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ABSTRACT

Simultaneous direction observations from two stations to satellite posi-
tions give a solution for the direction of the vector joining the stations. Such
a solution is generally of lower accuracy in height than in azimuth; there -
exist, however, conditions governing the distribution of the observations
that ensure equal accuracy in all directions and that are optimal from the
viewpoint of the number of observations required. These conditions are
derived and a simple formula is established for specifying a priori the

accuracy of the direction joining the stations.



OPTIMUM STATION-SATELLITE CONFIGURATIONS
FOR SIMULTANEOUS OBSERVATIONS TO
SATELLITES

Kurt Lambeck

1. INTRODUCTION

The simultaneous observation of directions to satellites from two or more
stations enables the directions of the vectors joining these stations to be de-
termined in an astronomical reference system. These directions may then
be used as the basis of a more extensive three-dimensional triangulation net-
work, giving a purely geometric solution to the problem of determining

station positions and the shape of the earth.

The present distribution of the astrophysical observing stations in the
Smithsonian Astrophysical Observatory tracking network means that, in the
majority of cases, simultaneous observations between only two stations at a
time are feasible, and that an unfavorable error propagation will generally
exist through the triangulation formed by the directions between the observa-
tories. Little can be done to improve the latter unless range measurements
are introduced; but the single space directions do, nevertheless, provide

very useful constraints in the dynamic solution of the earth's shape.

This work was supported in part by Grant No. 87-60 from the National
Aeronautics and Space Administration.



With these factors in mind the optimum distribution of satellite positions
for simultaneous observations from only two stations is sought, although the
criteria developed in the subsequent sections will also be of value in assessing
the optimum configuration for simultaneous observations from more than two

stations.

The actual values of the space directions are only part of the required
solution; precision estimates, which can be obtained by a judicial use of
least-squres procedures, are also required. The magnitude and reliability
of such estimates will depend on: (l) the assumptions made about the
variance-covariance matrix of the original observed quantities; (2) the rigor
of the variety of ''corrections'' that must be applied to the observations;
and (3) the ''geometry' of the solution, that is, the relative distribution of

the satellite positions and the observing stations.

The last of these factors will be investigated here, assuming that the
variance-covariance matrix of the observations is known and that the correc-

tions in (2) have been applied.

Several terms, the definitions of which follow, have been introduced to
assist in describing the geometry of the satellite-station configuration. (See

also Figure 1.)

A. Station-station vector: the straight line joining the two observatories.

B. Common vertical plane: the plane containing the verticals at the two
observatories. The assumption of a spherical earth inherent in this defini-

tion will suffice here.

C. Satellite plane: the plane defined by the simultaneous direction
observations from the two stations to the satellite. Both the vertical plane

and the satellite plane will contain the station-station vector.

D. Satellite-plane angle: Z, the angle made by the satellite plane with

the vertical plane.




. /
vertical \/

Intersection of orthogonal
plane with earth

midpoint

Figure 1. Station-satellite configuration for the case C =0; i.e., where the
satellite positions S lie in the orthogonal plane. The vertical
plane is the plane containing the verticals at A and B. The ortho-

gonal plane is that plane passing through the point midway between
A and B, and is normal to the vertical plane.



E. Midpoint vertical: the vertical passing through the point midway

between the two observatories. This vertical will lie in the vertical plane.

F. Orthogonal plane: the plane that contains the midpoint vertical and
is normal to the vertical plane. The perpendicular distance of the satellite

from the orthogonal plane will be denoted by C.

G. Horizon distance: 7, the angular distance subtended at the earth's

center by the observing station and the subsatellite point.

H. Coverage area: the area on the earth's surface enclosed by the

horizon distance.

The precision of the direction of the station-station vector can be de-
scribed by projecting its variance-covariance matrix onto the orthogonal
plane. This projection will then describe the precision in any direction on
this plane. Two directions of particular interest are the direction parallel
to the intersection of the vertical plane with the orthogonal plane and the direc-
tion in the orthogonal plane normal to the vertical plane. The latter will
correspond with good accuracy to the accuracy in azimuth of the station-
station vector, while the former, the component in the vertical plane, is
readily converted to the precision in height of one station relative to the
other.™ The precision in azimuth will be denoted by Ui , and that in the
vertical plane, by 0'%/.. The correlation between these two components will
be denoted by AV The variance-covariance matrix of the station-station

vector may therefore be written as

-
2
v  %av
g 0'2
va ‘A
_

*Because of the earth's curvature the precision in the vertical plane should
be multiplied by the distance between the stations and the secant of half t'he
angle subtended by the two stations at the earth's center in order to obtain
the relative height precision. For a distance of 6000 km between stations,
the error introduced by neglecting the curvature is of the order of 15%.




and the corresponding weight matrix as

2 2
Wy  VWay . A %AV
-T2 2 2
2 O 04 = (0 4+7) 2
Woa Wi v °a "~ Tav -oya Oy

The correlation and the ratio cr%./trz will essentially be a function of the
geometrical configuration of the two stations and satellite position, whereas
the magnitude of the error distribution defined by the variance-covariance
matrix will depend more on the number and precision of the original obser-

vations than on the geometry.

