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ABSTRACT

This report gives a survey and analysis of the application of one
parameter transformation groups to the solution of ordinary and partial
differential equations.

The first part considers ordinary differential equations. Lie's
method for finding an integrating factor for a single ordinary differential
equation is discussed and examples given. It is then shown how Lie's
method can be extended to total differential equations, and systems of total
differential equations au extension thought to be new. Examples are given
and the connection with dimensional analysis is pointed out.

The second part of this report deals with partial differential equations.
Here Morgan's theorems for reducing the number of independent variables are
discussed and applications given. It is shown that Morgan's theorems can also
be applled to ordinary differential equations but are much less useful in
this case.

A brief discussion is given of the comnection between Hamiltonian, or
Euler-lagrange equations and Lie algebras and Lie groups, but no examples
are given.

Finally, there are some recommendations for further study in this field.
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I. INTRODUCTION

Group theory has come to the forefront of applied mathematics in recent
times. Best known or most publicized of these applications has been the
study of Lie groups in connection with particle physics and symmetry groups
in crystallography and chemistry. The applications of groups discussed in
this report are generally less well known than those just mentioned and
possibly less well developed. But in a historic perspective they are
much older, the basic ideas going back to Sophus Lie (1872).

This report is concerned with the application of transformation groups
to the solution of ordinary and partial differential equations. These
groups are in fact "Lie groups" in the sense the term is generally used
today but the application 1s such that no particular use is made of the
usual properties associated with Lie groups. It is the transformation
properties that are exploited and not the detailed structure of the group
or associated algebra.

The first part of this report is concerned with ordinary differential
equations and the application of one-parameter transformation groups to
their solution. The principal theorem here, referred to as Lie's theorem,
gives a method for finding an integration factor when an invariance group
for the differential equation is known. This technique is then extended
to total differential equations and to systems of total differential
equations. The connection with dimensional analysis, in particular
Brand's work, is pointed out, dimensional analysis being the study of the
nonuniform magnification groups.

Partial differential equations are taken up in the second part of the

report. Here it is Morgan's theorems that are most significant. Morgan




showed that if a system of partial differential equations was invariant

with respect to a one-parameter transformation group, the number of
independent variables can be reduced by one., Morgan's results are the

most significant achieved so far in applying group theory to partial differen-
tial equations. The disadvantage of Morgan's method is that the trans-

formed equations are not as general as the original set., Thus there is no
agsurance that the reduced equations have solutions obeying the original
boundary conditions. Each problem must be considered individually, the
boundary conditions together with the partial differential equations.

It is also shown here that Morgan's theorems can be applied to
ordinary differential equations. The results are not however so interesting,
giving particular solutions to the differential equations which are seldom
those sought.

In a third section a brief outline is given of how Lie algebras and Lie
groups are used in Hamiltonian theory. This is the area in which most of the
present activity in particles physics takes place. Here it is the detailed
structure of the individual groups that is important and the goais are
not so much to solve the equations as to discover their structure from the
symmetry considerations. This section is quite brief and no examples are
given,

Appendices on the proof of some of the theorems are given. Also included
as appendices are the definitions and some examples of groups, Lie groups,

and Lie algebras.



II. ORDINARY DIFFERENTIAL EQUATIONS

A. Introduction

Lie introduced the theory of continuous groups into the study of
differential equations® and thereby unified and illuminated in a striking
way the earlier techniques for handling them. This section will give a
short description of the application of the one~parameter transformation
group to the solution of a single first order ordinary differential equation.
Extension to systems of equations and higher order equations is given later in

this chapter. Most of the material in this section is contained in Ince L[15].

B. One-parameter transformation groups

Consider the aggregate of transformations included in the family

x = o(x,y3a), ¥ = ¥(x,y3a) .

Here x and y are an initial set of coordinates and X and y are the transformed
set, a is a parameter that characterizes the particular transformation. Now
whenever two successive transformations of the family are equivélent to a
single transformation of the family, then the transformations form a group.*¥

That is, if

(x,y385) ¢<¢(x,y;al), ¥(xy580)5 a,)

Vysas) = Wetoysa), ¥ioyial)s o)

such that the set of a's are closed (every g, 8, pair has an a

3 in the set)

*[16a], [16v]

363¢
See Appendix I for definition of a group and some examples.




then the transformations form a one parameter group. Note that this
means that the inverse of every transformation is present.

Examples of one-parameter transformation groups are the following.

1) The group of rotations about the origin:
X = X cos a - y sin a, § = x sin a + y cos a

Two successive rotations characterized by a. and a. are eqguivalent to a

1 2
rotation characterized by a.5 where a5 =a, + 8y and the inverse of the
rotation a is - a,
2) The magnification group:
- j - k
X = a'x, y=ay

Here j and k are constants and if k = J this is called the uniform magni-

fication group. The transformation determined by a., that is equivalent

5

to the successive transformations determined by ay and a2 is such that a5

= alag. The inverse of the transformation characterized by a is character-
ized by 1/a.

l., Infinitesimal transformations

Let aq be the value of the parameter which characterizes the

identity transformation of family so that
x = ¢(x,y384), y = ¥(xy5a,) .
Then if € is small (an infinitesimal), the transformation

X = p(x,y585%), y = ¥ (x,55854)



will be such that x and § differ only infinitesimally from x and § or

a¢ (X) y ;a‘o)e

imx-i-aa = x + a(x,y)e
0

- 3 (x,y585)e

YRV + 5 = x + B(x,y)e
0

This transformation is then said to be an infinitesimal transformation.
Now it can be proved® that every one-parameter transformation group
contains one and only one infinitesimal transformation. Thus a group of
transformations can be characterized elther by the pair of functions

¢ and ¥ or by the pair of functions @ and B where

a(x,y) = gz“ ;‘X" y"‘éa')

a=ao

8(x,y) = N (xyse)

d
da

]
a = a
0

and an characterizes the identity transformation.

Some examples of infinitesimal transformations are the following:
1) The rotation group mentioned above is defined by X = X COS a

-y sin a, y = x sin a + y cos a and the infinitesimal rotation by
X=X-=-y&, §=y +xE

since

S (x cos a - y sin a) = -y
da a=0

and

Il
™

%— (x sin a - y cos a)
a a=0

Ince [15] page 95.



2) The magnification group mentioned above is defined by

- 3 - k
X = a“x, y=ay
then

d y .3 .,k
= (a9%) gm] = J% and == (a™y) el = XV
so the infinitesimal transformation is
x=x(1+ j¢), v = yv(1 + ke).

Consider now the infinitesimal change in the function f(x,y) due to

an infinitesimal transformation of x and y

X =x+ a(x)Y)e) i =y + B(X:Y)e,

£(x,¥) ~ £(x,y) + & @ (x,y) %% + B(x,y) %§ )€

to first order in €. Thus the infinitesimal transformation (and hence the

entire group) can be represented by the operator U where
- ) )
U = a(x,y) S5+ B(x,¥) 55

Ufe is the infinitesimal change in the function f(x,y) produced by the
infinitesimal transformation of x and y.
Now let the finite equations of a one parameter transformation group

be
X = ¢(X:Y5a0 + t): § = W(X:Yiao + t)

where aq characterizes the identity transformation. Then

- - ’ 1 ., 2
£(x,y) = £, + fot + 5, 87+



where

0= (57 [y - £0oy)

a /= (af dx , Of dy)
0= & f(xY) 't 0=\GF &5 lt_

H
il

/of of - =
= \3x Q’(X,Y) 3y C (X)Y)) ’t=0 = Uf
v d2 - =
£l == f(x,y) = Pr ete.
0 2 t=0
dt
Thus
- - t2
f(x,y) = £(x,y) + tUF + 5T o+ . ..
tU
= f(X:Y)

where U°f symbolizes the result of operating n times on f(x,y) and etU

symbolizes the operator
etU =1+ tU+ %T U2 + .

