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Abstract

A Lyapunov function is the solution to an exact differential
equation described in the phase space of the corresponding
nonlinear differential equation. In this report, we consider
this idea in reverse and discuss the problem of finding an
auxiliary exact differential equation from a given nonlinear
differential equation such that its solution, obtained by integra-
tion, is a Lyapunov function for the original differential equa-
tion. The generalization afforded by this perspective is
sufficiently broad to include published techniques for developing
Lyapunov functions as reasonable attempts to solve the reformulated
problem. It is shown that most of the Lyapunov functions
appearing in the literature can be derived from various ways of
developing this auxiliary differential equation. New methods for
obtaining Lyapunov functions are also evident within the context

of an auxiliary exact differential equation.
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LYAPUNOV FUNCTIONS FROM AUXILIARY

EXACT DIFFERENTIAL EQUATIONS

I. INTRODUCTION

Stability characteristics of an equilibrium point of an
autonomous nonlinear differential equation are often determined by
the direct or second method of Lyapunov. In its simplest form,
the direct method assumes a sign definite scalar function in the
region of space including the singular point such that projections
of the differential equation solutions onto the surface described
by the scalar function can be examined as a function of time. If
the value of the scalar function when constrained to change
according to the differential equation is found to have a negative
time derivative, for example, then solutions around the equilibrium
point are known to be asymptotically stable. This method has the
principal advantage of circumventing the problems of solving
nonlinear differential equations. But the advantage may be lost
unless the scalar functions required by the method can be found
more easily than the original solutions. Scalar functions with
the necessary properties to establish Lyapunov stability character-
istics are called Lyapunov functions.

In most explanations of the direct method of Lyapunov, the
initial selection of a scalar function for a possible Lyapunov
function is not identified theoretically with any particular
differential equation. Certain functions have been found to be
useful for classes of differential equations; these are often
simply stated and then shown to be Lyapunov functions for selected
examples. In practice, when an unfamiliar differential equation
is encountered, these same functions are usually chosen as the
basis for a trial and error search procedure.

Thus, while the direct method of Lyapunov has theoretical
significance, its practical usefulness is restricted to differ-
ential equations for which satisfactory Lyapunov functions are
known or can be obtained through a definitive procedure. Few
reports, however, describe procedures that are useful beyond the
illustrative examples. It is reasonable to ask then if a more
direct procedure for developing Lyapunov functions can be found,
one which depends in its details on the specific differential
equation of concern. Intuitively, as classes of differential
equations are considered which imply increasingly more analytically
complex solutions, we would expect to find Lyapunov functions from
more limited classes of scalar functions, those implying corres-
pondingly complex analytical descriptions. The use of an auxiliary
differential equation derived from the nonlinear differential '




equation to find a Lyapunov function, as described in the follow-
ing sections, appears to be in accord with this philosophy.

Lyapunov functions are a class of scalar functions represent-
ing single-valued, nested, closed surfaces in the phase space of
the differential equation. Exact differential equations exist for
the descriptions of these surfaces. Conversely, if exact
differential equations describing the closed contours of these
surfaces are known, the scalar functions can be obtained directly
by integration. This report describes procedures for developing
a Lyapunov function by initially obtaining an auxiliary exact
differential equation from the nonlinear differential equation.
The procedures and details are not unique but are shown to be
inclusive of many others described in the literature. 1Insight is
also given for alternate procedures. A subsequent report will
extend the work, specifically describing a more direct way of
obtaining the vector h that is used to convert the given nonlinear

differential equation into an auxiliary exact differential equation.

II. Exact Differential Equations

Consider a set of n first order, autonomous differential
equations

Q-IQ-:
pory

x = £(x(t)), (1)

where x = [xl, xé, ceey xn]t and f = [fl, f2' eeey £ ]t are n

n

dimensional column vectors, and all fi = fi(xl’ Xop eeey xn),

i=1, 2, ..., n, together with their first partial derivatives
are defined and continuous in some domain Q of space En. Assume

that an equilibrium point exists at the origin, x = 0 also in
. If we define

g. = fl + f2 + ... + f. - £, - ve. = F (2)

n
then z
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or <g, éx> = 0. (3)

Equation (3) is recognized as a differential equation representing
the solution trajectories of (1) in phase space. Consequently a
solution to (1) is a solution to (3). Note also that (3) is

only one possible differential equation that can be derived from
linear and nonlinear combinations of (1l).

All g, are defined and continuous in the domain Q of E .

