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ABSTRACT

This paper describes a method for obtaining total columnar electron
content of the ionosphere from Faraday rotation data on closely spaced fre-
quencies. The method is applied to Faraday fading signals received at the
University of Illinois tracking station in Urbana, Illinois from the polar
orbiting satellite, Explorer 22. Approximately five months of these data
(October 1964 to March 1965) have been analyzed. The content results are
presented in the form of diurnal variation and constant electron content
contours as a function of latitude and time. Also investigated are varia-
tions of electron content with respect to sunrise effects and planetary

magnetic index,



1., INTRODUCTION

The ionosphere has been the subject of much study since 1902 when Oliver
Heaviside postulated that ions in the upper atmosphere were responsible for
Marconi's successful transatlantic radio transmission [Ratcliffe, 1959]. The
ionosphere is thought to be made up of layers as is the atmosphere. The
layers or regions as fhey are called shall not be distinguished in this paper
since the total columnar electron content measured sums all the electrons in
a square meter column extending from the ground to a satellite orbiting above
the peak of electron density in the upper layei of the ionosphere. The F-
region contains the peak electron density and is the major contributor to the
total electron cbntent. Although electron content does not directly give
information about the distribution of the ionized layers along the ray path,
it can be used as an aid in understanding the factors which effect the iono-
sphere and in turn radio wave propagation which is ionosphere dependent.
Electron content is known to vary diurnally, seasonally and with the solar
cycle. The period of time included in this study runs from October 1964 to
March 1965 when the sunspot number is just beginning to increase from minimum.

The ionosphere is a birefringent medium. At the satellite signal fre- .-
quencies concerned, the phase veloéities“areﬂdifferent for the ordinary and '’
extraordinary waves of a signal in the ionosphere. This difference in phase
velocity rotates the plane of polarization of a plane polarized wave as it
passes through the ionosphere. Michael Faraday discovered this phenomenon in
a laboratory experiment with polarized light more than a hundred years ago;

it is now called the Faraday effect.



The ionospheric Faraday rotation is dependent on the earth's magnetic
field, signal frequency and the number of free electrons encountered along
the path of the signal, The satellite signals monitored for Faraday rotation
are received on linearly polarized dipole antennas thus a null is detected
every time the plane of polarization rotates 1800, one half-rotation, Two
frequencies are used to determine the actual number of rotations which have
occurred along the path from the satellite to the receiving station,

The Faraday fading detected in the receiver automatic gain control
circuit is recorded on a strip chart recorder in order to determine null
occurrence as a function of time,

The satellite used for this experiment was Explorer 22 also known as
S-66 or BE-B. The more important information of this satelliﬁe is given in

the following:

Launch date October 10, 1964
Period 104.75 minutes
Inclination 79.69 degrees
Apogee 1080 Km

Perigee 886 Km

Signals received 20.0, 40.0, 41,0, and 360.0 MHz

There are several characteristics of the satellite and its orbit worth
noting here. The inclination is nearly 800 and thus the satellite travels
approximately in a north-south direction at mid-latitudes. The highly polar
orbit yields a good latitude cross section while on the other hand minimizes
longitudinal effects at times other than sunrise and sunset. The rapid

change in latitude for a satellite pass gives rise to large changes in M.



The change in M geﬂerally makes the total Faraday rotation a decreasing
function of time for a north bound pass and an increasing function of time
for a south bound pass. |

Generally, one norfh bound and one south bound satellite pass was
observed each day for the above mentioned period. The average time for the
occurrence of a satellite pass decreased each day thus the diurnal variation
could be observed for both north and south bound passes.

Finally, the transmitted frequencies at 40 and 41 MHz were chosen for
this experiment so that one could assume equal path and also Faraday rota-
tion ambiguity can be nearly always eliminated at sunspot minimum. The
ambiguity in rotation has been a troublesome problem in many experiments

and we shall discuss this problem later.



2, THEORY OF MEASUREMENTS

The theory applied is based on the quasi~longitudinal approximation of
the Appleton-Hartree Equation for the refractive index of the ionosphere.
The equation for the Faraday rotation of the plane of polarization in the

ionosphere is:

- K

2
f

Y] ‘fNMdh radians (1)
where
-2 . . .
K=2,97 X 10 in rationalized MKS units.
f = frequency of signal in Hz.

N = electron density.

=
I

H sec i cos ©.

