Final Report

# DESIGN OF AN OPTOMETER <br> AND TWO-DIMENSIONAL EYE TRACKER 

By T. N. CORNSWEET H. D CRANE

Prepared for:
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION AMES RESEARCH CENTER
MOFFETT FIELD, CALIFORNIA 94035
CON TRACT NAS2-3517


April 1967

Final Report

# DESIGN OF AN OPTOMETER <br> AND TWO-DIMENSIONAL EYE TRACKER 

By: T. N. CORNSWEET H. D. CRANE

Prepared for:
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
AMES RESEARCH CENTER
MOFFETT FIELD, CALIFORNIA 94035 CONTRACT NAS2-3517

SRI Project 6009

Approved: F. J. KAMPHOEFNER, MANAGER
Engineering techniques laboratory
J. D. NOE, EXECUTIVE DIRECTOR

ENGINEERING SCIENCES AND INDUSTRIAL DEVELOPMENT

## ABSTRACT

A technique for two-dimensional tracking of eye position is described. This technique involves the projection of an infrared pattern into the eye and a measurement of the spatial separation of the first and fourth Purkinje reflections--the reflections from the front of the cornea and back of the lens, respectively. Because the first reflection is from a positive mirror and the fourth from a negative mirror these reflections move in opposite directions under eye rotation, but together under eye translation. By measuring the spatial separation of the two images we therefore obtain a measure of the rotational position of the eye that is not contaminated by artifact from translational movements of the eye. On the basis of preliminary results we have designed an experimental model that should provide tracking over a two-dimensional field at least several degrees in diameter and with an accuracy of 5 minutes of arc or better.

The design of an optometer that gives a continous real-time measure of the total refraction of the eye is also described. In this instrument, an infrared pattern is imaged on the retina and reflected light from the retinal pattern is reimaged externally. By a relatively simple technique, an electronic signal representing the state of defocus of the external image is derived. This signal controls a servo system that maintains the pattern in focus on the retina. As the refractive strength of the eye changes, the effective refractive power of the input system also changes, so as to maintain the input pattern in focus, and the refractive strength of the eye is inferred from the instantaneous refractive power of the input optical system.
ABSTRACT ..... iii
LIST OF ILLUSTRATIONS ..... vii
I INTRODUCTION ..... 1
II DOUBLE-PUFKINJE-IMAGE EYE TRACKER ..... 3
A. Review of Eye-Tracking Technic es ..... 3

1. Contact-Lens Methods ..... 3
2. The Electro-Oculogram ..... 3
3. Tracking a Feature of the Front of the Eye ..... 4
4. Corneal Reflection Techniques. ..... 4
5. Double-Purkinje-Image Method ..... 5
B. Analysis of Double-Purkinje-Image Method. ..... 7
6. Outline of the Overall System. ..... 7
7. Relevant Eye Dimensions ..... 9
8. Position of the Purkinje Images ..... 10
9. Form of the Purkinje Images. ..... 14
10. Image Movement with Eye Rotation ..... 19
11. Viewing System ..... 22
12. Enlarging the Artificial Pupil ..... 26
13. Real-Time Tracking by the Artificial Pupil ..... 28
14. Limits Imposed by the Real Pupil ..... 31
15. Optical Equalization of the Intensity of the Purkinje Images ..... 34
16. Two-Dimensional Tracking ..... 36
III INFRARED OPTOMETER ..... 39
A. Measure of Defocus ..... 39
B. Instrument Design ..... 43
17. Schematic of the Overall System Design ..... 43
18. Input Optical System ..... 44
19. Output Optical System. ..... 48
20. Physical Design of the Instrument. ..... 52
IV STATUS OF THE EYE TRACKER AND OPTOMETER ..... 55
REFERENCES . ..... 57
DD Form ..... 1473
Fig. 1 Basic Optics of the Ey? Tracker ..... 7
Fig. 2 Photocell Signals from Which Eye Position is Determined ..... 8
Fig. 3 Relevant Eye Dimensions ..... 9
Fig. 4 Reflection of a Distant Source in a Positive and Negative Mirror ..... 10
Fig. 5 Optics of Purkinje Image Formation. ..... 12
Fig. 6 Illustration of Image Movement in Opposite Directions from a Positive and Negative Mirror ..... 13
Fig. 7 Input Ray Configuration with Stop $\mathrm{ST}_{1}$ Imaged at the Center of Curvature of the Cornea ..... 14
Fig. 8 Spherical Aberration Effects in a Spherical Mirror ..... 15
Fig. 9 Image Formation when the Input Stop ST is Imaged Directly on the Corneal Surface ..... 17
Fig. 10 Form of the Corneal Image with the Input Stop Imaged in (a) the Surface of the Cornea, and (b) the $r / 2$ Plane ..... 18
Fig. 11 First and Fourth Purkinje Images of Line Object with the Input Stop Imaged in the $\mathrm{r} / 2 \mathrm{Plane}$. ..... 19
Fig. 12 Image Shift with (a) Eye Translation Parallel to the Line Object, and (b) Eye Rotation Parallel to the Line Object ..... 20
Fig. 13 Image Shift with Eye Rotation Transverse to the Line Object ..... 21
Fig. 14 Form of the Reflected Beam for the Input Stop ST Imaged at (a) the Center of Curvature, (b) the r/2 Plane, and (c) the Surface of the Mirror ..... 22
Fig. 15 Two Possible Arrangments for the Viewing Lens $L_{4}$. ..... 23
Fig. 16 Angular Swings $\beta_{1}$ and $\beta_{4}$ of the Collimated Returned Beams, for an Eye Rotation $\alpha$. ..... 24
Fig. 17 Required Field of View of the Viewing Lens $L_{4}$ ..... 26
Fig. 18 Relation between the Input Beam Width and the Angular Spread of the Return Beam ..... 27
Fig. 19 Translating the Input Stop $\mathrm{ST}_{1}$ so as to Track the Eye Movement. ..... 29
Fig. 20 Demonstration that Translation of the Input Stop $S T{ }_{1}$ does not Affect the Position of the Corneal Image. 1 ..... 30
Fig. 21 Effect of the Real Pupil on the Fourth Purkinje Image ..... 32
Fig. 22 Limitation by the Pupil on the Size of the Fourth Purkinje Image ..... 33
Fig. 23 Calculating the Maximum Angular Size of the Fourth Purkinje Image as a Function of Pupil Diameter. ..... 33
Fig. 24 Demonstration that the Overall Pattern of Reflected Light has Essentially the same Shape as the Input Stop ST 1 ..... 35
Fig. 25 Relative Movement of the Reflected Light Bindles, with Respect to the Viewing Lens $\mathrm{L}_{4}$ ..... 35
Fig. 26 Photograph of a Section of the Scanning Disk for Continual Measures of $x$ and $y$ Position. ..... 37
Fig. 27 Forming an Image $W$ Through Three Pinhole Apertures. ..... 39
Fig. 28 Plot of the Difference in Light Intercepted from Apertures $A$ and $C$ as a Function of the Defocus Position x . ..... 41
Fig. 29 Schematic Diagram of the Optometer ..... 44
Fig. 30 Input Optical System, Assuming a Point Source of Light at Positions $A$ or C ..... 45
Fig. 31 Image Formation with an Input Light Source of Angular Width $\alpha$ ..... 46
Fig. 32 Chang in the Distance $\left(f_{2}+q\right)$ of the Virtual Image from the Eye Caused by Changing the Distance $p$-- Angular Size of Image Remains Invariant ..... 47
Fig. 33 Output Optical System ..... 49
Fig. 34 Estimating the Height $h^{\prime}$ of the Corneal Image, Ass.ming an Input Pattern of Height $h$. ..... 51

Fig. 35 Diagram of the Optics of the Actual Instiument. . . . 53
Fig. 36 Photograph of the Optometer . . . . . . . . . . . . . 54

# BLANK PAGE 



## I INTRODUCTION


#### Abstract

Prom a previous study of visual accommodation in humans, ${ }^{*}$ "ertain hypotheses evolved relating to the size of tide retinal region that is involved in focus control, the nature of the signal processing that determines the state of focus, and the nature of the control system. Testing of these hypotheses requires the develrnent of two instruments-a two-dimensional eye tracker and an optometer. The design of two such instruments is discussed in this report.

Though there are a number of devices currently in use for monitoring eye position, none is both accurate and convenient to use. Methods based on the use of contact lenses can provide high accuracy but have obvious inconveniences. Other techniques--e.g., skin-mounted electrodes, or eye-glass-mounted photoelectric pickups--are relatively convenient, but eye position can be measured to no better than $1 / 2$ degree. For the accommodation experiments that we wish to conduct, we require a device with an accuracy of a few minutes of arc over a two-dimensional field of at least a few degrees.


We are presently studying a method of eye tracking that we refer to as :he double-Purkinje-image method, a method that requires no attachments to the eye and that seems capable of providing the required accuracy. In Sec. II-A we review some of the currently used eye-tracking devices and describe the new method. Section II-B is an analysis of the new method.

The function of an optometer is to monitor, in real time, the instantaneous refractive strength of the human eye. The basic approach taken here is to image an infrared test pattern onto the retina and to externally reimage the reflected light from the retina. By examining the condition of focus of the external pattern we can infer the condition of focus of the pattern on the retina itself. Defocus signals are used to drive a servo system that maintains the test pattern in focus on the retina at

[^0]all times Changes in eye refraction are measured in terms of the refractive changes required in the input system to maintain the pattern in focus.

In Sec. III-A we consider a basic method of measuring defocus, and in Sec. III-B we consider in some detail the design of an experimental optometer based on this method. The main problem in the design of such an instrument is that the very small amount of light reflected from the retina is easily buried in artifact signals arising from reflections from the other optical surfaces of the eye. The instrument described here is similar in concept to others designed in the past, ${ }^{2},{ }^{3}$ though we have incorporated a change in the optics that permits us to eliminate essentially all of the artifactual signals, and thereby to obtain an instrument with improved performance.