Equation (3) is said to be exact differential equation in Q@ if
there is some single-valued differentiable function U(x), defined
and continuous, together with its first partial derivatives in
some neighborhood of every point of x in @, such that ([1,2]

du(x) = <g, dx>

du(x) . .
or It = <Vu(x), x> = <g, Xx>. (4)

The function U(x), is called the first integral of equation (3) (3].

Expanding (4)

n 3U(x) n .
oy FE R T gL i
it follows that
3U(x)
3xi =g i=1, 2, ..., n, (5a)

and consequently




Bgi agj

x.  x. ' i,3=1,2, ..., n, (5b)

3 i T

provided the first partial derivatives of g; are continuous T

[2]. Equations (5) are therefore necessary for the exactness
of (3). Since (4) also defines g as the gradient of the single-
valued scalar function u(x),

U(x) = [ <g, ax> = [ <vuU, dx> (6)

and is independent of any path C contained in the domain where
U(x) is defined [4]. It follows, therefore, that (5) is also a
sufficient condition for the exactness of the differential equa-
tion (3).

If equation (3) is not exact, then by definition the first
integral does not exist. We can add a function h(x) to g(x)
such that <g + h, dx> is an exact differential equation representing

some scalar function U(x). * Then also <g + h, x> = 0, where

X = f(x), represents the exact differential equation of a function
whose time derivative is

du(x)

I = <g + h, _}.E> = <g + h, f_> = <h, £»>. (7)

*The possibility of using an integrating factor to obtain an exact
differential equation, as discussed in most elementary differential
equation texts, has not been found useful. This multiplicative
factor does not appear readily extendable to equations of higher
order.




U .
w9t hs 1= 2 ceenmy

3(g;+h;) 3(9j+hj)

and X = 0X. ’ i’ j = ll 2] cesey N
J i

The function U(X) can also be evaluated by a line integral, since
VU = g + h. Assuming an h such that U, the solution to (7),

is a single-valued, continuously differentiable function in Q,
the line integral

[ <vu, dx> = f <g + h, dx>
c c -

is independent of the path [4]. Thus for any path in @, say
from 0 to x,

U(x) - U(0) = [~ <gl(y) + h(y), dy>. (8)

If the path is selected so that the integration progresses
along one coordinate at a time, (8) becomes



U(z(_) = fol {gl(yl' x2' e o e Xn) + hl(YII le o e e Xn) }dyl
X
+ foz {g2(0,y2,x3,...,xn) + h2(0,y2,x3,...,xn)}dy2
+ LK B ] (9)

X
+ f n {gn(olof"'lolyn) + hn(O’Oloo.,O’yn) }dyn.

Alternatively, the first integral U(x) can be evaluated by
the following procedure.

(i) For n = 2, we have

V=g (0 + hy ()
8xl
U

and 3;; = g,(x) + h,(x).

Integrating the first equation with respect to X)

U= [(g;+h))dx, + F;(x,).

To find Fl(xz), consider the partial derivative of the latter

equation with respect to Xyt




= f(g +h,)dx, + ’
ax2 axz 171 1 d 2
drF. (x.)
1%) a3 ‘ _ N
°f &, T 3x, T 9%, [(gy*hy)dx; = gy + hy %, [(gy+h) ax, .

_ _ 9
Therefore F,(x,) = f {g,+h, 3;; / (g;+h;)dx, }dx,,

and finally

U= [ (g;+h)dx, + [ {g,+h, - §=— [ (g +h))dx;}ax,.  (Loa)
2
. 2 U
(ii) For n = 3, e g, (x) + h, (x)
1
U _ U _
and gy T 92 F By x; 93t h3

Following the same method as in (i), the first equation can
be integrated

= +
U=/ (gy+hy)ax; +F,(x,,%3).

Differentiating this with respect to x, and combining with the

second of the above three equations,

oF )
%, - 92 + h, - %, [ (gy+hyrax,



= ]

This is substituted into the equation for U(x), which can then
be differentiated with respect to Xq and combined with the third
aF

of the original three equations. Solving for %’ integrating
3

with respect to X3/ and substituting back into U(x), it follows
that

= -2
U= [ (g;+h))dx; + [ [(g,+h,) %, [ (g;+h))dx, lax,

+ [ ((gy+hy) - %;; [ (g;+h))ax;

9 9
% | Ugy+hy) - %, [ (g3+h))dx,1dx,}dx,. (10b)

This procedure can be extended similarly to develop the first
integral for higher dimensional cases.

