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CHAPTER I

INTRODUCTION '_"

This report contains summaries of presentations given by members of the

MIT Experimental Astronomy Laboratory (EAL) in a meeting on 5 January 1967.

The purpose of this meeting was to review NASA-sponsored research at EAL

during the last two-year period.

The Experimental Astronomy Laboratory is one of several faculty-directed

laboratories in the Department of Aeronautics and Astronautics, which is

headed by Professor Raymond L. Bisplinghoff. The Laboratory is also affiliated

with the MIT Center for Space Research, an interdepartmental organization

directed by Professor J.V. Harrington. EAL's staff consists of four faculty

members, eleven professional research engineers, and thirteen graduate

research assistants. The Laboratory's founder and director is Professor

Winston R. Markey.

During the past two years, more than half of the Laboratory's research

has been supported by NASA under the following Grants and Contracts:

i) NsG 254-62 "Theoretical and Experimental Investigations to

Determine Optimum Guidance, Navigation, and Control System

and Instrumentation Concepts and Configurations for Long Term

Earth-Orbiting and Interplanetary Spacecraft. "

2) NGR 22-009-080 "Analytical and Experimental Investigation of Low

Level Accelerometer Techniques. "

3) NGR 22-009-078 "Guidance System Component Correlation Testing

and Studies. "

4) NAS 12-501 "Low Level Accelerometer Apparatus."

Areas in which there has been NASA-sponsered research activity at the

Experimental Astronomy Laboratory during the past two years include the

following:

i. Midcourse Guidance

2. Optimization
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3.

4.

5.

6.

7.

8.

Statistical Filtering

Mission Planning

Navigation

Applied Mathematics

Astrophysics

Inertial Sensors and Test Equipment

The extent of the aetivity varies considerably from one area to another;

currently the two areas that are receiving the greatest attention are midcourse

guidance and optimization.

The midcourse guidance studies are aimed primarily at developing simple

though aceurate techniques for on-board computation of midcourse velocity

eorrections; if possible, the techniques should be simple enough to be applied

manually (i.e., without the use of a digital computer). Early work at the

Laboratory in this area is doeumented in the theses of Stern (TE-5), Gielow,

Holbrow, Munnell, and Ruth, and in LAg reports by Stern (RE-4), Abrahamson

and Stern (RE-14), and Tanabe (RE-20). A summary of this early work is

contained in Report RE-18 by Slater and Stern. More recent theses on the

same subject are those of Love, Elm, and Dierstein.

In the seminar presentations Lira (Chapter 2) has extended a study of

gambert's problem which was initiated in his master's thesis. The iterative

method of solution of Lambert's problem that he has developed is simple

enough to be computed manually and has good eonvergenee properties. It is

applicable to all types of conic seetions.

Curry (Chapter 3) has extended the analysis made by Slater and Stern

in RE-18. Whereas the earlier work compared various simplified guidance

methods for a prescribed set of initial conditions, Curry has considered a

statistical distribution of initial conditions in making his comparisons.

All of the work completed to date has made use of adaptations of

two-body models to develop simplified guidance techniques. In contrast, Carlson

(Chapter 4) is using a basic three-body model. By applying the method of

matched asymptotic expansions, he is attempting to develop an analytic solution

to the guidance problem which is more accurate than any of the two-body

solutions and yet is simple enough so that the required computations can be

performed manually.

Statistical filtering and optimization may be regarded as two facets of a

single general problem. "Filtering" is normally associated with the estimation
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of the state of a dynamical system for which redundant, but noisy, measurements

are available; "optimization" is usually associated with the control of a

dynamical system. The two can be considered individually, or they can be

combined in the development of an optimum strategy.

Early work at EAL in statistical filtering consists of a report by Potter

and Stern (RE-3) and two additional reports by Potter (RE-9 and RE-11}.

Optimization of the control of deterministic systems is treated by Stern and Potter

(RE-17} and in theses by Winston and Eck.

Current work at EAL in these areas was reported by five of the seminar

speakers. Fagan (Chapter 5} has optimized the scheduling of on-board naviga-

tional measurements by use of the method of steepest descent. The results

indicate an interesting clustering of measurements at discrete measurement

times.

Prussing (Chapter 6) is using a relatively simple mathematical model to

obtain an analytic (rather than purely numerical} solution to the problem of

optimal multiple-impulse orbital rendevous. The analysis is restricted to

consideration of circular trajectories. Results indicate that, depending on initial

conditions, either two, three, or four impulses are optimal.

Deyst (Chapter 7} has developed an optimal guidance strategy for a class

of systems for which the available measurements are noisy. Numerical solution

of the problem is accomplished by the use of dynamic programming. The

procedure is of practical interest when the number of control variables is

relatively small (e. g., one or two}.

Rockwell (Chapter 8} has developed an efficient computational algorithm

for optimizing the determination of a set of unconstrained control parameters

in a nonlinear system such that some specified quadratic form in the related

state parameters is minimized. There is an interesting geometric interpretation

of the method.

Price (Chapter 9} has applied the principles of optimal control to the

problem of a soft landing on the moon. The cost function that he is minimizing

includes a measure of trajectory smoothness and time during which the

astronaut can view the landing site, as well as fuel consumed. The problem

treated is a time-open problem; i. e., in addition to the components of the thrust

control vector, final time is also considered in the optimization procedure.

EAL activity in mission planning was initiated by the thesis of Hollister

(TE-4} and continued in a study by Hollister and Prussing (RE-16) of powered
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flybys of Venuson a trip from Earth to Mars. Young(Chapter 10)has written
a computer programwhich seeksout opportunetimes for flybys of bothVenus
and Mars on roundtrips which start and end at Earth. The program was
carried outby makinguseof the time-sharing facilities at the M. I. T.
ComputationCenter; it is a goodillustration of the effective use of these
facilities.

In the area of navigation, a simplified approachto the problem of
selectingoptical sightings for position determination in interplanetary spacewas
givenby Stern(RE-7). The determinationof the optimumtimes for optical
sightings wasinvestigatedin a thesis by FaganandWhitlow and extendedin the
work reported by Faganin Chapter5.

McDonald(Chapter11)has initiated a newphasein EAL's navigation
studies. Hehas investigatedthe feasibility of using a gyrocompassas an
attitude referencefor a spacecraft. A more completereport of this study is
RE-21.

McDonaldhasalso supervisedtwo theses relating to navigationproblems
of Sunblazer,a small unmannedsolar probe. Thesewere written by Madl
(CSRT-66-4) andby Doerer and Langley(CSRT-66-5).

Current work in appliedmathematicsat EAL is under the direction of
Madden,whorecently joined the staff. In Chapter 12he reports ona method
of estimation of a functionwhena finite numberof its momentsis known. The
methodyields definitive upperandlower error bounds.

A mathematicaltechniquethat currently is beingappliedto a variety of
problems is the methodof matchedasymptotic expansions. In Chapter 13 Willes

has applied the method to the problem of atmospheric entry. This work is soon

to be published as a doctoral thesis. Carlson in Chapter 4 has applied the method

to the three-body problem.

Research in astrophysics has recently been initiated at EAL. This work

has been undertaken jointly with Lincoln Laboratory. Dr. I.I. Shapiro, of

Lincoln Laboratory, is directing the effort. Counselman (Chapter 14) has been

investigating mathematical models which might explain the recently observed

axial rotation of the planet Mercury.

Three of the seminar presentations involve hardware development. In

Chapter 15, Ezekiel has described the low-level acceleration measurement

apparatus development initiated at EAL and now being carried on at the NASA

Electronic Research Center in Cambridge. This work is described in greater

detail in RE-23. A second presentation by Ezekiel, in Chapter 16, discusses a

technique for long-term stabilization of laser frequency. Finally, Egan, in
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Chapter17, describes the developmentof a test table for the evaluationof
the performanceof high-accuracyaccelerometers andgyros.

Of the fifteen peoplemakingtechnical presentationsat the seminar, nine
are M. I.T. graduatestudentswhoare currently working on their doctoral theses.

ll
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i J I _. CHAPTER II

A NEW SOLUTION TO LAMBERT'S PROBLEM (_

by

6 Wai Lira / ...

Lambert's theorem states that the time t to traverse a conic arc depends

only upon the length of the major axis,a, the sum (rI + r2) of the distances of the

initialand final points of the arc from the center of force, and the length, d, of the

chord joining these points. For orbit determination purposes, one has to solve

for the semi-major axis given rI + r2, d, and t. Considering the transcendental

nature of the flighttime equations, a solution can be obtained only by some kind

of iterative method. The convergence and simplicity of the iterative solution

depends on the form of the equation and the variable iterated. This report [I]

presents a new form of the flighttime equation in terms of a variable, q, which is

related to the mean of the two eccentric anomalies.

The new method of solving Lambert's problem has certain advantages and

disadvantages when compared with the classical method [2] and the uniform

variable method [ 3]. In the classical method, the semi-major axis, a, is used to

determine the conic section. While this parameter has the advantage of providing

a uniform representation of all solutions, it suffers from two defects. First,

the series representation of the solution involves the inverse sine function which

requires more terms in the series than the sine function for the same numerical

accuracy. Second, the flight time is related to the parameter in a complicated

manner requiring careful knowledge of multiple solution.

The uniform variable method uses the regularized eccentric anomaly,

_2 which is defined as the square of the difference of the two eccentric anomalies.

It is a uniform solution in the sense that the resulting flight time formula is valid

for elliptic, parabolic, and hyperbolic orbits. There are two disadvantages in

this method, First, the representation of the solution involves at least two series

which have to be evaluated specifically for this purpose. Second, for multiperiod

transfer, 4)2 is large and the convergence of the series requires increasing

numbers of terms to be computed.

In the present method, the series representation of the solution involves

only the sine function (or hyperbolic sine in the case of hyperbolic transfer)

Because the magnitude of the independent variable, q, is confined to the interval

[0, _], the series can be truncated after the first few terms. Another advantage

13
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Because the magnitude of the independent variable, -1., is confined to the interval 

[0, 7r), the series can be truncated after the first few terms. Another advantage 
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of this form of flight time equationis the simplicity of the equationwhentime is
normalized with respect to the physical quantity I (rl + r2)3 and the geometry

2_

of the probIem is represented by a single parameter, 1 - _1 + "[

The disadvantage of this method when compared with the method of Uniform

Variable is that three different formulas have to be used rather than one.

A test program was written for the IBM7094 computer. With the same

input data, it solved Lambert's problem using each of the three methods in

sequence. By averaging the time interval between the beginning and end of each

iteration for one thousand iterations, the computation time per iteration was

found for each of the three methods tested. The result (see Fig. 5) showed that

the present method is at least twice as fast as the other two. The computation

times quoted here do not include input/output time or the time spent in setting

up the output format. Consequently, they indicate the relative number of

algebraic operations performed in a single iteration which are required by each

of the methods. A number of test cases are used to determine the accuracy in

orbit determination (in terms of orbital velocity computed} obtainable using a

single-precision program and the number of iterations it takes to reach a

solution. The conclusion (see Fig. 6) is that the classical method converges

more slowly and is less accurate. In both respects, convergence and accuracy,

the uniform variable method and the present method are comparable.
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Fig. 1 Geometry of Lambert's Problem.
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Fig. 2 Classical time of flight equations.
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Fig. 3 Time of flight equation in terms of uniform variable.
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Fig. 4 New time of flight equation.
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Fig. 5 Comparison I.
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Test Case

V

m/sec

Hyperbolic

2a Near Parabolic 43,000

i a Typical 45, 000

Classic

N AV

Elliptic

-2
1. Typical 33,000 6 1.6x10

2 Near Parabolic 42,000 15 3.8x10 -2

N

8

4

Uniform
Variable

AV

1.1xl0 -3

2.3x100

2.8x10 -4

5.6x10 -4

N

Present
Method

AV

5.6xlO -4

l.lxlO "3

l.lxlO -3

8.5xlO -3

N = Number of iterations before a convergence solution is obtained

AV = Increment of V at N TM iteration

V = Orbital velocity

Fig. 6 Comparison II.
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CHAPTER III

3 STATISTICAL EVALUATION OF SIMPLIFIED MIDCOURSE GUIDANCE LAWS (J_

by

R.E. Curry _ j

I. INTRODUCTION

Previous investigations of simplified guidance techniques 1, 2, 3 have dealt

with the problem of examining relative accuracies for a specific sampling of launch

errors. This procedure is straightforward and is as follows:

GIVEN: 1. No Uncertainties

2. Nominal Trajectory

3. Correction Times

4. Launch Error

5. Guidance Law

TEST PROCEDURE

I. Integrate from launch state to find target error.

2. Use guidance law (at first correction) to attempt to null target
error.

3. Integrate results of guidance correction to find residual target
error.

4. Repeat steps 2 and 3 for each maneuver point.

The purpose of this analysis is to obtain a quantitative measure of guidance

law accuracies based on launch error statistics rather than a specific sampling of

the launch errors. One such measure of accuracy is the RMS target error due to

guidance law computation,

The approach taken here is to linearize nonlinear guidance laws so that the

velocity correction becomes a linear combination of the vehicle's state. The sec-

ond order statistics of the target error then become a function of the guidance law

and launch error statistics.

II. ANALYSIS

The following assumptions are made for this analysis:

ASSUMPTIONS

1. Impulsive Thrusting

2. Linearized Equations of Motion

3. Linear Guidance Laws

Result: Many-Body-Linear Guidance Law is exact (to first order).
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Equations of Motion

As a result of the above assumptions the following linear difference equations

describe the state deviations from nominal:

5x- 1 = @" 6xi-+1 (Sx0 = Launch Error)I,i-i

6X: = b i + _i6X;

(6xD) i = _D, i 5x:

where

5x7
I

6x.+
1

= state deviation at i th correction time before correction

= state deviation at i TM correction time after correction

@i, i- 1 =
transition matrix of linearized deviations from nominal between

(i- 1)st and i th correction

t_D,i

.th
b. = bias in 1 correction

1

_i guidance matrix at i th

.th
(Sx D) i = target error after 1

th
= transition matrix from i correction to destination

correction

correction.

The second moment matrices of the above random vectors may easily be

found recursively using the covariance matrix of launch errors as an initial con-

dition.

Linearization of Guidance :Laws

The following non linear guidance laws are being examined:

GUIDANCE LAWS

1.

2.

3.

4.

Implicit Position Offset

Implicit Velocity Offset

Explicit Position Offset

Explicit Velocity Offset

The word "implicit" is used here to denote guidance schemes that use a

precomputed reference trajectory; "explicit" techniques do not use a precomputed

reference trajectory.

All four guidance laws are non linear and use a conic trajectory approximation

20
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which accounts for perturbation accelerations, but neglects the gradient of the

perturbation accelerations with respect to position. See Reference 1 for details.