H = intensity of the geomagnetic field.

i = angle between ray path and vertical,

© = angle between ray path and geomagnetic field.

dh

11

differential height element.
Since M is a slowly varying function, it is taken outside of the integral and

evaluated at a mean ionospheric height. - Equation (1) now becomes

K -—
Q=— M f Ndh (2)
2
b
where
~rNdh = the integrated electron content,
M = M evaluated at mean height.
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The mean height used to evaluate M was chosen on the basis of an iono-
sphere model study by Yeh and Gonzalez [1960]. Restricting the zenith angle
to less than 400, the optimum value for the mean height is 350 Km. Certain
basses were rejected when the zenith angle limitation was severely violated.
The first order equation shall be applied to two frequencies to find fhe
actual number of rotations for one frequency. Writing Equation (2) for two:

frequericies at the same time in units of half-rotations where R = /1 gives

KM
R, = szdh, R2=——f§deh.
1 e

The differential Faraday rotation can be found by subtraction

KM 1 1
R—R2=AR=—7T—deh[-—§——2]. | (3)

1
fl f2

Now divide R1 by A R keeping in mind that M and.UKNdh are at the same time

and will cancel leaving the constant ratio of single frequency Faraday rota-

tion to differential rotation

= . (4)

The right side of Equation (4) is approximately 20.75 when f1 = 40 and
fz = 41,

Below is a list of assumptions made in the theory:
1. Plane earth.

2. Plane ionosphere represented by a horizontally stratified layer at some

mean ionospheric height above the earth but below the satellite.



3. High frequency, i.e. refraction neglected.

4, Satellite height change has negligible effect,

5. Satellite antenna orientation does not change with respect to receiving
antenna during a pass, e.g. neglect satellite spiﬁ.

6. Polarization of transmitted signals at different frequencies are the same
at the satellite antenna.

Limitation of these assumptions have been discussed in the literature and

hence shall not be repeated here [Arendt, Papayoanou and Soicher, 1965; Gar-

riott and de Mendonca, 1963; Yeh and Swenson, 1961].



3. ELECTRON CONTENT CALCULATION

The calculation of satellite ephemeris and ﬁ, the earth's magnetic field
contribution, have been programmed and are used as subroutines in a computer
program‘to calculate electron content as described in this section, The
computer used is the IBM 7094-1401 at the University of Illinois. The satel-
lite tracking station is‘also located near the Univérsity and has geographic
coordinates of 40.10 north and 88.2o west.

The Faraday roéation null times are recorded and punched on data cards
for each pass. The data cards are read into the computer and stored in arrays.
Null times can be recorded in hours, minutes and seconds (HH MM SS.S) or in
chart divisions using a reference time on the record and a division scale.

The null times fof each frequency are now consecutively numbered and put into
two tables so that differential rotation can be calculated using an interpola~-
tion routine available in the computer subroutine library.

To calculate differential rotatioﬁ at 40 MHz nulls, some type of inter-
polation is reduired for the 41 MHz rotation between nulls. Linear interpola-
tion is not enough for most of the passes, therefore, a higher order inter-
polation is used. ’The interpolation routine passes a curve through 41 MHz
null numbers veréus time of ﬁull occurrence. kssuming that Faraday rotation
decreases to the north and increases to the south, the differential rotation
is calculated for éach 40 MHz null time. The ambiguity of the integral
number of half-rotations between 40 and 41 MHz ﬁulls can usually be eliminated
during quiet sun conditions to obtain the correct differential rotation,

Now that the differentiai rotation is calcuiated for all the 40 MHz nulls,

the actual value of rotation can be found for each of these nulls using the



constant ratio of differential rotation to actual rotation, given by Equation
(4). Notice that there should be one half-rotation difference going from one
null to the next, assuming there are no reversals of Faraday ro%ation.

Since tﬁe electron content profile is of major interest, the Faraday
rotation values for each 40 MHz null in a pass must be consistent in that
pass, i.e. there must be one half-rotation between adjacent nulls in order
for a consistent electron content profile, again assuming no Faraday rotation
reversals,

If the number of rotations from satellite to ground is known for one
null in a pass, then the proper number of rotations can be added or subtracted
to determine the number of rotations for all other nulls in a pass. The
following technique is used to find the number of rotations which should be
assigned to one 40 MHz null in the pass.

Consider a pass which should have decreasing rotations to the north.
Thus the southern most null has the highest number of half-rotations. The
next null going north should have one half~rotation less than the first and
so on to the north end of the pass, each null having one half less rotations
than the previous null, Let Ri be the number of half-rotations calculated
using differential Faraday for the i th nqll in the-pass counting from south

to north, i.e. R, is the southern most null in the pass. To compare the num~

1
ber of half-rotations of the first null with any other null add i - 1 half-
rotations to Ric The simple average value of the Ri + i - 1 terms yields a
value for the southern most null of the pass which can be used to determine
the number of rotations for all other 40 MHZ nulls in the pass.

The new values for Ri are now calculated and set up in an interpolation

table so that the number of 40 MHz half-rotations can be found for any time



during the pass.

The electron content can be calculated for any time in the pass using

2
R(t), interpolated half-rotations, since (t) = fR(t) and V[Ndh = E: ().

The number of half-rotations calculated for the 40 MHz null tfﬁes before
averaging were compared with the value calculated at the point of closeét
approach., First, the number of half-rotations were calculated at each 40 MHz
null, and the value for the null occurring nearest to the point of closest
approach was used to renumber the half rotations at the other null times.