Clearly, the ideal configuration would be one that gives a zero correlation
coefficient and G%/O‘i = 1. The magnitude of such a circular distribution
could then be decreased by increasing the accuracy and the number of the

original observations.

In the following paragraphs the error distributions of the station-station
vector obtained from hypothetical configurations will be investigated. From
these results an attempt will be made to draw certain general rules for the

optimum geometry of station-satellite configurations.



2. THE MATHEMATICAL MODEL

The model used to describe the simultaneous direction observations from
two stations is based on the condition that these directions and the station-
station vector must be coplanar. Thus, if the station-object unit vectors are
denoted by Tl.l and Il'z and the station-station unit vector by u,, the condition

that must be satisfied is

1 3 —_ . .
or, if u, ou, and u; are the components of u, in the x y z directions,

respectively (these axes being orthogonal and defined by the earth's rotation

axis and the Greenwich meridian),

1 u2 u3
b U B
. 1 2 3 A
determinant u, u, u5 =A=0 (1)
u1 uZ 3
3 Y3 Y3

If the declination is denoted by 6.1, the right ascension by a., and the Greenwich

hour angle by 6, the u, are given by

(1] T ]
u, cos 6. cos (a-90),
i i i
q, = 1.12 =| cos 6. sin (a - 9) . (2)
i i i i
u?,’ sin 6.1
L L ]




Linearizing equation (1), using (2) and

5. =60 +d5,
1 1 1

- _—0 —_—
a, = (cos 6i) a,=a + da.1 s
gives
23 0
j=1
where
aj = sin 6J. cos 6j+l sin 6j+2 sin [(a -6)j - (a - 6)j+1]
- cos 6j cos 6j+l cos 6j+2 sin I:(a -6)‘].+1 - (a -9)J.+2]
+ sin 6J. sin 6j+l cos 6j+2 sin [(a - 9)J.+2 - (a- G)j]
and
. bj = - cos 6j+l sin 6j+2 cos [(a -G)j - (a -e)j+l:|
+ sin 6j+l cos 6j+2 cos [(a - 6)j+2 - (a - G)j] ;

the indices j are cyclic. For j=1, 2, the 6? and a? are observed quantities,
6.1 and a., whose variance~covariance matrix is assumed known. The d6.

and daj are therefore corrections to observations and will be denoted by
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For j=3 (the station-station vector), the 62 and ag

and the d63 and dag are corrections to them, designated by

are approximate values

r —
€
1
& Aabd 4 0
2
L “2 ]

Since each pair of simultaneous observations will yield such an equation, a
solution for the A63 and 123 is possible. One set of simultaneous observa-

tions will not give a solution for the unknown A&, and Aa3 and it is therefore

3
meaningless to speak about the variance matrix of the station-station vector

in this case. However, the inverse of this matrix, the weight matrix, does




exist; it is given by

w w
W, - aghag  agAbgl oo, definition vy Aj';fj ’
bAa, b,Ab, W W

N | | i ]

where

-1

gJ

_ 2 2 2 2
A—[(a.1 +b1 +a2+b2>

assuming that the variance-covariance matrix of the observations is a diagonal

. . 2
matrix, the nonzero elements of which are o.

If it is further assumed that there is no correlation between the observed
quantities of different pairs of simultaneous observations, the weight matrix
of the station-station vector determined from n sets of simultaneous obser-
vations is simply the sum of the individual weight matrices for each plane.
That is,

- -
n WV.Z WA.V.
J ZJ J
LED
e~ | Wy Wa
J= J J
L. —

This matrix will generally be nonsingular. For correlation-free observations,
then, the total variance-covariance matrix is simply the inverse of the sum of

the weight matrices of the individual satellite planes.




3. THREE HYPOTHETICAL STATION-SATELLITE CONFIGURATIONS

The three hypothetical configurations are:

A. Case l. The satellites observed lie in the orthogonal plane.

B. Case 2. The satellite points lie in a plane that is parallel to the
orthogonal plane and that passes through one of the observatories.

C. Case 3. The satellite points lie in a plane that is parallel to the
orthogonal plane but passes through a point on the station-station vector
extended a distance L, 2L, respectively, from two stations, L being the

distance between the two stations.

The distance from the satellite to the orthogonal plane has been denoted

by C, so that the three cases may be distinguished as C = 0, C = L/2, and
C = 3L/2.

