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ABSTRACT 

This  paper i s  a genera l  survey of t h e  ways i n  which low 

order  pe r tu rba t ion  theory  i s  u s e d  i n  quantum mechanics t o  

determine the  energy and other  p r o p e r t i e s  of molecules.  The 

va r ious  types of mathematical  problenis encauntered a r e  d iscussed .  
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Now Fills  Thy Sleep With Perturbati0.n (Richard 111, Shakespeare) 

It is easy  to write down a Harrliltonian operator such that its 
eigenvalues give the  energy of each  of the  allowed states of a 
molecule and such that the corresponding eigenfunctions determine 
the probability density of single electrons and clusters  of pairs, 
triples, etc. in electron configuration space. To  solve such a 
Schrodinger equation is comparable in difficulty with the  classical 

I moons,, comets, etc. in  the solar system. Clearly the solution to 
t such problems must b e  approximated by the u s e  of perturbation ser ies  
t and variational procedures. Theoretical chemists are trying to 
; develop suitable methods of solution. Some of the difficulties which 
they encounter could b e  overcome by the use  of techniques whichare 
known by the professional mathematicians. It is the  purpose of this  
symposium to open up a communications channel between the theore- 
tical chemists (who have the  problems) and the  mathematicians (wh6 

1 

problem of determining the precise orbits of each  of the  planets, i 

3 

1 

' can  diagnose the problems) . Actually, many of the  new develop- 
ments in  spectral  theory are closely related to our practical problem 

i Thus, we have mutual research interests. 
'We hope that the  development of new mathematical methods 

: and the  availability of high-speed computing machines will make it 
' feasible  to calculate expectation values of the energy and other 
properties of molecules with a precision at least comparable to 
corresponding values obtained by laboratory experimentation, Pre- 
ferably, we should calculate  both upper and lower bounds for each  
property-in order to establ ish the reliability of *our-theoretical esti-. 
mates. However, there are  a number of mathematical difficulties 
which must be overcome before we can  succeed in  our practical ob- 
jectives. We want to thank you for coming to this  Symposium and 
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helping us to I1overcome" I 
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I will try to  outline the tvays in  which perturbation theoiy is .' 
used in molecular quantum iriechaiilcs and point out some of the 
mathematical problems [ 11 ' 

promising approaches to rrio d a i  ciuanluni mechanics. It has  the j 
great advantage that !.ha i l i l  oncll t ' x m  of the perturbed wave lunc-;  
tion is shaped by the perti-irldion itselj.. Frequently, sufficient 

Peuturbalion theory is one of the most 1 

1 )  

accuracy is obtained from cvr31) I he lirst-order perturbed wave func- 
tion. From such a function, ?tie eiieigy can  be computed accurate 
through the third order and ilrie expectation values of other properties 
can  be obtained accurate through the l i r s t  order. 
function accurate through the i;-th order peiinits the energy to be 
calculated through the  1 2n -C 1) -51. order. 

i. REASONS FOR RECENT SUCCESS 
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Indeed, the  wave 

1 ,  

1 1'. 

j 1 ' ,  
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Recent interest iii perlurbaLjorl theory has  been sparked by * 

; i ' i  

1) A number of methods can be used for the direcl: solution ; 2 1 

four considerations : ; 20 

of the perturbation equations. Formerly, the solutions of the per- . 2,: 
turbation equations were expressed in a spectral  representation as : 1; 

I 2 'i a sum over the  discrete energy states and an integral over the con- 
tinuum energy states of coefiicients t i m e s  eigenfunctions of the un- ,  ' - ? G  
perturbed Hamiltonian. Uniortunalely, in m o s t  molecular problems, - 

L :; i t  is difficult to construct a satisfaciory unperturbed Hamiltonian I 2 3  for which we know the complete set of eigenfunctions and eigenvalu&s.Lo 
Thus, the spectral  represeiitaiion iormalisrn was seldom useful. In- i 3q 
stead, we now seek direct solution t o  the inhomogeneous differential 3 1  . 

equations are separable and the soiutions can  be obtained by quad- I 3 3  
rature. However, more frequently,  the solutions are approximated 1 { q  

' :t, 
2) Good variarional principles are available lor both upper I , ., 

and lower bounds to particular orders of perturbation energy. These :  3 s  
principles are generally applied to appropriate ti-uncated function j , -3'1 
sets. The resulting optimuiii linear combinations provide approxi- i L i  0 
mations to individual terms i n  the perturbed wave function. ! 

theory is not limited to  this ?ype of application. Every general var-;  43 
iational principle applies separately to each individual order of per-1 44 
turbation. Thus, the Rayleiyh-Ritz variational principle leads to - *  I 1 4 n  the Iiylleraas principle which Gives an upper bound to the second i 1 ;  order energy. Similarly, [.he v a , ~  iatioiial princip1.es associated with ; 
the virial, hyper-virial, and Helln~aiiii-Feynmaii theorems are useful;  
in perturbation theory. 

7 I- 

or diff erential-integral pei-tuiiiatj on equations. Sometimes these  1 3 2  

by the dse of variational principles. 1 35 

.) I 

However, 
the relationship between variational principles and Perturbation j '12 

~ 

! ~ 

4. 1, 
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3 )  The Dalgarno "inlcrci-zmcje theorern" can be used for ' I -  

calculating propeflies other h a ~ i  e n e ~ g y - ~  
the calculations of the f i r s t  01 der coi-i-~~ction to tiie expectation 
values which result from the lli~adiiessli OT t b  approximate wave 
function, The only pel-turbar io11 t:quations: whic,li must be solved , - 1  

involve a real  or ficti'iious exi e r ~ i ~ , i  rerturbatim, and not the internal 
perturbation. Since the externai perlurbation is usually the sun1 of 
one -electron operators, Lhese equakions may be easy  tu  solve, 
Without the Dalgarno "interchancre theorem" i t  would have been 
necessary to solve much mole cli.~Jii,uli pex turbation equations in- 
volving two-electron repulsion tenns. The first order correction to : ! ?  

the physical properties should  I-esulz. in considerable improvement I ' 
over the zeroth order expectaticm values wh.~cli have previously been 

l i t t le help in  calculating the sc :cc~~icI  ct-cler and higher corrections, 

'T5is greatly simplifies 
! , 

Jl  

;', 

, r :  
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available. Unfortunately, the i i l l  crchai-igje lheczrein provides veiy 1 ' 1) 

j I *i 
, , 
I 0 

J 

4) Wigner showed Lhat l f  we know the wave functions 
accurate through the nth order tho,ii we can calculate the energy 
accurate through the ( 2n-1.1) s t  order- T h i s  theorem is obvious, ) .: i 

' ',4 

: 2 c  

) .: 2* 
- ' I \  

s ince an error of order ( n -I- 1) i:? Lhe wave function produces an 
error of order ( 21-14- 2) i n  the  expect alior: value of the energy, Thus, 
i f  we know the wave functioii accurclie tlirough the first order, we 
can calculate the energy accurate .t-lii.ouyh Lhe third order, For many: 
chemical purposes this may be sufficient. 