The percent of difference between the original number and the referred number
of half-rotations was computed at each null. Figure 1 shows some typical
examples of percent of difference plotted versus zenith angle of the satellite.
The above procedure is not an attempt to justify the averaging technique but
only to show the order of deviations which occur when calcﬁlating differen~
tial Faraday rotation at several null times in a pass. Akcertain amount of
the deviation can be attributed to scaling and interpolation errors; however,
some discrepancy still remains after these errors have been accounted for,
thus the averaging was used as a compromise of the existing situation. Reso-
lution of the discrepancy could possibly come about through careful ray trac-
ing techniques since the problem may be due to unequal signal path for the two
frequencies used to calculate differential Faraday rotation. Other possible
causes for such errors might be transmitting antenna orientation changes due
to satellite spin and also path splitting between ordinary and extraordinary
rays.

Below is a typical example of how the computer program determines the

actual number of half-rotations from satellite to ground. The pass used in
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this example was recorded at Urbana, Illinois on December 21, 1964, The null

times are shown in Table 1 along with their respective numbers P and P4lo

40
The initial null numbers, P, and P,  simply start with the first null of the

40 41
pass and are numbered consecutively to the end. Determining differential
rotation from the initial nullynumbering must take into account the direction
of the pass since we have assumed rotation decreases to the north. The pass
for this example is south bound, thus differential rotation at 40 MHz null
times can be calculated by subtracting the interpolated value of 41 MHz
numbers from the 40 MHz number; however, one half-rotation must be added in
this case since 40 MHz rotations are always greater than 41 MHz rotations, i.e.
differential rotation must be positive. Differential rotations for 40 MHz
null times are listed in Column 5 of the table.

Column 6 of the table lists the first approximation—bf the number of
half-rotations in the pass. For a north bound pass the first null has the
highest number of half-rotations. In this example, the last null has the
largest number, therefore the proper number of half-rotations are added to
each rotational value resulting in the list in Column 7. By taking the common
average of Column 7, one obtains a weighted value of half-rotations for the
southern most null in the pass. The weighted- value of half-rotations is now
used to renumber the 40 MHz nulls and these values shown in Column 8 are used
to calculate the electron content profile. Figure 2 is a representation of
Faraday fading as recorded on 40 and 41 MHz. The initial numbering is shown
for both frequencies and calculated values for 40 MHz null times are shown
taken from the table,

As mentioned previously, the number of half-rotations at the 40 MHz null

times are used to find the Faraday rotation as a function of time for the pass.
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By calculating M at the mean ionospheric height, one can find electron content
from Equation (2). The computer output lists date, electron content, subiono-
spheric latitude and longitude, satellite zenith angle, the number of half-
rotations and the time of calculation for the desired number of points in the
pass. The subionospheric latitude and longitude are the coordinates éf the
ionospheric point which is the intersection point of a line from the satellite
to the receiving station and a shell 350 Km above the earth. Unless stated
otherwise, any further mention of latitude and loﬁgitude implies the above
mentioned subionospheric coordinates.

Electron content versus latitude are plotted on a CALCOMP plotting
machine and also punched on cards so that further plotting can be done by
machine. Figures 3, 4 and 5 are examples of basses which have been grouped
and plotted by machine, The annotation on each cufve is‘placed at the end of
the pass, thus pass directions can be determined by thekplacement of the
annotation. - A north bound pass is annotated at the northern end of the pass.
The annotation gives date and Central Standard Time. The six digit number
is the year, month and day. The number below is the time of the beginning
of the pass. The time is left justified below the date with no preceeding
zeros, e.g. 130 means one hour, thirty minutes. The label below the graph
also showé time with no preceeding zeros.

When the zenith angle of the satellite becomes greater than 400, the
electron content is drawn as a dotted line with the best portion of the pass

drawn as a solid line.
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4. RESULTS

Aspects investigated include diurnal variation of columnar electron
content, constant content contours, morning content gradients and electron

content correlation with magnetic indices.

4,1 Diurnal Variation

To obtain diurnal variation, electron content at 40o north subionospheric
latitude has been plotted versus time. Two diurnal variations are presented
in Figures 6 and 7 representing south bound and north bound satellite ﬁasses
respectively. The months from which the data were taken are also shown so
that seasonal effects may be considered along with diurnal variatioens.

The sunrise and sunset effects appear much as was expected with sunrise
occuring at the point of increasing electron content and sunset‘taking place
about where content is midway between maximum and minimum for the day. Por-
tions of the diurnal variations corresponding to sunrise and sunset are
similar in both cases; however, two noticeable differences occur during midday
hours. The midday values for north bound passes are higher and more dispersed
than the south bound valués° The south bound midday- passes were recorded in
November whilé the north bound passes were recorded in February and March,
thus the midday content difference could be partly due to seasonal anomaly
and to the lower sunspot number in November. This observation was also made

by Solomon [1965] in a similar study concerning the same period of time,
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4.2 Constant Electron Content Contours

The constant electron content contours shown in Figures 8 and 9 are a
result of grouping and averaging electron content versus latitude curves.
The procedure for drawing the constant content contours is given below.
First the six months data were divided into two main groups: group one
included data from October through December; group two included data from
January through March., -Each seasonal group was processed separately result-
ing in the two Figures 8 and 9.