3.1 Casel. C=0.

The two stations are represented by A and B, and S is any satellite
position on the orthogonal plane; D is the point where the midpoint vertical
cuts the earth's surface, and E is the point on the station-station vector
midway between A and B (see Figure 1). The distance ED will be a function
of the distance L between the two stations, but this variable can be eliminated
by measuring the height H of the satellite from E rather than from D. The
two variables that define the shape and orientation of the satellite plane are

therefore (for C = 0) the satellite-plane angle Z and the ratio L/H.

10




For various values of Z and L./H the equations of the satellite planes can
be computed from equation (4), and the contributions of each of these planes
to the weight in height, azimuth, and the correlation term can be determined.
Denoting the weight in the vertical plane by W2 , that in azimuth by WZ , and
the correlation between these two directions by WAV’ the variations of WV’
Wi, and WAV with Z and L/H are given in Figures 2a, b, and c.

For L/H approaching infinity (that is, the satellite is midway between
the two stations), both WV and Wi approach the limiting value 2, as would
be expected since this is equivalent to measuring directly the station-station

vector direction twice.

For two planes of equal satellite-plane angles, and equal L /H but on
opposite sides of the vertical plane, the W%, and Wi are the same, although
the correlation will be of opposite sign. Thus, any pair of such planes will

yield correlation-free components of the station-station vector.

Because the integral of the weight functions between arbitrary limits of
Z represents the total weight of satellite planes distributed uniformly with
respect to Z, those limits of Z required to make EWé/ZWi = 1 may be
solved for. The maximum value of Zmax will generally be determined
from intervisibility and refraction considerations, and the corresponding

minimum value (Z ) can therefore be determined by integrating the weight

2

. . . . 2 _
functions over the range Zmax— Zmin’ imposing the condition ZWV/ZWA =1.

Such integrations for variable Zmax and L/H have been performed (see Table 1).

min

The integrations have been carried out numerically, and the accuracy of the
Zmin is estimated to be of the order 0.5°. Thus, for all practical purposes,
the relationship between Z and Z . 1is independent of L./H. Mean values
max min
of Z . are tabulated in the last column of Table 1. The zenith distance of
min
the satellite as viewed from one of the observatories will, on the other hand,

be dependent on both L. and H because of the earth's curvature.

11
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Figure 2b. Weight component in azimuth as a function of the
satellite-plane angle Z and the ratio L/H.
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Table 1. Values for Z, ;, corresponding to variable Z 54 and L/H
for the case C =0

z_~L/H 2 | a3 | 1 2/3 | (Zenin)poan
80 23.0 | 24.7 | 24.0 | 23.5 23.8
70 27.0 | 28.0 | 26.5 | 27.0 27.4
60 32.5 | 33.5 | 32.5 | 32.0 32.5
50 40.0 [ 41.5 | 40.0 | 4l.0 40. 6
45 45.0 [ 45.0 | 45.0 | 45.0 45.0

3.2 Case 2. C=1L/2

The procedure followed here is the same as for case 1, except the ob-
servations are assumed to have been made to objects lying in a plane that is
parallel to the orthogonal plane and that passes through one of the stations.
The height H is defined now as the distance, measured in this plane, from
the station to a satellite position on the intersection of this plane with the
vertical plane (see Figure 3). This again enables the position of the satel-
lite to be defined by the two variables Z and L/H.

2

The weight functions W2 W,, and WA

v Va are given in Figures 4a, b,

A%
and c, respectively.

Table 2 gives the Z . for variable Zmax and L./H and shows that they

can be considered to be independent of the latter.

13



. S' (in the vertical plane) v
T ﬁQ\ / A

Figure 3.

AN
\ \\ ﬁ\\

N
\ \)/\\ \\\ 7\
H / /A

V,

Intersection of the plone
that passes through B
and is parallel to the
orthogonal plane

Station-satellite configuration for the case C =L/2; i. e.h, thte ts;?):lesl_
lite positions lie in a plane that passes throug’h‘one oftt 1?‘: aOSi_
(B) and is parallel to the orthogonal plane. (S'1is a sa e) ite p

tion in the vertical plane, and S is any other position.
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Table 2. Values for Z__ . corresponding to variable Z
min m
and L/H for the case C = L/2.

ax

z L/H 2 4/3 1 2/3 | (Z.:)
max min‘mean

80 23.0 | 23.0 | 23.5 | 24.0 23.4

70 26.0 | 26.0 | 26.5 | 27.0 26.4

60 31.5 | 31.7 | 31.5 | 32.0 31.7

50 38.5 | 39.5 | 39.0 | 40.0 39.3

45 45.0 | 45.0 | 45.0 | 45.0 45.0

As in the previous case, two satellite positions forming mirror images
about the vertical plane have weight functions that differ only in the sign of
the correlation terms. Also, the weight functions for two objects forming

mirror images about the orthogonal plane will be identical.