## A. Review of Eye-Tracking Techniques

1. Contact-Lens Methods

In this class of methods a tightly fitting contact lens is attached to the eye, and either a light source, a mirror, or a coil of wire is attached to the lens. Movements of the eye can then be monttore by electro-optical tracking of photography.

These methods provide excellent resolution and, if the lens fits tightly enough, also permit recording over a very wide range of eye positions. They have the obvious shortcoming, however, that the lens must fit tightly on the eye, producing some discomfort. Further, in order to get a tight fit, either each lens must be individually constructed to fit the particular observer (an expensive and time-consuming operation) or the observer's eye must be anesthetized and the lens attached with suction, a difficult and slightly risky procedure.

## 2. The Electro-Oculogram

Physiological events within any mammalian eye result in the maintenance of a voltage, the so-called resting potential, between the cornea and the surrounding tissue, such as the forehead. Therefore, if two electrodes are placed, say, one on the skin above and the other below the eyeball, vertical rotations of the eye will result in caresponcing changes in the voltage between the electrodes. A recording of such a voltage is called an electro-oculogram. The accuracy of this technique is limited by many factors, such as the slow changes in the resting potential with time of day, state of adaptation, etc. Further, the electrical noise level resulting from stray bioelectric potentials is equivalent to an eye rotation of between 15 and 30 minutes of arc (the angle subtended by the head of a thumb tack about 4 to 8 feet away), limiting the resolution of the technique.

## 3. Tracking a Feature of the Front of the Eye

When the eye rotates in its socket, the location of any feature of the front of the eye, such as the iris or a blood vessel on the white, moves accordingly. Therefore, photography or electro-optical tracking of such a feature provides a method of recording eye position.

Photography is clearly unusable for real-time, continuous measurement. This technique is useful for recording large movements, but its precision is necessarily limited to about 15 to 30 minutes of arc, for the following reason.

When the eye rotates horizontally, the front of the eye moves horizontally. If the head moves sideways, or the eyeball shifts sideways in its socket, the front of the eye also moves horizontally. Therefore, using these techniques, there is no way to distinguish lateral movements of the eye from rotations. For example, a rotation of one degree moves the front of the eye through 0.2 mm , and is thus indistinguishable from a lateral shift of 0.2 mm . On the other hand, the visual effects of rotation are drastically different from those of translation. If the object being viewed is 2 meters away, a lateral movement of 0.2 mm changes the place being looked at by 0.2 mm , while a rotation of 1 degree (which looks the same to the recording device) C. anges that place by 35 mm . The farther away the target is, the larger becomes the discrepancy between the effects of lateral and rotational movement. Therefore, when the technique used to record eye movements involves the monitoring of the location of any point on the front of the eye, lateral movements result in artifacts. Since it is impossible to prevent the eye from moving laterally in its socket, the error of these techniques cannot be less than about 15 to 30 minutes of arc (corresponding to lateral shifts of the eye of 0.05 to 0.1 mm ).
4. Corneal Reflection Techniques

Some of the light incident on the transparent part of the eye, the cornea, is reflected at the cornea-air interface. The cornea acts as a convex mirror, and therefore a virtual image of any object in front of the eye will be formed just behind the cornea. (This image is usually
called the glint in the eye.) Since the center of rotation of the eyeball is not coincident with the center of curvature of the cornea, frocations of the eyeball result in relative movements of this image, the image of a distant object moving about 0.1 mm for each degree of rotation. The corneal reflection is commonly used as an indicator of eye position simply by photographing or tracking the position of the corneal image of a stationary light source.

This technique is suitable for monitoring large eye movements, but it is subject to error when the eyeball shifts laterally for exactly the same reasons as were explained in the preceding section. Its error, therefore, cannot be less than about 15 to 30 minutes of arc.

To reduce the artifact from translation movements it would be useful to have available two features that move similarly under translation but differently under rotation. The corneal-limbus method described in Quarterly Report 1 was such a method. Here we measured the distance between the variable position of the corneal reflection and the fixed limbus (the junction of the cornea and the white of the eye). Although this method is useful for one-dimensional tracking, it is not easily extendable to twi dimensions. For one thing, the eyelids normally cover so much of the limbus as to make direct vertical scanning imposesidle, and a shallow-angle scan leads to poor vertical accuracy.

## 5. Double-Purkinje-Image Method

We are presently studying a new method of eye tracking that seems extendable to two-dimensional tracking, with the potential of meeting our accuracy requirements. The method is based on the use of a pair of eye reflections that move similarly under translation but differentially under rotation.

The virtual image formed by the reflected light from the front of the cornea is referred to as the first Purkinje image. A second Purkinje image, formed by reflection from the rear surface of the cornea, is almost exactly coincident with the first Purkinje image. The light that is not reflected from either of these surfaces passes
through the cornea, passing in turn through the aqueous humor and then the lens of the eye. The third Purkinje image, a virtual image formed by light reflected from the front surface of the lens, is much larger and more diffuse than the others and is formed in a plane far removed from the plane of the other images. The fourth Purkinje image is formed by light reflected from the rear surface of the lens, where the lens forms an interface with the vitreous humor that fills the bulk of the eyeball. This rear surface of the lens acts as a concave mirror, forming a real image of the source.

The fourth Purkinje image is almost the same size, and is formed in almost exactly the same plane, as the first Purkinje image, though it í over 100 times less intense. If the eye undergoes translation--e.g., a lateral head movement--both images move together through the same distance and direction as the eye. If the eye rotates, the two images change their separation in space, because the first Purkinje image, formed by a convex mirror, and the fourth Purkinje image, formed by a concave mirror, move in opposite directions with reference to the line of sight of the eye. Referred to a fixed point in space, both images move in the direction of rotation of the eye, but they move by different amounts. The physical separation between these two images in space yields a measure of the angular rotation of the eye in the direction of the shift, and the measure is nominally uncontaminated by lateral movements. For two-dimensional tracking we measure the shift in two orthogonal directions.

The device we are constructing will provide a pair of continuous electrical signals whose magnitudes are proportional to the two orthogonal components of separation between the first and fourth Purkinje images of a source of light. This in effect provides continuous monitoring of the angular position of the eyes, or of the point in space at which the gaze is directed. Since lateral-movement artifacts have been substantially eliminated, the accuracy will be limited primarily by the quantal fluctuations in the very-low-intensity fourth Purkinje image. A more detailed analysis of the system is given in the next section.

## B. Analysis of Double-Purkinje-Image Method

1. Outline of the Overall System

Figure 1 is a diagram of the optical system currently being used. Condensing lens $L_{1}$ forms an image of the source in the plane of stop $S T_{1}$, which is a variable aperture that can be moved vertically and


FIG. 1 BASIC OPTIC: JF THE EYE TRACKER
horizontally. Lens $L_{2}$ collimates the light from $S T$, and filter $F$ passes a band of wavelengths from about 850 to 1050 nanometers. Thus, the measuring light is invisible and does not interfere with visual tasks. The filtered light then passes through stop $\mathrm{ST}_{2}$, which contain two orthogonal slits. Lens $L_{3}$ collimates the light from these slits and images $S T_{1}$ in the plane of the puril of the eye.

The reflected components of the light from the front of the cornea and the rear surface of the lens of the eye form virtual and real images, respectively, of stop $\mathrm{ST}_{2}$. The light radiating from these images
is imaged by viewing lens $L_{4}$ in the plane of a scanning disk, $S D$, which rotates at about 6000 rpm and contains 90 pairs of orthogonal elits. The two Purkinje images are thus scanned 9000 times per second. Light passing through the slits falls on a photomultiplier tube PMT. The dashed line labeled DM is a dichroic mirror which transmits the infrared measuring light and reflects visible light from the target being viewed. Figure 2 shows the motion of the disk across the two Purkinje images formed in the plane of the disk. The images are displaced with respect to each other, indicating in this case a general condition where


7A-8009-36

FIG. 2 PHOTOCELL SIGNALS FROM WHICH EYE POSITION
IS DETERMINED
the eye is pointing upward and to the right of an arbitrary reference position at which, say, the two cross points of the images would coincide. As the disk rotates, light will strike the photomultiplier as slit $\alpha$ crosses line $A$ and then line $A^{\prime}$, and then as slit $\beta$ crosses line $B$ and then $B^{\prime}$. The time between Pulses 1 and 2 is a measure of the component of eye position in the direction perpendicular to lines $A$ and $A^{\prime}$, and the time between Pulses 3 and 4 is the component perpendicular to lines $B$ and $B^{\prime}$. Signals representing the magnitude of these time intervals are the final outputs of the instrument.

## 2. Relevant Eye Dimensions

In the remainder of this section we will try to analyze the way in which the Purkinje images move in space under eye rotation. For this purpose a knowledge of certain of the eye dimensions is important. There is great variation from eye to eye, but the values in Fig. 3 are typical.


FIG. 3 RELEVANT EYE DIMENSIONS

The overall globe is a somewhat flattened sphere, as shown in the figure. The transparent cornea has a radius of curvature $r \approx 7.5 \mathrm{~mm}$, with the center of curvature ( $C$ ) displaced by a distance a $\approx 6 \mathrm{~mm}$ from the center of rotation (CR) of the eye, which is located about 13.5 mm from the front of the cornea. The cornea merges with the sclera (or "white of the eye") at a region called the limbus, which forms a ring (around the edge of the cornea) of diameter $c \approx 12.5 \mathrm{~mm}$. Viewed from the center of curvature of the cornea, the subtended arc of the limbus is $2 \lambda \approx 112^{\circ}$.
3. Position of the Purkinje Images

The reflection coefficient at the interface of two transparent dielectric materials is

$$
\begin{equation*}
R=\left(\frac{n_{1}-n_{2}}{n_{1}+n_{2}}\right)^{2} \tag{1}
\end{equation*}
$$

where $n_{1}$ and $n_{2}$ are the indices of refraction. In the case of the aircornea interface, the reflection coefficient is

$$
\begin{equation*}
R=\left(\frac{1.376-1}{1.376+1}\right)^{2}=0.025 \tag{2}
\end{equation*}
$$

where 1.376 is the index of refraction of the corneal material. In other words, approximately 2.5 percent of the incident light is reflected by the cornea, and is contained in the first Purkinje image.