Considering data from group one, notice that we will have electron
content versus latitude curves calculated for satellite passes which have
occufred at many different times of the day during the three month period.
The passes of group one are now sorted and electron content versus latitude
plotted according to which hour of the day the satellité»pass was recorded.
In three months time, several content versus latitude curves usually cccur
during the same hour of the day. A smooth average curve is drawn to repre-
sent all the electron content curves as a function of latitude for a particu~
lar hour of the day. With an average electron content curve for each hour
interval of the day, one can proceed to draw contours of constant content as
a funétion of latitude and hour of the day. 0

‘A simple procedure for drawing contours is to choose a value of content
which lies in the range of several neighboring hour average curves and plot
points corresponding to content, latitude, and hour on coordinates of latitude
and hours. Constant content lines are drawn off scale when the average
content for the next hour interval appears to be converging to some latitude

off scale. The actual shape of content contour is not as important as the



Latitude Degrees North

22

45 |—
43
4|
39
37
35
<
N
33 l 4 L
2000 0000 | 0400| ? 0800 1200 1600*
DEC NOV oCT l DEC NOV I O(}T
Sunrise Sunset
Time in CST
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plotted points. These lines connecting the points serve to indicate the
point value more conveniently.

The contours may be confusing at first since content variations appear
distorted unless one notices the contour values objectively. The mere
ability to draw contours without running off the scale indicates that the
average electron content is fairly constant for the period of time involved.
The period of time from 0000 to 0700 of Figure 9 illustrates the relatively
constant content of the ionosphere at that time. Content during the same
period shown on the diurnal curve of Figure 6 also appears constant.

Comparing both Figures 8 and 9, one finds the expected midday peak
leveling after the sunrise increase. The afternoon recession of electron
content begins slightly after local noon, -Some intervals of the day have
been omitted due to insufficient data; however, in spite of the‘omissions
an anomaly appears around midnight on both contour plots. Sincé a small
number of passes were analyzed for these periods, one can not make a definite
statement about causes or existance of such an anomaly. It should be noted
that night anomalies have been observed by others during winter months
[Arendt and Soicher, 1964; Evans, 1965; Rastogi, 1960] and also that the
increase after midnight in Figure 9 occﬁrs at the approximate sunrise time
for the magnetic conjugate point of the receiving station.

By observing the number of degrees latitude between constant content
points for a particular hour, one can acquire a feeling for the gradient of
the average electron content versus latitude curve of that hour. Comparing
gradients of the different hour intervals of Figure 9, the 0700 to 0800

interval has a very high content versus latitude gradient indicated by closer
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spacing of content points along a line of constant time. This period is an
average of content plots during sunrise which shall be discussed in detail

later.

4.3 Morning Gradients

The morning passes observed all occurred when the sun rose earlier at
the southern end of the pass. The constant content contours in Figure 9 are
very closely spaced during sunrise, however Figure 8 does mot agree in that
the contours are widely spaced at sunrise; thus, Figure 9 indicates steep
content versus latitude slopes while Figure 8 displays almost no slope.

The morning passes averaged to obtain Figures 8 and 9 differ by two
important factors which are pass direction and the seasonal difference,
North bound passes during sunrise period occurred in October. For a typical
north bound pass, it takes 3 1/2 minutes for 5° change in subionospheric
latitude and 1o change in subionospheric longitude in the eastward direction,
thus one has a change in local time of 7 1/2 minutes for 5° in subionospheric
latitude. The difference in sunrise time from 35 to 40° north latitude is
approximately 7 minutes in October which explains the relatively constant
electron content curves of Figure 4. Thus, if morning gradients are entirely
due to sunrise effects, one might expect all north bound morning passes to
have content profiles with small gradients and some passes to have increasing
content to the north for the season involved in this case. The reason to
expect increasing content to the north is that the local time change can be
greater than the difference in sunrise time for the duration of the pass.

Such a case occurred on October 23, 1964 shown in Figure 3 when the local
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time change was greater than sunrise time difference (also this was an extreme-
ly quiet day magnetically, e.g. 24 hour Kp sum was equal to 10)° Some of the
passes in Figure 4 also show increasing content to the north while others do
not. To get a better picture of these passes with respect to sunrise, Figure
10 was drawn., Figure 10 shows the subionospheric latitude versus local time
for the passes of Figures 3 and 4, also the ground sunrise line has been
drawn. The area to the right of the sunrise line has been illuminated while
that to the left is still in darkness at the ground level. The sunrise line
was calculated for October 23 and moves to the right about one minute per
day, thus the change is not critical for the purpose intended here. The
passes drawn as solid lines in Figure 10 seem to have been effected most by
the sunrise effect with the exception of the 641027 pass which shows an
abrupt change at 4OON where considerable scintillation appeared bn the record
possibly indicating the presence of an irregularity in the ionoéphere°

In contrast to the nérth bound sunrise passes, Figure 5 shows south
bound passes which occurred during the January sunrise period. The slopes
are much greater than those which were found for the north bound passes.
Figure 11 was drawn for the January sunrise in the same manner as Figure 10.
Notice how the path of the satellite cuts across the ground sunrise line for
two of the cases shown giving more reason for the steep gradients. Sunrise

lines were drawn using sunrise times computed by Colin and Myers {1966].