Equation (10b) simplifies significantly if the bracketed
quantity in the last integtral is independent of Xqe Then,
for n = 3,

U= [ (gy+h))dx; + [ [(gy+hy) - %;; [ (gy+h))dx,; lax,

+ [ [lgg+hy) - %;; [ (gy+h))dx, ldx,.

It can be proved for any n, that if




[ (g,+h;)dx,, i=2,3,...,n,

-

(g;+h;) -

Q

i

is a function of X5 only,

Ulx) = [ (gy+h))ax; + [ [(gy+hy) - %§; [ (gy+h))dx,lax,

[ g +n) - %§; [ (g;+h))ax;lax, . (11)

+



III. Lyapunov Functions as Solutions to
Exact Differential Equations

In the last section, it is stated that we can add a vector
h to the differential equation <g,x> = 0 such that
<g + h, é> = U is an exact differential equation with a

solution given by (9) or (10). It remains then to select h
so that this solution has the characteristics of a Lyapunov
function* with respect to the differential equation (1), i.e.,

that <g + h, g> = V be an auxiliary exact differential eqguation
to (1).

Therefore, given equations (1) and (2), if we can find an
h which insures that

(a) <g + h, x> = V is an exact differential equation,
av(x)

(B) <h, £> = g% is at least negative semidefinite, and

(C) the first integral, V(x), is positive definite,

then V(x) is a Lyapunov function with respect to (1).

The necessary and sufficient condition for exactness
given by (5) is equivalent to the condition that

* A scalar function V(x) with the properties that:

(i) V(x) is continuous together with its first partial
derivatives in a region 9@ about the origin,

(ii) V(o) = o0, V(x) > 0 for x # 0, and

v (x)
(iii) gg— < 0 in g,

is called a Lyapunov function [5,8], and similarly if V>0 in Q%

10




(A') the matrix

a—x—j——-— = E(gl+hl) V(g2+h2) v(gn+hn):}

be symmetric.

The existence of an h satisfying the three conditions (A)
or (A') - (C) is both necessary and sufficient for the existence
of a Lyapunov function for (1). The proof of sufficiency follows
from definitions. Conversely, if a Lyapunov function, Vl(i)'

exists for (1), conditions (B) and (C) are satisfied. Condition
(A) is satisfied if we allow

W (X (12)
i axi

thus the necessity.

IV. Methods of Obtaining the Vector h

The problem of finding a Lyapunov function for equation

(1) has been restated as a problem of determining the components
of a vector h for the auxiliary differential equation (7) such
that conditions (A) or (A') - (C) are satisfied. A variety of
methods can be considered to aid this search. Some of these are
summarized below and are readily identified with the familiar
techniques for developing Lyapunov functions that are described
in the literature.

(i) The simplest case exists when condition (A) is satisfied
for all hi = 0. This implies that (3) is exact. Condition (B)

is then satisfied and only (C) needs to be considered. If (9)
or (10) results directly in a function that satisfies (C), it
is a Lyapunov function with respect to (l1). In this case,

11



the first integral is also the phase plane solution to the
differential equation (1l). This procedure has been called
the method of (sign definite) first integrals {[5,6]. 1If,
however, the first integral does not satisfy condition (C),
i.e.,is not sign definite, an alternate procedure is required,
e.g., h # 0.

Example. Consider X

»
=
i

2

"Xl .

From (2), gl(§) = X and 92(5) = X, Condition (A') is satisfied

with hl = h2 = 0. The first integral is

X
V(x) = [
0

2
1 X2 *1 xg
gl(Yl;XZ)le + IO gz(olyz)dyz = '2— + f—'

x2 x2

1 2 .
7 t 718
a Lyapunov function, V(x) = 0, and the equilibrium point

(0,0) is stable. As V + « as ||x|| + «», this equilibrium point
is also globally stable.

which is positive definite. Therefore V(x) =

(ii) If equation (3) is not exact, all hi cannot be set to

zero as in (i). .With or without trying to differentiate
between g and h, we could proceed, for example, to select

VW = (gfh) by trial and error to satisfy both (A') and (B).

If this 1Is done, (C) can then be considered. If (C) is not
satisfied, the procedure is repeated for another choice of

h or vV, etc. While an analogous procedure for searching

for a Lyapunov function has not been previously suggested, it
is evident from this restatement of the problem in terms of an
auxiliary exact differential equation. The dependency of this
particular procedure on intuition and a quasi-random selection
of undetermined constants is no greater than other accepted
procedures.