To find the form of the reflected image, consider a distant light source reflected in the positive (i.e, convex) mirror of Fig. 4.


FIG. 4 REFLECTION OF A DISTANT SOURCE IN A POSItIVE AND NEGATIVE MIRROR
(Neglect for the moment the incoming rays from the left.) The input ray $A$ makes an angle $\theta$ with the radius drawn to the intercept point $P$. The reflected ray $A^{\prime}$ similarly makes an angle $\theta$ with the radius; and if this reflected ray is extericd backwards, it intersects at an angle $2 \theta$ the ray parallel to $A$ and drawn through the center of curvature $C$. The intersection point will be at a distance from the front of the mirror, where

$$
\begin{align*}
f & =r(1-\cos \theta)+\frac{r(\sin \theta)}{\tan 2 \theta} \\
& =r\left[1-\frac{1}{2(\cos \theta)}\right] \tag{?}
\end{align*}
$$

or a distance $g$ from the center of curvature, where

$$
\begin{equation*}
g=r-f=\frac{r}{2(\cos \theta)} \tag{4}
\end{equation*}
$$

For small $\theta$ we have $f \approx r / 2$, which is the well known focal length for a mirror, and represents the image plane for a distant object.

The fourth Purkinje image is formed by light reflected from the rear surface of the lem, that passes back out through the cornea. An equivalent single mirror that would form the same external image is shown by the heavy line in Fig. 5(a). The radius of this mirror is about 5.8 mm (compared with the corneal radius of 7.8 mm ) and its center is close to the corneal surface. ${ }^{4}$ The curvature and position of the equivalent mirror shifts with changes of accommodation. For an 8.6 diopter change (which is a very large change in accommodation), the mirror changes, as shown, to 5.2 mm radius with its center shifted slightly further from the corneal surface.

Ray-tracing with a negative (concave) mirror is similar to that with a positive mirror. The same mirror of Fig. 4 serves as a negative lens for the dashed rays impinging from the left. In partcular, Ray $B$, which is along the same line as Ray $A$, is reflected as Ray $B^{\prime}$, which is along the same line as Ray $A^{\prime}$ and we see then that


FIG. 5 OPTICS OF PURKINJE IMAGE FORMATION
(a) Position of equivalent fourth Purkinje mirror for unaccomodated eye and eye occomodated by 8.6 diopters
(h) assuming, for simplicity, that the first Purkinje mirror (cornea) and equivalent fourth Purkinje mirror form a symmetrical "clamshell"
exactly the same Eqs. (3) and (4) apply for the negative $\mathrm{m}^{2}$-ror as well. The position of the (virtual) corneal image plane is shown by the solic dot (on the axis) in Fig. 5(a). The position of the fourth Purkinje image is shown by the open dot, and we see that in the unaccommodated condition the planes of the first and fourth images are almost identical.

We will eventually have to concern oursolves with the effects of accommodation change, which the optometer will be simultaneuusly monitoring. But to greatly simplify the analysis here let us simply assume that the equivalent mirror for the fourth Purkinje image has the same curvature as the cornea, and that they are separated exactly by their radius of curvatire, as shown in Fig. $\mathbf{j}(\mathrm{b})$, where $C_{1}$ is the center of curvature for the cornea (first Purkinje image) and $C_{4}$ is the center of curvature for the fourth Purkinje image.

It is important to note that the real inage from the negative mirror is inverted with respect to the virtual. image from the positive mirror. Thus, as the source moves vertically upward, the virtual image in Fig. 6(a) similarly moves upward, but the real image of Fig. 6(b) moves downward. This is the differential separatior, with rotations, in which we are interested.

(a)

(b)

FIG. 6 ILLUSTRATION OF IMAGE MOVEMENT IN OPPOSITE DIRECTIONS FROM A POSITIVE AND NEGATIVE MIRROR

Anr 'er effect that we will have to consider further is the effect of pupil size on the fourth Purkinje image. The light contained in the corneal reflection is reflected from the surface of the cornea and never actually enters the eye. But light from the fourth image must pass the pupil twice, and changes in pupil size can have a significant effect on the intensity and extent of the fourth image.
4. Form of the Purkinje Images

Using the optical arrangement of Fig. l, consider a line object in the focal plane of lens $L_{3}$, Fig. 7. From each point of the line is a fan of rays with an angular spread that depends on the size of the stop


FIG. 7 INPUT RAY CONFIGURATION WITH STOP ST, IMAGED AT THE CENTER OF CURVATURE OF THE CORNEA
$\mathrm{ST}_{1}$. (Only a few fans are shown in the figure.) Each fan is collimated by Lens $L_{3}$ and all come together at the image of $S T_{1}$. It is assumed in Fig. 7 that the image of $\mathrm{ST}_{1}$ falls on the center of curvature of the cornea. Let us consider the image of the line that is formed under these circumstances.

In Fig. 8 is an enlargement of the rays impinging on the cornea. Consider the horizontal circular bundle, and assume that it is broken up into separate circular zones. Because the g-distance, in terms of Fig. 4, varies with angular intercept, we see that the "image point" will be different for each circular zone of the input beam. The rays


FIG. 8 SPHERICAL ABERRATION EFFECTS IN A SPHERICAL MIRROR
close to the axis reflect as though from a point at a distance of half the radius (ice., $g=r / 2$ ), but $g$ increases for rays further removed from the axis. Thus, the image $A^{\prime}$ of the point $A$ on the input line is smeared along the horizontal axis, from a distance $\mathbf{r} / 2$ outward to a distance that depends on the radius of the input beam and therefore on the size of the stop $\mathrm{ST}_{1}$. Exactly the same considerations hold for each point of the line object, so it is clear that the total image of the line will be curved along the r/2 circle, as shown in Fig. 8, with an outward radial spread that depends on the input stop size.

Thus far we have assumed that the . op was made to image on the center of curvature of the cornea, and in this case we see that the corneal image (or first Purkinje image) of the line-object is basically a curved segment along the $r / 2$ circle. But with this optical arrangement, the fourth Purkinje image would be quite different, since the input rays
would be converging, under the assumption of Fig. 5(b), not on the center of curvature for the concave mirror, but directly on the mirror surface itself. If we move the eye back, to the left in Fig. 7, so that the input rays converge on the corneal surface, then the situation would be reversed. The rays would now be converging on the center of curvature for the fourth image and directly on the mirror surface for the first image. To achieve symmetrical image formation of the first and fourth images the image of the stop must fall half-way between the two mirrors, almost exactly in the plane of the natural pupil.

Let us consider the effect on the image of different axial positions of the eye. Assume that the image of the stop is made to fall directly on the corneal surface, as suggested by the single input bundle of Fig. 9. The central ray $M$ will reflect as though from a point distant $g=r / 2 \cos \theta$ along a line $N$ drawn through the center of curvature and and parallel to $M$. To find the reflection centers for all of the other rays in the input beam it is convenient to again consider circular zones, but this time around line $N$. The sectors closer to $N(e . g ., z o n e ~ a)$ will reflect as though from a smaller g-distance, and those further from N (e.g., zone b) will have a larger g-distance. Thus, the "image" will spread along $N$, from Point $A$ to Point $B$, which represents the extreme g-distances. For a circular stop $S T_{1}$, so that the input beam from each point of the line object is circular, there will be a large concentration of rays at the central point $M$, the concentration reducing to zero at the extremes $A$ and $B$. There will also be a moderate concentration of rays (cross-hatched region in Fig. 9) along a line drawn between the region of concentration along the radial line, and the region where the input beam intersects the corneal surface.

If we consider all of the input rays, the image has the form
 creases with angular position in the incoming beam. The locus of $M$ points is exactly a vertical line, since the g-distance for each $M$ point is ( $r / 2$ ) $\cos \theta$, which has a horizuntal component $r / 2--i . e$. , independent of $\theta$. The locus of the second concentration of rays falls along

fig. 9 IMAGE FORMATION WHEN THE INPUT STOP ST, IS IMAGED DIRECTLY ON THE CORNEAL SURFACE
the dashed line in the figure. Thus, the primary image is basically a vertical line segment with radial smear.

If we shift the eye so that the stop is imaged in the $r / 2$ plane, as in Fig. $10(\mathrm{~b})$, then the image, as would be expected, falls between the r/2 circular segment of Fig. 8, and the vertical image of Fig. 10(a).

Thus, we see that the form of the corneal image changes with axial eye position, from basically a vertical image when the input stop is imaged on the corneal surface to a segment of the r/2 circle when the stop is imaged in the plane of the center of curvature. It is readily demonstrated that the considerations are the same for the fourth Purkinje

(a)


TA-6009-42

FIG. 10 FORM OF THE CORNEAL IMAGE WITH THE INPUT STOP IMAGED IN (a) THE SURFACE OF THE CORNEA, AND (b) THE r/2 PLANE
image except that the image is inverted. In the final apparatus we will scan both images with the same set of slits and we therefore desire both images to have nominally the same shape. For this reason we attempt to image the stop at the $\mathrm{r} / 2 \mathrm{plane}$, in which position the two images are tangent back-to-back, as in Fig. 11 (though recall that the first image is virtual and the fourth image is real).