Thus the operator etU represents the finite transformation corresponding to

the infinitesimal transformation
— 3 3
U=Ol(x,y) é‘;*‘B(X:Y) 5v

Some examples of obtaining the finite transformation from the infinites-
imal are as follows:

1) Given the infinitesimal transformation



Then

- tU
X = X
2
= x + tUx + gT-ng + .. .
=X -yt - EE-x + Ez + tu X =
T 3TV T LT
2 L
t t t
"X(l'g—!'+h_f" . .)-y(t-3—r+...)

xcost ~y sin t,

tU
e vy

x 8in t + y cos t.

This corresponds to the rotation group.
o)

2) Let U= cx §£-+ by 55
then
X = etUi =x + ctx + i%%l? X o 0 o= xeCt
- tu gggl? bt
y=e y=y+bty+ 55 Yy . . .=ye

Letting a = et it is seen that this is the magnification group

If b = ¢, it 1s the uniform magnification group.

2. Invariants

F(x,y) is said to be invariant if, when x and § are derived from x

and y by a one-parameter group of transformations, one has

F(i,b-’) = F(X)Y) .



A necessary and sufficient condition for F(x,y) to be invariant is that

UF = 0

where U = a%; + Bg;-characterizes the group. Then F(x,y) is a solution

to the partial differential equation

37 . .37 _
and

F(x,y) = constant

is a solution of the equivalent ordinary differential equation

This differential equation has only one solution depending on an arbitrary
constant; thus every other invariant of the group can be expressed in terms

of F.

A family of curves is said to be invariant under a transformation group

if

F(x,y) = ¢ (a constant)

and

F(x,y) = ¢ (another constant)

where £,§ are derived from x,y by that transformation. A necessary and
sufficient condition that F(x,y) = const represents a family invariant under

the transformation group U is that UF be a function of F, i.e., UF = g(F).



C. 1Integration of a differential equation using group properties

The principal theorem for use in the solution of ordinary differential
equations and which will be referred to as Lie's theorem, is the following:

Let the differential equation be given by

P(X)Y)d-x + Q(X)y)dy =0 .

Then if the family of solutions ¢(x,y) = const is invariant under the
transformation U = a(x,y) %; + B(x,y) %; , the guantity (Rv + QB)-l is an
integration factor of the differential equation, provided Ry + QB8 is not
identically zero. That is, the solution can be reduced to a quadrature,

and is

J‘Pd_x+QdX _x
r O+ B

where X is a constant. A proof will not be given heref but a proof of a
more general theorem that includes this as a special case is given in
Appendix II.

Furthermore if the family of solutions is invariant under two distinct

transformations Ul and Ué

o_
1771 3x 1 3y

and
o
2 dy

then the solution is

¥
See Ince [15] pages 106-107.
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where X is a constant. This is just the application of a well-known result
in differential equations® that if two distinct integration factors for a
differential equation are known, say X and p, then provided that their ratio
is not a constant, X/u = const is a general solution. But practically
speaking, it is not always easy to find two distinct transformation groups
for a differential equation.

Example 1: 2xydy + (x - yg) dx = 0

This is invariant under the transformation

X = aJx, y=ay
if
J+2k=23 or J=2k
Thus
- N
U=xx *5 oy

represents the invariance group and A, the integration factor is

1

A= 2 P
Xy +(x-y)x

The gquadrature problem becomes

[ 2xydy + (x - y2) dx X
l =

xy + (x - ¥ )x
Since this is a perfect differential the limits of integration can be chosen

as those most convenient. Here we choose y = 0, x = 1 to x,y along the path

1l

y =0, x =1 to x and then along x = x, y = O to y: that is,

2
v __2xy &y f (x - y7) ix = K

2 2 2 2
JO xy~ + (x - y)x ;] XY+ (x - ¥y )x y =0

See Ford L9] page 58.
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or

J‘ya*_y_dx+J|’X9§=K

2
Yy = -xln cx
where ¢ is an arbitrary constant.
Example 2: x dy-(y + x )dx = O .

This is invariant under the transformation

cp s ) 1
if J = mk. Thus U = X5 + my - and A = . The

-(y + ¥x)x + xmy

gquadrature problem 1is

I xdy = (y + x")dx - x

-(y + xm}x + xmy

Choose the path of integration as y = 0, x from 1 to x and then y = O toy

or

X dx N dy

l = + J m K

Joq ¥ o (m-1)y - x
giving

m .
/ ng—l! + “ _
n \ X /- K

or

y = (xm - cx); um-1)

where ¢ is an arbitrary constant. Both of these examples are of equations
invariant under a nonuniform magnification and this treatment is equivalent

to Brand's dimensional analysis [4] approach.




Example 3: dy - y2 dt = 0

This equation is invariant under a translation along the t axis,

that is,

o}
t=t+a or Ul——g

and the nonuniform magnification

y = ay
T=att
. ) o) . .
for which Ué =y S; -t 5T - Thus the two integration factors are

A= -y_2 and p = (y + ty2)'l. Their ratio is

Mu = =(y + ty)/y¥" = const,

and the solution is § + t = ¢. In this case the answer could have been

easily obtained by direct integration.

D. Total differential equations and transformation groups

A total differential equation in n variables is a relation of the

form

P dx, = Pidx, + Pydx, + Pydug +. .. P odx = 0. (D-1)

:ITP:B

1
Tts solution, if it exists, consists of finding one of the x's as a function

of all the others. The Pk are, in general, functions of the x If a

o
solution exists for D-1,D-1 is said to be integrable. Solutions to total

differential equations are usually found by finding an integration factor

X(xl,x . . .) such that d¢ = E AP dx, is a perfect differential, that is,

2 k

15



finding a A such that

8¢(Xl,X2. c)

axk = KPk, k=1,2 .. .n.

The general solution of the total differential equation is then given by

the quadrature,

constant.

N
(25(}(1,)&:2 .. L) = j% KPkdxk
It can be shown that D-1 has a solution and thus an integration factor if
and only if
BPS
Antl[kms] By ox
where the operator Anti[kms] means that the following term is antisymmetric
with respect the indices k,m,s. (See Appendix III.)
Transformation groups are used in solving total differential equations
through the following theorem:
n
If the total differential equatlonk§l Pkdxk = O is invariant with

respect to a transformation group characterized by

n
. 3 - o) ) 3
U= o == =0, = +, - + .. .0 —
ﬁ;l k axk 1 axl 2 8x2 n axn
n -1
then an integrating factor A is given by A = ﬁgl akPk), provided this

reciprocal is not identically zero. The ak are in general functions of
the x's. Appendix II gives a proof of this.
This theorem is a generalization of the one given for ordinary differential

equations (in paragraph C) and reduces to it in the case n = 2. It is also

a generalization of Brand's theorem [4].

b



Example 1 [4]: The total differential equation
2 2
oxyzdx + z(1 - yz7)dy + y(3 - 2yz")dz = O

is invariant with respect to the transformation

- 0

X =ax

- 2

y=ay

- -1

Z =a 2z
which is characterized by

d o)
U—Ey'a-&_--ZE
The integration factor is
A= 21 2 =-£z—
2yz(1 - yz7) - zy(3 - 2yz°) v

The quadrature problem then is
I(2xdx + (% - 22) dy + (g - 2yz)dz)= const

and can be integrated along the path (0,1,1) to (0,1,z) to (0,y,z) to (x,y,z)

or

Vo1 2 r?
2tdt + (€+ z7)dt +

0 Y1 1

(% - 2zy)dt.

Thus ln(yzB) + - y22 = const is the general solution.

