
1 Y POSTTION/
DATA TITLE&4(1)/84H
1 Y VELOCITY/
DATA TITLES(1)/84H
I U7
DATA TITLE6(1)/84H
1 UzZ7
DATA XNAME(1)/84H
I SECONDS7

UX=DSQRT(+95D0)

UZA=1.1D~-3¥UX-1.D-5
U2B=e¢90-3%#UX-16eD-3

U2C=1.D-3%¥UX-1.D-3
DELT=300,

B=2.%3.141592654
Ul10=-14D-4

U20=1.D-4
Ul==-1.D-4.

U2=1.D-4
BDOT=411678565E-6

RAN{1)=0.D0
RAN(2)=0.D0

FLAG3=0.
FLAG4=0.

FLAG5=0.
FLAG6=0e

T7S1=300044524
T1=718484025

T52=486393.812
T=83634.808

IT=1
VAR(1)=0.D0

VARTZY=T75000,
VAR({3)=103004,25D0

VART4T==150UQ0U,., DU
VAR(5)=17819.5D0
VART671=100.D1
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VAR{7)=10304D1
VAR(8)=100.D1

VAR(9)=1782,D1
DO 1 I=1,83

TS(IV1=0e
DIR(1)=.001

25

CALL AMRKS(VARsDIRYDERsB90sEUSEL»100ess001sTSs1)

CONTINUE

A=VAR(1)
XY1(1sI11)=VAR(2)-VAR(6)

XY1{2sIT)=VAR(3)=-VAR(T)
XY1(3+11)=VAR{4)-VAR(8)

XY1(4sTT)=VAR(5)-VAR(9)
XY1(5+11)=U1

XY1(6,11)=U2
XY1{T7sI1)=VARI(]1)

IT=T1+1

WRITE(691000)Y(1)sY(2)sY(3}sY(4)

28

FLAG7=T.
CONTINUE

AX=6eE=3*VART{TI)
AA=AMOD(AX4B)

BB=+ OI5¥SIN({AA)
DUl=(U2+1+D-3) %8B

DU2=U1%*BB
Y(1)=VAR(2)-VAR(6)

Y(2)Y=VAR(3)-VARTT
Y(3)=VAR{4)-VAR(8)

Y{4)=VAR(5)-VAR(S]
DO 20 I=1,8

X=VARTT+11)
Z=ABS (X}

20

tUCTI=1.E-10%Z+1.E-12
EL(I)=1eE~12%Z2+1.E-14

IF(UIDeGT «CeeANDeUZ04GT«041G0 TO
IF{Ul10eGTe0seANDeU204LTe04)GO TO

IF(U10eLTe0eeAND4sU20,

Te0s1GO TO
IF(Ul10elLToeOeeANDeU204L T

0.)GO TO

IF(UICeLTe0eeANDeUZD+ETe0)GO TO
IF(UlOeEQeOe e ANDeU204LTe0e)GO TO

IF(UIOeEQeCeeANDeUZC.EQ+04)GO TO
IF(UlIOeEQeCes ANDaU204GTs

2009

TF(UIOeGTeCs s ANDWUZ0LEQS

CONTINUE

0e¢1)GO TO
0+1JGO TO

759

ITF{FLAGT7Y75F,755, 757
CONTINUE

CALL DER
CALL AMRK

757
704

TF(FLAG31 704,704,705
IF (VAR(1)+DIR(1)4GE«TS1) GO TO 700

705
706

TF(FLAGL) 706470645737
IF(VAR(1)+DIR(1)4GEST1}

T 707  TF(FUAGS51 708,708,709

708

IF(VAR{1)+DIR(1)eGE&TS2)

T 709 TF(FLAGETT7I0,71I0,30

60 TO 701

GO TO 702

710 IF(VAR(1)+DIR(1)eGEWeT) QU TO 703
o8 CUNTINUE I
FLAGT7=0e

T IFTABSUA+DELT=VARTIT)«LTes000001)GO TO 25
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IF(A+DELT-VAR{1)-DIR(1))60s60+61
60 DIR(1)=A+DELT-VARI(1)

61 CONTINUE
22 GO TO 28

700 IF(A+DELTSLE«TS1)GO TO 758
FLAG3=1.

DIR{1)=TS1-VAR(1)
WRITE(691000)Y(1)sY(2)9Y(3)sY(4)