11. APPLICATIONS OF PERTURBATION TI-IFORY 
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Perturbation theory can J ~ O W  be applied lo a wide range of 

1) The calculation of i~~o!ecular energies and the improve- 

2)  The determination oi: t he-independent molecular 

3 )  The determination of properties of molecules in external 

4)  The calculation of transjtion probabilities and off -diagonal 
matrix elements. 

j j 

3 3  
, ,  4 .: 

! ; n 

problems : i _ ; L  
! 

-, .a 

J .  
ment of approximate eigenf unctions 

I 1 7  
: ' 

properties. ! ' 1 J ?  > \  

I 

'3 I 

1 ,! ' 
fields. i t 0  

. 

6)  The splitting of degenerate enel-gy s ta tes  due to both 
- 1 .I ; 

i i , ,  

7 )  The derivation ai "su in  i-~iles". , 1 ' )  

internal and external perturbations. 

I 

8)  The derivation of vai-ic7 t5onal. principles associated with : 
- 1  

6, 

perturbation theory, 
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i. 
1 Since the inception of qtlaiitum mechanics, perturbation 

theory has been considered the appropriate tool for dealing with the 
t effects of external fields,wiih the long range interaction between 

atoms and molecules,and with the small internal perturbations such  
as those that give r ise  to  the fine and hyperfine structure of spectra 
lines. However, it is only recently thai perturbation theory has  
been applied seriously t o  the fundamental problems of quantum 
chemistry which are concerned with the binding energy and with the  
structure and physical properties of t h e  molecu1.e~. For such appli- 
cations, the perturbations involve electron correlations and the 
perturbations are frequently large. 

111. CONVERGENCE 

A great deal of research has been done on the nature of the 
eigenvalues and the eigenfunctioiis of the perturbed quantum mech- 
anical operators. Friedrichs, Rejto arid others will discuss  this  
interesting topic in considerab1.e detail. For most of our molecular 
quantum mechanical applications, the bas ic  theorem of Rellich [ 21 
and the corollary of Kat0 [ 31 provide a justification for the use  of 
perturbation theory [ 41 e 

RELLICH (1939) TEiEOREIvl: 

! If H, is self-adjoint and if  4 is any function in the 
' domain of' H,, then the Rayleigh-Schrddinger perturbation 
. ser ies  converge €or E (  h )  and Q( A )  for sufficiently small 

values of h provided Lhat two constants a and b exist 
such that 

I <V+IV+> - < aqHo+/Ho+> -k b < + l + >  I 

! 

- KAT0 (1951) COROLLKlY: ! 

I I 

The Rayleigh- Schrddinyer perturbation theory applies (for 
sufficiently small A )  to any decomposition of the electro- , 

crystal into two parts, H, and X V ,  
static Hamiltonian H for  any atom, molecule, or finite 

I 
i 

H . = H  + h V  
0 

. . . . . . . . . . . . . . . .  
provided that no nevi sirngularities stronger than Coulombic I 
poles are introduced. i 

i 
i 

._ . . . . . . . . . . .  - . . . .  - . .  
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IV. THE BRILLOUIN-WIGNF,R AND RAY.LE3CGH-SCHR6DINGER 
PE RTU RB AT10 N E QUAT IO N S , 

There are two principal types of perturbation theory which 
can  be used: Rayleigh-Schrbdinget and Brillouin- Wigner. The two 
procedures have much in  common. In both? the Hamiltonian H for 
the perturbed system is spli t  into Ho, the  Hamiltonian for t he  un- 
perturbed system, and X V, the perturbation potential: 

H = H  t X V *  
0 ( 1) 

! 

We fix our attention on the  nonbdegenerate [ 51 energy state "0" 
I which has  the  perturbed energy E, and the wave function Qo, so i 

that  ! 

1 

We assume that Eo and Qo can be expressed as power ser ies  i n  
the parameter A , writing I 

It is supposed that we know the wave function +o = +e) and its 
corresponding energy Q = E ( O). Thus, 

0 0  

! 

The Rayleigh-Schadinger and the  Brillouin- Wigner procedures then i 
differ i n  the  manner in which they resolve the  Schr6dinger equation. , 

[ 6 1 :  I 
I 

- .  . . . .  - . _ _ _  .. __I__ - -  
RAYLEIG H- s CHRO DI NG ER 

. . . . . . . .  .................. .-.o-............... - 
03 

' (k) (n-k) 
." c E o  LCI, 

d k = l  - 
n=l 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . .  . . . . . . . . . . . . . .  - .... - I - 
()I;,; ... 

. . . . . . . . . . .  .. - . ............ -. ..... I . . . . . . . . .  

' I , .  ' l  



, BRILLOUIN-WIGNER 
> I  

I 6 ! I  
j Z. 

i t i  
If these  equations are to remain valid as the perturbation parameter 1 .: 
X I <: 

Rayleigh-SchrCldinger and the Brillouin- Wigner perturbation equations: J t) 
I 1 1 7  

is varied over a continuous range of values, the coefficient of 
each  power of X must be individually zero. Thus, we obtain the  j ;  

: WLEIGH-SCHR~DINGER : 1 1 I! I 

: BRILLOUIN-WIGNER 

, .  

, 
. ,  

I '  

' ; J.30 The more familiar forms of the  Brillouin-Wigner equations may be 
( ( I 3 1  obtained by expression +on) and ton)  in terms of the complete j 3/? 

set of eigenfunctions $k and eigenvalues Ek of the unperturbed i 3 3  
Hamiltonian H,. If we let Vjk = <+, / v \ $ k > ,  then . j 3,; 

I 55 

I 

and . 

i ' ............_...,.. . . .  - . . . .  I .  . . .  . ....--........ ̂..................... 
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b 

.... 

I . .  , 

/ .  

The prime on the summation sign indicates that none of the  
j l ,  j , ,  .... j n  should equal to "0". 

more difficult to solve than the Rayleigh-SchrOdinger. First, we do ,> 

since Eo is not known in the beginnin , tr ial  values Eo 

, I  

If we do not know the complete set of unperturbed eigen- t 

, 
!J 

functions and eigenvalues, the Brillouln- Wigner equations are much 

I <,  not know a solution to the honiogeneous equation (Ho - Eo) +in) = 0 
of the Brillouin-Wigner Eq. ( 9 )  , 

used- in  Eq. ( 9 )  . Thus L$,*) and EA nP are obtained as [ 73 funct ions 1 

: of Eo Finally, the correct value of Eo is determined by requiring i L 
the  satisfaction of Eq. ( 3 )  Thus, the  direct solution of the Brillouln-! j 

Second,? for m o s t  praztical problems, 
must be ' Cr 

. c  Wigner perturbation equations is unwieldy. As a result, very few of ! 1 

i >  
, i 0 
; i ?  

i I! 
i . <, 

In contrast, the direct solution to the Rayleigh-Schradinger 2 3 
Eq. ( 8)  is more attractive. We know a solution +o to the  homogeni 2.:  

the  new developments utilize the Brillouin- Wigner treatment. ! 

