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FOREWORD

This report describes the research carried out under Contract
NAS 8-20306, "Study On Determining Stability Domains for Nonlinear
Dynamical Systems," during the period 1 May 1966 to 1 February 1967,
by the Research Department of Grumman Aircraft Engineering Corpora-
tion, Bethpage, New York 11714, for the NASA George C. Marshall
Space Flight Center, Huntsville, Alabama.

The objective of this study was to do research in techniques
for determining exactly or with good approximation the domain of
stability of nonlinear dynamical systems. The goal of the longer
study, of which this is the first part, is to develop techniques
for analytically determining the stability properties of booster
guidance schemes in order to compare competing schemes with re-
spect to their ability to compensate for off-nominal conditions.
Mr. Commodore C. Dearman, Jr. of the Aero-Astrodynamics Laboratory
was responsible for initiating this study program and acted as the
technical representative for NASA. We are grateful to Mr. Dearman
for sponsoring this study and for his encouragement.

The study was conducted by Dr. Gunther R. Geiss (principal
investigator), Dr. John V. Abbate, and Messrs. James Alberi,
Dushan Boyanovitch, Robert McGill, David Rothschild, and Gerald
E. Taylor. The authors are indebted to Mr., McGill for his con-
ceptual contributions to the computational aspects of this study,
and for contributing the closed-loop guidance example that is
studied herein. We are indebted to Messrs. McGill and Taylor for
making the Min-All algorithm available for this study, and to
Messrs. Taylor, Alberi, and Rothschild for conducting the numerical
experiments and for numerous suggestions regarding the development
of the estimation procedure.
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ABSTRACT

This report presents the results of research carried out under
Contract NAS 8-20306, '"Study On Determining Stability Domains for
Nonlinear Dynamical Systems," for NASA George C. Marshall Space
Flight Center. A numerical procedure for obtaining an optimal
quadratic estimate of the domain of attraction of an equilibrium
solution to a quasi-linear autonomous differential equation is de-
veloped and evaluated. A procedure due to Liapunov for determining
the Liapunov functions that yield exact information on the temporal
behavior of linear systems is reviewed and the implications of its
extension to quasi-linear systems are discussed. A simple closed-
loop guidance system is analyzed and the unique features of its
stability properties are illustrated as possible characteristics
of more complex guidance systems. The equations of the Iterative
Guidance Mode are reviewed to illustrate the problems that are
fundamental to the stability analysis of such a system. Conclusions
of the study and recommendations for further research are presented.
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I. INTRODUCTION

The concepts of Liapunov's direct method for the stability
analysis of nonlinear dynamical systems has generated a continually
expanding research program aimed at finding analytical stability
analysis techniques applicable to highly complex physical systems.
The research effort described in this report has been directed to-
ward several aspects of the stability problem pertinent to the
analysis of space vehicle guidance systems.

Present day guidance systems are described for finite inter-
vals of time by nonlinear, nonautonomous differential equationms.
Moreover, the control laws for these systems are, in some cases,
generated by iterative procedures. Such a system is far more com-
plicated than any system which has been successfully analyzed by
current state of the art stability analysis techniques other than
simulation., Before an analysis of an actual guidance system can
be undertaken, it is necessary to review and expand our knowledge
of several fundamental aspects of the over-all problem of stability.

Our effort in this study was focused on: a) effective use of
present techniques and the development of new techniques for deter-
mining the domain of stability (exactly or approximately) of high
order nonlinear systems; b) numerical means for implementing these
techniques; c¢) the relationship of Liapunov stability to finite
time stability; d) stability analysis of nonautonomous systems;

e) formulation of mathematical models of guidance schemes; and

f) analysis of a simplified time-dependent closed-loop guidance
system. Basic research has been initiated in each of these areas
and the preliminary results, reported herein, should serve as the
foundations of an expanded research program ultimately leading to
successful stability analyses of booster guidance systems and the
large class of related systems.

Section II of this report describes the formulation and develop-
ment of a numerical algorithm for determining an "optimal" quadratic
estimate of the domain of attraction of an equilibrium solution
of a quasi-linear differential equation. The estimate is optimal
in the sense of largest enclosed volume and is based upon the use
of a quadratic form Liapunov function. This section also describes
the numerical experiments performed with this algorithm and the con-
clusions drawn from them.



Section III describes a procedure due to Liapunov for calcu-
lating the Liapunov functions that determine the exact temporal
behavior of a linear system. Hopefully,the procedure can be ex-
tended to quasi-linear systems, in which case it can be used for
evaluating the stability of finite time systems.

Section IV describes a simple closed-loop time dependent
quidance system derived from Zermelo's problem. An analysis of
the autonomous approximation to this system is presented and an
approximate method for analyzing the actual nonautonomous system
is described.

In Section V, we review the equations describing the Iterative
Guidance Mode and make some comments concerning the stability anal-
ysis of such a system.

The last section (VI) presents the conclusions drawn from this
study and some recommendations for further research.




II. OPTIMAL QUADRATIC ESTIMATION
OF THE DOMAIN OF ATTRACTION

A, Problem Formulation

Briefly, the procedure, which was first described in Ref., 1
and is studied here, is based upon choosing the quadratic form
Liapunov function that yields the largest estimate of the domain
of attraction for the given motion and system of equations. 1In
particular, assume that the system is of the form

X1
X = Ax +f(x) , x = . , £(0)=0 , A stable; (1)

X

i.e., it is n-dimensional, autonomous, quasi-linear, and stable.
As a result of these assumptions the quadratic Liapunov function V,

V(x) = xTPx , P>0 , (2)
will have as its time derivative
. T T
V(x) = - xQx + 2x Pf(x) , (3)
where Q 1is determined from the Liapunov equation
T

-Q=AP+PA . (4)

If Q 1is chosen to be positive definite, then P will be posi-
tive definite as a result of A being stable and V will be
negative in the region

£ kmin£;1 .
D: (x ‘ Hxx < meax(P)) ’ (5)

where Amln(Q) and Kmax(P) are, respectively, the minimum
eigenvalue of Q and the maximum eigenvalue of P,



According to LaSalle and Lefschetz (Ref. 2) an estimate of
the domain of attraction of the equilibrium solution x(t) = 0
of Eq. (1)* is given by

Qr (x Ve <2, V(x) <0 (6)

if Qg 1is bounded. Thus, relative to this choice of V(x),
i.e., the choice of Q, the best estimate is obtained by de-
fining the set E as

E: (x| V(x) =0 , x # 0) (7)
and then choosing £ to be

L= min V(x) . (8)
X e E

Then, the optimal choice of Q from the set of all positive
definite n x n matrices, denoted QO, is defined by

3% = max J@Q , 9)
Q>0
where
n -3 3
-2l AR
J(Q) = ¢ ( 1 %i(P)> =\det v/ (10)
1= .