3.3 Case 3. C=3L/2

In this case the hypothetical satellite positions are assumed to lie in a
plane that is also parallel to the orthogonal plane but passes through a point
F on the station-station vector extended a distance L beyond the nearest
station. The definition of height is now the distance from F to an object
lying in this plane and in the vertical plane (see Figure 5). Figures 6a, b,
2 and W
A’ 3ne Waye
relationship between Zmax and Zmin is tabulated in Table 3. The properties

and ¢ give the weight functions W2 , W respectively, while the

of the weight functions of mirror-image objects given for case 2 (either about

the vertical plane or about the orthogonal plane) are valid here as well.

16




Intersection of the planey
parallel to the orthogonal
plane and distant L from B,
with the earth's surface

Figure 5.

VB

S’fin the Verhizl Plane)

Station-satellite configuration for the case C=3L/2; i.e., where
the satellite positions lie in a plane that is parallel to the orthog-
onal plane and cuts the line AB at a distance L from the nearest
observatory. (S’ is a satellite position in the vertical plane.)
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Table 3. Values for Zmin corresponding to variable Zmax and L/H
for the case C = 3L/2

L/H
Zmax 2 4/3 1 2/3 (Zmin)mean
80 18.0 19.7 19.2} 21.5 19.6
70 23.0 24.0 24.7 26.0 24.4
60 29.5 31.0 31.0 31.5 30.8
50 39.0 | 40.0 39.5 39.0 39.3
45 45.0 | 45.0 | 45.0 | 45.0 45.0

3.4 Remarks on the Three Cases

Figure 7 summarizes the results of Figures 2, 4, and 6 in an alternative

form.

The relationships between the Zmax and Zmin for the three cases indi-
cate a marked independence of both C and L/H, particularly since inter-
visibility and refraction will generally impose a limit of Zmax > 70°, and the
error introduced by ignoring the dependence on both C and L/H will not
exceed about 2°. Mean values for Zmin and their estimated accuracy are

given in Table 4 and Figure 8. This dependence on the satellite-plane angle

alone therefore means that the apparent ambiguity introduced by the different

definitions of H in the three cases considered is of no consequence.

19
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Figure 7. W%/_ and Wi as functions of Z, L/H, and C.
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Table 4. Mean values of Z . for variable Z . The value Z . is in-
min max min

dependent of both L./H and C. The last column gives the estimates
of the accuracy of the Zm1n

Z Z . o

max min Z .
min
80 22.3 4,6
70 26.1 2.1
60 31.7 1.0
50 39.8 0.7
45 45,0 0.0
| | 1 |

80 I —
60 |- -
45
40 | .
»
[=}
£

N

| | | | |
10 30 40 45 60
Zmin

Figure 8. The limits of Z between which the satellite glanes should be
equally distributed if the conditions that ZW /ZW =1 is to be
satisfied.
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On the other hand, Zmax is a function of both C and L/H, so that the
limits of Z between which the observations must lie vary with these two
parameters. The relationship is, however, in all cases the simple one

depicted in Figure 8.

Two tests have been made that verify these remarks. In the first test
the maximum satellite-plane angle was taken as 60°, and the corresponding

n therefore was 31°. The observations were equally spaced at intervals
of 8Z = 2° and randomly distributed with respect to LL/H and C. Figure 9a
shows the distribution of the satellite points. From Figures 2, 4, and 6 the

total weights of the station-station vector were determined (see Table 5).

Table 5. The distribution of observations with respect to Z, C, and L/H for
test 1. Columns 4, 5, and 6 give the weights in the vertical plane,
in azimuth, and the correlation terms, respectively. For the total
weights, TW%/ZWZ = 1.01.

2 2

Z Case L/H WV WA WAV
60 3 2/3 0.047 0.015 0.026
58 1 2 0. 335 0.129 0.195
56 2 2/3 0.062 0.026 0.036
54 2 1 0.112 0.062 0.082
52 3 4/3 0.065 0.049 0.066
50 3 2/3 0.046 0.030 0.039
48 2 2 0.272 0. 206 0.236
46 3 1 0.060 0.053 0.057
44 2 2 0. 258 0. 254 0.252
42 1 2 0.318 0.384 0. 350
40 1 4/3 0.168 0.238 0.208
38 3 1 0.047 0.076 0.060
36 2 4/3 0.128 0.242 0.172
34 2 2/3 0.043 0.096 0.065
32 3 1 0.035 0.111 0.058

Sum 1.996 1.971 1.902

For the second test the observations were assumed to be distributed at
1° intervals of Z, and randomly with respect to L/H and C, between the limits
-— -] : = (-] :
Zmax = 70° and the corresponding zmin 26° (see Figure (9b)). The data are

presented in Table 6. The results of both tests speak for themselves.
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Distribution of observations for test 1.