, , .  

i 

V. DIRECT SOLUTION OF THE RAYUIGH-SCHRUDINGER 
PERTURBATION EQUATIONS 

.-. 
. >  

eous equation ( Ho - E = 0 corresponding to Eq. ( 8 ) .  As  a ' L. ) ;  

result, we can  u s e  t h e  of Wronskians,Green's functions, or : b  
,- other well-known techniques to solve the inhomogeneous equation, I 

For example, as Dalg,arno and Lewis have suggested [ 81, i f  V is a I 2;-  
real  Hermitian o erator, we can define a set of real  scalar functions' 2')  

' :  j J, i 
I ? f J  

I ,  a , Fn  such that  +Cn) = Then Eq. ( 8 )  becomes I 

I 

Furthermore, i f  Ho has the form 
, I  

I 1  
2 '. 

'where Uo is a scalar  function (which therefore commutes with Fn ),, ; 3  
e 

then Eq. (10) can  be expressed in  the form c I . 4  

, :'> 
If Eq. (12) is one dimensional or separable, it may be integrated by , - - -  - _ .  _ _  _. - _ _ - - -  - __.I__ . I  

quadratures . i ;  

... . . . .  . . .  - ............ - ................ __^___ _. 



In order to complete the specification of the functions Fn it 
is necessary to specify the normalization of the wave functions [ 91. 
If we require that Qo, as well as +o, is normalized to unity, then 
it follows that 

(13) 

or 

1 

:( 14) 
I 

Here 
then 

, I  . 
I ,  

For a problem in  one-dimensional Cartesian coordinates, 
! 

Sn( x) is the right hand side of Eq. (12) .  If Go has  nodes, 
Fn can  have poles a t  the  nodal points [ 101 If the  nodal point 

:are at Jc = ai, a2, . . b , a1 and we let 

I 

:then Eq,  (14) should be replaced by 
! I 

1 
I 

k - 2  a 

J s (x") dx" , n 
-a3 

The same result may be obtained by replacing the integration over x 
'in Eq. (14) by a contour integral following any path between -ob an 
x which avoids the nodal points which occur on the  real  axis. 

If Eq.. ( 12) is not. separable and \cl0 has  complicated nodal.. 
'surfaces, the integration of Eq. (12) may pose some interesting 
mathematical problems! Clearly, one would never u s e  the Dalgarno 
Lewis substitution $in) = F 9 
suggests that  we express the n-thiorder perturbed function as 

for such a case. Instead, Bmeckner 
I n o  
i 

I 



/ 

.. . 

- .  

where the  function Gn is chosen so as to properly shift the nodes of 1 

the  wave function a s  a result of the perturbation. Eq. (16) takes  , l 

advantage of the fact that the wave function and its gradient cannot , a; 

simultaneously vanish. Brueckner and Gammel [ 111 have used e s sen -  
t ially this  form of L $ ~ )  in connection with the theory of finite nuclei. ~. i 0 

VI. THE FIRST ORDER WAVE FUNCTION 
I 

i I,: 

j i 3  
, 1 '  

If we know a zeroth order approximate wave function, we ' 1- 

1 '  

know the energy accurate through the f i rs t  order. The first order 
perturbation equation may be written 1 I ' i  

i 1s 

I 1 )  
1 9 -7 

, 3 .  ; 1.. I 

I '',I 

, L -! 

1 ,  

If we multiply Eq. (17) by 4J* and integrate over all space, then .., I 
1 since H, is Hermitian, it f a lows  that 

and therefore, 
L 

1 31: 
1 j ') 
! : i  

Indeed, the expectation value of the perturbed Hamiltonian corres- 
ponding to the zeroth order wave function is , * t  1 ' ; t  

, 1 !, , -  

I .  
1 , .^. '! 
, .~ i: 

, 

If now we solve Eq. (17) for +L1), then we can  obtain the energy 
accurate through the third order. In order to see why this  is true we: 
need to consider the second and third order perturbation equations4 

I 



it follows that 

( 22) 

' G  

Similarly ,f we multiply Eq. ( 21) by 4: and integrate over all space' ! (i 
we obtain , i i  

i CI Now we can make use  of the Hermitian properties of V and Ho, tod 
'gether with the  normalization condition for $4 l)  and Eqs. (17) and 
( 2 0 ) ,  to perform the following chain of relations: 

I 

j 

It follows that the expectation value of the energy calculated with 
the wave function +o Is given by 

I 0 

! 

1 
Eq. ( 2 5 )  is an example of the general Wigner theorem that a wave 1 
'function accurate through the  n-th order.gives .the .ene.rgy. .ac.curate.. . 1 
':through , the ( 2 n  t 1) st order. \ ; '  i 

I 
i 

From a formal standpoint, it is very e a s y  to-express 
and ( n )  in  terms of the resolvent I 

............ . . .  . . . . . . . . .  - -  . 
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i 

A, 1 I 
, .  ' . ,  - >- ! . .  

. I  

1 -  l+o"+ol 
R =  

t - H  . 
0 bo 0 

I I 6 
I Or, if the +. and the E form the complete set of eigenfunctions I -/ 

and eigenvajues of Ho, then the +A n, and E: n, can be  expressed 8 
in terms of the  equivalent spectral expansion. Thus: 1 9  

I i o  
! ! 

. (  26)  j 

i 
I 
! 

'oj 'jo 

c o ' 6 j  

! I 
1 

I E ( ~ ) = < +  IVR V I +  > ! =  
0 0 0  , : j  0 

i(27) i 
I 

Here : 
I 

The summations correspond to a sum over all of the discrete states 
and an integral over the  continuous energy states. The prime indi- 
cates that the state lloll is omitted. The double prime indicates tha t ;  j0 , 

the s t a t e s  with k = o and k = j are omitted. From Eq. ( 2 7 )  it is I 
32 : ea sy  to see that E; 2, is necessarily zero or negative if the  state 

3 4 
; 11'()11 is the ground state. 