It has been found necessary in this study to make the distinction between

the "nominal" and "reference" trajectories. A nominal trajectory is that which

would be followed if no launch errors or other errors were present. The implicit

guidance techniques considered here use the nominal trajectory as a reference.

The explicit guidance schemes use a reference trajectory computed at each

maneuver point by integrating the full equations of motion forward from a prescribed

set of initial conditions. Two obvious choices of initial conditions are

EXPLICIT REFERENCE TRAJECTORIES

Integrate equations of motion from

TYPE A: Present position and velocity

TYPE B: Present position and velocity of Lambert conic to target

It has been found from experience that for reasonable injection errors the

Type A reference trajectory usually misses the target by much more than the

Type B reference. On the other hand, the Type A reference may be used in an

iterative manner if the position and velocity of the last iteration are used in place

of the "present" position and velocity. These characteristics suggest the following

iteration scheme: use the Type B reference for the first reference trajectory and

the Type A reference for all subsequent iterations.

Only the Type B reference trajectories have been considered for the following

reasons:

1. Only non iterative solutions to the guidance problem are being considered.

2. The Type B trajectories are usually closer to the target, and linearization

about them will be more accurate.

III CONCLUSION TO DATE

1. Linearized Implicit Guidance Laws differ only in the reference conic

used.

2. Linearized Explicit (Type B reference} Guidance Laws

a. Reduce to same guidance law

b. Contain velocity correction bias error

The linearized implicit guidance laws use the two-body transition matrix of

a reference conic: the implicit position offset method linearizes about the osculating

conic at the nominal correction time; the implicit velocity offset method linearizes

about the nominal Lambert conic at the correction time. (The nominal Lambert

conic is defined by the position on the nominal trajectory at the correction time

21
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andby the target positionat the final time. }

Thelinearized explicit guidanceschemesyield the samevelocity correction
for the Type B reference. In addition, there is a velocity correction bias error
inherent with the TypeB reference trajectory. This bias error indicates that a
maneuvershouldbe madeevenif the nominal trajectory is being followed. The
basic causeof suchbehavior is the neglect of the gradient of the perturbing
accelerations andthe choiceof reference trajectory.

IV. FUTUREWORK

Future work in this area will consist of numerical evaluationof RMStarget
errors for the abovementionedguidancelaws. Another facet which merits in-
vestigation is the statistical behavior of the error in an iterative solution to an
explicit guidanceproblem.
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CHAPTER IV

.J MANUAL ON-BOARD GUIDANCE FOR MANY-BODY

INTERPLANETARY TRAJECTORIES (j

by

N.A. Carlson J : ,....

26525

Introduction

Navigation and guidance for unmanned lunar and interplanetary space

missions are currently performed by means of Earth-based radar tracking, digital

computation, and radio command signals. For manned missions, on-board navi-

gation and guidance represent an alternative which is attractive not only near the

target, where radio transmission time from the Earth can be significant, but also

as a back-up system for use in case of communications failure.

On-board guidance requires a digital computer to perform numerical in-

tegration and matrix manipulation, but should entail a manual mode as well because

of the possibility of computer breakdown during the extended flight times of inter-

planetary missions. Manual guidance must circumvent the numerical integration

capability of the computer with analytic solutions for interplanetary trajectories,

perhaps in conjunction with tabular data, these being sufficiently accurate for

guidance purposes.

Previous Work

Simplified on-board guidance techniques generally have made use of the

analytic behavior of two-body trajectories to reduce the requirements for digital

computation 1, 2, 3. Implicit techniques utilize stored data from a precomputed

reference trajectory to eliminate on-board numerical integration, and explicit

techniques require no reference but presently rely on numerical integration and

the analytic properties of Keplerian orbits. The capability for major post-launch

mission changes and abort trajectories evidently favors explicit techniques.

Furthermore, the high sensitivity of the near-target trajectory to midcourse var-

iations limits the validity of linearization about a pre-planned reference.

An explicit manual guidance scheme requires analytic solutions for many-

body trajectories passing close to the target planet. The many-body problem, in

particular planetary perturbation theory, 4, 5, 6 has been studied for over two hun-

dred years. Perturbation solutions in terms of power series expansions have been

obtained, but generally under the implicit assumption that the body of interest
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never passes close to a perturbing planet. As a first approximation to many-body

spacecraft trajectories, the patched-conic model has been widely used in mission
2

planning, but is crude for guidance purposes . The method of matched asymptotic

expansions has more recently been applied to lunar 7 and interplanetary 8' 9 trajec-

tory analysis to include perturbations ignored in the patched-conic model. Though

the matching of perturbed conics has been effeeted in terms of bounded definite

integrals, analytic perturbation solutions still are not available. These solutions

or the equivalent are essential to the explicit manual guidance formulation.

Current Investigation

To determine approximate perturbation solutions uniformly valid over the

midcourse and terminal portions of the trajectory, the author is applying the method

of matched asymptotic expansions in a fashion similar to that of Perko 8' 9 and

Breakwell 9. The three-body problem is examined first, the three bodies specified

for convenience to be the Sun, Mars, and the spacecraft (see Fig. I).

Spacecraft

Fig. 1 Three-body problem.

r = --_r-E_
r

_ --_-g_s -

The equations of spacecraft motion

relative to the Sun and to Mars and that of

Mars relative to the Sun are respectively,

+ (1)

-ep_1 (2)

p = -(l+C e (3)
P

Note that the Martian orbit is Keplerian in this context, and that the solution of

either Eq (1) or Eq (2), given the Martian orbit, is sufficient to define the space-

craft trajectory.

The "outer" or heliocentric perturbation solution is obtained by expanding

r in a power series in the small parameter

r = r_ + er + e2r +... (4)
0 1 2

Substituting this expression into the Taylor expansion of Eq (1) and equating

coefficients of equal powers of • yields

"" u (5)r = ---2 r
0 r 0 0
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J t.. _ro - 0 e

r = G(_r )r - _ _el 3 ÷
1 0 1 .]_r 0

(6)

"" 1 T
r =G(r )r ÷_'_r H(r )r +G(r -e)_r
-2 -0 -2 1 -0 -1 -0 1 (7)

and so on, where G is the gravity gradient matrix and H represents the second

gradient, a third order tensor, r_ is a Keplerian ellipse, and r and r_ can be

0 ,1 t'2"smwritten in terms of the linearized state transition matrix evaluated on ellipse•

r (t) = M(t, t0)r1(t 0) ÷ N(t,t o )'r1(t0) - p 5tN(t, v)

1 to

e. g, •

+ d_" (8)

T

where

r (t)= M(t, t0)r2(t0) +N(t, t0)_r2(t0)+ N(t,v)

2 to

T
_r H(r )_r
] 0 1

q

+G(r -e)_r | d7

0 1 _r

a_(t) _r (t)
o

Mlt, t 0) = . N(t, t0)_
O-to(to )• 8"_r (t O)

• * 0

(9)

(10)

Though the perturbation integrals involve known implicit functions of time, they

cannot be integrated analytically in _ straightforward manner. However• the

asymptotic behavior of the integrals as r_ approaches e can be determined by tak-

ing Taylor expansions in time relative to0the zero-order intercept time 8. The

resulting asymptotic solution can be matched with the asymptotic "inner" or plan-

etocentric solution• but involves certain bounded definite integrals that cannot be

evaluated analytically.

The inner solution is most easily examined by defining the "stretched" inner

variables

t s
r = - o" =- (11)

C • -- E
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Using these variables in Eq (2) and expanding the solar perturbation term under

the assumption that s < < p yield

a" -- -_ a + cG (e) ca +. , . (12)

Writing _a as a power series in c and proceeding as before result in the following

equations:

. tt c (13)
¢_ - 3

-O a 0 -0

a "= G (a) a_ (14)
1 0 1

a "= G(a )a +la TH(a )a +G(e) a (15)
-2 -0 -2 -1 0 1 -0

and so on. The inner solution is Keplerian and can be obtained analytically through

first order in the region-S < 0 (c).
P

It should be noted that different solution regions can be defined by employing

different stretching factors to balance different terms in the equations of motion.
1/2

For examplej stretching both the time and distance variables by c

t §

= cl_ , a = e112 (16)

and expanding a in terms of e 1/2, assuming P <- 0(_1/2), result in

c ,w = 0 (17)
0

/.e
a "= ------_ c_ (18)
-1/2 a 0 0

" = G(a )a + G(e)g (19)
-1 0 -1/2 0

and so on. Here the zero-order solution is straight-line motion; the half-and first-

order solutions can be obtained analytically. The region defined by Eq (16) thus

yields directly the asymptotic planetocentric trajectory, and may presumably be

matched with the inner solution defined by Eqs (13) - (15) on the one side and the

outer solution defined by Eqs (5) - (7) on the other.
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The basic unsolved pf_blem "_"- seems to be +_ _+_--,_¢,,o÷_,_*,_? on _n_]y_

tic solution to the perturbed heliocentric motion defined by Eqs (6) and (7), in par-

ticular to evaluating the associated perturbation integrals:

&r (t) = - _ S N(t,v) 0
-1 to r;D 3 + d7 (20)

k..
T

_' N(t,T),,, r T H(r )r +G(r -e)r dT (21)Ar (t)
-2 0 -1 0 1 -0

t o T

Future Work

Integration of the first-order perturbation integral (20) is obviously of primary

concern. The integration can in fact be carried out under various simplifying

assumptions, for example that (_r - e)is a linear vector function of time _d that

N (t,v) can be represented by a tOncated Taylor series in time. In addition, the

classical perturbation theory for planetary motion can be applied when the space-

craft is not close to the planet. Evaluation of the second-order perturbation integral

(21) will involve similar simplifications should it prove significant for guidance pur-

poses, as will evaluation of the perturbation integrals due to non-target planets,

such as Jupiter.

In light of the current status of the investigation, future work shall proceed

according to the following plan:

1. Evaluate the significant perturbation integrals by various simplifying

approximations, including planetary theory.

2. Investigate the use of tabular data in conjunction with partial analytic

solutions to the perturbation integrals.

3. Match the resulting inner and outer solutions asymptotically to deter-

mine a uniformly valid solution.

4. Formulate guidance equations, including the possible use of tabular

data.

5. Evaluate the accuracy of candidate guidance formulations by comparison

with numerical results and by possible application of Perko's error

analysis 8.

6. Determine the time required for manual computation of a guidance

correction by each of the candidate formulations.

7. Compare guidance accuracy with the expected accuracy of on-board nav-

igation and implementation of guidance corrections; define a practical

limit to required guidance accuracy and associated computation.
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The scheduling for sightings for use in a self-contained space navigation

system represents a trade-off between the accuracy of navigation and the cost

of making the sightings. This cost includes the attitude control fuel required to

re-orient the spacecraft, fuel required for stabilization, and the time that astro-

nauts are diverted from other tasks to make the sightings.

Previous attempts at schedule optimization include the determination of

the best sightings at pre-selected times and the effect of alternate navigation

schemes on guidance fuel requirements. In a more recent study, a steepest

descents approach was applied to determine, for the reduction of in-plane position

uncertainties in a circular earth orbit, the optimum times for making star-horizon

sightings. Results indicated that a grouping of sightings about certain optimum

times, rather than a continuous distribution, resulted in more accurate position

estimates for the same number of measurements. This paper is a continuation

of the above work in which it is sought to establish a general framework for the

determination of navigation schedules which minimize estimation uncertainty for

a fixed number of measurements or, equivalently, obtain a given uncertainty

with the minimum number of measurements.

The extension of the problem includes consideration of out-of-plane errors

and schedule optimization not only for the sighting times, but for the best sight-

ings as well. From the preliminary study, it is assumed that there will be some

grouping of sightings at the same time. As a first simplification, the time

required to make the sightings is considered negligible with respect to the mission

time. Also, an unlimited field of eligible stars is assumed available. A reason-

ably general cost function is selected which weights navigational uncertainty at

times t k, when velocity corrections are made, and at the end of the mission, t .P
Expressed in terms of E, the eovariance matrix of estimation errors, the total

uncertainty,

P

U =_ tr (QkEk)
k=l

where the Q matrices determine the weightings.

(1)
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Assuming that the navigation schedule will consist of N groups, each con-

taining n k statistically identical sightings, the processed information, S, can be

expressed as follows:

N

E -l = S =_, nkJ k (2)
k =1

where Jk is the information contained in one sighting. A completely optimum

schedule is determined by the variation of three parameters: the sighting time, tk; the

the number of sightings at each time, nk; and the sighting informationmatrix, Jk"

The problem is further simplified by considering only star-horizon sightings,

for which Eq (2) becomes:

E-1

N m

2
K =1 a k

2
h k is the geometry vector (as shown in slides #1 and #2), a k is the variance of

the sighting noise and ¢ Nk' the state transition matrix by which information is

referred to a later time. For star-horizon sightings, the locus of possible

orientations of h at any given time is a cone whose elements are perpendicular

to the line of sight to the planet edge.

Because the collected information is linear in n k, a steepest descent

approach to the variational problem results in a simple, analytical set of influence

coefficients.

Influence coefficients for the remaining two variables, t k and hk, are not

so easily obtained because of the complex functions involved. However, by some

manipulation, all three sets of coefficients can be interrelated so that a reason-

ably simple steepest descent optimization procedure is established. A two-

body environment is assumed for the example problems and possible corre-

lations between errors in successive sightings are neglected. For simplicity,

the terminal point uncertainty in position and velocity is considered. The ve-

locity elements are scaled by 100 min 2 for dimensional compatibility. From Eq (1}

E(:1U = tr E T = i0 min (4)

3 v2I

Two trajectories are investigated; a circular satellite orbit and a hyperbolic free-

fall re-entry. The state estimation in both cases is obtained by thirty-two star

horizon sightings, accurate to one minute of arc.
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The combined effect of the assumption of two-body motion and the selec-

tion of a diagonal weighting matrix produces an inherent decoupling of the in- and

out-of-plane error propagation in the problems considered. Given these conditions,

it is established that an arrangement of sightings which preserves this decoupling

always results in a better estimate. Therefore, instead of a unique sighting

direction at each optimum sighting time, four different configurations are possible,

(as shown in slides #1 and #2).

The computer solutions (pictured in slides #3 and #4) both exhibit the group-

ing phenomenon encountered in the preliminary study. A concentration of sighting

at the boundaries of a trajectory seems to be characteristic of this type of problem.

The particular time locations of sightings and their distribution along the trajectory

is a strong function of the cost considered. For example, terminal position in-

formation is generally best obtained by measurements near the end of the trajectory,

whereas the best velocity estimates derive from evenly distributed measurements.