Example 2: The total differential equation

-ydx + xdy + (x2 + y2)dz =0

is invariant with respect to a rotation about the z axis, that is,

15



e
it

X cos a - y sin a

Yy=Xxsin a+ y cos a

Z =z
which is characterized by

eyl el
The multiplier is
W
X + Yy
The quadrature problem is
j( ;é:fgig + ;§§%X;§ + dz ) = const

and is most easily integrated along the path

(O,l,O) to (O,l,z) to (O:Y:Z) to (X).Y:Z)

or

X y -Z
L N (O L

; dt = const
ot 4y Y1 AP b

Sl
= - tan (_).+z = const .
¥y

As with ordinary differential equations, if two integration factors can
be found, say A and p, for a total differential equation then, provided
that the ratio of A to p is not a constant, the equation A/p = constant is
a soclution to the total differential equation. Thus, if two distinct

transformation groups can be found such that the total differential equation

16



is invariant under both, the solution can be given directly. But as
mentioned in the section on ordinary differential equations, it seldom
happens that two integration factors can easily be found from group
considerations alone. The usual situation is that one integration factor
can be found by transformation invariance while a second is found by other
means.

Example 3 [4]: The equation
2 2
xX“dw + (@x + ¥ + 2xw - z) dx - 2xydy - xdz = O

is already an exact differential® so that p = 1 is an integration factor.

It is also invariant with respect to the transformation

=
i}
o
=,

"
It
o
"

<
1l
o
<

so that

A = 1

h(xe + xy2 + - XZ)

is an integration factor. Therefore p/k = constant is a solution or
x2 + xy2 + x2w - Xz = const

is a solution.

B E—— aPr aPm
It is exact since == - =— = 0 for all r and m,
axm er

17




E. Systems of total differential equations

The transformation group approach can also be applied to systems of
total differential equations. Superficially it might appear that
nothing new is necessary when dealing with systems of total differential
equations, and that all that is necessary is to integrate each individual
equation without regard to the others. This will not suffice since we are
looking for solutions that have a common intersection and the individual
solutions need not have a common intersection.

Consider the system of J total differential equations
M

Z; ;g x =0, B=1,2...J(sM) (E-1)

m=1

Here each of the Pg'can be a function of the X - By an integration factor

to this system of equations we mean a matrix function, ks (xl,x2. . .) such
that
J
a¢ﬂ - }\BPm Yy =1, 2, J,
ox ZJ Yy B °
m 8=1 m=1, 2, M
for some set of functions ¢Y(xl,x2. . .). The general solution to the system

E-1 then is the system_¢y(xl,x ) = Cy’ vy =1,2 . . .J, where the CY

X
are constants.
The principal theorem for use of transformation groups with systems

of total differential equations is analogous to the theorems of sections

C and D above, and is stated as follows:

M
If the system of total differential equations Zl Pb dx =0,
B=1, 2 . . .37(sM) has solutions ¢Y(y =1, 2 . . . J) which are invariant

18




as a family with respect to the transformations

M
oy B g
UB = éél_dm axé B=1,2 .

then an integration factor Xi is given by
B
Ty =1}
x5=<(m) )
Y Y

where (PWT)_l is the inverse of the matrix product RIT, (PIT); = % P% a; .
Proof of this theorem is given in Appendix IV.

Before giving examples of the use of this theorem it will be noted
that to find one-parameter transformations UB such that every one of the
equations is invariant with respect to all the transformations is usually
rather difficult. But often it happens that it is possible to transform
the original equations to a new set that has the same solution. That is,

if the original equations
Pf{ldx =0,y=1...4J

J
. . . mo_ Y po Y
h = th f troduces P, =X_. T here T
ave solutions ¢B CB en 1if one in u B Vel B ¥ wher 3

_ oY
= TB(Xl’X2' . .) then

/

has solutions ¢é =C While the ¢B and ¢é are different, their intersection

5

is the same,and it is the intersection that is the "solution" to the system.

19




Example 1: Consider the two total differential equations

I
(@]

xdx + y dy ~ zdz

Xdx + y dx + zdz = O

In matrix form:

This can be transformed to

d
X y 0 d; - 0
0 0 1 0
dz

by the matrix transformation T,

1 0 1 0 %
T = . [
0 1/z -1 1 0 1

These two transformed equations are invariant with respect to the two

transformations

fe) o) o (uniform magnification along

dx dy dz X, y and z axes)
and
F = gz (translation along z axis)

so thata = |* Y z

o 0 1

T .
The product Ry~ is

T x y O x O x2 + y2 0
Ry = O =
[O 0 1 Z

20



and
1 0

Ty-1 1
S 2 2
X +y ) |-z x +y

The integration factor A in matrix form is

—1
x2 + y2 0
A =
T2
x? + y’2 1

and multiplying by A gives the system of perfect differentials

xdx Yy _
> 5 + > dy = 0]
X +y X +y

- zxdx _ zydy > + dz - 0.

2 2 2
X +y X +y
Integrating along the path

(O,l,O) to (O)l)z) to (O,Y>Z) to (X:.V:Z)

gives
ln(x2 + y2) =C,
-z ln(x2 + y2) + z = 02
or
x2 + y2 = Ci
zZ = Cé

21



whose intersection is a family of circles in planes parallel to the x, y

plane with origin on the z axis.

Example 2: Consider the equations

2
-y dx + xdy + (x2 +y )dz =0

d_x-}-gl =0 o
Y X

Each of these equations is invariant with respect to a rotation about the 2z

+ X Q_) and a uniform megnification along the x and y axis

. 1 o}
axis (U” = -y o >
* 9_ 9
( =X + y ay) .

ox
Thus
2 2 2
-y b X +7Z -y X X +y o)
L SNA
=+
POz'rII = | 1/y 1/x 0 X vyl = 0 y x
0] 0
and
— hms
L 0
X +y
A = .
0 (L + %™
_ v
Multiplying by A gives the two equations
- L dx + xdy +dz =0

x2+y2 x2+y

xdx ydy _
5 =27 5 =0 -
X +y X +y

22



Integrating along the path
(O,l,O) to (O)l:z) to (O)Y)Z) to (X:YJZ)
gives the results
-1
-tan (x/y) + 2z = C2 .

The intersection of these two surfaces is a 45° helix whose axis coincides with

the z axis.

25



ITI. PARTIAL DIFFERENTIAL EQUATIONS

in 1948 Birkhoff discussed the application of dimensional analysis to the
sélution of partial differential equations. He showed how it was possible to
reduce by one the number of independent variables in a partial differential
equation if that equation was invariant with respect to one of the trans-
formation groups of dimensional analysis (magnifications). Later Morgan
generalized this procedure to include all one-parameter transformation groups.
Morgan's theorems represent the most progress to date in the application of
groups to partial differential equations,and it is this work that will be

discussed next.

A. Morgan's Theorems

We are concerned here with the sets of variables Xy5 Xy oo X
Y0 Vo o e e yn and the one-parameter group of transformations
x =1, (xl, L a))y k=1,2 . .. m
yB = fB (yl, Yo - .o Y2 a), B = 1,2 . ..n

where the functions fk andi%are differentiable with respect to the parameter a.
The y's in turn are considered to be differentiable (to any required order)
functions of the x's. If the transformations of the partial derivatives of
the y's with respect to the x's are appended to the above transformations the
resulting set of transformations also form a continuous one-parameter group
called the enlargements of the group or the extended group. When considered

X X

as a function of the m + n independent variables Xy Xy oooe - 0

V0 Yoo o o - Y the group has m + n - 1 functionally independent absolute

3*
invariants. Call the absolute invariants ﬂl, ﬂg, . e nm—l and g0 &

+*
See L. P. Eisenhart [8].
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- where T = T, (xl, Xy . . . X ) and gy = &g (yl, Vo « o - Yy %95 %

Morgan's first theorem then states the following:

respectively by the relations

ZB(xl’ Xy oooeos xm) = gB(yl, Vo o v v Vo Ky Ky oo xm)
2 (X, X o v . %X ) =8 (F1s Fu o o . V., iy X x )
g1’ "2 m g1’ VY2 n’ 717 "2 m

then a necessary and sufficient condition that the y be exactly the same

functions of the x's as the y are of the x's is that

) ZB(Xl, Xy oo xm) = Ee(il, ig G im)
= ZB()-(l, ;{2, .« . }-Cm) = FB(T]:L, 'ﬂg e e ﬂm-l)'

The N's are the invariants of the subgroup

X, = fk (Xl, Xy e X, a).