We know the complete set of eigenfunctions and eigenvalues 1 
for the unperturbed hydrogen atom and for an unperturbed simple har- 3 6  
monic oscillator. Unfortunately, there are very few other practical 3- l  
:cases where we could use  such a spectral  expansion. Thus, we seek 3 3  

In many perturbation problems we are given the Hamiltonian H . t i )  

[together with an approximate wave function +o. We are asked to ! 4 I 
:determine, as best  we can, the energy E and the wave function XV 42 
for the system. In order to put this  problem in the framework of pertur-'{' 
bation theory, it is necessary to determine a zeroth order Hamiltonian 
Ho . The operator Ho is neither unique nor obvious. Epstein will 
d i scuss  the optimum determination of H, If +o :is a' function of the  

' spat ia l  coordinates and does not involve spin, then we can write do*n 
the Sternheimer Hamiltonian, 1 , 

1 2' )  

I 1 3 3  

:explicit solutions to  the pertu&ation equations. ' 3 9  

i 

46 
~ 

I 

I I 40 

i ,- 

2 ,  



I+~(') should form the  basis to the representation of the permutation 
>group corresponding to the conjugate Young diagram [ 121. The exact 

3 2  
3 3  

. 

( 2 9 )  
! I 

:where 1 

( 3 0 )  

I 

1 
* '  
i' , 
'; ! ' I  

0 

j I O  
1 11 ' 12 i 13 I 14 
1 I S  

i i 

;Thus, we have the  obvious identity, 
I 

, 
I I :  

h + = c  + . 
0 0 '  0 0  

I .  

! 16 
7 

j i t j  

[ 2 0  

If we require that our zeroth order Hamiltonian have a local potential, 
, then the zeroth order Hamiltonian Ho I is uniquely equal to ho . 

If H is spin-free, then for  a many electron problem, $o can' 
;be written as a sum of spatial  functions +j( r) multiplied by spin - 
functions Xj (2 )  : ' j 2 1  

I 
! . * *  j 2 2  

-. ! 

i. . 
, ,  
i. . 

. . .  , 

I 

j(33) j 
! 
i 
! I 

3 7  
3 3  
3 9  
40 
4 1 
42 
4 3 
44 
4 5  
4 0 

,This suggests that  we should be able to develop a spin-free pertur- 1 
,bation expansion of a particular @ j (  r 1 starting with the correspondL 
'ing 9. ( r ) as the  zeroth order wave Function. The corresponding 
'Sternheimer potential is then ~ 

i ' 1 I",'; 

1 , I ;  
,.........,........... .. .. ......~.............-..*............................. 

( 34) 
! 
I 

4 7 
4 ri 



In mos t  cases, the different (p j (  r correspond to different zeroth 1 

'order Sternheimer Hamiltonians go. As a result, it may be necessary 
to use  projection operators to  insure that the various orders of per- 1 

turbation of a particular +,( r )  have the symmetry with respect to 1 
i 

i t  
permutations corresponding to the  required Young diagram [ 131 , VII. NON-LOCALPOTENTIALS I I . 

It is possible to change the whole character of a perturbatiori 
problem by adding different types of non-local potentials to the  1 
Sternheimer Hamiltonian, For example, we could add "energy-shift": 
operators to form 1 

1 

I I I '  8 I f1 
H = h o t  a i l+k>K+kl  1 1-i 

' k :  j 18 
' ic! 

0 
'(35) ! 

I ! 

i 
1 

Then if  the ( J k  and Ek are  the  eigenfunctions and eigenvalues of I 2 o  
' the  Sternheimer Hamiltonian, ho+k = f: k + k ,  the  eigenfumtiorrs of , I  2 
gH0 remain unchanged but the energy values (except for the state llc)ll) :; 

i , 2.; 

1 1  

I I " 2  
I :are  shifted: I 1  ; 

8 ,  
I 3  . .  

= E  II, and' k L# = ( E j  + Ho+o 0 0 j I O !  
' ( 3 6 )  j 
I 
i 
I I '  i Z h  . 

lis follows that ! \  1 3 0 .  
;If we u s e  Ho as our zeroth order,Hamiltonian, then from Eq. ( 26) 20 

I 3 1  1 ,  ' I I j t  . 

- (1) _ I  z1 'jo+j 
$0 - 

j 
( E o  - aj)  - E 

j 

I 3 2  
j 3 3  
! 3 4  
i 
1 3 5  

'Since & j  is orthogonal to +o, the  perturbation k V  can  be  either ' 3 6  
3 7  :equal to H - Ho or H - ho , If we choose all the constants aj equdl i s  

! E  - E , then our Rayleigh-SchrUdinger perturbation equations become i . 
:equivalent to the Brillouin-Wigner. However, in principle, it is 1 ' i: 
possible for us  to choose each of the so that the  exact wave 1 ,11 I aj 
ffunction is equal to $o tA+J1) .  ' 42 
I 'Feenberg has  suggested the  use  of "Change of Scale'' 1 43 

i 45 
I I I -1 I ,  

I 

:operators, For the  zeroth order Hamiltonian we take  i .; ,: .... )...........,.. ~ . .  ^....._ . . I  " .-... "...*....-...I..................... 
I 

i i H = h  t ( y ) ( h o - f o )  1 -c  
I 

0 0  J 38)  
1 , ! I )  

' 3 i i  

I 

where c is an arbitrary constarit.1 --Here again, the- $j--remain __ - 
I - .  j -- - I 

_ _  ___I_ ____^I _-I---_____--_ ----I- _ _  

I \ ( - ( >  

_ -  



i 

i 

i 

i 

eigenfunctions of Ho . However, 

(39 )  . 

Then it follows that 

i 1 -; 
Thus, the change of scale operators have the effect of multiplying j.: 

the first  order wave function by a constant. The constant c c a n  be i 5 
varied so as to optimize the expectation value of the energy calcu-  , 

la ted with the sum of the zeroth and first  order functions. Dalgarno . 1'; 
1 ;> 
1 r, 

VIII. THE HYLLERAAS VARIATIONAL PRINCIPLE j L 0 
2 ;  

I -  

and Stewart [ 141 have used this variation to good advantage. 

% l  I ,- 

i '  
If the first  order perturbation equation is too difficult to 

solve exactly, we can  make use of the Hylleraas vari.tiona1 principle I_ *' 

to optimize an approximate first order:wave function $41) 
Hylleraas principle states that for the ground s ta te  (or lowest energ: 

The 

state 0: a given symmetry)  

where 

-0 The proof of the Hylleraas principle is very simple. If 
expectation value of H calculated with the wave function +o t A+ 
then it is easy to show that 

is the  

0 

3 N 

. . . . . . . . . .  E = Q i- AE")  i- h 2 T ( 2 !  i - - O ( L . ) - - @  .................. 0 0 0 (43)  

This is to be  compared with the expansion of the exact energy 

. . . . . . . . .  . . . . . . . . . . . .  
L-. . i 

. .  