Example: X = X,

Me
]

2 - ax, - g(xl)
12

L




where a»0, g(0) = 0, and xlg(xl)>0 for X, # 0. Then

g, = ax, + g(xl), g, = X,.

3g; 9,

§§; # EEI » h; cannot be zero.

 Since

Somewhat arbitrarily choose

gl + hl = g(xl)r or hl = - axz,
and 9, + h2 = X5, OF h2 = 0.

Condition (A') is satisfied, and condition (B) is satisfied
as

X1
f- + !0 g(xl)dxll

which is positive definite. V(x) therefore is a Lyapunov
function.

(iii)

as in (ii), we could proceed in the same manner except by

Rather then attempt to select VV = (g+h) in its entirety

13



trying to find the components of h only. Alternately we
might simplify the effort by separating out the nonlinear
components of VV. From the form of (3), it is noted that
each 93 in general includes both linear and nonlinear terms

in the dependent variables. Therefore define

ié32+g-n’ (13)

where g, contains only linear terms. If h=nh +h is

similarly defined, the procedure in (ii) could be followed by
separately selecting a linear and nonlinear part of VV. Equations
(8) or (9) can then be written as

X X
vix) = IO <ggt+h,, dx> + fo <g, * h,, dx>. (14)

The first of the two integrals can be resolved into a gquadratic
form, and (l4) is recognized as the familiar quadratic plus
integral form [5,7,8]. If the nonlinearity of the system is
known analytically, it may be possible to evaluate the second
integral. Otherwise the satisfaction of condition (C) can be
considered, in part, directly through the integral characteristics
of the nonlinearity [5,7,8].

Example. Consider the second order nonlinear control system

r=0 X
D - Yy Y . §+1 C -
+ X s™+1

y = f(x), £(0) =0
x£f(x)>0

14




The differential eqﬁation describing the system has been shown
. to be [5]

X+ x + £(x) + £' (¥)x = 0.

This can be written in the form

Nx.
I
!
s
!
Hh
)

with an equilibrium point noted at Xy = X, = 0. In this case

(2) becomes 9, = X + f(xl) and g, = X, - f(xl); then

X f(x,)
171 1
9 * I S| |+ Cf (%) :
X2 X1
0 0
Choosing El + 9, = o + fx) ’
X
1
X + £(x,)
VW =g + Q = 1 1
%2

satisfies (A'). For condition (B),

<h, %> = - x £(x)) - £2(x))

15



which is negative semidefinite. The first integral, equation
(14), is

1,.2 2 x
v = =(x7 + + f(x Ydx
(x) = 3(x] + x9) fo (x )dx,

which is positive definite. Therefore, a Lyapunov function
has been derived and, since V(x) + = as ||x|| + =, the
equilibrium point is globally stable.

If the characteristic of the nonlinearity is given

analytically, for example, f(xl) = xi,

4
then vix) = Lx? + x%) + L
- 271 2 4 !
_ - _ _ 2 - - 4 - 6
and V(x) = <h,f> = %, £(x,) £1(x;) X) = Xy

(iv) Alternately we can write g + h in the exact differential
equation (7), for example, as

X, + a X, + ... + a

Q
(w

+

= 3
-

i

[}

11 71 12 72 1n “n
9; + hi = a3, X + a;, %, + ... + a;n X, (15)
9, + hn =a; X+ a s X, + ... + 2xn

16




where the aij have a constant part plus a function of
Xy x2, coer Xy i.e., aij = aijk + aijv' The a;; may
further be limited such that a4ik >0 and aiiv = aiiv(xi)

to facilitate satisfying condition (C). Undetermined constants
in (15) could be selected to first satisfy (B) and then the
remaining terms to satisfy (A'). Lastly condition (C) would
be checked following the use of (9) or (10). This procedure
corresponds essentially to a familiar variable gradient method

[o1l.

Example: X) = Xy

e
il
|

»
I

E]

From (15), the gradient is assumed to be

O,,X, + a,,X X
g +h= 1171 12%2) g g = 2 .

alel + 2x2 X

N 2
(a,,-x7)x%x, + (a,,-1)X
Then h = (gth) - g =| 171 127 %2

a21x1 + x2

Condition (B) requires that <h, f£> be at least negative semi-
definite:

- 4 _ 2 - L0yl
<h, £> = ®,q%y + (al2 2)x2 + (all‘GZl 2xl)xlx2.