The first number behind

each satellite position (O) refers to Z and the second number to

L/H.

Figure 9b. Distribution of observations for test 2.
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The three cases investigated have all shown that the weight functions
of two satellite points forming mirror images about the vertical plane are
identical except for the signs of the correlation terms. Similarly, the weight
functions of two objects forming mirror images about the orthogonal plane
are identical in all respects. Thus, the weight functions of two points located
symmetrically about the midpoint vertical will differ only in the signs of the

correlation coefficients.

The importance of observing objects on both sides of the vertical plane is
also illustrated by the two tests, as both yield almost singular solutions for
the station-station vector despite the fact that ZW%/ZWZA = 1. The removal
of the correlation between the two directions can be achieved by matching any
one satellite position by a second satellite position on the opposite side of the
vertical plane, which either is a mirror image of the first about this plane or

is symmetrical with the first about the midpoint vertical.

3.5 Intervisibility Requirements

A further condition that the satellite positions must satisfy is that they
be visible from both stations and sufficiently elevated above the horizon to
reduce uncertainties in atmospheric refraction to a minimum. This re-

quires a relation between the zenith distance z and the satellite height H,

namely,

sin (z -n) = R sin z/(R +H) ,

where R is the earth's radius and n the horizon distance. Figure 10 shows

this relationship.
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Figure 10. Monogram describing the relationship between the Zenith distance

and height of a satellite.
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4., DETERMINATION OF THE OPTIMUM REGION IN THE COMMON
COVERAGE AREA

The horizon distance defines the common coverage area, and the inter-
section of any plane (C =C;) parallel to the orthogonal plane with the limits
of this area gives the maximum subsatellite distance (Tlmax)i from the station-
station vector for the case C =C.1. Using the appropriate satellite height,
(Z ax)i corresponding to (nm

m ax
(Zmin)i is determined from Figure 8. This last quantity is transformed into

)i is derived using Figure 10, and consequently

a subsatellite distance ( again from Figure 10. Then (nmax)i and

Tmin);
(nmin)‘l specify the limits of the subsatellite distances between which the sub-
satellite points must lie for the case C =Ci' If this procedure is repeated for
several values of n, then the areas in which the subsatellite points must be
distributed in order to obtain the optimum solution for the station-station

vector are defined.

Note that for Z =45°, Z . = 45°; at this point C will attain its maxi-
max min
mum value for subsatellite points in the optimum parts of the coverage area.
The gquantity Cmax will be a function of both I. and H, as well as of the maxi-
mum zenith distance Z ax at which it is desired to observe the satellite.
Values for Cmax’ derived empirically, are tabulated in Table 7, and will be
used below for estimating a priori the magnitude of the variance matrix of

the station-station vector.
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5. PERMISSIBLE TOLERANCES IN THE MATCHING OF PAIRS OF
OBSERVATIONS

The methods of matching observations suggested above impose rather
stringent conditions on the distribution of the simultaneous satellite observa-
tions, but as an exact circular error distribution of the station-station vector

is not absolutely essential, some tolerance in the matching would be in order.

The degree of correlation between the directions in the vertical and in

azimuth is defined by the correlation coefficient K as
W

1/2
2 2
<WV WA)

and will be a function of the ratio I./H, Z, and C; any changes, d(H/L), dZ,

K = -

dC, will affect K by an amount
N 2 AT\ 2 1/2
_ /6K N2 (aH\Z | (0KY 02, (2K 2]
dK = [(a(H/L)> <L> + (az> (dZ)~ + (ac) (dC) ,

L /2
per de_fxmtlon <dKf + ng + ng)‘

If 6K is the maximum value that the correlation coefficient may have without
becoming significant, and the influences of dH/L, dZ, and dC upon 8K are

assumed equal, then
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=dK. < 6K/N3

dKl = dK2 3

In the following analysis a limiting value of 6K = 0.2 has been used, so that

dK.1=O.115 s i=1,2,3

For large numbers of observations the conditions for optimum geometry
derived above are approximately equivalent to subsatellite points distributed
evenly with respect to area in the part of the common coverage area defined
by the Zmax

ances in Z and C therefore ceases to be important for satellites of approxi-

- Zmin criteria. The question of what are the permissible toler-
mately equal heights.

