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SUMMARY 

For a s t ruc tu re  exhibiting hysteresis  behavior, the force -deflection 

relationship under a r b i t r a r y  loading can be derived in t e r m s  of four physical  

p roper t ies .  

the loading and the unloading branches of the hys t e re s i s  loop and a genetic 

cu rve  obtained by considering the r a t e  of energy  dissipation during s teady-  

s ta te  oscil lations.  

agreement  with exper imenta l  data for  a 1/5-scale s t ruc tu ra l  model of the 

Sa turn  I launch vehicle. 

This  relationship relies upon geometr ica l  s imi l a r i t i e s  between 

A damping law is introduced t o  obtain r e su l t s  which show 

iii 
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Section 1 

INTRODUCTION 

A coninion cause  of difficulty i n  obtaining consistant s t ruc tu ra l  

damping data is their  dependency o n  the amplitude o f  vibration. 

edged source  of nonlinearity is the hysteret ic  re la t ionship between fo rce  and 

deformation. 

A n  acknowl- 

Caughey (Reference l ) ,  studied a l inear  hys t e re s i s  damping model  

which c a n  be made to  sa t i s fy  the requi rement  that  the ene rgy  diss ipat ion 

r a t e  be independent of the frequency i n  s teady-state  vibrat ions.  

however,  one finds tha t  his  model  displays a fo rce  -displacement  re la t ionship 

that v a r i e s  with the frequency of oscillation. 

bi l inear  hys t e re s i s  model  of Caughey (Reference 2) t o  the curve l inear  case 

in  the manner  of Whiteman (Reference 3) who used it for  material hys t e re s i s .  

In so  doing, 

The cu r ren t  study extends the 

Th i s  investigation is r e s t r i c t ed  to  applications i n  which the s t ruc tu re  

can be charac te r ized  by individual vibration modes ,  and where the r e p r e -  

sentat ion of each mode by a one-degree-of-freedom s y s t e m  is essent ia l ly  

c o r r e c t .  The h y s t e r e s i s  re la t ionship i tself ,  however,  is quite genera l  and 

m a y  be used in other applications.  
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Section 2 
HYSTERETIC FORCE -DEFLECTION RELATIONSHIP 

A modcl consisting of a la rge  number of e las toplast ic  e lements  (i.e., 

spr ings  in s c r i c s  with Coulomb friction uni ts)  can be used t o  cons t ruc t  the 

essent ia l  p rope r t i e s  of a hys te re t ic  force-deflection relat ionship fo r  studying 

structural damping. Th i s  model, outlined by Timoshenko (Reference 4 ,  1940), 

was used by Whiteman (References 3 and 5, 1957),  i n  connection with his s tudy  

of metal fatigue,  and later by Rosenbluth and H e r r e r a  (Reference 6 ,  1964), 

who cited Tanabashi  and Keneta (Reference 7, 1962). 

The mathematical  model  of hys t e re s i s  has  the following proper t ies :  

0 Variation of the - -  fo rce ,  F, o r t h e  displacement ,  X, between 
fixed limits ( F ,  X) and (-T, -E) follows two dis t inct  paths which 
in t e r sec t  at the l imiting points, see Figure  1. 

Using the s ign  convention of Figure 1, the hys t e re s i s  loop is 
always t r a v e r s e d  in  the clockwise direct ion,  and the  area 
enclosed by the loading and the unloading branches of the 
hys t e re s i s  loop r e p r e s e n t s  Do, the amount of energy  d i s s i -  
pated p e r  cycle.  

The locus of ( F , X )  for  hys t e re s i s  loops of var ious  amplitudes 
coincides with the ini t ia l  loading curve in  the posit ive d i rec t ion ,  
the locus of (-3, -x) coincides with the ini t ia l  loading curve i n  
the negative direction. 
The loading branch  of the hys t e re s i s  loop between (F, X) and 
(-F, -x) is geometr ical ly  similar to  the  ini t ia l  posit ive loading 
curve but is sca led  in  both direct ions,  and is displaced f r o m  
the origin s o  that  it begins a t  (-3, -x) and ends  at ( F , X )  (see 
Equation 6 ) T ,  The construct ion of the unloading branch is 
similar ( see  Equation 8). 