If the y and y are defined explicitly as functions of the x's and x's

. X ).

m

This theorem will not be proved here; the reader is referred to Morgan [20].

Several definitions are as follows:

By an invariant solution of a system of partial differential equations

is meant that class of solutions which has the property that the yB are exactly

the same functions of the X as the 58 are of the ik where the x's and y's are

related by some one-parameter transformation group.

By a differential form of the k-th order in m independent variables is

meant a function of the form

k k
/ oy, CaaY
@le, Xy o o - X5 Y5 Yy oo Vo0 0 03 I Vi k)
(x) (x,)
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It has as arguments the x's, the y's and all partial derivatives of y's with
respect to x's up to order k. The partial derivatives of & with respect to
all its arguments are assumed to exist.

A differential form & is said to be conformally invariant under a one-

parameter transformation group if under that group it satisfies

Q(zl, Zy o oe zp) = f(zl, Zy o e e 2y a) @(zl, Zoy o e zp).

If £ is a function of a only, then ¢ is said to be constant conformally
invariant and if f = 1 then absolutely invariant.
Morgan's second theorem then states the following:
A necessary and sufficient condition for & to be conformally invariant

under a continuous one-parameter group is that

U@ = U)(Zl, 22’ « e e Zp) @(Zl, 22 e o e Zp)

for some w(zl, Zo .. zp). Here U is the operator characterizing the

infinitesimal transformation

o = oz . Zp) (see earlier chapters of this report). Again the reader

l, 22, . .

is referred to Morgan for a proof of this theorem [20].

A system of k-th order partial differential equations ¢_ = O is said to

B

be invariant under a continuous one-parameter group of transformations if
each of the QB is conformally invariant under the enlargements of that group.

Morgan's principal theorem then is the following statement:
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If each of the differential forms éB of the form

k kK

3y oy
1 n
@B(xl, Xy oo s Xy Vg9 Vo e s Vs s e s T e e 'k> =0
a(xl) a(Xm)

is conformally invariant under the k-th enlargement of a transformation group,
then the invariant solutions can be expressed as the system

o

n
AB(T]]_’ Tlg . . . ’nfn—l, Fl’ F2 . . . Fn, . . . a( )k) - O
-1
a system of k-th order partial differential equations in m-1 independent

variables. Here the 7T are the absolute invariants of the (sub) group of trans-

formations on the x's, and the F's are the other invariants,

FB(ﬂl, oo nm—l) = gB(yl, Vo o v oo Vo Xy Xy oo xm).

The proof of this theorem is given in Morgan's paper [20].

This theorem is exceedingly powerful and useful. The reduction of the
number of independent variables by one in a system of differential equations
can greatly aid in obtaining a solution. A partial differential equation in
two variables will be reduced to an ordinary differential equation which can
be much more quickly solved by numerical methods than the original equations.
In the case of equations of three or more independent variables it may be
possible to apply Morgan's theorem several times in succession, reducing the
number of variables by one each time.

On the other hand, no account is taken in Morgan's theorem of the boundary
conditions associated with a specific problem. The invariant solution found

may or may not comply with the boundary conditions. The invariant solutions
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are a smaller set than the total set of solutions. The solutions of the
reduced equations are not as general as the original equations. In this
sense_Morgan's prescription does not give general solutions to the differential

equation.

B. Applications of Morgan's Theorems

Example 1:
Consider the partial differential equation of the one dimensional

homogeneous heat flow equation:

% _3¥ _ o (B-1)
ot 2
0xX

This equation is constant conformally invariant with respect to the non-

uniform magnification transformation

- k
y=ay
- s
X =ax
t = amt,

if k-m = k-2s. One possibility is s =3, m = 1, k = O. For this transforma-

tion the invariant independent variable is

M = x/t%
and the invariant dependent variable is
y =g =g(m)
Working out the partial differential operations in terms of the new variable we

have
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SR
i
1
-
i3
R

Py _1d%
ox ¢ dﬂ2

The reduced equation is then the ordinary differential equation

2
dg  Tdg _ -
dT]2+2dn_o. (B-2)

A general solution to this particular ordinary differential equation is

n_
g(m) = Aj e ng/h an + B
0

or
Y2 5
yv(x,t) =.AJX/ il /¥ am + B (B-3)
0

where A and B are the constants of integration.

It is noted that the solution B-3 may or may not be compatible with the
boundary conditions of the original equation, B-1.

Also we note that this is not the only reduction possible. Equation B-1

is also invariant with respect to the transformation

9 =y + 1lna

ER
[}
o
»
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so that invariants

g:y-ll’lt
n=x/Vt

are possible. The partial derivatives are

8y . 1_1lldg
S vt 2tan

ot

a _1 dg
ox £2 an
oy _1d%
Fob's t dﬂg

2

d Ndg _
—5 &g + 1 =0
dn2 2 d4n

which has a different solution from B-2.

Equation B-1 is invariant under a very large variety of transformations
leading to different ordinary differential equations. Each set of boundary
conditions must be considered separately and transformations compatible with
the boundary conditions sought.

Example 2*: The system of partial differential equations of the classical
boundary-layer theory of Blasius is

gu , ov

ox + oy =0
2
ou ou o u
S i v=-1p=2=0
o) 2
oy 3y

¥
Taken from Morgan [20].
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These are constant conformally invariant under the transformation

o
1l
o

<
]
o
<

<
&

I
I
o

&

a nonuniform magnification. A set of absolute invariants then are

g, =u
1
g2=VX2
1
N =y/x°
The derivatives are
w _1%
dy  x a4n
u_ 1%
dx ~ 2x 4n
aw_1 28
oy 24N
62u _ 1 a &1
2 2
oy xd”ﬂ

giving the pair of ordinary differential equations

a
_}_'nd_.g_]:_Fi =0
2ldan " an
2
. dg, . dg, . a“g, Y
2N ey g7 * & 1 e
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Example 3: The wave equation in one dimension is

Ly o
"i% --—{% =0 . (B-4)
dt 3x

This equation is absolutely invariant with respect to the transformation

)
I

¥
X=X+a
t =t + a,

a shift in the origin of x and t coordinates. The invariants are g =1y,

N = x-t. The derivatives are

y _ ¢
3 - ¢

dt2

oy _ ¢
xx &

Bx2

where the primes indicate derivatives with respect to 7. The original equation
becomes then the identity

0=0

and indicates that there are no restrictions on the function g(n). That is
every function of T, (at least every twice differentiable function) is a

solution to the wave equation, or

g(m) = y(x-t)
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is a solution for every y. This of course is easily verified,and it is well
known that a pulse of arbitrary shape propagates with uniform velocity up
(or down) the x axis without changing shape if the medium is governed by

equation B-k.

C. Linear Equations

In the case of linear equations it is possible to use the transformation
groups to derive kernels for use in closed form integral solutions to initial
valve problems and for deriving Green's functions. As an example let us look

again at the one dimensional linear heat flow equation:

| oy &
| 5 T 2 = 0. (c-1)

It is of interest here to find solutions that satisfy the boundary conditions
y=0att=0and x £0

and

4-co

j v (x,t) dx = 1.

-0

1lim
t—0

These conditions are sometimes stated as
y =68(x) at t =0

‘ where 8(x) is the Dirac delta, defined to be zero if x # O but f&(x)f(x) dx = £(0)
if the range of integration contains the origin and f(x) is reasonably well

| behaved.