This definition of QO [Eq. (9)] will yield the best estimate in
terms of enclosed volume, of the domain of attraction under the
constraint that V(x) be a positive definite quadratic form.
Thus, an optimal estimate of the domain of attraction with re-
spect to quadratic form Liapunov functions can be obtained via a
numerical algorithm that solves Eqs. (8) and (9).

N.B. Hereafter it will be understood that we are concerned with
the equilibrium solution =x(t) = 0 of Eq. (1).




B. Development of the Numerical Algorithm

Before the quantities / and QO can be computed from
Egqs. (8) and (9), four problems must be resolved, viz.:

1) How to generate the set of positive definite
n x n matrices from which candidate Q matrices
are chosen.

2) How to solve the Liapunov equation [Eq. (4)] for
P given A and Q.

3) How to handle the constraints implied in Eqgs. (8)
and (9), viz, that x be an element of set E
and that Q be positive definite.

4) How to efficiently compute the minimum of a function.

1. Parameterization of the Set of Positive Definite Matrices

The generation of the set of positive definite n x n matrices
can be carried out by resorting to the brute force approach of form-
ing an arbitrary n x n symmetric matrix and then applying the de-
terminantal test (Ref. 3) to determine if it is positive definite.
This procedure requires the arbitrary choice of 2 ntl)  patrix
elements and then the evaluation of the determinants of the n-
principal minors of the matrix. However, it does not provide in-
formation on how to correct a candidate matrix that fails the test
for positive definiteness. Therefore, it would be desirable to
generate the matrix by a procedure that guarantees the matrix is
positive definite and spans the entire set of positive definite
matrices., 1In this section, we develop such a procedure based upon
the work of Murnaghan (Ref. 4) on the parameterization of the group
of unitary matrices.

It is well known (Ref. 3) that all real symmetric matrices are
orthogonally similar to a diagonal matrix, and that all positive \
definite (pd) matrices are then orthogonally similar to a diagonal
matrix with positive diagonal elements; i.e., let Q be pd, then

Q = sTas , (11)

where



A, >0 , i=1,2, ..., n (12)

Thus, the parameterization of all pd matrices Q 1is reduced
to the parameterization of the group of orthogonal matrices S.

In Ref. 4, Murnaghan proves that the parameterization of
the group of n X n unitary matrices U is accomplished by
the factorization

n-1
U=D| ] U__.| > (13)
k=1
where
i i6 i% ig
. 1 2 -1
D = diag {e , e i, e e n} , (14)
n-1
U, = ﬂ Ukz(eu,op) Ukn(cpk,crv) , (15)
[,Z=k+l

SR CL NS GRS AP
p = (2n - k)ék - l)'+ l+n-2 |,
L = (2n - k ; 2)(k - 1) + (-2 |,




ugg = 1,1i#k,s
ukk = cos 6
uzz = cos 6
U, ,(6,0) = (uij) 2 (16)
]._J.—O,i#j,i,j;ék,z
- _ =i _.
ukg e sin 6
_ +ic .
uzk =+ e sin 6 ,

T ¢ < T,

m T T T m m
-2<0'<2,"2<9<2,"2<6<2.

The factorization of the group of orthogonal matrices is im-
mediately obtained by requiring U to be real; i.e., & = ¢ = 0,

n

o
1

_(n -k = 2)(k - 1) +n

I T

o =ET, T <7, kén, and -3 <6< . In particular,

n-1

Dy | T Spue| > (17)
=1

diag {1, cees 1, + 1} , (18)

St Sikn ) | > S8 = Uy, (8,,0)

(19)

2 - z L]



This factorization contains {o - l)én - 2) thetas and n phis,

or a total of —L—————l + 1 parameters. The n lambdas in
Eq. (12) raise the number of parameters to ESE_i_ll +1 —

one more than required. Thus if we restrict S to be a rotation
matrix (i.e., choose o, = 0), the number of parameters will be

n(n + Iy}

matrlx. The choice = 0 is intuitivaly motivated by the con-
sideration that we w1sg to rotate and scale the ellipsoid associ-
ated with the quadratic form formed from the pd matrix and do

not want to reflect coordinates or change the handedness of the
coordinate system,

, the number required to represent an arbitrary symmetric

The factorization of a pd matrix of dimension three is
thus given by

P = S'AS (20)
where
A, O 0
A=10 2, 0 , (21)
0 0 A
Ms Ay Ay >0,
and
S = 5,5, = 8,3(9,) 51,(67) Sy5(v) (22)




-

823 = 0 CCPZ —S(pz

cel -sel 0
812 = sel cel 0 R (23)
0 0 1
coq 0 -s¢1
813 = 0 1 0 R

591 0 coq

ST Lo < T, =T P, T 4, =

S

<9<

NS

Coy = cOS @ , 89 = sin ® -

Thus, it is clear that by using this representation under
the restrictions

=T o< T, i=1, 2, e, n =1 (24)
. (n -1 - 2
-Tgo, ¢TI, i=1,2 .., &800=2

the candidate Q matrices are guaranteed to be positive definite.