The relat ionship between force and displacement amplitudes,  
Le. ,  the  shape of the vs E curve ,  c a n  be determined by the 
manner  in  which Do is dependent upon %. From geometr ical  

- considerations it m a y  be shown that  t he  area between the T v s  - -  
X curve  and the s t ra ight  line f r o m  the or igin t o  the point (F, X) 
is 1/8 Do. 

0 

- -  
0 

- -  
0 

- -  

0 

Refer r ing  t o  F igu re  2,  it is s e e n  that  

2 



Initial Loading 
Curve in  Pos i t ive  
Di rertion 

--- 

In it  ial 

Unloading Branch 

I 

Figure 1 - Typical  Hysteresis  Loops 

- -  
Figure 2 - Derivation of the Equation of (F ,  X )  
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0 

and, corresponding to a sma l l  change AX, 

F(X)dX - (F t A F ) ( X  t AX). 
1 1 
- D  8 0  + T A D o  

0 

o r ,  

and, in the l imit  as AX-0, 

The init ial  condition is F(0) = 0. 

0 The genera l  solution of Equation (1) can  be wri t ten i n  the f o r m  

- F(X) = K 3 t f(X); 
0 

where the t e r m  K 2 is the complimentary solution, and 

is independent of Do, while f(X) is the par t icu lar  solution with 
0 

f (0)  = 0 . (3  1 

0 Let X be the point where 
P 

dF 
dX 
- - = 0 .  

P’ 
For displacements  g rea t e r  than X 

- 
F = F .  

P 

4 
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- -  
0 The loading path from (-?, -x) to F , X )  on the hys t e re s i s  

loop is descr ibed by the equation 

o r  equivalently, 

s imi l a r ly ,  the unloading branch of the loop is descr ibed 
by the equation 

- 
t f(X). x - x  F = K X - 2 f -  

0 2 

0 The constant K in the solution of F ( X )  m a y  be identified 
0 

with the small-ampli tude na tura l  frequency of the c o r r e -  
sponding l i nea r ,  undamped system. 

Exper imenta l  data  have been collected on the bending var ia t ions of a * 
s t r u c t u r a l  model  of the Sa turn  I launch vehicle . The ene rgy  dissipated per  

cycle ,  Do, for  an  extended range of response amplitudes is shown in Figure 

3 for the second f r ee - f r ee  mode. These exper imenta l  r e su l t s  lead t o  the 

following general  f o r m  fo r  Do: 

- x <  xo; Do = 0, - 
n x < z < x *  

DO = Jn ( X - X o )  , 0 -  - p' 

DO = Jn ( z p - X o ) n  t 4F P (x-x P ), P -  < x, (9 1 

where  all quantit ies are non-negative, and Xo is that  displacement  amplitude 

below which hys t e re s i s  damping is zero ;  n is a n  exponent and is not neces-  

s a r i l y  a n  in teger ;  J is a constant of proportionality. Two spec ia l  c a s e s  n 

* 
Obtained under  Contract  NAS8 -20088, "Experimental  Damping Studies ,I1 
by Lockheed Miss i l e s  & Space Company, Huntsville R e s e a r c h  & Engineering 
Center .  

5 
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* of in t e re s t  a r e :  ( a )  n = 2.0 and X > 0 , so that  
0 

D = 0, 
0 

Do = J , ( Z - X o )  2 , 
0 <_ xo; 

and (b) n > 2.0, X o =  0, s o  that 

-n D = J n X  , 
0 

- n = J t4F (z-g), x < % .  
DO " P  P P P -  

is near ly  propor-  F o r  case  (a), when X > > X  

t ional t o  the peak s tored energy and independent of frequency, approaching 

the case  of " l inear  s t ruc tu ra l  damping" that  one often encounters  in the 

s t r u c t u r a l  vibration l i t e ra ture , ;  while c a s e  (b) b e a r s  a close s imi l a r i t y  with 

m a t e r i a l  damping laws (Reference 8). 