FIG. 11 FIRST AND FOURTH PURKINJE IMAGES OF LINE OBJECT WITH THE INPUT STOP IMAGED IN THE r/2 PLANE

We now have a rough idea of the form of the Purkinje images. Our main interest, however, is how these images move in space, as a function of eye rotation, since it is the differential movement of the two images which, in effect, we use to measure the magnitude and direction of the eye rotation. In the following section we will consider the nature of these image movements with eye rotation.

## 5. Image Movement with Eye Rotation

The result of an eye translation parallel to the line object is sketched in Fig. $12(a)$, where only the central ray $S$ and extreme rays $R$ and $T$ are labeled. (This assumes a pinhole stop $S T_{1}$ so that in effect there is only a single ray from each point of the line object.) The

fig. 12 image shift with (a) eye translation parallel to the line object, and (b) eye rotation parallel to the line object
magnitude of translation, $p$, was chosen so that the extreme rays pass through the centers of curvature. In this case Ray R passes through $C_{1}$, the center for the first Purkinje image (corneal reflection), and the corresponding image point is directly on the $r / 2$ circle around $C_{1}$, as indicated by Point $R_{1}$. Similarly, Ray $T$ passes through center $C_{4}$, and the corresponding image point $T_{4}$ in the fourth Purkinje image is on the $r / 2$ circle around $C_{4}$. Horizontal ray $S$ images along the horizontal line through the centers $C_{1}$ and $C_{4}$, though the corresponding g-distances are now larger than $r / 2$, and the two images actually cross in space as shown.

If the eye rotates parallel to the line object (i.e., along the line object), rather than translating parallel to the line, then the two images not only cross in space but are differentially displaced vertically. In Fig. 12 (b) the rotation angle, $\alpha_{p}$, was chosen so that the lower ray $T$ just passes through center $C_{4}$. The center for eye rotation is labeled CR. The form of the images in this case is clear from Fig. 12 (b).

Though the images of the line object are generally curved in space, they are curved in the plane containing the object and image. Viewing directly into the eye the images would therefore appear straight, and superimposed, although with eye rotation they would be displaced vertically. If these images were swept past a single long slit, the two images would pass the slit simultaneously. In other words, the recording instrument would not be sensitive to either translational or rotational movements parallel to the line.

Let us next treat movements transverse to the line object. Consider a transverse rotation $\alpha_{T}$ about the center of rotation CR (Fig. 13)

fig. 13 IMAGE SHIFT WITH EYE ROTATION TRANSVERSE TO THE LINE OBJECT

We assume that the input inn is perpendicular to the page (suggested by the very thin fan shown). This means that the two Purkinje images are nominally perpendicular to the page. To find how these images separate with angular rotation, let us consider only the central (horizontal) ray of the input fan. For the angular rotation angle shown, the first image will form at $A_{1}--i . e .$, the vertical (curved) line in space penetrates the page through point $A_{1}$--and the fourth image will form at $A_{4}$. Both images will be beyond the $r / 2$ distance, though the g-distance will be larger for the fourth than for the first image. In any case, we see that
the line images separate in space by an amount nominally proportional to the angular rotation of the eye, and in a plane nominally perpendicular to the optical axis. The exact shape of the (curved) line images will change slightly with rotation (we have only consjdered the locus of the center point). Note that the images move in different directions only in "eye space." In real space both images move in the same direction, but differentially.
6. Viewing System

We must consider now how to view and image these Purkinje reflections and measure their separation, which is our desired measure of eye rotation.

If the incoming fan is imaged at the center of curvature, then the reflected fan is coincident with the incoming fan, in space, each ray being reflected on itself--e.g., Ray a reflected as Ray a', in Fig. 14(a). If the incoming fan is imaged at the surface of the cornea, the


FIG. 14 FORM OF THE REFLECTED BEAM FOR THE INPUT STOP ST, IMAGED AT (a) THE CENTER OF CURVATURE, (b) THE r/2 PLANE, AND (c) THE SURFACE OF THE MIRROR
returned beam again has the same shape, but inverted as in Fig. 14(c). With the fan imaged at $r / 2$, which is the focal length of the mirror, the returned beam is nominally collimated [Fig. 14 (b)]. This assumes a pinhole stop $S T_{1}$, so that there is essentially only a single ray for each object point. As the stop size increases, each input ray becomes a parallel bundle of rays and the reflected bundle of rays becomes larger in space, and a larger collecting system is therefore required. We will
treat these points further, but first let us consider the general form of viewing system that we might use.

In Fig. 15 we show the arrangement for projecting a given pattern to the eye, in conjunction with an artificial pipil stop, which is shown imaged in the $r / 2$ plane. There are basically two techniques for viewing the resulting Purkinje images. In one case we use a beam


FIG. 15 TWO POSSIBLE ARRANGEMENTS FOR THE VIEWING LENS $L_{4}$
splitter and place the viewing lens $L_{4}$ off to the side. In the other arrangement we view directly from an angle. An advantage of the latter technique is that we do not have the four-fold loss of light that we have with a beam splitter (a factor of $1 / 2$ in each direction). On the other hand we may have more image distortion to contend with if we view the curved images from off-axis, and also we must consider the difficulty of placing the viewing lens sufficiently close to the eye without interfering with the eye-piece lens $L_{3}$. We see then that there are many design questions to consider. Perhaps the most important at the moment though, is the question of field of view.

With the input stop imaged in the $r / 2$ plane, consider what happens to the reflected beam as the eve rotates. As a first approximation we can expect that the collimated return beam of Fig. 14 (b) will simply rotate, and remain substantially coilimated. To determine just how much the return beam swings in space, we will consider what happens to the central incoming Ray $a$, in Fig. 16. If the eye rotates by an anount $\alpha$,


FIG. 16 ANGULAR SWINGS $\beta_{1}$ AND $\beta_{4}$. OF THE COLLIMATED RETURNED BEAMS, FOR AN EYE ROTATION a
about CR (the center of rotation of the eye), then Ray a is displaced by $d_{1}=a \alpha$ (assuming small angles) and, in terms of Eq . (4), we have an imaging factor

$$
\begin{equation*}
g_{1}=\frac{r}{2 \cos \theta} \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
\theta \approx \frac{d_{1}}{r} \tag{6}
\end{equation*}
$$

or

$$
\begin{equation*}
g_{1} \approx \frac{r}{2}\left[1+1 / 2\left(\frac{d_{1}}{r}\right)^{2}\right] \tag{7}
\end{equation*}
$$

This leads to a reflection angle $\beta_{1}$, where

$$
\begin{align*}
\beta_{1} & \approx \frac{d_{1}}{r-g_{1}}  \tag{8}\\
& \approx 2\left(\frac{a}{r}\right) \alpha \tag{9}
\end{align*}
$$

In other words, if the eye rotates down by 1 degree, the reflected ray swings up by 1.6 degrees, since from Fig. 3 we see that $a, r=0.8$.

As for the fourth Purkinje reflection we note that the parallel ray, drawn through the center of curvature $C_{4}$, is displaced by $d_{4}=(a+r) \alpha$. We can calculate the deflection angle $\beta_{4}$ by rewriting Eqs. (5) t! rough (9) with $d_{4}$ substituted for $d_{1}$, with the result

$$
\begin{equation*}
\beta_{4} \approx 2\left(\frac{a+r}{r}\right) \approx=3.5 \alpha \tag{10}
\end{equation*}
$$

That is, the deflection angle is about 3.6 times the eye rotation.
We see then that if the eye rotates by $\alpha$, the two collimated return beams--from the first and fourth images--swing in opposite directions by an amount $1.6 \alpha$ and $3.6 \alpha$, respectively. If a viewing lens $L_{4}$ is placed so that the images are near its focal planf. (Fig. 17), the effective viewing angle of the lens must be at least twice $3.6 \alpha$, or $7.2 \alpha$. Thus, for an $f / 1$ lens [which has a focal-length-to-diameter ratio of unity, and therefore a field $\theta=2 \tan ^{-1}(1 / 2)$, or 53 degrees] the very largest eye movement away from the axis that we could permit, Without losing the fourth image, is (53/7.2), or ar,out 7 degrees. With an $f / 2$ lenf, with a field of 28 degrees, the corresponcing largest eye movement allowed is only 4 degrees.

These large swings of the reflected beams make it difficult to achieve a large field of view, and any techniques for enlaring the field of view are therefore important. We will see in the next section that the field of view is increased simply by increasing the size of the artificial pupil, and in Sec. 8 we will achieve an even larger increase


FIG. 17 REQUIRED FIELD OF VIEW OF THE VIEWING LENS $L_{4}$
in field of view by having the pupil stop $\mathrm{ST}_{1}$ move laterally, so as to track the eye movement.

## 7. Enlarging the Artificial Pupil

Suppose that we open the stop ST $_{1}$ so that its image has a diameter $2 W$ at the eye. Now, each ray of the previous input fans is replaced by a parallel beam of diameter $2 W$. The on-axis beam in fig. $18(2)$ is reflected as a spreading beam of angular width 2 $\beta$. To find $\beta$ we compute the angle of reflection for the uppermost ray of the input beam, which is displaced a distance $W$ from the optic axis. The horizontal distance from the intersection point at the mirror surface to the center of the mirror is $x=\sqrt{r^{2}-W^{2}}$, so that we have

$$
\begin{equation*}
\tan \beta=\frac{W}{x-g} \tag{11}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathbf{g}=\frac{\mathbf{r}}{2 \cos \lambda} \\
& \sin \lambda=\frac{W}{r} \tag{12}
\end{align*}
$$


(a)

fig. 18 reLation between the input beam width and the angular spread of the return beam

02

$$
\begin{equation*}
\tan \beta=\frac{2 \sqrt{\left(\frac{r}{W}\right)^{2}-1}}{\left(\frac{r}{W}\right)^{2}-2} \tag{13}
\end{equation*}
$$

which is plotted in Fig. $18(b)$, and from which we see a quite linear relation between (2B) and (2W)

As the input beamwidth increases we get a corresponding increase in reflected angular beamwidth, and increase in field of view, although the intensity of the final image will not be the same over the field. As the eye rotates, the reflected beam in Fig. 18 (a) will similarily rotate and be swept across the fixed viewing lens. Consider, for example, an $f / 2$ lens with an angular field of 28 degrees and a beamwidth of $2 \mathrm{~W} \approx 1.8 \mathrm{~mm}$, which from Fig. 18(b) also leads to an angular beamwidth of 28 degrees. With the eye on-axis, the entire returned beam is captured by the viewing lens. As the eye rotates, less and less of the beam is captured by the lens, and the intensity of that particular image point will decrease. In fact, even with the eye fixed on-axis the image will have nonuniform intensity since input beams (of the same width 2 W ) but representing offaxis points of the line object--and therefore skewed with respect to the optic axis--will have substantially the same angular magnitude of reflected beams, but skewed so that only portions of the beam are intercepted by the lens.