2. Solution of the Liapunov Equation

The Liapunov equation, Eq. (4), viz.,

T

A'P + PA=-Q , (4)
where P and Q are n x n symmetric matrices and A 1is a
stable n x n matrix,can be solved for P as follows: Assume
that

%
(\ - xi) s, 1 =1, 2, .00, ¥ , i} a; =n (25)
i=1
are the elementary divisors of A (and thus Ai) over C ,
the field of complex numbers. Then there exist matrices U , V
such that
-1
A=1T AlU (26)
and
AT = v Ay (27)
where A, 1s the Jordan normal form for A (and thus Ai),
i.e.,
X=diagj?\1 + N , I 4+ N s ees 5 NI 4+ N } (28)
1 1 1 ay ay 2 a, a, rra a
I, = (513) » 1,3 =1,2, «., @ (29)
L
N, = (51+1,j) , i, =1, 2, ..., o, (30)
and b6.,. 1is the Kronecker delta.
becomes

The Liapunov equation then

10




(31)
where

(32)
and

(33)

In Ref. 5, Ma gives a finite series solution for the
matrix equation

AX - XB =C ,

(34)
where A and B are in Jordan normal form. Thus, via the
identification X =Y, A = A E=-X and C=-D , the
solution to Eq. (31) is obtalned from Ma's solution to Eq. (34)
The solution is:

a.+a, =2
i ]

]
1

N -(n+l) ,_ 0 ¥ nt o T
Yij Z, (ki'+xj) (-1) L (n=1)it! NaiD"N 3 ’ (35)
n=0 o+t=n
where Y.

and Dj ij are the 1ij elements of the Bartltlons of
Y and % which are the same as the partition of 1. Finally,
we obtain P as

p = v iyy (36)
from Eq. (32). Note that since A 1is assumed stable, all A,
will have negative real parts and

Ay xj #0 i,j=1, 2, ..., T

(37)

Thus, only the first case of Ma's solution, Eq. (35), need be
considered here. Further, if A is of simple structure, then
the solution is

11



-d, .
1 . s
Yij = yl':‘%- » 1,3 =1, 2,

J

ceey N, (38)

where yij and dij are elements of Y and D, respectively.

3. Penalty Function Formulation for Constraints

To compute £ and Q0 via Eqs. (8) and (9), we require a
method for handling the respective constraints: x € E, 1i.e.,
x such that V(x) =0 and x # 0; and Q is positive definite.
Since the algorithm to be used to compute Eqs. (8) and (9) has
been designed for unconstrained problems, we will use a device due
to Courant (Ref. 6) which is called the penalty function. This
approach to constrained extremal problems has been successfully
used in optimal control and variational settings, e.g., see Kelley
(Ref. 7), and McGill (Ref. 8).

Consider Eq. (8), which may be written:

£ = min V(x) on V(x) =0 . (8 )
x# 0

A penalty function formulation of the same problem is

£ = min (V(x) + Kivz(x)g(x)> (39)
X
or
L = min (Vx) + K%ﬁz(x) + K%h(x)) , (40)

where Qz(x)_ is the penalty associated with not meeting the
constraint V(x) = 0 and g(x) or h(x) are designed to
penalize choices of x close to or equal to zero, e.g.,

m=1, 2, ... (41)

12




In view of the parameterization we have developed for Q,
Eq. (9) may be rewritten as:

[N e

0 £
J@Q) = max J(Q) = max (det P) .
2@ >0 N >0
Tl <T -T < Pk < T
T T _ I T
IR RY 7<% <3

A penalty function formulation of the corresponding minimum
problem (our numerical algorithm was written for minimum prob-
lems) is:

1
{rdet P2 2
1\ zn ) + K3G(7\1’ 7\2, s o0y ')\n)

J-l(QO) = min
A

1 9'
i’cpK’ j

where

Pg = -7 + @ﬁ mod 2r , = o < Qﬁ
5, = = (-7 +6)mod 21) , = 0w < 6} < w
i 2 ] 3
and
/1, any Ki < €, i=1,2, ..., n
G(%l, cees %n) =
‘O, all Ai > €, i=1,2, ..., n

In the above penalty formulations, the constants Kj, K,,
Ky are chosen large enough to assure meeting the respective
constraints to the required accuracies, and € 1is chosen to
define a "forbidden'" neighborhood of zero. Details of the
actual penalty formulations used in the numerical experiments
will be given in a later sectiom.

13
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4, The Min-All Algorithm

The numerical algorithm being used to compute solutions to
Eq. (8) and Eq. (9) via Eq. (40) and Eq. (42) is being developed
at Grumman by McGill and Taylor and is based upon the work of
Davidon (Ref. 9) and Fletcher and Powell (Ref. 10).
utilizes a modified gradient search concept and proceeds as

follows:

To find the minimum over all x of £(x),
(xl, eees X3) and £(x) 1is a scalar function, choose an initial
point x,, and an arbitrary n x n positive definite symmetric
matrix Hy (e.g., the identity matrix). Then, let

1
s = - B o
where
T

' (of of
fk B <6xl’ T an/

and find o > 0 such that f(xk + aksk) is minimum with re-

spect to 0op. Now, let
el = P T %Sk o

1
and compute £f( ) and £ ( ). Define
k1 k41

and then compute Hk+l as follows

Hoq =H +A +B

where
-1

T T
A = (59) o SySy

14
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(47)

(48)

(49)

(50)

(51)




and
T -1 T
B = - By HYyHE - (52)
This procedure is repeated until

Iz - xl <e , 0<el (53)

C. The Numerical Experiments

The numerical experiments dealt with two well known equa-
tions, viz., the Duffing equation with damping, i.e.,

X = X,
, 3 (54)
Xy = = X, = X + 0.04 x5
and the Van der Pol equation with unstable limit cycle, i.e.,
) = %
(55)

2
X, = = x2(l - xl) ol ST

The Duffing equation was chosen because the estimate of the
domain of attraction could be obtained analytically (see Ref. 11)
and thus a reliable check of the numerical results was available.
The Van der Pol equation was chosen because the domain of attrac-
tion of the zero solution is well documented (the interior of the
limit cycle) and is far from a quadratic curve. Thus, it would
be a good test of the conservativeness of the estimate.