DO' 
the ra te  of diss ipat ion,  

0' 

The solution of Equation (1) for  ca se  (a) above is 

The point x may be determined by differentiating Equation (12) and 
P 

set t ing the r e s u l t  to  ze ro ,  and i s  given by the express ion  

KO/JZ jc  = e  
x O  P 

* 
The case Xo = 0 mus t  be ruled physically impossible since it leads to  a 

dynamic s y s t e m  with a n  infinite small-amplitude na tu ra l  frequency. 

7 
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For  typical structures,  the exponent K /J i s  usually very  large,  so that 0 2  
the assumption 

x >>x 
P 

can be made without l o s s  of generality. 

1 , t - f  

H ( X , X )  = F - K o X  

Substituting Equations (7), (8)  and ( 1  2 )  into Equation ( -  4), the fo1,owing 
are  obtained 

for X i  x0, H ( x , X )  = 0; ( 1  5 )  

- 
H(X, X >  0)  = 2 J2 [Fx) ln - - 2 J 2 [ 7 - X 4  x t x  

2x0 

- - X x t x  
t J 2 X l n y  - J2(%-X0) ,  7 Z X o  ; 

0 

r ix )  l n L x  + 2 J2 (7)- W - X o  Xo 
H(X, X <  0)  = - 2  J2 - 

2x0 

- 
X Z - X  - J , R h - +  J 2 ( Z - X o ) ,  2 z X 0 .  
0 

X 

8 
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Similar ly ,  for case (b), Do = JnXn ,  

, n > 2 ,  X < X  , - F = K o X - - -  1 n  - n -  1 
4 ( n - 2 )  Jnx P 

where : 

and 

J (%)"-' . (18a)  
1 n  1 n  
2 n - 2  4 ( n - 2 )  n H(X, Z< 0) = - - 

Equations (15) through (18a) will be needed fo r  the solution of vibration 

problems in  the following sections.  

F igure  4 shows a typical relationship between and for both c a s e s  

(a) and (b) of the above discussion. 

9 
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Figure 4 - Typical v8 % Curve 

10 
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Section 3 

SINUSOIDAL FORCED VIBRATION 

F o r  periodic excitations and f o r  f r e e  vibration decay,  as w e l l  a s  for  a 

c l a s s  o f  random cxcitations,  whcrc tha solutions arc cxpcctcd to be s i m i l a r  

to  those for  a s y s t e m  with small nonlinearit ies in  viscous damping and in  the 

res tor ing  force ,  approximate solutions can  be derived. 

The s teady-state  equation of motion of a s ingle-degree-of-freedom 

s y s t e m  can now be writ ten: 

mx  t cjc t K ~ X  t H(x,X) = p0 cosot (19) 

where m is the mass, c the viscosi ty  coefficient, Po the forcing amplitude,  
and o the  forcingfrequency.  Let 

2 
= oo , - KO 

m 
and 

C - = 2CO0.  m 

An approximate solution of the f o r m  

x = ~ c o s ( o t - c p )  

m a y  be obtained in the following way: 

0 '  

Expand H(X, X) into a F o u r i e r  s e r i e s  and re ta in  only the fundamental  

f requency components , 

11 
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w i t  h 

and 

The las t  in tegra l  is obviously the energy diss ipated over  a cyle of vibration, 

s o  that 

0 
D - I2 - - -  X" 

Substi tuting Equations (20 )  t o  (26 )  into Equation (19) and requir ing the 

coefficients of cos(ot - @) and sin(ot - +) t o  vanish individually, the following 

equations a r e  obtained fo r  amplitude and phase responses  of the s teady-  

state problem: 

K X  
0 0 

P 

and 

K X  
0 - t Do -2 ) = s i n + .  

o KoX K 

The ef fec ts  of h e s t e r e s i s  damping are ref lected in the presenceof  I inEquation 1 

the  f requency of phase resonance (the o at which @ = 7r/2) t o  shift away f r o m  