By the Rayleigh-Ritz variational principle, 3 the  state t tot '  is the 
lowest energy state of its symmetry, then E > E .  The Hylleraas 
principle follows . 
principle so that i f  a wave function for a ground s ta te  (or lowest 
energy s ta te  of a given symmetry) is known through order (n-1) ther 
an approximate n-th order function T i n )  can  b e  optimized by using 
the variational principle 

- 
Sando and Hirschfelder [ 151 have generalized the Hylleraas 

A451 , 

:where ( using the  normalization condition of Eq. ( 12)) 

I 

I n-1 n-1 
- € ( j  

! 

i= 1 j =n-it1 
i 

E. THE ELECTROSTATIC ANALOGY 

: A S  
1 (1 

I 30 
3 i  , 3' 

i 

I 3 

i 

I A- 

..I 

, 
' ,  

of the first  order perturbation equation 
Prager and Hirschfelder [ 161 were impressed 3y the sirnLarity 

I 1 3 2  
I 3 6  
\ 37  

I j 3s 
0 )+o 

' 3'1, 
'and the electrostatic equation I 40 

' (  48) 
I I 4 3  

I 

2 ( 1) 
I 

i (47)  I , V * ( J c o V F 1 ) = 2 + o ( V - ~  

, 

.: : 
'1 ,' 

, v (K v +) = - 4llp . . LI 

(To make the analogy: F1 corresponds to the electrostatic potential .;-i 

C+ ; the  J r o  corresponds to the dielectric constant k ; 'also ' - ( 4 7 ~ ) - 1 e r )  ':' 
!corresponds to the electrostatic self -energy of the charge distribution i b  

- 8 .I -: 
'U = p4d-r ; and - V F  corresponds to the electric field strength' ;!< 

4 (> 

, 5 0  

2 

1 
1 

= - V + .  Thus, we can use in perturbation theory.the Thomsoni, : 
- .  I - - - __ -- - - _- - -- - - -- , -- --  - _  - - _  -- I -- 

} 5 , 
, I  I c >  

1 1 .  

- J  -) 

- - __ -_ - - .-I L - - -  - 
..I 



* .  

. .  

! 
I 

, -  

and Dirichlet variational principles which were originally derived 
for electrostatics : 

i s 2 n  approximate 
;electric field vector subject to the  condition 0. ( F & ) = 4np, then 

THOMSON'S PRINCIPLE states that i f  

$ 1  

, 
'The analogous theorem states that i f  
the  condition V* { +o G ) = - 

is a trial vector subject to 
2 -  V - l)) +o then 

I 2- - 
DIRICHLET'S PRINCIPLE states  that  i f  K +  V +  or +oFVF 

N N  
I 

apsroaches zero faster than the reciprocal of the square of the dis- _ _  
, t ance  in the l imi t  as the distance 'applyoaches infinity, then 

I 
I 

Actually, the Dirichlet and Hylleraas principles are equivalent. 
we set +A1) = a??+o i n  the Hylleraas principle, Eqs. (41) and (42 )  
and optimize the constant a ,  then we obtain the Dirichlet principle 
Eq. ( 5 2 ) .  

Dirichlet ( o r  Hylleraas) principle gives an  upper bound to the secoi 
order energy. These principles are particularly useful in  the calcu- 
lation of the polarizability. If an atom or molecule is placed in  a 
constant electric field, the polarizability ct = - 2t0 ( 2, when the 
electric field strength is taken as the'perturbation parameter. Let t 

consider a simple example: I 

If 

Thus, the Thomson principle gives a lower bound and the 

? 

I 
............ * <  i EXAM PLE: . - .  Polarizability of 1s Atomic Hydrogen 

2 I) 

e x p ( - r )  ; X = e  x 
-1/ 2 

lb0 = ( T I  
I t  



Thom son Principle: 

subject to the condition 

-2r - - 2r V ' [ e  G ] = 2 x e  . 
Let u s  assume the tr ial  field vector 

j 1 4  

\ 1 i l  

Iv 1 : G = ( r  + -)  t imes  a unit vector in  the x-direction. 2 ! . *  
I 

I 1 ,  

The Thomson principle then gives ' , 
I 17 

1 "  
Dirichlet or Hylleraas Principle: Let us assume that  F 5 ax.  Then, i f j  

> - 2.375 or a C 4.75 . 
3. : -  

N 

2;  -2r 
E C k  s x  e . d ~  = -  2 . 
0 - l T  

, L - 1  Thus, a >  - 4.00. 
Lr ,' 

I 2 0  
'example that 4.00 C CY C 4.75 . The correct value is CY = 4.50. If I ! I: 'I. 
!we had used more ZabGrate trial functions, it would have been / 2 8  

! 2 0  
s polarizability. Of course, t h i s  example is especially favorable s ince 3 0  

we know the exact solution for the system without the external field! 3 1 
'More usually, we only know approximate solutions to the zero field 1 3 ;  
1 problem and more complicated double perturbation procedures are re4 3 3 

3 -I 

3 c 
The Thomson and Dirichlet principles have shown for t h i s  

'possible  to obtain vew accurate upper and lower bounds for the  

' quired in  order to determine the polarizability ( see Ref. 26) . 
I I 3 5  

,X. THE EVALUATION CF INFINITE SUMS ! 3 6  
I 1 37 

i 

' 3 3  Dalgarno has  been very successful  in using the  techniques 
of perturbation theory in the  evaluation of infinite sumsI For 
a=, the  xx-component of the polarizability, can  be expressed in  
terms of 
tion ! 

1 3 0 

t ~ ~ ,  t he  x-component ofithe dipole moment, by the-summa 



1 -  
then we could use  the  rules of matrix multiplication to sum the series, ' 

1 5 
I .  

1 
, ( 5 5 )  

I I ! 1 1  
The term with the minus sign is due to the  fact that j = 6 is not in- 12 
cluded i n  the sum. In order to  determine the function F it is necesp- 13 
ary to solve the  differential equation : 14 

15 I 16 
l(56) 
! L .  

,If we multiply Eq. ( 56) by +; and integrate over all space, it is 
obvious that Fjo sat isf ies  Eq. (54 ) ,  I Thus, the difficulty of eval- 1 
uating the infinite summation has  been replaced by the difficulty of 

( Ho - o) F4J0 = I Px - ( Px) 001 +o 
I 

'r 13 

' solving the differential equation. 1 -  , s3 

i 2 @  

L z  

i 2.i I I 

;XI. CALCULATION OF ENERGY AND IMPROVEMENT OF APPROXIMATE 2 5  

I WAVE FUNCTIONS 
I 

One of the principal applications of perturbation theory is thc 
calculation of the energy and the improvement of the wave function. 
We are given the Hamiltonian H for the system. We are also giver 
. a  function 
mation to the eigenfunction of some state of the system. There are 
' four classes of examples which have been studied extensively: 

molecules. Here Z is the atomic number. 

i 
:wave functions and energy. I 

[potentials. Here R is the  separation between the molecules. 

powers of R. 