5.1 Permissible Tolerance in Height of a Pair of Matching Observations

Differentiating the correlation coefficient with respect to (H/L) gives

‘ : 2 2
ok _|_1 Wya 1 Wya Wy 1 Wya Wp ) om
d(H/L) = |[W, W, 9(H/L) 2 3 3(H/L) " 2 33H/L) (T
v©ha Wy W, W W
and for a change of dH in H
5 2 2 5 2yl/2

. S Wyal® af Vva Wy | _I_[WVA Wa HdH

1 Wy W, B(H/L)_I 4 W’%/‘WA 9(H/L) 4 va.i. 9(H/L) L H
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or

The terms of Al can be evaluated numerically using the weight functions
given in Figures 2, 4, and 6. Table 8 summarizes the values of Al for
H=0.62Land 1.25 L, and for C =0, L/2, and 3L/2.

the values of Al are independent of Z, and on this assumption dH/H as a

function of C and H/L only, is given in Figure 11.

To within about 10%

Table 8 . Coefficients Al as a function of H/L,, C, and Z
Case Z 1 10]| 30| 5| 70 | Mean | o
H/D mean
C=0 0.62 1.3 1.5 1.7 1.6 1.5 0.2
1,25 2.1 1.9 1.9 2.4 2.1 0.2
C=L/2 0.62 1.1 1.3 1.4 1.3 1.3 0.1
1.25 2.011.911.8] 1.9 1.9 0.1
C =3L/2 0.62 0.6 10.510.9] 0.7 0.7 0.2
1,25 0.8 10.9 1.0 1.4 1.0 0.3
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Figure 11 Tolerance in H/L permissible in matching pairs of

observations.

5.2 Permissible Tolerance in Satellite-Plane Angle in Matching Observations

A difference of dZ in the satellite-plane angles of two objects that other-
wise would form mirror images about the vertical plane will introduce a

correlation coefficient of magnitude

) 52 2 21/2
K - 1 Wya L1 Wya Wy L1 Wya Wy iz
2 Wy w, "oz 1\ 3 o 9Z i\ 3 92
vVWa vWa
= A, dz

As before, the A2
gives values of A2 for L/H =2 and 2/3, and for C =0, L/2, and 3L/2. These

can be evaluated directly from Figures 2, 4, and 6. Table 9
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results suggest that A2 can be treated as independent of both C and L/H.

For the total magnitude of the correlation coefficient 6K to be less than 0. 2,

0.115
dZ, < AZ

2

By use of the mean values of A2 from Table 9, the tolerance in Z permissible

in matching any two sets of simultaneous observations is computed. The

results are given in Figure 12.

Table 9. Coefficients Ay as functions of H, C, and Z. The bottom row
gives the values of A averaged over constant Z

z

Case H 10 30 50 70
C=0 L/2 0.12 0.03 0.04 0.12
3L/2 0.16 0.05 0.04 0.15

C=L/2 L/2 0.13 0.04 0.04 0.12
3L/2 0.14 0.04 0.05 0.12

C =3L/2 L/2 0.15 0.07 0.06 0.14
3L/2 0.14 0.07 0.06 0.14

Mean 0.14 0.05 0.05 0.13
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Figure 12. Tolerance in Z permissible in matching pairs of obser-
vations.

5.3 Tolerance in Matching Pairs of Observations with Respect to C

The correlation introduced by a difference dC in two otherwise mirror-

image (about the vertical plane) satellite positions will be

, 5.2 521 /2
. - 1 Wav) 1(Mva W) 1 Wva OWa ac
3 T |\Wy W, ~oC i\;3, C 1\ w3 C
vVWa vWa
= A, dC

Values of A3 for L/H=2, 1, and 2/3 and for C =0, L/4, and L are tabulated
in Table 10. No simple relation appears to exist between the three variables,

but as such a relationship is desirable for the sake of simplicity and the
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accuracy requirements are not very stringent, A3 will be considered inde-
pendent of Z. The last three columns of Table 10 give, respectively, the
mean values of A3, their standard deviations TA3s and the ratio TA 4 /A3.
The error introduced, therefore, is of the order of 25%, but this may be
accounted for when computing the limits of dC by introducing an extra factor

of 1.25. That is,

0. 092

dc <
Ay

The dC as a function of C and the L/H based on this expression are given in

Figure 13.

Table 10. Coefficients A3 as functions of H, C, and Z. Column 7 gives the
mean values of A3 averaged over Z, column 8 gives the standard
deviations of the mean, and the last column gives the ratio

A
Umean/( 3)mean
7 Mean

Case H 10 30 50 70 (A3)mean “mean 0mea.n/(A3)xnean

C=0 1./2 0.74 0. 65 0.56 0.39 0.59 0.15 0.25
L 0.31 0.23 0.24 0. 38 0.29 0.07 0. 24
3L/2 0.30 0.19 0.26 0.25 0.25 0.05 0.20

C=L/4 L/2 0. 85 0.74 0.62 0.51 0.68 0.15 0.22
L 0.40 0.23 0.28 0.41 0. 34 0.09 0.26
3L/2 0. 34 0.22 0.29 0.47 0.32 0.11 0. 34