WRITE(6+1000) VAR(Z)sVAR(3)sVAR(4)sVARI(S)
Ul0=-U10

GO 70O 28
701 IF(A+DELT«LELT1)GO TO 758

FLAG4=1.
DIR(1)=T1-VARI(1)

WRITE(6»1000)Y (I s Y21 Y(3)sY(4)
WRITE(6+1000) VAR(Z2)sVAR(3)»VAR(4)3VAR(5)

UiG=-uU1l0
GO TO 28

702 TF(A+DELT.LE.TS2)GO TO 758
FLAGS5=1e

DIRTIY=TS5Z-VARTL)
WRITE(691000)Y(1)sY(2)sY(3)sY(4)

- T T WRITE(65,1000) VARI(Z),VAR(31,VAR(4)sVAR(S]
U20=-U20 ST T T s

GO 70 28
703 IF(A+DELT4LESTIGO TO 758

FLAG6=1.
DIR(1)=T-VAR(1)

WRITE(651000)Y(1)sY(2)sY(3)sY(4)
WRITE(691000) VAR(2)VAR(3)sVAR(4)sVAR(5)

GO TO 28
2000 Ul=1lelD-4+DU1

U2=U2A+DUZ
GO TO 2009

2001 Ul=l.D-4+DUl
U2=u2C+Du2

GO 170 2C09
2002 U1l=.9D0-4+DUl

u2=uz2B8+DUZ
GO TO 2009

2003 U1=0.+DUl
U2=1eD-4+DU2

GO TO 2009
2004 U1=0.+DU1

UZ2=0.+DU2
GO 10 2009

~ 20057 UT=U0.+DUI o
U2=-1eD-4+DU2

GO TO 2009
2006 Ul=-1.1D-4+DUyl

UZ2=UZA+DUZ
GO 70 2009

2007 Ul=-1.D-4+DUl
u2=y2C+bu2

GO TO 2009
2008 Ul=-+9D0-4+DU1

U2z2=0U28+DU0Z
GO TO 2009
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30 WRITE(651000)1Y(1)sY(2)sY(3)sY(4)
WRITE(6+1G00) VAR(2)sVAR(3)sVAR(4)sVAR(5)
WRITE(6,I000)VAR(1)
I1=11-1
DO 860 TI=1,11
XY2(1sI)=XY1(1s])

860 XY2(2s11=XY1(Ts 1)
CALL KCPLOT(XY2925192s191191sSYMBOLsTITLELsXNAME »YNAMEL1s3)
DO 861 I=1,11

861 XY2(1s1)=XY1(2s1)

DO 862 1=1,411
862 XY2(1,1)=XY1(3, 1)
CALL KCPLOT(XY292919251911919SYMBOLTITLES9XNAME 9YNAMELy3)
D0 883 I=1,11
863 XY2(1s1)=XY1(4s1)
CALL KCPLOT(XY2929s19291 91191 sSYMBOLSTITLES4 s XNAME)YNAMEZ2+3)
DO 864 I=1,11
864 XY2({1s11=XYI(5,1]
CALL KCPLOT(XY29291929191191sSYMBOLsTITLES s XNAME YNAME3,43)
DO 865 [=1,11
865 XY2(1sI3=XY1(651) o
T T CALU KCPLOTUXYZ32+s192s1sT11+s1+SYMBOLSTITLEG s XNAMEsYNAME3»3)
STOP
END e .
SUBROUTINE DER
DIMERSTION VARTS T +DIRTYIY)
COMMON VARsDIRsU1sU249C0O»S1
~— DOUBLE PRECISION VARsDIR»ASBYC »UISUZ3C0+S T -
A={VAR(2)+1e5D11)*%2+(VAR(4) ) %*2
BEDSGRT (AT T T T e e
C=A%B
STEVART4) 7B
CO=(VAR(2)+1.5D111/B
DIRTZT=VAR(3) ' T
DIR(3)=(-164325D20%(VAR{2)4145D11))/C-1eD-3 #SI+U1%CO~U2*%S]
DIR(4)=VAR(5) T T T T o
DIR(S5)= —-14325D20%VAR(4)/C+1.D-3 *CO+U1*S1+U2%CO
T ASTVARIB)+1.SDITT*¥ 24 (VAR(B) ) ¥¥2
B=DSQGRT (A)
C=A¥B
SI1=VAR(8)/B
- [ )
DIR(6)=VAR(T7)
DIK(7)=i‘loJZDU.{J*(VAR(d)+1o5011))/C"IOD—3 *VARU4) /B
DIR(8)=VAR(9)

T DIR(Y)= =1.325D20%VARTBI/CF1.D-3  *TVARTZV+T.5D11)7B
RETURN B
END ' - S
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Program 4. Computation of switching times for control system
No. 2, according to Newton—Raphson technique

DIMENSION
FACl=1a.1

Albsl) sDT{4) s51(12)+52(4)sB(4)

FAC2=e9
FAC3=114%SQRT(4991-10.