4.4 Magnetic Index Correlation

The months of January and February yielded many well behaved content

values during the night passes. This period of time was examined carefully
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South Bound Morning Passes
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for any correlation of electron content with several magnetic indices. Elec-
tron content was plotted versus date; the maghetic index was plotted below
the content curve so comparisons could be made. Also maghetic indices were
plotted on one sheet and an electron content curve laid over the magnetic
index curve for closer comparisons, The three hour range indices of Kp were
plotted taking into consideration intervals during and before the time of
content calculation., Frederickburg’s three hour range K values were also
considered in a similar manner. Twenty four hour Kb sums were also tried.
None of the above procedures produced a satisfactory correlation; however,
observing the ten quiet days (Q or ) and the five disturbed days (D) selected
by the Committee on Characterization of Magnetic Disturbances, it was found
that quiet days usually had lower contents and disturbed days usually had

higher contents.
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5. CONCLUSIONS

The following are summaries of the results with some suggestions for
improvements.

The diurnal variations appeared much as expected in the light of similar
studies [Solomon, 1965; Yeh and Flaherty, 1966]. The variation was effected
by both seasonal change and solar activity owing to the fact that nearly six
months data were required to obtain a complete diurnal cycle.

Both figures of electron content contours indicate some evidence of an
anomaly around midnight. Because of the lack of data, nothing definite can
be said about such an observation in relation to the winter night increases
found by other investigators [Arendt and Soicher, 1964; Evans, 1965;. Rastogi,
1960]. The methods of obtaining the contours could be modified in several
ways. -The smoothing technique used in averaging the content vefsus latitude
curves of a particular interval of the day could be changed possibly to a
least square fit.

The observation of morning passes around sunrise indicated that north
bound passes had very little slope while south bound passes show steep slopes
increasing to the south. When gradient is mostly due to the ionizing effect
of the sun, the difference in slope appears to be c;used by the pass geometry
with respect to the sunrise line., The ground sunrise line is not the actual
production line but does indicate the trend of increased production. A
detailed examination of many satellite passes during sunrise may lead to a
more thorough understanding of electron production due to solar ionization.

The attempt to correlate magnetic index with electron content was done

for a period of time when magnetic activity was relatively low, e.g. Kp
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reached a high of 6~ on only two separate occasions. The general trend, al-
though notconclusive, appeared to be that lower content was more likely to

be observed for lower Kp while higher content was associated with high Kb.
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APPENDIX A

Electron Content Calculation Using Two Frequencies with Non-Linear

Faraday Rotation Interpolation.

The fortran program listed is the main deck for electron content calcula-
tion using two frequency Faraday rotation from a polar orbiting satellite such
as S-66,

Several functions and subroutines are incorporated in the program which
are not standardized. Below is a list of the functions and subroutines with

a general description:

CENSEC changes hours minutes seconds (HHMMSS.S) to hundreds of seconds,
HMS changes hundreds of seconds to hour minutes seconds (HHMMSS.S).
FAROT* sets up arrays of null number and null time (hundreds of

seconds) from arrays of input data.

TELSAP calculates satellite position for a particular date and time
from space elements of the satellite.

MAGFLD calculates effective earth's magetic field (ﬁ) at mean iono-
spheric height (VLTH) from satellite position coordinates.

D(S,M) determines rotation difference.at time S for south bound (M = 1)
or north bound (M = 2) pass.

RENUM* calculates number of half-rotations to be used in FARO@ for
proper renumbering of nulls, employs averaging technique. ( -

if north bound or + if south bound).

*Contains common statement--COMMON X1, Y1, X2, Y2, N1, N2 where Y1 and Y2 are
null numbers, X1 and X2 are null times in hundreds of seconds and N1 and N2
are the number of nulls for the respective frequencies,
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SUBSAT calculates coordinates of ionosphere point at height VLTH.
ROTN(T,N)* interpolates the rotation number table at time T. N =1, 2
indicates table to be interpolated Y1l or Y2.
DRAW plots output on CALCOMP plotter.
The following is a description of the variables read in by the RIT 7
statements in the order of their appearance in the main program. The first
input statement reads identification of the run and is not used for any

calculation. The remaining input variables are:

MB the number of sets of orbital elements to be processed.
SAT satellite name, e.g. S~66.