The equation C-1 is constant conformally invariant with respect to the
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transformation group

1
il
&

X =a x
E = a— t

for which invariant coordinates are g =y/t, M = x//t. The boundary conditions

in terms of the invariant coordinates become
g=0at T == o

and

4.0
g (M) dn=1

-C0

while the differential equation for g (7) is

The solution satisfying both the equation and boundary conditions is

o=/
g (M) =57 -

In terms of x, t and y this. gives

(/)
Y(X)t)=2‘/Frt— » £ 20,

It is eagily verified that this y (x, t) is the desired solution by back
substitution into both the original equation and the boundary conditions.
One now notes that the original differential equation is invariant with

respect to arbitrary translations along the x and t axes so that another
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solution to the equation C-1 is

o-(x=x )7 /b (6-t,) R

2/n(t-tl)

1

¥i (x, t) =

for all Xy and tl. vy does not satisfy the original boundary conditions but

satisfies the boundary condition
yl=0att=tlandx,éxl

and

lee]
lim
-y J yl(x, t) dx = 1 .

Now since the original equation C-1 is linear, any linear superposition of
solutions like vy (x,t) is also a solution. Thus
oo ~(x-x. )2 /M (6t )
e 1 1

vy (6 8) = [ A (x)

Lo 2/hit—tl5

dxl, t 2 tl

is a solution for arbitrary A(xl) (provided this integral exists).
The quantity
CERICETY
e 1 1
K(x—xl, t=t.) =

L a/m(t-t))

2
is called the kernel (or propagator) of the operator %E - §7§ and has, as
90X

noted, the property

K(x-x t-tl) =0at t =t x # X,

l)
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and

1im

T K(x-xl, t-tl) dx. =1

that is,

K(x-x,, 0) = é(x-xl).

l’

This allows one to solve for A(x) giving
yA(x)tl) = A(x) .

A solution to the initial value problem (that is, given yo(x) at t_ and the

differential equation C-1, find y(x,t) for t = to) then is

e
y(xo,to) dx | t = to. (c-2)

Lo 2/h(t-to)

y(x,t) =

j+m —(x—xo)/u(t-to)

Equation C-2 is well-known and is derived in most elementary text books
on heat flow or applied mathematics. Here the derivation of the kernel is
given by use of Morgan's theorem and the transformation group of nonuniform
magnifications.

By a similar technique kernels can be derived Eor otBer linear partial
) o)

differential operators such as the wave operator, at2 2 , and the operator

ox
* a2- ah
describing transverse vibrations in a rod , —-§-+ =T - In each case an
ot ox

ordinary linear differential equation is obtained whose solution can be used

to give the kernel.
One can use the kernels further to obtain Green's functions for use in

solving the inhcmogeneous equation but this will not be covered here.

*
See page 64 of Hansen [12]
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D. Morgan's theorem for ordinary differentisl equations

In giving his proof of the basic theorems for reducing the number of
independent variables by one, Morgan was careful to specify that there must be at
least two independent variables. But in examining his proof it is clear that
no use is made of this condition except in the terminology. This suggests
that Morgan's process can be applied to ordinary differential equations and
that in doing so a solution is obtained. Since the reduction by one of the
number of independent variables in an ordinary differential equation gives no
independent variable, the reduction is to an ordinary equation in the remaining
absolute invariants.

The solutions so obtained have no arbitrary constants and are particular
solutions to the system of differential equations. As such, they are not as
general or as useful as the solutions obtained by the methods in Chapter II
of this report. On the other hand, there are ordinary differential equations
for which the methods of Chapter IT do not work but for which Morgan's
procedure will give particular solutions.

Example 1: In the example in the boundary layer problem, the partial

differential equations

du , oV
—— — o "l
ax oy (D-1a)
) v ba2u
Ehl iy Il (p-1v)
y ¥y
were reduced to the pair of ordinary differential equation
dg, dg
1 1 2
gt @ (D-2a)
2 -
L dgl dgl bd gy
=LA Tean T2 =0 (D-2v)



by the transformations

M =y//x
g =W 8 =V Jx .

The equations D-2 are invariant with respect to the transformations

pe -1
N=a™
- 2
82 = a g2
Two new invariagnts Gl and G2 can be introduced as
2
Gy = g,™

where Gl and G2 now are independent of T, that is, constants. Substituting

for g1 and 8> in equations D-2 gives

_ G,
-3 (26, 170) + (-5) =0

and
1 -2 (-2¢ '5) +a.nt (-233) - b (6G n'u) =0
2 MG 1" Al n5 1 -
or
=0 and G 2. 2 G, - 6bG, =0
G =Gy = O and Gy 12 17
or
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This gives the particular solutions

g -6b o -6b
1 27 =2
M M
for equation D-2 or
u = -6bx v = 260
y2 ’ Y

as solutions to equations D-1, which is easily verified by back substitution.
This solution is, however, of doubtful value. It contains no arbitrary

constants and can therefore be made to satisfy only very special boundary

conditions. It cannot, for example, satisfy the usual boundary conditions

#*
associated with the boundary layer flow over a flat plate .

®
See [12] page 12.
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IV. HAMILTONIAN AND EULER-LAGRANGE EQUATTIONS

Most of the ordinary and partial differential equations arising in physical
problems can be derived from a variational principle. Group theory can be
applied to the study of these equations and their sclutions through the
study of the Lie algebras and corresponding Lie groups*. This section gives
a brief outline of how this connection arises.

Consider a class of partial differential equations that are derivable
from the variation of an action integral. These equations, which arise in

many physical problems, are referred to as Euler-Lagrange equations.

(The notation used here is the following:

X,, X

X, is a set of Cartesian coordinates xl, 5 .y referred to as the

3
spatial coordinates;

t is referred to as the temporal coordinate;

dx is the differential volume element dxl dx2 dx5 e . e

¢ is a function of the coordinates Xy and t, and will be referred to as
the field variable;

the summation convention is used for repeated indices, i.e., A&B& =
AlBl + A2B2 + A335 + ..

definitions ¢ , = 2 and § = X are used.)

54 BxL ot

The integral I, called the action, is defined as
t2 )
1= [ 2[Rl lelvte |00l 19) ax ot
1 R
where the integration is over some region R of the spatial coordinates and the

3*
See Appendix V for definition of a Lie algebra and Lie group.
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temporal interval tl to t2. I then is a functional of ¥ and the problem
consists in finding § such that I is an extremum. By letting § be replaced

by § + Kv, where K is in some sense small and v(x,t) an arbitrary function of

x and t that vanishes on the boundary of the region of integration, and setting

d1(K)

axK =0

K=0

one obtains in a lengthy but straightforward manner the partial differential

equation
%f‘(%% ,L'g_t(%}=o‘

This is called the Euler-Lagrange equation or just the Lagrange equation.
aexvill be called the Lagrangian density and L = IRéZf dx, the Lagrangian.
Further notations adopted here are that capital script letters will be used
to indicate a density and the corresponding Latin capital will indicate the

spatial integral of that density over the region R, i.e.,

A(t)

[RQG el wxle) Ly gl ) ax,
L = jRaC dx , etc.

Also define

£-09.24. (28 ’L+(&_g¢’%> _

m” ,4,m

this will be called the functional derivative of A (or Q ). Thus Lagrange's
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equation can be written
8L _ 3 s{> &3 (A
5y - ot (a‘{, or 8¢ - ot (aq})'

The following definitions and terminology are introduced:

3

(conjugate momentum)

11 i
3 o/
<

1 =

(Hamiltonian or energy density)

i}
<

(energy flux density)

(momentum density)

§°¥ e}t Ro¥ ¥ =
A

=y _sc—-6, L (stress tensor) .

While these names are suggestive of certain physical quantities, they need not
in fact correspond to the usual physical concept suggested and can be con-
sidered as merely convenient conventional names.