FAC4=10e~9¢%5QRT(499)
W=(ATAN(4B85479761E10/(1e5ELL+e42321837E10)))/e4T7408336E6

ST=(FAC3+FAC4} /2.
WRITE(65100)W

W2=Wx*2
FAC=e5 o

DETERM=0,
Ul=—1leE-4

U2=1eE=4
X10=74C00,

T T52=14000.

X20=e25

X30=-151000,
X40=-45

T=25000.

T51=9000,

4

~T1=20000.
SI=SIN(WRT) ~~ ~ - - - — -

C1=COS(W*T) T
T2=T

T DISX1C0+T*X20+U1* (T*S1*FAC2/W+(C1*FAC2-FACLl)/W2)~U2*¥FACGL*(S1/W2-T*C

11/W)

bk e ok it o skt il o)

D2=X20+UIXFACZ¥SI/W+U2¥ TC1¥FACL-FAC3 ) /W
D3=X30+T*X40+UL*FACZ*(S1/W2-T¥CL/W)+U2* (T¥FAC4*S1/W+(CL*FAC4=FAC3)

1/w2)
D4=X40+U1* (FACI-C1*FAC2)/WHU2*S1¥FAC4/W

SZ=STINIW¥TS1)
C2=COS(W*TS1)

S3=SIN{W¥*TI)
C3=COS(W*T1)

S4=SINIW*¥TS2)
C4=COS(W*TS2)

§5=51
€5=C1

XIT=DI+UT* (2, ¥ (TSIXSORFACTI=TI¥S3¥FACY ) /W2 * (CZ¥FACT=C3¥FACZT /W2 +(
1FAC2-FACL) ¥ (TS2%S4/W+C4/W2) )-U2% (24 ¥ (FACH*T2¥C5-TS2¥ST*C4 ) /W+2% (S

T4¥ST-S5%FACA) /W2 T
X2T=D2+U1* (24 *(S2*FACL=S3*FAC2) /W+(FAC2-FACL)*S4/W)—U2*% (24 * (CS*FAC

14-C4*5T) /W) o
X3T=D34+U1¥ (2 %(T1*¥C3XFAC2-TS1*C2%¥FACL) /WH+2e*¥(S2*¥FACL-S3%FAC2) /W2

3+(FACZ=
LFACII*(S4/W2-TS2¥C4/W) ) +U2¥ (2% (TS2XSTHS4~T2XFACL¥S5) /W+24 ¥ (C4¥*ST—

2CH5*¥FACA)/W2)

X4T=D4+UL1% (2% (C3¥FAC2-C2*#FACL) /W-(FAC2-FACL)*(C4/W) ) +U2% (24 % (S4%S

1T-S5*%FACL) /W)
X1T==X1T+2%*X10+T%X20+T*X 2T

X3T=-X3T+2e ¥X30+T¥X40+T¥X4T
A(291)=2.%UI*C2%FAC]

All»1)=A0Z2,1)*T51
Albs1)=2.%UL%XS2%FAC]

AT3,s1)=AT4, 1) *T51
Al292)==2+*%U1*C3*FACZ

ATy ZT=ATZs 2T*TT
Al492)=—24%U1*S3%FAC2

ATU3s21=AT4 21 ¥*T1
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AU293)=-U2¥2 ,¥ST*S4~-(FACZ-FACL)y*C4*}
Al1s3)1=A(2+3)%TS2

ATGs3) =2 FSTRUZFT4—(FACZ-FACT ) *Sa*yl
Al(393)=A(443)%T52

AT294)=U2*S5*FACK
Al1r4)=A(254)%T24X20

Al394)=A(444)%T2+X40

Al 1)=-AT1,11+T®A(2y1)
Al192)==A(1+2)+T*A(2,42)
TA(T3)==Al1,3)+T*A(24+3)
All194)=—A(1s4)+THA(2,44)+X2T
TA(3,1)=-A(3,1)+T*A(4,1)
Al392)==A(392)+T*A(4,42)