1. Details of the Experiments

Both of the equations whose domains of attraction of their
zero solutions are to be estimated are second order and they both
have the same linear part. As a result, the parameterization of

Q 1is:

15



cos 6 sin 6 Al 0 cos 6 -sin 6
Q=
-sin 6 cos 6 0 kz sin 6 cos 6
(56)
A 0032 6 + A sin2 6 (A, = N\,) sin 6 cos 6
1 2 2 1
(\, = A;) sin 6 cos 6 A sin2 6 + A, cos” 6
2 1 1 2
Mahy >0, -mTmgeLT
and the Liapunov equation for P 1is
0 -1\ [Py; Py P3P\ [0 1
+ =-Q. (57)
1 -l Pa1 P22 Po1 P2 -o-l
Since P is a 2 x 2 matrix, it can be determined directly
without recourse to the method of solution presented earlier.
The equations implied by Eq. (57) are:
2 . 2
Pis + Pyy = %1 cos” 6 + XZ sin™ 6
+Piq = Piy = Pon = (A; = A,) sin 6 cos 6
11 12 22 1 2 (58)
Piyp * Pyy - 2p22 = -(%1 sin2 e + A, cos2 )
P12 = Py

and their solution is:

16




1 2 . 2 .
P11 = 5 (xl(cos 6 +1) + A2(31n 6 + 1))+-(%2 - %1) sin 6 cos 6
1 2 . 2
Pip =P,y =5 (A cos™ 6 + 2, sin” 6) (59)
P, =% (A + 1)
22 2 1 2

Further, one can scale all the equations by an arbitrary con-
stant without affecting the solution. For simplicity we choose
Kil as the scale factor and obtain the form in which the equa-
tions were programmed:

1 P
P11 = Xil = % (cos2 64—1-+%(sin2 94-1))4'(3 - 1) sin 6 cos 6
1
1 P
Pyy = ilg = % (cos2 6 + A sin’ 6)
1
60
' _F_Z_Z__l(l_,_)\) -
P22 N, 2
)\2 1 1
A = = > 0 , 6==-7+6 mod2r , =06 <o
1
The Liagpunov function in all cases, except where noted, waé
V= L ) x2 + p., XX, + L P x2 . (61)
2 11 "1 12 7172 2 722 72

Its derivatives with respect to the Duffing equation and the
Van der Pol equation have the same quadratic part and are
given respectively by:

17



<
]
] =

(c0329 + A s:.n2 9)x ((% - 1) sin 6 cos 9>x1x2

+ % (sin2 6 + A 0052 9)x§

+ 0.04 plzx4 (62)
1

+0.04 pzzxixz

. 3 2.2
Vp = - [ + Py XXy T Pyr¥i%y (63)
In both cases, the terms of order higher than second are of
fourth order and thus, a candidate g(x) in Eq. (39) is:
-2m
g(x) = | x| , m=14, 5, ... (64)

2, Chronicle of Experiments and Results

The earliest experiments done using the approach described
above dealt with the Duffing equation and the determination of
£ for given A, 6 (see Ref. 1). The early experiments per-
formed under this contract investigated the problem of computing
{ near QO, which in t is case is on the boundary of the allowed
AN 6, wvize A0 = R = 0. It was determined that £ could
bé calculated suff1c1ently near Q- for our purposes, i.e.,
J(Q) to within 10 percent of J(QU); however, there was re-
peated difficulty with the algorithm computing to the global mini-
mum, £ =0 at x = 0. At this stage we were using Eq. (39) with
g(x) = 1. Experiments were begun with g(x) as defined in Eq. (64);
however, the results were unsatisfactory since this form for g(x)
reduced the effective value of K% for |x| > 1 and thus the
accuracy with which the constraint was met depended on the com-
puted x. The function g(x) was then changed to:

2m
g(x) = rlx=l" , m=4, 5, ... (65)

18




This formulation did remove the global minimum without materially
affecting the effective value of K{, but it also introduced
local minima whose locations and values were unknown. Thus, this
approach was abandoned since it appeared better to compute to a
well known unwanted solution than to a poorly known unwanted solu-
tion. To remove the dependence of the algorithm upon the initial
search point, another Min-All loop was incorporated to obtain a

point on the constraint V(x) = 0. This was done via computing
on the expression

0 = min ((J=xh? - &+ V() . (66)
X

Here, one stepped the value c2 until zero was the computed mini-
mum and thus a point of intersection of the circle of radius c¢
and the curve V(x) = 0. This was then modified to make use of
the actual V(x), viz.,

2 2 .2 N\
0 = min ((V(x) -c’) +V (x); R (67)
X

where, again, c2 is stepped until an intersection of V(x)==c2
and V(x) = 0 is obtained. This procedure removed the dependence
on the initial search point.

The problem of computing QO via Eq. (42) was then run with
the determination of the initial point per Eq. (67) and £ per
Eq. (39) with g(x) = 1 as inner loops. This worked well for
the Duffing problem although some difficulties were encountered
when A was close to the boundary A = 0. It did not work well
at all for the Van der Pol problem and in both problems this ap-
proach was believed to be very time consuming.

At this point our attention was focused on the Van der Pol
equation and an attempt was made to reformulate the problem such
that it becomes a simultaneous minimization over x and A, 6.
The new formulation is:

(=]

; 3 .
J l(Q0)+Kiz - min J[det PO‘LQ\)H +KiV(x,7\,9)+K§V2(x,7\,9)
£,0,0 | (V(x,2,9) )
+ K%G(?x)} (68)

19



The first term is the reciprocal of the area of the figure given by

V = xP(2,0)x = c (69)

that has parameters A,0 and that passes through the point x.
The next two terms are the penalty terms for minimizing V on
V = 0 and the last term is the penalty for nonpositive lambda.
When G(2) was as given in Eq. (45) with ¢ = 0, very poor
convergence resulted and very small areas, compared to results
obtained by a manual trial and error search, were obtained.
Epsilon was then chosen positive and when it reached the known
optimal value of A,AY, the convergence improved. This is,
however, hardly practical.

The problem was again modified. The first term of Eq. (68)
was changed to

1
2
o | [(vGxn,0))" 2

% \ldet 7o) Y (70)

(Note that the left side of Eq. (68) is no longer the minimum
value 05 the new expression.) Here, the algorithm convegged
when cy > 2.1, which is near the optimal value. As c¢
approached 2.1 from above 2.3 the convergence of the algo-
rithm deteriorated rapidly.

A problem that had been apparent throughout earlier experi-
mentation with the Van der Pol equation again appeared. There are
four branches to the Vp = 0 1locus and they are symmetrical in
pairs (see Fig. 1). Thus, there are four local minima which are
equivalent, for our purposes, in pairs and the algorithm shows no
knowledge of the existence of the other three minima when it is
converging on the fourth. This introduces a significant problem,
viz., how to determine when the desired result has been computed.
The only approach that is apparent now is to eliminate the com-
puted minimum and try to compute a lesser minimum; however, this
is usually not successful because new meaningless minima are in-
troduced in the process of removing a minimum. The alternative
is to reformulate the problem completely so that the desired
result is the global minimum or the only minimum of the new
problem. It is not at all apparent how one does this. However,
the indicated sensitivity of the convergence also suggests that
a significant effort should be devoted to formulating a new mini-
mum problem that will yield the desired results.
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3. Higher Order Estimates

Throughout the experimentation with the Van der Pol equation,
it was apparent that the "optimal" quadratic estimate of the
domain of attraction was considerably smaller (roughly 50 percent)
than the actual domain and that they had no boundary points in
common. Thus, we tried to evolve a technique for getting a better
higher order estimate.