C=L /2 1.33 1.29 }-1.17 0.79 1.14 0.24 0.21
L. 1.01 0.88 0.61 0.41 0.73 0.27 0.36
3L/2 0.75 0.70 0.49 0.58 0.60 0.15 0.25

36




0.30

0.20 L/H=2/3 -
Ol
©
L/H=l
0.10 L/H=2 .
| ] |
L L -
C———

Figure 13. Permissible tolerance in C in matching pairs of observations
The tolerances in Figures 11, 12 and 13 are based on the cor-
relation coefficient not to exceed 0. 20.
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6. MAGNITUDES OF W%/, AND Wi
It is evident from Figures 2, 4, and 6 or from Figure 7 that the closer
the matched pairs lie to the orthogonal plane and the larger the ratio L/H,

the smaller will be the magnitudes of the resultant error ellipse, although

the shape of this error function will be independent of both C and L/H.

From these figures the total weight W2 of n observations distributed
evenly between the appropriate limits of Z can be computed for any value of
C, L/H, and Z max" Typical results are given in Table 1. The last column
gives the mean weight (W /n) of n observations distributed between the limits
of Z. Most noticeable is that for constant C and L/H, (W /n)Z is independent

of the value of Z . Figure 14 gives (W /N) as a function of C and L/H.

Now, from Table 7 and Figure 14, (Wz/n)Z as a function of Z_ax? L, H,
and Cmax can be computed, it being implied that the conditions of equal
variance in all directions are imposed at all times. Such computations have

been made, and the results are shown in the last column of Table 7

2/3

4/3
L/H

L 3L

C——

Figure 14. (Wz/n) as a function of C and L/H. w? is the total weight of n
observat1ons distributed between the limits of Z max and Z

> > min
such that W = FWV = FWA .

38




2 .
Table 11. ZWV/n as a function of C, L/H, and Zmax; n is the number of

observations. The Z . correspondi t i
® Zmin § e 2p ing to each Zmax value is

chosen so that Z‘WV = ZWA =W
Case L/H Z n W2 (Wz/n)
: max Z

C=0 2 70 20 5. 64 0.28
60 14 4.14 0.29

50 6 2.00 0.33

45 2 0.67 0.30

4/3 70 20 2.99 0.15

60 14 2.10 0.15

50 6 1.12 0.19

45 2 0. 38 0.19

1 70 20 2.20 0.11

60 14 1.16 0.08

50 6 0.68 0.11

45 2 0. 24 0.12

2/3 70 20 1.14 0.07

60 14 0. 86 0.06

50 6 0. 37 0.06

45 2 0.12 0.06

C =L/2 2 70 20 4.61 0.23
60 14 3.45 0. 25

50 6 1.50 0. 25

45 2 0.50 0. 25

4/3 70 20 2.91 0.15

60 14 2.19 0.16

50 6 0.95 0.16

45 2 0.32 0.16

1 70 20 1.97 0.10

60 14 1.46 0.10

50 6 0.62 0.10

45 2 0.21 0.10

2/3 70 20 1.04 0.05

60 14 0.78 0.06

50 6 0. 34 0.06

45 2 0.11 0.06

C =3L/2 2 70 20 1.60 0.08
60 14 1.06 0.08

50 6 0.51 0.09

45 2 0.17 0.09
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Table 11. (Cont.)

2 2
Case L/H Z o n w (W /n)Z
C = 3L/2 4/3 70 20 1.31 0.07
(cont. ) 60 14 0.97 0.07
50 6 0.43 0.07
45 2 0.14 0.07
1 70 20 1.08 0.05
60 14 0. 80 0.06
50 6 0.34 0.06
45 2 0.11 0.06
2/3 70 20 0.73 0.04
60 14 0.55 0.04
50 6 0.24 0.04
45 2 0.08 0.04

The (Wz/n)Z differ from the (Wz/n)Z only in that the former are for a
specific value of C, namely C , whereas the latter refer to arbitrary
values of C. The results for (W /n)Z indicate that this quantity, for all
practical purposes, is independent of Z_ax and Cmax and dependent on L/H
only. This may be seen from an inspection of the appropriate data. For, in
Figure 14 (Wz/n)Z varies most rapidly with C when L/H is large, while
Table 7 indicates that for large L/H, C max is relatively small. Similarly,
for small L/H, Table 7 1nd1cates relatively larger values of C , but

max
Figure 14 indicates that (W /n) varies less rapidly with C.

The mean values of (W /n) WZ/n drawn in Figure 15 as a function of

L/H indicate a linear relat10nsh1p between L/H and W /n, given by

W2/n = o.19(§) ~0.08  (0.5<E =2.0)
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If satellites over a wide range of heights are used to determine the station-
station vector, the mean value of Wz/n is of the order 0.17. The variance

matrix of this vector is therefore given by

2

oy O'AV - 2 1 0
2 =_5s.0.