AT3931=—A(3,3)1+TRA(4,3) - e _
AU3s4)=~A(394)+THA(44) +X4T

CALL MATINV(49A544+Bs0+DETERMsS152)
WRITE(69100)TS19T1sTS52,T2

WRITE(6+100)X1ITsX2TsX3TsXaT
DO 2 I=1y4

T1=T714DT(2)

T U TE2=TS24DT3Y

T=T+DT(4)

TF(ABSTTI)«GE«14ESIGO TO 30
TF(X1TH¥24X2T**¥ 24 X3T ¥ %24 X4T** 2 LE4o1) GO TO 30

100

30

GO TO 4
FORMAT(6E1B848)
STOP

END
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Program 5. Simulation program for solution to linear
regulator problem

DIMENSION VAR(9)9sDIR{9) sTS{B3)sEU(B)sEL(B) sY(4)sRAN(2) sP(494)sClt
14),0UC2(04)
E DOUBLE PRECISION VAR SDIRSULsU2sDIRTLsTSsDIRT2sDIRT3,DIRT4,B8D0OT,
| 1U10,U209RAN R S T
COMMON VAR GDIRyULlsU24C0OsSI
EXTERNAL DER
; BDOT=41188049D-6
K DELT=300.
11=0
3 o CO0=1.D0O
5 SI=0eD0
C UI=-1.D-4
U2=1.D-4
VAR(1)=0.D0O
VAR(2)=1100.D0
VAR(3)=10305.D0 T ’ T
VAR(4)=900.D0
VAR(5)y=17810.00 =
VAR(6)=1004D1 .
VAR(7)=1030.D1 o ' i T
- . VAR(8)=10C.D1 o
C T UVAR(9Y=1782.01 T ' T T T T e e e
P(1+2)=200.
P(1,4)=0,
P(2+2)=20000.
P(2+s2)=0,
P(2+4)=0C.
P(3,41=200. ) o ' R
P(44+4)=20000.,
P2, 1VEP(1,2)
Plasl1)=P(1s4)
PU4,21=P(2+4)
Pla4s3)=P(3,4)
XNI=ABST(VAR(Z)Y-VAR(6)Y)¥1000.) T
XN2=ABS({VAR(3)-VAR(T7))*2,)
XN3=ABS{{VAR(&4)-VAR(8))¥10004)
XN&4=ABS{(VAR(S5)=VAR(G)) *2,)
DO 1 T=1,83
1 TS(1)=0.
DIR(1)=.001
CALL AMRKS({VARSDIRIDER$8s0sEUSEL100e9e001sTSs1)
25 CONTINUE S e e
31 T=VARI(1)
Y1 ={VAR{Z2}-VAR(6)1/XNI
Y(2)=(VAR(3)=-VAR(7))/XN2
Y(3)Y=(VAR(4)-VAR(8}))/XN3
Y(4)=(VAR(5)-VAR(9))/XN&
CALL JPLT3(1es—1e9CesDELT9&4sIIsY)
WRITE(65,1000)U1 U2
1T=1
28 CONTINUE
T DO 20 1=18 T
X=VAR(I+1)
Z=ABS(X)
EU(T)=1eE-10%Z+41,E~12
48] ECTIT=IE-IZ2¥ZF1.E-1%
IF((VAR(2)~VAR(5) ) **¥2+ (VAR({4)-VAR(7))1%*¥*¥2,LEs14)GO TO 30
DO 700 I=1s4 T
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ST)

700 UCITI) ==, 5% (P(2+1)%CO+P (&4 )
Uvi=0.
uvas= Oe
NO 701 I=l,4 - 3
701 UC2{I1==,5% (P2, 1)1 *(=-SI)+P(4,1)*CO)
DO 702 I=1l,4 -
J=I1+1 - - - 0
JJ=5+1
OVISUVI+UCTI(TT* {VAR(JI=-VARTIJIN]
702 UV2=UV2+UC2 (11 ¥ (VAR (J)-VAR(JJI)) -
T IR (AES(UVIN W GEL TLE-4) GO TO 703 '
Ul=uvl B
TI0G T TF(ABS{UVZ WGE.1.F-4) GO TO 705 T N T
U2=uv2
706 CONTINUE T
CALL DER
CALL AMRK
IF(ABS(T+DELT-VAR(1))eLT++000001)GO TO 25
TF{T+DELT-VARTIT-DIR( 1115606061 T o