In the early days of quantum mechanics, Hylleraas showed 1 
cthat i f  the  SchrBdinger equation for an atom is divided by Z2 and 
' the  unit of length is changed, so that r' = Zr and the scale of energ 
is changed so that E '  = Z'2E, then we get  a new SchrMinger equa- 
tion. H I  ?( r') _=. E!T( r'.) where- : __I - __ - __ - - - - - - - - _. - - 

I rJh6 

+o which we are told to use  as a zeroth order approxi- 

1 
I 1) 

i2) The approximation of, and !improvement of, Hartree-Fock 

3 )  1 Expansion in powers of R'l for long range intermolecula 

Expansion in powers of 2-l for atoms and diatomic 

I 

f 

I 4) The "united atom" expansion of molecular energy in 
. * . . ~  . . . .  - I  ...... "..'.... . "  I .. I I .  

1 

I 

I 



, .,. 

. I. ~ 

(57) 

! L ,  

3 

i 3  

t 

< 

Thus, Z'l forms a natural perturbation parameter. The atomic hydro- 
R gen orbitals furnish the zeroth order wave function. The Rayleigh- 

Schr6dinger perturbation sequence seems empirically to converge for 0 
Z > 0.78 for two-electron atoms or ions. Charles Scherr will tell u s  1 o 
about his elegant work with Robert Knight on the 2-l expansions of 1 1  
atomic energy states. Matcha and Byers Brown [ 171 have used  a Z'l I ?  
expansion for considering the hydrogen molecule. For homonuclear i 13 
diatomic molecules, the 2-l expansion is carried out with p = RZ ! l4 
held constant. I 5  

'mate Hartree-Fock orbitals. Even low order orbitals give good approx- i 6 
imations to the values for the Hartree-Fock energy of atoms, Pertur- 

1 !i, 
bation theory can  also be used to calculate the correlation energy 

2 0 which is missing from the Hartree-Fock treatment. 

intermolecular potentials have been expanded in powers of R'l where 2': 
R is the separation.between molecules A and B . The Hamiltonian 2 3  
for the two molecule system is expressed as the sum of the Hamilton- L-i 
ian of A plus the Hamiltonian of B plus an interaction potential ! 2'; 
Vab. As long as the charge distributions of A and B do not over- 2 6  
lap, it is not necessary to consider the exchange of electrons betweenc. i 

' A  and B . zyj 

, A  lies within a radius ra and, similarly, almost all of the charge ' 2 ' f  
3 (i 
3 i 
52 For the interaction of two neutral molecules, the leading term in  the 3 3  

expansion of v a b  is O( R'3 ) and the usual London dispersion energy, 3 4  
-Cab/R6, is given by the second order perturbation energy. Dalgarno , - 
and others are calculating very precise values of c a b  which can  be 3 6  
used for a variety of experimental applications. However, the over-< 3 7 
lapping of the charge distributions in  the two molecules leads to terms 32, 

Cohen [ 181 has  used the 2-l expansion to approxi- 

, 1 ;  
1 ,1 

Also, since the early days of quantum mechanics, long range 

If almost all of the electronic charge density of molecule 

density of molecule B lies within a radius rb,  then i f  R > ra + rb , 
the  interaction potential vab can be expanded in  powers of R - l .  

.s 3 

which vary as exp  ( - c R )  . Since exp  ( - c R )  is not an  analytic func' 
tion of R - l ,  it follows that R'l is not a natural perturbation para- 
meter and expansions in  powers of R-* have only limited validity. 

Buckingham, Bingel, and Byers Brown and Steiner have con- 
sidered united atom expansions of the molecular energy. Here the 
Hamiltonian is expanded in  powers of R starting with the united .. 
atom corresponding to a confluence of all of the nuclei. Such a n  
expansion necessarily neglects those regions of electron configura- 
tion space  where the electrons lie between the nuclei. As a result, 
Byers Brown and Steiner [ 191 have found that the energy expansion 
contains a term of the order of R5, log R ,  Hence R is not a natural - I - I - - - - - - . -  - -- _ -  - ._ - _ _  -- I - --- - . I_- - 
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- I  

. .  , 

. .  

\ J  

perturbation parameter. However, there still remains the possibility 
that the united atom expansions will b e  very useful. 

We hope that for many chemical purposes sufficient accuracy 
will be obtained by calculating the approximate wave function per- 

tl turbed through the first order and the energy accurate through the 
third order. The recent calculations for the ground state of H; by I e 
that  starting with the simplest functional forms for the zeroth order , 10 
wave function, the wave function through the  first  order is accurate 11  
'to one part in  10, 000 for most nuclear and electronic configurations. 12 
The energy through the third order is accurate to within 0.0001 e2/ao 13 
'which corresponds to 0. 06 kcal/mole, Similarly, Matcha and Byers 14 
'Brown [ 171 have started with the diatomic hydrogen ion wave function 
a s  a zeroth order orbital for the ground state of H2 and have obtained1' 

I 1 i' 

1 19 
20  M o s t  of the approximate wave functions which are used in  

perturbation theory do not satisfy the cusp  conditions [ 211 so that in  
t L  the  l imi t  as two particles come together, H+o becomes unbounded. ' 

Conroy [ 221 has  shown how to construct approximate molecular wave 2 3 
functions which satisfy a l l  of the  boundary conditions and behave 1 t . ~  

1 

* I  

r, 

1 7  

Lyon, Matcha, Sanders, Meath, and Hirschfelder [ 201 have shown i ? , ,  

, the energy through third order accurate to within 0.0003 e2/ao or 
0. 2 kcal/mole. , 1 ii 

,properly at the singular points i n  the potential. From the standpoint 
.of strictly variational calculations, the behavior at the singular poir 
'seems to be  unimportant. However, in perturbation calculations, 
,correct behavior of Jc0  near the singular points may make a large 
difference in the accuracy of the results. 

XII. EXPECTATION VALUES OF PROPERTIES OTHER THAN ENERGY 
t 

The calculation of the expectation values of properties other 
' than energy can  be  treated within the framework of perturbationtheor 
We distinguish two types of properties: f irst  order, such as the 
dipole moment; and second order, ' such as polarizability. For both 
:types of properties it is expedient' to consider a real  or fictitious 
I Hamiltonian 

( 5 8 )  

Here pW is the "external perturbation" where W is related to tire 
'property under consideration. Then the energy for the externally 
perturbed system is 

( 5 9 )  

, 

# =  H t p W  . 
. . . . . . . . , I . . I . . . ._ ._ . ._ . . . . . . . . . . . . .  ..... 

e = E t p E ( l ) t p , E  2 2  f . . .  .- 



> i, : 
I" .i - .  ' 
1, i . 

. .. 

'The expectation values of first order properties can  be expressed i n  
,the form [ '  

I 

The expectation values of second order properties are given by 

( 62) < Q >  =<?&lW-<W>lXP(l)> = E  ( 2) 
! 