STAT station name, e.g. Urbana.

TIM standard time specification, e.g. CST,

A(1l) to A(23) elements required to calculate satellite orbit.

VLTH mean ionospheric height in Km.

FREQL lower frequency of Faraday rotation data.

FREQ2 higher frequency of Faraday rotation data.

N1l number of passes.to be processed for a particular set of

P

orbital elements.

TINC time increment for calculation of output in seconds, if zero
output is calculated at FREQL.null times.

FROT ) number of half-rotations added to differential rotation

*Contains common statement--COMMON X1, Y1, X2, Y2, N1, N2 where Yl and Y2 are
null numbers, X1 and X2 are null times in hundreds of seconds and N1 and N2
are the number of nulls for the respective frequencies.
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REFS

SCALE

ROT

DA(L)

T1(L)

R1(L)

T2(L)

R2(L)
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(initially set to zero; program adjusts for positive differ-
ential rotation).

some time during the pass.

division number corresponding to time above (REF).

number of divisions per minute of time (if zero program
assumes null times are not given in divisions but in hours

minutes and seconds, HHMMSS.S).

number of cards for pass to be read next.

order of least square polynomial fit for output (if zero
least square fit is not done).

number of half-rotations added to FROT (not controlled by
program) .

year, month and day (YYMMDD.) for Faraday data of pass (Lth
card in pass).

null time of division number corresponding to FREQL (Lth card
in pass). Value ignored if negative.

number of half-rotations going from TL(L - 1) to T1(L) (zero
for L = 1).

same as T1(L) except corresponding to FREQZ.

same as R1(L) except corresponding to T2(L).

The column headings shown on the printed output are self-explanatory;

however, some clarification is necessary. The time given is Central Standard

Time.,

Asterisks printed on either side of the electron content indicate that

zenith angle is greater than 400. The half-rotations printed out under 40 MHz

are the final values used for the calculation of electron content. The 40 MHZ
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half-rotations are negative for north bound passes and positive for south
bound passes; however, the sign is ignored for content calculation. The 41
MHz half~rotations printed out are interpolated values from the initial null
numbering. The AVERAGE ELECTRON CONTENT and PERCENT RMS are calculated for
points with zenith angle less than 400. The NUMBER OF HALF-ROTATIONS ADDED
is the integral number added to the differential rotation to eliminate the
rotation ambiguity between the initial numbering of 40 and 41 MHz nulls.
Figure 12 is the CALCOMP output for the above pass. The data points
are indicated by crosses for zenith angle less than 40o and by squares when

the zenith angle is equal to or greater than 400.
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UNIVERSITY OF ILLINOIS, FASTRAN COMPILER (16 JUN 1966 VERSION)

CALL CPBl
CALL CCP1PL(0.C+6.053)

CALL CCP1PL{C.GC14+042)
DIMENSION A{23),8(11),C(19),CNT(20C),T1(50),T2(50),R1(50),R2(50),D

1A(5G),X1(200),X2(200),Y1{200),Y2(2C0)+CT(20C),SLTI200),NV(3),CLD(2
20C)

CCMMON X19Y19X2,Y2,N1yN2
RADDEG=0.0174532925

RIT 7,2
RIT 7,4,MB

0C 66 13=1,MB
RIT 7,32,SAT,STAT,TIM

RIT T955A01)5A02),A03)3AL4),A15),A(6)4A1T),A(B),A(9),A11C0),A(11),
1A(12)pA(13)1A(14)gA(19)’A(ZD)yA(Zl)fA(ZZ)sA(23)1VLTH,FRE01,FREQZ

RIT T,4,N11
WCT 642

HWCT 69T5AL1),A(2) yA(3)5A{4) sAL5)sAL6),A(T7),A(8),A(9),A(10),A(11),
1A(12),A(13),A014),A(19),A(20),A(21)+A(22),A(23) ,FREQ]1,FREQ2

CCONST=FREQ1#FREQ1#3.14592654E12/0.0297
DG _65 NM=1,N11

RIT 7,31,TINC,FROT,REF,REFS,SCALE
RIT 742C+JsKsROT

LCOK AT 22,DATE
RIT 7,19,{DA(L),Ti(L),R1(L)oT2(L),R2({L}yL=1,J)

3¢

WOT 656
HCT 698, {VLTH)

WCT 646
WOT 6,9

WCT 6,10,FREQL,FREQ2
WCT 646

IF(SCALE-1.0) 38438,33
REF=CENSEC(REF)

0C 37 I=1,J
IF(TI(I)) 354344+34

TL(I)=HMS(REF+(TL(I)-REFS}/SCALE#6000.0)
IF(T2(1)) 37,36,36

TZ(1)=HMS(REF+(T2([)-REFS)/SCALE#600G+0)
CCNTINUE

CALL FAROT(T1,T2,R14R2,J)
IF{N1-1)65,65,39

IF(X1{1)-X2{(1)14G,41441
$=X2{1)
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UNIVERSITY OF ILLINOIS, FASTRAN COMPILER (16 JUN 1966 VERSION)

GC TO 42
41 S=X1{(1)

42 IF(XLIN1)=-X2{N2))43,44,44
43 F=X1(Nl)

GG TO 45
44 F=X2(N2) __

45 A(15)=DA(1)
STAR=S

A(16)=S
A(17)=DA(1)

A(18)=S
CALL TELSAP(A,B,yC,yl) .