6C DIR(1)=T+DELT-VAR(1)
61 CONTTNUE R S ———
22 GO TO 28

703 TIF(UVIeGT«0e)1ULl=14D-4

IF(UVIeLTaOe)Ul=-1sD-4

GO 7O 704 o o T ' o T T
705 IF(UV2e¢GTa0e)U2=1D-4

IF{UVZ2eLTe0e)UZ2=-1eD-4 TrTmm o mrrn e e

GO TO 7Cé
30 WRTITE(61000)Y( 1) sY(2)sY(3)5Y(4)
1000 FORMAT(4E1848)
o STOP o T
END

SUBROUTINE DER T m T h
DIMENSION VAR(9),DIR(9)
T COMMUN VAR,DIR,UI,UZ,C0,S5T
DOUBLE PRECISION VARsDIRsAsB»CsU1sU2+C0O»S1,48BDOT
T T RAETVARTZTHT G501 TV ¥¥ZF (VAR L) Y ®%2 '
B=DSQRT(A)
C=A¥R
SI=VAR(4)/B
T T CO=IVARTZY+IL.5DITY /B
DIR(2)=VARI(3)
T DIRT3VE(-1.325D20*(VARTZ27+15D11))/C-1.D-3 *S1+ULHCO-U2#%S]
DIR(4)=VAR(5)
DIRTSTE —1e3Z5D20%VARTGT/CH+1,D=3 7 ®CO+UI*ST+U2Z*CT o
A= (VAR(6)+1e5D11)%#24+(VAR(8) ) %¥2
"B=DSQRT{A)Y - '
C=A%B
€T=VAR(B) /B
CO=(VAR(6)+1.5D11)/B
DIRTEY=VARI( 7]
NDIR(ITYI=(~-1,325D20%(VAR(2)4+1e5D11))/C~1D"3 *VAR(4) /B
DIRTBY=VAR(9) : - o '
DIR(9)= =1,325D20*VAR(8)/C+1.D-3 *(VAR(2)4145D11)/B
T TTTTRETURNT T o e '
END
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Appendix C

The Two-Term Nonlinear Filter Equations

The notation used here will be the same as that of Appendix F of Ref. 2. Equations designated by “F” will refer to
that reference.

First we augment Eq. (F.15) to be
CTR, C

r(C,T) = X(T) + P(T)C + : (C-1)

C™R,C

where the matrices R, through R, are n X n. Equation (F.16) becomes

- dR
Car© C'R C™R, C
dp . dX ' RN 5 : _
arCtart : —(P(T) +2 _ )=, (ILPC+ X+ ' ,C) =
dR, CT™R, CT'R,C
.
| T €]

CT™R, C

OEH*
oC

(T,X + PC + - 1,0 (C-2)

C™R.C

where R} = 1/2(R, + RT), R, = 1/2 (R, + RY), etc.
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Since we will consider terms of order C?, we must include higher-order terms in the expansion of 3&¢*/or and 9gk*/2C.

Thus we have

K rpc+ R+
or
and
oLK* A
3C (T,PC+ X +
74

CT'R, C

C™R,C

CT™R, C

CER,C

,C)=

,C)

- O
~8C

C'R, C
. OLH* A 20 L% A :
=m0+l wRoect| -]
C'R,C
i "CTR, C7 "CTR, C|
: 0 02K :
(PC + : )T'a—r—l =i (PC + )
1 | C"R.C_ | C*R, C |
+_
2 _CT Bl C— _CT Rl C_
' 2 R '
BC+] T D5, e (BCH )
_  C™R,C_ | C™R,C |
C'R, C
~ oK )
(T,X,C) + af:fc (1,%,C) (PC + D
C'R,C
r C™R, C] C™R, C
' 3 H*
T —
(PC + ) or, aroC (FC
1 LCTR,C | | C™R, C |
_|,_ —
2 [CTR, C) “C™R, C]
' D R
T
(PC+ ) or, oroC (PC +
L LC™R, C | | C"R,C |

(C-3)