From a formal standpoint, Q > is the first order expectation value 
of the symbolic operator Q = - ( W - < W>) (H - E )  'l( W- < W> ) . 

Unfortunately we seldom know the exact wave function Y o 
'its energy E Instead, we know an  approximate wave function +o 
which satisfies the SchrUdinger equation Ho +o = e o  +o We can  t 
,define the "internal perturbation1' which results from the  %adnessfl  
of the approximate wave function as AV = H - H,. Then, s ince  
'Q = +o t XJI(,~) t A Z + ~ (  2 ) t  . ye ean  express c W> as a power 
' se r ies  in  h , i ,  - 

1 j '  : 
f 8 ,  
I 

I 
'(63) i 

I I 0 .  
I 1 : 1 ;  

$ 1  : /where i 
1 1  I 

<W> = < W >  t X<W>l t . . 4  , 

jand 
/wave function, is given by 

W>1, the first correction'for the- l tbadnessl l  of the approximate 
i 1 '  . i 1  . 

i i .  i 

I 

i Here $0 . . . . is . , . the  . * . . . solution . . . . . . . . . I . to . . . the  . . first'order , I . . . . . . . . equation " 1 . . . . . . . * . . . . . . .I . . . . . . . . . . . . 
! '(67) , 
I 

( 1)l' ? 1 =-(V-v ) +  
00 0 

- Q  ) +  (Ho 0 0 

Generally, the internal pekturbation V involves l/ril electr 
;correlation terms. and Eq. (67). may be very difficult to solve. -On -. 

I 
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this  account, we are fortunate to have the  Dalgarno Interchange l -  
( 

I .: 
Theorem which states that 

8 
,where +o (O '  "is the first  order perturbed wave function corresponding 
to the external perturbation and satisfies the equation ! 10 

The operators W are usually one-electron operators so that Eq. ( 6 :  
is frequently separable and i ts  solutions may even be expressible in 
c losed form, In any case, Eq. ( 6 9 )  is usually much eas ie r  to solve 
,than Eq. ( 6 7 )  Thus, < W>1 is usually easy to calculate, Unfor- 
tunately there is no interchange theorem which applies to <W>z ar 
< W>2 is generally difficult to calculate. The interchange theorem 
is easy  to prove. Multiply Eq. ( 6 9 )  by +All* and integrate and 
'compare with the result of multiplying: Eq. ( 6 9 )  by $ 4 0 9  1) * and 
integrating. Thus, 1 1 :  

i 

I 1 
t ,  

! 
1 I ! 

' I  

I 1 '  

'L6wdin points out that  the interchange: theorem is bbvious i f  one 
'expresses $61) = %V+o and +Ao? 1) ;= & W+o, where % is the  
I 1 1 :  

,symbolic operator 
1 :  I !  

'so that 



6 

I 
I 'The interchange theorem corresponds to the  symmetry between V 

associatc C W >1 = 0 with a variational principle for j 2 3  
;Ssw&SrJ and Hirschfelder [ 251 calculated the expectation I 24 

va8wrp d &@rW,h power of the radius of an electron i n  the ground . 2 5  
& W e  e$ helium taking +o = s3( T) O1 exp ( -s( q+ r2 )) . Here n went 26  
from -2  to Sb and the constant s was varied. When 8 was ad-j 27 

' j us ted  to m a k e  <rln>l = 0 ,  then the resulting values of <rln>o arq 2 8  
j comparable in accuracy with the Hartree-Fack values and approximatb2') 

30 

1 energytoptimized, the values of C rlnB0+lr< rln >1 are not as gbod, 

I properties may be expanded i n  **erst of 1 Thus, 

! 

i ly 91% bf the  correct value. For other choices of s , such as s 

i I ;In a similar manner, thel expectation values of second order 

I I 

l 
2 

l > i  I '  1 

f l  - 
! and,using another Dalgarno interchange theorem, 

- 1  
I !  ' I number'of cases. Robinson [ 231 give's the  following explanatlo& 
7 3  ;If <W)1 = 0 ,  then +o s ~ t i s f i ~ s ; t h e : h y p e n r f ~ ~  theorem [24] A I  

7 -  I 
a .  1 1  f I 

i 
I I '  

1 1 >? .- " f 1(73) L I < + o t [ : H , L ] b o >  = 0 
. ,  2 

4 1  
4L 
4 3  

1 1  
12 
13 
14 
1 5  

O C  0 5 5  - 56 
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Here + ( O P 2 )  is the second order perturbed wave function corres- 
ponding to the external perturbation. Since Eq. ( 7 6 )  involves only 
the externally perturbed wave functions, C Q >1 is comparatively e a s y  
to evaluate. Again Dalgarno conjectures that if J c o  contains an i 
embedded parameter which can be varied so as to make CQ>1 = 0 ,  1 

then the  corresponding value of Q >o is the  best  estimate of < Q > . 
And again numerical calculations support his hypothesis. 

, 
used to calculate expectation values: the coupled and the uncoupled 
Hartree-Fock approximations [ 261. The coupled Hartree-Fock pro- 
vides more accurate results but it is much more difficult to carry out, 
' s ince  it requires obtaining a new set of Hartree-Fock orbitals corres- 
ponding to the Hamiltonian #. In the coupled Hartree-Fock , 
< W>1 = 0 and C Q>1 '= 0 .  In the  uncoupled Hartree-Fock, W>1 = O ;  

Hirschfelder [ 271 showed that ( thanks to the Brillouin theorem) the  1 
uncoupled Hartree-Fock CQ31 can  be expressed rather simply in I 
terms of the first  order externally perturbed orbitals which are used  [ 
in  the calculation of Q>o. Thus, we can  correct the uncoupled 1 
Hartree-Fock expressions for C Q >o for the "badness" of the wave i 

I function. I 

/ XIII. MATHEMATICAL PROBLEMS 

There are two ways that Hartree-Fock wave functions may be 

but <Q>1  is not equal to zero. Recently Tuan, Epstein, and I 

1 

i There are basically two types of mathematical problems 

1. First, there is the question as to how the perturbation 1 
changes the  eigenvalue spectrum of the  Hamiltonian. For example, 1 
i f  a molecule is placed in  an electric field of constant f ieldstrength 1 
( n o  matter how s m a l l )  , all of the discrete energy levels are shifted 

' and  at the  same t i m e  broadened into dense packets of continuous 
energy levels  which physicists call I '  metastable.'' states. 