CALL MAGFID(A(21),A(22)3C{1),C(2),VLTH,HRyHTHETA,HPHI FLDMA)
A(16)=AL16)+6600.0

A{18)=A(18)+6050.0
CALL TELSAP(A,B4Cy1)

CALL MAGFLD{A({21),A(22),C(1),C(2),VLTH,HR HTHETA ,HPHI ,FLDMB)
IF(FLDMB~FLDMA)46,47,41

46 M=2
GC TO 48

47 M=1
48 IF(D(SyM)+FROT)49,49,50

49 FROT=FRCOT+1.0
GG _TO 48

50 IF(D(F,M)+FROT)49,49,51

51 CALL RENUM(FREQ1l,FREQ2,ROT,FROT,M)
RCNE=R1(1)
R1(1)=Y2(1)

CALL FAROT(TI,T24R1,R2,J)
R1(1)=RCNE

TIF(TINCG)251,251,151
151 THMS=HMS(X1(1))

ThM=INTF(THMS/100.06)#%1030.0
S=THM+{ INTF((THMS-THM)/TINC)+1.G)*TINC

- T=CENSEC(S)
TCIST=T+TINC#1G0.0

GC TO 351
251 TCIST=X1(2)

351 CLD(1)=C.C
NUL=1

NP={
oo NvQY=G

NV(2)=0
NvI3)=C . -

IN=C B
A{15)=DA(1)

A(17)=DA(1)
IF(TINC)152,152,52

1152 T=X1(1)
52 A(l6)=T

A(18)=T
CALL TELSAP(A,B,Cy1)

CALL MAGFLD{A{21),A(22),C{1),C{2),VLTHyHRyHTHETA,HPHI ,FLDM)
CALL SUBSAT(A(21)5A(22)4C(1),C(2),VLTHyTHyRLAT,RLNG)

EL=C(4)
THET1=RLAT#RADDEG

CCSTH1=COS(THETL1)
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UNIVERSITY OF ILLINDIS, FASTRAN COMPILER (16 JUN 1966 VERSION)

SINTHL1=SIN(THET1)
CCNTNT=ABSF(ROTN(T,1))/FLDM#CONST/1.0EL7

TIMEL=HMS(T)
VA(16)=TDIST

A(lB)=A(1¢)

CALL TELSAP(AyB,Cs1)

CALL SUBSAT(A(21),A(22),C(1),C(2),VLTH, TH,RLAT1,RLNG1)
RN1=ROTN(T,1)

RN2=ROTNI(T,2)
NP=NP+1

CT(NP)=CONTNT#1.0E17
SLT{NP)=RLAT

THET2=RLAT1#RADDEG
CCSTH2=COS{THET?2)

SINTH2=SIN(THET2)
DELPHI=(RLNG-RLNG1)#RADDEG

CLC(NP+1)= ARCDS(COSTHI*COSTHZ*CDS(DELPHI)+SINTH1*SINTH2)*(VLTH+637
18.388)+CLD(NP)

ZE1=90.C-EL
IF(EL-50.0)54,53,53

53 IN=IN+1
CNT(IN)=CONTNT

WOT 64124A(17),TIMEL1,CONTNT ,RLAT,RLNGyZEL1,RN1,RN2
NV(2)=NV(2)+]

GC TO 55
54 WOT 6413,A(17),TIMEL1,CCNTNT,RLAT, RLNGvZElyRNl,RNZ

IFINV(2)) 155,155,255
155 NV{l)=Nv{1l)+1

GC 70O 55
255 NV{3)=NV(3)+]1

55 T=T+TINC*10G.0
IF(TINC)157,157,257

157 NUL=NUL+1
T=X1{(NUL)

TCIST=X1{NUL+1)
IF({NUL-N1)52,357,57

357 TCIST=X1(N1)}

GO _TO 52
25T TF(X1{N1)-T)57,52,52
57 AIN=IN

SMCN=Q.Q

SMDIF=0.0

IF(AIN-1.0)62,61,58 i
58 DO 59 iN=1,IN

59 SMCN=CNT(LN)}+SMCN
AVE=SMCN/AIN

DG 60 LM=1,IN
DIFF=CNT(LM)~-AVE

60 SMCIF=SMDIF+DIFF#DIFF
RMS=SQRT{SMDIF/AIN)

PCRMS=RMS/AVE#100.0
WOY 6,14,AVE

WOT 6,15,PCRMS, IN,FROT
GC _T0 63

61 WOT 65165 FROT
GG _TO 63

62 WOT 6,17,FROTY




UNIVERSITY OF ILLINOIS, FASTRAN COMPILER (16 JUN 1966 VERSION)