Sya %A 0.17n |0 1

where os . 18 the variance of a single direction. This expression is evaluated

in Figure 16 for variable o g and n.

| | T
03 - -
0.2} -
W2/n
0.l F -
o} { |
0.5 1.0 1.5 20
L/H

Figure 15. W2/n as a function of L/H.
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7. SUMMARY OF RESULTS

If an optimum solution for the station-station vector is to be obtained,

the distribution of simultaneous observations must be such that;:

A. The satellite planes are equally distributed with respect to Z between
the limits Z and Z . established in Table 4, to ensure that the total
max min

weight in the vertical plane will equal that in azimuth.

B. Any satellite position is to be matched by a second satellite position
on the opposite side of the vertical plane such that the positions either form
mirror images about the vertical plane or lie symmetrically about the. mid-
point vertical. The tolerances permissible in such matchings have been
indicated in Figures 11, 12, and 13; but, as mentioned above, when large
numbers of observations are considered, these limits will cease to be of
importance. What will still be important is that there are equal numbers of

observations on both sides of the vertical plane.

C. Figure 15 clearly indicates the preference that should be given to
configurations that yield large values of L/H. The ratio L/H =2, for
example, is clearly three times better than the ratio L/H = 1. However, the
use of larger values of LL/H does decrease the area of the optimum region in
which the subsatellite points should lie, therefore decreasing the frequency
with which any satellite may be observed. If only a few precise pairs of
simultaneous observations are required, it will be preferable to select those
satellite positions with optimum values for L/H. This would, for example,
be the case for wild-BC4 observations. Each plate furnishes a spatial direc-
tion with a standard deviation of about 0!'4, and as few as six pairs of plates
give an equally precise determination for the direction of the station-station

vector.

In the event the individual satellite directions are of a lower precision,
a larger number of simultaneous observations will be required. For example,

with Baker-Nunn photography a single synthetic simultaneous direction has a
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precision of about 1" of arc. To determine the direction of the station-station
vector to within 0!'4 therefore requires at least 40 pairs of simultaneous
observations. Now it may be preferable — on a time scale — to observe all
possible satellite positions that satisfy the two criteria summarized above,
but with no conditions imposed on the ratio LL/H. The increase in the fre-
quency of observations will more than compensate for the fact that the contri-
butions of some of these observations to the total variance of the station-

station vector may be less than if the conditions on LL/H were imposed.

D. The accuracy of the direction of the station-station vector is given
by

2
O’V O'AV - 2 1 0
_ s. 0.
2 | = L
Tya Ta [0.19(ﬁ>-0.08]n 0o 1

E. Throughout, it has been assumed that all observations are of equal
accuracy. This need not be the case, however, when the observations are
are close to the horizon. Decreasing the zenith distance at which the satellite
is to be observed will reduce such uncertainties, and the above criteria will

still be valid, although the frequency with which a particular satellite can be

observed will be further decreased.

The results are illustrated in Section 8.
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8. TWO EXAMPLES

The two cases are for the astrophysical observing stations at Organ Pass,
New Mexico (9001) and Jupiter, Florida (9010). The chord distance between
these stations is approximately 2600 km. The satellites considered are
60 009 02 (Echo 1 Rocket) and 61 028 01 (Midas 4). Their respective heights
are 1500 and 3500 km, and both are in near-polar orbits.

60 009 02. (See Figure 17. ) The maximum zenith distance of observation

is 75°, and the corresponding horizon distance is 20°.

For C

0;n_, =15, 2 _ =65,2 . =30° n=5.5

Q
1t

L/4;nmax = 12.50’ ? Zmax=-51 ? Zmin =38, T1min=8‘5

and for Z =45°, Z . =45°, n =10.5"°
max min

61 028 01. (See Figure 18. ) The maximum zenith distance of observa-

tion is 75°, and the corresponding horizon distance is 37°.

For C = 0; q =35°, Z =70°, Z_. =25 m_ . =90°.
max max min min
C=L/2;m_, =26.5%2__ =60, 2 . =31°,7 . =115

and for Z =45°, Z . =45, n=18,5°.
max n

mi

Both cases are plotted on a sterographic projection. The areas of opti-

mum positions for Z ox = 65° and 60° are also indicated.
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Figure 17. Optimum areas in which subsatellite points should be distributed
evenly with respect to area for Satellite Echo 1 Rocket (height
1500 km) and two different maximum zenith distances.
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Figure 18. Optimum areas in which subsatellite points should be distributed
evenly with respect to area for Satellite Midas 4 (height 3500 km)
and for three different maximum zenith distances.
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