The component rms estimate uncertainties resulting from the computer

optimization are compared (slide #5) to those obtained from more conventional

schedules in which the sightings are evenly distributed along the trajectory. The

numerical improvements are intended only as an indication of the effectiveness of

grouped sightings. In addition to the enhanced estimation accuracy, there is an in-

herent fuel saving in this navigation scheme, since the spacecraft need only be posi-

tioned for sightings a few times throughtout the mission. It is this grouping phenome-

non that emerges as the significant result of the study. The symmetric arrangement

of the sightings is a special ease resulting from simplifying assumptions. As long as

the system cost function can be expressed as in (I), an upper limit on the number of

optimum times can be defined. In fact, for cost functions of this general type, both

necessary and sufficient conditions can be defined, establishing the computer solu-

tion as a true optimum.

At present, the same basic optimization procedure is being applied to an

orbit determination problem by Angus Morrison of EAL. It is felt that a repre-

sentative cost function can be established in the form of Eq (i). Ifso, the solution

obtained should contain a limited number of sighting locations and should also be

established as a true optimum solution. If Morrison's work does turn out this

way, itwill provide a strong corroboration of the grouped measurement scheme

since traditional methods of orbit determination employ many evenly spaced

sightings. The basic contention is that any problem which can be formulated in

this manner should show the same results.
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POSITION TRUE ANOMALY % OF TOTAL SIGHTINGS 

I 
-133.7° 24% 

2 -107.6° '[1" 

3 -53. 3° 20" 

29" 

Fig. 3 Optimum solution - hyperbolic trajectory. 
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-6. 40
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39_
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41_
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13.7°
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160. 8 0

Fig. 4 Optimum solution - circular orbit.
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Fig. 4 Optimum solution - circular orbit. 
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HYPERBOLIC TRAJECTORY

OPTIMUM

At SPACING

Af SPACING

rS r v vs vrr z r z

1240 1158 950 1. 95 1. 02 1. 47

15520 46100 28420 34. 61 9.88 47.60

5750 13620 9625 9. 19 2. 58 11. 51

CIRCULAR ORBIT

r r
r s

OPTIMUM 1698 2015

At SPACING 3348 4180

rZ v r

2020 0.43

4150 0.87

v S vz

O.30 1. 15

0.61 2.00

Fig. 5 Comparison of position and velocity rms uncertainty.

Units: meters, meters/sec in target rsz coordinates.
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Minimum fuel orbital transfer in an inverse square force field has been a

subject of considerable interest. One aspect of this problem is Lawden's problem,

the minimum fuel transfer of a variable-thrust rocket having constant exhaust

velocity and unbounded thrust magnitude. Reference 1 gives a concise summary

of the known solutions to Lawden's problem. Many solutions to Lawden's problem

are known for the time-open case, in which the transfer time is not fixed. One

well-known solution of this type is the Hohmann transfer. For the time-fixed case

not many results have been obtained. This is the subject of the present investigation.

A rendezvous between two orbits in a fixed time can always be accomplished

with two impulses. However, in some situations, this may require excessive fuel.

One example of this is a 180 ° non-nodal transfer between inclined orbits. In this

case a third, mid-course impulse can reduce the fuel consumption considerably.

The existence of three-impulse solutions which are superior to two-impulse

transfers in some situations and the likelihood that more than three impulses is

superior for some transfers warrants the present investigation of multiple impulse

transfers.

The method used is an application of the theoretical work of Lawden (2}, in

which the necessary conditions for a minimizing transfer are described in terms

of the primer vector, the adjoint to the first order variation in velocity. The

three conditions which must be satisfied for an optimal impulsive transfer are:

(1) The thrusts are to be applied at the times for which the primer has

unit magnitude.

(2) At these times the thrust direetion is to be aligned with the primer.

(3) The magnitude of the primer must not exceed unity during the transfer.

Figure 1 shows the behavior of the magnitude of the primer vector for an

optimal three-impulse transfer.

From a solution for the primer vector which satisfies the conditions for

an optimal transfer, one obtains the times of application and the directions of the

thrust impulses. The magnitudes of the impulses must then be determined by

solving the boundary value problem for the rendezvous.

If one considers rendezvous between two low-eccentricity orbits which lie

close to one another, a linear boundary value problem may be formulated by

linearizing the equations of motion about an intermediate reference orbit.
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Fig. 1 Primer Vector Magnitude for optimal 3-impulse transfer.

Let 5x (t F) be the desired state variation (the state variation of the target)

at the final time. Considering the state vector to have q components, an n-impulse

rendezvous can be described as

5x (t F) = • (t F ,t 0) 8x(t 0) + WAx

where ¢ (t F _t 0) is the q x q state transition matrix between the initial and final

time.

Av is an n component vector having as components the magnitudes of the

velocity changes caused by the thrust impulses.

W is a q×n matrix of weighting coefficients which are functions of the

optimal times of correction, tj, and the unit vectors in the

directions of thrust, u.. For an n-impulse rendezvous W has
-j

n columns. Each column is of the form:

0x_(t F)
W. "_--U.

--j OX (tj)-j

The solution of the boundary value problem is the determination of the Av which

will rendezvous with the target in the specified time. This boundary value solution

is obtained analytically.

Ifthe reference orbit is circular, the expression for the primer vector

along the reference and the variational equations of motion have a relatively

simple form. In order to get an analytical solution which will simply describe

how many impulses are optimal for different rendezvous situations, this investi-

gation assumes that both the reference orbit and the initialand final orbits are

circular and coplanar.
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ItO> is the q x q state transition matrix between the initial and final 

time. 

6.v is an n component vector having as components the magnitudes of the 

velocity changes caused by the thrust impulses. 

W is a q x n matrix of weighting coefficients which are functions of the 

optimal times of correction, t., and the unit vectors in the 
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directions of thrust, u.. For an n-impulse rendezvous W has 
-J 

n columns. Each column is of the form: 

The solution of the boundary value problem is the determination of the 6.::£ which 

will rendezvous with the target in the specified time. This boundary value solution 

is obtained analytically. 

If the reference orbit is circular, the expression for the primer vector 

along the reference and the variational equations of motion have a relatively 

simple form. In order to get an analytical solution which will simply describe 

how many impulses are optimal for different rendezvous situations, this investi­

gation assumes that both the reference orbit and the initial and final orbits are 

circular and coplanar. 
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For a linear problem it is known that the minimum fuel transfer can be

accomplished with a number of impulses equal to at most the number of specified

state variables in the final orbit! 3} (4) For a coplanar rendezvous, the maximum

number of impulses necessary for an optimal transfer is four.

The solutions to the circle-to-circle, coplanar rendezvous which have been

obtained to-date are:

(1) Four-impulse rendezvous transfers.

(2) Three-impulse rendezvous transfers having an initial or final coasting

period.

(3) IIohmann rendezvous transfers having an initial and/or final coasting

period.

In solutions (2) and (3) a coasting period is allowed which does not exist

for the four-impulse case. Since the transfer time is fixed, impulses may not

always occur at the terminals of the transfer and coasting periods may be required.

As an example, a three-impulse primer solution may be used to obtain an

optimal two-impulse transfer with an initial coasting period. This is shown in

Fig. 2. In this application the fixed transfer time is t 3 - t O . As seen in the

figure, the first impulse does not occur until t2; therefore t 2 - t O is the coasting

period in the initial orbit which will result in an optimal transfer for the specified

transfer time.

I- II ' ......

I I

tI tO t2 t3
_Dm,-

t (TIME)

Fig. 2 Primer magnitude for optimal 2-impulse transfer with initial coast.
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Fig. 3 showsfour-impulse solutions for a special caseof the circle-to-circle
problem. In this case the initial andfinal orbits are the sameorbit; the problem
is then to transfer to anotherpoint in the orbit in a specified amountof time. The
two-impulse solution, which hasa singularity near 500°, is also shownfor com-
parison. Notethat the range
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Fig. 3 Circle-to-circle, coplanartransfers (SR_0).

of transfer times for optimal circle-to-circle four-impulse transfers is greater

than one reference orbit period.

Figure 4 shows the three types of solutions obtained to-date. For this

figure the reference orbit is chosen to be half-way between the initial and final
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The minimum transfer time boundary for both the four-impulse and the

three-impulse with coast is the same.

The solutions which remain to be investigated are other three-impulse

solutions and the optimal two-impulse solutions.
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OPTIMAL CONTROL IN THE PRESENCE OF MEASUREMENT UNCERTAINTIES (J

_John Deyst

This research is concerned with the problem of optimal control of linear

stochastic systems when the information available to the controller contains random

disturbances. In particular we wish to solve problems for which the cost may be a

non-quadratic function of the state variables and/or the control variables. We as-

sume that the system may be described by discrete equations; however, the theory

may be generalized to include continuous problems.

For discrete problems we wish to consider the following equations

x(n+l) " _(n+l,n) x(n) + 0 (n+l,n) u (n) + v (n) (i)

E Iv(n)] _, 0

E [v(n) v-T(n)] = V(n)

E Iv(n) v T (i)] = 0 i_n

(2)

m(n) = H (n) x (n) + w(n) (3)

E [w (n)] = 0

E _w(n) wT(n)] = W (n)

E [w (n) wT(i)_= 0 i _ n

(4)

J = E E q L(x(n), u(n), n) +,_ (x(q+l)) 1 (5)
n=l

x(n) is the system state vector at time tn, • is the state transition matrix, u

is a control vector, O is the control sensitivity matrix, and v is norma]ly distributed

process disturbance with statistics as shown. The initial state, x(0), is a vector of

normally distributed random variables with known statistics. The controller has

available to it the measurement process, m(n). H(n) is the measurement matrix

and w(n) is a normally distributed measurement error with statistics as shown.

The controller may use the entire past history of measurements (m(0_ m(1) .....

m(n)) to determine the control to be applied at t n. We wish to determine the

control as a function of these measurements so as to minimize the expected cost

J. It is important to note that the incremental cost, L, and the terminal cost, ¢ , are

not required to be quadratic in x or u.
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is a control vector, e is the control sensitivity matrix, and v is normally distributed 
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Nowconsiderthe following equations:

_AX'(n+l) = _(n+l,n) _(n) + 0(n+l, n) u(n) (6)

_(n) _'(n) p' [H P' HT(n) +W(n)] -I-- ÷ (n) HT(n) (n) (n)

x Ira(n) - H(n)_' (n) 3

P' (n_l)= _(n÷l,n) P(n) _T(n+1,n) ÷ V(n)

(7)

(8)

P(n)= V' (n) - P' (n) HT(n) [H(n) P' (n) HT(n) +W(n)_ -1 H(n) P'(n) (9)

x(n) = _(n) - e(n) (10)

fx(n) (_ I_ (n)) = (2_r) -k/2 IP(n)1-1/2

x P (n) -I [_- _(n)l_
(11)

Equations (6) - (9) are the Kalman estimation equations, generalized to

include the effect of the control u(n). P(n) is the covariance matrix of estimation

errors. If e(n) is the estimation error then the state at time t n can be written as

Eq (10). Now e(n) is normally distributed with mean zero and covariance P(n).

Also, it can be shown Chat e (n) is independent of _(n). It follows that posterior

probability density for x(n), given the measurement history up to time t n, is given

by (11). Equation (1£) represents a normally distributed random variable with

posterior mean _(n) and covariance P (n). We assume that P (n) is known a priori

so that _'(n) determines the posterior probability density for x(n). Thus _(n) is a

sufficient statistic because it embodies all knowledge of x (n) obtained from the

measurement history.

Let us now consider a vector s (n) defined by Eq (12). s (n) is the incre-

/%

mental change in the estimated state, x (n), as a result of processing the measure-

ment m(n). Thus _(n) may be written as in Eq (13). It can be shown that s (n) is

normally distributed with statistics given by Eq (14) and its probability density

appears as Eq (15).

s(n) = P'(n)HT(n) [H(n)P' (n)HT(n)÷ W(n)]-I [m(n) - H(n)_'(n)] (12)

_(n) = 4)(n,n-l)_(n-l) + e(n, n-l) u(n-l) + s(n) (13)

46

Now consider the following equations: 

fA /'to 
X' (n+1) = ~(n+1.n)x(n) + B(n+l,n) u(n) 

Si(n) = ~'(n) + p' (n) HT(n) [H(n)p/(n)HT (n)+W(nil- 1 

X [m(n) - H(n) 2' (n) ] 
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/ 2 IP(n)I- 1 / 2 eX{-1/2[~ -~(n)JT 

X P(n)-1 [~-~(n)J} 

(10) 

(11) 
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Also, it can be shown that e (n) is independent of x(n). It follows that posterior 
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measurement history. 

Let us now consider a vector s (n) defined by Eq (12). s (n) is the incre­

mental change in the estimated state,~(n), as a result of processing the measure­

ment m (n). Thus 'S{(n) may be written as in Eq (13). It can be shown that s (n) is 

normally distributed with statistics given by Eq (14) and its probability density 

appears as Eq (15). 

~(n) = ~(n, n-1) ~(n-1) + e (n, n-1) u(n-l) + s (n) (13) 
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= Sin)= P'in) HT(n) EH(n) P'(n) HT(n) + W(n)]

× H(n) P'(n)

EEs(n) sT(i)_ = 0 i#n

fs(n) (2") IS(nl[

-1

(14)

-1/2 exp__l/2_T S(n)-i _ (15)

The last of Eqs (14) is quite important because it indicates that the s(n) are

independent increments.

Let us now define a minimum expected value function, C*, as the minimum

expected cost to complete the process from some arbitrary time, tn, given the

measurement history up to time tn. Since C • is a conditional expectation, depend-

ing upon the measurement history, itis a deterministic function of the past measure-

ments. It can be shown however that C • may be written as a function of the suffic-

ient statistic_(n) and that C_ must satisfy the recursion formula (16).

Ca ^ _"
(x(n),n) = min * (x(n),u (n),n)+ d_ d_k f (&) C*

u(n) _ 1" " " s (n+ 1 )
-00 -_

O0 O0

L$ (x(n),u(n),n) = d_ I" " " d_k f
__ __ x(n)

(_ 19:(n))L (_, u(n),n)

-I

× (_' (n+l) + r_, n+l) t

(16)

(17)

_' (n+l) = 4_(n+J,n)_(n) + 0 (n+l, n) u(n) (18)

Ca (x(q+l), q+l) = ¢* (_ (q÷l))
tq_. 1 = final time

O0

¢* (_(q÷l)) -- ffd_

-O0

I" " "

00

y d_ k fx(q+ 1) (_ [Q ( q÷ 1) ) _)(_)
-QO

(19)

(20)
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E Cs(n) s T(n)] = S(n) = pi (n) HT(n) [H(n) pi (n) HT(n) + W(n) ] 

X H(n) pi (n) 

E [s(n) s T(i)] = 0 i* n 

(14) 

(15) 

The last of Eqs (14) is quite important because it indicates that the s(n) are 

independent increments. 