63 TI=HMS({X1{1)1/100.0
NTOT=NV(1)+NV(2)+NV(3)

DC 100 N=1,NTOT
100 CNT(N)=CT(N)/1.,0E1l7

40

WOT 5423,DA(1) S, TINCsNVILIY,NVI2),NVI3),(CNTIN),SLT(N)sN=1,4)
WOT 5,24 (CNT(N),SLT(N),N=5,NT0OT)

TF(SLTI{NP)-SLT(1))26592654+465
265 DO _365 I=1,NP

365 CLD(I)=CLC(NP)-CLD(I)

465 CALL DRAW(SLT,CTyNV(1),NV{2),NV(3)sK »FREQL,FREQ2,SAT,STAT,DATE ' 7
11,TIM,CLD) :
WOT 6421

IF(ROTN(F,1)-ROTN{STAR, 1) +ROTN(STAR,2)-ROTN(F 421167 965,65
67 SCALE=0.C :

DC 68 N=1,J
CTIN)I=T1(N)

68 SLT(N)=R1(N)
0G 69 N=1,J

TL{N)=T2{(N)
R1{N)=R2(N)

T2(N)=CT (N}
69 R2{N}=SLT(N]}

WET 6,925
FRCT=0.0

GG TO 30
65 CCNTINUE

66 CCNTINUE
2 FORMAT(8CH

1 )
FCRMAT{8F10.8)

FCRMAT(I2)
FCRMAT{F20.8)

FORMAT(1HQ)
FCRMAT (10X, 5F20.6) .

W=~ O |\ pj

FORMAT (35X 49HTHE LATITUDES AND LONGITUDES ARE FOR A HEIGHT OF Fé6.
124 2HKM}

9 FORMAT(6X4HDATE, TXy4HT IME, 71Xy L6HELECTRON CONTENT,8X,B8HLATITUDE ,8X
1,9HLONGITUDE,8Xy 12HZENITH ANGLE,8X,24HNUMBER OF HALF-ROTATIONS)

10 FORMAT (5Xy 6HYYMMDD, 5X9 EFHHMMSS y TX o L13HELEC/M#M E 17, 10X, THDEGREES,1
10X, THDEGREES» 11Xy THDEGREES 11XyF5.154H MHZTXoF5+194H MHZ)

12 FORMAT(5XsF6.095XsF6e0y 11XsF635y11XsF9.3,10X,F7.3,11X,F7.3,11X,F8.
13,8X,F8.3)

13 FORMAT{5XF6.095X1F6.0y 80Xy 3HuR%yF 6,3, 3H*##,8X,F9,3,10XsF7+3511X,F7
13411%XsF8.348X5F8.3)

14 FORMAT({25HQOAVERAGE ELECTRON CONTENT,F10.3,13H ELT ELEC/M#M)
15 FORMAT(13H PER CENT RMS,12X,F10+145Xy13HPER CENT FOR ,I2,7H POINTS

1/31H NUMBER OF HALF-ROTATIONS ADDED,F5.0)
16 FORMAT(76HOONLY ONE POINT WAS USABLE, HENCE THE AVERAGE EQUALS THE

IVALUE AT THE POINT./31F NUMBER OF HALF-ROTATIONS ADDEDsF5.0)
17 FCRMAT(54HCNO POINTS WERE USABLE, HENCE NO AVERAGE WAS COMPUTED./3

11H NUMBER GF HALF-ROTATIONS ADDEDF5.0)
19 FORMAT(5F10.8)

20 FORMAT(212,F6.3)
21 FCRMAT(1H1)

22 FGRMAT(A6)
23 FCRMAT(2F7.0yF3.05313,4(F6.3,F7.31)

24 FCGRMAT(6{F6.3,F7.3))
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25 FCRMAT(34H POSSIBLE DATA ERROR SEE NEXT PASS)
31 FCRMAT(2F6.2,F8.242F6.2)
32 FCRMAT(2A6,A4)

ENC

41
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APPENDIX B

Figures 13 through 56 are plots of electron content versus subionospheric
latitude. The data has been divided into two periods of three months each.
Figures 13 through 34 show electron content plots for October, November and
December, while Figures 35 through 56 show plots for January, February and
March. The electron content curves for each three month period are grouped
and plotted for one hour intervals of the day. The end of each pass is iden-
tified with a six digit number giving year, month and day. Immediately below
this six digit number the time for the beginning of the pass is shown with
no preceeding zeros. Pass direction is apparent since the annotation is at
the end of the pass, e.g. annotation at the north end of the electron content
curve indicates a north bound pass. Zenith angles greater than 40o are
indicated by the dotted curve.

All calculations and plotting were done by machine; thus, some figures
may be difficult to understand when many passes occurred during the same hour

interval of the day.
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