2x§ = 0, o = 1 and

somewhat arbitrarily let 12

®117%217
0aa>0. :

21

17



3
t,,X, + 2%X7 + X
Thus g + h = 2171 1 2 .

a21xl + 2x2

To satisfy condition (A'), the matrix

2
a(gi+hi) _ @59 + 6xl @59
3%y 1 2
must be symmetric; so let ay = 1. The first integral, from
(9), is
X X
- 1 3 2 ..
x2 x4
_ 1 2 _ 1 2 1,2, .4
=3t t XXy P X = (X Ax,) T 4+ S(xytx)
. 2 4
and V(§) = <h, > = - x2 - Xl’

Therefore V(x) is a Lyapunov function for the example and the
equilibrium point is (globally) asymptotically stable.

(v) Consider h in (7) separated into two parts h, + h,, where

El is selected specifically to satisfy (A') only. h, might

2
then be chosen with respect to condition (B) such that the
exactness condition (A') is not effected. Finally condition

(C) is examined. If (C) cannot be satisfied, an alternate h,

might be considered. This procedure is a generalization of a
method described by Infante and by Walker, although their
objectives may be less apparent to a casual reader [10, 11].
In their terminology the "new nearby system" is equivalent

to equation (7), where




Example: Consider

X = X, = fl(§)
_ _ _J2
X, = - x e(l xl)x2 fz(x), £>0.
Then g _ _ = _2
1= f2 X + e(1 xl)xz,
and g, = fl = X,.

The original equation can be rewritten as

91 ¥ + g, X, = 0 (1l6)
which is not exact.
0 2
Adding El = x] to g will make (16) exact:

2
X

<g + El’ é> = glﬁl + [g2+exl (1 - El)]iz = 0.

But condition (B) is not satisfied, i.e.,

19



2
X

= _ 1 _ - _ W2
<1ll' £> = EXl(l :—3—-) { Xl E(l Xl)Xz}

2 2

X X
= 2 - %2 SR S R §
= - g xlxz(l xl) (1 3 ) exl(l 3 )

is indefinite. Therefore add h, to g + h,, subject to
3h dh -2 -1

21 _ 22 _ 0, with the purpose of satisfying condition (B).
axz axl
x2
- _ .2 - W2y _ 2 _ 1
As <h; + h,, £> = - e"x;%,(1 - x7) ex] (1 - 3=)
+ ho x, - h,, [x +e(l-x2)x.]
2172 22 1l 177277
2
2 2 *1 |
we could choose h21 = g xl(l—xl) (1 - §—) and h22 = 0.
2
Th V== 21 - 2L
en = eq ( 7).
which is negative semidefinite within the region xi = 3. To
evaluate the first integral,
—~ <27
_.2 2 .2 _ 71
Xy + (1 xl)x2 + € xl(l xl) (1 §—)
g+h +h,=
1 2 xi
X, + exl(l -3
S -
2
and Vi) = 2L e -xi) + 2(x§~x‘11+£)+f;
X 2 EALY B RS LS A B 8 2
3
1 .2 X1, .2
=37 {xj + [x, + e(x; - 5917},




which is positive definite.

(vi) If one intuitively selects a first integral function so

as to satisfy (C) and if the second partial derivatives exist,
then(A') is also satisfied and condition (B) only remains to

be considered. If the result is not satisfactory, another first
integral can be tried. While this approach corresponds to

the method of guessing that so often confuses the neophite, it
may also be considered as the basis of the more sophisticated
method of squaring proposed by Krasovskii [5].

Example. Consider: i = f(x), f(O) = 0, where £ has continuous
first partlal derivatives. Arbitrarily let the first integral
be the positive definite function V(x) = <f(x), f(x)> To check

condition (B), V= <f, f> + <f f> = <f, F x> + <F x, £>

where F=s—.

Then V = <f, §g> + <g, §t£> = <f, F f>, where F = F + Ft.

Condition (B) then requires that —F be positive definite in the
neighborhood of 0, corresponding to a statement of a theorem
due to Krasovskii.

(vii) Using a somewhat different technique from those already
mentioned, we might begin initially by selecting a function

V(x) to satisfy condition (B) but also to allow a solution for
V(x) to be obtained directly by solving the partial differential
equation

L= V() . (17)

21




If this can be done and condition (C) is satisfied for the solution,
V(x), a Lyapunov function results and (A') is satisfied. 1If (C)

is not satisfied by the solution, a more discerning choice of V(E) *
is required. This is the method proposed by Zubov [5, 12]. 1In
effect, Zubov's method requires one to select the entire scalar

function <h, f£> = V (=¢) such that both conditions (A) and (B)
are satisfied. But as a consequence of choosing <h, £> rather
than h, VV(x) is unavailable and V(x) must be found by solving
the partial differential equation rather than from a line
integration.