Let us now define a minimum expected value function, C*. as the minimum 

expected cost to complete the process from some arbitrary time, t , given the 
n 

measurement history up to time tn' Since C* is a conditional expectation. depend-

ing upon the measurement history. it is a deterministic function of the past measure­

ments. It can be shown however that C* may be written as a function of the suffic­

ient statistic ~(n) and that C* must satisfy the recursion formula (16). 

c* (~(n). n) = min{L* (~(n). u (n) n)+ SOO d' 
u(n) • ~1' 

-00 

00 

. S d~k f (~) C* X (QI (n+1) + ~. n+1)l 
-00 s(n+1) 'J 

(16) 
00 00 

L* (~(n). u(n). n) = S ds l' 

-00 

. S d~k f (s Ix(n» L (s.u(n).n) 
_ 00 x(n) 

(17) 

x I (n+ 1) = <I>(n+]. n) ~(n) + e (n+ 1. n) u(n) (18) 

C* (;?( q+ 1). q+ 1) = rf>* (~ (q+ 1) ) tq+1 = final time (19) 

00 00 

rf>* (~(q+l» = S ds l' S d~ k fx(q+ 1) (s l~ (q+ 1» rf>(s) (20) 

-00 -00 
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The function L* in (16) is the expected incremental cost at time tn, given

the measurement history. Since C$ is a function of _(n), the minimization required

on the right of (16) produces the optimal control as a function of the estimate _(n).

Also f(n) (_ [_(n)) and fs (n) (_) are known a priori, so the set of equations (16)- (20)

is complete and the optimal control as a function of _ (n) can be obtained a priori by

their solution.

The following diagram illustrates the optimal control system:

\ NOISE /

u(n)

PLANT

I CONTROL I A(n) I KALMAN
FUNCTION i:

GENERATOR J ESTIMATOR

,,,(n)
MEASUREMENT

ERROR I

] n,(_)

For most practical problems, solution of (16)-(20) requires digital compu-

tation. A useful property of the density functions appearing in (16), (17), and (20) is

that they are the Green's functions for a multidimensional diffusion equations.

Therefore, instead of performing multidimensional integrations, it may be compu-

tationally advantageous to approximate the solution of the diffusion equations by

central differences.

The theory outlined above has been applied to the problem of minimum mean

fuel for midcourse guidance corrections of spacecraft. If the out-of-plane errors

are ignored, the midcourse guidance problem has four state variables, two for

position and two for velocity. Measurements are made using ground-based radar

and estimates of spacecraft position and velocity are calculated. Two velocity

corrections are made. The second is a total correction which completely nulls the

estimated miss distance at the target. The first correction is calculated to min-

imize the total mean fuel required to make both corrections. The following diagram

illustrates the Earth-to-Mars spacecraft trajectory which serves as the reference.
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And the optimal control at the first correction time is determined from the following

diagram:

eC

A

_X I
B

Coordinate x 2 is the estimated target miss distance at the target, in the

direction of the reference trajectory. 21 is the estimated target miss distance

at the target, in the direction perpendicular to the reference trajectory. If the

estimated miss before a velocity correction occurs at point A, then the optimal

impulsive velocity correction drives the estimated state to point B. If, however,

the estimated target miss is at point C, no correction is applied at the first cor-

rection time. Thus the optimal control at the first correction time is either zero,

or of magnitude such that it drives the estimated state to the threshold. This of

course is typical of all minimum fuel solutions including the deterministic cases.

Finally, it should be clearly understood that the numerical solution of these

problems becomes extemely difficult as the number of state variables increases.

Essentially, the solutions require Dynamic Programming with all the concomitant

numerical difficulties. There are, however, a number of useful applications of

the theory to problems of small dimensionality.
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/ .-_ CHAPTER VIII

"LINEAR PARAMETER OPTIMIZATION WITH QUADRATIC COST:

Problem Statement and Summary

. A SUMMARY ",

N67 26529Donald Rockwell ..

The problem considered is that of choosing a set of unconstrained parameters,

(u), so as to minimize a positive, definite, quadratic form in x(u):

J(u) = x(u) TAx(u)

Here x is an nxl "state" vector that depends numerically on u, the mxl "control"

vector (m < n}. The problem is solved approximately by assuming x to be nearly

linear in u near the optimum point u°. With this assumption, J is closely approxi-

mated by the function:

J(u) =J(u °) +2x(u°) TAx u (u - u °} +(u - u°) T xTu AXu (u - u °)

_X O .
= (nxm) at zs sufficient to determine the

Knowledge of the gradient matrix x u _-_ u

globally minimizing u°:

o TAxu)-I Tu =u- (x x Ax(u)

The iteration procedure implements this solution by adding one component to a run-

ning estimate of u ° with each computation of x. The result is essentially a reduction

T at each stage of the
scheme for inverting xu Ax u while computing one column of x u

reduction.

Relative to more general second-order methods, the procedure can be very

efficient. This is especially true when the relation of x to u requires lengthy com-

putation, since the solution is produced from only m+ 1 computations of x. For

each computation of x, the procedure both adds one component to the estimate of

u ° and updates previously chosen components. Thus one is always as close to u °

as the information on x allows.
u

The reduction procedure is arranged in a geometrically appealing manner

that allows one to evaluate the optimization. In particular, the method computes:

(1) the relative importance of the various components of u in minimizing J; (2}

the coupling between control components; and (3} the relative importance of different

state components in determining u °. As applied to the numerical design of a fixed

configuration control system, this information allows one to make better choices of

the free parameters and to reduce the number of states (errors} that need be con-

sidered. One additional feature is the ease with which additional components of u

can be incorporated. This is also of some interest in the problem of maximum

likelihood estimation, where u is the vector to be estimated.
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Description of the Method

The method is based on two facts. The first of these is that a function of

two variables, J(u 1, u2), can be minimized by: (1) finding the value of u 1, as a function

of u 2, that makes J stationary with respect to Ul; (2) using this function to substitute

for u 1 in J and obtain a new function, jl(u2), that depends only on u2; (3) finding the

value of u 2 that makes jl(u 2) stationary with respect to u2; and (4) then determining

u 1 from the function of (1}. This procedure is equivalent to setting the partial deriva-

tives, Jul and Ju2, simultaneously to zero, and it can be extended to any number of
parameters. The second fact is peculiar to the present problem. Because J is

quadratic in u, the optimizing component of u at any step in the above sequence is

linearly related to the subsequently chosen components. Thus the substitutions of

step (2) above produce problems of identical form in which the order of the optimi-

zation is successively reduced by one.

The sequence of computations is illustrated in Fig. 2 for three parameters.
1 1 T 2

Two trial control vectors (u 1 -[ul 1, u 2, u 3 ] and u ) are presented. An initializing

computation of x is then made for u m u 1 (point 1 of Fig. 2}. u 1 is then changed to
2

u 1 and x re-computed (point 2). These computations yield approximate values of

Xu ,, _x (n × 1) and allow one to compute the value of u 1 that makes Ju __0. This
VUl 1

optimizing value of u_ is a linear _unction of u, and u_ which can be denoted as
1 xo 1 1 1 1

Ul(U2, u 3) for u2= u 2 and u3-u 3 (pomt 3). The values of x at point 3 can be found

by an interpolation of the values at 1 and 2. A new computation of x at point 4, where

u. has been changed to u 2, thengivesx Now using the values of both xu and ,
z 1 u2" "X Xu2

one can determine the line intheu 3 u 3 pIane along which u 1 is optimum (3-5').
o 1

This allows one to predict directly the minimizing point 5, where u 2 = u2(u 3) and

o[o,u 1 = u 1 u2(u3), u . After interpolating to find the corresponding values of x at 5,

the computation of x at 6 yields successively: xu ; the line 5 - 7', along which both
3

u 1 and u 2 are optimum for any choice of u3; the optimum control vector at point 7;
and the optimal state, x(u°), and minimum cost, J(u°). Finally, an actual compu-

tation of x and J at the predicted u ° provides a useful check on the assumption of

linearity. It is also desirable in practice to select u 1 and u 2 to bracket u ° and to

perform the optimization in the order of decreasing control importance.

One other feature of the method is a geometric picture of the way in which

each state component affects the choice of u°. Referring to Fig. 3, the best u k for

each single x i is the value u k at which x i crosses zero. The overall Uok is a weighted
i

sum of these Uki with the weighting factors determined by the relative slopes of the

x i vs u k lines. If all u k are close together, u k is an effective control component,
i

and the parabolic curve for J has a lower minimum.
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Applications

An obvious and exact application of the procedure is in the solution of sets

of linear algebraic equations. It appears that this method of matrix inversion (or

pseudo-inversion) can be made relatively free of numerical difficulties, and it is

recommended that this be studied further. More generally, it is reasonable to ex-

pect the assumption of linearity to characterize problems in which a large number

of states are traded off by choice of relatively few controls.

A problem which motivates this work is the selection of ballistic missile

guidance coefficients. The design goal is to choose as few free parameters as

possible and yet meet a specified terminal accuracy in the presence of various

powered flight disturbances. Additionally, it is desirable to eliminate from con-

sideration all disturbances which do not effectively contribute to the values of u °.

The cost function for this problem can be taken as the mean-squared range error:

n 2 _ 2j =_ 2__ 2_ R
H i=l i I

where a 2 is the variance of the i th disturbance (e. g., per cent deviation in first stage

mass flow rate) and R i is the sensitivity of the range error to this disturbance; the

value of R i (that is x i) can be a remarkably linear function of the free parameters

(u). This problem is a good example of a complex relation between x and u since

t_ of each component_o_x requires a complete simulalio_ of the missile

and guidance system, x itself requiring n + 1 simulations for each u.

Another application of the procedure is in the problem of linearized maximum

likelihood estimation. Consider measurements z made on an unknown constant x

with additive, Gaussian noise (v):

z = hix) + V

With x unknown, the maximum likelihood estimate of x is found by minimizing:

J = vTR-Iv

where R is the covariance matrix of v and v = z - h(x). (Here x is the "control"

and v is the "state"). The interesting features of the method in this problem are the
8h

numerical determination of H = _ and the ease with which the dimension of the

estimate can be increased.
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Much has been written on the subject of spacecraft soft landing trajectories

over an atmosphereless celestial body, in particular the Earth's moon. The task

of accomplishing a landing from a parking orbit about the moon has been posed as

consisting of essentially two parts - an initial deboost phase, in which most of the

space vehicle's velocity is eliminated, and a terminal phase during which the actu-

al landing is effectedl.

During the deboost phase conservation of fuel is of prime importance, and

the minimum fuel optimization problem with variable thrust magnitude and direc -

tion has been solved(Ref 1). The optimal trajectory has the usual characteristic

that the thrust operates only at its maximum and minimum limits.

For the terminal phase, minimal fuel may not be the main consideration
IT. IT

because the jerky maneuver associated with bang-bang thrust is an undesirable

working environment for the astronauts just before touchdown. Furthermore,

because the optimal maneuver usually requires maximum thrust at the end of the

trajectory, the terminal state errors are very sensitive to the timing of the final

thrust application. A requirement in this phase is that the astronauts have the

capability of selecting visually a landing site; to accomplish this, the vehicle's

attitude must be controlled so that possible landing sites can be viewed. A closed-

loop control is necessary for precise acquisition of the landing site; therefore

analytic guidance equations are desirable to limit the amount of computation.

Accomplishing these objectives during the terminal phase of the descent trajectory

is the subject of this study.

Two analytic control techniques that lead to smooth trajectories have been

described by Bryson 2 and Klumpp 3 .

Bryson formulates an optimization problem for a spacecraft moving in a

constant gravitational field. The performance criterion is that the cost function

,Ec +,S•J = 2 vv'v + Cr2" t = T 2- U-U dt (I)

to
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Bryson formulates an optimization problem for a spacecraft moving in a 

constant gravitational field. The performance criterion is that the cost function 

J = lrc v;v +c r·iI 
2Lv r "jt=T 

(1) 
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be minimized where v, r, u, to, and T are, respectively, velocity and position with

respect to a non-rotating coordinate frame fixed at the landing site, thrust acceler-

ation, initial time, and a specified final time. The quantities c v and c r are weight-

ing constants, and the integral term is referred to as the effort. The result is a

linear, closed-loop control law producing a thrust variation having the form

u= a ÷bt (2)

where a and _ depend on the initial state and the final time.

The approach taken by Klumpp is to require arbitrarily that _ be a second-

order polynomial in time.

= al + a2 t + _3 t2" (3)

At any instant of time, the three vector coefficients al' a2' and _3 are selected so

that desired terminal values of the position, velocity, and acceleration vectors are

achieved at a specified fiual time. No reference is made to minimization of a cost

functional; the sole objective is to force a solution to the boundary-value problem.

This objective can be achieved using many different functions, u(t). For example,

may be taken to be an exponential series, or time may be replaced by a different

independent variable. The method, although it has led to successful guidance equa-

tions in specific applications, lacks the properties of a general theory for landing

trajectory design because the form of the control is picked arbitrarily. Only the

specified boundary conditions are met explicitly. The ultimate thrust equations

depend upon additional criteria - e. g., fuel consumption, flight profiles, landing

site visibility - that are not stated as boundary conditions. The result is that a

trial and error approach in selecting control equations and examining simulated

trajectories is required for each new application.

It is the purpose of this study to extend the optimization technique used by

Bryson to develop guidance equations for a more general descent trajectory than

has been considered previously. It is felt that this approach is more systematic

than those in which the control is chosen arbitrarily, since the form of the guidance

equations is dictated by the particular cost function to be minimized.

Optimization theory is not completely free of arbitrariness in determining

the control. Although the cost functional is chosen to incorporate those trajectory

characteristics that are to be optimized, its specific structure may be subjective.

However, one is at least considering trajectory criteria such as fuel consumption,

etc., before, rather than after, choosing the control.

The equations of motion for landing a vehicle on an atmosphereless planet
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achieved at a specified final time. No reference is made to minimization of a cost 

functional; the sole objective is to force a solution to the boundary-value problem. 

This objective can be achieved using many different functions, u(t). For example, 

IT may be taken to be an exponential series, or time may be replaced by a different 

independent variable. The method, although it has led to successful guidance equa­

tions in specific applications, lacks the properties of a general theory for landing 

trajectory design because the form of the control is picked arbitrarily. Only the 

specified boundary conditions are met explicitly. The ultimate thrust equations 

depend upon additional criteria - ~. g., fuel consumption, flight profiles, landing 

site visibility - that are not stated as boundary conditions. The result is that a 

trial and error approach in selecting control equations and examining simulated 

trajectories is required for each new application. 

It is the purpose of this study to extend the optimization technique used by 

Bryson to develop guidance equations for a more general descent trajectory than 

has been considered previously. It is felt that this approach is more systematic 

than those in which the control is chosen arbitrarily, since the form of the guidance 

equations is dictated by the particular cost function to be minimized. 

Optimization theory is not completely free of arbitrariness in determining 

the control. Although the cost functional is chosen to incorporate those trajectory 

characteristics that are to be optimized, its specific structure may be subjective. 