The Zubov method (Ref. 12) is a method of finding the exact do-
main of attraction by solving a partial differential equation for the
Liapunov function. Zubov showed that his equation could be solved
using a series of homogeneous polynomials and that a truncated
series solution would provide an estimate of the domain of attrac-
tion. There are two principal difficulties in using the Zubov
method: 1) there is an arbitrary function that must be chosen
properly; and 2) the convergence of the series solution is very
nonuniform in the sense that successively better estimates are
not necessarily obtained by including higher order terms.

Our experimentation with this method was based on the hope
that the arbitrary function could be derived from our "optimal"
quadratic Liapunov function and that it might improve the con-
vergence of the series solution, in fact, make each estimate suc-
cessively better.

The form of the Zubov equation we dealt with was:

%¥==VV -(Ax + f(x)} = - p(x) <14-(Ax + f(x)>T {Ax + f(xy» (71)

where V 1is the Liapunov function and o¢(x) 1is the arbitrary
function which can be taken to be a quadratic form. Our pro-
cedure was to take the series solution to be in the form

V) = ) V), Vi (ex) = vix) (72)

i=2

which is a series of homogeneous polynomials beginning with
second order, and to choose -9(x) to be the quadratic part

of the time derivative of the "optimal" quadratic Liapunov
function, viz.,

o(x) = 2% . (73)
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Equation (71) is then solved for V,(x), which is the next term
in the series for both the Duffing and Van der Pol equationms.
The new Liapunov function is then V9 + V, and the estimate of
the domain of attraction D, is then obtained as

D, : (xlV,(0) + v, < 1,) (74)
where
£, = min  (V,(x) + v, () (75)
X € E1
B ¢ (x|7,00 + ¥, () = 0) . (76)

The results were unsatisfactory in that although there was a
significant improvement in the fourth order estimate for the

Van der Pol equation, there was a degradation in the case of the
Duffing equation (see Figs. 2 and 3). Thus, using the "optimal"
quadratic Liapunov function to determine the arbitrary ¢ func-
tion does not produce an improved estimate in all cases.

4, Conclusions

A procedure for computing the "optimal" quadratic estimate
of the domain of attraction of an equilibrium solution of a
quasi-linear differential equation has been developed. Experi-
ments have shown that the computation of an estimate, given a
set of parameters, [computing £ Eq. (8)] 1is a reasonably
robust process; however, the computation of the optimal param-
eters [QO of Eq. (9)] is, at present, a very sensitive process.
The problem that seems to be fundamental in both processes is
that of computing local minima of a function of many variables.
A possible blessing in our formulation is that there is no unique
formulation for the function we minimize to solve our problem.
Thus, continued experimentation should lead to the function which
makes the process more robust. The ideal situation in all events
would be to have the solution to our problem be the sole minimum
of the function, but it is not clear how one constructs such a
function.
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The procedure developed and examined here does have the ad-
vantages of: 1) relative insensitivity to dimension; 2) not
requiring any matrix inversions; and 3) providing an estimate
which is relatively easy to visualize (a hyperellipsoid).

Combination of the Zubov approach and the "optimal" quadratic
Liapunov function does not always yield a better higher order
estimate of the domain of attractionm.
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- A° =0.096
8° = 0.055
£ =24,93
£, =318

4

Fig. 3 Comparison of the Optimal Quadratic Estimate, 0o , and the Fourth Order Zubov
Estimate, Q 40 for the Duffing Equation, Eq (54)
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ITT. ESTIMATION OF TEMPORAL BEHAVIOR

Since booster guidance systems are operative over finite in-
tervals of time, stability analyses of such systems must be based
on short-time considerations. The system must be guided from an
initial state at time t, to a final state at time ¢t  + T. If
the system is perturbed from its path, it must reach some pre-
scribed neighborhood of the final state within the interval of
time T if it is to be considered stable.

Several recent papers have dealt with the problem of estimat-
ing the transient response of a class of linear or linearized non-
linear systems from the Liapunov stability equations, Refs. 13 and
14, If a Liapunov function, V(x), exists, upper and lower bound
estimates on the rate of decay can be obtained from '

(i)
e N
(77)
()
My = m;n __VTET_ >

where n,, and Ngs respectively, give the upper and lower bounds
oa the smallest and largest time constants of the system. However,
the quality of these estimates depends on the choice of function
V(x). These papers do not provide information about how the
Liapunov function should be chosen to provide the best

estimates. On the other hand, Liapunov has shown that for a
linear autonomous system, the Liapunov function which gives the
exact rate of response of the system can be determined, Ref. 15.

In essence, the methods proposed in Refs. 13 and 14, seek to find
an upper and lower bound on the ratio of some Liapunov function
and its derivative; the method proposed by Liapunov determines a
function, or set of functions, such that the ratio of the function
and its derivative is constant for all x.

Consider the nth
ential equations

order system of linear autonomous differ-

dx 28
a:--—Ax ( )

27



where X 1is an n x 1 column vector and A is an n xn con-
stant matrix., It is desired to find a homogeneous function

(M, ,M,yeee,m ) M m m
V(x) == P 172 n Xy 1 X, 2 cee X T oof degree m such that
S v
W * x = EJ (aslxl ta Xy ..+ asnxn> 3;; =V , (79)
s=1

where v 1is a constant. By equating coefficients of the same
m m, m
products of the form Xy X, ee. x_ ' a set of N linear

n

nn+1) ... (n+m-=-1)
m. *
The equations are solved by finding the set of eigenvalues Yi
and the set of eigenvectors P; which determine the set of
Liapunov functions V,(x). Liapunov has shown that the eigen-
values 3 can be determined directly from the expression

homogeneous equations result where N =

Vi =myd oA s b mg A, (80)

where the %i are the eigenvalues of the matrix A and the
m; are the sets of all nonnegative integers satisfying the
relation

mi1 + miz + ... + m =m . (81)

in

For each eigenvalue v; and the corresponding Liapunov
function V;(x), the following differential equation results:

dVi
at Yivl * (82)
Consequently,
+y. t
V() =V, (0) e T . (83)
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Liapunov's method provides an exact method for determining
the transient response of a linear system. Of course, the im-
portance of the method is not its application to linear systems,
but its possible extension so that the transient response of
quasi-linear systems may be determined with more accuracy than
the estimation procedures of Refs. 13 and 14. (The methods pro-
posed in Refs. 13 and 14 are approximate even for the linear case.)
It is also believed that further study of Liapunov's method for
finding Liapunov functions will be useful in developing efficient
techniques for obtaining better estimates of domains of attraction.