The following relationships exist:

(Hamilton's Equations)

Y A Z
dt ~ 'XL,L T3y AT 'sz,& * :(xm)

The operation

3
3(t)

is meant to indicate the derivative with respect to the explicit dependence

Lo



ofxon t, i.e.,

X 32
gthtyWa‘f%‘L

and similarly for -g(if;y . The function § is considered to be a function of
m
¥, T, and ‘l',{) ien, =1 (‘H“N,L)
Spatial integrals of functions depending on x, t, ¢, 7, and any derivatives

of ¢y and m will be called dynamic variables. The quantity

[a, B] —j‘R %%%%'%%%ﬁ) ax

is called the Poisson bracket of A and B and is also a dynamic variable. The
dynamic variables form a Lie algebra under the Poisson bracket operation,and
this algebra has an associated Lie group. A vast amount of literature is
available, and much is known about Lie groups* which can be applied to the study
of the set of dynamic variables of which y(x,t) itself is a member.

The Lie algebra of the complete set of dynamic variables, however, is not
of great use,but there are subalgebras that are of interest. For example, the
conserved dynamic variables are of interest. (If gﬁ O then A is said to be

conserved or a constant of the motion.) It can be shown that for conserved

dynamic variables A and B,
a _[4A @] -
at [A’B:\ = [dt ’ B] * [A’ atl =

so that the conserved dynamic variables form subalgebras of the algebra of
the total set of dymamic variables.

The present day uses of Lie groups in physical theories, especially in
particle physics, however, are not for solving the differential equations,

*
See reference [1] for an excellent review of Lie groups and applications.
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but rather for discovering the form of the Hamiltonian when the symmetries of
the system are known. Lipkin's book 18] is suggested as one of the best

elementary introductions to this use of Lie groups,and the subject will not

be pursued further here.
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V. RESULTS AND CONCLUSIONS

A. Results

1. Introduction

The results of this investigation can be divided into two
categories. The first are those theorems and methods in transformation
groups useful in solving ordinary and partial differential equations which
are generally known by mathematicians working in the field but not generally
known or in common use by physicists, engineers, or others who are concerned
with practical problems. This would include Lie's bgsic results and Morgan's
theorems. They are quite powerful yet not well known or as widely exploited
as they might be, probably because most people have so little background in
group theory. This is unfortunate since the group theory needed to exploit
the results of Lie and Morgan in practical problems is quite simple,
considerably less than what is needed to derive their results,

The other category of results in this report are those results which
appear to be original as far as can be seen from the literature survey. The
first of these is the application of the one-parameter transformation groups
to finding integration factors for a total differential equation. This was
a simple extension of Lie's basic theorem. A further extension that appears
to be original here is to systems of total differential equations. An
integration factor can be found for a system of total differential equations
if a sufficient number of independent invariance groups can be found for the
system.

In this report it was also possible to show that Morgan's theorem for

partial differential equations can also be extended "backwards" to ordinary

45



differential equations. But in this case it is not nearly so powerful or

useful, giving only particular solutions.

2. Summary of results

The basic results of group theory useful in solving differential

equations then are as follows:

a) Lie's theorem. If a differential equation of the form

P(x,y) dx + Q(x,y) dy = O

has solutions that are invariant as a family with respect to the transformation

o

U = o(x,y) g—x + B(x,y) 55

then an integration factor is

}‘=l/(Q’P+BQ):

provided the denominator is not zero,
b) Extension of Lie's theorem to total differential equations.
If a total differential equation of the form
n
L P, (xl,xg. . .xn)dxk =0
k=1

has solutions that are invariant as a family with respect to the transformation

n

A d
U= 2J ozk(xl,xg. . 'Xn) 35
k=1

then an integration factor is

n
>\=l/“‘ozP|
Kﬁél k k/

provided the sum in the denominator is not zero.
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c) Extension of Liefs theorem to systems of total differential
equations. If a system of total differential equations of the form

n

vk
Z‘ v (xl,xg. . .xn) dx, = 0, y=1,2. ..M
k=1

has solutions which as a family are each invariant with respect to all of

the transformations

n

_h P o -

IF -Z‘dk (Xl’xg' . .xn) Bxk s, B=1,2 .. .M
k=1

then an integration matrix is given by

Here Ry® stands for the matrix product of P with dT(i.e.,§ ai 35) and (BaT)_l
is the inverse of this matrix. Xs is an integration factor only if the
matrix PwT has an inverse.

d) Morgan's theorem. If each of a set of partial differential

equations of the form

k
ayl oy

.yl, o o oY

, ,

& \x., . . X . coe R

v \"1’ m n - \k k
3(x;) 3(x)

is conformally invariant with respect to some one-parameter group of

continuous transformations then the set of equations can be reduced to a

new set of the form

akp 3F

1 n '
T / =0

(s o o Mgy Fpe v By v v s —
A " 3(ny) a(n, 1)
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=1
b 29

e —

where the T's and F's are the invariants of the transformation group. Note
this reduces by one the number of independent variables in the system of
partial differential equations.

f) Morgan's theorem for ordinary differential equations.
Morgan's theorem can be applied even when there is only one independent
variable, 1In this case it reduces a system of ordinary differential

equations to ordinary equations in the invariant F's.

B. Conclusions

Some conclusions can be drawn from a practical application of the
above techniques for solving differential equations.

Lie's original theorem for partial differential equations and its
extension to total differential equations is quite effective and practical
in solving ordinary and total differential equations. But it depends on
finding an invariance group without giving a straightforward prescription
as to how to look for such a group. Thus it is a trial and error method
that depends for its effectiveness on the skill of the user and is not a
straight forward prescription for solving all equations.

Lie's theorem extended to systems of total differential equations is
much more difficult to use in practice. It requires finding many invariance
groups such that each and every one of the total differential equations is
invariant with respect to every group. Furthermore, the groups must be
independent. In the present form this theorem is of doubtful practical use.

Morgan's theorem is extremely powerful and useful in practice. Its
use however has the same drawback as Lie's theorem, namely that an invariance

group must be found and the theorems give no hint about how to search for
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such groups. But a skilled user can often use physical reasoning to great
advantage in practical problems and quickly discover the needed group.

A more serious difficulty with Morgan's results is that no considera-
tions of the boundary conditions enter the theorems. Thus while one may
discover an invariance group for the differential equations, this transforma-
tion may not be compatible with the boundary conditions and thus be of no
use. Since the boundary conditions are different for different problems,

each individual problem must be attacked separately.

C. Recommendations for further study

The treatment of systems of total differential equations by group theory
ocutlined in this report appears to be useful. However, modification of
this technique may be possible and desirable to maike it more flexible. 1In
the present form, if there are M equations then M different invariance groups
are needed to find an integration factor (matrix), and this is a rather
stringent requirement. Hopefully further investigation could show that
these conditions could be relaxed to a single invariance group.

A second extension that would be useful is to extend the technique used
for systems of equations to partial differential equations. Such an
extension would not be easy but ought to be possible at least in principle’
since a partial differential equation can be viewed as a continuously
infinite system of ordinary differential equations.

Another extension would be to try to apply the method for systems
of differential equations to the discrete approximation of a partial
differential equation. This would give only approximate solutions to the

partial differential equation. But these approximations could be arbitrarily
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close to the exact solutions, or exact solutions might be obtained by a
limiting process. The limiting process might also be effective in obtaining

the needed theorems mentioned in the previous paragraph.

Respectfully submitted,

7{ 72 ka(‘(?\/’( —

L. J{ Gallaher
Project Director
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APPENDIX I

Definition and Examples of a Group

A set of elements are said to form a group under an associative operation
(called product) if the following conditions are satisfied:

1. The product of any two elements in the group is in the group.

2. There is a unique identity element in the group such that its
product with every element leaves that element unchanged.

3. A unique inverse of every element is in the group such that the
product of the element with its inverse is the identity.

Some examples of groups are the following:

The numbers +1 and -1 form a two element group under multiplication.

The positive and negative integers with zero (as the identity) form a
group under the operation of addition.

The positive rational numbers form a group under multiplication with 1 as
the identity.

The complex numbers of unit magnitude form a group under multiplication.

The real numbers form a group under addition.