However, one is at least considering trajectory criteria such as fuel consumption, 

etc., before, rather than after, choosing the control. 

The equations of motion for landing a vehicle on an atmosphereless planet 
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are approximatelythoseof a bodymovingin a constantgravitational field _, given
by,

r---v

v-- _+_ (4)

The dynamicalsystemtreated in this discussionis that givenby Eqs (4)augmented
by the relations

u=u I

Ul= u2

th--_ n+ 1 (5)

where u, Ul, .... _1n are regarded as state variables whose boundary conditions

may be specified and tin÷ 1 has the status of the control variables. By specifying

terminal values of _ and its derivatives, terminal values of thrust magnitude, ve-

hicle attitude, attitude rate, etc., can be controlled. We shall refer to 2 as the

state, composed of i_, v; u, u 1..... _n" A cos_function of the general form

tf
F"

J1 = + + n+l_WlUn4.1 ÷ W3] dt (6)

t o

is considered where W 1 is a positive definite 3x3 matrix, R_R_is a positive semi-

definite 3n x 3n matrix, W 2 is a positive constant, W 3 is constant, _' = (ul" u2'

.... _), and the prime of a vector denotes its transpose. In Eq (6) the integral

terms involving _ 'R_ and _'n+ 1--WlUn÷ 1 are identified with the smoothness of the

trajectory; the integral of _- _ is a measure of the fuel consumed; and, with the

appropriate terminal boundary conditions, the quantity

tf

W3dt = (tf

t o

t 0) W 3

is a measure of the time available for an astronaut in the landing vehicle to view

the landing site.

For specified t f, the necessary conditions for minimizing J1 subject to Eqs

(4) and (5), the desired terminal conditions, and particular initial conditions, in-

clude a system of linear time-invariant differential equations that must be solved•
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Theseequationscanbe integrated analytically in terms of the system's natural fre-
quenciesthat are roots of the associatedcharacteristic polynomial. Onerequire-
ment for rapid closed-loopgenerationof the control equationis that the character-
istic polynomial besuchthat its roots canbe rapidly calculated. This requirement
leadsto considerationof somewhatspecialized forms of J1. For instance, the
function

tf
Jll = _ (_n+l "_n+l ÷ W2_'_ + W3) dt (7)

to

containsa less complexmeasureof smoothnessthan Eq i6); the characteristic
polynomial associatedwith Eqs (4) and(5) andthe minimum of Jll is factorable
analytically. Preliminary results indicate that this simplified cost function leads
to trajectories thatmay be acceptablefor lunar landing applications. For the sake
of definition let U_l (t) be the particular thrust functionwhich minimizes Jll subject
to the dynamic constraints.

Another considerationof importanceis the selection of the final time if.
The optimal choiceis that valuewhich minimizes the cost function. With this
criterion, the expressionthat definesthe optimal final time, t_, is

where H is the Hamiltonian as a function of the optimal final time, final state

3" itS), final value of the optimal control, and final costate, X* (t_). As a practical

matter Eq i8) is difficult to solve for t_, even for a functional as simple as Jll in

Eq i7), because H is transcendental in t_. Hence it may be expedient to introduce

a method for determining t f more amenable to on-board, closed-loop computation,

but one which has some of the properties of the optimal technique.

One procedure that seems to yield satisfactory results is that of determining

tf from a simplified optimal control problem. For example, if Jll in Eq i7) is the

cost function, let

tf
t_

dt i9}

t o

and find the thrust, _2 it), which minimizes J12 for fixed t f, subject to Eqs i4)

and (5) and the desired boundary conditions. Now u_2 it) is a function of tf; let t f

be chosen so that the function

6O
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tlF = ,_ u12 (t). ui2 (t) +

t o

dt (10)

is minimized. The forms of J12 and F are motivated by the desire to retain "some"

of the structure of Jll in Eq (7); however, observe that tf is chosen to minimize a

function, not a functional. The relation

8F

_-f = F' (to, if, _0' Ef) = 0 (11)

where _0 and _f are, respectively, the initial and terminal values of the state, and

can be relatively easily solved for tf = if, 12"

The quantity t f, 12 is substituted for tf in Eq (7) and the optimization prob-

lem associated with J11 is solved for the optimal thrust u 11 (t, if, 12 ), emphasizing

the dependence on t f, 12" The thrust u-'* (t, t f, 12 ) is linearly related to the present

and desired terminal states by an expression of the form

Ull (t, if, 12 ) = K 1 (t, if, 12)_(t) + K2(t , tf, 12)_f (12)

where K 1 and K 2 are time-varying matrices whose elements are expressed in terms

of elementary functions of time.

A summary of the steps required to generate t f, 12 and Ull (t, if, 12 ) is as
follows:

-$
1. Find Ull (t, if) as a literal function of tf that minimizes some function

J11 subject to the dynamic constraints.

2. Find u12 (t, t f) as a literal function of t f that minimizes a functional

J12' which is a simplified version of Jll' subject to the same dynamic

constraints as in step 1.

3. --*Pick tf = if, 12 to minimize a function F which is related to Jll and

u12(t, if. 12I
4. Use the value of tf, 12 from step 3 for tf in step 1 to generate

Ull(t, if, 12 ).

_@
Equation (12) provides a closed-loop computation for u 11, given t

however, Eq (11) does not constitute a closed-loop computation for t
f, 12

f, ]2;
and cannot

be made so by replacing t O and x0 with t and E(t). This is true because t f, 12 is not
a truly optimal value for if; it has been chosen by minimizing a function rather than

a functional.
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A variational methodfor adjustingt f, 12in a discrete closed-loop fashion
hasbeendevised. Theprocedure usesthe value of tf, 12at time to, t 0 andthef, 12'

-_ . 0 t"
associated 9_p__-loop thrust Ull (t 0, x 0, t f 12' ) to generate a nominal trajectory,

x0 (to' x0' t f, 12' t), analytically.

At a later time, t.l_ u n> t^, the state _(t 1) is measured and compared with the

calculated nominal valuex0(t0,_0, tf_12,tl), the difference being AX(tl). A

correction Atf_12 to tf012 is determined based on Z_x(t 1) and the requirement that

the first order change in F ' in Eq (11) at time t 1 caused by a deviation from the

nominal trajectory be zero. The change in F ' caused by progress along the nominal

is ignored. A correction to t 0f, 12 to account for changes in the desired terminal

state (landing site) can be computed by the same method. By calculating these

i given
corrections at times t O, t 1, . . . tj .... a sequence of values tf, 12'

by

i = t i-I _ (13)tf, 12 f, 12 + Atf 12

is generated, providing discrete, closed-loop computation of tf, 12"

• ?• The closed-loop thrust, 911 (t, tf 12 ), in Eq (12) is applied to the vehicle.

62

A variational method for adjusting t f 12 in a discrete closed-loop fashion 

has been devised. The procedure uses the v'alue of t f 12 at time to' t f
O 

12' and the 
-* . 0 ' , 

associated 0open-Ioop thrust ull (to' xo' t f, 12' t) to generate a nominal trajectory, 

~ (to' xo' t f, 12' t), analytically. * 
At a later time, tl > to' the state x(t1) is measured and compared with the 

-* - 0 ) calculated nominal value Xo (to' xo' t f 12' tl ' the difference being t:.x (t1). A 

correction t:.tf: 12 to tf~ 12 is determined based on t:.x(t 1) and the requirement that 

the first order change in F' in Eq (11) at time tl caused by a deviation from the 

nominal trajectory be zero. The change in F I caused by progress along the nominal 

is ignored. A correction to t f~ 12 to account for changes in the desired terminal 

state (landing site) can be computed by the same method. By calculating these 
i 

corrections at times to' t l , • • • t j' • • . , a sequence of values t f, 12' given 

by 

i 
t f 12 = , 

i-I i 
t f 12 + t:.t f 12 , , (13) 

is generated, providing discrete, closed-loop computation of t
f
. 12. 

* 0 * The closed-loop thrust, u
ll 

(t, t f 12)' in Eq (12) is applied to the vehicle. , 

62 



REFERENCES

2

Berman, LawrenceJ., "OptimumSoft LandingTrajectories", 12th Inter-

national Astronautical Congress, 1963, Academic Press, New York.

Bryson, Arthur E., Jr., "Linear Feedback Solutions for Minimum Effort

Interception, Rendezvous, and Soft Landing", AIAA Journal, August 1965,

Vol 3, No. 8.

Klumpp, Allen, "A Manually Re-targeted Automatic Descent and Landing

System for LEM", AIAA/JACC Guidance and Control Conference, Seattle,

Washington, August 15-17, 1966.

63

REFERENCES 

1 Berman, Lawrence J., "Optimum Soft Landing Trajectories", 12th Inter­

national Astronautical Congress, 1963, Academic Press, New York. 

2 Bryson, Arthur E., Jr., "Linear Feedback Solutions for Minimum Effort 

Interception, Rendezvous, and Soft Landing", AIAA Journal. August 1965, 

Vol 3, No.8. 

3 Klumpp, Allen, "A Manually Re-targeted Automatic Descent and Landing 

System for LEM", AIAA/ JACC Guidance and Control Conference, Seattle, 

Washington, August 15-17, 1966. 

63 



I_,'LECEI_iNGPAGE BLANK NOT I:I_D.

J

'_ CHAPTER X

i
/

"1 /
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!-:,_Ronald Eng Young ,_ z ., 67.26531
The two-planet or double flybys to be considered in this report are a version

of the "interplanetary grand tour" which departs Earth, passes by Mars and Venus

once each without stopover, and returns to Earth. Such flybys were first studied

in 1956 by Crocco, who simplified the problem by ignoring planetary orbit incli-

nations and gravitational perturbations. Battin, in 1959, found solutions without

these simplifications, but suggested that launch windows might be as short as a

few days. Gillespie and Ross in 1961 and Dixon in 1962 on the EMPIRE investiga-

tion also studied double flybys.

In our study at the ExperimentaI Astronomy Laboratory we considered im-

pulsive patched-conic trajectories flying by Venus and Mars in either order. The

vehicle was launched from circular orbit about Earth and returned in an atmospheric

entry to Earth. Heliocentric transfers were determined by solving Lambert's prob-

lem. At the flyby planets, the required thrust for the turn was computed as the

velocity difference between the inbound and outbound hyperbolae at the common

peripoint.

In the case of pure double flybys, for which no thrust is applied at the flyby

planets, two of the four planet dates become dependent variables. However, even

when the two independent dates are specified, the pure double flyby is not neces-

sarily unique The determination of the pure double flyby is in fact an exceed-

ingly difficult problem, complicated by a non-planar solar system and the non-

analytic matching of conic sections between solar and planetary frames.

We experimented with a number of algorithms in order to obtain the one

most suitable for finding pure double flybys. We initially investigated the region

in the vicinity of a known pure double flyby solution found by Battin 1. We held the

Earth-launch and Earth-arrival dates fixed and plotted the data shown in Fig. l.

The sum of velocity increments includes that of launch from Earth orbit and those

required at the two flyby planets. Note that the intersection of the two pure flyby

loci, which corresponds to the pure double flyby, lies near the minimum total Av.

A necessary condition for pure flyby at a planet is that inbound and outbound

]Battin, R.H., Astronautical Guidance, pp. 169-172, Mc Graw-Hill Book Company,

Inc., New York, 1964;
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velocity magnitudes in the planet frame be equal. A computer program was there-

fore created to select Venus and Mars flyby dates by iterating the velocity differ-

ences to zero. In this way the data shown in Fig. 2 was generated for Earth launch

and arrival dates in the region of Battin's solution. The launch window is about

forty days; the Earth arrival date may also take on a forty day range. Note that

irrespective of the Earth dates chosen, the pure flyby date at Venus varies by only

three days.

The program was used to search for pure double flybys during other Mars

oppositions in the 1970's and 1980's. It was generally found that either the iteration

did not converge or that the vehicle was required to pass below the surface of one

or both flyby planets. To understand why the algorithm failed, we re-examined the

data of Fig. 1 over a broader region. The result, shown in Fig. 3, displays not

only the intersection corresponding to Battin's solution, but also five others. These

five all correspond to pure double flybys passing below the surface of one or both

flyby planets. Thus one can see that only a fortuitous choice of initial Mars and

Venus dates allowed the programed iteration scheme to succeed in generating the

data shown on Fig. 2.

We then tried a number of other algorithms in order to determine the Mars

and Venus flyby dates for specified Earth launch and arrival dates; none of these

other methods were successful. We eventually concluded that it would be best to

make the Earth launch and arrival dates dependent variables so that a pure double

flyby could be obtained.

In the search algorithm that finally evolved, we first choose the flyby dates

at Venus and Mars. This decouples the Earth-launch leg from the Earth-arrival

leg. We next cycle the Earth-launch date to obtain a pure flyby at the first flyby

planet, and cycle the Earth-arrival date to obtain a pure flyby at the second flyby

planet. We then repeat the procedure for all Venus and Mars dates of interest.

When a computer program using this algorithm was run over the time period

1970-2000, pure double flybys were found during every Mars opposition. A set of

these pure double flyby dates from an opposition of interest could be used as initial

conditions for the original program in order to map the Earth launch and arrival

windows as in Fig. 2.

Our computations were carried out using the time-sharing system _t the

M. I.T. Computation Center. Since our work required a great deal of experimen-

tation, we were able to make good use of the on-line program modification and de-

bugging features of time-sharing. We set up flexible input and output formats so

that we could conveniently examine data on-line. We could interrupt the program

to terminate the run, change inputs, or change the algorithm. Thus we could make
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a manual interation in order to test an algorithm before implementing a program

modification. We could also run the program for data on specific trips in conjunc-

tion with the NASA Planetary Flight Handbooks, filling in gaps of coverage where

necessary.

In conclusion, interplanetary mission planning involves a class of problems

in which one experiments with computational algorithms quite often. We have been

able to use time-sharing to good advantage in developing a fruitful method for ob-

taining profiles of one such mission: the pure double flyby.
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GYROCOMPASS SPACECRAFT ATTITUDE REFERENCE 6,-

by

(_ William T. McDonald / /'j} .......

The feasibility of using an IMU gyrocompass as a spacecraft attitude refer-

ence has been studied. The results have been reported in detail in reference 1 and

a general description of the space gyrocompass system can be found in reference 2.

The use of a gyrocompass for spacecraft attitude reference has been considered

previously (reference 3) for near-Earth satellites, but the application to deep space

vehicles has not, to the writer's knowledge, been previously reported. The essen-

tial result of the study is that a gyrocompass can be used for interplanetary missions.

The study led to an adaptive system in which the gyrocompass gains vary with the

measured orbital angular velocity.