29



IV. ANALYSIS OF A SYSTEM WITH TIME
DEPENDENT CLOSED-LOOP GUIDANCE

Booster guidance control systems are described for finite
intervals of time by nonlinear, nonautonomous differential equa-
tions with control laws which are in some cases determined
by iterative procedures. Because the standard well known tech-
niques of stability analysis are not readily applicable to such
systems, new techniques, or variations of present Liapunov methods
are being sought.

Initial research in this area has consisted of determining
the stability of a simple control system that contains character-
istics representative of the more complex booster guidance systems.
Specifically, we are concerned with guiding the motion of a particle
moving at constant speed in a plane in the presence of a constant
disturbance. The dynamics of the system are given by

X vV cos u
1

(84)

o]
Il

9 V0 + v sinu

where v 1is the magnitude of the velocity of the particle rela-
tive to the disturbance, V, is the disturbance and u 1is the
direction of the velocity. The control law u(t) is such that

the particle is guided from the initial point (xf,xg) to the
final point (xf,xf) in minimum time in the face of disturbances
in the initial con%itions. The problem has been made more specific
by letting v =1, V5 = 1/2, xP =x§ =0 and xf = 2, xg = 1.

In the absence of any disturbance in the initial conditions,
the optimum control law for minimum time is u*(t) = 0, with the
corresponding trajectory xj = t, x, = t/2, and nominal time
Tf = 2. The initial disturbance is assumed to be randomly distri-
buted with a bivariate normal distribution of errors in initial
conditions with mean value 0 and standard deviation 0.l. The
control law is assumed to be linear, time varying, and of the form

w(®) = w(©) + by (0) [x(®) - O]+, [0 -x®] @9
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where
Py = Pg t P1it

and (86)
Py = Pyg T Ppyt -

For the specific problem considered, with

Pig = 0.153 Py; = 0.090
(87)
Pyg = -0.305 Pyp = -0.195 ,
the mean square miss of the target point (2,1) is 0,00139;
the resulting expected final time is 2.00287.
The stability problem for the system described above may
be stated as follows: From what set of initial states (x°,xg
will the particle reach a point in some e-neighborhood of the
final state (2,1), i.e.,
-2+ el -DPce (88)

subject to the constraint Tf <M, where M is some constant.
To determine any characteristic of the problem that might
be useful in the development of a general stability technique,

an analysis of the system response was undertaken. It was

initially assumed that the control law u(t) was time invariant,
i,e.,

u(e) = pyg (%(0) - D)+ pyg (x,(0) - x(D)) . (89)

Thus, the system is described by

il(t) = cos [PIO (xl(t) - t) + Pyq (xz(t) - t/Z)}

(90)

iz(t) % + sin {plo (xl(t) - t) + Py (xz(t) - t/2>} .
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Under the translation

Y1(t) = X].(t) -t
(91)
yo(t) = x,(t) - t/2 ,
Eqs. (90) become
: = - 1+ [ + ]
Y1 €08 1P1gY1 T PoY2]
(92)
g = 8in [Pygy; + onyz}
with the equilibrium solution Y1 =9, = 0.
The loci of equilibrium points for Eqs. (92) are given by
P10 2nT
y2=-_y1+— ’ n=l’ 2’ e o e . (93)
P20 P20
. P . o 0 0 o) .
Thus, if the initial point (y] = %X , y2 = x3) lies on the
locus, the solution for vy,(t) and yz(t) will be constant
in time, and the trajectories in the xi, x2-plane will be
given by
xl(t) = t + xl(O)
(94)

x2(t) = t/2 + x2(0) .

These trajectories are parallel to the optimum trajectory and
do not converge to the target point.

To find the complete trajectories in the yl,yz-plane, let

z(t) = p1gy1(E) + Py, (t) (95)
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then from Eqs. (92)
z(t) = p10§1(t)+-p2092(t) = = PigtPyg c0s z+p,, sinz . (96)

Solving for z(t) ,

. P
z(t) = 2 tan + |22 } ol (97)
P10 P20
1 - ke
where
k=1-c L : (98)
PL0 ¢ 20
P20
By substituting Eq. (97) into Egqs. (92), and integrating,
2p 1 P “P,nt 4 P
y.(t) = —10 tan 110 (ke 207 _ 1) - tan 110 (k -1)
1 p2  + p2 P20 Poo
10 20
2
P 2P, At
(k - 1% + 2 20
P P
=20 gy — o (0 (99)
2 402 Pyot .\ . Pj 1
P10 T Pyo (ke - 1) + -5
P10
2p 1 P “Pynt -1 P
y.(t) = 20 tan 110 (ke 207 _ 1) - tan 110 (k-1)
2 p? 4 p P20 P20
10 7 Pyo
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p2 -2p,at
(k - l)2 + 200, 20

Pro p?
S~ 1In S+ 7, (0) . (99)
p10 + p20 -2p20t . p20 (Cont,)
(ke 1) v 5
P10

It is evident from Egs. (98) and (99) that if the initial point
is on the equilibrium locus, Eqs. (99) reduce to

y1(8) = y,(0) , y,(t) =y,(0) .