The set of all one-to-one transformations on any space is a group.
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APPENDIX II

Lie's Theorem for Total Differential Equations

In this appendix it is shown that if the solution of a total differential
equation is invariant as a family under a one-parameter group of transformations,
an integrating factor can be given.

Consider the total differential equation in n variables (n = 2):

m
Pjdx) +dx, +...Pdx =) P (xl, Xy e ) dx, =0 A II-1
k=1
and let
@ (xl, Xpy oo ) = ¢ (a constant)

be the family of solutions. That is,

9%
axk Pk or
%Q— = k(xl, X, ) P, k=1, 2, n

where A is independent of k. Then ¢ is a solution to the set of partial

differential equations

13 1
P 0% Priq 9%

o, ¥ =1, 2 ... n-1

(provided none of the Pk are identically zero).

Assume that as a family, ¢ = ¢ is invariant under the group U
n

) 0 9 N 0

=g — + = + g, =™ ¢+ = o —

1ox, %208k, "% o ﬁgl k 3%

an}
|
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(the o's can be functions of the x's), so that

Ug =g ().
Let
=4
O]

so that ¢ = C is identical with the family ¢ = ¢. Then

and ¢ is a solution of the partial differential equations

g§ S S - S K =1,2 ...n-1

k % Pry1 %41

WIH

and

o = 1

0d
k axk

= [~

This system of n linear equations can be solved and gives

%k
Bxk § o P

S 8

(provided the denominator is not identically zero). Then d& is a perfect

differential and

J

" 0d

ﬁdxk

a¢ =

= >

0

-
o

5

S S

il
= [~

n ™
R
+d




Thus if § aSPS is not identically zero,

is an integrating factor of the total differential equation
ZPkdxk =0
k

and

= K

J % Pl

ol
g “s s

is the quadrature solution, where K is a constant, and the path of integration

in xk space can be chosen for convenience.

An alternate point of view to the above reasoning can also be given. The
equation A II-1 is invariant under the group U, if it preserveg its form under

an infinitesimal transformation. That is, if
ZPk (xl,x2 ...)de=O A II-2
k

where

xk =xk +Q/k6t;

5t is a small parameter. To first order in 6t we have

5k



ZPk (xl, Xy e ) de =

k

T (23 +T oB 5 o) (i, + ) o ) -
k s s s S

} 3P, _ Qo
(Pk(x) + 61% (a-.{ls o + gg PS)> dx,

ol

(here &k (x) = -ak(x) to lowest order in &t).

If A IT1-2 is to hold, then

o e o L
2; (a—)-c: O!S + ﬁ PS) =w (x) PR(X) A TI-3

where w(}-c) does not depend on the index k but may depend on the x's. If

A II-3 holds, then

—. P do P N
k- ; - \
sz (S;t_s-as +-BT§PS> - PkZKg-;ﬂ o[s +5°_:1Ps) =0
S S

or (dropping the bars for convenience)

oP. 3 -
| k ) 9
Z.as (Pmﬁ-PkaTs-Pm> +z>gPs <Pmaxk-Pk axm>°/s =0

or
- aPk aPm PmaPS BPS
Las (ngx_-Pm dx_ axk +Pk -a—x__>
S s s m
- 9 _ L) N _ -
(Pk ox Pm axk 24 Psa,s, =0 A IT-h
n s

Now in Appendix III it is shown that a necessary condition for the existance

of an integrating factor for A II-1 is that
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Thus if an integrating factor does exist, A II-4 can be written

s axm k S 0Xx. m k axm m axk

> 3 3 >
), o (P S _p -p —kP)-<P € __p -—) Pa =0.
S

S

Provided g Psas is not identically zero this gives

P P
gxm (gFPsaé> ) 2xk <§mpsas> -0 A

Now expression A II-5 states that the n dimensional "curl" of the vector
Pk/g Psas is zero, and it is a well-known theorem that, if the curl of the
vector is zero, this is a necessary and sufficient condition that the vector

be expressable as the gradient of some scalar function. Thus it is shown that

e _ %
Fosfs o

for some ¢ or that l/§ aSPS is an integrating factor for the original equation
A IT-1.,
This second form of the proof is informative since it is more closely

related to the test for invariance actually used in solving practical problems.

56




The Necessary Conditions for the Existence of an Integration Factor

APPENDIX III

It is shown here that in integration factor to the differential equation

exists only if

(Here the notation Anti

n

Z hax =0

k=1

oP
S

i s _ o
Antl[kms] Py ox_

[ kms]

symmetric in the indices k, m and s.)

Assume then that there exists a A (#0), such that

then

or

o) d
— N, - —» =0
me k axk m
0 XaPk A\ aPm
Pk 0 At ox, Pm axk - A 8xk =0
fs) 3 JP JP
k m
(P — - P ———) InA+— ~-—=0.
k axm m axk axm axk

A ITI-1

A III-2

means that the term following is to be anti-~

A ITI-3

Multiply this by PS and antisymmetrize with respect tc s and k, and s and m,

to give:
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( 3 a\ <6 aPm>
P (PL5—-P =—)InA+P (—P -z
s k Bgm m axk) s axm k axk

o d oP oP
- Pk (Ps axm - Pm axs> n A= Pk <§§i B 52?)

3 I QP P
'Pm<Pk&—'Ps‘r)l“'Pm\§{'a—)=O
s X, s %

The operator operating on In A is identically zero. The remaining terms are
ap
. s . . . .
Antl[smk]Pk axm' Thus if an integrating factor for A III-l exists AITI-2 must
hold.
We note here that A ITT-2 is a necessary condition for the existence of

an integrating factor; it is also a sufficient condition,but that was not

demonstrated here.
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APPENDIX IV

Lie's Theorem for Systems of Total Differential Equations

In this appendix it is shown how one-parameter transformation groups are
used to find integrating factors for systems of total differential equations.
This is Lie's theorem extended to systems of total differential equations.

Consider the system of M total differential equations in n variables

(n=u=2),.

n
YO ( ) 0 2 1
ZJ PY X 0%py e dxk =0 ,y=12...M ATV
k=1

The convention will be used here that the Iatin indices run from 1 to n and

the Greek indices run from 1 to M. Iet

¢p(xl, Xy e ) = e, (constants), p = 1, 2,... M

be the family of soclutions to A IV-1. That is

o¢

0 _\ P

5%, LM % A V-2
B

where the AB may be functions of the x's but are independent of the index k.
e
(A is an integration factor and will be an Mby-M matrix here.)

Assume that as a family ¢ =c are invariant under the groups uY
P p

uY

n

n

Ny

Z_' Q/k (xl) x2,
k=1

so that
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UY¢p = gz (<Z>p)- A IV-3

Introduce @n defined as

o 52 J (g-l)% dpg A TV-4
B

so that Qn = Cn (a constant) is identical with the family, ¢p = cp. The

notation here is that (g-l)% is the B, N component of the inverse of the matrix
g% (it being assumed here that the inverse of g exists).
Then
0%

Y - ¥ A % oY (1B _ Y -
UQH"LU¢BB¢B‘LgB(g )n_én s A IV-5
B B

where 6%(=lify='ﬂ,or0ify;éﬂ.

We note also that

o

il
I

™ [>]

L5

Y

where A% =2 (g-l)%kg. (A may be a function of the x's but does not depend
B
on the index k.)

Thus if
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A IV -7

is to be a perfect differential, 1\Y is also an integration factor for the

M

original equation A Iv-1.
But in order that A IV-5 (equivalent to A III-3) be satisfied it is
necessary that

ZA?]{P};QE=6TB] A T1V-8
Yk

or that AY ((P ) )n Here (Pa ) is the inverse of the matrix product

oy
n %

(Again one makes the assumption that the needed inverse does in fact exist.)