Gyrocompassing in space is quite analogous to fixed-base gyrocompassing

at the Earth's equator, as Fig. l illustrates. The Earth-based system tracks the

gravity vector and the earth rate vector, while the space system tracks the line-of-

sight to the reference body (Sun or planet) and the orbital angular velocity vector.

The essential difference is that the earth rate is constant, while the orbital angular

velocity varies greatly over an interplanetary transfer, ranging from approximately

40 earth rates during a planet swingby down to about 0. 003 earth rate in the mid-

course phase of a transfer to Mars or Venus. This large variation requires the

system to be adaptive; the gyrocompass gains must change as a function of orbital

angular velocity in order to satisfy stability and response requirements.

The configuration of the system is shown pictorially in Fig. 2 and schematic-

ally in Fig. 3. Sun/planet sensors replace the accelerometers on an Earth-based

gyrocompass, but the configuration and signal flow in the space gyrocompass are

otherwise quite analogous to the familiar Earth-based system. The Sun/planet sen-

sor signals (the "level" errors) are processed in a digital computer, as shown in

Fig, 3. The computer calculates the gyro torquing commands, and the gyrocompass

gains according to the computational flow shown in the figure. Reference 1

contains a detailed derivation of these gain computation formulas, and it is shown

there that the Z-loop (out-of-plane) gains KZZ 1 and KZZ 2 remain constant through-

out the flight while the R and S loop gains KSR and KSS vary with the orbital angular

velocity and the chosen values of natural frequency and damping factor for these

P71
I +L

!Vb? 
I 

; , , CHAPTER XI 

.~ / 
i GYROCOMPASS SPACECRAFT ATTITUDE REFERENCE r... 

_/ 

by 

L William T. McDonald 
, . 

I / .f) 
: 1} ... " 

The feasibility of using an IMU gyrocompass as a spacecraft attitude refer­

ence has been studied. The results have been reported in detail in reference 1 and 

a general description of the space gyrocompass system can be found in reference 2. 

The use of a gyrocompass for spacecraft attitude reference has been considered 

previously (reference 3) for near- Earth satellites, but the application to deep space 

vehicles has not, to the writer's knowledge, been previously reported. The essen­

tial result of the study is that a gyrocompass can be used for interplanetary missions. 

The study led to an adaptive system in which the gyrocompass gains vary with the 

measured orbital angular velocity. 

Gyrocompassing in space is quite analogous to fixed-base gyrocompassing 

at the Earth's equator, as Fig. 1 illustrates. The Earth-based system tracks the 

gravity vector and the earth rate vector, while the space system tracks the line-of­

sight to the reference body (Sun or planet) and the orbital angular velocity vector. 

The essential difference is that the earth rate is constant, while the orbital angular 

velocity varies greatly over an interplanetary transfer, ranging from approximately 

40 earth rates during a planet swingby down to about O. 003 earth rate in the mid­

course phase of a transfer to Mars or Venus. This large variation requires the 

system to be adaptive; the gyrocompass gains must change as a function of orbital 

angular velocity in order to satisfy stability and response requirements. 

The configuration of the system is shown pictorially in Fig. 2 and schematic­

ally in Fig. 3. Sun/planet sensors replace the accelerometers on an Earth-based 

gyrocompass, but the configuration and signal flow in the space gyrocompass are 

otherwise quite analogous to the familiar Earth-based system. The Sun/planet sen­

sor signals (the "level" errors) are processed in a digital computer, as shown in 

Fig. 3. The computer calculates the gyro torquing commands, and the gyrocompass 

gains according to the computational flow shown in the figure. Reference 1 

contains a detailed derivation of these gain computation formulas, and it is shown 

there that the Z-loop (out-of-plane) gains KZZ and KZZ remain constant through-
1 2 

out the flight while the Rand S loop gains KSR and KSS vary with the orbital angular 

velocity and the chosen values of natural frequency and damping factor for these 

71 



_ie

E

_do

ORBIT,._ _" R

Fig. 1 Analogy between gyrocompassing on Earth equator and in orbit.

Fig. 2 Gyrocompass configuration.

72

E 

REFERENCE 
BODY 

ORBIT 

z 

s 

R 

Fig. 1 Analogy between gyrocompassing on Earth equator and in orbit. 

Z ROTATION 
SENSOR 

R 

1 
z~ 
Zp STAB SERVO 

Fig. 2 Gyrocompass configuration. 

72 



Wt3_

,.=,g

0_
J

,
n

OZON

>W0)-

I

rb

u
_

W>-

o
vYJ

I

_oi

,
a:WQ

'
_

_

"1-14.1

0::3
Q

_n

--_J

_z_
:DU
.

r/l

r/l

oC
_

0<

73-.l 
W 

REFERENCE 

~ODY LOS A

Z 

~ 
SENSOR 

REFERENCE 
BODY L.O.S 

S ROTATION 

SENSOR I 
I 
I 
I 
I 
I 
I 
I 

- ... o(t) HU)"'d, 

I. FUNCTIONS INCORPORATED 
IN DIGITAL COMPUTER 

YES 

Fig. 3 Adaptive gyrocompass system mechanization. 

+ 
I 
P 

Z GYRO AND STAB SERVO 

A Z 

R GYRO AND STAB SERVO 

AR 

AS 

S GYRO AND STAB SERVO 



coupledloops. Theoutputsignal from the KZZ2 integrator is a measureof the
orbital angular velocity, andthis is usedin the adaptivegain computationsas shown
in Fig. 3. The designcriterion for the choice of natural frequencyand damping
factor is that the system responseto a disturbanceshall dampout within a relative-
ly short arc of the orbit. Hence, the natural frequencymust bemuchgreater than
the orbital angularvelocity.

Sincethe Z-loop provides a measureof orbital angular velocity for the gain
computations, the Z-gyro must havea low drift rate (or the statistical modelof its
long-term drift behaviormust be knownif statistical filtering is to beused). Pro-
visions canbe madefor in-flight gyro calibration by, for example, gyro wheel
speedvariation methods,platform multipositioning techniques, or statistical filter-
ing.

The spacegyrocompasssystem also hasthe capability of inflight erection
andacquisition ofthe gyrocompassmodefrom a fully shut-downcondition. The
erection procedureis to acquire first of all the reference body (the Sunor a near
planet)with the bodytrackers, andthento rotate the platform aboutthe line of
sight to the referencebodyuntil the Z-gyro is alignedwith the orbital angular veloc-
ity vector. Theplatform tilt error aboutthe Z-axis serves to indicatewhenthe
coarse alignmentis achieved. After coarse alignmentthe system is placedin the
gyrocompassmodeandfine alignmentthen follows after the system settling time.
This procedure is explainedin more detail in reference 1. The time required for
erection andalignmentdependsonthe orbital angular velocity andvaries from a
few minutes in a near orbit abouta planet to a few hours in a heliocentric transfer
orbit betweenplanets.

Reference1 gives a detailed derivation of the sensitivity coefficients relating
system misalignmenterrors to instrument errors. Thesesensitivity coefficients
dependuponthe magnitudeof the orbital angular velocity andtherefore vary through-
out a non-circular orbit. This is particularly true of the gyro error sensitivity
coefficients, whichgenerally vary inversely with orbit angular velocity. In general
the system alignmentaccuracyis highest in an orbit abouta planet andlowest in
midcoursephases. The actual accuracyexpectedof a gyrocompasscannotbe stated
without classified gyro performancedata, but the error sensitivity coefficients
showthe trend of system accuracy. Table 1 showsthe numerical valuesof these
coefficients for gyrocompassesin a parking orbit aboutthe Earth, in an Earth-Mars
Hohmanntransfer, andoperating onthe earth equator. It is evidentthat the gyro-
compassaccuracyis highestwhere it is most needed,in the vicinity of a planet
where observationalinstruments require high pointing accuracy. In the midcourse
phasewherethe systemaccuracy is lowest, the spacecraft orientation accuracy
required is diminished. It is the writer's opinionthat, whenpresent-daygyro
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Table I Typical Gyrocompass Error Sensitivity Coefficients 

Sensitivity Coefficient Planetocentric Parking Hel iocentric Transfer Fixed-base Gyrocompass 
Orbit ,', Orbit ,',,', at Earth's Equator ,',,:":' 

Level sensor errors: 

OAR/o(UIAS 
negligible negligible negligible 

oAS'o(uIAS 1 sec I sec 1 sec I SeC 1 sec I sec 
oAz,a (uIAZ 1 SeCI sec 1 SeCI sec 1 sec I sec 

Gyro drift rate errors: 
----

83 sec = 5 8 x 103 sec 12 sec = 1 38 x 102 sec oAR/o (ullJd 
o 7 sec = 47 sec 

. meru degl hr meru· deg/hr meru· degl hr R 
..--. ..--. 

21 deg = 5)( 106 sec i2(» sec = 1 38 x 104 sec oAR/o (ullJd 
12 1~= 8(»~ 

S 
. meru deg/hr meru deg/hr meru· degl hr 

---- ---- ...--... ----oAS'o (ullJd 
O.02~= 14~ 003 sec = 2 2~ o 01~-07~ 

R 
meru . deg/hr . meru . degl hr . meru - . deg/hr 

oAS'o (ullJd negligible negligible 0 
S 

"Circular Earth orbit at one planet radius 

"*Typical of an Earth-Mars Hohmann transfer, eccentricity;::; OJ 

''''''''An Earth-based gyrocompass of the configuration as the orbital system, but with gains set for Earth angular 
rate. 

Note that all other sensitivity coefficients are identically zero. 
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capabilities are weighed against mission accuracy requirements, a gyrocompass

can meet the accuracy requirements.

The important tradeoffs between gyrocompass and star tracker attitude ref-

erence techniques can be briefly summarized as follows:

1. The gyrocompass always aligns with instantaneous orbital coordinates

RSZ (see Fig. 1). The spacecraft can then be held in an orientation

fixed relative to the reference body. This can only be accomplished

with a star tracker system if there is a pole star for each phase of the

interplanetary transfer orbit.

2. The gyrocompass system reacts easily and automatically to changes in

the orbit phase and reference body. Star tracker systems usually are

constrained to keep the Sun as the reference body throughout a flight,

even during the terminal phases near a planet.

3. The gyrocompass is not restricted to fly preplanned reference trajecto-

ries.

4. The gyrocompass appears to be a natural mechanization for low thrust

trajectories in which the orbital plane and angular velocity change con-

tinuously and in which the thrust direction must be programmed rela-

tive to the instantaneous orbital plane and the radius to the reference

body. The required changes of the reference body are also easily

accommodated.
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_i_ APPLICATION OF QUADRATURE FORMULAS TO ESTIMATION USING MOMENTS _

by _/

_7 Stephen J. Madden Jr. _ / )

The problem considered here is that of extracting certain information about

a nondecreasing piecewise continuous function ¢-(x) on the unit interval, given a fi-

nite number, N, of its moments, _:n'

Pn = flx nd¢(x) n = 0, 1, 2, ... N.

This could be a typical probability problem for instance. There are many alterna-

tives to consider, such as substitution of the values of the moments into the moment

generating function expansion to get an approximation to @(t) or an integral of it.

The method employed here is constructive and it gives upper and lower bounds on

the quantity ¢ (x 0) - • (0) throughout the interval [0, 1] . It may thus be used in

probab:ilistic problems to estimate probabilities in a non-parametric fashion similar

to that given by Chebyshev's theorem

The given moments are used to generate as many of the polynomials ortho-

gonal with respect to de(x) as possible. Assume that there are M of these poly-

nomials and denote them by _n (x). These polynomials can then be used to generate

two quadrature formulas for integrals with respect to d¢ (x) which allow one of the

node points of the formula to be fixed in advance in [0, 1 ] • One of the formulas

will always be of the highest degree of precision, and they can be given completely

in terms of the two highest polynomials, _M (x) and _M-1 (x). The degree of pre-

cision will be 2M - 2 and thus the quadrature formulas will be exact when applied to

polynomials of this degree or lower.

Consider the difference ¢(x 0) - _0), where x 0 is a point in [0, 1] We then

have

x 0 1
¢(Xo) - _(0) = fO dc_(x) = _0 H (x0 - x) dC_(x),

where H (x) denotes the Heaviside step function. This last integral can be most con-

veniently described as the integral with respect to de(x} of the Heaviside step function.

For a given value of x0, the nodes of the quadrature formula will be distributed

throughout [0, 1] Suppose that K nodes lie in the region to the left of x 0. We then

construct the following polynomials, PU (x} and PL (x} both of degree 2M - 2.

Specify that Puand PL are equal to H{x 0- x} at the node points x 1 • • • xKand

tangent to it there. Also specify that both polynomials are zero at the node points
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greater than x 0 and tangent to the x-axis there. Require that PU (x) pass through

one at x 0 and that PL (x) pass through zero there. These conditions, and there are

2M - 1 of them, specify the two polynomials uniquely. By their very construction

we have (see Fig. 1)

and thus

PU (x) > H(x 0 - x)_> PL {x)

1 1

f0 PU (x)d'_(x)_>¢(x 0) - ¢(0)_> f0 PL (x) de(x).

The quadrature formula can be applied to both of these integrals and the results will

be exact since the degree of both polynomials is 2M - 2. The desired result follows

since PU (x) and PL (x) can be constructed. Practically speaking, one never needs

to construct them, since their values are known at the node points. The values of

the integrals can be directly given in terms of ¢oM (x) and O_M_ 1 (x).

To illustrate the procedure and its results, two simple functions have been _"

chosen for #(x) and, using their first three moments, bounds have been generated.

Both functions are step functions and they are displayed with their computed bounds

in Figs. 2 and 3.
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._AN APPLICATION OF MATCHED ASYMPTOTIC EXPANSIONS TO

HYPERVELOCITY FLIGHT MECHANICS .-'_

_/ / by
.ff . ' , ,

Captaln_tRlchard N. Will_s, Asst.e_rof. , U.S. Air Force Academy,

Colorado 80840

The method of matched asymptotic expansions has been established as a

systematic means of treating a nonlinear problem in which a small parameter ap-
(2)

pears. It has been extensively used in the field of fIuid mechanics and recently

in a number of problems in celestial mechanics. (3, 4) This paper describes a

naturaI extention of the previous uses of the method into the area of entry dynamics

or hypervelocity flight mechanics.

The method is introduced as a completely straightforward approach to the

problem of analytically describing hyperveloeity flight trajectories. Both new and

previously known solutions to the flight dynamic equations are produced in a unified

procedure that is capable of: (1) defining the solutions' region of validity; (2) extending

the solutions to higher order in the small parameter; and, (3) combining the solutions

to obtain solutions valid over several regions of interest.