The larger the input beamwidth 2 W , the larger the field of view, but also the larger the spherical aberration, in terms of Fig. 8. If we arbitrarily decide that the distance factor $g=r /(2 \cos \lambda)$ should not vary by more than say 5 percent from the edge to the center of the beam, or $\cos \lambda=0.95$, then from Eq. (12) we have

$$
\begin{equation*}
\cos \lambda=\sqrt{1-\sin ^{2} \lambda}=\sqrt{1-\left(\frac{W}{r}\right)^{2}}=.95 \tag{14}
\end{equation*}
$$

or a beamwidth $2 W \approx 4.5$ millimeters, which from Fig. $18(b)$ imflies an output angular beam of about 70 degrees. This represents a respectable increase in field but without a great increase in spherical aberration.

Because of constraints imposed by the real pupil of the eye, we would not want to increase the input beamwidth much beyond 4.5 millimeters in any case, and generally the beamwidth will be considerably less.
8. Real-Time Tracking by the Artificial Pupil

We saw that the reflected beams can retate through wide angles in space, as a result of eye rotation, and that this leads to a limit on
field of view because of the limited angular field of the viewing lens. Increasing the size of the artificial pupil increased the angular spread of the reflected beams, and led to some increase in field of view. Another method of increasing the field of view is to use the signals from the eye tracker to move, or ser, the artificial pupil in such a manner that the reflected beams remain relatively fixed in space, or at least so that the swings are significantly reduced.

The basic idea can be seen in Fig. 19, which is the same as Fig. 16 except that the input fan has been translated in the direction


FIG. 19 TRANSLATING THE INPUT STOP ST $_{1}$ SO AS TO TRACK THE EYE MOVEMENT
of the eye rotation--i.e., downward--so that the original horizontal ray a, which is now labeled $a^{\prime}$, bisects the optical axis between the two centers of curvature. The reflected rays, which are labeled $a_{1}^{\prime}$ and $a_{4}^{\prime}$, are now nominally parallel to each other and parallel to the eye axis. In other words, if the input aperture tracks the eye rotation in this manner: the returned rays in both Purkinje images, from a given object point, remain parallel to the optic axis, though their separation increases with rotation angle. In this way we cut down the swings of $1.6 \alpha$ and $3.6 \alpha$ in Fig. 17 to swings that simply track the rotation itself.

It is important to understand that although movement of the artificial pupil image affects the angles of the reflected beams, it has no effect (at least no first-order effect) on the position of the

Purkinje images themselves. To see that this is so, assume in Fig. 20 that the stop $S T_{1}$ is a position $A$, in the focal plane of lens $L_{2}$, and


FIG. 20 DEMONSTRATION THAT TRANSLATION OF THE INPUT STOP ST, DOES NOT AFFECT THE POSITION OF THE CORNEAL IMAGE
let $P$ be some point aperture in the focal plane of lens $L_{3}$. An image of the artificial pupil is formed in the focal plane on the opposite side of $L_{3}$, and any light from point $P$, or light in fact from any other point in the optical space, must pass through the confines of this image (i.e., the artificial pupil). The light from $P$ is collimated by $L_{3}$ into a parallel beam labelled $A^{\prime}$. If this beam impinges on a convex mirror (the cornea), then the virtual image of $P$ is formed along the ray parallel to the beam $A^{\prime}$ and passing through the center of curvature. As we have seen, the virtual image point, $Q$, is nominally half-way out on the radius. If we translate the light source from position $A$ to some other position $B$, then the cone of light from $P$ shifts and the collimated beam from $L_{3}$ shifts correspondingly, but the resulting beam $B^{\prime \prime}$ remains parallel to the original beam, and the virtual image position of $P$ is therefore nominally the same--namely $Q$.

Thus, although lateral changes in the position of the light source shift the position of the artificial pupil formed on the cornea, and therefore shift the angle of the reflected rays, they do not affect the position of the virtual image in space.

Different tracking algorithms are possible besides the one shown in Fig. 19. For example, we could track one of the centers of curvature, in which case the returned rays from the corresponding mirror would not rotate in space at all, but then the rays from the other mirror would swing by approximately $2 \alpha$ for an eye rotation $\alpha$. There could be advantage to stabilizing the returned rays from the very weak fourth Purkinje image, to ensure maximum intensity of that image. But other consideralions might prevail to make the simple central tracking of Fig. 19 actually optimum. These other considerations relate to the magnitude of the image distortions with eye movement, and the limitations imposed by the real pupil on the fourth Purkinje image.

As far as image distortion is concerned, it is clear from Fig. 13 that the intercept angles would be smaller, and hence there would also be less distortion if the input beam was made to track the eye movement in the manner of Fig. 19. Thus, even to minimize effects due to image distortion there is an advantage in having the input aperture track the eye movement.
9. Limits Imposed by the Real Pupil

The real pupil of the eye can impose serious limits on the range of operation. To see this, assume that the input beamwidth $2 W$ is equal to the pupil diameter $D$, and let us consider just the horizontal input beam represented by the extreme rays $a$ and $b$ in Fig. 21(a). This beam is reflected as rays $a^{\prime}$ and $b^{\prime}$. (The parallel input beam is slightly converged as it passes the cornea, enough so to converge to a point on the cornea. But the retina is about 25 mm from the cornea, and the small amount of convergence does not significantly affect our qualitative arguments here.) As the eye rotates, some of the input beam is cut of . If the input beam had zero width (ice., $W=0$ ), an eye rotation

$$
\begin{equation*}
\alpha=\tan ^{-1}\left(\frac{D / 2}{a+\frac{r}{2}}\right) \tag{15}
\end{equation*}
$$


fig. 21 EfFECT OF THE REAL PUPIL ON THE FOURTH PURKINJE IMAGE
( $\approx 13$ degrees for a $4-m m$ pupil) woris: cause the input beam to be completely cut off by the edge of the pupil. With the beam equal in diameter to the pupil, [Fig. 21 (b)], as the eye rotates the light is cut off more gradually, in the manner of twc equal-sized disks passing over each other, with the transmitted light being equal to the common area. The larger the input beam the larger the eye rotation needed to completely cut of $f$ the beam. In any case, we see from Fig. 21 (c) that sibstantially full iight is again transmitted if the input aperture is shifted in the direction of the eye movement.

The pupil can block not only input light but also reflected light. Recall that the fourth Purkinje image is a real image that falls almost in the plane of the real pupil. For the sake of argument let us assume that it falls exactly in the pupil plane, so that any part of the image that falls outside the pupil is completely blocked, or cut off from view. Movement of the artificial pupil does not have any firstorder effect, since we noted that such movement has no effect on the position of the image formed in space. For example, $\ln$ Fig. 22, if the input light in Beam a were not blocked by the pupil it would tend to form a real image at Point $A$, in the plane of the pupil. If we shift the artificial pupil so that the input beam is at $a^{\prime}$, then none of the
input light is blecked, but still there is no output light because light focussing at $A$ is blocked by the pupil.

Thus, we must be concerned with the pupil blocking output light as well


FIG. 22 LIMITATION BY THE PUPIL ON THE SIZE OF THE FOURTH PURKINJE IMAGE as input light. Tracking with the artificial pupil can fairly well eliminate loss of input light. But as the eye rotates, the real image shifts in the pupil plane, and loss of portions of the image can set yet another limit on field of view.

We can readily determine the maximum angle of input light that will be blocked by the pupil after reflection by the back surface of the eye lens. The extreme condition is shown in Fig. 23(a) where parallel light at an angle $\theta$ is just cut off by the bottom edge of the pupil. The extreme input ray $c$ passes through the center of curvature and reflects on itself


FIG. 23 CALCULATING THE MAXIMUM ANGULAR SIZE OF THE FOURTH PURKINJE IMAGE AS A FUNCTION OF PUPIL DIAMETER
as $c^{\prime}$. The other extreme ray a is reflected as $a^{\prime}$ and crosses $c^{\prime}$ at the pupil edge. The central ray $b$, which is reflected as $b^{\prime}$, does not quite cross $c^{\prime}$ at exactly the same spot as $a^{\prime}$, and is not blocked. Because of aberrations, in other words, the cut-off is not perfectly sharp, but the condition of Fig. 23(a) i.s a very good estimate of cut-off-namely,

$$
\begin{equation*}
\theta=\tan ^{-1} \frac{\mathrm{D} / 2}{\mathrm{r} / 2} \tag{16}
\end{equation*}
$$

where $D$ is the pupil diameter. This relation is sketched in Fig. 23(b). Thus, for a $4.5-\mathrm{mm}$ pupil any light arriving at an angle greater than 30 degrees from the eye axis would be blocked by the pupil after reflection.
10. Optical Equalization of ihe Intensity of the Purkinje Images

Recall that the amount of light in the fourth Purkinje image is very much smaller than in the first Purkinje image--by a factor of 100 or more. This can impose severe dynamic range requirements on the electronic processing circuits. Some range compression can be achieved by nonlinear electronic amplification, but there is also an effective optical means of equalizing the image intensitites.