PQI; that is, \(Pa )n is the vy, T component of the inverse of Z P

The quadrature solution of the system A IV-1 is then given by

JZ((PT) )YP dx, = K A IV-9

where the K,n are the M arbitrary constants of the system and the path of

integration is chosen for convenience.
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APPENDIX V

Definition of Iie Algebras and Lie Groups

A Tie algebra and corresponding Lie group are defined as follows. A set
of vectors a, b, ¢ . . . is said to form a Lie algebra under an operation
(denoted by [,]) if the following conditions are satisfied:

1) the result of the operation [a,b] is a member of the set for all a and
b in the set (closed).

2) [a+c, b] =[a,b] + [c, b] (linearity).

3) [a, b] +[b, a] = 0 (antisymmetric).

L) [a,[b,c]] + [b,[c,al] + [c,[a,b]] =0 (Jacobi identity).

(The entities a, b, ¢ . . are vectors in some vector space in the sense
that multiplication by a constant and vector addition are defined in the usual
way. A norm may or may not be defined()

Associated with every Lie algebra will be a Lie group. A group is obtained
by putting the elements of the algebra a, b, ¢ . . . in a one-to-one correspon-
dence with a set of operators A, B, C . . . such that for all a, b, ¢, A, B, C,
if ¢ =[a,b] then ¢ = [A, B] where [A,B] = AB - BA is the commutator of A and B.
The operators are to have quantities, {, to operate on, and AB means operate
first with B and then with A. The operators e, e, e . . . are then
transformations on the { that form a corresponding Lie group, where
e® =T 4+ a+ a8/ +AMA/3" + . . . and I is the identity operator.

Since a Lie algebra or group is defined for a set of vectors, it will
have a set of basis vectors, xm, such that any member of the set can be given
as a linear combination of the X - (The index m may take on discrete values,
either finite or infinite, or a continuous set of values, or have both a

discrete range and a continuous range of values.) In terms of the basis

vectors, condition (1) above can then be replaced by the condition
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1) [xk, xj] = J Cij X
m

where the Cﬁj are constants and I indicates
m

a sum over the discrete plus an

integral over the continuous range of m. These Cﬁj are the structure constants

of the Lie algebra or group and completely define 1it.

The most familiar example of a Lie algebra is formed by the vector cross

product operation in three dimensional space. Here we define the unit vectors

L 3

f, J and K, and their cross products, so that

1,5] =K
fﬁ;ﬁ] =1
[R}S-] = j

The cross product is also antisymmetric and
this system is the basis of a Lie algebra.
formed by putting the rotation operators in

1, 5, and K and then letting the commutator

Hio
1
=
"

|

Then

er: Ly] =

63
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Py
3
e
>
]
o

satisfies the Jacobi identity so
The corresponding Lie group is
a one-to-one correspondence with

correspond to the cross product

1
N
0/|0/
<

'
>
S

etc,

[ng
»
g
1l
[



The transformation operators eIk, eLy, eLz form the basis of the corresponding
Lie group. This is the proper orthogonal or rotation group in three dimensions,

usually called for short SO(3).
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APPENDIX VI

A Discussion of Morgan's Theorems for Systems of
Ordinary Differential Equations

In this appendix, the outline of a proof of Morgan's theorems for ordinary
differential equations is given. The notation used here 1s the same as that in
Morgan's paper [20] to which the reader is referred.

It Gl is a continuous one-parameter group of transformations of the
independent variable x and the dependent variables AT IEERY Y, of a system
of differential equations of the form ¢, =0, 6§ =1, . . ., n, then a

&

transformation in Gl is of the form

X =f (x;a)
f:f 0
Vg =5 (vg3a)s 6 =1, . . ., n

where a is a numerical parameter and the transformations x — x form a subgroup

SG of Gl' Let Gﬁlidenote the enlargement of Gl formed by adding successively
1

to Gl the transformations among the first, second,. . ., and k-th derivatives

of the yé.
Now consider x, Vi oo - Y, to be independent variables. As Morgan

indicated, Gl has n functionally independent absolute invariants
3(gys -8 )
g (¥es « v s V.5 X)y « « 58 (y,» « . .5 ¥, x) such that L He 4o,
11’ > In? TP > °n VY1 > I’ a(yl, ..,yn)
Now, consider the y6 and 56 to be implicitly defined as functions of

x and i, respectively, by the equations

1

Zé(x) g6 (yl) L P ynJ X)
and
Z&(x) = g6 (le L R yn, X)

where the g6 are the absolute invariants of Gl'
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Then, with m = 1, Morgan's Th 1 takes the form:
Th 1: A necessary and sufficient condition for the o implicitly defined
as functions of x by the equations Zé(x) = g (yl, C e Yoo x) to be exactly
the same functions of x as the 56’ implicitly defined as functions of x by

Zé(i) = gé(il, R &n, x), are of x is that
2(x) =z (x) = z(x) ,

or, equivalently, that Z is a constant function.

The proof is analogous to that given by Morgan.

Then, considering x and the y6 to be the independent variable and the
dependent variables, respectively, of a system of differential equations, we
define:

Def 1: By invariant solutions of a system of differential equations is meant

that class of solutions of a system of differential equations which have the
property that the y6 are exactly the same functions of x as the §6 are of x.

Theorem 1 makes it possible to reduce the problem of finding invariant
solutions of a system of differential equations to one of finding solutions

which satisfy relations of the form

Zo(x) =gg (y;5 « + 5 ¥5 %)
where
Zé(x) is constant.
Then, since the conditions of the implicit function theorem are satisfied,
the y6 may be written in terms of x and these constants.
In the case where there is one independent variable, Morgan's Def 2

takes the form:
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Def 2: By a differential form of the k-th ader is meant a function of the form,

k k

dy dy dy dy
8(x,y V., —= —1 =)
s l, . . . n’ dx > . . . dx’ . . .y k b} . . L ] k
dx dx
whose arguments are the independent variable x, the functions yiro- o =¥,

dependent on x and the derivatives of the y6 up to the k-th order.

If each of these arguments transforms under the transformation laws
of a continuous one-parameter group with symbol V and numerical parameter a,
then the arguments may be considered as independent variables of the group

with symbol V and called Z, Z . zp, where p = (k + 1)n + 1.

2)
Def %: A differential form & will be said to be conformally invariant under

a one-parameter group G. if, under the transformations of the group, it

L

satisfies the relation.

) (Zl, C e Zp) =Fzy, .. . Zp;a) 8(25 - .,zp), where & is
exactly the same function of the Z's as it is of the Z's and F is some function
of the x's and the parameter a.

If & satisfies the above relation with F a function of a only, % is

said to be constant conformally invariant; if the relation is satisfied

with F identically equal to one, then ¢ is said to be absolutely invariant.

Th 2: If & is a differential form of the k-<th order and is at least in

(1)

class C with respect to each of its arguments, then a necessary and

sufficient condition for & to be conformally invariant under a one-parameter

group of transformations with symbol V is that

Ve = m(Zl, C e e zp) % (zl, C Zp),
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for some w(Zl, . Zp), or equivalently, that

@(Zl, c ey Zp) = eg(zl’ .o "Zp>
éo(zl, C e zp),
where éo is a general absolute invariant of V and g(zl, R Zp) is a
determinable function of Zl’ e . ooy
p

The proof of Th 2 is as indicated by Morgan.

Def 4: It is said that a system of k-th order differential equations @6 =0

is invariant under a continuous one-parameter group of transformations Gl if
each of the differential forms @6 is conformally invariant under the trans-
formations of GlEk.

Th 3: If each of the k-th order differential equations @l, e @n in a
system of differential equations, with independent variable x and dependent
variables Yo o o o yn, is conformally invariant under the k-th enlargement
of a continuous one-parameter group Gl of transformations, then the invariant
solutions of the system can be expressed in terms of x and the constants Z
where Zé(x) = gé(yl, Coe s Y k), the gy Peing functionally independent
absolute invariants of Gl (considering X, yl, e e ey yn as the independent

variables).

The proof follows directly from theorem 1 and definition 1.
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