W/wo = 1.0. Since I is in  genera l  a function of the response ampl i tude .  the 1 

12 
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shift in peak response  na tura l  frequency is a function of the excitation 
amplitude also. 

achieves the value of unity. 

be the dissipation p e r  cycle due to  viscous damping, then 

In the l imiting case  of z e r o  forcing ampli tude,  w/cco 
To show the effect of Do m o r e  d i rec t ly ,  let Dc 

- 2  D = C W X  T ,  
C 

and 

where 

is the peak kinetic energy  of the system. 

in the f o r m  

Equation (28) m a y  now be writ ten 

t ( 2 9 )  
C 

0 

showing the respec t ive  ro les  of Dc, which is an  explicit  function of 0, and 

which, on the con t r a ry ,  is independent of 0. 
DO 

Squaring Equations (27) and (28) and adding, one obtains 

2 2 2 =  0 (++)* 
O O  

13 
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Since D 
w i l l  be independent of frequency i f  viscous damping is absent.  

for the c a s e < = O ,  

is independent of frequency, the right-hand s i d e  of Equation (30) 
Therefore ,  

0 

2 
2 2 '  x7r 

Peak  response ,  x=z 
and 

, is found where the rad ica l  i n  Equation (31) vanishes ,  m 

There fo re ,  peak response occurs  a t  the same frequency a t  which the response  

lags  the force  by a phase angle of n / 2 ,  if damping is en t i re ly  due t o  hys t e re s i s  

loss. 

these frequencies  . 
Obviously, the addition of viscous damping causes  the  separa t ion  of 

At the peak response frequency,  

0' 
which may  be regarded  a s  a relationship t o  determine e i ther  

o r  vice v e r s a ,  fo r  given P 
gene ra l  D 

f r o m  D m 
The nonlinear nature is quite obvious s ince i n  

0' 
is not proportional to the square of the response amplitude.  

0 

Substituting Equation (33) into Equation (32), the peak response  f r e -  

quency is found in  terms of Il(zm), Do(Fm), and Po. 

14 
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As , a n  example of the sinusoidal forced vibration solution, the fo rce -  
de f l ec t ion  relationship of Equations (15) through (15d) (case (a)) a re  used to  

obtain the frequency and  phase responses  of a dynamic sys t em described 

by Equation (19), with c=O. 

It is convenient to introduce the pa rame te r  X E Po/Ko to  descr ibe  the s 
fo;c:ing ariiplituclo, and ff 2 J /K for a measure of  tho damping capacity. 2 0 

F o r  a = 0.1, amplitude response  curves  are shown in F igure  5 for  

s eve ra l  values of X . 
sys t em is undamped. 

In the lower region of the figure,  where E< - Xo, the 
8 

Typical phase reeponee curves  a r e  shown in F igure  6 .  

F o r  each  value of Cy, the peak response amplitude is a nonlinear function 

of the forcing amplitude. 

Figure 7. 
This  is evidenced in the r e t  of curves  shown in 

The corresponding shift in frequencier ir shown i n  Figure 8. 

Exper imenta l  data  on peak reeponee and on frequency rhift  correrponding 

to  the ene rgy  direipat ion curve of Figure 3 for  the Sa turn  I model a r e  a l r o  

plotted in F igu re r  7 and 8. 

Simi lar i t i e  I between experimental  da ta  end theoret ical  r e r u l t r  indicate 

that  the inherent  nonlinearity of the hyr te re t ic  force  -deflection re l s t ionrh ip  

can be re rponr ib le  f o r  the obrerved nonlinear re rponre .  

. 15 
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Figure 5 - Forced Vibration Amplitude Response Curves 
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Figure 7 - Peak Response Amplitude V B  Force Amplitude 
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where 

and substi tuting 

o r d e r  equations 

Section 4 

FREE VIBRATION 

The equation of motion for  the free  vibration with both viscous and 

hystcrvt ic  typcs of damping is formally obtained by sett ing the excitation to 

z e r o  in the equation for  the steady-state 

(35) 
2 1 

X t 2 5 W 0 X  +OoX t m H(X, X) = 0 

A solution of the f o r m  

may  be obtained by the method of Kryloff and Bogoliuboff (Reference 9). 