For a pinhole aperture stop $\mathrm{ST}_{1}$ we saw in Fig. $14(\mathrm{~b})$ that the light in the reflected image is collimated. Thus, for a line object, the reflected beam in space would similarly be a line, as indicated in Fig. $24(a)$ by the refiected rays $a^{\prime}, b^{\prime}, c^{\prime}$ from corresponding points $a, b, c$, on the object. For an arbitrary aperture shape, the reflected beam (corresponding to each point of the line object) will have the same shape as the aperture, and the overall reflected beam in space will be the orerlap of these beams, indicated in Fig. 24 (b). In Fig. 18 we saw that the angular spread of the reflected beam is large, and, in fact, at the plane of the viewing lens the size of the overall beam will primarily be determined by the aperture stop. There will be a small spread, in the direction of the line object, which is nominally as large as the size of the line image in the eye. For our purposes here, let us assume that the total reflected beam simply has a cross-sectional shape equal to that of the stop.

(a)


(b)

FIG. 24 DEMONSTRATION THAT THE OVERALL PATTERN OF REFLECTED lIGHT HAS ESSENTIALLY THE SAME SHAPE AS THE INPUT STOP ST,

An important point with respect to the Purkinje images is that the reflected beams from the first and fourth images are inverted with respect to each other. For a triangular aperture stop, for example, the reflected beams in space will have the form shown in Fig. 25(a). With

(a)

(b)

(c)

(d)

(e)

FIG. 25 RELATIVE MOVEMENT OF THE REFLECTED LIGHT BUNDLES, WITH RESPECT TO THE VIEWING LENS $L_{4}$ (a), (b) With a triangular stop $S T_{1}$ (c), (d), (e) With a double stop consisting of a large disk and a small satellite disk
the viewing lens $L_{4}$ placed as shown, a larger presentage of the light would be intercepted from the fourth than the first Purkinje reflection. As the eye rotates, the images separate, and for the case shown in Fig. $25(b)$ no light at all would be intercepted from the corneal reflection.

Of special interest is a stop consistir's of a relatively large circular aperture and a small satellite aperture as in Fig. 25(c). In this case, the total light from each image is contained in two parts, a small circular patch of light and a large circular patch of light. At some particular eye position the large circular patches from the first and fourth images are tangent. In this condition, if the viewing lens is located as in Fig. $25(\mathrm{~d})$, then the light in the large patch from the fourth reflection is intercepted, but only the light from the small patch of the first reflection. Thus, the percentage of total captured light from each image is in the ratio of the areag of the two disks in the aperture stop, assuming equal light intensity uver the er tire stop. Thus, for a $10: 1$ ratio in disk diameters, the total light intensity of the first pirkinje image can be reduced by a factor of $10^{2}=100$ compared with the total intensity of the four :i rkinje image. This ratio of reduction is constant over an eye movenent range from that shown in Fig. $25(\mathrm{~d})$ to that shown in Fig. $25(e)$, beyond which we would rapidly lose the first image altogether.

This technique of optical equalization may be very important in the system design, at least in our first experimental model.

## 11. Two-Dimensional Tracking

Thus far we have considered only one-dimensional eye tracking-i.e., in a direction transverse to the other line. Recall from Sec. B-5 that the line images did not separate in space for an eye rotation parallel to the input 1 ine, but only for a rotation transverse to the line object. For tracking in two dimeisions, the input pattern consists of a pair of orthogonal lines. If the input pattern is a pair of crossed lines, then the two images in space will similarly be a pair of crossed lines, as in Fig. 2, displaced according to the angular position of the eye. With a corresponding pair of scanning slits we obtain a measure of the geparation of the corresponding lines in the two Purkinje images. With a series of scanning slits, as provided by the disk of Fig. 26, we can obtain a continual measure of the two-dimensional angular position of the eye. The task of the electronics is to measure the separation in the


FIG. 26 PHOTOGRAPH OF A SECTION OF THE SCANNING DISK FOR CONTINUAL MEASURES OF $x$ AND y POSITION
corresponding pair of peak signals in the photocell output, which provide a measure of eye position.

The scanning disk shown in Fig. 26, which will be used in the first experimental model, contains 180 alternately directed slits around the circumference. With the disk spinning at say 6000 rpm , or 100 rps , we obtain 9000 samples of $x$ position and 9000 samples of $y$ position per second. Actually, we only require about 100 samples of $y$ position per second--i.e., a measure of eye position every 10 milliseconds or so-but the large number of samples allows us to achier; ea good deal of averaging. This may be important because of the low level, and therefore noisy, signals involved.

## BLANK

PAGE

## III INFRARED OPTOMETER

In this section we discuss a basic approach to the measurement of defocus and show how it is applied in the design of an optometer.

## A. Measure of Defocus

Consider a bar of width $W$ brought to focus at an image distance $q$, as in Fig. 27, and assume that the lens is completely covered except for

(a)

(b)

Ta-6009-60

FIG. 27 FORMING AN IMAGE $W$ THROUGH THREE PiNHOLE APERTURES
(a) Three images overlapping in the image plane
(b) Images iaterally displaced outside the image plane
three pinhole apertures $A, B$, and $C$. Let us consider the form of the defocus pattern at a distance $x$ from the image plane. The light from each pinhole forms an in-focus version of the image in any plane, except that the images change size (being smaller with $+x$, and larger with $-x$ ), and shift laterally with respect to each other. We could determine both the magnitude and the polarity of defocus if we simply knew the amount of light intercepted from Apertures $A, B$, and $C$ in one-half of the image, say to the right of the shaded region in Fig. 27 (b).

Let $L_{A}, L_{B}$, and $L_{C}$ be the total light intercepted from Apertures $A, B$, and $C$, respectively, in the right half of the image plane (assume that the left half of the image is completely blocked). We assume that the same total light passes through each aperture. For $x=0--i . e .$, in focus--we see that $L_{A}=L_{B}=L_{C}$. For $x>0, L_{A}>L_{C}$, and for $x<0$, $L_{A}<L_{C}$; the larger $|x|$, the larger $\left|L_{A}-L_{C}\right|$. Thus, by measuring ( $L_{A}-L_{C}$ ) we can determine both the magnitude and the polarity of defocus. The measurement of $L_{B}$ provides no extra information and, in fact, $L_{B}$ is independent of $x$. Thus, only two apertures are actually required and the larger their separation $D$ the greater the sensitivity--i.e., the larger $\left|L_{A}-L_{C}\right|$ for a given $|x|$.

There exist critical values of $x$ beyond which the magnitude of $L_{A}-L_{C}$ does not increase. For example, for $x \geq x_{c}^{+}$in Fig. $27(a)$, $L_{C}=0$ and $L_{A}$ is equal to the total light passing through Aperature A. There also exists a negative critical value, $\mathbf{x}_{c}^{-}$, such that for $x \leq x_{c}^{-}$, $L_{A}=0$ and $L_{C}$ is equal to the total light passing through Aperature $C$. A plot of $\left(L_{A}-L_{C}\right)$ as a function of $x$ therefore has the form shown in Fig. 28.

Let us determine an expression for ( $L_{A}-L_{C}$ ) over the range $x_{c}^{-} \leq x \leq x_{c}^{+}$. From Fig. 27(a), we see that

$$
\begin{equation*}
L_{A}(x)=L \frac{y}{z} \tag{17}
\end{equation*}
$$

when $L$ is the total light from Aperature $A, z$ is the beamwidth in plane $x$, and $y$ is the intercepted part of $z$ above the optical axis. The quantities $y$ and $z$ can be written as

$$
\begin{align*}
& y=\frac{w}{2}+\frac{x}{q}\left(\frac{D-w}{2}\right)  \tag{18}\\
& z=w\left(1-\frac{x}{q}\right), \tag{19}
\end{align*}
$$

from which we find

$$
\begin{equation*}
L_{A}(x)=L\left[1 / 2+\frac{D}{2 W} \frac{1}{(q / x)-1}\right] \tag{20}
\end{equation*}
$$



FIG. 28 PLOT OF THE DIFFERENCE IN LIGHT INTERCEPTED FROM APERTURES A AND C AS A FUNCTION of the defocus position x

We can determine $x_{C}^{+}-$the $p l a n e$ in which the $l$ ower ray from Aperture $A$ crosses the optic axis--by setting $L_{A}(x)=L$, from which we find

$$
\begin{equation*}
x_{c}^{+}=q\left(\frac{w}{D+w}\right) \tag{21}
\end{equation*}
$$

Assuming the same total light from Apertures $A$ and $C$, then over the range $0<x<x_{C}^{+}$we have simply

$$
\begin{align*}
L_{C}(x) & =L-L_{A}(x) \\
& =L\left[1 / 2-\frac{D}{2 W} \frac{1}{(q / x)-1}\right] \tag{22}
\end{align*}
$$

The difference signal $\left(L_{A}-L_{C}\right)$ is

$$
\begin{equation*}
L_{A}(x)-L_{C}(x)=\frac{D L}{W} \frac{1}{(q / x)}=1 \tag{23}
\end{equation*}
$$

which is valid over the entire range $x_{C}^{-}<x<x_{C}^{+}$. The negative limit, $\mathrm{x}_{\mathrm{C}}^{-}$, is readily found to be

$$
\begin{equation*}
x_{C}^{-}=-q \quad \frac{W}{D-W} \tag{24}
\end{equation*}
$$

The plot of Fig. 28 is drawn for the case shown to scale in Fig. 27(a), namely $D=3 W$, in which case $\left|x_{C}^{-}\right|=2\left|x_{C}^{+}\right|$. [Note that for $W \ll D$, $\left|x_{C}^{+}\right| \approx\left|x_{C}^{-}\right|$, and $\left(L_{A}-L_{C}\right)$ approaches a linear, symmetric function of $\left.x.\right]$

Note that the function $L_{A}-L_{C}[E q$. (23)] is unaffected by lateral translation of the half-field stop in Fig. 27 (b), except for shortening the range over which Eq. (23) applies, since with a lateral shift, $L_{A}$ does not reach zero simultaneously with $L_{C}$ reaching its maximum value, or vice versa.