- 2x., + 2x4

Example: %

Following Zubov's method, we might fortunately select [13]

<h, £> = - 24(xi + xg). Then (17) is
IV (x) 4 vV (x) 2 2
8xl (—2xl+2x2) + 5;;—« (-xz) = - 24(xl+x2).

The solution to this partial differential equation can be
shown to be

_ 2 2 4 8
V(x) = 6xl + 12 X5 + 4xlx2 + Xy

which is positive definite and therefore a Lyapunov function.

The choice of V(x) which allows a solution to the partlal
differential equation is very critical. Furthermore, there is
no guarantee that condition (C) is satisfied, if a suitable time
derivative is found, i.e., if conditions (A) and (B) are met.
Thus modifications to Zubov's procedure have been suggested.

22




George [14] describes the possibility of using an unknown
scaler function, u(x), for one component of VV (= g+h) in (17).
The other components of the gradient are expressed in terms of
this scalar, using integral forms similar to those appearing in
the development of (10). Instead of trying to solve the partial
differential equation for V, he obtains an integral equation in
u. For a solution of u, V follows by integration. A successive
approximation technique is stated for the integral equation.
Again this method can be viewed as a procedure whereby an attempt
is made to select V and calculate a gradient to satisfy conditions
(a) and (B), and then check the result for condition (C).

23



V. Alternate Auxiliary Exact Differential Equations

Equation (2) arbitrarily defines g as a linear combination
of £, such that <g, dx> = 0 represents solution trajectories of

g = f(x) in the phase space. Alternate definitions for g could
be made. The subsequent choice of h, however, provides the
freedom required to obtain a unique auxiliary exact differential
equation for these various definitions. This is illustrated

in the following.

Consider X = X, = f1
< _ _3 _
X, = X, 3 = f2 . .
. . _ 3
Choosing 93 according to (2) gy = %, * X]
92 T ¥
X X
S
and hi as hl = 5= >
X
_
hz = 5 ’ (18)
. __!_. 4
V = <h, £> = 2(x2 + xl)
_1,.2 2 4
and vV = E(xl + 2xlx2 + 2x2 + xl). (19)
Alternately consider = -f_ £ = x2 + x3x
91 152 2 1%2
2 2
g, = fl = X, .

Then <g, x> = 0. For the same Lyapunov function given by (19),
from equation (12), h = W - g:




It follows that V and V are unchanged. The reader is cautioned
to note that if an alternate positive definite scalar function
were chosen in place of (19), an h could be found to insure

that the equation <g, é> is exact. No guarantee is implied,
however, that the time derivative, <h, f£>, will be negative
definite (or semi-definite).

In contrast, for a given definition of g relative to
equation (1) an alternate choice of h will lead to an alternate
Lyapunov function. For this same example and g defined by
(2) , consider, instead of (18),

B 3

o B
I U

2 lO(xl + xz).

Then vV = <h, £> = = x2 - 10x4,
- = 2 1
_ 11 11
and V = 5x1 + 10xlx2 + 5= x2 + 7 X1

VI. Discussion

A definitive procedure for developing Lyapunov functions
has not been given. Rather the intuitive, experienced or
random search methods that have characterized the subject are
redirected from terms of a scalar function or gradient to
components of a vector h. The practical advantages of this
alternative perspective would depend on the background of the
analyst. A comparison of the seven methods that were described
In Section IV, however, suggests that the methods which attempt
a minimal search, i.e., those formulated around the unknown



vector h instead of an unknown gradient or V(x), would be most
useful with a totally unfamiliar problem. Method (iv) shows,

for example, that the well publicized variable gradient method

may be less dependent on ingenuity if only the components of

h are sought. The practical difficulties experienced with X
Zubov's method are shown in (vii) to be the cost of circumventing
what appear to be useful intermediate steps.

More important, however, the generation of Lyapunov
functions from the viewpoint of auxiliary exact differential
equations provides a unity to the disparate methods that have
been proposed by many writers ever since Lyapunov's work was
originally published. And as a consequence, they also form
a conceptual base from which new procedures may more readily
evolve.
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