The t ime-varying functions x ( t )  and @(t) a r e  defined such that when 

cos[wot - (j(t)] = 2 1, the express ion  (36) w i l l  yield the c o r r e c t  values of X(t) ,  

and s u c h  that between successive peaks of X(t) ,  both X(t) and 8(t) v a r y  slowly 

and monotonically. 

Imposing upon the two introduced functions % and 6, the re lat ionship 

X cosV t 8Z sinUl = 0 ,  

the r e s u l t s  into the original equation of motion, two first 

a r e  obtained. 

x' + 2 5 w o i  s in2v = - H s i n v ,  

(37) 

20 



and 

6 = cw0 sin2'Vt C O S V .  
m woX 

A f i r s t  o r d e r  approximate solution of Equation (39) is 

Let 

so that  

and expand the function H 

o =  e t .  

- - @o - e ,  

'p = olt ; 

in\v i n t o  a Four i e r  e r i e s  

LMSC/HREC A783975 

(39) 

(40) 

M -- 
H s i n y  = A~ t C A ~  c o s i v  t B~ s in iy  . 

i= 1 

The coefficient A is given by the express ion  
0 

2n 

(43) 
1 DO 

*O = il/ 2n moo H(X cosy,  ooz s inv )  sinu! d v  = E 0 Iz = - 27r mooX 
0 

The solution z(t) may  be obtained by integration of both s i d e s  of Equation (38), 

and can be put into the following fo rm:  

The  logari thmic dec remen t  is given by 

21 
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. 

In  genera l ,  D is not proportional to T so that  6 is not a constant for  
0 0' 

the d e c a y  ol f r ee  vibrations of s t ruc tures  with hys te res i s  damping. 

T h e  frequency, o l ,  i s  s t i l l  to be determined. 

(41) ,  this  amounts t o  finding 8, which is the average value o f t h e  quantity 

(Suo sin2v - H cos\v/mwoz) and is jus t  the constant of the Four i e r  s e r i e s  

expansion of the second t e r m  

Refer r ing  to Equation 

0 

According to  Equations (24) and (41), this is equivalent t o  

or, 

2 i f  a small t e r m ,  8 , is omitted. 

Equation (46a) is der ived to  show the s imi l a r i t y  with Equation (33) 
which is a n  express ion  for  the forced vibration natural  frequency. 

putational purposes ,  however,  Equation (46) should be used.  

F o r  com-  

22 
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Section 5 

RANDOM VIBRATION RESPONSE 

Bccausc  of the cu r rcn t  in te res t  i n  random vibrations and the i r  effects 

on aerospace s t r u c t u r c s ,  the mean-square  response of a hysteret ical ly  

damped s y s t e m  to "white noise" excitation w i l l  be investigated. Unfortunately 

exact solutions for  the mean-square a r e  not available for the h y s t e r e s i s  loops 

of in te res t .  An approximate solution w i l l  be obtained following the method of 

equivalent l inear izat ion employed by Caughey (Reference 10). 

The equation of motion is of the same  f o r m  as Equation (19) Le . ,  

1 X tpX tu2 t- H(X,Xj]  = N ( t ) ,  
KO 

0 (47) 

where N(t)  is "white noise" with spec t r a l  intensity @. 
rewr i te  Equation (47) as,  

It is convenient, to  

X t fl  X t m2 X t A ( X , X )  = N(t)  . (48) eq  e q  

The method of solution is to  minimize the mean-square  e r r o r ,  EA2 
with r e s p e c t  to  o 
with Equation (48), ignoring the A t e r m ,  then becomes the approximate 

solution of Equation (47),  Le. ,  

and f l  The known mean-square  response associated 
e q  eq '  