Thus, we have all the information about defocus that we need if we simply determine $L_{A}$ and $L_{C}$. If une light from Apertures $A$ and $C$ were distinctively different, then $L_{A}$ and $L_{C}$ could be measured simulianeously-e.g., if $L_{A}$ and $L_{C}$ were of different colors, or if $L_{A}$ and $L_{C}$ were orthogonally polarized, or if they were modulated at different frequencies. In any of these cases, the difierence in outputs from two aetectors would give us the required measare ( $L_{A}-L_{C}$ ). Only a single detector would be required, however, if it were properly time-shared. For example, suppose that the light from Apertures A and C had exactly the same properties but that the apertures were alternately opened and closed-the light passing through $A$, then $C$, then $A$, and so on. In this way, we would obtain sequential measures of $L_{A}$ and $L_{C}$ from only a single detector. If instead of only two discrete aperture positions, we moved a single aperture sinusoidally between extreme positions $A$ and $C$, then the detector output would similarly be sinusoidal, which we can see from Eq. (20), where for a given value of $x$ we replace the fixed term $D$ by a sinusoidally varying term. In this case, the detector output is either in phase or 180 degrees out of phase with the mechanical movemer.t, depending on the polarity of defocus $x$, and has a peak-to-peak amplitude ( $L_{A}-L_{C}$ ) given by the plot of Fig. 28, assuming a peak-to-peak mechanical swing $D$.

This is the basic measurement scheme used in the optometer--i.e., a single aperture is moved transverse to the optic axis in a sinusoidal fashion. In the actual instrument, however, a scanning light source is used instead of a scanning aperture, as we will describe in the next section.
B. Instrument Design

In this section we will outline some of the more important features of the optometer design.

1 Schematic of the Overall System Design
Figure 29 shows a sketch of the overall design of the optometer (Fig. 36 is a photograph of the actual instrument). We can think of the system as consisting of an input optical system and an output optical system. The $\operatorname{snp}$. focuses an infrared bar pattern (formed by Stop $S_{1}$ ) onto the retina, and by servocontrol maintains the pattern in focus on the retina even though the refractive strength of the eye-lens may be continually changing. The input light projects through the beamsplitter in front of the eye. Reflected light from the retina that passes back out of the eye through the pupil is reflected downward by the same beamsplitter and imaged externally by the output optical system--the vertical portion at the left of Fig. 29. The image of the retinal pattern which is formed in Plane RI (for Retinal Image) falls on a stop, labeled $S_{2}$, which permits light from only half of the retinal image to pass to the detectorin the manner of Fig. 27 (b). Before the light reaches the photoreceptor, however, that portion of light reflected from the cornea of the eye is blocked in Plane CI for Corneal Image). A great deal of potential artifact signal is contained in the corneal reflection, so that blocking it is an extremely important step. The signal from the photodetector is then directed to a phase-sensitive detector. whose output is a dc signal with polarity and magnitude depending on the polarity and magitude of the defocus. This signal in turn is used to drive the servomotor that controls the axial position of the bar pattern in the input system. In this way the bar pattern is maintained in focus on the retina.


FIG. 29 SCHEMATIC DIAGRAM OF THE OPTOMETER

The servomotor also controls the axial position of Stop $S_{2}$ so as to maintain tne siop in the retinal image plane, in spite of changes in the refractive strength of the eye. Let us now consider the input and output system in more detail.
2. Input Optical System

The input system is shown in Fig. 30, with the eye symbolized simply by a lens $L_{E}$ and a retina. The external lenses $L_{1}$ and $L_{2}$ project the pattern $S_{1}$ onto the eye, in effect through a double-aperture system, in the sense of Fig. 27 (a). Let us consider the details of this projection.


FIG. 30 INPUT OPTICAL SYSTEM, ASSUMING A POINT SOURCE OF LIGHT AT POSITIONS A OR C

Assume that a light source is placed at position A, in the focal plane of Lens $L_{1}$. Point $A$ is then irudjed in the focal plane of Lens $L_{2}$. The implication of this imaging is that any light from $A$ that is intercepted by the two lenses must jass through the image point $A^{\prime}$, regardless of what sort of mask pattern may be placed between the tw $C$ lenses. Similarly, if the light source is moved to position $C$, then all light from $C$ that is intercepted bv the optical system must pass through its image point $C^{\prime}$, in the focal plane of Lens $L_{2}$. In this way we have in fact created the condition implied in Fig. 27 (a), but by a projection system rather than by the use of physical apertures placed at $A^{\prime}$ and $C^{\prime}$. If the light source were moved continually between $A$ and $C$, then the image of the light source would similarly move continuously between $A^{\prime}$ and $C^{\prime}$ respectively.

Let us next consider the introduction of the pattern $S_{1}$ that is to be focused onto the retina. To begin with, assume that the pattern is placed in the focal plane of Lens $L_{2}$, as shown in the figure. If we assume that the eye is accommodated for infinity, then this pattern will be in focus on the retina. In essence, $L_{2}$ and the eye-lens $L_{E}$ form a double lens system, so that an object in the focal plane of one is automatically brought to focus in the focal plane of the other. But, of course, any light passing through the pattern $S_{1}$ must at any instant pass through the image of the light source. Thus, if the light source is at A then all light passing through $S_{1}$ must pass through the image point $A^{\prime}$.

Thus far we have assumed that the light source is a point source. Let us now consider the use of an area source $S$, as in Fig. 31. The


TA-8009-64

FIG. $3 i$ IMAGE FORMATION WITH AN INPUT LIGHT SOURCE OF ANGULAR WIDTH $a$
light radiated from each point of the source is collimated by Lens $L_{1}$, so that to the left of Lens $L_{1}$ the collimated bundles have an angular spread $\alpha$, where $\alpha$ is the angular size of the source as seen from Lens $L_{1}$. Thus the set of rays passing through a pinhole' $P_{1}$ in $S_{1}$ have the same angular spread $\alpha$. This bundle of rays emanating from $P_{1}$ is collimated by Lens $L_{2}$ to a width exactly equal to that of the source, assuming a unity magnification (i.e., $f_{1}=f_{2}$ ), in which case $s^{\prime} \equiv S$. Exactly the same arguments apply to any other point of the pattern, e.g., Point $P_{2}$ located on the optic axis. The bundle of rays from $P_{2}$ is also collimated by Lens $L_{2}$ into a parallel set of rays that exactiy overlaps the collimated beam from $P_{1}$ in the plane of the pupil image $S^{\prime}$.

Let us next consider the effect of moving the plane of the pattern along the optic axis, so that it is at a distance $p$ from the lens $L_{2}$, where $p \leq f_{g}$, as shown in Fig. 32. The angular spread of the beam passing through $P_{1}$ is of course independent of the magnitude of $p$. However, for $p<f_{2}$ the lens does not coilimate the bundle; rather, the refracted bundle appears to come from a virtual image point at a distance $q$ behind the lens. An important point regarding this imaging technique is that the angular size of the image is independent of the distarne $p$. This is readily deduced by noting that the locus of the horizontal ray through $P_{1}$ is completely independent of the distance $p$, and that the virturl image lies along the backward projection of this central ray.


FIG. 32 ChANGE IN THE DISTANCE ( $f_{2}+q$ ) OF THE VIRTUAL IMAGE FROM THE EYE CAUSED by Changing the distance p angular size of image remains invariant

Hence, by changing $p$ we simply change the distance of the virtual image of the pattern but not the angular size of the pattern as seen from the eye.

Let us next consider the effective distance of the virtual image as a function of the distance p. Directly from the basic lens formula

$$
\begin{equation*}
\frac{1}{f}=\frac{1}{p}+\frac{1}{q} \tag{25}
\end{equation*}
$$

we can write

$$
\begin{equation*}
q=\frac{\mathbf{f}_{2} p}{\mathbf{f}_{2}-p} \tag{26}
\end{equation*}
$$

where the sign of $q$ is reversed, since it is defined in Fig. 32 as being on the same side of the lens as $p$. The effective distance of the pattern image from the eye is then

$$
\begin{equation*}
\left(f_{2}+q\right)=\frac{f_{2}^{2}}{f_{2}-p} \tag{27}
\end{equation*}
$$

In terms of dioptric distance from the eye, we can write

$$
\begin{equation*}
D=\frac{1}{f_{2}+q}=\frac{1}{f_{2}}\left(1-\frac{p}{f_{2}}\right)=D_{0}\left(1-\frac{p}{f_{2}}\right) \tag{28}
\end{equation*}
$$

where $D$ is the magnitude of dccommodation required by the eye to focus the pattern which is located a disiance $p$ from Lens $L_{2}$, and $D_{0}$ represents the accommodation required for $p=0$ (i.e., with the pattern directly against the Lens $L_{2}$ ), in which case $q=0$ and the pattern simply appears to be located at a distance $f_{2}$ from the eye, or at $D_{0}=1 / f_{2}$ diopters.

Thus, there is a simple linear relation between the distance $p$ and the accommodation of the eye that maintains the pattern in focus on the retina. We can deduce the refractive power of the eye, as a continuous function of time, simply by recording $p$ as a function of time, assuming that the input pattern is servo-controlied to maintain its retinal inage continually in focus.