It can also be seen from Eqs.. (99) or Eq. (97) that if the
initial point Eyl(O), y2(0)> does not lie on the equilibrium
&ocus, and if Ppg 1is real and negative, then the final point
yl(m), yz(m)> will lie on the equilibrium locus. Thus if pyq
is real and negative, every solution y(t) tends to the set of
points where

p
, = - B T T
Pyo "1 Py

An approximate analysis of the response of the system when
the control law is time varying, as given by Eqs. (85) and (86),
can be carried out if pj(t) and py(t) are approximated by
"staircase" functions such that

Pl(nT) = p]_O + pllnT

(100)

pz(nT) = Py + p21nT .

th . .
In the n interval, i.e., (n - )T < t < nT ,
2, (1) = (pyy + pyq0T) y; (1) + (Pyg + PyynT) ¥,,(7)

(101)

-1 [P (nD) 1

= 2 tan .
b, (AD) =, (AT
1l - kne
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for 0 < 1t ¢ T. The constant kn is given by

1
—_———— tan 22
p2(nT) 2
By using Eqs. (101) and (102), the following linear difference
equation for k.n results:
P.4P = PynP
kK -F k _ 11720 10721 , (103)
n n n-1 pl(nT) pz[(n - DT]
where
p;L(» - 1)T] p,(aT) =-p,[(n-1)TIT
F_= 2 e ? : (104)
n py(nT) p,l(n - DT]
Solving Eq. (103) yields
n a Ri
ko= TPl +, 7 (1054)
1 1 F,
e
1
or
) pzl(n-l)T
P1oPp(MT) “iPyo * 7—)nT -l 4 P20%P11P20 ” P1oPay)
(105B)
Si"l!T\\.
}ff e(\on * Py 32 /1T1
ks p2(nT) pz\(n-l)T) *
i=1
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The approximate location of the particle at any instant of

time is then specified by

n-1
Tin(D = B0 43,0 + ) P(L) ,1=1,2,  (106)
j=1
where
2p; (nT) 1 P1(®T)  -p,(nT)7 py (nT)
P. (1) = = tan k 2 -1) - Ll ik -1
in't pi(nT)+—p§(nT) an pz(nT) n® ) tan p2(nT)( n )
(107)
2
p,(nT)
s
i P, (nT) p7(nT) -2p,(nT)7
- (-1) 5 > 1nw > > > e
Py(nT)+py(nT) | -p,(nT)7 P, (nT)
(kne -1) + 2
Py (nT)

\

The work carried out to date has essentially consisted of
analyzing the given system and has resulted in Eqs. (106) and

(107).
with the trajectories that result from

It will now be necessary to study these equations along

a computer simulation in

order to determine characteristics that will enable development

of a stability analysis technique that

does not require a solu-

tion of the system equations and will be applicable to booster

guidance systems.

To achieve this, research efforts should be

directed toward examining the possibility of applying standard
Liapunov stability techniques over each interval (n -1)T< t< nT,
and using the information obtained from these intervals to con-

clude stability for the entire interval 0 < t < T,.

For example,

a possible approach to the problem described above would be to

determine a set of Liapunov functions

V,(x), where V,(x) is

the Liapunov function for the system described in the interval

nT < t < (n + 1)T.

The system described in the nt

interval

would be analyzed for stability without considering the finite
length of the interval and the domain of asymptotic stability

implied by each function V_(x) would
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in which the system state lies at time (n + 1)T could be de-
termined using the methods of Refs. 13 and 14 or Liapunov's method
which is described earlier in this report. If, for all n, this
region lies within the domain of asymptotic stability for the
system described in the (n + 1)St interval, and if this region
is smaller than the domain of asymptotic stability for the system

described in the nt interval, finite time stability could be
concluded.
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V. THE ITERATIVE GUIDANCE MODE

The booster launch vehicle using the iterative guidance scheme
described by Chandler and Smith (Ref. 16) may be regarded as a non-
linear, sampled-data system. A model representing the system for
the two dimensional spherical earth configuration may be formulated
in state space.

It is convenient to describe the system in a 1,f coordinate
system such that the mn-axis 1s the earth centered plumb line and
the total gravity force at the cut-off point is in the n-direction.
The equations of motion of the vehicle are then given by

v,
I

a(t) cos A + 8¢
(108)

3
i

a(t) sin N + gn R

where a(t) _is the longitudinal vehicle acceleration given by
a(t) = Vg, ?%E ; N 1is the steering angle; g. and g, are
gravity components. The remaining terms in Eq: (108) are de-
fined by

Vex = exhaust velocity
m, = initial mass
m = mass flow rate
m
o
T = —
m
t = time.

The steering law A 1is computed to guide the vehicle from
some initjal state (&(0), n(0), £(0), 7(0) to some final state
ey nges & ﬁf). In the problem considered here, only the final
altitude, 7p¢, and the final velocity (g, nf) are specified;
the range (ﬂf - n1(0) is unspecified. The cut-off point is de-

termined by the amount of time, T needed to achieve the final

C
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state and consequently is dependent on both the initial and final
states. In the case of the range coordinate, n(0) depends on
T¢. (ng = 0 as a result of the coordinate system chosen.)

The steering law was derived on the assumption of a flat
earth with a uniform gravity field (Refs. 17 and 18), and is of
the form

A= X - (R KL, (109)

no
where A, K;, and K2 are constants dependent on the initial
and final states. To approximate the flat earth assumption in
the case of the spherical earth, gravity is assumed to be con-
stant over the flight path and equal to the average of the values
of gravity in the initial and final states.

In order that the system be adaptive and adjust for deviations
from the nominal path which result from the approximations made and
external disturbances, the state of the system is evaluated at dis-
crete sampling instants, t = nT, and the instantaneous state at
the sampling instants and the required final state are used to de-
termine the time to cut-off, T _ (nT); the average gravity components
ég(nT) =3 gg(nT) and gn(nT) = %[gn(nT) + <Tf(nT)3]; and the
steering law® A(nT) necessary to guide the igstem from the instanta-
neous state to the final state. During the interval nT< t< (n+1)T,
the steering law is given by

AnT) = X(aT) - K (aT) [1 - B(aT)(t - nT)] (110)
where
~ 17 - n(aT) + & _(nT)
N(nT) = tan tof 1" i (1114)
Ee = E(nT) + g, (nT)
o L(aD)
B(nT) = tL(nT) - Tc(nT) (1118)
ng- [n(nT)+-ﬁ(nT)Tc(nT)-+% g (nT)Ti(nT)]+ s(nT)sinh(nT)
Kl(nT) = , 0

{s(nT) - B(nT)Q(nT)} cos K(nT)
(111c)

39



L(nT) = 1n —t—o8L (111D)

T = Tf(nT)
s(aT) = V__ (v - Tf(nT)> In - - ;f?iT) - T_(nT) (111E)
f(nT) T
Q(nT) = ts(nT) - —5—— =(aT) T (aT) + S—-l— (111F)

Tf(nT) = nT + Tc(nT)

To obtain Eq. (108) in state space form, let x, = §&,
X9 = ¢, X3 =71, X, = n. The system dynamics then become

X, = X

1 2
k, = a(t) cos N + ge

. (112)
X3 = X,

X, = a(t) sin N + gn s

where A = X - Kj(1 - Bt) and A, K; and B are given by
Eqs. (111). Equation (112) can be rewritten as

X = F(x,xf,t) .