The procedure involves finding all valid asymptotic first approximations to

the dynamic equations of flight. All possible cases are exhausted by considering

every possible value of the problem variables measured in powers of the problem's

small parameters. Terms that may be neglected then appear multiplied by a power

of the small parameter. The first, or lowest order, approximation for a particular

range of value of the variables is obtained by simply retaining the non-negligible

terms. The neglected terms are then included in higher approximations. As the so-

lutions to the higher approximations are expressible in terms of the solution to the

lowest order problem, the procedure may be logically continued to an arbitrarily

high order and in principle the maximum possible accuracy can be achieved. Com-

posite expansions, valid over several regions of interest, are produced by requiring

that the appropriate expansions match in their region of common validity.

The object of this paper is to place the prevjious work in flight mechanics in

this framework of systematic approximation. This allows a careful delineation of

the range of validity and accuracy of new and existing solutions. It also offers a

straightforward method of improving these solutions by extending them to higher

order. Solutions uniformly valid over a number of regions are produced by match-

ing and combining expansions.
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Specifically, all regions of behavior of the dynamicequationsfor two-
dimensionalflight in anon-rotating atmospheresurrounding a spherically symmet-
ric planetare exhaustivelymapped,andthe appropriate lowest order approximations
to the dynamic equationsare identified.

The analysesof Sanger(5), Allen andEggers (6) Chapman(7) Lees (8)
I

and Shen (9) are all shown to be systematic approximations within this context

The extent to which Loh's (10) analysis can be considered systematic is demonstra-

ted. In fact, Loh's "second order" solution is shown to be a multiple regime "first

order" approximation that can be corrected to a rational lowest order solution.

Higher order Allen and Eggers skip and ballistic trajectories are computed.

An Allen and F ggers skip solution is matched with a Shen solution to produce a com-

posite solution valid over a larger range than either of the individual solutions.

The problem of two-dimensional flight through a non-rotating atmosphere

surrounding a spherically symmetric planet is shown to be systematically embedded

in the problem of flight in a rotating atmosphere surrounding an oblate planet.

A method which permits analytical calculation of optimal entry trajectories

and which uses this expansion technique and a discontinuous approximation to a

real drag polar is suggested. The advantages of uniformly valid asymptotic expan-

sions for guidance techniques are enumerated, and methods of performing explicit

and linear nominal guidance with these solutions are illustrated.

Finally, the significantly different dynamic structure of entry trajectories

into Mars and Titan as opposed to Earth, Venus, Jupiter, and Saturn are discussed.

The major contribution of this investigation is the demonstration of the use-

fulness of the method of matched asymptotic expansions as an analytical tool for

investigating currently interesting problems in hypervelocity flight mechanics.

Many interesting results are produced with a straightforward application of a well-

established perturbation technique in an area in which analytical progress in the

past has been difficult.
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.#.:.. CHAPTER XIV

....._ THE ROTATION OF THE PLANET MERCURY

/, by

_._ Charles Counselman

I. Introduction

Radar observations of Mercury have disclosed that the sidereal period of

the planet's axial rotation is 59 + 3 days (Pettengill and Dyce, 1965; Dyce et al.,

1966), rather than the previously accepted period of 88 days (see, for example,

Dollfus, 1953). The purpose of our investigation is to discover the implications

for our theories of the solar system (and of the inner planets in particular) which

this new result may require.

A number of explanations of this new result have appeared. Peale and Gold

(1965) immediately pointed out that the effect of solar tidal friction on the planet

would be to produce an axial rotation rate lying between the orbital mean motion

and the orbital rate at pericenter, because in an elliptic orbit the tidal interaction

is strongest near pericenter, when the instantaneous orbital angular velocity is also

greatest.

However, Colombo (1965) noticed that the observed spin period P was
s

nearly two-thirds of the 88-day orbital period Po and suggested that the axial rota-

tion might be "locked" to the orbital motion in a three-halves resonance state by an

additional solar torque due to triaxiality of the planet's inertia ellipsoid. Colombo

and Shapiro (1965) examined a two-dimensional model of the Sun-Mercury interac-

tions, considering both tidal drag and a torque due to a permanent axial asymmetry

of the planet. This analysis, carried through the second order in orbital eccentric-

ity, showed the possibility of torque balance with P =_-Po' (k = 1 -* 4), provided
S

that the tidal drag torque was sufficiently smaller than the torque due to axial asym-

metry. By numerical integration with a relatively large assumed value for the

tidal torque, they demonstrated that in the vicinity of the k = 3 resonance, the aver-

age rotation period Ps tended asymptotically to 3 Po' under the action of the com-

bined torques.

Goldreich (1965) also reanalyzed the arguments of Peale and Gold (1965),

but did not consider the possibility of the axial rotation being locked to the orbital

motion in a non-synchronous mode.
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Goldreich (1966) further derived a criterion supposed to determine whether

the final stable spin state of the planet would be synchronous (k = 2), or the non-

synchronous rotation originally suggested by Peale and Gold (1965). The analysis,

considerably simplified, yielded a simple inequality condition involving only the

ellipsoid asymmetry (B - A)/C and the orbital eccentricity, e. Still no analytical

consideration was given of commensurate spin states other than synchronous rota-

tion.

Goldreich and Peale (1966a) reconsidered Mercury's rotation and reached

essentially the same conclusions as had been drawn previously by Colombo and

Shapiro (1965).

In addition to studying analytically the rotation in the neighborhood of reson-

ance states, Bellomo, Colombo, and Shapiro (1966) considered the long-term evo-

lution of Mercury's spin and the conditions for possible capture into the various states.

In a later paper Goldreich and Peale (1966b) calculated probabilities of spin

capture into commensurate states, based on the assumption that as the

planet approaches a possible resonance capture, the random variables of rotation

angle and of rotation rate are independent.

2. Areas of Investigation

The various treatments of the axial rotation of Mercury published so far have

left unanswered at least two important groups of questions. These are

I. Questions regarding the local stability of the three-halves resonance, and

II. Questions regarding the probability of Mercury being captured into the

three-halves resonant spin state, assuming the original rotation of Mercury

to have been rapid, in either a direct or retrograde sense, or with the axis

inclined by a large angle to the normal to the orbit plane.

Because radar and recent optical observations indicate that the actual rota-

tion period of Mercury cannot in fact be far from2 Po,the answers to these ques-

tions may allow useful inferences to be drawn about the past or future of the planet.

The incompleteness of the existing rotation theory may also be revealed.

I. Local stability of the three-halves resonance.

In the vicinity of the three-halves resonance, the effect of the solar

torque on the permanent axial asymmetry is to cause an oscillation of the

value of the rotation rate about the resonance value. The frequency of this

oscillation is proportional to the square root of the degree of asymmetry

(B - A)/C, in the first approximation. To first power in the asymmetry, the

oscillation is undamped in the absence of tidal drag. By invoking plausible
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amountsof tidal friction (in terms of the believedbehavior of the solid
Earth), the oscillation is damped,but only very lightly. Decaytime-
constantson the order of 2x 106years are obtained. More detailed analysis
may showthat higher-order effectsof the axial asymmetry torque, or of the
periodic variation of orbital eccentricity dueto planetary perturbations, are
sufficient to alter seriously or upsetthis narrow margin of stability.

II. Probability of capture into the three-halves state.

Assumingthis rotation to be asymptotically stable, and assumingthe
dynamicsof captureto becompletelyknownandaccurately modelled, the
probability of capture is afunctionalof the (assumed)a priori distribution of

initial conditions at some time in the past. That is, some initial conditions

lead to capture, and others do not. Shapiro (1966) has obtained results of

numerical integration of the equations of motion for the model discussed by

Bellomo, Colombo, and Shapiro (1966), starting from a sampling of initial

conditions far from the resonance. Several values of (constant) orbital

eccentricity and tidal-drag/permanent-deformation torque ratio have been

investigated by him in this way. An analytic treatment is desired to under-

stand these results and in order to generalize to other reasonable configura-

tions of parameters. The effect of periodic and secular variations in these

parameters (e. g., orbital eccentricity, Q- 1 of the planet) must be investi-

gated. Other parameters not included in the original model may prove

decisive.

3. Analysis

Equations which accurately describe the rotation of even the most simple

model of the planet are quite complex, owing largely to the relatively high eccen-

tricity of Mercury's orbit. This eccentricity, which makes analysis tedious, gives

rise to unorthodox features in the rotational motion, such as the existence of stable

nonsynehronous but commensurate spin rates. Some qualitative understanding of

the dynamics of rotation may be had, however, by studying the simplified differen-

tial equation obtained by Goldreich (1966).

Denoting the planet's principal moments of inertia by A < B < C, where C is

the moment about the spin axis (assumed normal to the orbital plane), the orbital

mean motion by n, and the instantaneous rotation angle between the planet's longer

equatorial axis and the orbit semimajor axis by 0, we have approximately, in the

vicinity of the k th resonance (0 k-'_n),

_k
0"+ _22 sin 2 (O _nt) = -T (1)
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where

_22- 23{Bc- A) f (k, e) n2 (2)

and

T = the tidal drag torque, which is in general a function of _ and of certain

physical properties of the planet, etc.

Equation {1) is recognized as the equation of a large-angle pendulum, as
k

seen in a frame rotating at a rate-_n about the pivot axis of the pendulum. We may

understand the manner of planet spin capture into a resonance, and the significance

of the functional form of T on the probabilities of capture or penetration, by consid-

ering the familiar behavior of a large-angle pendulum.

The motion of the pendulum mimics the motion of the planet relative to a
k

uniformly rotating frame having angular velocity-_ n. The shaft rotation rate in

this analog corresponds to the difference between the planet's resonance rotation
k

rate _ n and that rotation rate for which the average tidal torque vanishes.

Unfortunately, this pendulum model does little more than illustrate how it is

possible that different initial conditions of motion may lead to either resonance cap-

ture, or to nonsynchronous rotation at a rate determined by the tidal torque, with

varying probabilities dependent on properties of the tidal torque, etc.

In order to obtain answers to the questions we have posed, we intend to

apply techniques of analysis that have been developed to study nonlinear systems in

the theory of automatic control. Z-transform theory has been found useful to study

the properties of the difference equations, derived by Bellomo, Colombo, and

Shapiro to describe the state of the planet at successive perihelia. It is hoped that

by application of the method of describing functions, some understanding of the non-

linear behavior farther from resonance may be gained. Possibly, known techniques

of nonlinear stability theory may be brought to bear.
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CHAPTER XV

") (_,
"_ LOW LEVEL ACCELERATION MEASUREMENT APPARATUS

by

S. Ezekiel

Introduction

The need for low level acceleration (or force) measurement has been evi-

dent for some time. The main applications are in the inertial guidance of low-

thrust space vehicles, stabilization of test tables for sensitive inertial components,

microseismology, and gravity research. At the present time, devices are avail-

able for reliable measurement of acceleration down to about 10 -6 g. Sensitivities

approaching 10 -9 g have been claimed but the calibration and stability of such instru-

ments is open to serious question.

The LLAMA program was an investigation of techniques for the construction

of an accelerometer with a threshold sensitivity below 10 -6 g. A comprehensive

report on LLAMA is given in EAL report RE-23.

Basically, the apparatus (Fig. i) consists of a linear, single-axis acceler-

ometer using a small permanent magnet as a proof mass supported by magnetic

forces inside a superconducting cylinder. Coaxial coils on either side of the magnet,

inside the cylinder, are used to compensate the slight axial instability of the magnet

and also to provide the restoring force to keep the magnet at null. A sensitive dis-

placement detector is employed to feed the restoring coils with control information.

Calibration below 10 -6 g is to be effected by controlled radiation pressure.

Meissner-Effect Suspension

Several types of low-threshold suspensions were considered including feed-

back stabilized magnetic, electrostatic, charged particle, and cryogenic-magnetic.

The final choice was to use the diamagnetism (Meissner Effect) of a superconductor

to support a small permanent magnet. A single-axis suspension was constructed by

floating the magnet inside a superconducting cylinder so that it was in stable equi-

librium radially and slightly unstable axially if displaced from the center of the

cylinder. The float height was about one centimeter. Two coils on either side of

the magnet (see Fig. 2) compensated for the axial instability. A copper sleeve

95

PRECEDl~G ... PAG~.BLA~l(l~Ol..jjLME.Ps 

N67 ~65j6 
CHAPTER XV 

: C 
LOW LEVEL ACCELERATION MEASUREMENT APPARATUS 

Introduction 

by 

S. Ezekiel 
~ • ..-'I 

. ,) 

The need for low level acceleration (or force) measurement has been evi­

dent for some time. The main applications are in the inertial guidance of low­

thrust space vehicles, stabilization of test tables for sensitive inertial components, 

microseismology, and gravity research. At the present time, devices are avail­

able for reliable measurement of acceleration down to about 10- 6 g. Sensitivities 

approaching 10- 9 g have been claimed but the calibration and stability of such instru­

ments is open to serious question. 

The LLAMA program was an investigation of techniques for the construction 
-6 of an accelerometer with a threshold sensitivity below 10 g. A comprehensive 

report on LLAMA is given in EAL report RE-23. 

Basically, the apparatus (Fig. 1) consists of a linear, single-axis acceler­

ometer using a small permanent magnet as a proof mass supported by magnetic 

forces inside a superconducting cylinder. Coaxial coils on either side of the magnet, 

inside the cylinder, are used to compensate the slight axial instability of the magnet 

and also to provide the restoring force to keep the magnet at null. A sensitive dis­

placement detector is employed to feed the restoring coils with control information. 

Calibration below 10- 6 g is to be effected by controlled radiation pressure. 

Meissner- Effect Suspension 

Several types of low-threshold suspensions were considered including feed­

back stabilized magnetic, electrostatic, charged particle, and cryogenic-magnetic. 