Let us now shift our attention to the output system, whose main function is to determine the state of focus of the retinal image and thereby control the input servo system.

## 3. Output Optical System

The optics of the output system are simple to follow if we assume that Lenses $L_{3}$ and $L_{4}$ (Fig. 33) are identical with Lenses $L_{1}$ and $L_{2}$, respectively, althnugh this is by no means a requirement. By optical reciprocity it is clear that any light reflected from the retinal image would be reimaged $a^{+}$, a distance $p$ from Lens $L_{2}$, and therefore also at a distance $p$ from Lens $L_{3}$. If the bar pattern is centered at the opicic axis, then a stop $\mathbf{S}_{2}$ in the retinal image plane will block half of the retinal image, in the sense discussed in connection with Fig. 27 (b).

If it were not for blocking certain artifact signals we could put the photodetector directly behind this half-field retinal-image stop, and if the input light source were vibraced sinusoidally, orthogonally to the bar pattern, then we would obtain a sinusoidal output: from the photodetector, of a phase and amplitude dependius on the polaritij and


FIG. 33 OUTPUT OPTICAL SYSTEM
magnitude of defocus. However, a significant amount of light is reflected from the cornea, and as the light reflected from the cornea is modulated in space in response to the vibrating light source, significar.t artifact signal can be introduced into the photodetector at the same frequency as the desired signal.

We saw in Fig. $5(a)$ that the corneal image is formed almust exactly in the pane of the real pupil of the eye, which is the plane in which we image the light source or "artificial pupil" in Fig. 31. Tisus, the corneal image will be reimaced in the focal plane of Lens $L_{4}$, which is optically equivalent to the plane of the original light source. We can prevent any light from the corneal image from entering the photodetector systen by inserting a stop $S_{3}$ in the corneal irage
plane CI. The stop must be at least as large as the corneal image itself and preferably larger, so as to be able to tolerate a certain amount of eye movements, which results in corresponding movements of the corneal image in space.

With the half-field stop in the retinal image plane, and with a corneal-image stop to eliminate the major source of artifact signals, we now have the potential for a relatively clean signal from the photodetector. This signal is fed to a phase-sensitive detector, as discussed in connection with Fig. 29, the output of which in turn controls the servo system.

Let us consider further the formation of the corneal image, and thereby obtain some idea of the size of the corneal stop that is required. It is undesirable to make the corneal stop any larger than necessary, because the stop blocks not only light from the corneal image but also a fraction of the useful signal light from the retina, which otherwise would pass through the entire pupil area. Two primary factors determine the size of the corneal stop: namely, the size of the corneal image itself and the tolerance necessary for eye movements.

Size of the Corneal Stop: We are concerned here with estimating the size of the corneal image and are not concerned therefore with the more complex considerations regarding image distortion treated in Sec. II. Assume that Stop $S_{1}$ consists of a bar of height $h$, as in Fig. 34, which has an angular size, as seen from the eye, of $3 \theta$, where

$$
\begin{equation*}
2 \theta=2 \tan ^{-1}\left(\frac{h / 2}{f_{2}}\right) \approx \frac{h}{f_{2}} \tag{29}
\end{equation*}
$$

for small angles. For $p=f_{2}-\boldsymbol{i} . e$. , with the pattern located in the focal plane of Lens $L_{2}-$ the corneal image is in the focal plane of the cornea and the image size $h^{\prime}$ is equal to the input pattern size scaled by the ratio of the focal lengths, or

$$
\begin{equation*}
h^{\prime}=h \frac{r / 2}{f_{2}} \tag{30}
\end{equation*}
$$

where $r / 2 \approx 4 \mathrm{~mm}$ is the focal length of the cornea.


FIG. 34 ESTIMATING THE HEIGHT $h^{\prime}$ OF THE CORNEAL IMAGE, ASSUMINC AN INPUT PATTERN OF HEIGHT $h$

We have already seen that the angular size of the image, as seen from the eye, is independent of $p$. This means that the locus of the end points of the corneal image is a pair of radial lines drawn through the center of curvature of the cornea, each at an angle $\theta$ from the axis, as shown in Fig. 34. As p decreases, the corneal image moves closer to the surface of the cornea and is correspondingly increased. To find the variation in image size we can again apply the basic lens formula and find that the image distance (measured from the surface of the mirror) is simply

$$
\begin{equation*}
q^{\prime}=\frac{f_{2}(r / 2)}{f_{2}-(r / 2)}=\frac{r}{2} \frac{1}{1-\frac{r / 2}{f_{2}}} \tag{31}
\end{equation*}
$$

so that we expect very little change in image distance for $f_{2} \gg \mathrm{ri}$, which will generally be the case. For example, for $f_{2}=85$ millimeters, then $(r / 2) / f_{2} \approx 1 / 20$, and there is only a 5 -percent change in the image distance over the entire range $0 \leq p \leq f_{2}$. Thus, for all practical purposes we can consider the corneal image to be permanently fixed in the r/2 plane and to have an image of the size given by Eq. (30).

If we assume that under the conditions of use the pupil will not stop down less than, say, 4 mm , then we may wish to confine the
height of the bar in the corneal image to only 1 mm , in which case $h \approx 22 \mathrm{~mm}$ (assuming a focal length again of $f_{2}=85 \mathrm{~mm}$, which corresponds to an angular size $2 \theta \approx 15$ degrees.

To find how the corneal image moves in space in response to an eye movement, it is only necessary to know how the center of curvature of the cornea moves. The key dimension is the distance from the center of curvature of the cornea, $C$, to the center of rotation of the eye, $C R$, which Fig. 3 shows to be $\approx 6 \mathrm{~mm}$. For small movements we have that

$$
\begin{equation*}
m \approx a \alpha \tag{32}
\end{equation*}
$$

where $m$ is the lateral movement of the corneal image in response to an eye rotation $\alpha$. For eye movements over, say, a 5 degree field, the corneal image will thus move by approximately $m \approx \pm 0.25 \mathrm{~mm}$. To allow for eye movements of this siof must then enlarge the corneal stop by about 0.5 mm in every dimension, beyond the size determined strictly on the basis of the size of the corneal image itself.

## 4. Physical Design of the Instrument

A schematic drawirg of the instrument is shown in Fig. 35 and a photograph in Fig. 36. In order to avoid a bulky instrument that extends in two orthogonal directions, the optics have been folded so that the input and output paths are parallel and separated by a distance d $=20 \mathrm{~mm}$, which is an extra distance that the input path light has to travel in the reflection from the dichroic mirror to the beam splitter. The two output lenses and Stop $S_{1}$ are axially displaced from the input lenses and Stop $S_{2}$ by this same distance, so that they are in optically equivalent planes. The stops are mechanically coupled and are driven by a single servomotor.

Lenses $L_{1}, L_{2}, L_{3}$, and $L_{4}$ are identical achromatic doublets, with an 85 mm focal length and 25 mm diameter. With identical lenses, there is unity magnification in the input and output optical systems.

The fiber-optic bundle is 12 inches long and has an effective end area of about 1.0 mm . It is illuminated at one end by a 45 -watt


FIG. 35 DIAGRAM OF THE OPTICS OF THE ACTUAL INSTRUMENT
high-intensity bulb mounted in a conventional optical condenser system. The other end of the fiber-optic bundle is mounted in a two-dimensional vibrator, controlled by two orthogonally mounted loudspeakers whose cones have been removed. Although vibration in only a single dimension is required for optometer purposes, this instrument also offers the possibility of measuring astigmatism. This can be accomplished by rotating the bar pattern in which case we must similarly rotate the direction of the light-source vibration. The orthogonal drive system permits us to vibrate the fiber-optic bundle in any desired direction.

Mirror $M_{1}$ reflects the undesired component of the input light out of the system. Lens $L_{5}$ images the final signal light onto the photodetector. The corneal stop is mounted in a clamp which provides fine position control in three orthogonal directions. A rotatable mirror $M_{2}$ permits direct viewing of the optical output without having to move the photodetector. In normal operation the mirror is lowered out of the way.
[4-6009-69
FIG. 36 PHOTOGRAPH OF THE OPTOMETER


#### Abstract

Signals in the form of Fig. 2 have been obtained from an experimental version of the eye tracker, with human subjects, using the optical equalization method discussed in connection with Fig. 25. These signals seemed to respond appropriately to eye movements. Electronic circuits to process these signals are now being tested. Without automatic signal processing it is difficult to evaluate the sensitivity and accuracy that may be achieved. The signals are noisy and of relatively low amplitude, and some new optical configurations to help increase the optical efficiency of the system are now being examined. We hope shortly to decide on an optimum configuration.

We have not yet been able to completely test the optometer, since the servo-drive system and properly coated dichroic and beamsplitter elements are just now being incorporated into the system. The unit seemed to function properly, however, with a model eye and some available optical elements (without proper coatings), and with Stops $S_{1}$ and $S_{2}$ operated manually. We hope to test the complete system, with human subjects, very shortly.


## PRECEDING. PAGE BLANK MOT FILMED.

## REFERENCES

1. H. D. Crane, "A Theoretical Analysis of the Visual Accommodation System in Humans," Final Report, Contract NAS2-2760, SRI Project 5454, Stanford Research Institute, Menlo Park, California (January 1966).
2. F. W. Campbell and J. G. Robinson, "High-Speed Infrared Optometer," J. Opt. Soc. Am., Vol. 49, No. 3, pp. 268-272 (March 1959).
3. J. Warshawsky, "High-Resolution Optometer for the Continuous Measurement of Accommodation,"J. Opt. Soc. Am., Vol. 54, No. 3, pp. 375-379 (March 1964).
4. H. Davson, ed., The Eye, Vol. 4, Table II, p. 111 (Academic Press, New York, N. Y., 1962).

[^0]:    *References are listed at the end of this report.