The system described in this section is in many ways similar
to the time dependent closed-loop system described in the previous
section. Both systems are nonautonomous and nonlinear and the
form of the system dynamic equations for each case are similar.
However, the steering angle determined by the iterative guidance

scheme is far more complicated than the time dependent steering
angle described in Sec. 1IV.
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We believe that a suitable stability analysis technique ap=-
plicable to guided space vehicles using the iterative guidance
mode is not imminent. This is primarily due to the finite time
operation, and the lack of meaning of the comparison of disturbed
and nominal trajectories which is fundamental to standard stability
analyses. Indeed, the whole concept of stability must be examined
and redefined in order to have meaning for such systems. Once
this has been accomplished, results for the stability analysis of
systems such as that described in the previous section will be
forthcoming and will serve as the basis for the analysis of the
more complicated systems.
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VI. CONCLUSIONS AND RECOMMENDATIONS

The results we have obtained to date indicate that one can
certainly obtain an estimate of the domain of attraction of an
equilibrium solution of a quasi-linear dynamical system and it
seems feasible to compute an optimal quadratic estimate. One
may also, in some cases, improve an optimal quadratic estimate
by using the Zubov method to obtain a higher order estimate.

The three problems which seem to be fundamental to these pro-

cesses and which require more research are: 1) how to successively
compute the minima of a function; 2) how to formulate a function
whose global minimum or only minimum is the solution to this optimal

estimation problem; and 3) how to compute successively better
higher order estimates.

A review of Liapunov's work led to rediscovery of his method
for establishing the exact temporal behavior of a linear system
which contrasts sharply with the approximate methods that have
been advanced in the recent literature. If this method can be
effectively applied to estimating the temporal behavior of quasi-
linear systems, then we will have an approach to the stability
analysis of finite time systems in the sense of estimating the
amount of contraction between a set of initial states and the
corresponding set of final states.

The analysis of a simple closed-loop guidance system and a
review of the equations of the Iterative Guidance Mode point out
that the most serious problem that must be solved in order to
reach the long term goal of this study is the formulation of
what stability means in a finite time process whose goal is to
reach a point in space, not to follow or remain near a particular
path. The other obvious problem is the development of techniques
for analyzing nonautonomous, nonlinear, finite time systems with

respect to the stability definition that is evolved for these
systems,

In summary, we have examined some of the theoretical,
computational and practical aspects of the problem of evaluating
the stability of guided space vehicles, and we have indicated what
appear to be the fundamental problems and some likely approaches
to their solution., Yet, we have only scratched the surface of an
important and apparently very difficult problem that will require
a great deal more research.

42




10.

11,

REFERENCES

Geiss, G. R., Estimation of the Domain of Attraction, Grumman
Research Department Memorandum RM~316J, March 1966; also in
"Progress Report No. 8, Studies in the Fields of Space Flight
and Guidance Theory,'" NASA George C. Marshall Space Flight
Center,

LaSalle, J. P., and Lefschetz, S., Stability by Liapunov's
Direct Method with Applications, Academic Press, New York,
1961.

Gantmacher, F. R., The Theory of Matrices, Vol. I, Chelsea
Publishing Co., New York, 1959.

Murnaghan, F. D., Lectures on Applied Mathematics, Vol. III:

The Unitary and Rotation Groups, Spartan Books, Washington,
D.C., 1962,

Ma, Er-Chieh, "A Finite Series Solution of the Matrix Equation
AX - XB = C," Journal of SIAM on Applied Mathematics, Vol. 11,
No. 3, May 1966.

Courant, R., "Variational Methods for the Solution of Problems
of Equilibrium and Vibrations," Bull. Amer. Math. Soc., Vol. 49,
pp. 1-23, 1943.

Kelley, H. J., "Method of Gradients," Optimization Techniques,
G. Leitmann, ed., Academic Press, New York, Chap. 6, p. 230, 1962.

McGill, R., "Optimal Control, Inequality State Constraints and
the Generalized Newton-Raphson Algorithm," J. SIAM on Control,
Ser. A, Vol. 3, No. 2, pp. 291-298, 1965.

Davidon, W. C., Variable Metric Method for Minimization, A.E.C.
Research and Development Report ANL-5990 (Rev.), 1959.

Fletcher, R., and Powell, M. J. D., "A Rapidly Convergent
Descent Method for Minimization," The Computer Journal,
Vol. 6, 1963, pp. 163-168.

Geiss, G. R., The Analysis and Design of Nonlinear Controls
via Liapunov's Direct Method, Ph.D. dissertation Polytechnic
Institute of Brooklyn, June 1964, Appendix II.

43



12.

13.

14,

15.

16.

17.

18.

Zubov, V. I., "Questions in the Theory of Liapunov's Second
Method; The Construction of the General Solution in the

Domain of Asymptotic Stability," Translation No. 389, Military

Products Group Research Department, Minneapolis-Honeywell
Regulator Co.

Vogt, W. G., "Transient Response from t he Liapunov Stability
Equation," Proceedings of the JACC, 1965.

Brauer, F., "Liapunov Functions and Comparison Theorems,"
Nonlinear Differential Equations and Nonlinear Mechanics,
edited by J. P. LaSalle and S. Lefschetz, Academic Press,
1963, pp. 435-441,

Liapunov, A. M., "Probléme Général de la Stabilité du
Mouvement," (Ann. of Math. Studies, No. 17), Princeton Uni-
versity Press, Princeton, New Jersey, 1947.

Horn, H. J., Martin, D., and Chandler, D., "An Iterative
Guidance Scheme and Its Application to Lunar Landing,' NASA
Technical Note D-2869, July 1965.

Fried, B. D., "On the Powered Flight Trajectories of an
Earth Satellite," Jet Propulsion, Vol. 27, June 1957,
PP. 641-643.

Lawden, D. F., "Optimal Rocket Trajectories,'" Jet Propulsion,
Vol. 27, December 1957, p. 1263.

44




S

B