The final choice was to use the diamagnetism (Meissner Effect) of a superconductor 

to support a small permanent magnet. A single-axis suspension was constructed by 

floating the magnet inside a superconducting cylinder so that it was in stable equi­

librium radially and slightly unstable axially if displaced from the center of the 

cylinder. The float height was about one centimeter. Two coils on either side of 

the magnet (see Fig. 2) compensated for the axial instability. A copper sleeve 

95 



Co

P
::,

.,-4

96co 
O'l 

Common 
Mode 

Control 

Different ial 
Mode 

Control 

r----:>"v Copper 

~~~~KMirror 
----- or 
Coil /,/ 

tllZllllllll' // Rejection 
Rejection Filte?~~, L$uperconductor /:/ Filter , // 

"~ ~Reversion Prism 
~ // " // " // 

'~: // . 
//, 

// Beam 
I nterferometer ~ S nt 
Light Source V pIer 

Fig. 1 The LLAMA system. 

etector 

Acceleration 

, . 



t
COIL A

NI IS

/.SUPERCONDUCTING

CYLINDER

MAGNET

t
COIL

A:

B,C
D.E:

p NULL

SUSPENSION FORCE WITHOUT COMPENSATION

SUSPENSION FORCE WITH COMPENSATION FOR

INCREAS ING VALUES OF COMMON COIL CURRENT

DISPLACEM ENT"-_"

Fig. 2 Axial force on magnet close to null.

_7

~SUPERCONDUCTING 

====o:;=======i:':):: ====N=~=A=G=N=ET=IS===~: CV II NoR 

t t 
COIL COIL 

t 

A: SUSPENSION FORCE WITHOUT COMPENSATION 

~'.~: SUSPENSION FORCE WITH COMPENSATION FOR 

INCREASING VALUES OF COMMON COIL CURRENT 

Fig. 2 Axial force on magnet close to null. 



within the superconducting cylinder provided some eddy current damping; an axial

slit along the top of the cylinder prevented circulating super currents.

Despite the difficulty of operation at cryogenic temperatures, it was consid-

ered that this type of suspension offered simplicity of design, long-term dimensional

stability, and compatibility with sensitive optical displacement detectors and radia-

tion pressure calibration techniques. Machining tolerance of the cylinder w_s not

as critical as that in an electrostatic suspension because of the greater float height,

1 cm, in the superconducting suspension.

Figure 3 shows a photograph of the magnet floating inside the superconduc-

ting cylinder and Fig. 4 shows an early version of the LLAMA dewar.

Displacement Detection

Very small axial displacements, on the order of a fraction of a micron, must

be detected in order to preserve an adequate bandwidth at low acceleration levels.

For example, at an acceleration of 10 -6 g, the time taken to move, say, 1 mm is

14 seconds. Other reasons for desiring high sensitivity displacement detection in-

clude the tolerance of larger axial suspension spring constants and the reduction in

the effects of non-linearity in the suspension and in the detector.

An interferometric scheme using a laser was designed to measure displace-

ments below one micron. Figure 5 shows the layout of this scheme. Two flat mir-

rors attached to the ends of the magnet constituted the principal mirrors in a dif-

ferential interferometer. One problem was to make the interferometer insensitive

to rotations of the magnet and the other was to keep the magnet sufficiently still so

that its position could be held by the interferometer feedback loop.

Insensitivity to transverse rotations was overcome by inverting the image

of the magnet in one arm of the interferometer for both transverse axes of rotation

of the magnet. This was achieved by placing one dove or inverting prism in each

arm of the interferometer with the axes of the prisms at right angles to each other.

Since the interferometer was insensitive to where the quiescent axial position

of the magnet was along the tube, a means of holding the magnet in the null region

had to be devised before the interferometer could be brought into operation. A less

sensitive displacement detector using spot occultation was designed, where displace-

ments of the magnet occulted a beam of light, as shown in Fig. 6. The linear range

of this detector was 0.6 mm and the uncertainty range was about + 2 microns.

Performance of Experimental Accelerometer

A feedback loop was closed around the floating magnet using the spot occul-

tation displacement detector. The damping of the closed loop oscillations is shown

in Fig. 7. Threshold sensitivity was below 10 -6 g and was only limited by the
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Fig. 4 The LLAMA dewar (early model). 
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environment and the displacement detector, rather than by the suspension itself.

When the interferometer displacement detector was used with the floating

magnet, several problems came to light which were not present when the suspen-

sion simulator was used to verify the interferometric scheme. Because rotation

of the magnet about the sensitive axis is very lightly damped, any slight misalign-

ment of the principal mirrors on the magnet prevented the interfering spots from

overlapping continuously. Extra care was taken in attaching the mirrors so that

they were parallel and as nearly concentric with the magnet as possible to reduce

pendulosity effects. Ideally it would be desirable to have the principal mirrors

integral with the magnet. Grinding the ends of the magnet flat and parallel is worth

exploration. The pendulosity effects that remain would be due to a possible sepa-

ration of the center of gravity from the magnetic axis of the magnet.

In order to reduce the effect of jittery environment path, length modulation

in the interferometer can be introduced. The modulation frequency should be as

high as possible so that it is outside the 1/f noise.

Calibration

Accurate calibration of low-level accelerometers has always been difficult

if not impossible on the earth. LLAMA offers a distinct advantage in that a means

of absolute calibration, within 15%, at these low-levels is feasible.

Since the mass of the magnet is about one gram, an external force of 10 -3

dynes corresponds to an acceleration of 10 -6 g. A one-watt beam of light falling

normally on a perfectly reflecting surface exerts a force of 0.66 x 10 -3 dynes. The
-5

only requirements are that there must be a high vacuum environment below 10 mm

Hg, and that the work function of the surface must be higher than the energy of the

incident photon to eliminate the generation of photo-electrons. The pressure inside

the dewar is better than 10 -7 mm Hg due to the cryogenic pumping action of the liquid

helium and the LLAMA test mass is accessible from outside by means of windows.

Lasers can now produce powers in excess of one-watt so that light pressure is well

worth exploring. A discussion of radiation pressure calibration is found in RE-23.

Further Work

At present, work on LLAMA is being continued at NASA's Electronics Re-

search Center in Cambridge. Several improvements and suggestions are discussed

in RE-23 and it is hoped that further investigations of the LLAMA principles may

eventually find the ultimate limitations of such a suspension.
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CHAPTER XVI

LONG-TERM LASER FREQUENCY STABILIZATION

USING A MOLECULAR BEAM* (_

by

L/;' S. Ezekiel 7..... .N67 26537

Need for Long-Term Frequency Stable Lasers

The short-term frequency stability of a free running gas laser, although

excellent-_ _ I0-I0 for a few seconds, is not too suitable for sensitive measure-

ments that require long periods of time. Long-term frequency stability for periods

of days, months, years, say, is needed to improve on the present length standard

which is one part in 10 8 and to maintain it over long periods. Related to length and

optical frequency standards, long-term stability is required:

(a) to enable long-term, long-path interferometric measurements to be

made for use in, for example, strain seismometry, and other geophysical

measurements such as changes in the radius of the earth and continental

drift;

(b)

(c)

(d)

to improve the long-term performance of a laser inertial sensor;

to measure a possible secular variation in the velocity of light; and,

to improve laser communication and laser Doppler navigation.

Sources of Frequency Instability

The main source of frequency drift in a free-running gas laser is the fluctu-

ation of the length of the optical cavity caused by thermal and vibrational effects and

by material creep.

The center of the Doppler-broadened gain curve does not coincide with the

true resonance frequency of the individual atoms due to pressure shifts and shifts

that depend on discharge conditions. The exact frequency of oscillation, therefore,

cannot be known to a high degree of precision.

* A joint project with MIT Research Laboratory of Electronics under the direction

of Professor R. Weiss of the department of physics.
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Present Status of Frequency Stabilization Techniques

Various feedback stabilization techniques have been and are being investi-

gated. Methods of stabilization include:

(a) locking to the Lamb dip at the center of the Doppler-broadened gain

curve;

(b) locking the laser frequency to an identical transition in an external

discharge cell;

{c) using an external high _2 optical resonator as a frequency discrimina-

tor; and,

(d) using a two-beam interferometer as a frequency discriminator.

Scheme (a) suffers from pressure shifts; scheme (b) suffers from pressure

shifts as well as Doppler-broadening; and schemes (c) and (d) suffer from tempera-

ture dependence and material creep. In none of the above methods can the frequency

of the laser be known to better than one part in 109 .

Ideally, what is required is a _rimary frequency standard to which the laser

frequency can be locked.

Proposed Approach

The proposed approach is to use an atomic (or molecular) beam as the fre-

quency reference for the long term stabilization of a laser.

Atomic beams provide one of the most accurate microwave frequency stand-

ards, as in atomic beam clocks whose long-term frequency stability is better than

one part in 1012. For this application, then, the standard optical frequency is the

absorption line of the extremely stable quantum mechanical oscillator-the isolated

atom (or molecule). In contrast with the gas cell, the atoms in an atomic beam may

not suffer pressure shift or broadening of their spectral lines because the atoms

are kept sufficiently apart to cause the minimum of interaction. Doppler-broadening

can be made negligible by arranging the laser beam to be normal to the atomic beam,

since the position of both beams is well defined. An atomic beam, then, has an ab-

sorption linewidth that is very close to the natural linewidth of the atoms and is cen-

tered around the true resonance frequency of the transition.

In order to use an atomic beam for this application several schemes may be

investigated.

(a) One method is to find a close match, better than one part in 105, be-

tween a laser cw line and an optical transition from the ground state or a metastable

state (lifetime greater than 10 -3 seconds) of a suitable atom or molecule.
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(b) Another methodis to usea 2-photonresonanceat the interaction
region with the beamatom(or molecule)starting out in either the ground
state or a metastablestate. Thefirst photoncomesfrom an external light
source andthe secondfrom the laser. The atom in the beamis identical
with the lasing atom.

(c) Another alternative is to designa laser that employsanatomor mol-
eculefor whichthe lower level of the oscillating transition is long-lived in
the isolated conditionsof the beambut canbe madeto havea short lifetime
in the atmosphereof the laser by meansof collision quenchingor field
quenching.

The resettability of the laser frequencywhich is important in manyapplica-
tions is only a matter of signal-to-noise, in this case, since a primary frequency
reference is used.

Scheme Being Investigated

After a thorough search into atomic and molecular energy levels with the

aid of a computer, several close matches have been found between laser lines and

ground state and metastable state transitions in atoms and molecules. The scheme

under investigation uses the match between an Argon ion laser and a magnetic dipole

transition from the ground state of a Rubidium atom.

The experimental set up is shown in Fig. I. Rubidium atoms in the oven

effuse through a narrow slit into a highly evacuated beam chamber. The A- and B-

magnets provide inhomogeneous magnetic fields. The A-magnet selects atoms with

a given magnetic moment which would terminate on the detector in the absence of

the B-magnet. The laser beam interacts with the atomic beam at right angles in

the C-region. When the laser frequency coincides with the atomic resonance, the

atoms are excited to a higher state from which they decay back to the ground state.

As a result, a certain fraction of the atoms will have reversed their magnetic mo-

ment due to spin flipping of the outer electron. These atoms will now be deflected

into the detector by the B-magnet. The detector signal provides a measure of where

the laser frequency is with respect to the atomic resonance. The detector output

can therefore be used to tune the laser so as to keep its frequency on the atomic

resonance.

10
A long term frequency stability and resettability better than one part in 10

is anticipated.
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CHAPTERXVII

" GYROAND ACCELEROMETERTEST PLATFORM
by

J.T. Egan f /.fi ' 9 .265z8

The goal of this program with the NASA-Electronic Research Center is to

develop a test table to evaluate any accelerometers and gyros which may be

developed in the next decade. We are assisting Weinstock of the Electronic

Research Center in making a feasibility study and our immediate task is to help

him make a working model of a stabilized testing platform. The first test table

will have a single-axis leveling system but later will be modified to a two-axis

configuration with a horizontal motion isolation device.

Initially, we will attempt to maintain levelness to within 0.01 arc-second

and to isolate rotational ground noise up to 25 cycles per second.

To outline the problem let us ignore the rotation of the earth and consider

the two general categories of local earth motion. These may be roughly classified

as man-made vibrations in the 1 to 10 cycle per second range with amplitudes up

to a few mils and rotations up to about 4 arc-seconds, and seismic motions with

periods ranging from 1 second to 24 hours with amplitudes of several inches and

rotations of about 12 arc-seconds. In practice, and subject to further study, the

rotations about a vertical axis and the vertical displacement may be ignored. If

these vibrations are not compensated, it will be because the instruments we

anticipate testing will be insensitive to these motions.

Others have studied this problem and one solution was to build a very

heavy test pad mounted on air bearings to isolate the higher frequency horizontal

motions and use low-frequency leveling about two horizontal axes. This type of

facility would normally be mounted in a region selected for quiet seismic

conditions and freedom from man-made disturbances. In practice, such a location

leads to an inconvenient and remote test site.

In contrast, the NASA-Electronic Research Center facility is to achieve

vibration isolation through servo control so that, within reasonable limits, a test

area may be set up in any convenient room. This program will also isolate

against higher frequency disturbances than previous efforts.
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The usual sensors for stable platforms are sensitive levels and gyros.

The Aerosmith tiltmeter is typical of the sensitive levels. These instruments

use two connected mercury pools in which changes in relative mercury surface

heights as small as one microinch are sensed by an electronic circuit. The

particular model we are using has a nominal accuracy of about 1/60 arc-second

and a time response of about 10 seconds. The angular accuracy should improve

in a stabilized platform environment. Greater accuracy may also be achieved

by placing the mercury pools further apart.

This type of level will define the local direction of gravity which varies

with time. The gravity direction will typically oscillate about 12 arc-seconds

with a period of about 12 hours.

This class of instrument has two inherent disadvantages in that it is

sensitive to horizontal accelerations in any direction and it has long time

constants.

For higher frequency sensing, we are using Kearfott inertial gyros, known

as the King II gas-bearing gyro. These inertial sensors complement the levels

in that they are insensitive to linear accelerations, and are best suited for

sensing the higher frequency rotations.

The program is in no way limited to the sensors mentioned but they are

typical of the best available of their type.

The Electronic Research Center and Experimental Astronomy Laboratory

are now making a single-axis table leveling device which uses two hydraulic

pistons in series. One piston is a torque motor,ball bearing screw, hydraulic

force amplifier system. This force amplifier is a rugged hydraulic "micromotion

drive" developed by the M. I.T. Instrumentation Laboratory. The drive uses a

small horizontal input axis bellows working into a hydraulic fluid which will cause

a bellows with 25 times the effective area to lift on a vertical axis. The other

piston will control the output of a 5 H.P. hydraulic pump feeding into an

elevating piston. Both pistons will be required to support 1500 ib and to maintain

a height correct to within 3 mieroinches.

The complex servo design is being carried out by the Electronics

Research Center. Frequency and amplitude information of the earth motions

in the Cambridge area are not well known and some of this data such as low-

frequency displacements are very difficult to measure. Very little earth motion

information suitable for our needs has been published. Seismologists are

usually interested in local abnormalities in earth motions and the time of their

occurance. Their stations are normally located away from industrial areas.
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The test requirements suggest that compiling of test data would be

tedious unless a pure gravitational direction reference or a pure inertial reference

can be maintained. These requirements can be met if the 12 arc-second, 12

hour period (tidal) wandering of the gravity direction plus other low frequency

components can be inserted into or removed from the sensor system. For the

moment duplicate sensors are being used. The passage within one mercury

level may be restricted to increase the time constant to any desired value which

makes a very useful averaging device.

After evaluation of the single axis system, we plan to add another

horizontal axis and, when available, a two-axis horizontal motion isolator.

From tests and past experience we realize that two-axis sensor leveling

and close temperature control are required for optimum sensor performance.

We are now mounting all sensors in constant temperature ovens.

It is an accepted requirement in a gyro test facility such as this that the

table error sensor performance exceed that of the instruments being tested.

This normally leads to early obsolescence, but in this case it is anticipated

that as better inertial components are developed improved error sensors will

be used.
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