(C-4)
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The added terms in Egs. (C-3) and (C-4) each contribute only one term that we shall consider. In Eq. (C-3), it is

CTP*((—2HQ (y ~ h))2)s, PC

1
2 j (©3)

CTP*((—2HQ (y — h)}R)s, PC

and in Eq. (C-4), itis
CTP*(gr)s, PC

(C-6)

PO =

CT P (gg)s, PC

(H was defined in conl;ection ;VlthiEq 7(54),7ar;d g is the plant dynamics vector as used in Appendix F of Ref. 2.)
Now, including the terms of (C-5) and (C-6), Eq. (C-2) becomes

- dR, T
Car © CTR,
4 dp dX ‘ ' 1 o
; FCHpt : —®(T) +2| - )(—2HQ(y—h)+g§C—Z(C kV-1K C)§+<—2(HQ(y~h))A
3 : N X
dR, C'R,
CTWC
C'R, CT CTP" ((2HQ (y — h))g)s, PC
1 ' 1 )
+ (88C) ~ 7 (C" (kv-1K7) cm) C+| - D-3 ; ) =
| C'R,C CTPT((2HQ (y — h)®)z, PC
C'R, C CTPT (gg);, PC
1 | R I 1 I
g~ 5(kV2KkNC + (g — 5 (kV'KC)g | (PC + ) _ (C-7)
| C*R,C C" P (gR)z, PC
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Collecting terms in Eq. (C-7) of order zero:

dX
7 TR(MHQ(y~h) =g (C-8)
Of order 1:
C'R;
dp ' 1 .
FrC+2| ° |HQ(—h) —P(T)giC +2P(HQ (y — )2 PC = — 5 (kV- k") C + & PC (C-9)
C'R,
Of order 2:
de 7
FCTTT'C C™R giC C'R, C
. . ) .
+ 7 P(T) (C'kV KT C)g — 2 : +P(T)(GHQ(y — h))z| - — P(T)(gRC)2 PC
dR, C'R, g} C C'R,C
CrorC
CTR{(HQ(y — h))kPC CTPT((2HQ (y — h))3)2, PC
. . .
+4 - +5 B(T) . -
CTR,(HQ(y — h)kPC CTP* ((2HQ(y — h))3)s, PC
C'R, C CT P (gg)s, PC
gl |- —;—(kV-‘ k* C)z PC + % | (C-10)
C'R,C C* P~ (g5)s, PC
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Letting P = —P, and eliminating C from Egs. (8), (9), and (10), we finally obtain

dX

77 = & T 2PHQ(y — h)

(y = h)TQ"HR;

(kv k")z (1,1)
(kv l;T);\" (1,n)
(kVk")z, (n,1)

(kv i(T)Q” (n,n)

3—; =2 + P(T)gf + grP + 2P (HQ(y — h))z P + —;—(kV-l k?)
(y — h)TQTHR,
-dR."
dr (kV-1 k)3, R, g} R,
= %Pt L t2 D [ F2REHQY-—NR)K| -
dR, (kV-1K7)z, R, g} R.
L dT |
r (kV—1 kT)al(l, 1) e
- R, _
Ri(HQ(y — h))zP . | (kVKT)z (L,1) - -
+4 . + el - _;_
R. (HQ(y — h))zP ﬁ (V1K) (n,1) - - -
| L (kV2KT);, (n,n) - - -
PT((HQ(y — h))z), P P (gr)s, P
: ) :
+P(T)% ' + 3 .
P*((HQ(y — h))»)z, P P*(g2)z, P
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[ P(gds, (1,1) - - -
| P(gh)z, (L) - -
P (g}, (n,1) - - -

LLP(g})s, (n,n) - - -

P(eB)s, (L7 ]
: p
P(e8):, (L n)
P, (n1])]
) P
P (gh):, (n.n)
P
P
77



where the star indicates a matrix multiplication defined by

B, (A(1L1)B, + A(L,2)B, + - - - + A(1,n)B,)
A% ‘ = .
B. (A(n,1)B, + A(n,2)B, + - - - + A(n,n)B,)
where A,B, - - - B, are n X n matrices.

The computer program that simulated the two-term filter is given in Appendix B. So far, no significant improvement
has been noted over the one-term filter, probably because of the difficulty in choosing initial conditions on the R

matrices. It is felt, however, that more work in this area would prove valuable.
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