.

(2) C

ded by NASA Technical Rer

/

National Aeronautics and Space Administration Goddard Space Flight Center Contract No.NAS-5-12487

ST -- NP -- 10 602

CALCULATION OF THE NUMBER OF DISPLACEMENTS IN CASCADES OF IDENTICAL PARTICLE COLLISIONS

by

V. M. Lenchenko

(USSR)

N67-26361. (THRU) FACILITY FORM 602 ACCESSION NUMBER (CODE) PAGE (CATEGORY) INASA CR OR

5 MAY 1967

CALCULATION OF THE NUMBER OF DISPLACEMENTS IN CASCADES OF IDENTICAL PARTICLE COLLISIONS

by V. M. Lenchenko

ATOMNAYA ENERGIYA Tom 22, vyp.3, 226 ATMIZDAT, MOSKVA 1967

ABSTRACT*

The calculation of the total number of displacements (ionizations, excitations, displaced atoms and so forth) is the starting point in the explanation of physico-chemical transformations in a matter subject to action of nuclear radiations. If $J(\varepsilon)$ d ε is the radiation flux in the energy interval ε , ε + d ε and σ (ε , E) dE is the cross section of energy transfer to medium's particle in the interval dE, the rate of accumulation of displacements is determined by the expression

$$\dot{N} = n_a \int_{e} J(e) de \int_{E > E_d} \sigma(e, E) v(E) dE.$$
(1)

The particle is then considered as displaced if the energy E,transferred to it, is greater than the threshold energy E_d . The quantity v(E) is the number of displacing collisions induced by one primary particle having obtained from the penetrating radiation the energy E; n_a is the density of atoms.

We shall consider the cascades of identical particle collisions (electron-electron, atom-atom), inasmuch as the formation of defects is linked precisely with them.

Let us denote the cross section of such a collision by $\sigma_a(E,\varepsilon)$. Then $n_a\sigma_a(E,\varepsilon) d\varepsilon dx$ is the number of collisions of this type with energy transfer by impacting particles in the interval d ε over the path dx. Multiplying this expression by $v(\varepsilon)$, and integrating it over d ε and dx, we shall obtain the following integral equation for v(E):

$$\nu(E) = \int_{E_d}^E n_a \left(\frac{dE'}{dx}\right)^{-1} dE' \int_{E_d}^{E'} \sigma_a(E', \varepsilon) \nu(\varepsilon) d\varepsilon + 1.$$
(2)

Here $\frac{dE'}{dx}$ are the total losses of energy by the cascade particle over a unit of path.

^(*) K RASCHETU CHISLA SMESHCHENIY V KASKADAKH STOLKNOVENIY ODINAKOVYKH CHASTITS ** [The "in extenso" paper on the subject bears the No.114/3828. Manuscript released on 17 May 1966, apparently to be published later].

We shall describe the atom-atom collisions at not high energies as collisions of solid spheres:

$$\sigma_a (E, e) = \frac{\sigma_0}{E}$$
(3)

and corresponding to energy losses:

$$\frac{dE}{dx} = \frac{n_a \sigma_0}{2} \left(E + \frac{q}{E} \right), \qquad (4)$$

where σ_0 and q are semiempirical constants.

Taking into account expressions (3) and (4) and the initial condition v = 1 for $E_d \leq E \leq 2E_d$, Eq.(2) has the following solution:

$$v(E) = \frac{E}{q} \operatorname{arctg} \frac{q(E - 2E_d)}{q^2 + 2EE_d} + 1.$$
(5)

At q = 0 this expression passes into the well known Kinchin & Pease formula [1]. At nonrelativistic energies the electron-electron collisions are well described by formulas

$$\sigma_a(E, e) = \frac{A}{E} \cdot \frac{1}{e^2}; \quad \frac{dE}{dx} = \frac{An_a}{E} \left(\ln \frac{E}{e_i} + a \right), \quad (6)$$

where ε_i is the mean ionization potential; A and a are constants.

For this case the solution of Eq.(2) has the form

$$\nu(E) = \frac{E}{\epsilon_i} \int_{2\epsilon_i}^{E} dE' \frac{\ln \frac{E'}{2\epsilon_i} + 1}{\left(\ln \frac{E'}{\epsilon_i} + a\right) E'^2} + 1.$$
(7)

Hence for $E \ll 2\varepsilon_i$ and $a \approx 1$, we find $v \approx E/3\varepsilon_i$ which corresponds to well known experimental facts according to which the mean energy expenditures for the formation of a pair of ions in the medium are about equal to three ionization potentials [2]. For condensed media $a \ge 1$ and this is why, according to expression (7), $v \le \frac{E}{3\varepsilon_i}$; for gases $a \le 1$ and this is why $v \ge E/3\varepsilon_i$. These results have a great significance for radiation physics, chemistry and dosimetry.

**** THE END ****

REFERENCES

G. KINCHIN, R. PEASE. Rept. Prog.Phys., <u>18</u>, 1, 1955.
 B. S. VAVILOV. Deystviye izlucheniy na poluprovodniki (Action of radiations on semiconductors). M., Fizmatgiz, 1963.

$\underline{\text{ST}-\text{NP}-10602}$

....

CONTRACT No.NAS-5-12487 VOLT TECHNICAL CORPORATION 1145 19th St.NW WASHINGTON D.C. 20036 Tel: 223-6700; 223-4930.

Translated by ANDRE L. BRICHANT

on 5 May 1967

DISTRIBUTION

GODD	ARD SPACE F.C.	NASA HQS	OTHER CENTERS
	110, 400, 600, 601 Meredith McDonald Abraham-Durgaprasad	SS Newell, Naugle SG Mitchell-Smith Schardt Dubin	<u>AMESRC</u> Sonett Library
	Davis Konradi, Hoffman Williams Williamson Teegarden, Serlemitsos Fichtel VKB Boldt, Hagge	<pre>SM Foster Gill SL Fellows Hipsher Horowitz RR Kurzweg RRP Gessow RND Woodward</pre>	LANGLEY R C 116 Katzoff 160 Hess 234 Singh 185 Weatherwax
612	Heppner Ness Aggson Behannon Scearce Taylor	RTR Neill USS Nagurney (2) WX Sweet	<u>J P L</u> 180-500 Snyder 183-401 Neugebauer Vis.Lab Wyckoff 354-3380 White
613	Kupperian Hallam-Kondo Boggess		354-4200 Canter MSC HOUSTON
614	Brandt Frost Behring-Kastner		TA W.N.HESS (3) CB Don Lind
615	Bauer Goldberg, Herman Maier, Serbu	+ all permanent addres	TG5 WARREN sees
630 252 256	Northrop Mead Nakada Drachman Temkin Omidvar Reading Room GI for SS (3) Library Freas		