: i l lustrated in Fig. 1. The Auger effect and the Lamb shift for 'excited 
4 state atoms furnish other examples where the discrete energy eigen- 
lvalues of Ho "disappear into the continuum'' with the application of 
' t he  perturbation. Fortunately, Kat0 [ 31 and Titchmarsh [ 281 have I 
studied such problems and have provided us  with criteria for H, and 

' V  such that the average energy of the  metastable state is correctly 

Second, there i s  the question of the convergence of the  

' assoc ia ted  with the  use  of perturbation theory: 
I 

I 

This is 

1 

i 
: calculated by perturbation theory. . - * .  . j  

2. 1 
perturbation series.  Does the perturbation ser ies  converge in  the  1 

l i m i t  as A approaches zero? If so, what is the range of values  of ! 
A for  which the perturbation ser ies  converges? Kat0 [ 31 has  shown, 
by using a variational treatment,- that  even if  the  -perturbation series! 
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'Fiq. 1, The Electronic Potential Energy and the  Energy Level8 of a 
'Hydrogen Atom Placed in an Electric Field. Since-the electron can 

~ 'I tunnel" through the potential barrier, the perturbation of the electr: 
field shifts the  discrete hydrogen energy levels and broadens them 

!into packets-of continuous energy states,- - - - - - - L - - - - 
i '  
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only converges in  an asymptotic sense,  there is the possibility 
(depending upon the nature of H, and XV) that  the first few terms 

,of the perturbation series (if they exist) may provide a useful approx- 
imation to the properties of the perturbed system. Kato [3] explains 
that "roughly speaking, perturbation theory gives coirect results in ' 

tities are calculated by operations i n  Hilbert space".  I 4 

, 

c the sense of asymptotic expansions as long as the necessary quan- ' 

. : I  I de Branges, and Phillips will tell you in t h i s  symposium, the  nature 
As  Friedrichs, McLeod, Conley, Brownell, Rejto, Kuroda, 

7 ,  of the spectrum and the nature of the convergence depend sensitively 
1 ..' on the nature of the operators Ho and V. In molecular quantum I 

mechanics, we are usually given an  operator H and we are given 1 

1 ;  ' great latitude in  how H is resolved into Ho and XV. Thus, the 
I "  ' answer to  the question, "What is Ho ? I 1  will depend upon very , 

2 1  general mathematical studies of the foundations of perturbation 
theory. There are three types of perturbed Hamiltonians which occur 
in  quantum chemistry: 

: ,  
< 

_ ,  

8 

. A  1. In calculating the energy of a molecule, we usually use c: 1 

l' < an electrostatic Hamiltonian in which the only singularities are I J - L  

poles corresponding to the  confluence of any pair of particles. The I 
I - -  

work of Kat0 [3] has  given us justification for treating molecular 
energy problems within the  framework of perturbation theory. 

> .  
) -  

, #  

f, . 5 1  

I i. 'i 
'5 6 
,:-/ 

' sometimes use t h e  Breit-Pauli Hamiltonian which contains singular- 
ities of the third order. FVhat is the  spectrum of such a Hamiltonian? 2'' 
Can we legitimately u s e  the Breit-Pauli Hamiltonian to  calculate the;  3° 
energy through the first order? Lowdin [29] has  shown that these i 
third order singularities do  not occur in the original Dirac equations 1: 

2. In calculating the hyperfine structure of a molecule, we . ., 
. 1  

;i 

i .1 

. I  I 

! J  

, : >  and therefore should not occur in  the physical problem. 
^ i  

' 
3 <  , 1 3 

t 
J I 3. In calculating the expectation values of properties other'  '5  
' i  

-' I - -  realizable external field or it may be a convenient mathematical i 

8 fiction. In either case ,  W is the operator associated with the 
' particular expectation value which we desire, The operator W may 

correspond to a 3  physical property of the system. Adding p W  to ' 
. H can  therefore lead to  a very strange sort of Hamiltonian 24 with 
: very strange spectrum, etc. What restrictions must be placed on ; 

.- 1 the operators W in  order that the  eigenvalues of 24 are analytic.. I 

, functions of p? 
. a  Other mathematical problems are less profound, but s t i l l  I 

puzzling. For example, we would l ike to know how to treat electron 
exchange as  a perturbation. It is an unusual type of perturbation ' 

' which is  associated with an unusual type .of degeneracy [30]. - ._ _ _  1 

' than energy, we use as the perturbed Hamiltonian H = H t pW. 
- ' Here the  external perturbation pW may correspond to a physically 
- 1  

: i  

I 

i 1 ,  

4 I 
1 

_ -  - . _ _  - - - - - . - - - - 



. .  ! we had changed the scale of our coordinates and energy. Transfor- 

1 4 r )  

-1 h 

meter. Thus there is a search underway for natural perturbation 
parameters to use  for long range intermolecular forces (where R-1 isf 

R is not 

j 47 

not satisfactory); for the united atom expansion (where 
satisfactory); etc. , I  10 

i x  i :> 

- - i  5 1  
- __ " - -  ___-__  - - - - - - - - - - - - - - . -  

a 1 . 3  

I (I:., ;; 



. .  
/ L. One of the problems which has  intrigued me ,  is the search 

, .., 

, .  .. . ! . .. 

. ... I 

\ - ,  

1: - 

. . ,  

for a fa st converging perturbation scheme, The Rayleigh-Schr8dinger 
formalism is needlessly slow in  converging because it does  not take 
advantage of the fact that after you have obtained the n-th order wave 
'function, you know the energy accurate through the (2n $. 1)st  order. 1 
'Thus, two years ago, I suggested [34] an  iteration process  (FOPIM) 
i n  which the sum of the zeroth and first order wave functions is used 
as the zeroth order wave function in  a new calculation to obtain an 1 

i 
expectation value of the energy is given by a complicated non- 
improved first order function, etc. After the  n-th iteration, the 

,analytic function of A , which may be expanded in an asymptotic I 3  
ser ies  in powers of h accurate up to terms of the order of h raised 1 s t  
to  the Zntl power. Unfortunately, the iterated perturbation potential i 5 

is not analytic in  A and convergence difficulties make this method 16 
unattractive [35]. There are, however, many other types of iterative 

I 13 procedures which might be more practical [36,' 371. 
Unfortunately I did not have t ime  to d iscuss  the important 

and difficult problems of time-evolution, scattering, and many-body :'I 
systems which are of great interest to theoretical chemists. I ''2 

I have tried to  explain how we are trying to  determine the 
steady-state properties of molecules and what mathematical diffi- , 
culties we are encountering. The better we can  understand the basiy L5 
mathematical nature of our equations and the mathematical structure, z(, 
of their solutions, the easier it will become to devise practical I 2 7  
methods for determining the molecular properties. I 2 8  

1 IC, 
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!The treatment of degenerate states s tar ts  with the choice of j 2 
ithe zeroth order wave functions which are linear combinations 5 

+of the original unperturbed wave functions which diagonalize! .I 
1 5  ; the  perturbation matrix. 

i c 
ithe same structure as for a non-degenerate problem. However, - 

L 

The second order energy then has  
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