Solving for  the e r r o r  A(X, X),  

23 



2 2 

) x t ( m o - w  2 2  ) x t -  O0 H] . 
eq KO 

Minimizing with r e spec t  to  o2 and fl  yields,  
eq e q  

EX11 
K o E X  

m2 E X H  
0 = / 3  t 

K E X 2  
0 

@e 9 

2 Solving Equation (49) for  U2 and normalizing by u X 0 ’  

2 where u is the small vibrat ion mean-square  response ,  
0 

Represent ing  X(t)  by, 

X(t)  = Z(t) cos(&) t - cp(t)) , 
e q  

(53) 

where  and (i7 are slowly varying random envelope and phase functions 

respec t ive ly ;  then the expectations E XH, EX H, E X and E X2 can  be solved 

for i n  t e r m s  of conditional expectations E[XH I%< x 3 ,  E[XH l x  > w 1, - - - - - - ,  
E [ X 2 1 ~ c ~ ] , [ E X 2 ( R > ~ p ] .  P 

2 

P P 
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Then, 

where:  

EXH = E E [ X H % < %  [ I p J 1  p t E X H z 7 z ] p  [ I p 2  1 

As assumed e a r l i e r ,  z << z so that, 
P 

Under this  res t r ic t ion  the necessary  conditional expectations a r e ,  

-oe XI,  
E[kHIZ] = 2 , 
E[XZ(%] = 2 ,  x2 

where:  I and I a r e  given by Equations (24) and (25). 1 2 

If the nonlinearit ies are small then i t  is expected that X(t) w i l l  be near ly  

Gauss ian  so that  the probabili ty density function of can be approximated by, 

25 
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2 2 
E X  = 8 

2 2  EX2 g weqOX . 
The solution of Equations (52), (53) and (54) has been obtained for case  

(b), Le. ,  fo r  a s t ruc tu re  which follows the hys te res i s  damping law of 
Equation (1 1). 

Jn n Z t x  Jn n %;-I 

- -- Jn  n Zp-1 
n-2 

n > 2 ,  
X < Z  P +4n-2 I H ( X , k  > 0 )  = - - 2 - n-2 tTT-' 

H ( X , k <  0 )  = -- Jn n ( ~ ~ ~ 7 - l  - 2 n-2 

As expected, bothw2 and f l  a r e  functions of the mean-square  response ,  
eq e q  

and a r e  given by ,  2 

26 
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where: 

0 

The simultaneous solution of Equations (63) and (64) together with 
2 

x 0 
b:quation ( 5 4 ) y i ( . l c 1 s  11w i i i t *a t i -sqt iar t -  r i * ? i p o n s t * ~ 2  /U vorsus  the! nonlinear 

paraii ictcr ,T u 
r e su l t s  a r e  shown in F igure  9 for  B/oo= .01 and s e v e r a l  values of n between 

2.1 and 3.0. F o r  small nonlinearit ies there  is a beneficial effect due t o  

hys t e re s i s  damping. F o r  la rge  values of the nonlinear p a r a m e t e r  the mean-  

square  response  i n c r e a s e s  and eventually exceeds the l inear  case (0  /U > l ) ;  x o  
however,  for  this range of nonlinearit ies the approximate solutions would 

re qui re  additional verification. 

n-2 
/KO. A numerical  solution has been c a r r i e d  out and n o  

27 
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Figure 9 - Mean-Square Response vs Nonlinear Parameter 
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Section 6 
CONCLUSIONS 

It has  hccn delincated that the presence of hys te re s i s  damping impl ies  

a nonlinoar forcc -dcflcction relationship. 

vibrations with hys t e re s i s  damping can be achieved i f  th is  nonlinearity is 

p rese rved  in the dynamic equations. 

the i r  approximate solutions p re sen t s  no ma jo r  difficulties. 

Analytical  consistcncy of s t r u c t u r a l  

The ac tua l  der ivat ion of equations and 

The proposed hys t e re s i s  model thus affords additional means  fo r  

analyzing the dynamic behavior of complex s t ruc tu res .  

29 
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